WO2021132430A1 - Receiver, receiving system, transmitter, receiving method, and program - Google Patents

Receiver, receiving system, transmitter, receiving method, and program Download PDF

Info

Publication number
WO2021132430A1
WO2021132430A1 PCT/JP2020/048353 JP2020048353W WO2021132430A1 WO 2021132430 A1 WO2021132430 A1 WO 2021132430A1 JP 2020048353 W JP2020048353 W JP 2020048353W WO 2021132430 A1 WO2021132430 A1 WO 2021132430A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
signals
unit
change
Prior art date
Application number
PCT/JP2020/048353
Other languages
French (fr)
Japanese (ja)
Inventor
真理 中西
一弘 松本
柴野 伸之
尚樹 本間
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021567593A priority Critical patent/JP7450231B2/en
Publication of WO2021132430A1 publication Critical patent/WO2021132430A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/28Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present disclosure relates to receivers, receiving systems, transmitters, receiving methods and programs, and more specifically to receivers, receiving systems, transmitters, receiving methods and programs that generate multiple signals.
  • the communication terminal device (receiver) described in Patent Document 1 estimates the arrival direction of the beacon signal (radio signal) transmitted by the beacon device (transmitter) based on the received signal strength (RSSI).
  • RSSI received signal strength
  • the present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide a receiver, a receiving system, a transmitter, a receiving method, and a program capable of improving the estimation accuracy of the arrival direction of a radio signal.
  • the receiver includes a plurality of antennas, a phase synthesizer, an output unit, and a change unit.
  • the plurality of antennas receive radio signals.
  • the phase synthesizing unit performs synthesis processing on a plurality of input signals based on the radio signals input from the plurality of antennas, and generates a composite signal for estimating the arrival direction of the radio signals.
  • the output unit outputs the combined signal.
  • the change unit performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the composite signal.
  • the phase synthesizer generates a first composite signal as the composite signal before the change process by the changer.
  • the phase synthesis unit generates a second composite signal as the composite signal after the change processing by the change unit.
  • the output unit outputs the first composite signal and the second composite signal.
  • the transmitter includes a phase synthesizer, a plurality of antennas, and a changer.
  • the phase synthesizing unit performs synthesis processing on a plurality of input signals based on a plurality of original signals to generate a plurality of radio signals.
  • the plurality of antennas transmit the plurality of radio signals.
  • the change unit performs a change process for changing at least one element related to the process from the reception of the plurality of original signals to the transmission of the plurality of radio signals.
  • the phase synthesizing unit generates a plurality of first radio signals as the plurality of radio signals before the change processing by the change unit. Further, the phase synthesizing unit generates a plurality of second radio signals as the plurality of radio signals after the change processing by the change unit.
  • the plurality of antennas transmit the plurality of first radio signals and the plurality of second radio signals.
  • the receiving method includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step. ..
  • the reception step the radio signal is received.
  • the first phase synthesis step a combination process is performed on a plurality of input signals based on the radio signal, and a first composite signal for estimating the arrival direction of the radio signal is generated.
  • the first output step the first composite signal generated in the first phase synthesis step is output.
  • the change step at least one element related to the processing from the reception step to the first phase synthesis step is changed.
  • the second phase synthesis step after the change step, a second composite signal different from the first composite signal generated in the first phase synthesis step is generated.
  • the second composite signal generated in the second phase synthesis step is output.
  • the program according to one aspect of the present disclosure causes one or more processors to execute the receiving method.
  • FIG. 1 is a schematic view showing an outline of the receiving system and the transmitter of the first embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the receiving system of the first embodiment.
  • FIG. 3 is a schematic view showing an outline of the receiving system and the transmitter of the second embodiment.
  • FIG. 4 is a block diagram showing a functional configuration of the transmitter of the second embodiment.
  • the transmitter 4 of the present embodiment is composed of, for example, a beacon device that transmits a beacon signal (radio signal) according to the standard of BLE (Bluetooth (registered trademark) Low Energy) (hereinafter, referred to as “BLE”). Will be done.
  • BLE Bluetooth (registered trademark) Low Energy
  • the transmitter 4 is not limited to the beacon device that transmits the beacon signal according to the BLE standard.
  • the transmitter 4 may be, for example, a device that transmits a radio signal according to the standard of WiFi (registered trademark).
  • the receiving system 1 includes a plurality of (three in the illustrated example) antennas 11 for receiving the radio signal transmitted by the transmitter 4.
  • the plurality of antennas 11 of the present embodiment are array antennas including the antenna 11a, the antenna 11b, and the antenna 11c. In the following description, when the specific antenna 11 is described, the antennas 11a, 11b, and 11c are described separately. Further, when a plurality of antennas 11 are described without distinction, they are simply referred to as antennas 11.
  • the receiving system 1 of the present embodiment is composed of a system capable of receiving a radio signal according to the BLE standard with a plurality of antennas 11.
  • the receiving system 1 is not limited to a system capable of receiving a radio signal according to the BLE standard.
  • the receiving system 1 may be, for example, a system capable of receiving a radio signal according to the WiFi standard.
  • the receiving system 1 of the present embodiment estimates the positional direction of the transmitter 4 that has transmitted the radio signal based on the received signal strength (RSSI) of the radio signal received by the plurality of antennas 11.
  • RSSI received signal strength
  • the reception system 1 of the present embodiment includes a receiver 2 and an estimation unit 3.
  • the receiver 2 receives the radio signal transmitted by the transmitter 4.
  • the receiver 2 When the receiver 2 receives the radio signal, it generates synthetic signals SS1 to SS4 for estimating the arrival direction of the radio signal based on the radio signal.
  • the receiver 2 performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4.
  • the composite signals SS1 to SS4 generated by the receiver 2 based on the radio signal become different composite signals SS1 to SS4 before and after the change processing.
  • the receiver 2 outputs the combined signals SS1 to SS4 before and after the change processing to the estimation unit 3.
  • the estimation unit 3 estimates the arrival direction of the radio signal based on the combined signals SS1 to SS4 before and after the change processing output from the receiver 2. The method by which the estimation unit 3 estimates the arrival direction of the radio signal will be described in the column of "(3) Arrival direction estimation".
  • the receiver 2 includes a plurality of antennas 11, a switching unit 12, a phase synthesis unit 13, an output unit 14, and a change unit 15. ..
  • the plurality of antennas 11 are electrically connected to the switching unit 12. Each of the plurality of antennas 11 receives the radio signal transmitted by the transmitter 4.
  • the switching unit 12 is a processing unit that is electrically connected between the plurality of antennas 11 and the phase synthesizing unit 13 and switches the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13.
  • the switching unit 12 includes a switch 16a, a switch 16b, and a switch 16c.
  • switches 16a, 16b, and 16c are described without distinction, they are simply referred to as the switch 16.
  • the switches 16a, 16b, and 16c are described separately.
  • the switching unit 12 performs a switching operation of the switches 16a to 16c by being controlled by the changing unit 15.
  • the switch 16b of the present embodiment has the antenna 11b and one of the first input terminal I1 and the second input terminal I2 of the phase synthesizer 17b included in the phase synthesizer 13 according to the control by the change unit 15. Electrically connect.
  • a state in which the antenna 11b and the first input terminal I1 of the phase synthesizer 17b are electrically connected by the switch 16b is referred to as a “first connection state”.
  • a state in which the antenna 11b and the second input terminal I2 of the phase synthesizer 17b are electrically connected by the switch 16b is referred to as a "second connection state”.
  • the switch 16a is controlled so that the antenna 11a and the first input terminal I1 of the phase synthesizer 17a are always electrically connected. That is, the switch 16a of the present embodiment does not perform the switching operation. Therefore, the switch 16a may be a simple electrical path connecting the antenna 11a and the first input terminal I1 of the phase synthesizer 17a.
  • the switch 16c is controlled so that the antenna 11c and the second input terminal I2 of the phase synthesizer 17c are always electrically connected. That is, the switch 16c of the present embodiment does not perform the switching operation. Therefore, the switch 16c may be a simple electric circuit that connects the antenna 11c and the second input terminal I2 of the phase synthesizer 17c.
  • the phase synthesizing unit 13 performs synthesis processing on a plurality of input signals IS1 to IS3 (signals IS4 to IS7) based on radio signals input from the plurality of antennas 11, and synthesizes for estimating the arrival direction of the radio signals.
  • This is a processing unit that generates signals SS1 to SS4.
  • the phase synthesizer 13 of the present embodiment generates different composite signals SS1 to SS4 before and after the switch 16b is switched.
  • the composite signals SS1 to SS4 generated by the phase synthesizer 13 in the first connection state are referred to as the first composite signals SS1 to SS4.
  • the composite signals SS1 to SS4 generated by the phase synthesizer 13 are referred to as the second composite signals SS1 to SS4.
  • the phase synthesizer 13 includes a phase synthesizer 17a, a phase synthesizer 17b, a phase synthesizer 17c, a phase synthesizer 17d, and a phase synthesizer 17e.
  • the phase synthesizer 17 is composed of, for example, a 90-degree hybrid unit (hybrid element).
  • the phase synthesizer 17 of the present embodiment produces a signal having a power value 1 / ⁇ 2 times that of the input signals IS1 to IS3 based on the radio signals input to the first input terminal I1 and the second input terminal I2.
  • Output is performed from the 1st output terminal O1 and the 2nd output terminal O2. Further, the phase synthesizer 17 outputs a signal having the same phase from the first output terminal O1 as compared with the input signals IS1 to IS3 based on the radio signal input to the first input terminal I1, and the phase is delayed by 90 degrees. The signal is output from the second output terminal O2.
  • the phase synthesizer 17a outputs the in-phase signal IS4 from the first output terminal O1 with a power value 1 / ⁇ 2 times that of the input signal IS1 based on the radio signal input to the first input terminal I1.
  • the phase synthesizer 17b has different input terminals electrically connected to the antenna 11b depending on the connection state.
  • the input signal IS2 based on the radio signal is input to the first input terminal I1.
  • the phase synthesizer 17b outputs the signal IS5 whose power value is 1 / ⁇ 2 times and whose phase is delayed by 90 degrees from the input signal IS2 from the second output terminal O2.
  • the phase synthesizer 17b outputs a signal IS6 having a power value 1 / ⁇ 2 times that of the input signal IS2 and having the same phase from the first output terminal O1.
  • the phase synthesizer 17b In the second connection state, the input signal IS2 is input to the second input terminal I2.
  • the phase synthesizer 17b outputs a signal IS5 having a power value 1 / ⁇ 2 times that of the input signal IS2 and having the same phase from the second output terminal O2. Further, the phase synthesizer 17b outputs a signal IS6 whose power value is 1 / ⁇ 2 times that of the input signal IS2 and whose phase is delayed by 90 degrees from the first output terminal O1.
  • the phase synthesizer 17c outputs an in-phase signal IS7 from the second output terminal O2 with a power value 1 / ⁇ 2 times that of the input signal IS3 based on the radio signal input to the second input terminal I2.
  • the phase synthesizer 17d receives the signal IS4 at the second input terminal I2 and the signal IS5 at the first input terminal I1.
  • the phase synthesizer 17d produces a signal having a power value of 1 / ⁇ 2 times that of the signal IS4 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS5 and having the same phase.
  • the added combined signal SS1 is output from the first output terminal O1.
  • the phase synthesizer 17d has a signal having a power value of 1 / ⁇ 2 times that of the signal IS4 and having the same phase, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS5 and having a phase delay of 90 degrees.
  • the combined signal SS2 is output from the second output terminal O2.
  • the phase synthesizer 17e receives the signal IS6 at the second input terminal I2 and the signal IS7 at the first input terminal I1.
  • the phase synthesizer 17e produces a signal having a power value of 1 / ⁇ 2 times that of the signal IS6 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS7 and having the same phase.
  • the added combined signal SS3 is output from the first output terminal O1.
  • the phase synthesizer 17e has a signal having a power value of 1 / ⁇ 2 times that of the signal IS6 and having the same phase, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS7 and having a phase delay of 90 degrees.
  • the combined signal SS4 is output from the second output terminal O2.
  • the change unit 15 is a processing unit that performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4.
  • the changing unit 15 of the present embodiment performs a process of controlling the switching unit 12 so as to switch the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13 as at least a part of the changing process.
  • the changing unit 15 switches the electrical connection state between the antenna 11b and the phase synthesizer 17b by controlling the switch 16b to be switched.
  • the connection state between the antenna 11b and the phase synthesizer 17b is the first connection state until the change unit 15 performs the change processing.
  • connection state between the antenna 11b and the phase synthesizer 17b is the second connection state after the change unit 15 performs the change processing.
  • the change unit 15 performs the change process at a predetermined timing.
  • the predetermined timing is, for example, a timing at which the phase synthesizing unit 13 outputs the combined signals SS1 to SS4, a constant timing set according to the interval at which the transmitter 4 transmits the radio signal, and the like.
  • the output unit 14 outputs the combined signals SS1 to SS4 generated by the phase synthesizing unit 13 to the estimation unit 3. Specifically, the output unit 14 has the first composite signals SS1 to SS4 generated by the phase synthesis unit 13 before the change processing is performed by the change unit 15, and the phase before the change processing is performed by the change unit 15. The second composite signals SS1 to SS4 generated by the synthesis unit 13 are output to the estimation unit 3.
  • the estimation unit 3 estimates the arrival direction of the radio signal.
  • the complex propagation channel between the antenna 11a and the transmitting antenna of the transmitter 4 is h1
  • the complex propagation channel between the antenna 11b and the transmitting antenna is h2
  • the complex propagation channel between the antenna 11c and the transmitting antenna is Let h3 be the complex propagation channel. Further, the distance between the antenna 11a and the antenna 11b and the distance between the antenna 11b and the antenna 11c are d1.
  • the transmitter 4 exists at a position at an angle ⁇ 1 with respect to the broadside direction of the array antenna composed of the antenna 11a, the antenna 11b, and the antenna 11c.
  • the estimation unit 3 estimates the arrival direction of the radio signal based on the first combined signals SS1 to SS4 will be described.
  • the propagation channels can be collectively expressed as Eq. (1).
  • the correlation matrix of this propagation channel can be expressed by Eq. (2).
  • the symbol H represents the complex conjugate transpose
  • the symbol * represents the complex conjugate.
  • the diagonal term of the correlation matrix R is a real number
  • the off-diagonal term is a complex number.
  • the amplitudes of the plurality of first composite signals SS1 to SS4 input to the estimation unit 3 can be expressed as equations (3) to (6).
  • represents the amplitude of the composite signal SS1 output from the first output terminal O1 of the phase synthesizer 17d.
  • represents the amplitude of the composite signal SS2 output from the second output terminal O2 of the phase synthesizer 17d.
  • represents the amplitude of the composite signal SS3 output from the first output terminal O1 of the phase synthesizer 17e.
  • represents the amplitude of the composite signal SS4 output from the second output terminal O2 of the phase synthesizer 17e.
  • the gain of the channel on the left side of the equations (3) to (6) can be expressed by the equations (7) to (10) from the received signal strength.
  • the correlation matrix related to the composite signals SS1 and SS2 output from the phase synthesizer 17d is defined as R1.
  • the correlation matrix R1 is expressed using A and ⁇ , it can be expressed by the equation (16).
  • the correlation matrix R is defined as R2.
  • the correlation matrix R2 is expressed using B and ⁇ , the equation (21) is obtained, and the correlation matrix R is estimated.
  • the declination is estimated in two ways for ⁇ and ⁇ , four kinds of solutions are estimated. Therefore, it is necessary to select the solutions of ⁇ and ⁇ .
  • the solution of ⁇ and ⁇ the combination of solutions having the smallest difference between ⁇ and ⁇ is selected.
  • the transmitting antenna of the transmitter 4 and the antennas 11a, 11b, 11c are sufficiently separated from each other, and the directions of the transmitting antennas of the transmitter 4 as seen from the antennas 11a, 11b, 11c can all be regarded as equal ⁇ (FIG. FIG. 1). Further, the antenna 11a, the antenna 11b, and the antenna 11c are aligned at equal intervals d1.
  • the difference in phase delay between h1 and h2 is equal to the difference in phase delay between h2 and h3.
  • represents the difference in phase delay between h1 and h2
  • represents the difference in phase delay between h2 and h3. That is, ⁇ and ⁇ can be regarded as coincident. Therefore, by selecting the combination of solutions having the smallest difference between ⁇ and ⁇ as the solutions of ⁇ and ⁇ , it is possible to narrow down to two solutions.
  • R13 represents the correlation of the radio signal between the antenna 11a and the antenna 11c.
  • R13 can be expressed by the equation (22) using the obtained
  • the estimated correlation matrix R can be expressed as Eq. (23).
  • the estimation unit 3 estimates the direction of the transmitter 4 by using the MUSIC (MUltiple SIgnal Classification) method or the like for the correlation matrix R.
  • MUSIC MUltiple SIgnal Classification
  • the correlation matrix R can be expressed by Eq. (24) by eigenvalue decomposition.
  • v1, v2, and v3 are the first, second, and third eigenvectors, respectively. Further, ⁇ 1, ⁇ 2, and ⁇ 3 are the first, second, and third eigenvalues, respectively, and it is assumed that the equation (27) is used.
  • ⁇ 1 corresponds to the electric power including the signal
  • ⁇ 2 and ⁇ 3 correspond to the noise electric power.
  • the arrival direction of the radio signal is estimated by using the equation (28), which is an evaluation equation using such an eigenvector.
  • equation (29) is called a steering vector.
  • the estimation unit 3 substitutes various values for ⁇ 0 in the equation (28), and determines that the direction in which Pmusic is maximized is the departure direction of the radio signal.
  • the arrival direction estimated by the estimation unit 3 based on the first composite signals SS1 to SS4 will be referred to as the "first estimation direction”.
  • the estimation unit 3 estimates the arrival direction of the radio signal based on the second composite signals SS1 to SS4.
  • the amplitudes of the plurality of second composite signals SS1 to SS4 input to the estimation unit 3 can be expressed by the equations (30) to (33).
  • Y1a represents the amplitude of the composite signal SS1 output from the first output terminal O1 of the phase synthesizer 17d.
  • Y2a represents the amplitude of the composite signal SS2 output from the second output terminal O2 of the phase synthesizer 17d.
  • Y3a represents the amplitude of the composite signal SS4 output from the second output terminal O2 of the phase synthesizer 17e.
  • Y4a represents the amplitude of the composite signal SS3 output from the first output terminal O1 of the phase synthesizer 17e.
  • the estimation unit 3 can estimate the arrival direction different from the first estimation direction by obtaining the correlation matrix R using the equations (30) to (33).
  • the description of a specific method for obtaining the correlation matrix R using the equations (30) to (33) will be omitted.
  • the arrival direction estimated by the estimation unit 3 based on the second composite signals SS1 to SS4 will be referred to as the "second estimation direction”.
  • the estimation unit 3 estimates the arrival direction of the radio signal (positional direction of the transmitter 4) based on the first estimation direction and the second estimation direction. For example, the estimation unit 3 may estimate the arrival direction of the radio signal by averaging the first estimation direction and the second estimation direction. Since the estimation unit 3 of the present embodiment estimates the arrival direction of the radio signal based on a plurality of estimation directions, the estimation unit 3 is wireless as compared with the existing receiving system that estimates the arrival direction of the radio signal based on one estimation direction. The accuracy when estimating the arrival direction of the signal is improved.
  • the receiving system 1 of the present embodiment includes the receiver 2 and the estimation unit 3.
  • the receiver 2 includes a plurality of antennas 11, a phase synthesizing unit 13, an output unit 14, and a changing unit 15.
  • the plurality of antennas 11 receive the radio signal.
  • the change unit 15 performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4.
  • the phase synthesizer 13 performs synthesis processing on a plurality of input signals IS1 to IS3 based on radio signals input from the plurality of antennas 11 to estimate the arrival direction of the radio signal (positional direction of the transmitter 4). Synthesized signals SS1 to SS4 are generated.
  • the phase synthesis unit 13 generates the first composite signals SS1 to SS4 as the composite signals SS1 to SS4 before the change processing by the change unit 15. Further, the phase synthesizing unit 13 generates the second combined signals SS1 to SS4 as the combined signals SS1 to SS4 after the change processing by the changing unit 15. That is, the phase synthesizing unit 13 generates the combined signals SS1 to SS4 having different patterns before and after the change processing by the changing unit 15. In other words, the receiver 2 of the present embodiment can increase the patterns of the combined signals SS1 to SS4 for estimating the arrival direction of the radio signal.
  • the output unit 14 outputs the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 to the estimation unit 3.
  • the estimation unit 3 estimates the arrival direction of the radio signal based on the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 output from the output unit 14 of the receiver 2.
  • the estimation unit 3 can estimate the arrival direction of the radio signal based on the combined signals SS1 to SS4 of two or more patterns. Therefore, the estimation unit 3 estimates the arrival direction of the radio signal based on the combined signals SS1 to SS4 of one pattern. The accuracy of the arrival direction estimation is improved as compared with the case of doing so.
  • the receiver 2 of the present embodiment further includes a switching unit 12.
  • the switching unit 12 switches the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13. More specifically, the electrical connection state between the antenna 11b and the phase synthesizer 17b is switched from the first connection state to the second connection state, or from the second connection state to the first connection state.
  • the changing unit 15 performs a process of controlling the switching unit 12 so as to switch the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13 as at least a part of the changing process.
  • the receiver 2 can easily increase the patterns of the combined signals SS1 to SS4 for estimating the arrival direction of the radio signal by switching the electrical connection state between the plurality of antennas 11 and the phase synthesizer 13. .. Therefore, the receiver 2 can easily improve the accuracy of estimating the arrival direction of the radio signal.
  • the phase synthesis unit 13 of the present embodiment is provided with a plurality of input units (input terminals) that are electrically connected to the plurality of antennas 11 and to which a wireless signal is input.
  • a first input terminal I1 of the phase synthesizer 17a there are four input terminals: a first input terminal I1 of the phase synthesizer 17a, a first input terminal I1 and a second input terminal I2 of the phase synthesizer 17b, and a second input terminal I2 of the phase synthesizer 17c.
  • the plurality of antennas 11 of the present embodiment are three antennas 11a, 11b, and 11c. That is, the number of the plurality of antennas 11 of the present embodiment is equal to or less than the number of the plurality of input units.
  • the configuration of the receiver 2 (reception system 1) can be made compact. Further, the receiver 2 switches the electrical connection state between the plurality of antennas 11 and the input unit to obtain a wireless signal pattern for estimating the arrival direction of the wireless signal without increasing the number of antennas 11. It can be easily increased. That is, the receiver 2 can improve the accuracy of estimating the arrival direction of the radio signal without increasing the number of antennas 11. However, even if the number of antennas 11 is larger than the number of input units, the effect of improving the estimation accuracy of the arrival direction of the radio signal of the receiving system 1 in the present embodiment is not lost. .. Therefore, the number of antennas 11 of the receiver 2 may be larger than the number of input units.
  • the transmitter 4a of the present embodiment includes a plurality of (three in the illustrated example) antennas 21 for transmitting a plurality of radio signals.
  • the plurality of antennas 21 of this embodiment are array antennas including the antenna 21a, the antenna 21b, and the antenna 21c.
  • the antennas 21a, 21b, and 21c are described separately. Further, when a plurality of antennas 21 are described without distinction, they are simply described as antennas 21.
  • the receiving system 1a of the present embodiment includes a receiving antenna that receives a plurality of radio signals transmitted from the plurality of antennas 21.
  • the receiving system 1a of the present embodiment is a receiving system that estimates the position direction of the transmitter 4a that has transmitted a plurality of radio signals based on the received signal strength of the plurality of radio signals received by the receiving antenna, for example, a smartphone or the like. Consists of.
  • the transmitter 4a includes a plurality of antennas 21, a switching unit 22, a phase synthesis unit 23, a source signal generation unit 24, and a change unit 25.
  • the plurality of antennas 21 are electrically connected to the switching unit 22. Each of the plurality of antennas 21 transmits a plurality of radio signals RS1 to RS3 generated by the phase synthesizer 23.
  • the switching unit 22 is a processing unit that is electrically connected between the plurality of antennas 21 and the phase synthesizing unit 23 and switches the electrical connection state between the plurality of antennas 21 and the phase synthesizing unit 23.
  • the switching unit 22 includes a switch 26a, a switch 26b, and a switch 26c.
  • switches 26a, 26b, and 26c are described without distinction, they are simply referred to as the switch 26. Further, when the specific switch 26 is described, the switches 26a, 26b, and 26c are described separately.
  • the switching unit 22 performs a switching operation of the switches 26a to 26c by being controlled by the changing unit 25.
  • the switch 26b of the present embodiment has an antenna 21b and one of the first output terminal O1 and the second output terminal O2 of the phase synthesizer 27b included in the phase synthesizer 23, according to the control by the change unit 25. Electrically connect.
  • a state in which the antenna 21b and the second output terminal O2 of the phase synthesizer 27b are electrically connected by the switch 26b will be referred to as a “first connection state”.
  • a state in which the antenna 21b and the first output terminal O1 of the phase synthesizer 27b are electrically connected by the switch 26b is referred to as a "second connection state”.
  • the switch 26a is controlled so that the antenna 21a and the second output terminal O2 of the phase synthesizer 27a are always electrically connected. That is, the switch 26a of the present embodiment does not perform the switching operation. Therefore, the switch 26a may be a simple electrical path connecting the antenna 21a and the second output terminal O2 of the phase synthesizer 27a.
  • the switch 26c is controlled so that the antenna 21c and the first output terminal O1 of the phase synthesizer 27c are always electrically connected. That is, the switch 26c of the present embodiment does not perform the switching operation. Therefore, the switch 26c may be a simple electric circuit that connects the antenna 21c and the first output terminal O1 of the phase synthesizer 27c.
  • the original signal generation unit 24 is a processing unit that generates original signals BS1 to BS4 that are sources of a plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 and include predetermined information such as identification information. Is.
  • the original signal generator 24 includes the original signal generators 24a to 24d.
  • the original signal generator 24a is electrically connected to the first input terminal I1 of the phase synthesizer 27d of the phase synthesizer 23 to generate the original signal BS1.
  • the original signal generator 24b is electrically connected to the second input terminal I2 of the phase synthesizer 27d to generate the original signal BS2.
  • the original signal generator 24c is electrically connected to the first input terminal I1 of the phase synthesizer 27e to generate the original signal BS3.
  • the original signal generator 24d is electrically connected to the second input terminal I2 of the phase synthesizer 27e to generate the original signal BS4.
  • the phase synthesis unit 23 is a processing unit that performs synthesis processing on a plurality of input signals IS8 to IS11 (signals IS12 to IS15) based on a plurality of original signals BS1 to BS4 to generate a plurality of radio signals RS1 to RS3. .. Further, the phase synthesizing unit 23 of the present embodiment generates a plurality of different radio signals RS1 to RS3 before and after the switch 26b is switched.
  • the plurality of radio signals RS1 to RS3 generated by the phase synthesizing unit 23 are referred to as the plurality of first radio signals RS1 to RS3.
  • the plurality of radio signals RS1 to RS3 generated by the phase synthesizing unit 23 are designated as the plurality of second radio signals RS1 to RS3.
  • the phase synthesizer 23 includes a phase synthesizer 27a, a phase synthesizer 27b, a phase synthesizer 27c, a phase synthesizer 27d, and a phase synthesizer 27e.
  • the phase synthesizer 27 is composed of, for example, a 90-degree hybrid unit (hybrid element). Since the basic operation of the phase synthesizer 27 is the same as the basic operation of the phase synthesizer 17 described in the column of "(2.2) Configuration of receiver 2 in (first embodiment)", the description thereof is omitted. To do.
  • the phase synthesizer 27d receives the input signal IS8 based on the original signal BS1 at the first input terminal I1 and the input signal IS9 based on the original signal BS2 at the second input terminal I2.
  • the phase synthesizer 27d has a power value of 1 / ⁇ 2 times that of the input signal IS8 and a signal having the same phase, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS9 and a phase delay of 90 degrees. , Is added together, and the signal IS12 is output from the first output terminal O1.
  • the phase synthesizer 27d has a signal having a power value 1 / ⁇ 2 times that of the input signal IS8 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS9 and having the same phase.
  • the signal IS13 which is the sum of the signal and the signal, is output from the second output terminal O2.
  • the phase synthesizer 27e receives the input signal IS10 based on the original signal BS3 at the first input terminal I1 and the input signal IS11 based on the original signal BS4 at the second input terminal I2.
  • the phase synthesizer 27e has a power value of 1 / ⁇ 2 times that of the input signal IS10 and a signal having the same phase, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS11 and a phase delay of 90 degrees. , Is added together, and the signal IS14 is output from the first output terminal O1.
  • the phase synthesizer 27e has a signal having a power value of 1 / ⁇ 2 times that of the input signal IS10 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS11 and having the same phase.
  • the signal IS15 which is the sum of the signal and the signal, is output from the second output terminal O2.
  • the phase synthesizer 27a outputs a radio signal RS1 having a power value 1 / ⁇ 2 times that of the signal IS12 input to the second input terminal I2 and having the same phase from the second output terminal O2.
  • the phase synthesizer 27b receives the signal IS13 at the first input terminal I1 and the signal IS14 at the second input terminal I2.
  • the phase synthesizer 27b has a power value of 1 / ⁇ 2 times that of the signal IS13 and a phase delayed by 90 degrees, and a power value of 1 / ⁇ 2 times that of the signal IS14.
  • the radio signal RS2 which is the sum of the signals having the same phase in the above, is output from the second output terminal O2.
  • the phase synthesizer 27b has a power value of 1 / ⁇ 2 times that of the signal IS13 and a signal having the same phase, and a power value of 1 / ⁇ 2 times that of the signal IS14.
  • the radio signal RS2, which is the sum of the signal whose phase is delayed by 90 degrees, is output from the first output terminal O1.
  • the phase synthesizer 27c outputs a radio signal RS3 having a power value 1 / ⁇ 2 times that of the signal IS15 input to the first input terminal I1 and having the same phase from the first output terminal O1.
  • the change unit 25 is a processing unit that performs a change process for changing at least one element related to the process from the input of the plurality of original signals BS1 to BS4 to the transmission of the plurality of radio signals RS1 to RS3.
  • the changing unit 25 of the present embodiment performs a process of controlling the switching unit 22 so as to switch the electrical connection state between the plurality of antennas 21 and the phase synthesizing unit 23 as at least a part of the changing process. Specifically, the changing unit 25 switches the electrical connection state between the antenna 21b and the phase synthesizer 27b by controlling the switch 26b to be switched.
  • connection state between the antenna 21b and the phase synthesizer 27b is the first connection state until the change unit 25 performs the change processing. Further, it is assumed that the connection state between the antenna 21b and the phase synthesizer 27b is the second connection state after the change unit 25 performs the change processing.
  • the change unit 25 performs the change process at a predetermined timing.
  • the predetermined timing is, for example, a timing at which the phase synthesizer 23 outputs a plurality of radio signals RS1 to RS3, a constant timing set according to the interval at which the transmitter 4a transmits the radio signal, and the like.
  • the receiving system 1a estimates the arrival directions of the plurality of radio signals RS1 to RS3 with reference to FIG.
  • the matters explained in the column of "(3) Estimating the direction of arrival in (1st embodiment)" will be omitted as appropriate.
  • the complex propagation channel between the antenna 21a and the receiving antenna of the receiving system 1a is h4
  • the complex propagation channel between the antenna 21b and the receiving antenna is h5
  • the complex propagation channel between the antenna 21c and the receiving antenna is between the antenna 21c and the receiving antenna.
  • Let h6 be the complex propagation channel.
  • the distance between the antenna 21a and the antenna 21b and the distance between the antenna 21b and the antenna 21c are d2.
  • the receiving system 1a exists at a position of an angle ⁇ 2 with respect to the broadside direction of the array antenna composed of the antenna 21a, the antenna 21b, and the antenna 21c.
  • the receiving system 1a estimates the arrival directions of the plurality of first radio signals RS1 to RS3.
  • the propagation channels can be collectively expressed as Eq. (34).
  • the correlation matrix of this propagation channel can be expressed by Eq. (35).
  • the receiving system 1a can estimate the arrival directions of the plurality of first radio signals RS1 to RS3.
  • the receiving system 1a obtains the correlation matrix R based on the information regarding the received signal strength.
  • the apparent propagation channel can be expressed as the equations (41) to (44).
  • the method of obtaining the correlation matrix R based on the equations (41) to (44) is as described in the column of "(3) Estimating the direction of arrival in (first embodiment)", the description thereof will be omitted. Further, the method of obtaining the arrival directions of the plurality of first radio signals RS1 to RS3 by using a predetermined algorithm such as the MUSIC method for the correlation matrix R is also described in "(3) Arrival direction estimation in (1st embodiment)". Since it is as explained in the column, the description is omitted. In the following description, the arrival directions of the plurality of first radio signals RS1 to RS3 estimated by the receiving system 1a will be referred to as "first estimated directions”.
  • the receiving system 1a estimates the arrival directions of the plurality of second radio signals RS1 to RS3 will be described.
  • the amplitudes of the original signals BS1, BS2, BS3, BS4 measured by the receiving system 1a can be expressed by equations (45) to (48).
  • the receiving system 1a can estimate the arrival direction different from the first estimation direction by obtaining the correlation matrix R using the equations (45) to (48).
  • the description of a specific method for obtaining the correlation matrix R using the equations (45) to (48) will be omitted.
  • the arrival directions of the plurality of second radio signals RS1 to RS3 estimated by the receiving system 1a will be referred to as "second estimated directions”.
  • the receiving system 1a that has received the plurality of first and second radio signals transmitted by the transmitter 4a receives the arrival directions of the plurality of radio signals RS1 to RS3 based on the first estimation direction and the second estimation direction (transmitter 4a).
  • (Position direction) is estimated.
  • the receiving system 1a may estimate the arrival directions of the plurality of radio signals RS1 to RS3 by averaging the first estimation direction and the second estimation direction.
  • the receiving system 1a that has received the plurality of first and second radio signals RS1 to RS3 transmitted by the transmitter 4a estimates the arrival directions of the radio signals RS1 to RS3 based on the plurality of estimation directions.
  • the accuracy in estimating the arrival direction of the radio signals RS1 to RS3 is higher than that of the existing receiving system that estimates the arrival direction of the radio signals RS1 to RS3 based on a plurality of radio signals RS1 to RS3 in one pattern. improves.
  • the transmitter 4a of the present embodiment includes a phase synthesizing unit 23, a plurality of antennas 21, and a changing unit 25.
  • the phase synthesizing unit 23 performs synthesis processing on a plurality of input signals IS8 to IS11 (signals IS12 to IS15) based on the plurality of original signals BS1 to BS4, and generates a plurality of radio signals RS1 to RS3.
  • the change unit 25 performs a change process for changing at least one element related to the process from the reception of the plurality of input signals IS8 to IS11 to the transmission of the plurality of radio signals RS1 to RS3.
  • the phase synthesis unit 23 generates a plurality of first radio signals RS1 to RS3 as the plurality of radio signals RS1 to RS3 before the change processing by the change unit 25. Further, the phase synthesis unit 23 generates a plurality of second radio signals RS1 to RS3 as the plurality of radio signals RS1 to RS3 after the change processing by the change unit 25.
  • the plurality of antennas 21 transmit a plurality of first radio signals RS1 to RS3 and a plurality of second radio signals RS1 to RS3.
  • the receiving system 1a estimates the direction of the transmitter 4a based on the plurality of radio signals RS1 to RS3 having two or more patterns. be able to. Therefore, the accuracy of estimation is improved as compared with the case where the receiving system 1a estimates the position direction of the transmitter 4a based on a plurality of radio signals of one pattern.
  • the changing unit 15 may perform a process of changing the setting related to the time when the plurality of antennas 11 receive the radio signal as at least a part of the changing process.
  • the changing unit 15 changes the time length and reception timing when the plurality of antennas 11 receive the radio signal, so that the phase synthesizing unit 13 generates the combined signals SS1 to SS4 of two or more patterns. That is, as the patterns of the combined signals SS1 to SS4 increase, the value of
  • value pattern increases. Therefore, the estimation result of the arrival direction of the unvoiced signal estimated by the receiving system 1 increases, and the estimation accuracy is improved.
  • the changing unit 25 performs a process of changing the setting related to the time when the plurality of antennas 21 transmit the plurality of radio signals RS1 to RS3 as at least a part of the changing process. You may.
  • the change unit 25 changes the time length and transmission timing when the plurality of antennas 21 transmit the plurality of radio signals RS1 to RS3, so that the transmitter 4a transmits the plurality of radio signals RS1 to RS3 having two or more patterns.
  • Send Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
  • the phase synthesizing unit 13 may perform a phase shift process with respect to at least one of a plurality of input signals IS1 to IS3 (signals IS4 to IS7) in the synthesizing process. .. Further, the changing unit 15 may perform a process in which the phase synthesizing unit 13 changes the amount of phase shift of the input signals IS1 to IS3 (signals IS4 to IS7) in the synthesizing process as at least a part of the changing process.
  • the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 have different phase shifts of the input signals IS1 to IS3 (signals IS4 to IS7) by switching the switch 16b.
  • the change unit 15 performs a change process in which the phase synthesizer 13 changes the amount of phase shift of the input signals IS1 to IS3 (signals IS4 to IS7) in the synthesis process, whereby the second composite signal SS1 similar to the above embodiment is performed. It becomes possible to generate ⁇ SS4. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
  • the phase synthesizing unit 23 performs a phase shift process with respect to at least one of the plurality of input signals IS8 to IS11 (signals IS12 to IS15) in the synthesizing process. May be good.
  • the changing unit 25 may perform a process in which the phase synthesizing unit 23 changes the amount of shifting the phase of the input signals IS8 to IS11 (signals IS12 to IS15) in the synthesizing process as at least a part of the changing process.
  • the transmitter 4a of the above embodiment by switching the switch 26b, a plurality of first radio signals RS1 to RS3 and a plurality of second radio signals RS1 to RS3 in which the phase shifts of the input signals IS8 to IS11 (signals IS12 to IS15) are different from each other.
  • the radio signals RS1 to RS3 were generated.
  • the change unit 25 performs a change process for changing the amount of phase shift of the input signals IS8 to IS11 (signals IS12 to IS15) by the phase synthesizer 23 in the synthesis process, whereby a plurality of second units similar to those in the above embodiment are performed. It is possible to generate radio signals RS1 to RS3. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
  • the plurality of antennas 11 may be able to receive a plurality of radio signals having different frequency bands from each other as radio signals.
  • the radio signal complies with, for example, the BLE standard
  • the plurality of antennas 11 divides 2.400 [GHz] to 2.480 [GHz] into 2 [MHz] widths and divides each of the radio signals into 40 frequency bands. It may be receivable.
  • the change unit 15 may perform a process of switching the frequency band of the radio signal to be the target of the synthesis process as at least a part of the change process.
  • the phase combining unit 13 When the changing unit 15 switches the frequency band of the radio signal to be combined, the phase combining unit 13 generates the combined signals SS1 to SS4 of two or more patterns. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
  • the plurality of antennas 21 may be capable of transmitting a plurality of radio signals RS1 to RS3 having different frequency bands from each other as the plurality of radio signals RS1 to RS3. Then, the changing unit 25 may perform a process of switching the frequency bands of the plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 as at least a part of the changing process. Before and after the change process by the change unit 25, the plurality of antennas 21 transmit a plurality of radio signals RS1 to RS3 having two or more patterns having different frequency bands from each other. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
  • the plurality of antennas 11 may be able to receive a plurality of polarized waves different from each other as radio signals.
  • the plurality of polarized waves that are different from each other are, for example, horizontally polarized waves, vertically polarized waves, and circularly polarized waves.
  • the changing unit 15 performs a process of switching the type of polarization of the radio signal to be the target of the synthesis process as at least a part of the change process.
  • the changing unit 15 switches the type of polarization of the radio signal to be combined, so that the plurality of antennas 11 receive the radio signals having different types of polarization.
  • the phase synthesizing unit 13 generates the combined signals SS1 to SS4 of two or more patterns. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
  • the plurality of antennas 21 may be capable of transmitting a plurality of different polarized waves as a plurality of radio signals RS1 to RS3. Then, the changing unit 25 may perform a process of switching the polarization type of the plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 as at least a part of the changing process. Before and after the change process by the change unit 25, the plurality of antennas 21 transmit a plurality of radio signals RS1 to RS3 having two or more patterns having different types of polarization from each other. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
  • the receiver 2 includes a switching unit 12, but the switching unit 12 is not essential.
  • the receiver 2 may include at least a plurality of antennas 11, a phase synthesis unit 13, an output unit 14, and a change unit 15.
  • the transmitter 4a includes the switching unit 22 and the original signal generating unit 24, but the switching unit 22 and the original signal generating unit 24 are not indispensable.
  • the transmitter 4a may include at least a plurality of antennas 21, a phase synthesizing unit 23, and a changing unit 25.
  • the receiving system 1 is realized by one system including the receiver 2 and the estimation unit 3, but may be realized by two or more systems.
  • the functions of the receiver 2 and the estimation unit 3 may be distributed in two or more systems.
  • at least one function of the receiver 2 and the estimation unit 3 may be distributed and provided in two or more systems.
  • the functions of the receiver 2 and the estimation unit 3 may be distributed to a plurality of devices.
  • the functions of the receiver 2 may be distributed and provided in two or more devices.
  • at least a part of the functions of the receiving system 1 may be realized by, for example, cloud computing.
  • the above-described embodiment (including each modification) is only one of various embodiments.
  • the above-described embodiment can be variously modified depending on the design and the like as long as the object of the present disclosure can be achieved.
  • the same function as that of the receiving system 1 may be realized by a receiving method, a program, a recording medium on which the program is recorded, or the like.
  • the receiving method includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step.
  • the radio signal is received.
  • the first phase synthesis step the plurality of input signals IS1 to IS3 based on the radio signal are combined, and the first synthetic signals SS1 to SS4 for estimating the arrival direction of the radio signal are generated.
  • the first output step the first composite signals SS1 to SS4 generated in the first phase synthesis step are output.
  • the change step at least one element related to the processing from the reception step to the first phase synthesis step is changed.
  • the second composite signals SS1 to SS4 different from the first composite signals SS1 to SS4 generated in the first phase synthesis step are generated.
  • the second composite signals SS1 to SS4 generated in the second phase synthesis step are output.
  • the (computer) program includes one or more of the above-mentioned reception step, first phase synthesis step, first output step, change step, second phase synthesis step, and second output step. It is a program to be executed by the processor of.
  • the receiver 2, the receiving system 1, the transmitter 4a, and the executing body of the receiving method include a computer system.
  • a computer system mainly consists of a processor and a memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the functions as the executing body of the receiver 2, the receiving system 1, the transmitter 4a, and the receiving method are realized.
  • the program may be pre-recorded in the memory of the computer system. Further, the program may be provided through a telecommunication line, or may be recorded and provided on a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer system.
  • a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
  • the plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the receiver (2) includes a plurality of antennas (11), a phase synthesis unit (13), an output unit (14), and a change unit (15).
  • the plurality of antennas (11) receive the radio signal.
  • the phase synthesizer (13) performs synthesis processing on a plurality of input signals (IS1 to IS3) based on radio signals input from the plurality of antennas (11), and synthesizes for estimating the arrival direction of the radio signal.
  • the output unit (14) outputs the combined signals (SS1 to SS4).
  • the change unit (15) performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signal (SS1 to SS4).
  • the phase synthesis unit (13) generates the first composite signal (SS1 to SS4) as the composite signal (SS1 to SS4) before the change processing by the change unit (15). Further, the phase synthesis unit (13) generates the second composite signal (SS1 to SS4) as the composite signal (SS1 to SS4) after the change processing by the change unit (15).
  • the output unit (14) outputs the first composite signal (SS1 to SS4) and the second composite signal (SS1 to SS4).
  • the receiver (2) changes a plurality of composites having different patterns by changing at least one element related to the process from the reception of the radio signal to the generation of the composite signals (SS1 to SS4). Generate signals (SS1 to SS4). Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
  • the receiver (2) according to the second aspect further includes a switching unit (12) in the first aspect.
  • the switching unit (12) switches the electrical connection state between the plurality of antennas (11) and the phase synthesizing unit (13).
  • the changing unit (15) performs a process of controlling the switching unit (12) so as to switch the electrical connection state between the plurality of antennas (11) and the phase synthesizing unit (13) as at least a part of the changing process.
  • the receiver (2) has a plurality of patterns having different patterns by switching the electrical connection state between the plurality of antennas (11) and the phase synthesizer (13) as a part of the change process. Generates synthetic signals (SS1 to SS4). Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased, the estimation accuracy of the arrival direction of the radio signal can be easily improved. Can be made to.
  • the phase synthesis unit (13) has a plurality of input units.
  • the plurality of input units are electrically connected to the plurality of antennas (11), and wireless signals are input.
  • the number of the plurality of antennas (11) is equal to or less than the number of the plurality of input units.
  • the receiver (2) since the number of antennas (11) is less than or equal to the number of input units, the receiver (2) can be made compact.
  • the change unit (15) has a plurality of antennas (11) as at least a part of the change process. Performs processing to change the setting related to the time when receiving an unvoiced signal.
  • the receiver (2) changes the settings related to the time (time length, reception timing) when receiving the radio signal, so that the receiver (2) has a plurality of composite signals (SS1 to SS4) having different patterns. To generate. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased, the estimation accuracy of the arrival direction of the radio signal can be easily improved. Can be made to.
  • the phase synthesizer (13) is among the plurality of input signals (IS1 to IS3) in the synthesis process.
  • the process of shifting at least one phase is performed.
  • the change unit (15) performs a process of changing the amount of shifting the phase in the synthesis process as at least a part of the change process.
  • the receiver (2) generates a plurality of composite signals (SS1 to SS4) having different patterns by changing the amount of shifting the phase in the synthesis process. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
  • the plurality of antennas (11) can receive a plurality of radio signals having different frequency bands from each other as radio signals.
  • the change unit (15) performs a process of switching the frequency band of the radio signal to be the target of the synthesis process as at least a part of the change process.
  • the receiver (2) generates a plurality of synthesized signals (SS1 to SS4) having different patterns by switching the frequency band of the radio signal to be the target of the synthesis processing. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
  • each of the plurality of antennas (11) can receive a plurality of different polarized waves as radio signals. is there.
  • the change unit (15) performs a process of switching the type of polarization of the radio signal to be the target of the synthesis process as at least a part of the change process.
  • the receiver (2) generates a plurality of synthetic signals (SS1 to SS4) having different patterns by switching the type of polarization of the radio signal to be the target of the synthesis processing. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
  • configurations according to the second to seventh aspects are not essential configurations for the receiver (2) and can be omitted as appropriate.
  • the receiving system (1) includes a receiver (2) of any one of the first to seventh aspects and an estimation unit (3).
  • the estimation unit (3) estimates the arrival direction of the radio signal based on the first composite signal (SS1 to SS4) and the second composite signal (SS1 to SS4) output from the receiver (2).
  • the receiving system (1) changes a plurality of composites having different patterns by changing at least one element related to the process from the reception of the radio signal to the generation of the composite signals (SS1 to SS4).
  • the transmitter (4a) includes a phase synthesizing unit (23), a plurality of antennas (21), and a changing unit (25).
  • the phase synthesizing unit (23) performs synthesis processing on a plurality of input signals (IS8 to IS11) based on a plurality of original signals (BS1 to BS4) to generate a plurality of radio signals (RS1 to RS3).
  • the plurality of antennas (21) transmit a plurality of radio signals (RS1 to RS3).
  • the change unit (25) performs a change process for changing at least one element related to the process from the reception of the plurality of original signals (BS1 to BS4) to the transmission of the plurality of radio signals (RS1 to RS3).
  • the phase synthesizing unit (23) generates a plurality of first radio signals (RS1 to RS3) as a plurality of radio signals (RS1 to RS3) before the change processing by the change unit (25). Further, the phase synthesizing unit (23) generates a plurality of second radio signals (RS1 to RS3) as a plurality of radio signals (RS1 to RS3) after the change processing by the change unit (25).
  • the plurality of antennas (21) output a plurality of first radio signals (RS1 to RS3) and a plurality of second radio signals (RS1 to RS3).
  • the transmitter (4a) modifies at least one element related to the process from receiving a plurality of original signals (BS1 to BS4) to transmitting a plurality of radio signals (RS1 to RS3). Then, a plurality of radio signals (RS1 to RS3) having different patterns are transmitted. Since the patterns of the plurality of radio signals (RS1 to RS3) can be increased, the accuracy of estimating the position direction of the transmitter (4a) by the receiving system (1a) can be improved.
  • the receiving method includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step.
  • the radio signal is received.
  • the first phase synthesis step a plurality of input signals (IS1 to IS3) based on the radio signal are combined, and the first composite signal (SS1 to SS4) for estimating the arrival direction of the radio signal is generated. To do.
  • the first output step the first composite signals (SS1 to SS4) generated in the first phase synthesis step are output.
  • the change step at least one element related to the processing from the reception step to the first phase synthesis step is changed.
  • a second composite signal (SS1 to SS4) different from the first composite signal (SS1 to SS4) generated in the first phase synthesis step is generated.
  • the second composite signals (SS1 to SS4) generated in the second phase synthesis step are output.
  • a plurality of composite signals (SS1 to SS4) having different patterns are generated by changing at least one element related to the processing from the reception step to the first phase synthesis step. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
  • the program according to the eleventh aspect causes one or more processors to execute the receiving method of the tenth aspect.
  • a plurality of composite signals (SS1 to SS4) having different patterns are generated by changing at least one element related to the processing from the reception step to the first phase synthesis step. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..

Abstract

The present disclosure addresses the problem of improving the accuracy in estimation of the direction of a transmitter. A receiver (2) comprises a plurality of antennas (11), a phase synthesis unit (13), an output unit (14), and a change unit (15). The plurality of antennas (11) receive radio signals. The phase synthesis unit (13) performs a synthesizing process with respect to a plurality of input signals (IS1 to IS3) based on the radio signals to generate composite signals (SS1 to SS4). The change unit (15) performs a changing process to change at least one element related to the processes from receiving the radio signals to generating the composite signals (SS1 to SS4). The phase synthesis unit (13) generates first composite signals (SS1 to SS4) before the changing process performed by the change unit (15), and generates second composite signals (SS1 to SS4) after the changing process performed by the change unit (15). The output unit (14) outputs first composite signals (SS1 to SS4) and second composite signals (SS1 to SS4).

Description

受信器、受信システム、送信器、受信方法及びプログラムReceivers, receiving systems, transmitters, receiving methods and programs
 本開示は受信器、受信システム、送信器、受信方法及びプログラムに関し、より詳細には、複数の信号を生成する受信器、受信システム、送信器、受信方法及びプログラムに関する。 The present disclosure relates to receivers, receiving systems, transmitters, receiving methods and programs, and more specifically to receivers, receiving systems, transmitters, receiving methods and programs that generate multiple signals.
 特許文献1記載の通信端末装置(受信器)は、受信信号強度(RSSI)に基づいて、ビーコン装置(送信器)が送信したビーコン信号(無線信号)の到来方向を推定する。 The communication terminal device (receiver) described in Patent Document 1 estimates the arrival direction of the beacon signal (radio signal) transmitted by the beacon device (transmitter) based on the received signal strength (RSSI).
 しかし、特許文献1に記載の通信端末装置(受信器)では、マルチパスが生じることによって、ビーコン信号の到来方向を推定する際に誤差が生じることがある。このため、ビーコン信号の到来方向の推定精度の向上が望まれていた。 However, in the communication terminal device (receiver) described in Patent Document 1, an error may occur when estimating the arrival direction of the beacon signal due to the occurrence of multipath. Therefore, it has been desired to improve the estimation accuracy of the arrival direction of the beacon signal.
特開2017-216567号公報JP-A-2017-216567
 本開示は、上記事由に鑑みてなされており、無線信号の到来方向の推定精度を向上させることができる受信器、受信システム、送信器、受信方法及びプログラムを提供することを目的とする。 The present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide a receiver, a receiving system, a transmitter, a receiving method, and a program capable of improving the estimation accuracy of the arrival direction of a radio signal.
 上記の課題を解決するために、本開示の一態様に係る受信器は、複数のアンテナと、位相合成部と、出力部と、変更部とを備える。前記複数のアンテナは、無線信号を受信する。前記位相合成部は、前記複数のアンテナから入力される前記無線信号に基づく複数の入力信号に対して合成処理を行い、前記無線信号の到来方向を推定するための合成信号を生成する。前記出力部は、前記合成信号を出力する。前記変更部は、前記無線信号の受信から前記合成信号を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。前記位相合成部は、前記変更部による前記変更処理前に、前記合成信号として第1合成信号を生成する。また、前記位相合成部は、前記変更部による前記変更処理後に、前記合成信号として第2合成信号を生成する。前記出力部は、前記第1合成信号と前記第2合成信号とを出力する。 In order to solve the above problems, the receiver according to one aspect of the present disclosure includes a plurality of antennas, a phase synthesizer, an output unit, and a change unit. The plurality of antennas receive radio signals. The phase synthesizing unit performs synthesis processing on a plurality of input signals based on the radio signals input from the plurality of antennas, and generates a composite signal for estimating the arrival direction of the radio signals. The output unit outputs the combined signal. The change unit performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the composite signal. The phase synthesizer generates a first composite signal as the composite signal before the change process by the changer. In addition, the phase synthesis unit generates a second composite signal as the composite signal after the change processing by the change unit. The output unit outputs the first composite signal and the second composite signal.
 本開示の一態様に係る送信器は、位相合成部と、複数のアンテナと、変更部とを備えている。前記位相合成部は、複数の元信号に基づく複数の入力信号に対して合成処理を行い、複数の無線信号を生成する。前記複数のアンテナは、前記複数の無線信号を送信する。前記変更部は、前記複数の元信号の受け付けから前記複数の無線信号を送信するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。前記位相合成部は、前記変更部による前記変更処理前に、前記複数の無線信号として複数の第1無線信号を生成する。また、前記位相合成部は、前記変更部による前記変更処理後に、前記複数の無線信号として複数の第2無線信号を生成する。前記複数のアンテナは、前記複数の第1無線信号と前記複数の第2無線信号とを送信する。 The transmitter according to one aspect of the present disclosure includes a phase synthesizer, a plurality of antennas, and a changer. The phase synthesizing unit performs synthesis processing on a plurality of input signals based on a plurality of original signals to generate a plurality of radio signals. The plurality of antennas transmit the plurality of radio signals. The change unit performs a change process for changing at least one element related to the process from the reception of the plurality of original signals to the transmission of the plurality of radio signals. The phase synthesizing unit generates a plurality of first radio signals as the plurality of radio signals before the change processing by the change unit. Further, the phase synthesizing unit generates a plurality of second radio signals as the plurality of radio signals after the change processing by the change unit. The plurality of antennas transmit the plurality of first radio signals and the plurality of second radio signals.
 本開示の一態様に係る受信方法は、受信ステップと、第1の位相合成ステップと、第1の出力ステップと、変更ステップと、第2の位相合成ステップと、第2の出力ステップとを有する。前記受信ステップでは、無線信号を受信する。前記第1の位相合成ステップでは、前記無線信号に基づく複数の入力信号に対して合成処理を行い、前記無線信号の到来方向を推定するための第1合成信号を生成する。前記第1の出力ステップでは、前記第1の位相合成ステップにおいて生成した前記第1合成信号を出力する。前記変更ステップでは、前記受信ステップから前記第1の位相合成ステップまでの処理に係る少なくとも1つ要素を変更する。前記第2の位相合成ステップでは、前記変更ステップの後に、前記第1の位相合成ステップにおいて生成した前記第1合成信号とは異なる第2合成信号を生成する。前記第2の出力ステップでは、前記第2の位相合成ステップにおいて生成した前記第2合成信号を出力する。 The receiving method according to one aspect of the present disclosure includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step. .. In the reception step, the radio signal is received. In the first phase synthesis step, a combination process is performed on a plurality of input signals based on the radio signal, and a first composite signal for estimating the arrival direction of the radio signal is generated. In the first output step, the first composite signal generated in the first phase synthesis step is output. In the change step, at least one element related to the processing from the reception step to the first phase synthesis step is changed. In the second phase synthesis step, after the change step, a second composite signal different from the first composite signal generated in the first phase synthesis step is generated. In the second output step, the second composite signal generated in the second phase synthesis step is output.
 本開示の一態様に係るプログラムは、前記受信方法を、1以上のプロセッサに実行させる。 The program according to one aspect of the present disclosure causes one or more processors to execute the receiving method.
図1は、第1実施形態の受信システム及び送信器の概要を示す概略図である。FIG. 1 is a schematic view showing an outline of the receiving system and the transmitter of the first embodiment. 図2は、第1実施形態の受信システムの機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the receiving system of the first embodiment. 図3は、第2実施形態の受信システム及び送信器の概要を示す概略図である。FIG. 3 is a schematic view showing an outline of the receiving system and the transmitter of the second embodiment. 図4は、第2実施形態の送信器の機能構成を示すブロック図である。FIG. 4 is a block diagram showing a functional configuration of the transmitter of the second embodiment.
 以下、本発明に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments described below, the elements that are common to each other are designated by the same reference numerals, and duplicate description of the common elements will be omitted.
 (第1実施形態)
 (1)概要
 まず、本実施形態に係る受信器、受信システム、送信器、受信方法及びプログラムの概要について、図1を参照して説明する。本実施形態の送信器4は、例えばBLE(Bluetooth(登録商標)Low Energy)(以下、「BLE」と記載する。)の規格に従ったビーコン信号(無線信号)を送信するビーコン装置などで構成される。ただし、送信器4は、BLEの規格に従ったビーコン信号を送信するビーコン装置に限られない。送信器4は、例えばWiFi(登録商標)の規格に従った無線信号を送信する装置であってもよい。
(First Embodiment)
(1) Outline First, an outline of a receiver, a receiving system, a transmitter, a receiving method, and a program according to the present embodiment will be described with reference to FIG. The transmitter 4 of the present embodiment is composed of, for example, a beacon device that transmits a beacon signal (radio signal) according to the standard of BLE (Bluetooth (registered trademark) Low Energy) (hereinafter, referred to as “BLE”). Will be done. However, the transmitter 4 is not limited to the beacon device that transmits the beacon signal according to the BLE standard. The transmitter 4 may be, for example, a device that transmits a radio signal according to the standard of WiFi (registered trademark).
 受信システム1は、送信器4が送信する無線信号を受信するための複数(図示例では3つ)のアンテナ11を備えている。本実施形態の複数のアンテナ11は、アンテナ11aとアンテナ11bとアンテナ11cとを含むアレーアンテナである。以下の説明において、特定のアンテナ11について説明する場合は、アンテナ11a,11b,11cを区別して記載する。また、複数のアンテナ11を区別せずに説明する場合は、単にアンテナ11と記載する。 The receiving system 1 includes a plurality of (three in the illustrated example) antennas 11 for receiving the radio signal transmitted by the transmitter 4. The plurality of antennas 11 of the present embodiment are array antennas including the antenna 11a, the antenna 11b, and the antenna 11c. In the following description, when the specific antenna 11 is described, the antennas 11a, 11b, and 11c are described separately. Further, when a plurality of antennas 11 are described without distinction, they are simply referred to as antennas 11.
 本実施形態の受信システム1は、複数のアンテナ11でBLEの規格に従った無線信号を受信可能なシステムで構成される。ただし、受信システム1は、BLEの規格に従った無線信号を受信可能なシステムに限られない。受信システム1は、例えばWiFiの規格に従った無線信号を受信可能なシステムであってもよい。本実施形態の受信システム1は、複数のアンテナ11で受信した無線信号の受信信号強度(RSSI)に基づいて、無線信号を送信した送信器4の位置方向を推定する。 The receiving system 1 of the present embodiment is composed of a system capable of receiving a radio signal according to the BLE standard with a plurality of antennas 11. However, the receiving system 1 is not limited to a system capable of receiving a radio signal according to the BLE standard. The receiving system 1 may be, for example, a system capable of receiving a radio signal according to the WiFi standard. The receiving system 1 of the present embodiment estimates the positional direction of the transmitter 4 that has transmitted the radio signal based on the received signal strength (RSSI) of the radio signal received by the plurality of antennas 11.
 (2)詳細
 以下、本実施形態に係る受信システム1の詳細について図1及び図2を参照しつつ説明する。
(2) Details Hereinafter, the details of the receiving system 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
 (2.1)受信システム1の構成
 図2に示すように、本実施形態の受信システム1は、受信器2と、推定部3とを備える。受信器2は、送信器4が送信する無線信号を受信する。受信器2は、無線信号を受信すると、無線信号に基づいて、無線信号の到来方向を推定するための合成信号SS1~SS4を生成する。また、受信器2は、無線信号の受信から合成信号SS1~SS4を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。受信器2が無線信号に基づいて生成する合成信号SS1~SS4は、変更処理を行う前後で異なった合成信号SS1~SS4となる。受信器2は、変更処理の前後の合成信号SS1~SS4を推定部3に出力する。
(2.1) Configuration of Reception System 1 As shown in FIG. 2, the reception system 1 of the present embodiment includes a receiver 2 and an estimation unit 3. The receiver 2 receives the radio signal transmitted by the transmitter 4. When the receiver 2 receives the radio signal, it generates synthetic signals SS1 to SS4 for estimating the arrival direction of the radio signal based on the radio signal. Further, the receiver 2 performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4. The composite signals SS1 to SS4 generated by the receiver 2 based on the radio signal become different composite signals SS1 to SS4 before and after the change processing. The receiver 2 outputs the combined signals SS1 to SS4 before and after the change processing to the estimation unit 3.
 推定部3は、受信器2から出力される変更処理の前後の合成信号SS1~SS4に基づいて無線信号の到来方向を推定する。推定部3が無線信号の到来方向を推定する方法については、「(3)到来方向推定」の欄で説明する。 The estimation unit 3 estimates the arrival direction of the radio signal based on the combined signals SS1 to SS4 before and after the change processing output from the receiver 2. The method by which the estimation unit 3 estimates the arrival direction of the radio signal will be described in the column of "(3) Arrival direction estimation".
 (2.2)受信器2の構成
 受信器2は、図2に示すように、複数のアンテナ11と、切替部12と、位相合成部13と、出力部14と、変更部15とを備える。
(2.2) Configuration of Receiver 2 As shown in FIG. 2, the receiver 2 includes a plurality of antennas 11, a switching unit 12, a phase synthesis unit 13, an output unit 14, and a change unit 15. ..
 複数のアンテナ11は切替部12と電気的に接続されている。複数のアンテナ11の各々は、送信器4が送信する無線信号を受信する。 The plurality of antennas 11 are electrically connected to the switching unit 12. Each of the plurality of antennas 11 receives the radio signal transmitted by the transmitter 4.
 切替部12は、複数のアンテナ11と位相合成部13との間に電気的に接続され、複数のアンテナ11と位相合成部13との電気的な接続状態を切替える処理部である。切替部12は、スイッチ16aとスイッチ16bとスイッチ16cとを含んでいる。以下の説明において、スイッチ16a,16b,16cを区別せずに説明する場合は、単にスイッチ16と記載する。また、特定のスイッチ16について説明する場合は、スイッチ16a,16b,16cを区別して記載する。 The switching unit 12 is a processing unit that is electrically connected between the plurality of antennas 11 and the phase synthesizing unit 13 and switches the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13. The switching unit 12 includes a switch 16a, a switch 16b, and a switch 16c. In the following description, when the switches 16a, 16b, and 16c are described without distinction, they are simply referred to as the switch 16. When the specific switch 16 is described, the switches 16a, 16b, and 16c are described separately.
 切替部12は、変更部15に制御されることにより、スイッチ16a~16cの切替え動作を行う。本実施形態のスイッチ16bは、変更部15による制御に応じて、アンテナ11bと、位相合成部13に含まれる位相合成器17bの第1入力端子I1と第2入力端子I2とのうちの一方とを電気的に接続する。以下の説明において、スイッチ16bによってアンテナ11bと位相合成器17bの第1入力端子I1とが電気的に接続されている状態を、「第1接続状態」と記載する。また、スイッチ16bによってアンテナ11bと位相合成器17bの第2入力端子I2とが電気的に接続されている状態を、「第2接続状態」と記載する。 The switching unit 12 performs a switching operation of the switches 16a to 16c by being controlled by the changing unit 15. The switch 16b of the present embodiment has the antenna 11b and one of the first input terminal I1 and the second input terminal I2 of the phase synthesizer 17b included in the phase synthesizer 13 according to the control by the change unit 15. Electrically connect. In the following description, a state in which the antenna 11b and the first input terminal I1 of the phase synthesizer 17b are electrically connected by the switch 16b is referred to as a “first connection state”. Further, a state in which the antenna 11b and the second input terminal I2 of the phase synthesizer 17b are electrically connected by the switch 16b is referred to as a "second connection state".
 スイッチ16aは、アンテナ11aと位相合成器17aの第1入力端子I1とが常に電気的に接続された状態となるように制御される。すなわち、本実施形態のスイッチ16aは切替え動作を行わない。そのため、スイッチ16aは、アンテナ11aと、位相合成器17aの第1入力端子I1とを接続する単なる電気的経路であってもよい。 The switch 16a is controlled so that the antenna 11a and the first input terminal I1 of the phase synthesizer 17a are always electrically connected. That is, the switch 16a of the present embodiment does not perform the switching operation. Therefore, the switch 16a may be a simple electrical path connecting the antenna 11a and the first input terminal I1 of the phase synthesizer 17a.
 また、スイッチ16cは、アンテナ11cと位相合成器17cの第2入力端子I2とが常に電気的に接続された状態となるように制御される。すなわち、本実施形態のスイッチ16cは切替え動作を行わない。そのため、スイッチ16cは、アンテナ11cと、位相合成器17cの第2入力端子I2とを接続する単なる電気的回路であってもよい。 Further, the switch 16c is controlled so that the antenna 11c and the second input terminal I2 of the phase synthesizer 17c are always electrically connected. That is, the switch 16c of the present embodiment does not perform the switching operation. Therefore, the switch 16c may be a simple electric circuit that connects the antenna 11c and the second input terminal I2 of the phase synthesizer 17c.
 ただし、アンテナ11aから位相合成器17aまでの電気的経路の長さ、アンテナ11bから位相合成器17bまでの電気的経路の長さ、及び、アンテナ11cから位相合成器17cまでの電気的経路の長さは、同じ長さであることが好ましい。各アンテナ11a~11cから各位相合成器17a~17cまでの各電気的経路の長さが異なっていると、無線信号の到来方向を推定する際の精度が低下するからである。そこで、本実施形態は、スイッチ16a、スイッチ16b、及びスイッチ16cを同じスイッチ16で構成している。 However, the length of the electrical path from the antenna 11a to the phase synthesizer 17a, the length of the electrical path from the antenna 11b to the phase synthesizer 17b, and the length of the electrical path from the antenna 11c to the phase synthesizer 17c. It is preferable that the shavings have the same length. This is because if the lengths of the electrical paths from the antennas 11a to 11c to the phase synthesizers 17a to 17c are different, the accuracy in estimating the arrival direction of the radio signal is lowered. Therefore, in this embodiment, the switch 16a, the switch 16b, and the switch 16c are configured by the same switch 16.
 位相合成部13は、複数のアンテナ11から入力される無線信号に基づく複数の入力信号IS1~IS3(信号IS4~IS7)に対して合成処理を行い、無線信号の到来方向を推定するための合成信号SS1~SS4を生成する処理部である。また、本実施形態の位相合成部13は、スイッチ16bが切替えられる前後で異なった合成信号SS1~SS4を生成する。ここで、第1接続状態において、位相合成部13が生成する合成信号SS1~SS4を第1合成信号SS1~SS4とする。また、第2接続状態において、位相合成部13が生成する合成信号SS1~SS4を第2合成信号SS1~SS4とする。 The phase synthesizing unit 13 performs synthesis processing on a plurality of input signals IS1 to IS3 (signals IS4 to IS7) based on radio signals input from the plurality of antennas 11, and synthesizes for estimating the arrival direction of the radio signals. This is a processing unit that generates signals SS1 to SS4. Further, the phase synthesizer 13 of the present embodiment generates different composite signals SS1 to SS4 before and after the switch 16b is switched. Here, the composite signals SS1 to SS4 generated by the phase synthesizer 13 in the first connection state are referred to as the first composite signals SS1 to SS4. Further, in the second connection state, the composite signals SS1 to SS4 generated by the phase synthesizer 13 are referred to as the second composite signals SS1 to SS4.
 位相合成部13は、位相合成器17aと、位相合成器17bと、位相合成器17cと、位相合成器17dと、位相合成器17eとを備えている。以下の説明において、位相合成器17a,17b,17c,17d,17eを区別せずに説明する場合は、単に位相合成器17と記載する。位相合成器17は、例えば90度ハイブリッドユニット(ハイブリッド素子)などで構成される。本実施形態の位相合成器17は、第1入力端子I1及び第2入力端子I2に入力される無線信号に基づく入力信号IS1~IS3と比べて、電力値が1/√2倍の信号を第1出力端子O1及び第2出力端子O2から出力する。また、位相合成器17は、第1入力端子I1に入力される無線信号に基づく入力信号IS1~IS3と比べて、同位相の信号を第1出力端子O1から出力し、位相が90度遅れた信号を第2出力端子O2から出力する。 The phase synthesizer 13 includes a phase synthesizer 17a, a phase synthesizer 17b, a phase synthesizer 17c, a phase synthesizer 17d, and a phase synthesizer 17e. In the following description, when the phase synthesizers 17a, 17b, 17c, 17d, and 17e are described without distinction, they are simply referred to as the phase synthesizer 17. The phase synthesizer 17 is composed of, for example, a 90-degree hybrid unit (hybrid element). The phase synthesizer 17 of the present embodiment produces a signal having a power value 1 / √2 times that of the input signals IS1 to IS3 based on the radio signals input to the first input terminal I1 and the second input terminal I2. Output is performed from the 1st output terminal O1 and the 2nd output terminal O2. Further, the phase synthesizer 17 outputs a signal having the same phase from the first output terminal O1 as compared with the input signals IS1 to IS3 based on the radio signal input to the first input terminal I1, and the phase is delayed by 90 degrees. The signal is output from the second output terminal O2.
 位相合成器17aは、第1入力端子I1に入力される無線信号に基づく入力信号IS1と比べて、電力値が1/√2倍で同相の信号IS4を第1出力端子O1から出力する。 The phase synthesizer 17a outputs the in-phase signal IS4 from the first output terminal O1 with a power value 1 / √2 times that of the input signal IS1 based on the radio signal input to the first input terminal I1.
 位相合成器17bは、接続状態に応じて、アンテナ11bと電気的に接続される入力端子が異なる。第1接続状態では、第1入力端子I1に無線信号に基づく入力信号IS2が入力される。この場合、位相合成器17bは、入力信号IS2と比べて、電力値が1/√2倍で位相が90度遅れた信号IS5を、第2出力端子O2から出力する。また、位相合成器17bは、入力信号IS2と比べて、電力値が1/√2倍で同位相の信号IS6を、第1出力端子O1から出力する。 The phase synthesizer 17b has different input terminals electrically connected to the antenna 11b depending on the connection state. In the first connection state, the input signal IS2 based on the radio signal is input to the first input terminal I1. In this case, the phase synthesizer 17b outputs the signal IS5 whose power value is 1 / √2 times and whose phase is delayed by 90 degrees from the input signal IS2 from the second output terminal O2. Further, the phase synthesizer 17b outputs a signal IS6 having a power value 1 / √2 times that of the input signal IS2 and having the same phase from the first output terminal O1.
 第2接続状態では、第2入力端子I2に入力信号IS2が入力される。この場合、位相合成器17bは、入力信号IS2と比べて、電力値が1/√2倍で同位相の信号IS5を、第2出力端子O2から出力する。また、位相合成器17bは、入力信号IS2と比べて、電力値が1/√2倍で位相が90度遅れた信号IS6を、第1出力端子O1から出力する。 In the second connection state, the input signal IS2 is input to the second input terminal I2. In this case, the phase synthesizer 17b outputs a signal IS5 having a power value 1 / √2 times that of the input signal IS2 and having the same phase from the second output terminal O2. Further, the phase synthesizer 17b outputs a signal IS6 whose power value is 1 / √2 times that of the input signal IS2 and whose phase is delayed by 90 degrees from the first output terminal O1.
 位相合成器17cは、第2入力端子I2に入力される無線信号に基づく入力信号IS3と比べて、電力値が1/√2倍で同相の信号IS7を第2出力端子O2から出力する。 The phase synthesizer 17c outputs an in-phase signal IS7 from the second output terminal O2 with a power value 1 / √2 times that of the input signal IS3 based on the radio signal input to the second input terminal I2.
 位相合成器17dは、第2入力端子I2で信号IS4を受け付け、第1入力端子I1で信号IS5を受け付ける。位相合成器17dは、信号IS4と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS5と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた合成信号SS1を第1出力端子O1から出力する。また、位相合成器17dは、信号IS4と比べて電力値が1/√2倍で同位相の信号と、信号IS5と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた合成信号SS2を第2出力端子O2から出力する。 The phase synthesizer 17d receives the signal IS4 at the second input terminal I2 and the signal IS5 at the first input terminal I1. The phase synthesizer 17d produces a signal having a power value of 1 / √2 times that of the signal IS4 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the signal IS5 and having the same phase. The added combined signal SS1 is output from the first output terminal O1. Further, the phase synthesizer 17d has a signal having a power value of 1 / √2 times that of the signal IS4 and having the same phase, and a signal having a power value of 1 / √2 times that of the signal IS5 and having a phase delay of 90 degrees. , And the combined signal SS2 is output from the second output terminal O2.
 位相合成器17eは、第2入力端子I2で信号IS6を受け付け、第1入力端子I1で信号IS7を受け付ける。位相合成器17eは、信号IS6と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS7と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた合成信号SS3を第1出力端子O1から出力する。また、位相合成器17eは、信号IS6と比べて電力値が1/√2倍で同位相の信号と、信号IS7と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた合成信号SS4を第2出力端子O2から出力する。 The phase synthesizer 17e receives the signal IS6 at the second input terminal I2 and the signal IS7 at the first input terminal I1. The phase synthesizer 17e produces a signal having a power value of 1 / √2 times that of the signal IS6 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the signal IS7 and having the same phase. The added combined signal SS3 is output from the first output terminal O1. Further, the phase synthesizer 17e has a signal having a power value of 1 / √2 times that of the signal IS6 and having the same phase, and a signal having a power value of 1 / √2 times that of the signal IS7 and having a phase delay of 90 degrees. , And the combined signal SS4 is output from the second output terminal O2.
 変更部15は、無線信号の受信から合成信号SS1~SS4を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う処理部である。本実施形態の変更部15は、変更処理の少なくとも一部として、複数のアンテナ11と位相合成部13との電気的な接続状態を切替えるように切替部12を制御する処理を行う。具体的には、変更部15は、スイッチ16bを切替える制御を行うことで、アンテナ11bと位相合成器17bとの電気的な接続状態を切替える。以下の説明において、変更部15が変更処理を行うまでは、アンテナ11bと位相合成器17bとの接続状態が第1接続状態であるとする。また、変更部15が変更処理を行った後は、アンテナ11bと位相合成器17bとの接続状態が第2接続状態であるとする。変更部15は、変更処理を所定のタイミングで行う。所定のタイミングは、例えば、位相合成部13が合成信号SS1~SS4を出力したタイミングや、送信器4が無線信号を送信する間隔に応じて設定される一定のタイミングなどである。 The change unit 15 is a processing unit that performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4. The changing unit 15 of the present embodiment performs a process of controlling the switching unit 12 so as to switch the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13 as at least a part of the changing process. Specifically, the changing unit 15 switches the electrical connection state between the antenna 11b and the phase synthesizer 17b by controlling the switch 16b to be switched. In the following description, it is assumed that the connection state between the antenna 11b and the phase synthesizer 17b is the first connection state until the change unit 15 performs the change processing. Further, it is assumed that the connection state between the antenna 11b and the phase synthesizer 17b is the second connection state after the change unit 15 performs the change processing. The change unit 15 performs the change process at a predetermined timing. The predetermined timing is, for example, a timing at which the phase synthesizing unit 13 outputs the combined signals SS1 to SS4, a constant timing set according to the interval at which the transmitter 4 transmits the radio signal, and the like.
 出力部14は、位相合成部13によって生成される合成信号SS1~SS4を、推定部3に出力する。具体的には、出力部14は、変更部15によって変更処理が行われる前に位相合成部13によって生成される第1合成信号SS1~SS4と、変更部15によって変更処理が行われる前に位相合成部13によって生成される第2合成信号SS1~SS4とを推定部3に出力する。 The output unit 14 outputs the combined signals SS1 to SS4 generated by the phase synthesizing unit 13 to the estimation unit 3. Specifically, the output unit 14 has the first composite signals SS1 to SS4 generated by the phase synthesis unit 13 before the change processing is performed by the change unit 15, and the phase before the change processing is performed by the change unit 15. The second composite signals SS1 to SS4 generated by the synthesis unit 13 are output to the estimation unit 3.
 (3)到来方向推定
 次に、推定部3が無線信号の到来方向を推定する方法について図1及び図2を参照しつつ説明する。図1に示すように、アンテナ11aと送信器4の送信アンテナとの間の複素伝播チャネルをh1、アンテナ11bと送信アンテナとの間の複素伝播チャネルをh2、アンテナ11cと送信アンテナとの間の複素伝播チャネルをh3とする。また、アンテナ11aとアンテナ11bとの距離、及び、アンテナ11bとアンテナ11cとの距離をd1とする。また、アンテナ11aとアンテナ11bとアンテナ11cとで構成されるアレーアンテナのブロードサイド方向を基準として角度θ1の位置に送信器4が存在するものとする。まず、推定部3が、第1合成信号SS1~SS4に基づいて、無線信号の到来方向を推定する場合について説明する。
(3) Estimating the Arrival Direction Next, a method in which the estimation unit 3 estimates the arrival direction of the radio signal will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the complex propagation channel between the antenna 11a and the transmitting antenna of the transmitter 4 is h1, the complex propagation channel between the antenna 11b and the transmitting antenna is h2, and the complex propagation channel between the antenna 11c and the transmitting antenna is Let h3 be the complex propagation channel. Further, the distance between the antenna 11a and the antenna 11b and the distance between the antenna 11b and the antenna 11c are d1. Further, it is assumed that the transmitter 4 exists at a position at an angle θ1 with respect to the broadside direction of the array antenna composed of the antenna 11a, the antenna 11b, and the antenna 11c. First, a case where the estimation unit 3 estimates the arrival direction of the radio signal based on the first combined signals SS1 to SS4 will be described.
 伝播チャネルはまとめて、式(1)と表すことができる。 The propagation channels can be collectively expressed as Eq. (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この伝播チャネルの相関行列は、式(2)と表すことができる。 The correlation matrix of this propagation channel can be expressed by Eq. (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、記号Hは複素共役転置を、記号*は複素共役を表す。通常、相関行列Rの対角項は実数となり、非対角項は複素数となる。相関行列Rを求めることで、推定部3は、無線信号の到来方向を推定することができる。推定部3は、受信信号強度に関する情報に基づいて、相関行列Rを求める。 Here, the symbol H represents the complex conjugate transpose, and the symbol * represents the complex conjugate. Usually, the diagonal term of the correlation matrix R is a real number, and the off-diagonal term is a complex number. By obtaining the correlation matrix R, the estimation unit 3 can estimate the arrival direction of the radio signal. The estimation unit 3 obtains the correlation matrix R based on the information regarding the received signal strength.
 式(1)の伝播チャネルを用いると、推定部3に入力される複数の第1合成信号SS1~SS4の振幅は、式(3)~式(6)と表すことができる。 Using the propagation channel of equation (1), the amplitudes of the plurality of first composite signals SS1 to SS4 input to the estimation unit 3 can be expressed as equations (3) to (6).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 |y1|は、位相合成器17dの第1出力端子O1から出力される合成信号SS1の振幅を表している。|y2|は、位相合成器17dの第2出力端子O2から出力される合成信号SS2の振幅を表している。|y3|は、位相合成器17eの第1出力端子O1から出力される合成信号SS3の振幅を表している。|y4|は、位相合成器17eの第2出力端子O2から出力される合成信号SS4の振幅を表している。また、受信信号強度から式(3)~(6)の左辺のチャネルの利得は、式(7)~式(10)と表すことができる。 | Y1 | represents the amplitude of the composite signal SS1 output from the first output terminal O1 of the phase synthesizer 17d. | Y2 | represents the amplitude of the composite signal SS2 output from the second output terminal O2 of the phase synthesizer 17d. | Y3 | represents the amplitude of the composite signal SS3 output from the first output terminal O1 of the phase synthesizer 17e. | Y4 | represents the amplitude of the composite signal SS4 output from the second output terminal O2 of the phase synthesizer 17e. Further, the gain of the channel on the left side of the equations (3) to (6) can be expressed by the equations (7) to (10) from the received signal strength.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 位相合成器17dを介して得られる利得の差に注目すると、式(11)の関係より、式(12)と表すことができる。 Focusing on the difference in gain obtained through the phase synthesizer 17d, it can be expressed as equation (12) from the relationship of equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 R12及びR21の実部を求めることができる。ここで、αはR12の偏角を表す。 The actual part of R12 and R21 can be obtained. Here, α represents the declination of R12.
 また、位相合成器17dを介して得られる利得の和に注目すると、相加相乗平均の関係より、式(13)と表すことができる。 Also, paying attention to the sum of the gains obtained through the phase synthesizer 17d, it can be expressed by the equation (13) from the relationship of the additive geometric mean.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、送信器4の送信アンテナからアンテナ11aまでの伝播損と、送信アンテナからアンテナ11bまでの伝播損とが等しく、|h1|と|h2|とがほぼ等しいとする。|h1|と|h2|とがほぼ等しい場合、R12の偏角であるαは、式(14)と表すことができる。 Here, it is assumed that the propagation loss from the transmitting antenna to the antenna 11a of the transmitter 4 and the propagation loss from the transmitting antenna to the antenna 11b are equal, and | h1 | and | h2 | are substantially equal. When | h1 | and | h2 | are substantially equal, α, which is the argument of R12, can be expressed by the equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、|h1|と|h2|とがほぼ等しい場合、式(15)と表すことができる。 Further, when | h1 | and | h2 | are substantially equal, it can be expressed as equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここでAは実数の定数である。式(2)に示される相関行列Rのうち、位相合成器17dから出力される合成信号SS1,SS2に関する相関行列をR1と定義する。相関行列R1をA及びαを用いて表すと、式(16)と表すことができる。 Here, A is a real number constant. Among the correlation matrices R shown in the equation (2), the correlation matrix related to the composite signals SS1 and SS2 output from the phase synthesizer 17d is defined as R1. When the correlation matrix R1 is expressed using A and α, it can be expressed by the equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 次に、位相合成器17eを介して得られる利得の差に注目すると、式(17)と表すことができる。 Next, paying attention to the difference in gain obtained through the phase synthesizer 17e, it can be expressed as Eq. (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 R23及びR32の虚部を求めることができる。ここで、βはR23の偏角を表す。また、位相合成器17eを介して得られる利得の和に注目すると、相加相乗平均の関係より、式(18)と表すことができる。 The imaginary part of R23 and R32 can be obtained. Here, β represents the declination of R23. Further, paying attention to the sum of the gains obtained through the phase synthesizer 17e, it can be expressed by the equation (18) from the relation of the additive geometric mean.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、送信器4の送信アンテナからアンテナ11bの伝播損と、送信アンテナからアンテナ11cの伝播損とが等しく、|h2|と|h3|とがほぼ等しいとする。|h2|と|h3|とがほぼ等しい場合、R23の偏角であるβは、式(19)と表すことができる。 Here, it is assumed that the propagation loss from the transmitting antenna of the transmitter 4 to the antenna 11b and the propagation loss from the transmitting antenna to the antenna 11c are equal, and | h2 | and | h3 | are substantially equal. When | h2 | and | h3 | are substantially equal, β, which is the argument of R23, can be expressed by the equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 同様に、|h2|と|h3|とがほぼ等しい場合、式(20)と表すことができる。 Similarly, when | h2 | and | h3 | are substantially equal, it can be expressed as equation (20).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、Bは実数の定数である。相関行列Rのうち、位相合成器17eから出力される合成信号SS3,SS4に関する相関行列をR2と定義する。相関行列R2をB及びβを用いて表すと、式(21)となり、相関行列Rが推定される。 Here, B is a real number constant. Of the correlation matrix R, the correlation matrix related to the composite signals SS3 and SS4 output from the phase synthesizer 17e is defined as R2. When the correlation matrix R2 is expressed using B and β, the equation (21) is obtained, and the correlation matrix R is estimated.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ここで、偏角がαとβとでそれぞれ2通りずつ推定されるため、4通りの解が推定されることとなる。したがって、αとβの解を選択する必要がある。ここで、αとβの解として、αとβの差が最も小さい解の組合せを選択する。送信器4の送信アンテナと、アンテナ11a,11b,11cとは十分に離れており、アンテナ11a,11b,11cから見た送信器4の送信アンテナの方向は全て等しくθとみなすことができる(図1参照)。また、アンテナ11aとアンテナ11bとアンテナ11cとは等間隔d1で整列している。そのため、h1とh2との間の位相遅延の差と、h2とh3との間の位相遅延の差とは等しくなる。ここで、αはh1とh2との間の位相遅延の差を表しており、βはh2とh3との間の位相遅延の差を表している。すなわち、αとβとは一致しているとみなすことができる。したがって、αとβの解として、αとβの差が最も小さい解の組合せを選択することで、2通りの解に絞り込むことができる。 Here, since the declination is estimated in two ways for α and β, four kinds of solutions are estimated. Therefore, it is necessary to select the solutions of α and β. Here, as the solution of α and β, the combination of solutions having the smallest difference between α and β is selected. The transmitting antenna of the transmitter 4 and the antennas 11a, 11b, 11c are sufficiently separated from each other, and the directions of the transmitting antennas of the transmitter 4 as seen from the antennas 11a, 11b, 11c can all be regarded as equal θ (FIG. FIG. 1). Further, the antenna 11a, the antenna 11b, and the antenna 11c are aligned at equal intervals d1. Therefore, the difference in phase delay between h1 and h2 is equal to the difference in phase delay between h2 and h3. Here, α represents the difference in phase delay between h1 and h2, and β represents the difference in phase delay between h2 and h3. That is, α and β can be regarded as coincident. Therefore, by selecting the combination of solutions having the smallest difference between α and β as the solutions of α and β, it is possible to narrow down to two solutions.
 また、R13は、アンテナ11aとアンテナ11cとの間の無線信号の相関を表している。R13は、求めた|R23|を用いて、式(22)と表すことができる。 Further, R13 represents the correlation of the radio signal between the antenna 11a and the antenna 11c. R13 can be expressed by the equation (22) using the obtained | R23 |.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 以上より、推定された相関行列Rは、式(23)と表すことができる。 From the above, the estimated correlation matrix R can be expressed as Eq. (23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 推定部3は、相関行列RにMUSIC(MUltiple SIgnal Classification)法などを用いることにより、送信器4の方向推定を行う。相関行列Rを用いた方向推定には様々なアルゴリズムが存在するが、本実施形態では、推定部3がMUSIC法を用いた方向推定を行う場合を例示する。 The estimation unit 3 estimates the direction of the transmitter 4 by using the MUSIC (MUltiple SIgnal Classification) method or the like for the correlation matrix R. There are various algorithms for direction estimation using the correlation matrix R, but in the present embodiment, a case where the estimation unit 3 performs direction estimation using the MUSIC method is illustrated.
 相関行列Rは、固有値分解によって、式(24)で表すことができる。 The correlation matrix R can be expressed by Eq. (24) by eigenvalue decomposition.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 ここで、式(25)、式(26)であり、diag[]は対角行列を表す。 Here, the equations (25) and (26) are used, and diag [] represents a diagonal matrix.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 また、v1,v2,v3は、それぞれ第1、第2、第3固有ベクトルである。また、λ1、λ2,λ3は、それぞれ第1、第2、第3固有値であり、式(27)であるものとする。 Also, v1, v2, and v3 are the first, second, and third eigenvectors, respectively. Further, λ1, λ2, and λ3 are the first, second, and third eigenvalues, respectively, and it is assumed that the equation (27) is used.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 また、λ1は信号を含んだ電力に対応し、λ2及びλ3は雑音電力に対応するものとする。MUSIC法では、このような固有ベクトルを用いた評価式である式(28)を用いて、無線信号の到来方向を推定する。 Further, λ1 corresponds to the electric power including the signal, and λ2 and λ3 correspond to the noise electric power. In the MUSIC method, the arrival direction of the radio signal is estimated by using the equation (28), which is an evaluation equation using such an eigenvector.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 ここで、式(29)はステアリングベクトルと呼ばれる。 Here, equation (29) is called a steering vector.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 dはアンテナの間隔、λは波長である。推定部3は、式(28)のθ0に様々な値を代入し、Pmusicが最大になる方向が無線信号の出発方向であると判断する。以下の説明において、推定部3が第1合成信号SS1~SS4に基づいて推定した到来方向を「第1推定方向」と記載する。 D is the antenna spacing and λ is the wavelength. The estimation unit 3 substitutes various values for θ0 in the equation (28), and determines that the direction in which Pmusic is maximized is the departure direction of the radio signal. In the following description, the arrival direction estimated by the estimation unit 3 based on the first composite signals SS1 to SS4 will be referred to as the "first estimation direction".
 次に、推定部3は第2合成信号SS1~SS4に基づいて、無線信号の到来方向を推定する。式(1)の伝播チャネルを用いると、推定部3に入力される複数の第2合成信号SS1~SS4の振幅は、式(30)~式(33)と表すことができる。 Next, the estimation unit 3 estimates the arrival direction of the radio signal based on the second composite signals SS1 to SS4. Using the propagation channel of the equation (1), the amplitudes of the plurality of second composite signals SS1 to SS4 input to the estimation unit 3 can be expressed by the equations (30) to (33).
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 |y1a|は、位相合成器17dの第1出力端子O1から出力される合成信号SS1の振幅を表している。|y2a|は、位相合成器17dの第2出力端子O2から出力される合成信号SS2の振幅を表している。|y3a|は、位相合成器17eの第2出力端子O2から出力される合成信号SS4の振幅を表している。|y4a|は、位相合成器17eの第1出力端子O1から出力される合成信号SS3の振幅を表している。式(30)~(33)が示すように、複数の第1合成信号SS1~SS4の振幅の表し方と、複数の第2合成信号SS1~SS4に含まれる各合成信号の振幅の表し方が異なる。そのため、推定部3は、式(30)~(33)を用いて相関行列Rを求めることにより、第1推定方向とは、異なる到来方向を推定することができる。なお、式(30)~(33)を用いて相関行列Rを求める具体的な方法の説明は省略する。以下の説明において、推定部3が第2合成信号SS1~SS4に基づいて推定した到来方向を「第2推定方向」と記載する。 | Y1a | represents the amplitude of the composite signal SS1 output from the first output terminal O1 of the phase synthesizer 17d. | Y2a | represents the amplitude of the composite signal SS2 output from the second output terminal O2 of the phase synthesizer 17d. | Y3a | represents the amplitude of the composite signal SS4 output from the second output terminal O2 of the phase synthesizer 17e. | Y4a | represents the amplitude of the composite signal SS3 output from the first output terminal O1 of the phase synthesizer 17e. As shown by the formulas (30) to (33), how to express the amplitude of the plurality of first composite signals SS1 to SS4 and how to express the amplitude of each composite signal included in the plurality of second composite signals SS1 to SS4. different. Therefore, the estimation unit 3 can estimate the arrival direction different from the first estimation direction by obtaining the correlation matrix R using the equations (30) to (33). The description of a specific method for obtaining the correlation matrix R using the equations (30) to (33) will be omitted. In the following description, the arrival direction estimated by the estimation unit 3 based on the second composite signals SS1 to SS4 will be referred to as the "second estimation direction".
 推定部3は、第1推定方向と第2推定方向とに基づいて無線信号の到来方向(送信器4の位置方向)を推定する。例えば、推定部3は、第1推定方向と第2推定方向との平均をとることで、無線信号の到来方向を推定するようにしてもよい。本実施形態の推定部3は、複数の推定方向に基づいて無線信号の到来方向を推定するため、一の推定方向に基づいて無線信号の到来方向を推定する既存の受信システムと比べて、無線信号の到来方向を推定する際の精度が向上する。 The estimation unit 3 estimates the arrival direction of the radio signal (positional direction of the transmitter 4) based on the first estimation direction and the second estimation direction. For example, the estimation unit 3 may estimate the arrival direction of the radio signal by averaging the first estimation direction and the second estimation direction. Since the estimation unit 3 of the present embodiment estimates the arrival direction of the radio signal based on a plurality of estimation directions, the estimation unit 3 is wireless as compared with the existing receiving system that estimates the arrival direction of the radio signal based on one estimation direction. The accuracy when estimating the arrival direction of the signal is improved.
 以上のように本実施形態の受信システム1は、受信器2と推定部3とを備えている。受信器2は、複数のアンテナ11と、位相合成部13と、出力部14と、変更部15とを備えている。複数のアンテナ11は、無線信号を受信する。変更部15は、無線信号の受信から合成信号SS1~SS4を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。位相合成部13は、複数のアンテナ11から入力される無線信号に基づく複数の入力信号IS1~IS3に対して合成処理を行い、無線信号の到来方向(送信器4の位置方向)を推定するための合成信号SS1~SS4を生成する。位相合成部13は、変更部15による変更処理前に、合成信号SS1~SS4として第1合成信号SS1~SS4を生成する。また、位相合成部13は、変更部15による変更処理後に、合成信号SS1~SS4として第2合成信号SS1~SS4を生成する。すなわち、位相合成部13は、変更部15による変更処理の前後でパターンの異なる合成信号SS1~SS4を生成する。言い換えると、本実施形態の受信器2は、無線信号の到来方向を推定するための合成信号SS1~SS4のパターンを増やすことができる。そして、出力部14は、第1合成信号SS1~SS4と第2合成信号SS1~SS4とを推定部3に出力する。推定部3は、受信器2の出力部14から出力される第1合成信号SS1~SS4及び第2合成信号SS1~SS4に基づいて、無線信号の到来方向を推定する。推定部3は、2以上のパターンの合成信号SS1~SS4に基づいて無線信号の到来方向を推定することができる、そのため、1パターンの合成信号SS1~SS4に基づいて無線信号の到来方向を推定する場合と比べて、到来方向推定の精度が向上する。 As described above, the receiving system 1 of the present embodiment includes the receiver 2 and the estimation unit 3. The receiver 2 includes a plurality of antennas 11, a phase synthesizing unit 13, an output unit 14, and a changing unit 15. The plurality of antennas 11 receive the radio signal. The change unit 15 performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signals SS1 to SS4. The phase synthesizer 13 performs synthesis processing on a plurality of input signals IS1 to IS3 based on radio signals input from the plurality of antennas 11 to estimate the arrival direction of the radio signal (positional direction of the transmitter 4). Synthesized signals SS1 to SS4 are generated. The phase synthesis unit 13 generates the first composite signals SS1 to SS4 as the composite signals SS1 to SS4 before the change processing by the change unit 15. Further, the phase synthesizing unit 13 generates the second combined signals SS1 to SS4 as the combined signals SS1 to SS4 after the change processing by the changing unit 15. That is, the phase synthesizing unit 13 generates the combined signals SS1 to SS4 having different patterns before and after the change processing by the changing unit 15. In other words, the receiver 2 of the present embodiment can increase the patterns of the combined signals SS1 to SS4 for estimating the arrival direction of the radio signal. Then, the output unit 14 outputs the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 to the estimation unit 3. The estimation unit 3 estimates the arrival direction of the radio signal based on the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 output from the output unit 14 of the receiver 2. The estimation unit 3 can estimate the arrival direction of the radio signal based on the combined signals SS1 to SS4 of two or more patterns. Therefore, the estimation unit 3 estimates the arrival direction of the radio signal based on the combined signals SS1 to SS4 of one pattern. The accuracy of the arrival direction estimation is improved as compared with the case of doing so.
 また、本実施形態の受信器2は、切替部12を更に備えている。切替部12は、複数のアンテナ11と位相合成部13との電気的な接続状態を切替える。より具体的には、アンテナ11bと位相合成器17bとの電気的な接続状態を、第1接続状態から第2接続状態へ、又は第2接続状態から第1接続状態へ切替える。変更部15は、変更処理の少なくとも一部として、複数のアンテナ11と位相合成部13との電気的な接続状態を切替えるように切替部12を制御する処理を行う。受信器2は、複数のアンテナ11と位相合成部13との電気的な接続状態を切替えることにより、無線信号の到来方向を推定するための合成信号SS1~SS4のパターンを容易に増やすことができる。そのため、受信器2は、無線信号の到来方向推定の精度を容易に向上させることができる。 Further, the receiver 2 of the present embodiment further includes a switching unit 12. The switching unit 12 switches the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13. More specifically, the electrical connection state between the antenna 11b and the phase synthesizer 17b is switched from the first connection state to the second connection state, or from the second connection state to the first connection state. The changing unit 15 performs a process of controlling the switching unit 12 so as to switch the electrical connection state between the plurality of antennas 11 and the phase synthesizing unit 13 as at least a part of the changing process. The receiver 2 can easily increase the patterns of the combined signals SS1 to SS4 for estimating the arrival direction of the radio signal by switching the electrical connection state between the plurality of antennas 11 and the phase synthesizer 13. .. Therefore, the receiver 2 can easily improve the accuracy of estimating the arrival direction of the radio signal.
 また、本実施形態の位相合成部13は、複数のアンテナ11と電気的に接続され、無線信号が入力される複数の入力部(入力端子)を備えている。具体的には、位相合成器17aの第1入力端子I1と、位相合成器17bの第1入力端子I1及び第2入力端子I2と、位相合成器17cの第2入力端子I2の4つの入力端子である。そして、本実施形態の複数のアンテナ11は、アンテナ11aとアンテナ11bとアンテナ11cとの3本である。すなわち、本実施形態の複数のアンテナ11の数は、複数の入力部の数以下である。アンテナ11の数が入力部の数以下なので、受信器2(受信システム1)の構成をコンパクトにすることが可能である。また、受信器2は、複数のアンテナ11と入力部との電気的な接続状態を切替えることで、アンテナ11の数を増やすことなく、無線信号の到来方向を推定するための無線信号のパターンを容易に増やすことができる。すなわち、受信器2は、アンテナ11の数を増やすことなく、無線信号の到来方向推定の精度を向上させることができる。ただし、アンテナ11の数が入力部の数より多い場合であっても、本実施形態における受信システム1の、無線信号の到来方向の推定精度を向上させることができるという効果が失われるわけではない。そのため、受信器2のアンテナ11の数は、入力部の数より多いものであってもよい。 Further, the phase synthesis unit 13 of the present embodiment is provided with a plurality of input units (input terminals) that are electrically connected to the plurality of antennas 11 and to which a wireless signal is input. Specifically, there are four input terminals: a first input terminal I1 of the phase synthesizer 17a, a first input terminal I1 and a second input terminal I2 of the phase synthesizer 17b, and a second input terminal I2 of the phase synthesizer 17c. Is. The plurality of antennas 11 of the present embodiment are three antennas 11a, 11b, and 11c. That is, the number of the plurality of antennas 11 of the present embodiment is equal to or less than the number of the plurality of input units. Since the number of antennas 11 is less than or equal to the number of input units, the configuration of the receiver 2 (reception system 1) can be made compact. Further, the receiver 2 switches the electrical connection state between the plurality of antennas 11 and the input unit to obtain a wireless signal pattern for estimating the arrival direction of the wireless signal without increasing the number of antennas 11. It can be easily increased. That is, the receiver 2 can improve the accuracy of estimating the arrival direction of the radio signal without increasing the number of antennas 11. However, even if the number of antennas 11 is larger than the number of input units, the effect of improving the estimation accuracy of the arrival direction of the radio signal of the receiving system 1 in the present embodiment is not lost. .. Therefore, the number of antennas 11 of the receiver 2 may be larger than the number of input units.
 (第2実施形態)
 (1)概要
 第2実施形態の送信器4a及び受信システム1aの概要について図3を参照して説明する。本実施形態の送信器4aは、複数の無線信号を送信するための複数(図示例では3つ)のアンテナ21を備えている。本実施形態の複数のアンテナ21は、アンテナ21aとアンテナ21bとアンテナ21cとを含むアレーアンテナである。以下の説明において、特定のアンテナ21について説明する場合は、アンテナ21a,21b,21cを区別して記載する。また、複数のアンテナ21を区別せずに説明する場合は、単にアンテナ21と記載する。
(Second Embodiment)
(1) Outline The outline of the transmitter 4a and the receiving system 1a of the second embodiment will be described with reference to FIG. The transmitter 4a of the present embodiment includes a plurality of (three in the illustrated example) antennas 21 for transmitting a plurality of radio signals. The plurality of antennas 21 of this embodiment are array antennas including the antenna 21a, the antenna 21b, and the antenna 21c. In the following description, when a specific antenna 21 is described, the antennas 21a, 21b, and 21c are described separately. Further, when a plurality of antennas 21 are described without distinction, they are simply described as antennas 21.
 本実施形態の受信システム1aは、複数のアンテナ21から送信される複数の無線信号を受信する受信アンテナを備える。本実施形態の受信システム1aは、受信アンテナで受信した複数の無線信号の受信信号強度に基づいて、複数の無線信号を送信した送信器4aの位置方向を推定する受信システムであり、例えばスマートフォンなどで構成される。 The receiving system 1a of the present embodiment includes a receiving antenna that receives a plurality of radio signals transmitted from the plurality of antennas 21. The receiving system 1a of the present embodiment is a receiving system that estimates the position direction of the transmitter 4a that has transmitted a plurality of radio signals based on the received signal strength of the plurality of radio signals received by the receiving antenna, for example, a smartphone or the like. Consists of.
 (2)送信器4aの構成
 以下、本実施形態に係る送信器4aの構成について図4を参照しつつ説明する。図4に示すように、送信器4aは、複数のアンテナ21と、切替部22と、位相合成部23と、元信号生成部24と、変更部25とを備える。
(2) Configuration of Transmitter 4a Hereinafter, the configuration of the transmitter 4a according to the present embodiment will be described with reference to FIG. As shown in FIG. 4, the transmitter 4a includes a plurality of antennas 21, a switching unit 22, a phase synthesis unit 23, a source signal generation unit 24, and a change unit 25.
 複数のアンテナ21は切替部22と電気的に接続されている。複数のアンテナ21の各々は、位相合成部23によって生成される複数の無線信号RS1~RS3を送信する。 The plurality of antennas 21 are electrically connected to the switching unit 22. Each of the plurality of antennas 21 transmits a plurality of radio signals RS1 to RS3 generated by the phase synthesizer 23.
 切替部22は、複数のアンテナ21と位相合成部23との間に電気的に接続され、複数のアンテナ21と位相合成部23との電気的な接続状態を切替える処理部である。切替部22は、スイッチ26aとスイッチ26bとスイッチ26cとを含んでいる。以下の説明において、スイッチ26a,26b,26cを区別せずに説明する場合は、単にスイッチ26と記載する。また、特定のスイッチ26について説明する場合は、スイッチ26a,26b,26cを区別して記載する。 The switching unit 22 is a processing unit that is electrically connected between the plurality of antennas 21 and the phase synthesizing unit 23 and switches the electrical connection state between the plurality of antennas 21 and the phase synthesizing unit 23. The switching unit 22 includes a switch 26a, a switch 26b, and a switch 26c. In the following description, when the switches 26a, 26b, and 26c are described without distinction, they are simply referred to as the switch 26. Further, when the specific switch 26 is described, the switches 26a, 26b, and 26c are described separately.
 切替部22は、変更部25に制御されることにより、スイッチ26a~26cの切替え動作を行う。本実施形態のスイッチ26bは、変更部25による制御に応じて、アンテナ21bと、位相合成部23に含まれる位相合成器27bの第1出力端子O1及び第2出力端子O2のうちの一方と、を電気的に接続する。以下の説明において、スイッチ26bによってアンテナ21bと位相合成器27bの第2出力端子O2とが電気的に接続されている状態を、「第1接続状態」と記載する。また、スイッチ26bによってアンテナ21bと位相合成器27bの第1出力端子O1とが電気的に接続されている状態を、「第2接続状態」と記載する。 The switching unit 22 performs a switching operation of the switches 26a to 26c by being controlled by the changing unit 25. The switch 26b of the present embodiment has an antenna 21b and one of the first output terminal O1 and the second output terminal O2 of the phase synthesizer 27b included in the phase synthesizer 23, according to the control by the change unit 25. Electrically connect. In the following description, a state in which the antenna 21b and the second output terminal O2 of the phase synthesizer 27b are electrically connected by the switch 26b will be referred to as a “first connection state”. Further, a state in which the antenna 21b and the first output terminal O1 of the phase synthesizer 27b are electrically connected by the switch 26b is referred to as a "second connection state".
 スイッチ26aは、アンテナ21aと位相合成器27aの第2出力端子O2とが常に電気的に接続された状態となるように制御される。すなわち、本実施形態のスイッチ26aは切替え動作を行わない。そのため、スイッチ26aは、アンテナ21aと、位相合成器27aの第2出力端子O2とを接続する単なる電気的経路であってもよい。 The switch 26a is controlled so that the antenna 21a and the second output terminal O2 of the phase synthesizer 27a are always electrically connected. That is, the switch 26a of the present embodiment does not perform the switching operation. Therefore, the switch 26a may be a simple electrical path connecting the antenna 21a and the second output terminal O2 of the phase synthesizer 27a.
 また、スイッチ26cは、アンテナ21cと位相合成器27cの第1出力端子O1とが常に電気的に接続された状態となるように制御される。すなわち、本実施形態のスイッチ26cは切替え動作を行わない。そのため、スイッチ26cは、アンテナ21cと、位相合成器27cの第1出力端子O1とを接続する単なる電気的回路であってもよい。 Further, the switch 26c is controlled so that the antenna 21c and the first output terminal O1 of the phase synthesizer 27c are always electrically connected. That is, the switch 26c of the present embodiment does not perform the switching operation. Therefore, the switch 26c may be a simple electric circuit that connects the antenna 21c and the first output terminal O1 of the phase synthesizer 27c.
 ただし、アンテナ21aから位相合成器27aまでの電気的経路の長さ、アンテナ21bから位相合成器27bまでの電気的経路の長さ、及び、アンテナ21cから位相合成器27cまでの電気的経路の長さは、同じ長さであることが好ましい。各アンテナ21a~21cから各位相合成器27a~27cまでの各電気的経路の長さが異なっていると、受信システム1aが無線信号の到来方向を推定する際の精度が低下するからである。そこで、本実施形態は、スイッチ26a、スイッチ26b、及びスイッチ26cを同じスイッチ26で構成している。 However, the length of the electrical path from the antenna 21a to the phase synthesizer 27a, the length of the electrical path from the antenna 21b to the phase synthesizer 27b, and the length of the electrical path from the antenna 21c to the phase synthesizer 27c. It is preferable that the shavings have the same length. This is because if the lengths of the electrical paths from the antennas 21a to 21c to the phase synthesizers 27a to 27c are different, the accuracy of the receiving system 1a in estimating the arrival direction of the radio signal is lowered. Therefore, in this embodiment, the switch 26a, the switch 26b, and the switch 26c are configured by the same switch 26.
 元信号生成部24は、複数のアンテナ21が送信する複数の無線信号RS1~RS3の元となる信号であって、例えば識別情報などの所定の情報を含む元信号BS1~BS4を生成する処理部である。元信号生成部24は、元信号生成器24a~24dを含んでいる。元信号生成器24aは、位相合成部23の位相合成器27dの第1入力端子I1と電気的に接続され、元信号BS1を生成する。元信号生成器24bは、位相合成器27dの第2入力端子I2と電気的に接続され、元信号BS2を生成する。元信号生成器24cは、位相合成器27eの第1入力端子I1と電気的に接続され、元信号BS3を生成する。元信号生成器24dは、位相合成器27eの第2入力端子I2と電気的に接続され、元信号BS4を生成する。 The original signal generation unit 24 is a processing unit that generates original signals BS1 to BS4 that are sources of a plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 and include predetermined information such as identification information. Is. The original signal generator 24 includes the original signal generators 24a to 24d. The original signal generator 24a is electrically connected to the first input terminal I1 of the phase synthesizer 27d of the phase synthesizer 23 to generate the original signal BS1. The original signal generator 24b is electrically connected to the second input terminal I2 of the phase synthesizer 27d to generate the original signal BS2. The original signal generator 24c is electrically connected to the first input terminal I1 of the phase synthesizer 27e to generate the original signal BS3. The original signal generator 24d is electrically connected to the second input terminal I2 of the phase synthesizer 27e to generate the original signal BS4.
 位相合成部23は、複数の元信号BS1~BS4に基づく複数の入力信号IS8~IS11(信号IS12~IS15)に対して合成処理を行い、複数の無線信号RS1~RS3を生成する処理部である。また、本実施形態の位相合成部23は、スイッチ26bが切替えられる前後で異なった複数の無線信号RS1~RS3を生成する。ここで第1接続状態において、位相合成部23が生成する複数の無線信号RS1~RS3を複数の第1無線信号RS1~RS3とする。また、第2接続状態において、位相合成部23が生成する複数の無線信号RS1~RS3を複数の第2無線信号RS1~RS3とする。 The phase synthesis unit 23 is a processing unit that performs synthesis processing on a plurality of input signals IS8 to IS11 (signals IS12 to IS15) based on a plurality of original signals BS1 to BS4 to generate a plurality of radio signals RS1 to RS3. .. Further, the phase synthesizing unit 23 of the present embodiment generates a plurality of different radio signals RS1 to RS3 before and after the switch 26b is switched. Here, in the first connection state, the plurality of radio signals RS1 to RS3 generated by the phase synthesizing unit 23 are referred to as the plurality of first radio signals RS1 to RS3. Further, in the second connection state, the plurality of radio signals RS1 to RS3 generated by the phase synthesizing unit 23 are designated as the plurality of second radio signals RS1 to RS3.
 位相合成部23は、位相合成器27aと、位相合成器27bと、位相合成器27cと、位相合成器27dと、位相合成器27eとを備えている。以下の説明において、位相合成器27a,27b,27c,27d,27eを区別せずに説明する場合は、単に位相合成器27と記載する。位相合成器27は、例えば90度ハイブリッドユニット(ハイブリッド素子)などで構成される。位相合成器27の基本動作については、「(第1実施形態)における(2.2)受信器2の構成」の欄で説明した位相合成器17の基本動作と同様であるため、説明を省略する。 The phase synthesizer 23 includes a phase synthesizer 27a, a phase synthesizer 27b, a phase synthesizer 27c, a phase synthesizer 27d, and a phase synthesizer 27e. In the following description, when the phase synthesizers 27a, 27b, 27c, 27d, and 27e are described without distinction, they are simply referred to as the phase synthesizer 27. The phase synthesizer 27 is composed of, for example, a 90-degree hybrid unit (hybrid element). Since the basic operation of the phase synthesizer 27 is the same as the basic operation of the phase synthesizer 17 described in the column of "(2.2) Configuration of receiver 2 in (first embodiment)", the description thereof is omitted. To do.
 位相合成器27dは、第1入力端子I1で元信号BS1に基づく入力信号IS8を受け付け、第2入力端子I2で元信号BS2に基づく入力信号IS9を受け付ける。位相合成器27dは、入力信号IS8と比べて電力値が1/√2倍で同位相の信号と、入力信号IS9と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた信号IS12を第1出力端子O1から出力する。また、位相合成器27dは、入力信号IS8と比べて電力値が1/√2倍で位相が90度遅れた信号と、入力信号IS9と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた信号IS13を第2出力端子O2から出力する。 The phase synthesizer 27d receives the input signal IS8 based on the original signal BS1 at the first input terminal I1 and the input signal IS9 based on the original signal BS2 at the second input terminal I2. The phase synthesizer 27d has a power value of 1 / √2 times that of the input signal IS8 and a signal having the same phase, and a signal having a power value of 1 / √2 times that of the input signal IS9 and a phase delay of 90 degrees. , Is added together, and the signal IS12 is output from the first output terminal O1. Further, the phase synthesizer 27d has a signal having a power value 1 / √2 times that of the input signal IS8 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the input signal IS9 and having the same phase. The signal IS13, which is the sum of the signal and the signal, is output from the second output terminal O2.
 位相合成器27eは、第1入力端子I1で元信号BS3に基づく入力信号IS10を受け付け、第2入力端子I2で元信号BS4に基づく入力信号IS11を受け付ける。位相合成器27eは、入力信号IS10と比べて電力値が1/√2倍で同位相の信号と、入力信号IS11と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた信号IS14を第1出力端子O1から出力する。また、位相合成器27eは、入力信号IS10と比べて電力値が1/√2倍で位相が90度遅れた信号と、入力信号IS11と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた信号IS15を第2出力端子O2から出力する。 The phase synthesizer 27e receives the input signal IS10 based on the original signal BS3 at the first input terminal I1 and the input signal IS11 based on the original signal BS4 at the second input terminal I2. The phase synthesizer 27e has a power value of 1 / √2 times that of the input signal IS10 and a signal having the same phase, and a signal having a power value of 1 / √2 times that of the input signal IS11 and a phase delay of 90 degrees. , Is added together, and the signal IS14 is output from the first output terminal O1. Further, the phase synthesizer 27e has a signal having a power value of 1 / √2 times that of the input signal IS10 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the input signal IS11 and having the same phase. The signal IS15, which is the sum of the signal and the signal, is output from the second output terminal O2.
 位相合成器27aは、第2入力端子I2に入力される信号IS12と比べて、電力値が1/√2倍で同位相の無線信号RS1を、第2出力端子O2から出力する。 The phase synthesizer 27a outputs a radio signal RS1 having a power value 1 / √2 times that of the signal IS12 input to the second input terminal I2 and having the same phase from the second output terminal O2.
 位相合成器27bは、第1入力端子I1で信号IS13を受け付け、第2入力端子I2で信号IS14を受け付ける。第1接続状態である場合、位相合成器27bは、信号IS13と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS14と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた無線信号RS2を第2出力端子O2から出力する。また、第2接続状態である場合、位相合成器27bは、信号IS13と比べて電力値が1/√2倍で同位相の信号と、信号IS14と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた無線信号RS2を第1出力端子O1から出力する。 The phase synthesizer 27b receives the signal IS13 at the first input terminal I1 and the signal IS14 at the second input terminal I2. In the first connection state, the phase synthesizer 27b has a power value of 1 / √2 times that of the signal IS13 and a phase delayed by 90 degrees, and a power value of 1 / √2 times that of the signal IS14. The radio signal RS2, which is the sum of the signals having the same phase in the above, is output from the second output terminal O2. Further, in the second connection state, the phase synthesizer 27b has a power value of 1 / √2 times that of the signal IS13 and a signal having the same phase, and a power value of 1 / √2 times that of the signal IS14. The radio signal RS2, which is the sum of the signal whose phase is delayed by 90 degrees, is output from the first output terminal O1.
 位相合成器27cは、第1入力端子I1に入力される信号IS15と比べて、電力値が1/√2倍で同位相の無線信号RS3を、第1出力端子O1から出力する。 The phase synthesizer 27c outputs a radio signal RS3 having a power value 1 / √2 times that of the signal IS15 input to the first input terminal I1 and having the same phase from the first output terminal O1.
 変更部25は、複数の元信号BS1~BS4の入力から複数の無線信号RS1~RS3を送信するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う処理部である。本実施形態の変更部25は、変更処理の少なくとも一部として、複数のアンテナ21と位相合成部23との電気的な接続状態を切替えるように切替部22を制御する処理を行う。具体的には、変更部25は、スイッチ26bを切替える制御を行うことで、アンテナ21bと位相合成器27bとの電気的な接続状態を切替える。以下の説明において、変更部25が変更処理を行うまでは、アンテナ21bと位相合成器27bとの接続状態が第1接続状態であるとする。また、変更部25が変更処理を行った後は、アンテナ21bと位相合成器27bとの接続状態が第2接続状態であるとする。変更部25は、変更処理を所定のタイミングで行う。所定のタイミングは、例えば、位相合成部23が複数の無線信号RS1~RS3を出力したタイミングや、送信器4aが無線信号を送信する間隔に応じて設定される一定のタイミングなどである。 The change unit 25 is a processing unit that performs a change process for changing at least one element related to the process from the input of the plurality of original signals BS1 to BS4 to the transmission of the plurality of radio signals RS1 to RS3. The changing unit 25 of the present embodiment performs a process of controlling the switching unit 22 so as to switch the electrical connection state between the plurality of antennas 21 and the phase synthesizing unit 23 as at least a part of the changing process. Specifically, the changing unit 25 switches the electrical connection state between the antenna 21b and the phase synthesizer 27b by controlling the switch 26b to be switched. In the following description, it is assumed that the connection state between the antenna 21b and the phase synthesizer 27b is the first connection state until the change unit 25 performs the change processing. Further, it is assumed that the connection state between the antenna 21b and the phase synthesizer 27b is the second connection state after the change unit 25 performs the change processing. The change unit 25 performs the change process at a predetermined timing. The predetermined timing is, for example, a timing at which the phase synthesizer 23 outputs a plurality of radio signals RS1 to RS3, a constant timing set according to the interval at which the transmitter 4a transmits the radio signal, and the like.
 (3)到来方向推定
 次に、受信システム1aが複数の無線信号RS1~RS3の到来方向を推定する方法について図3を参照しつつ説明する。なお、「(第1実施形態)における(3)到来方向推定」の欄で説明した事項については、適宜説明を省略する。図3に示すように、アンテナ21aと受信システム1aの受信アンテナとの間の複素伝播チャネルをh4、アンテナ21bと受信アンテナとの間の複素伝播チャネルをh5、アンテナ21cと受信アンテナとの間の複素伝播チャネルをh6とする。また、アンテナ21aとアンテナ21bとの距離、及び、アンテナ21bとアンテナ21cとの距離をd2とする。また、アンテナ21aとアンテナ21bとアンテナ21cとで構成されるアレーアンテナのブロードサイド方向を基準として角度θ2の位置に受信システム1aが存在するものとする。まず、受信システム1aが、複数の第1無線信号RS1~RS3の到来方向を推定する場合について説明する。
(3) Estimating the Arrival Direction Next, a method in which the receiving system 1a estimates the arrival directions of the plurality of radio signals RS1 to RS3 will be described with reference to FIG. The matters explained in the column of "(3) Estimating the direction of arrival in (1st embodiment)" will be omitted as appropriate. As shown in FIG. 3, the complex propagation channel between the antenna 21a and the receiving antenna of the receiving system 1a is h4, the complex propagation channel between the antenna 21b and the receiving antenna is h5, and the complex propagation channel between the antenna 21c and the receiving antenna is between the antenna 21c and the receiving antenna. Let h6 be the complex propagation channel. Further, the distance between the antenna 21a and the antenna 21b and the distance between the antenna 21b and the antenna 21c are d2. Further, it is assumed that the receiving system 1a exists at a position of an angle θ2 with respect to the broadside direction of the array antenna composed of the antenna 21a, the antenna 21b, and the antenna 21c. First, a case where the receiving system 1a estimates the arrival directions of the plurality of first radio signals RS1 to RS3 will be described.
 伝播チャネルはまとめて、式(34)と表すことができる。 The propagation channels can be collectively expressed as Eq. (34).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 この伝播チャネルの相関行列は、式(35)と表すことができる。 The correlation matrix of this propagation channel can be expressed by Eq. (35).
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 相関行列Rを求めることで、受信システム1aは、複数の第1の無線信号RS1~RS3の到来方向を推定することができる。受信システム1aは、受信信号強度に関する情報に基づいて、相関行列Rを求める。 By obtaining the correlation matrix R, the receiving system 1a can estimate the arrival directions of the plurality of first radio signals RS1 to RS3. The receiving system 1a obtains the correlation matrix R based on the information regarding the received signal strength.
 式(34)の伝播チャネルを用いると、受信システム1aで測定される各元信号BS1,BS2,BS3,BS4の振幅は、式(36)~式(39)と表すことができる。 Using the propagation channel of equation (34), the amplitudes of the original signals BS1, BS2, BS3, BS4 measured by the receiving system 1a can be expressed as equations (36) to (39).
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
と表すことができる。ここで、式(40)とすると、見かけの伝搬チャネルを式(41)~式(44)と表すことができる。 It can be expressed as. Here, if the equation (40) is used, the apparent propagation channel can be expressed as the equations (41) to (44).
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 式(41)~(44)に基づいて、相関行列Rを求める方法は、「(第1実施形態)における(3)到来方向推定」の欄で説明した通りであるため、説明を省略する。また、相関行列RにMUSIC法などの所定のアルゴリズムを用いて複数の第1無線信号RS1~RS3の到来方向を求める方法についても、「(第1実施形態)における(3)到来方向推定」の欄で説明した通りであるため、説明を省略する。なお、以下の説明において、受信システム1aが推定した複数の第1無線信号RS1~RS3の到来方向を「第1推定方向」と記載する。 Since the method of obtaining the correlation matrix R based on the equations (41) to (44) is as described in the column of "(3) Estimating the direction of arrival in (first embodiment)", the description thereof will be omitted. Further, the method of obtaining the arrival directions of the plurality of first radio signals RS1 to RS3 by using a predetermined algorithm such as the MUSIC method for the correlation matrix R is also described in "(3) Arrival direction estimation in (1st embodiment)". Since it is as explained in the column, the description is omitted. In the following description, the arrival directions of the plurality of first radio signals RS1 to RS3 estimated by the receiving system 1a will be referred to as "first estimated directions".
 次に、受信システム1aが複数の第2無線信号RS1~RS3の到来方向を推定する場合について説明する。式(34)の伝播チャネルを用いると、受信システム1aで測定される各元信号BS1,BS2,BS3,BS4の振幅は、式(45)~式(48)で表すことができる。 Next, a case where the receiving system 1a estimates the arrival directions of the plurality of second radio signals RS1 to RS3 will be described. Using the propagation channel of equation (34), the amplitudes of the original signals BS1, BS2, BS3, BS4 measured by the receiving system 1a can be expressed by equations (45) to (48).
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 式(45)~(48)が示すように、複数の第1無線信号RS1~RS3に含まれる各元信号BS1,BS2,BS3,BS4の振幅と、複数の第2無線信号RS1~RS3に含まれる各元信号BS1,BS2,BS3,BS4の振幅とが異なる。そのため、受信システム1aは、式(45)~(48)を用いて相関行列Rを求めることにより、第1推定方向とは異なる到来方向を推定することができる。なお、式(45)~(48)を用いて相関行列Rを求める具体的な方法の説明は省略する。以下の説明において、受信システム1aが推定した複数の第2無線信号RS1~RS3の到来方向を「第2推定方向」と記載する。 As shown by the formulas (45) to (48), the amplitudes of the original signals BS1, BS2, BS3, BS4 included in the plurality of first radio signals RS1 to RS3 and the amplitudes of the plurality of second radio signals RS1 to RS3 are included. The amplitudes of the original signals BS1, BS2, BS3, and BS4 are different. Therefore, the receiving system 1a can estimate the arrival direction different from the first estimation direction by obtaining the correlation matrix R using the equations (45) to (48). The description of a specific method for obtaining the correlation matrix R using the equations (45) to (48) will be omitted. In the following description, the arrival directions of the plurality of second radio signals RS1 to RS3 estimated by the receiving system 1a will be referred to as "second estimated directions".
 送信器4aが送信する複数の第1及び第2無線信号を受信した受信システム1aは、第1推定方向と第2推定方向とに基づいて複数の無線信号RS1~RS3の到来方向(送信器4aの位置方向)を推定する。例えば、受信システム1aは、第1推定方向と第2推定方向との平均をとることで、複数の無線信号RS1~RS3の到来方向を推定するようにしてもよい。送信器4aが送信する複数の第1及び第2無線信号RS1~RS3を受信した受信システム1aは、複数の推定方向に基づいて無線信号RS1~RS3の到来方向を推定する。そのため、一のパターンの複数の無線信号RS1~RS3に基づいて無線信号RS1~RS3の到来方向を推定する既存の受信システムと比べて、無線信号RS1~RS3の到来方向を推定する際の精度が向上する。 The receiving system 1a that has received the plurality of first and second radio signals transmitted by the transmitter 4a receives the arrival directions of the plurality of radio signals RS1 to RS3 based on the first estimation direction and the second estimation direction (transmitter 4a). (Position direction) is estimated. For example, the receiving system 1a may estimate the arrival directions of the plurality of radio signals RS1 to RS3 by averaging the first estimation direction and the second estimation direction. The receiving system 1a that has received the plurality of first and second radio signals RS1 to RS3 transmitted by the transmitter 4a estimates the arrival directions of the radio signals RS1 to RS3 based on the plurality of estimation directions. Therefore, the accuracy in estimating the arrival direction of the radio signals RS1 to RS3 is higher than that of the existing receiving system that estimates the arrival direction of the radio signals RS1 to RS3 based on a plurality of radio signals RS1 to RS3 in one pattern. improves.
 以上のように、本実施形態の送信器4aは、位相合成部23と、複数のアンテナ21と、変更部25とを備えている。位相合成部23は、複数の元信号BS1~BS4に基づく複数の入力信号IS8~IS11(信号IS12~IS15)に対して合成処理を行い、複数の無線信号RS1~RS3を生成する。変更部25は、複数の入力信号IS8~IS11の受け付けから複数の無線信号RS1~RS3を送信するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。位相合成部23は、変更部25による変更処理前に、複数の無線信号RS1~RS3として複数の第1無線信号RS1~RS3を生成する。また、位相合成部23は、変更部25による変更処理後に、複数の無線信号RS1~RS3として複数の第2無線信号RS1~RS3を生成する。複数のアンテナ21は、複数の第1無線信号RS1~RS3と複数の第2無線信号RS1~RS3とを送信する。送信器4aが、2以上のパターンの複数の無線信号RS1~RS3を送信するため、受信システム1aは、2以上のパターンの複数の無線信号RS1~RS3に基づいて送信器4aの方向を推定することができる。そのため、受信システム1aが1パターンの複数の無線信号に基づいて送信器4aの位置方向を推定する場合と比べて、推定の精度が向上する。 As described above, the transmitter 4a of the present embodiment includes a phase synthesizing unit 23, a plurality of antennas 21, and a changing unit 25. The phase synthesizing unit 23 performs synthesis processing on a plurality of input signals IS8 to IS11 (signals IS12 to IS15) based on the plurality of original signals BS1 to BS4, and generates a plurality of radio signals RS1 to RS3. The change unit 25 performs a change process for changing at least one element related to the process from the reception of the plurality of input signals IS8 to IS11 to the transmission of the plurality of radio signals RS1 to RS3. The phase synthesis unit 23 generates a plurality of first radio signals RS1 to RS3 as the plurality of radio signals RS1 to RS3 before the change processing by the change unit 25. Further, the phase synthesis unit 23 generates a plurality of second radio signals RS1 to RS3 as the plurality of radio signals RS1 to RS3 after the change processing by the change unit 25. The plurality of antennas 21 transmit a plurality of first radio signals RS1 to RS3 and a plurality of second radio signals RS1 to RS3. Since the transmitter 4a transmits a plurality of radio signals RS1 to RS3 having two or more patterns, the receiving system 1a estimates the direction of the transmitter 4a based on the plurality of radio signals RS1 to RS3 having two or more patterns. be able to. Therefore, the accuracy of estimation is improved as compared with the case where the receiving system 1a estimates the position direction of the transmitter 4a based on a plurality of radio signals of one pattern.
 (変形例)
 以下に、上記実施形態の変形例に係る受信システム1(1a)及び送信器4(4a)を列記する。なお、以下に説明する変形例の各構成は、上記実施形態で説明した各構成と適宜組合せて適用可能である。
(Modification example)
The receiving system 1 (1a) and the transmitter 4 (4a) according to the modified example of the above embodiment are listed below. It should be noted that each configuration of the modification described below can be applied in combination with each configuration described in the above embodiment as appropriate.
 (1)変形例1
 上記の実施形態において、変更部15は、変更処理の少なくとも一部として、複数のアンテナ11が無線信号を受信する際の時間に係る設定を変更する処理を行うようにしてもよい。変更部15が、複数のアンテナ11が無線信号を受信する際の時間長さや受信タイミングを変更することで、位相合成部13は、2以上のパターンの合成信号SS1~SS4を生成する。すなわち、合成信号SS1~SS4のパターンが増えることで、式(3)の|y1|の値、式(4)の|y2|の値、式(5)の|y3|の値、式(6)の|y4|の値のパターンが増える。そのため、受信システム1が推定する無声信号の到来方向の推定結果が増え、推定の精度が向上する。
(1) Modification 1
In the above embodiment, the changing unit 15 may perform a process of changing the setting related to the time when the plurality of antennas 11 receive the radio signal as at least a part of the changing process. The changing unit 15 changes the time length and reception timing when the plurality of antennas 11 receive the radio signal, so that the phase synthesizing unit 13 generates the combined signals SS1 to SS4 of two or more patterns. That is, as the patterns of the combined signals SS1 to SS4 increase, the value of | y1 | in the equation (3), the value of | y2 | in the equation (4), the value of | y3 | in the equation (5), and the equation (6). ) | Y4 | value pattern increases. Therefore, the estimation result of the arrival direction of the unvoiced signal estimated by the receiving system 1 increases, and the estimation accuracy is improved.
 また、上記の実施形態において、変更部25は、変更処理の少なくとも一部として、複数のアンテナ21が複数の無線信号RS1~RS3を送信する際の時間に係る設定を変更する処理を行うようにしてもよい。変更部25が複数のアンテナ21が複数の無線信号RS1~RS3を送信する際の時間長さや送信タイミングを変更することで、送信器4aは、2以上のパターンの複数の無線信号RS1~RS3を送信する。受信システム1aは、2以上のパターンの複数の無線信号RS1~RS3に基づいて、送信器4aの方向を推定するため、推定の精度が向上する。 Further, in the above embodiment, the changing unit 25 performs a process of changing the setting related to the time when the plurality of antennas 21 transmit the plurality of radio signals RS1 to RS3 as at least a part of the changing process. You may. The change unit 25 changes the time length and transmission timing when the plurality of antennas 21 transmit the plurality of radio signals RS1 to RS3, so that the transmitter 4a transmits the plurality of radio signals RS1 to RS3 having two or more patterns. Send. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
 (2)変形例2
 上記の実施形態及び変形例1において、位相合成部13は、合成処理において複数の入力信号IS1~IS3(信号IS4~IS7)のうちの少なくとも1つに対して位相をずらす処理を行ってもよい。また、変更部15は、変更処理の少なくとも一部として、合成処理において位相合成部13が入力信号IS1~IS3(信号IS4~IS7)の位相をずらす量を変更する処理を行ってもよい。上記実施形態の受信システム1は、スイッチ16bを切替えることで、入力信号IS1~IS3(信号IS4~IS7)の位相のずれ方がそれぞれ異なる第1合成信号SS1~SS4と第2合成信号SS1~SS4を生成していた。変更部15が、合成処理において位相合成部13が入力信号IS1~IS3(信号IS4~IS7)の位相をずらす量を変更する変更処理を行うことで、上記実施形態と同様の第2合成信号SS1~SS4を生成することが可能となる。受信システム1は、2以上のパターンの合成信号SS1~SS4に基づいて、無線信号の到来方向(送信器4の方向)を推定するため、推定の精度が向上する。
(2) Modification example 2
In the above embodiment and the first modification, the phase synthesizing unit 13 may perform a phase shift process with respect to at least one of a plurality of input signals IS1 to IS3 (signals IS4 to IS7) in the synthesizing process. .. Further, the changing unit 15 may perform a process in which the phase synthesizing unit 13 changes the amount of phase shift of the input signals IS1 to IS3 (signals IS4 to IS7) in the synthesizing process as at least a part of the changing process. In the receiving system 1 of the above embodiment, the first composite signals SS1 to SS4 and the second composite signals SS1 to SS4 have different phase shifts of the input signals IS1 to IS3 (signals IS4 to IS7) by switching the switch 16b. Was being generated. The change unit 15 performs a change process in which the phase synthesizer 13 changes the amount of phase shift of the input signals IS1 to IS3 (signals IS4 to IS7) in the synthesis process, whereby the second composite signal SS1 similar to the above embodiment is performed. It becomes possible to generate ~ SS4. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
 また、上記の実施形態及び変形例1において、位相合成部23は、合成処理において複数の入力信号IS8~IS11(信号IS12~IS15)のうちの少なくとも1つに対して位相をずらす処理を行ってもよい。また、変更部25は、変更処理の少なくとも一部として、合成処理において位相合成部23が入力信号IS8~IS11(信号IS12~IS15)の位相をずらす量を変更する処理を行ってもよい。上記実施形態の送信器4aは、スイッチ26bを切替えることで、入力信号IS8~IS11(信号IS12~IS15)の位相のずれ方がそれぞれ異なる複数の第1無線信号RS1~RS3と、複数の第2無線信号RS1~RS3を生成していた。変更部25が、合成処理において位相合成部23が入力信号IS8~IS11(信号IS12~IS15)の位相をずらす量を、変更する変更処理を行うことで、上記実施形態と同様の複数の第2無線信号RS1~RS3を生成することが可能となる。受信システム1aは、2以上のパターンの複数の無線信号RS1~RS3に基づいて、送信器4aの方向を推定するため、推定の精度が向上する。 Further, in the above embodiment and the first modification, the phase synthesizing unit 23 performs a phase shift process with respect to at least one of the plurality of input signals IS8 to IS11 (signals IS12 to IS15) in the synthesizing process. May be good. Further, the changing unit 25 may perform a process in which the phase synthesizing unit 23 changes the amount of shifting the phase of the input signals IS8 to IS11 (signals IS12 to IS15) in the synthesizing process as at least a part of the changing process. In the transmitter 4a of the above embodiment, by switching the switch 26b, a plurality of first radio signals RS1 to RS3 and a plurality of second radio signals RS1 to RS3 in which the phase shifts of the input signals IS8 to IS11 (signals IS12 to IS15) are different from each other. The radio signals RS1 to RS3 were generated. The change unit 25 performs a change process for changing the amount of phase shift of the input signals IS8 to IS11 (signals IS12 to IS15) by the phase synthesizer 23 in the synthesis process, whereby a plurality of second units similar to those in the above embodiment are performed. It is possible to generate radio signals RS1 to RS3. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
 (3)変形例3
 上記の実施形態及び変形例1,2において、複数のアンテナ11は、無線信号として、互いに周波数帯の異なる複数の無線信号を受信可能であってもよい。無線信号が、例えばBLEの規格に従っている場合、複数のアンテナ11は、2.400[GHz]~2.480[GHz]を2[MHz]幅で分割した40の周波数帯のそれぞれの無線信号を受信可能であってもよい。そして、変更部15は、変更処理の少なくとも一部として、合成処理の対象となる無線信号の周波数帯を切替える処理を行うようにしてもよい。変更部15が、合成処理の対象となる無線信号の周波数帯を切替えることで、位相合成部13は、2以上のパターンの合成信号SS1~SS4を生成する。受信システム1は、2以上のパターンの合成信号SS1~SS4に基づいて、無線信号の到来方向(送信器4の方向)を推定するため、推定の精度が向上する。
(3) Modification 3
In the above-described embodiments and modifications 1 and 2, the plurality of antennas 11 may be able to receive a plurality of radio signals having different frequency bands from each other as radio signals. When the radio signal complies with, for example, the BLE standard, the plurality of antennas 11 divides 2.400 [GHz] to 2.480 [GHz] into 2 [MHz] widths and divides each of the radio signals into 40 frequency bands. It may be receivable. Then, the change unit 15 may perform a process of switching the frequency band of the radio signal to be the target of the synthesis process as at least a part of the change process. When the changing unit 15 switches the frequency band of the radio signal to be combined, the phase combining unit 13 generates the combined signals SS1 to SS4 of two or more patterns. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
 また、上記の実施形態及び変形例1,2において、複数のアンテナ21は、複数の無線信号RS1~RS3として、互いに周波数帯の異なる複数の無線信号RS1~RS3を送信可能であってもよい。そして、変更部25は、変更処理の少なくとも一部として、複数のアンテナ21が送信する複数の無線信号RS1~RS3の周波数帯を切替える処理を行うようにしてもよい。変更部25による変更処理の前後で、複数のアンテナ21は、互いに周波数帯の異なる2パターン以上の複数の無線信号RS1~RS3を送信する。受信システム1aは、2以上のパターンの複数の無線信号RS1~RS3に基づいて、送信器4aの方向を推定するため、推定の精度が向上する。 Further, in the above-described embodiments and modifications 1 and 2, the plurality of antennas 21 may be capable of transmitting a plurality of radio signals RS1 to RS3 having different frequency bands from each other as the plurality of radio signals RS1 to RS3. Then, the changing unit 25 may perform a process of switching the frequency bands of the plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 as at least a part of the changing process. Before and after the change process by the change unit 25, the plurality of antennas 21 transmit a plurality of radio signals RS1 to RS3 having two or more patterns having different frequency bands from each other. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
 (4)変形例4
 また、上記の実施形態及び変形例1から3において、複数のアンテナ11は、無線信号として、互いに異なる複数の偏波を受信可能であってもよい。ここで、互いに異なる複数の偏波とは、例えば、水平偏波や垂直偏波や円偏波などである。そして、変更部15は、変更処理の少なくとも一部として、合成処理の対象となる無線信号の偏波の種類を切替える処理を行う。変更部15が、合成処理の対象となる無線信号の偏波の種類を切替えることで、複数のアンテナ11は、偏波の種類が異なる無線信号を受信する。そして、位相合成部13は、2以上のパターンの合成信号SS1~SS4を生成する。受信システム1は、2以上のパターンの合成信号SS1~SS4に基づいて、無線信号の到来方向(送信器4の方向)を推定するため、推定の精度が向上する。
(4) Modification example 4
Further, in the above-described embodiments and modifications 1 to 3, the plurality of antennas 11 may be able to receive a plurality of polarized waves different from each other as radio signals. Here, the plurality of polarized waves that are different from each other are, for example, horizontally polarized waves, vertically polarized waves, and circularly polarized waves. Then, the changing unit 15 performs a process of switching the type of polarization of the radio signal to be the target of the synthesis process as at least a part of the change process. The changing unit 15 switches the type of polarization of the radio signal to be combined, so that the plurality of antennas 11 receive the radio signals having different types of polarization. Then, the phase synthesizing unit 13 generates the combined signals SS1 to SS4 of two or more patterns. Since the receiving system 1 estimates the arrival direction of the radio signal (direction of the transmitter 4) based on the combined signals SS1 to SS4 of two or more patterns, the estimation accuracy is improved.
 また、上記の実施形態及び変形例1から2において、複数のアンテナ21は、複数の無線信号RS1~RS3として、互いに異なる複数の偏波を送信可能であってもよい。そして、変更部25は、変更処理の少なくとも一部として、複数のアンテナ21が送信する複数の無線信号RS1~RS3の偏波の種類を切替える処理を行うようにしてもよい。変更部25による変更処理の前後で、複数のアンテナ21は、互いに偏波の種類が異なる2パターン以上の複数の無線信号RS1~RS3を送信する。受信システム1aは、2以上のパターンの複数の無線信号RS1~RS3に基づいて、送信器4aの方向を推定するため、推定の精度が向上する。 Further, in the above-described embodiments and modifications 1 to 2, the plurality of antennas 21 may be capable of transmitting a plurality of different polarized waves as a plurality of radio signals RS1 to RS3. Then, the changing unit 25 may perform a process of switching the polarization type of the plurality of radio signals RS1 to RS3 transmitted by the plurality of antennas 21 as at least a part of the changing process. Before and after the change process by the change unit 25, the plurality of antennas 21 transmit a plurality of radio signals RS1 to RS3 having two or more patterns having different types of polarization from each other. Since the receiving system 1a estimates the direction of the transmitter 4a based on a plurality of radio signals RS1 to RS3 having two or more patterns, the estimation accuracy is improved.
 (5)その他の変形例
 本実施形態では、受信器2は、切替部12を備えているが、切替部12は必須ではない。受信器2は、少なくとも、複数のアンテナ11、位相合成部13、出力部14、及び変更部15を備えていればよい。
(5) Other Modifications In the present embodiment, the receiver 2 includes a switching unit 12, but the switching unit 12 is not essential. The receiver 2 may include at least a plurality of antennas 11, a phase synthesis unit 13, an output unit 14, and a change unit 15.
 また、本実施形態では、送信器4aは、切替部22及び元信号生成部24を備えているが、切替部22及び元信号生成部24は必須ではない。送信器4aは少なくとも、複数のアンテナ21、位相合成部23、及び変更部25を備えていればよい。 Further, in the present embodiment, the transmitter 4a includes the switching unit 22 and the original signal generating unit 24, but the switching unit 22 and the original signal generating unit 24 are not indispensable. The transmitter 4a may include at least a plurality of antennas 21, a phase synthesizing unit 23, and a changing unit 25.
 また、本実施形態では、受信システム1は、受信器2及び推定部3を含む1つのシステムで実現されているが、2つ以上のシステムで実現されていてもよい。例えば、受信器2及び推定部3の機能が、2つ以上のシステムに分散して設けられていてもよい。また、受信器2及び推定部3のうち少なくとも1つの機能が、2つ以上のシステムに分散して設けられていてもよい。また、受信器2及び推定部3の各機能が、複数の装置に分散して設けられていてもよい。例えば、受信器2の機能が2つ以上の装置に分散されて設けられていてもよい。また、受信システム1の少なくとも一部の機能が、例えばクラウドコンピューティングにより実現されていてもよい。 Further, in the present embodiment, the receiving system 1 is realized by one system including the receiver 2 and the estimation unit 3, but may be realized by two or more systems. For example, the functions of the receiver 2 and the estimation unit 3 may be distributed in two or more systems. Further, at least one function of the receiver 2 and the estimation unit 3 may be distributed and provided in two or more systems. Further, the functions of the receiver 2 and the estimation unit 3 may be distributed to a plurality of devices. For example, the functions of the receiver 2 may be distributed and provided in two or more devices. Further, at least a part of the functions of the receiving system 1 may be realized by, for example, cloud computing.
 (受信方法、プログラム)
 上述の実施形態(各変形例も含む)は、様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計などに応じて種々の変更が可能である。また、受信システム1と同様の機能は、受信方法、プログラム又はプログラムを記録した記録媒体などで具現化されてもよい。
(Reception method, program)
The above-described embodiment (including each modification) is only one of various embodiments. The above-described embodiment can be variously modified depending on the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as that of the receiving system 1 may be realized by a receiving method, a program, a recording medium on which the program is recorded, or the like.
 本実施形態に係る受信方法は、受信ステップと、第1の位相合成ステップと、第1の出力ステップと、変更ステップと、第2の位相合成ステップと、第2の出力ステップとを有する。受信ステップでは、無線信号を受信する。第1の位相合成ステップでは、無線信号に基づく複数の入力信号IS1~IS3に対して合成処理を行い、無線信号の到来方向を推定するための第1合成信号SS1~SS4を生成する。第1の出力ステップでは、第1の位相合成ステップにおいて生成した第1合成信号SS1~SS4を出力する。変更ステップでは、受信ステップから第1の位相合成ステップまでの処理に係る少なくとも1つ要素を変更する。第2の位相合成ステップでは、変更ステップの後に、第1の位相合成ステップにおいて生成した第1合成信号SS1~SS4とは異なる第2合成信号SS1~SS4を生成する。第2の出力ステップでは、第2の位相合成ステップにおいて生成した第2合成信号SS1~SS4を出力する。 The receiving method according to the present embodiment includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step. In the receiving step, the radio signal is received. In the first phase synthesis step, the plurality of input signals IS1 to IS3 based on the radio signal are combined, and the first synthetic signals SS1 to SS4 for estimating the arrival direction of the radio signal are generated. In the first output step, the first composite signals SS1 to SS4 generated in the first phase synthesis step are output. In the change step, at least one element related to the processing from the reception step to the first phase synthesis step is changed. In the second phase synthesis step, after the change step, the second composite signals SS1 to SS4 different from the first composite signals SS1 to SS4 generated in the first phase synthesis step are generated. In the second output step, the second composite signals SS1 to SS4 generated in the second phase synthesis step are output.
 また、本実施形態に係る(コンピュータ)プログラムは、上述した受信ステップ、第1の位相合成ステップ、第1の出力ステップ、変更ステップ、第2の位相合成ステップ、及び第2の出力ステップを1以上のプロセッサに実行させるためのプログラムである。 Further, the (computer) program according to the present embodiment includes one or more of the above-mentioned reception step, first phase synthesis step, first output step, change step, second phase synthesis step, and second output step. It is a program to be executed by the processor of.
 受信器2、受信システム1、送信器4a及び受信方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって受信器2、受信システム1、送信器4a及び受信方法の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリにあらかじめ記録されていてもよい。また、プログラムは、電気通信回線を通じて提供されてもよいし、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブなどの記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1又は複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散されて設けられていてもよい。 The receiver 2, the receiving system 1, the transmitter 4a, and the executing body of the receiving method include a computer system. A computer system mainly consists of a processor and a memory as hardware. When the processor executes the program recorded in the memory of the computer system, the functions as the executing body of the receiver 2, the receiving system 1, the transmitter 4a, and the receiving method are realized. The program may be pre-recorded in the memory of the computer system. Further, the program may be provided through a telecommunication line, or may be recorded and provided on a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer system. A processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). A plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. The plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
 (まとめ)
 上記実施形態から明らかなように、本開示は、下記の第1から第11の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
(Summary)
As will be apparent from the above embodiments, the present disclosure includes the following first to eleventh aspects. In the following, reference numerals are given in parentheses only to clearly indicate the correspondence with the embodiments.
 第1態様に係る受信器(2)は、複数のアンテナ(11)と、位相合成部(13)と、出力部(14)と、変更部(15)とを備える。複数のアンテナ(11)は、無線信号を受信する。位相合成部(13)は、複数のアンテナ(11)から入力される無線信号に基づく複数の入力信号(IS1~IS3)に対して合成処理を行い、無線信号の到来方向を推定するための合成信号(SS1~SS4)を生成する。出力部(14)は、合成信号(SS1~SS4)を出力する。変更部(15)は、無線信号の受信から合成信号(SS1~SS4)を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。位相合成部(13)は、変更部(15)による上記変更処理前に、合成信号(SS1~SS4)として第1合成信号(SS1~SS4)を生成する。また、位相合成部(13)は、変更部(15)による上記変更処理後に、合成信号(SS1~SS4)として第2合成信号(SS1~SS4)を生成する。出力部(14)は、第1合成信号(SS1~SS4)と第2合成信号(SS1~SS4)とを出力する。 The receiver (2) according to the first aspect includes a plurality of antennas (11), a phase synthesis unit (13), an output unit (14), and a change unit (15). The plurality of antennas (11) receive the radio signal. The phase synthesizer (13) performs synthesis processing on a plurality of input signals (IS1 to IS3) based on radio signals input from the plurality of antennas (11), and synthesizes for estimating the arrival direction of the radio signal. Generate signals (SS1 to SS4). The output unit (14) outputs the combined signals (SS1 to SS4). The change unit (15) performs a change process for changing at least one element related to the process from the reception of the radio signal to the generation of the combined signal (SS1 to SS4). The phase synthesis unit (13) generates the first composite signal (SS1 to SS4) as the composite signal (SS1 to SS4) before the change processing by the change unit (15). Further, the phase synthesis unit (13) generates the second composite signal (SS1 to SS4) as the composite signal (SS1 to SS4) after the change processing by the change unit (15). The output unit (14) outputs the first composite signal (SS1 to SS4) and the second composite signal (SS1 to SS4).
 この態様によれば、受信器(2)は、無線信号の受信から合成信号(SS1~SS4)を生成するまでの処理に係る少なくとも1つの要素を変更することで、パターンが異なった複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを増やすことができるので、無線信号の到来方向の推定精度を向上させることができる。 According to this aspect, the receiver (2) changes a plurality of composites having different patterns by changing at least one element related to the process from the reception of the radio signal to the generation of the composite signals (SS1 to SS4). Generate signals (SS1 to SS4). Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
 第2態様に係る受信器(2)は、第1態様において、切替部(12)を更に備える。切替部(12)は、複数のアンテナ(11)と位相合成部(13)との電気的な接続状態を切替える。変更部(15)は、上記変更処理の少なくとも一部として、複数のアンテナ(11)と位相合成部(13)との電気的な接続状態を切替えるように切替部(12)を制御する処理を行う。 The receiver (2) according to the second aspect further includes a switching unit (12) in the first aspect. The switching unit (12) switches the electrical connection state between the plurality of antennas (11) and the phase synthesizing unit (13). The changing unit (15) performs a process of controlling the switching unit (12) so as to switch the electrical connection state between the plurality of antennas (11) and the phase synthesizing unit (13) as at least a part of the changing process. Do.
 この態様によれば、受信器(2)は、変更処理の一部として、複数のアンテナ(11)と位相合成部(13)との電気的な接続状態を切替えることで、パターンの異なる複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを容易に増やすことができるので、無線信号の到来方向の推定精度を容易に向上させることができる。 According to this aspect, the receiver (2) has a plurality of patterns having different patterns by switching the electrical connection state between the plurality of antennas (11) and the phase synthesizer (13) as a part of the change process. Generates synthetic signals (SS1 to SS4). Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased, the estimation accuracy of the arrival direction of the radio signal can be easily improved. Can be made to.
 第3態様に係る受信器(2)は、第1態様又は第2態様において、位相合成部(13)が複数の入力部を有している。複数の入力部は、複数のアンテナ(11)と電気的に接続され無線信号が入力される。複数のアンテナ(11)の数は、複数の入力部の数以下である。 In the receiver (2) according to the third aspect, in the first aspect or the second aspect, the phase synthesis unit (13) has a plurality of input units. The plurality of input units are electrically connected to the plurality of antennas (11), and wireless signals are input. The number of the plurality of antennas (11) is equal to or less than the number of the plurality of input units.
 この態様によれば、アンテナ(11)の数が入力部の数以下であるため、受信器(2)をコンパクトにすることができる。 According to this aspect, since the number of antennas (11) is less than or equal to the number of input units, the receiver (2) can be made compact.
 第4態様に係る受信器(2)は、第1態様から第3態様のいずれかに1つにおいて、変更部(15)が、上記変更処理の少なくとも一部として、複数のアンテナ(11)が無声信号を受信する際の時間に係る設定を変更する処理を行う。 In the receiver (2) according to the fourth aspect, in any one of the first to third aspects, the change unit (15) has a plurality of antennas (11) as at least a part of the change process. Performs processing to change the setting related to the time when receiving an unvoiced signal.
 この態様によれば、受信器(2)は、無線信号を受信する際の時間(時間長さ、受信タイミング)に係る設定を変更することで、パターンの異なる複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを容易に増やすことができるので、無線信号の到来方向の推定精度を容易に向上させることができる。 According to this aspect, the receiver (2) changes the settings related to the time (time length, reception timing) when receiving the radio signal, so that the receiver (2) has a plurality of composite signals (SS1 to SS4) having different patterns. To generate. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased, the estimation accuracy of the arrival direction of the radio signal can be easily improved. Can be made to.
 第5態様に係る受信器(2)は、第1態様から第4態様のいずれか1つにおいて、位相合成部(13)が上記合成処理において、複数の入力信号(IS1~IS3)のうちの少なくとも1つの位相をずらす処理を行う。変更部(15)は、上記変更処理の少なくとも一部として、上記合成処理における上記位相をずらす量を変更する処理を行う。 In the receiver (2) according to the fifth aspect, in any one of the first to fourth aspects, the phase synthesizer (13) is among the plurality of input signals (IS1 to IS3) in the synthesis process. The process of shifting at least one phase is performed. The change unit (15) performs a process of changing the amount of shifting the phase in the synthesis process as at least a part of the change process.
 この態様によれば、受信器(2)は、上記合成処理における上記位相をずらす量を変更することで、パターンの異なる複数の合成信号(SS1~SS4)を生成する。すなわち、無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを容易に増やすことができる。したがって、無線信号の到来方向の推定精度を容易に向上させることができる。 According to this aspect, the receiver (2) generates a plurality of composite signals (SS1 to SS4) having different patterns by changing the amount of shifting the phase in the synthesis process. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
 第6態様に係る受信器(2)は、第1態様から第5態様のいずれか1つにおいて、複数のアンテナ(11)が、無線信号として、互いに周波数帯の異なる複数の無線信号を受信可能である。変更部(15)は、上記変更処理の少なくとも一部として、上記合成処理の対象となる無線信号の周波数帯を切替える処理を行う。 In the receiver (2) according to the sixth aspect, in any one of the first to fifth aspects, the plurality of antennas (11) can receive a plurality of radio signals having different frequency bands from each other as radio signals. Is. The change unit (15) performs a process of switching the frequency band of the radio signal to be the target of the synthesis process as at least a part of the change process.
 この態様によれば、受信器(2)は、上記合成処理の対象となる無線信号の周波数帯を切替えることで、パターンの異なる複数の合成信号(SS1~SS4)を生成する。すなわち、無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを容易に増やすことができる。したがって、無線信号の到来方向の推定精度を容易に向上させることができる。 According to this aspect, the receiver (2) generates a plurality of synthesized signals (SS1 to SS4) having different patterns by switching the frequency band of the radio signal to be the target of the synthesis processing. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
 第7態様に係る受信器(2)は、第1態様から第6態様のいずれか1つにおいて、複数のアンテナ(11)の各々が、無線信号として、互いに異なる複数の偏波を受信可能である。変更部(15)は、上記変更処理の少なくとも一部として、上記合成処理の対象となる無線信号の偏波の種類を切替える処理を行う。 In the receiver (2) according to the seventh aspect, in any one of the first to sixth aspects, each of the plurality of antennas (11) can receive a plurality of different polarized waves as radio signals. is there. The change unit (15) performs a process of switching the type of polarization of the radio signal to be the target of the synthesis process as at least a part of the change process.
 この態様によれば、受信器(2)は、上記合成処理の対象となる無線信号の偏波の種類を切替えることで、パターンの異なる複数の合成信号(SS1~SS4)を生成する。すなわち、無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを容易に増やすことができる。したがって、無線信号の到来方向の推定精度を容易に向上させることができる。 According to this aspect, the receiver (2) generates a plurality of synthetic signals (SS1 to SS4) having different patterns by switching the type of polarization of the radio signal to be the target of the synthesis processing. That is, the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be easily increased. Therefore, the estimation accuracy of the arrival direction of the radio signal can be easily improved.
 なお、第2態様から第7態様に係る構成については、受信器(2)に必須の構成ではなく、適宜省略可能である。 Note that the configurations according to the second to seventh aspects are not essential configurations for the receiver (2) and can be omitted as appropriate.
 第8態様に係る受信システム(1)は、第1態様から第7態様のいずれか1つの受信器(2)と、推定部(3)とを備える。推定部(3)は、受信器(2)から出力される第1合成信号(SS1~SS4)及び第2合成信号(SS1~SS4)に基づいて、無線信号の到来方向を推定する。 The receiving system (1) according to the eighth aspect includes a receiver (2) of any one of the first to seventh aspects and an estimation unit (3). The estimation unit (3) estimates the arrival direction of the radio signal based on the first composite signal (SS1 to SS4) and the second composite signal (SS1 to SS4) output from the receiver (2).
 この態様によれば、受信システム(1)は、無線信号の受信から合成信号(SS1~SS4)を生成するまでの処理に係る少なくとも1つの要素を変更することで、パターンが異なった複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを増やすことができるので、無線信号の到来方向の推定精度を向上させることができる。 According to this aspect, the receiving system (1) changes a plurality of composites having different patterns by changing at least one element related to the process from the reception of the radio signal to the generation of the composite signals (SS1 to SS4). Generate signals (SS1 to SS4). Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
 第9態様に係る送信器(4a)は、位相合成部(23)と、複数のアンテナ(21)と、変更部(25)とを備える。位相合成部(23)は、複数の元信号(BS1~BS4)に基づく複数の入力信号(IS8~IS11)に対して合成処理を行い、複数の無線信号(RS1~RS3)を生成する。複数のアンテナ(21)は、複数の無線信号(RS1~RS3)を送信する。変更部(25)は、複数の元信号(BS1~BS4)の受け付けから複数の無線信号(RS1~RS3)を送信するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う。位相合成部(23)は、変更部(25)による上記変更処理前に、複数の無線信号(RS1~RS3)として複数の第1無線信号(RS1~RS3)を生成する。また、位相合成部(23)は、変更部(25)による上記変更処理後に、複数の無線信号(RS1~RS3)として複数の第2無線信号(RS1~RS3)を生成する。複数のアンテナ(21)は、複数の第1無線信号(RS1~RS3)と複数の第2無線信号(RS1~RS3)とを出力する。 The transmitter (4a) according to the ninth aspect includes a phase synthesizing unit (23), a plurality of antennas (21), and a changing unit (25). The phase synthesizing unit (23) performs synthesis processing on a plurality of input signals (IS8 to IS11) based on a plurality of original signals (BS1 to BS4) to generate a plurality of radio signals (RS1 to RS3). The plurality of antennas (21) transmit a plurality of radio signals (RS1 to RS3). The change unit (25) performs a change process for changing at least one element related to the process from the reception of the plurality of original signals (BS1 to BS4) to the transmission of the plurality of radio signals (RS1 to RS3). The phase synthesizing unit (23) generates a plurality of first radio signals (RS1 to RS3) as a plurality of radio signals (RS1 to RS3) before the change processing by the change unit (25). Further, the phase synthesizing unit (23) generates a plurality of second radio signals (RS1 to RS3) as a plurality of radio signals (RS1 to RS3) after the change processing by the change unit (25). The plurality of antennas (21) output a plurality of first radio signals (RS1 to RS3) and a plurality of second radio signals (RS1 to RS3).
 この態様によれば、送信器(4a)は、複数の元信号(BS1~BS4)の受け付けから複数の無線信号(RS1~RS3)を送信するまでの処理に係る少なくとも1つの要素を変更することで、パターンが異なった複数の無線信号(RS1~RS3)を送信する。複数の無線信号(RS1~RS3)のパターンを増やすことができるので、受信システム(1a)による送信器(4a)の位置方向の推定精度を向上させることができる。 According to this aspect, the transmitter (4a) modifies at least one element related to the process from receiving a plurality of original signals (BS1 to BS4) to transmitting a plurality of radio signals (RS1 to RS3). Then, a plurality of radio signals (RS1 to RS3) having different patterns are transmitted. Since the patterns of the plurality of radio signals (RS1 to RS3) can be increased, the accuracy of estimating the position direction of the transmitter (4a) by the receiving system (1a) can be improved.
 第10態様に係る受信方法は、受信ステップと、第1の位相合成ステップと、第1の出力ステップと、変更ステップと、第2の位相合成ステップと、第2の出力ステップとを有する。受信ステップでは、無線信号を受信する。第1の位相合成ステップでは、無線信号に基づく複数の入力信号(IS1~IS3)に対して合成処理を行い、無線信号の到来方向を推定するための第1合成信号(SS1~SS4)を生成する。第1の出力ステップでは、第1の位相合成ステップにおいて生成した第1合成信号(SS1~SS4)を出力する。変更ステップでは、受信ステップから第1の位相合成ステップまでの処理に係る少なくとも1つ要素を変更する。第2の位相合成ステップでは、変更ステップの後に、第1の位相合成ステップにおいて生成した第1合成信号(SS1~SS4)とは異なる第2合成信号(SS1~SS4)を生成する。第2の出力ステップでは、第2の位相合成ステップにおいて生成した第2合成信号(SS1~SS4)を出力する。 The receiving method according to the tenth aspect includes a receiving step, a first phase synthesis step, a first output step, a change step, a second phase synthesis step, and a second output step. In the receiving step, the radio signal is received. In the first phase synthesis step, a plurality of input signals (IS1 to IS3) based on the radio signal are combined, and the first composite signal (SS1 to SS4) for estimating the arrival direction of the radio signal is generated. To do. In the first output step, the first composite signals (SS1 to SS4) generated in the first phase synthesis step are output. In the change step, at least one element related to the processing from the reception step to the first phase synthesis step is changed. In the second phase synthesis step, after the change step, a second composite signal (SS1 to SS4) different from the first composite signal (SS1 to SS4) generated in the first phase synthesis step is generated. In the second output step, the second composite signals (SS1 to SS4) generated in the second phase synthesis step are output.
 この態様によれば、受信ステップから第1の位相合成ステップまでの処理に係る少なくとも1つの要素を変更することで、パターンが異なった複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを増やすことができるので、無線信号の到来方向の推定精度を向上させることができる。 According to this aspect, a plurality of composite signals (SS1 to SS4) having different patterns are generated by changing at least one element related to the processing from the reception step to the first phase synthesis step. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
 第11態様に係るプログラムは、第10態様の受信方法を、1以上のプロセッサに実行させる。 The program according to the eleventh aspect causes one or more processors to execute the receiving method of the tenth aspect.
 この態様によれば、受信ステップから第1の位相合成ステップまでの処理に係る少なくとも1つの要素を変更することで、パターンが異なった複数の合成信号(SS1~SS4)を生成する。無線信号の到来方向(送信器(4)の位置方向)を推定するための合成信号(SS1~SS4)のパターンを増やすことができるので、無線信号の到来方向の推定精度を向上させることができる。 According to this aspect, a plurality of composite signals (SS1 to SS4) having different patterns are generated by changing at least one element related to the processing from the reception step to the first phase synthesis step. Since the patterns of the combined signals (SS1 to SS4) for estimating the arrival direction of the radio signal (positional direction of the transmitter (4)) can be increased, the estimation accuracy of the arrival direction of the radio signal can be improved. ..
1 受信システム
2 受信器
3 推定部
4a 送信器
11 アンテナ
12 切替部
13 位相合成部
14 出力部
15 変更部
21 アンテナ
22 切替部
23 位相合成部
25 変更部
BS1~BS4 元信号
IS1~IS3 入力信号
IS8~IS11 入力信号
RS1~RS3 無線信号
SS1~SS4 合成信号 
1 Reception system 2 Receiver 3 Estimator 4a Transmitter 11 Antenna 12 Switching unit 13 Phase synthesis unit 14 Output unit 15 Change unit 21 Antenna 22 Switching unit 23 Phase synthesis unit 25 Change unit BS1 to BS4 Original signal IS1 to IS3 Input signal IS8 ~ IS11 Input signal RS1 ~ RS3 Radio signal SS1 ~ SS4 Combined signal

Claims (11)

  1.  無線信号を受信する複数のアンテナと、
     前記複数のアンテナから入力される前記無線信号に基づく複数の入力信号に対して合成処理を行い、前記無線信号の到来方向を推定するための合成信号を生成する位相合成部と、
     前記合成信号を出力する出力部と、
     前記無線信号の受信から前記合成信号を生成するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う変更部と、
    を備え、
     前記位相合成部は、前記変更部による前記変更処理前に、前記合成信号として第1合成信号を生成し、かつ、前記変更部による前記変更処理後に、前記合成信号として第2合成信号を生成し、
     前記出力部は、前記第1合成信号と前記第2合成信号とを出力する、
     受信器。
    With multiple antennas that receive radio signals,
    A phase synthesizer that performs synthesis processing on a plurality of input signals based on the radio signals input from the plurality of antennas and generates a composite signal for estimating the arrival direction of the radio signals.
    An output unit that outputs the combined signal and
    A change unit that performs a change process that changes at least one element related to the process from the reception of the radio signal to the generation of the composite signal, and a change unit.
    With
    The phase synthesizer generates a first composite signal as the composite signal before the change process by the change section, and generates a second composite signal as the composite signal after the change process by the change section. ,
    The output unit outputs the first composite signal and the second composite signal.
    Receiver.
  2.  前記複数のアンテナと前記位相合成部との電気的な接続状態を切替える切替部を更に備え、
     前記変更部は、前記変更処理の少なくとも一部として、前記複数のアンテナと前記位相合成部との電気的な接続状態を切替えるように前記切替部を制御する処理を行う、
     請求項1に記載の受信器。
    A switching unit for switching the electrical connection state between the plurality of antennas and the phase synthesizing unit is further provided.
    The changing unit performs a process of controlling the switching unit so as to switch the electrical connection state between the plurality of antennas and the phase synthesizing unit as at least a part of the changing process.
    The receiver according to claim 1.
  3.  前記位相合成部は、前記複数のアンテナと電気的に接続され前記無線信号が入力される複数の入力部を有し、
     前記複数のアンテナの数は、前記複数の入力部の数以下である、
     請求項1又は2に記載の受信器。
    The phase synthesizer has a plurality of input units that are electrically connected to the plurality of antennas and to which the radio signal is input.
    The number of the plurality of antennas is equal to or less than the number of the plurality of input units.
    The receiver according to claim 1 or 2.
  4.  前記変更部は、前記変更処理の少なくとも一部として、前記複数のアンテナが前記無線信号を受信する際の時間に係る設定を変更する処理を行う、
     請求項1から3のいずれか1項に記載の受信器。
    As at least a part of the change process, the change unit performs a process of changing the setting related to the time when the plurality of antennas receive the radio signal.
    The receiver according to any one of claims 1 to 3.
  5.  前記位相合成部は、前記合成処理において前記複数の入力信号のうちの少なくとも1つの位相をずらす処理を行い、
     前記変更部は、前記変更処理の少なくとも一部として、前記合成処理における前記位相をずらす量を変更する処理を行う、
     請求項1から4のいずれか1項に記載の受信器。
    The phase synthesizing unit performs a process of shifting the phase of at least one of the plurality of input signals in the synthesizing process.
    The change unit performs a process of changing the amount of shifting the phase in the synthesis process as at least a part of the change process.
    The receiver according to any one of claims 1 to 4.
  6.  前記複数のアンテナは、前記無線信号として、互いに周波数帯の異なる複数の無線信号を受信可能であり、
     前記変更部は、前記変更処理の少なくとも一部として、前記合成処理の対象となる前記無線信号の周波数帯を切替える処理を行う、
     請求項1から5のいずれか1項に記載の受信器。
    The plurality of antennas can receive a plurality of radio signals having different frequency bands from each other as the radio signals.
    The change unit performs a process of switching the frequency band of the radio signal to be the target of the synthesis process as at least a part of the change process.
    The receiver according to any one of claims 1 to 5.
  7.  前記複数のアンテナの各々は、前記無線信号として、互いに異なる複数の偏波を受信可能であり、
     前記変更部は、前記変更処理の少なくとも一部として、前記合成処理の対象となる前記無線信号の偏波の種類を切替える処理を行う、
     請求項1から6のいずれか1項に記載の受信器。
    Each of the plurality of antennas can receive a plurality of polarized waves different from each other as the radio signal.
    The change unit performs a process of switching the type of polarization of the radio signal to be the target of the synthesis process as at least a part of the change process.
    The receiver according to any one of claims 1 to 6.
  8.  請求項1から7のいずれか1項に記載の受信器と、
     前記受信器から出力される前記第1合成信号及び前記第2合成信号に基づいて、前記無線信号の到来方向を推定する推定部と、
    を備える、
     受信システム。
    The receiver according to any one of claims 1 to 7.
    An estimation unit that estimates the arrival direction of the radio signal based on the first composite signal and the second composite signal output from the receiver.
    To prepare
    Receiving system.
  9.  複数の元信号に基づく複数の入力信号に対して合成処理を行い、複数の無線信号を生成する位相合成部と、
     前記複数の無線信号を送信する複数のアンテナと、
     前記複数の元信号の受け付けから前記複数の無線信号を送信するまでの処理に係る少なくとも1つの要素を変更する変更処理を行う変更部と、
    を備え、
     前記位相合成部は、前記変更部による前記変更処理前に、前記複数の無線信号として複数の第1無線信号を生成し、かつ、前記変更部による前記変更処理後に、前記複数の無線信号として複数の第2無線信号を生成し、
     前記複数のアンテナは、前記複数の第1無線信号と前記複数の第2無線信号とを送信する、
     送信器。
    A phase synthesizer that performs synthesis processing on multiple input signals based on multiple source signals and generates multiple radio signals,
    A plurality of antennas that transmit the plurality of radio signals, and
    A change unit that performs change processing that changes at least one element related to the process from the reception of the plurality of original signals to the transmission of the plurality of radio signals.
    With
    The phase synthesizing unit generates a plurality of first radio signals as the plurality of radio signals before the change processing by the change unit, and after the change process by the change unit, a plurality of the plurality of radio signals. Generates the second radio signal of
    The plurality of antennas transmit the plurality of first radio signals and the plurality of second radio signals.
    Transmitter.
  10.  無線信号を受信する受信ステップと、
     前記無線信号に基づく複数の入力信号に対して合成処理を行い、前記無線信号の到来方向を推定するための第1合成信号を生成する第1の位相合成ステップと、
     前記第1の位相合成ステップにおいて生成した前記第1合成信号を出力する第1の出力ステップと、
     前記受信ステップから前記第1の位相合成ステップまでの処理に係る少なくとも1つ要素を変更する変更ステップと、
     前記変更ステップの後に、前記第1の位相合成ステップにおいて生成した前記第1合成信号とは異なる第2合成信号を生成する第2の位相合成ステップと、
     前記第2の位相合成ステップにおいて生成した前記第2合成信号を出力する第2の出力ステップと、
    を有する、
     受信方法。
    The receiving step to receive the radio signal and
    A first phase synthesis step of performing synthesis processing on a plurality of input signals based on the radio signal and generating a first composite signal for estimating the arrival direction of the radio signal.
    A first output step for outputting the first composite signal generated in the first phase synthesis step, and a first output step.
    A change step of changing at least one element related to the processing from the reception step to the first phase synthesis step, and a change step.
    After the change step, a second phase synthesis step for generating a second composite signal different from the first composite signal generated in the first phase synthesis step,
    A second output step for outputting the second composite signal generated in the second phase synthesis step, and a second output step.
    Have,
    Reception method.
  11.  請求項10に記載の受信方法を、1以上のプロセッサに実行させるためのプログラム。 A program for causing one or more processors to execute the receiving method according to claim 10.
PCT/JP2020/048353 2019-12-24 2020-12-24 Receiver, receiving system, transmitter, receiving method, and program WO2021132430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567593A JP7450231B2 (en) 2019-12-24 2020-12-24 Receiver, receiving system, transmitter, receiving method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019233423 2019-12-24
JP2019-233423 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021132430A1 true WO2021132430A1 (en) 2021-07-01

Family

ID=76574331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048353 WO2021132430A1 (en) 2019-12-24 2020-12-24 Receiver, receiving system, transmitter, receiving method, and program

Country Status (2)

Country Link
JP (1) JP7450231B2 (en)
WO (1) WO2021132430A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164333A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for controlling tracking antenna orientation direction
JP2017216567A (en) * 2016-05-31 2017-12-07 国立大学法人岩手大学 Beacon device, direction estimation method using beacon device, position estimation method and communication terminal unit
US20180337739A1 (en) * 2017-05-10 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Angle of arrival estimation in a radio communications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164333A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for controlling tracking antenna orientation direction
JP2017216567A (en) * 2016-05-31 2017-12-07 国立大学法人岩手大学 Beacon device, direction estimation method using beacon device, position estimation method and communication terminal unit
US20180337739A1 (en) * 2017-05-10 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Angle of arrival estimation in a radio communications network

Also Published As

Publication number Publication date
JP7450231B2 (en) 2024-03-15
JPWO2021132430A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6921164B2 (en) Active antenna system
KR101829974B1 (en) System and method for high-speed analog beamforming
CN107817392B (en) System and method for characterizing a multi-element antenna
US20130147664A1 (en) Reconfigurable millimeter wave multibeam antenna array
CN109474315B (en) Method and equipment for indicating and determining precoding matrix
JP6374019B2 (en) Method and apparatus for realizing modularization of antenna, antenna module
EP3235143B1 (en) Beamforming configuration with adaptive port-to-antenna mapping for a multi-antenna system
US10044423B2 (en) System and method for precoder selection in multiple-input multiple-output (MIMO) systems with discrete fourier transform (DFT)-based codebook
WO2017145493A1 (en) Wireless communication system, transmitting device, receiving device, and communication method
WO2016001951A1 (en) Transmission control device and program
US9398639B2 (en) Methods circuits apparatus and systems for wireless data communication
KR102422190B1 (en) Apparatus and method for performing calibration on communication module
Singh et al. Second-order statistics-based semi-blind techniques for channel estimation in millimeter-wave MIMO analog and hybrid beamforming
WO2021132430A1 (en) Receiver, receiving system, transmitter, receiving method, and program
WO2018194004A1 (en) Processing device, processing method, processing program and calibration device for array antenna
CN110247689A (en) Communication zone distribution method, device, communication equipment and the storage medium of terminal
US7817975B2 (en) Wireless communication system, wireless communication terminal, and wireless communication method
JP2012191281A (en) Radio communication device
CN113162661B (en) Beam forming equipment and beam forming method
US10305584B2 (en) Apparatus and method for performing beamforming operation in communication system supporting frequency division-multiple input multiple output scheme
JP7312992B2 (en) Estimation system, receiving system, control system, estimation method and program
WO2023167032A1 (en) Estimation system, estimation method, and program
WO2022123629A1 (en) Reception device and reception method
JPH07143102A (en) Diversity communication equipment
JP2016140027A (en) Radio communication system and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904963

Country of ref document: EP

Kind code of ref document: A1