WO2021131985A1 - Method for producing polyarylene sulfide - Google Patents

Method for producing polyarylene sulfide Download PDF

Info

Publication number
WO2021131985A1
WO2021131985A1 PCT/JP2020/047030 JP2020047030W WO2021131985A1 WO 2021131985 A1 WO2021131985 A1 WO 2021131985A1 JP 2020047030 W JP2020047030 W JP 2020047030W WO 2021131985 A1 WO2021131985 A1 WO 2021131985A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
pas
polymerization
reaction mixture
mol
Prior art date
Application number
PCT/JP2020/047030
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 剛
義紀 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2021567346A priority Critical patent/JP7357695B2/en
Priority to KR1020227021415A priority patent/KR20220107236A/en
Priority to US17/757,811 priority patent/US20230033026A1/en
Priority to CN202080081689.9A priority patent/CN114787241B/en
Publication of WO2021131985A1 publication Critical patent/WO2021131985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for producing polyarylene sulfide.
  • Polyphenylene sulfide (hereinafter, also referred to as "PAS”) represented by polyphenylene sulfide (hereinafter, also referred to as “PPS”) has heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical properties, and dimensions. It is an engineering plastic with excellent stability. Since PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, and compression molding, it can be used for electrical equipment, electronic equipment, automobile equipment, packaging materials, etc. It is widely used in a wide range of technical fields.
  • PAS is widely used as a metal substitute for reducing the weight of automobiles, especially in the field of automobiles.
  • High molecular weight PAS with high toughness is required for in-vehicle applications.
  • Patent Documents 1 and 2 disclose a method for producing granular PAS as a high molecular weight PAS.
  • the present invention has been made in view of the above problems, and it is possible to shorten the time required for the cooling step for forming granular PAS and to suppress an increase in the average particle size of the obtained granular PAS. It is an object of the present invention to provide a method for producing PAS which can be produced.
  • the present inventors perform a first polymerization step, a phase separator addition step, a second polymerization step, and cooling in the presence of at least one auxiliary agent selected from carboxylates and the like.
  • the steps are performed in this order, and in the cooling step, a coolant is added to the reaction mixture at a temperature within a predetermined range, and the cooling rate at the maximum thickening temperature is 2.2 ° C./min or more and 6.0 ° C./min.
  • the method for producing PAS according to the present invention is At least one selected from the group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates.
  • a mixture containing an organic polar solvent, a sulfur source, water, a polyhalo aromatic compound, and an alkali metal hydroxide is heated to initiate a polymerization reaction, and the conversion rate of the polyhalo aromatic compound is increased.
  • the first polymerization step to produce a reaction mixture containing 50 mol% or more of prepolymer, and After the first polymerization step, a phase separation agent addition step of adding a phase separation agent to the reaction mixture, After the phase separation agent addition step, a second polymerization step in which the polymerization reaction is continued, and A cooling step of cooling the reaction mixture after the second polymerization step is included.
  • the coolant is added to the reaction mixture at a temperature higher than the maximum thickening temperature by 5 ° C. or more and lower than 250 ° C., and the cooling rate at the maximum thickening temperature is 2.2 ° C./min. It is 6.0 ° C./min or less.
  • a coolant may be added to the reaction mixture in the cooling step.
  • the coolant may be water and / or ice.
  • the content of the coolant in the reaction mixture may be 2.7 mol or more and 6.0 mol or less with respect to 1 mol of the sulfur source.
  • a method for producing PAS which can shorten the time required for the cooling step for forming granular PAS and can suppress an increase in the average particle size of the obtained granular PAS. be able to.
  • the pipes of the PAS manufacturing apparatus and the like are less likely to be clogged, and the need to remove the clogged PAS is reduced, so that the time required for cleaning the pipes can be shortened. From the above, as a whole, the production of granular PAS can be shortened.
  • the method for producing PAS in the present embodiment includes a first polymerization step, a phase separation agent addition step, a second polymerization step, and a cooling step as essential steps.
  • the method for producing PAS in the present embodiment may include a dehydration step, a preparation step, a post-treatment step, and the like, if desired.
  • each material used in the present invention will be described in detail, and each step will be described in detail.
  • organic polar solvents As the organic protic solvent, the sulfur source, the polyhalo aromatic compound, and the alkali metal hydroxide, those usually used in the production of PAS can be used.
  • the organic polar solvent, the sulfur source, the polyhaloaromatic compound, and the alkali metal hydroxide may be used alone, or if it is a combination capable of producing PAS, two or more kinds may be mixed and used. You may.
  • Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
  • Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone.
  • tetraalkylurea compounds such as tetramethylurea
  • hexaalkylphosphate triamide compounds such as hexamethylphosphate triamide
  • the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
  • the aprotic organic polar solvent composed of the cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran.
  • an organic amide solvent is preferable in terms of availability, handleability, etc.
  • N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactam compound, and N, N-dialkylimidazolidinone compound are more preferable.
  • NMP, N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
  • the amount of the organic polar solvent used is preferably 1 to 30 mol, more preferably 3 to 15 mol, with respect to 1 mol of the sulfur source, from the viewpoint of efficiency of the polymerization reaction and the like.
  • Examples of the sulfur source include alkali metal sulfide, alkali metal hydrosulfide, and hydrogen sulfide, and alkali metal sulfide and alkali metal hydrosulfide are preferable.
  • the sulfur source can be handled in either an aqueous slurry state or an aqueous solution state, and is preferably in an aqueous solution state from the viewpoint of handleability such as measurable property and transportability.
  • Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide.
  • Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
  • a polyhalo aromatic compound refers to an aromatic compound in which two or more hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms, and an aromatic compound in which two hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms. Whether it is a compound (that is, a dihalo aromatic compound) or an aromatic compound in which three or more hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms (also referred to as "polyhalo aromatic compound having three or more halogen substitutions"). Good.
  • polyhaloaromatic compound examples include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone, and dihalo.
  • Dihalo aromatic compounds such as diphenylsulfoxide and dihalodiphenylketone; 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,3 4-Tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, 1,3,5-trichloro-2,4,6-trimethylbenzene, 2,4,6-trichlorotoluene, 1,2,3-trichloronaphthalene , 1,2,4-trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,2', 4,4'-tetrachlorobiphenyl, 2,2', 4,4'-tetrachlorobenzophenone, Examples thereof include polyhaloaromatic compounds having 3 or more halogen substitutions, such as 2,4,2'-trichlorobenzophenone.
  • the halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine, and two or more halogen atoms in the polyhalo aromatic compound may be the same or different.
  • p-dichlorobenzene, m-dihalobenzene, and a mixture thereof are preferable, p-dichlorobenzene is more preferable, and p-dichlorobenzene (hereinafter, also referred to as "pDCB”) is preferable in terms of availability, reactivity, and the like. Especially preferable.
  • the amount of the polyhalo aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, and even more preferably, with respect to 1 mol of the sulfur source charged. It is 0.95 to 1.05 mol.
  • the amount used is within the above range, the decomposition reaction is unlikely to occur, the stable polymerization reaction can be easily carried out, and the high molecular weight polymer can be easily produced.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • the dehydration step is a step of discharging at least a part of the distillate containing water from the inside of the system containing the mixture containing the organic polar solvent, the sulfur source, and the alkali metal hydroxide to the outside of the system before the preparation step.
  • the polymerization reaction between the sulfur source and the polyhalo aromatic compound is affected by the amount of water present in the polymerization reaction system, such as being promoted or inhibited. Therefore, it is preferable to reduce the amount of water in the polymerization reaction system by performing a dehydration treatment before the polymerization so that the amount of water does not inhibit the polymerization reaction.
  • the water to be dehydrated in the dehydration step is water contained in each raw material prepared in the dehydration step, an aqueous medium of an aqueous mixture, water produced as a by-product by the reaction between each raw material, and the like.
  • the heating temperature in the dehydration step is not particularly limited as long as it is 300 ° C. or lower, and is preferably 100 to 250 ° C.
  • the heating time is preferably 15 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the dehydration process dehydration is performed until the amount of water is within a predetermined range. That is, in the dehydration step, the amount is preferably 0.5 to 2.4 mol with respect to 1.0 mol of the sulfur source (hereinafter, also referred to as "charged sulfur source” or “effective sulfur source”) in the charged mixture (described later). It is desirable to dehydrate until it becomes.
  • the water content becomes too small in the dehydration step water may be added in the preparation step prior to the polymerization step to adjust the water content to a desired level.
  • the charging step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, and a polyhalo aromatic compound.
  • the mixture charged in the charging process is also referred to as "prepared mixture”.
  • the amount of the sulfur source in the charged mixture (hereinafter, also referred to as “the amount of the charged sulfur source” or “the amount of the effective sulfur source”) is determined from the molar amount of the sulfur source input as the raw material in the dehydration step. It can be calculated by subtracting the molar amount of hydrogen sulfide volatilized in.
  • the alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step as needed in the preparation step.
  • the alkali metal hydroxide can be added in consideration of the amount of hydrogen sulfide produced during dehydration and the amount of alkali metal hydroxide generated during dehydration.
  • the number of moles of the alkali metal hydroxide is the number of moles of the alkali metal hydroxide added in the preparation step, and in the case of performing the dehydration step, the alkali metal hydroxide added as necessary in the dehydration step.
  • the number of moles of alkali metal hydroxide per mol of sulfur source shall be calculated including the number of moles of alkali metal sulfide.
  • the number of moles of alkali metal hydroxide per mole of sulfur source shall be calculated including the number of moles of alkali metal sulfide produced. ..
  • the number of moles of the alkali metal hydroxide added for other purposes for example, an embodiment of a combination of an organic carboxylic acid metal salt as a polymerization aid and / or an alkali metal hydroxide with an organic carboxylic acid and an alkali metal hydroxide.
  • the number of moles of alkali metal hydroxide consumed in reactions such as neutralization shall not be included in the number of moles of alkali metal hydroxide per mole of sulfur source (prepared sulfur source). ..
  • the alkali metal hydroxide required to neutralize the at least one acid is used.
  • the number of moles shall not be included in the number of moles of alkali metal hydroxide per mole of the sulfur source (charged sulfur source).
  • the amounts of each of the organic polar solvent and the polyhalo aromatic compound used are set in the ranges shown in the above description regarding the organic polar solvent and the polyhalo aromatic compound, for example, with respect to 1 mol of the charged amount of the sulfur source. ..
  • the first polymerization step consists of a group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates.
  • a mixture containing an organic polar solvent, a sulfur source, water, a polyhalo aromatic compound, and an alkali metal hydroxide is heated in the presence of at least one auxiliary agent of choice to initiate a polymerization reaction to initiate the polyhalo aromatic.
  • This is a step of producing a reaction mixture containing a prepolymer having a conversion rate of a group compound of 50 mol% or more.
  • the reaction mixture means a mixture containing a reaction product produced in the above-mentioned polymerization reaction, and the formation starts at the same time as the start of the above-mentioned polymerization reaction.
  • a method using two or more reaction tanks may be used as the polymerization reaction method.
  • the mixture prepared in the charging step that is, the charged mixture is heated to a temperature of 170 to 270 ° C. to initiate the polymerization reaction, and the prepolymer having a conversion rate of the polyhalo aromatic compound of 50 mol% or more is started. It is preferable to generate.
  • the polymerization temperature in the first polymerization step is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
  • the conversion rate of the polyhalo aromatic compound is preferably 50 to 98%, more preferably 60 to 97%, even more preferably 65 to 96%, and particularly preferably 70 to 95%.
  • the conversion rate of the polyhalo aromatic compound is calculated based on the amount of the polyhalo aromatic compound remaining in the reaction mixture determined by gas chromatography, the residual amount, the amount of the polyhalo aromatic compound charged, and the amount of the sulfur source charged. Can be done.
  • the amount of at least one of water and the organic polar solvent may be changed.
  • water can be added to the reaction system during polymerization.
  • the water content is preferably 0.5 to 2.4 mol, more preferably 0.5 to 2.0 mol, per 1.0 mol of the sulfur source. , 1.0 to 1.5 mol, even more preferably.
  • the sulfur source can be solubilized in an organic polar solvent and the reaction can proceed suitably.
  • the first stage polymerization step is a group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates. It is carried out in the presence of at least one of the more selected auxiliaries. As a result, in the method for producing PAS according to the present invention, high molecular weight PAS can be easily obtained. From the viewpoint of availability, handleability, etc., the auxiliary agent is preferably a carboxylate.
  • the step of adding the auxiliary agent is not particularly limited, and examples thereof include a dehydration step, a preparation step, and a first polymerization step.
  • the auxiliary agent may be added to the reaction system as the above-mentioned compound itself such as a carboxylate, or may be added to the reaction system in the form of a corresponding organic acid or inorganic acid to carry out alkali metal hydroxylation in the reaction system. It may be present in the first-stage polymerization step by producing a compound corresponding to an auxiliary agent by a neutralization reaction with a substance.
  • the amount of the auxiliary agent is preferably 0.1 to 50 mol%, more preferably 1 to 40 mol%, and even more preferably 5 to 30 mol% per 1 mol of the sulfur source.
  • the amount of the auxiliary agent is within the above range, the high molecular weight PAS is more likely to be obtained.
  • the phase separation agent addition step is a step of adding the phase separation agent to the reaction mixture after the first polymerization step.
  • the phase separating agent is not particularly limited, and is, for example, water, an organic carboxylic acid metal salt, an organic sulfonic acid metal salt, an alkali metal halide, an alkaline earth metal halide, an alkaline earth metal salt of an aromatic carboxylic acid, and a phosphoric acid. At least one selected from the group consisting of alkali metal salts, alcohols, and non-polar solvents can be mentioned. Of these, water is preferable because it is inexpensive and easy to post-treat. Further, a combination of an organic carboxylate and water, particularly a mixture containing an alkali metal carboxylate and water is also preferable.
  • the above salts may be in the form of adding the corresponding acid and base separately.
  • non-polar solvent examples include hydrocarbons, and in order to promote the reaction between prepolymers, it is easier to obtain a high-molecular-weight PAS when the non-polar solvent does not dissolve the prepolymer. Therefore, an aliphatic hydrocarbon Is preferable, alkanes (paraffinic hydrocarbons) are more preferable, and linear alkanes are even more preferable.
  • the number of carbon atoms of hydrocarbons, aliphatic hydrocarbons, alkanes, and linear alkanes is particularly limited as long as hydrocarbons, aliphatic hydrocarbons, alkanes, and linear alkanes can be used as solvents in the second polymerization step.
  • non-polar solvent examples include n-hexane, n-heptane, n-octane, isooctane, n-nonane, n-decane, n-dodecane, n-tetradecane, n-hexadecan, n-octadecan, and n-eicosane.
  • N-Tetradecane and the like since it is easy to obtain a higher molecular weight PAS and is excellent in handleability, availability, etc., isooctane, n-decane, and n-tetradecane are preferable, and n-decane and n-tetradecane are preferable. More preferred.
  • the amount of the phase separation agent used varies depending on the type of compound used, but is usually in the range of 1 to 10 mol with respect to 1 kg of the organic polar solvent.
  • the phase separation agent contains water, and the molar ratio of water to the organic polar solvent in the phase separation agent addition step is 0.5 to 3.0, preferably 0.6 to 0.6 from the viewpoint of particle strength. It is 2.0, more preferably 0.65 to 1.5.
  • the amount of the mixture used is such that the amount of the alkali metal carboxylate is 30 mol or less per 1 mol of the sulfur source. It is preferable to adjust.
  • the method for adding the phase separating agent according to the present embodiment is not particularly limited, and examples thereof include a method of adding the entire amount at a time and a method of adding the phase separating agent in a plurality of times.
  • the second polymerization step is a step of continuing the polymerization reaction after the step of adding the phase separator.
  • phase-separated polymerization is carried out in which the polymerization reaction is continued in a state where the inside of the reaction system is phase-separated into a polymer-rich phase and a polymer-lean phase in the presence of a phase-separating agent.
  • the polymerization reaction system (polymerization reaction mixture) becomes a polymer-rich phase (phase mainly composed of molten PAS) and a polymer-lean phase (phase mainly composed of an organic polar solvent). Phase-separate.
  • the polymerization reaction is continued by heating to 245 to 290 ° C., preferably 250 to 285 ° C., more preferably 255 to 280 ° C.
  • the polymerization temperature may be maintained at a constant temperature, or may be raised or lowered stepwise as needed. From the viewpoint of controlling the polymerization reaction, it is preferable to maintain a constant temperature.
  • the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
  • the pH of the reaction mixture after the second polymerization step may be 8 to 11 or 9 to 10.5.
  • the method for adjusting the pH of the reaction mixture is not particularly limited, and for example, a method for adjusting the content of alkali metal hydroxide in the charging step, or a method for adjusting the alkali metal hydroxide, an inorganic acid and / or an organic acid later. Can be mentioned as a method of adding.
  • the cooling step is a step of cooling the reaction mixture after the second polymerization step.
  • the liquid phase containing the produced polymer is cooled.
  • a coolant is added to the reaction mixture at a temperature higher than the maximum thickening temperature by 5 ° C. or higher and lower than 250 ° C., and the cooling rate at the maximum thickening temperature is 2.2 ° C./min or higher. It is 0 ° C./min or less.
  • the lower limit of the cooling rate is 2.2 ° C./min or more, preferably 2.3 ° C./min or more, more preferably 2.4 ° C./min or more, and even more preferably 2.5 ° C./min. Minutes or more, particularly preferably 2.6 ° C./min or more.
  • the cooling rate is 2.2 ° C./min or more, the time required for the cooling step for forming the granular PAS can be shortened, and the increase in the average particle size of the obtained granular PAS can be suppressed. Can be done.
  • the upper limit of the cooling rate is not particularly limited, and may be, for example, 6.0 ° C./min or less, 5.0 ° C./min or less, 4.0 ° C./min or less, or 3.9 ° C./min or less.
  • the profile of the cooling rate is not particularly limited as long as the coolant is added to the reaction mixture at a temperature within the above-mentioned predetermined range and the cooling rate at the maximum thickening temperature is within the above range. Therefore, the cooling rate at a temperature other than the maximum thickening temperature may be, for example, a cooling rate by natural air cooling, and may be the same as the cooling rate at the maximum thickening temperature from the viewpoint of shortening the time of the cooling step. Further, for example, in the case of cooling using a coolant described later, when the amount of the coolant added is limited due to the limited capacity of the reaction can, first natural air cooling is performed, and then the reaction can is cooled.
  • the cooling rate may be adjusted so that the cooling rate at a temperature exceeding the maximum thickening temperature is the same as the cooling rate at the maximum thickening temperature.
  • the temperature for adjusting the cooling rate may be appropriately set according to the capacity of the reaction can, and for example, the maximum thickening temperature (maximum thickening temperature + 20 ° C.) or less can be mentioned.
  • the maximum thickening temperature + 5 ° C.) or higher (maximum thickening temperature + 15 ° C.) may be used, the (maximum thickening temperature + 8 ° C.) or higher (maximum thickening temperature + 12 ° C.) or lower, or the maximum thickening temperature + 10 ° C. may be used.
  • a cooling method such that the cooling rate at the maximum thickening temperature is 2.2 ° C./min or more and 6.0 ° C./min or less includes at least addition of a coolant to the reaction mixture. Cooling by adding a coolant may be carried out in combination with other cooling methods. Other cooling methods are not particularly limited, and for example, forced air cooling by an air flow generator such as a fan or a circulator; circulation of the refrigerant in the jacket of the polymerization reaction tank; reflux of the gas phase in the reaction mixture by the reflux condenser, etc. Can be mentioned.
  • a coolant to the reaction mixture because it is easy to prevent PAS from adhering to the wall surface due to cooling from the wall surface of the polymerization reaction tank.
  • the coolant is not particularly limited, and water and / or ice; an organic polar solvent (for example, an organic amide solvent such as NMP) is preferable from the viewpoint of easy separation from PAS in the post-treatment step, and the specific heat and latent heat of evaporation are large. From the point of view, water and / or ice is more preferred. Further, water and / or ice are more preferable as the coolant from the viewpoint that the phase separation property of the reaction mixture is easily improved and the yield of PAS is easily improved.
  • the content of the coolant in the reaction mixture is preferably 2.7 mol or more and 6.0 mol or less with respect to 1 mol of the sulfur source, from the viewpoint that sufficient cooling is easily performed according to the amount. It is more preferably 3.0 mol or more and 5.5 mol or less, and even more preferably 4.0 mol or more and 5.0 mol or less.
  • the maximum thickening temperature refers to the stirring torque of the reaction mixture measured between 240 ° C. and 220 ° C. when the reaction mixture after the second polymerization step is cooled from 255 ° C. by natural air cooling. The temperature at which the stirring torque is maximized.
  • the post-treatment step after the polymerization reaction can be carried out by a conventional method, for example, by the method described in JP-A-2016-0562332.
  • the PAS obtained by the method for producing PAS in the present embodiment has an average particle size of preferably 2000 ⁇ m or less, more preferably 1800 ⁇ m or less, and even more preferably 1500 ⁇ m or less.
  • the lower limit of the average particle size of the PAS is not particularly limited, and may be, for example, 200 ⁇ m or more, 300 ⁇ m or more, or 400 ⁇ m or more.
  • the average particle size means a value measured by sieving as described in Examples described later.
  • the PAS obtained by the method for producing PAS in the present embodiment has a melt viscosity measured at a temperature of 310 ° C. and a shear rate of 1,216 sec -1 , preferably 1000 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less, and even more preferably. Is 150 Pa ⁇ s or less.
  • the lower limit of the melt viscosity of the PAS is not particularly limited, and may be, for example, 1 Pa ⁇ s or more, 5 Pa ⁇ s or more, or 8 Pa ⁇ s or more.
  • the melt viscosity means a value measured at the above temperature and a shear rate using a capillograph using about 20 g of a dry polymer of PAS.
  • the PAS obtained by the method for producing PAS in the present embodiment can be used as it is, or after being oxidatively crosslinked, it can be used alone or, if desired, by blending various inorganic fillers, fibrous fillers and various synthetic resins, and various injection moldings. It can be molded into products or extruded products such as sheets, films, fibers, and pipes.
  • PAS is not particularly limited and is preferably PPS.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples.
  • the present invention is not limited to the examples. Unless otherwise specified, the operations in Examples and Comparative Examples were carried out at room temperature.
  • the weight average molecular weight hereinafter, also referred to as “Mw”) means a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography.
  • melt Viscosity The melt viscosity of PAS was measured by Capilliograph (registered trademark) 1D manufactured by Toyo Seiki Seisakusho Co., Ltd., which was equipped with a nozzle having a diameter of 1.0 mm and a length of 10.0 mm as a capillary. The set temperature was 310 ° C. The polymer sample was introduced into the apparatus, held for 5 minutes, and then the melt viscosity was measured at a shear rate of 1,200 sec -1.
  • the average particle size of PAS is 2,800 ⁇ m (7 meshes (mesh / inch)) and 1,410 ⁇ m (12 mesh (mesh / inch)) as the sieve used. , Sift opening 1,000 ⁇ m (16 mesh (mesh / inch)), Simming opening 710 ⁇ m (24 mesh (mesh / inch)), Simming opening 500 ⁇ m (32 mesh (mesh / inch)), Sift Opening 250 ⁇ m (60 mesh (mesh / inch)), sieving opening 150 ⁇ m (100 mesh (mesh / inch)), sieving opening 105 ⁇ m (145 mesh (mesh / inch)), sieving opening 75 ⁇ m (200 mesh) (Number of meshes / inch)), measured by the sieving method using a sieve with a mesh size of 38 ⁇ m (400 mesh (number of meshes / inch)), and the cumulative mass is 50% mass from the mass of the sieving material of each sieving.
  • Example 1 (Dehydration process) In a 20 liter autoclave, add 6,005 g of NMP, 2,003 g of sodium hydrosulfide aqueous solution (NaSH: purity 62.24% by mass), 1,071 g of sodium hydroxide (NaOH: purity 73.40% by mass), and 180 g of sodium acetate. I prepared it. After replacing the inside of the autoclave with nitrogen gas, over a period of about 4 hours while stirring at a rotation speed of 250rpm by a stirrer, the temperature was gradually raised to 200 ° C., water (H 2 O) 902g, NMP763g , and hydrogen sulfide ( H 2 S) to distill 15 g.
  • NaSH sodium hydrosulfide aqueous solution
  • NaOH sodium hydroxide
  • H 2 S hydrogen sulfide
  • Phase separator addition step After the completion of the first polymerization step, 60 g of sodium hydroxide and 445 g of ion-exchanged water were press-fitted while stirring the contents of the autoclave, and the rotation speed of the stirrer was increased to 400 rpm. H 2 O / NMP (mol / mol) was 0.67, and H 2 O / charged S (mol / mol) was 2.63.
  • the method for measuring the maximum thickening temperature is as follows.
  • the reaction can after the completion of the polymerization reaction, which is accompanied by a phase-separated polymerization system capable of producing a high-molecular-weight PAS, the PAS exists in a molten state and is phase-separated into a concentrated phase and a dilute phase by a phase separating agent. ,It has been known.
  • PAS solidifies from the molten state and exists in a suspended state as a powdery, particulate or granular solid, but in this process, the viscosity of the system changes. Occur.
  • the maximum thickening temperature of this system can be detected as a stirring torque under constant stirring or as a power supply to the stirrer.
  • the maximum thickening temperature was measured in advance based on the maximum value of power consumption measured by installing a clamp wattmeter CW140 (Yokogawa Electric Co., Ltd.) in an autoclave stirrer motor.
  • Example 2 In the cooling step, granular PPS was obtained in the same manner as in Example 1 except that ice water was press-fitted into the autoclave instead of room temperature water, and forced air cooling of the autoclave was started at the same time as the press-fitting of ice water. It was.
  • the cooling rate at the maximum thickening temperature was 3.9 ° C./min.
  • Example 3 Granular PPS was obtained in the same manner as in Example 1 except that the temperature at which water at room temperature was press-fitted was changed to the maximum thickening temperature + 20 ° C. The cooling rate at the maximum thickening temperature was 2.8 ° C./min.
  • Example 4 Granular PPS was obtained in the same manner as in Example 1 except that the temperature at which water at room temperature was press-fitted was changed to the maximum thickening temperature + 5 ° C. The cooling rate at the maximum thickening temperature was 2.7 ° C./min.
  • the time required for the cooling step for forming granular PAS can be shortened, and the average particle size of the obtained granular PAS can be shortened. Can be suppressed from increasing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided is a method for producing polyarylene sulfide ("PAS" hereinafter), the method making it possible to shorten the time required for a cooling step for forming granular PAS and to suppress any increase in the average particle size of the resultant granular PAS. The method for producing PAS according to the present invention includes: a first polymerization step for heating a mixture that contains an organic polar solvent, a sulfur source, water, a polyhaloaromatic compound, and an alkali metal hydroxide in the presence of at least one auxiliary agent selected from carboxylates, etc., to initiate a polymerization reaction so as to generate a reaction mixture that contains a prepolymer having a polyhaloaromatic compound conversion rate of 50 mol% or higher; a phase separation agent addition step for subsequently adding a phase separation agent to the reaction mixture; a second polymerization step for subsequently continuing the polymerization reaction; and a cooling step for subsequently cooling the reaction mixture. In the cooling step, the coolant is added to the reaction mixture at a temperature ranging from at least 5°C above the maximum thickening temperature to less than 250°C, and the cooling rate at the maximum thickening temperature ranges from 2.2°C/min to 6.0°C/min (inclusive).

Description

ポリアリーレンスルフィドの製造方法Method for producing polyarylene sulfide
 本発明は、ポリアリーレンスルフィドの製造方法に関する。 The present invention relates to a method for producing polyarylene sulfide.
 ポリフェニレンスルフィド(以下、「PPS」とも称する。)に代表されるポリアリーレンスルフィド(以下、「PAS」とも称する。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。 Polyphenylene sulfide (hereinafter, also referred to as "PAS") represented by polyphenylene sulfide (hereinafter, also referred to as "PPS") has heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical properties, and dimensions. It is an engineering plastic with excellent stability. Since PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, and compression molding, it can be used for electrical equipment, electronic equipment, automobile equipment, packaging materials, etc. It is widely used in a wide range of technical fields.
 PASは、特に、自動車関連の分野においては、自動車の軽量化のための金属代替物として、多く利用されている。車載用途には、高い靱性を有する高分子量PASが求められている。特許文献1及び2には、高分子量PASとして、粒状PASを製造する方法が開示されている。 PAS is widely used as a metal substitute for reducing the weight of automobiles, especially in the field of automobiles. High molecular weight PAS with high toughness is required for in-vehicle applications. Patent Documents 1 and 2 disclose a method for producing granular PAS as a high molecular weight PAS.
特開2001-89569号公報Japanese Unexamined Patent Publication No. 2001-89569 特開2004-51732号公報Japanese Unexamined Patent Publication No. 2004-51732
 近年、粒状PASの需要増加に伴い、粒状PAS製造の更なる短時間化が求められている。しかし、従来の製造方法では、粒状PASの粒子径制御や純度向上を目的として、造粒により粒状PASを形成するための冷却工程において、徐冷を行うことが必要であることから、冷却工程に長時間を要している。 In recent years, with the increase in demand for granular PAS, further shortening of the production of granular PAS is required. However, in the conventional manufacturing method, since it is necessary to perform slow cooling in the cooling step for forming the granular PAS by granulation for the purpose of controlling the particle size and improving the purity of the granular PAS, the cooling step is performed. It takes a long time.
 一方で、重合助剤の存在下でPASの製造を行うと、短時間で高分子量PASが得られることが知られている。しかし、得られるPASは、平均粒子径が増大しやすく、結果として、PAS製造装置等の配管が詰まりやすく、また、詰まったPASを除去するために、配管の洗浄には多くの時間が必要である。 On the other hand, it is known that when PAS is produced in the presence of a polymerization aid, a high molecular weight PAS can be obtained in a short time. However, the average particle size of the obtained PAS tends to increase, and as a result, the piping of the PAS manufacturing apparatus or the like tends to be clogged, and it takes a lot of time to clean the piping in order to remove the clogged PAS. is there.
 本発明は上記課題に鑑みてなされたものであり、粒状PASを形成するための冷却工程にかかる時間を短縮することができ、且つ、得られる粒状PASの平均粒子径の増大を抑制することができるPASの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to shorten the time required for the cooling step for forming granular PAS and to suppress an increase in the average particle size of the obtained granular PAS. It is an object of the present invention to provide a method for producing PAS which can be produced.
 本発明者らは、PASの製造に際し、カルボン酸塩等から選択される少なくとも1種の助剤の存在下で、第一重合工程と、相分離剤添加工程と、第二重合工程と、冷却工程と、をこの順に行い、冷却工程において、所定の範囲内の温度で冷却剤を反応混合物に添加し、且つ最大増粘温度における冷却速度を2.2℃/分以上6.0℃/分以下とすることにより、上記目的が達成されることを見出し、本発明を完成するに至った。 In the production of PAS, the present inventors perform a first polymerization step, a phase separator addition step, a second polymerization step, and cooling in the presence of at least one auxiliary agent selected from carboxylates and the like. The steps are performed in this order, and in the cooling step, a coolant is added to the reaction mixture at a temperature within a predetermined range, and the cooling rate at the maximum thickening temperature is 2.2 ° C./min or more and 6.0 ° C./min. It was found that the above object was achieved by the following, and the present invention was completed.
 本発明に係るPASの製造方法は、
 カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で、有機極性溶媒、硫黄源、水、ポリハロ芳香族化合物、及びアルカリ金属水酸化物を含有する混合物を加熱して重合反応を開始させ、ポリハロ芳香族化合物の転化率が50モル%以上のプレポリマーを含有する反応混合物を生成させる第一重合工程と、
 前記第一重合工程後に、前記反応混合物に相分離剤を添加する相分離剤添加工程と、
 前記相分離剤添加工程後に、重合反応を継続する第二重合工程と、
 前記第二重合工程後に、前記反応混合物を冷却する冷却工程と、を含み、
 前記冷却工程において、前記最大増粘温度より5℃以上高く、且つ250℃未満である温度において前記反応混合物に前記冷却剤が添加され、且つ最大増粘温度における冷却速度は2.2℃/分以上6.0℃/分以下である。
The method for producing PAS according to the present invention is
At least one selected from the group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates. In the presence of the auxiliary agent, a mixture containing an organic polar solvent, a sulfur source, water, a polyhalo aromatic compound, and an alkali metal hydroxide is heated to initiate a polymerization reaction, and the conversion rate of the polyhalo aromatic compound is increased. The first polymerization step to produce a reaction mixture containing 50 mol% or more of prepolymer, and
After the first polymerization step, a phase separation agent addition step of adding a phase separation agent to the reaction mixture,
After the phase separation agent addition step, a second polymerization step in which the polymerization reaction is continued, and
A cooling step of cooling the reaction mixture after the second polymerization step is included.
In the cooling step, the coolant is added to the reaction mixture at a temperature higher than the maximum thickening temperature by 5 ° C. or more and lower than 250 ° C., and the cooling rate at the maximum thickening temperature is 2.2 ° C./min. It is 6.0 ° C./min or less.
 本発明に係るPASの製造方法では、前記冷却工程において、前記反応混合物に冷却剤が添加されてもよい。 In the method for producing PAS according to the present invention, a coolant may be added to the reaction mixture in the cooling step.
 本発明に係るPASの製造方法において、前記冷却剤は水及び/又は氷でもよい。 In the method for producing PAS according to the present invention, the coolant may be water and / or ice.
 本発明に係るPASの製造方法では、前記最大増粘温度において、前記反応混合物における冷却剤の含有量は、前記硫黄源1モルに対し2.7モル以上6.0モル以下でもよい。 In the method for producing PAS according to the present invention, at the maximum thickening temperature, the content of the coolant in the reaction mixture may be 2.7 mol or more and 6.0 mol or less with respect to 1 mol of the sulfur source.
 本発明によれば、粒状PASを形成するための冷却工程にかかる時間を短縮することができ、且つ、得られる粒状PASの平均粒子径の増大を抑制することができるPASの製造方法を提供することができる。その結果、PAS製造装置等の配管が詰まりにくくなり、また、詰まったPASを除去する必要性が低くなるため、配管の洗浄にかける時間を短縮することができる。以上から、全体として、粒状PAS製造をより短時間化することができる。 According to the present invention, there is provided a method for producing PAS, which can shorten the time required for the cooling step for forming granular PAS and can suppress an increase in the average particle size of the obtained granular PAS. be able to. As a result, the pipes of the PAS manufacturing apparatus and the like are less likely to be clogged, and the need to remove the clogged PAS is reduced, so that the time required for cleaning the pipes can be shortened. From the above, as a whole, the production of granular PAS can be shortened.
 本発明に係るPASの製造方法の一実施形態について以下に説明する。本実施形態におけるPASの製造方法は、必須の工程として、第一重合工程、相分離剤添加工程、第二重合工程、及び冷却工程を含む。本実施形態におけるPASの製造方法は、所望により、脱水工程、仕込み工程、後処理工程等を含んでもよい。以下、本発明に用いられる各材料について詳細に説明するとともに、各工程について詳細に説明する。 An embodiment of the method for producing PAS according to the present invention will be described below. The method for producing PAS in the present embodiment includes a first polymerization step, a phase separation agent addition step, a second polymerization step, and a cooling step as essential steps. The method for producing PAS in the present embodiment may include a dehydration step, a preparation step, a post-treatment step, and the like, if desired. Hereinafter, each material used in the present invention will be described in detail, and each step will be described in detail.
(有機極性溶媒、硫黄源、ポリハロ芳香族化合物、及びアルカリ金属水酸化物)
 有機極性溶媒、硫黄源、ポリハロ芳香族化合物、及びアルカリ金属水酸化物としては、PASの製造において通常用いられるものを用いることができる。有機極性溶媒、硫黄源、ポリハロ芳香族化合物、及びアルカリ金属水酸化物の各々は、単独で用いてもよいし、PASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。
(Organic polar solvents, sulfur sources, polyhaloaromatic compounds, and alkali metal hydroxides)
As the organic protic solvent, the sulfur source, the polyhalo aromatic compound, and the alkali metal hydroxide, those usually used in the production of PAS can be used. Each of the organic polar solvent, the sulfur source, the polyhaloaromatic compound, and the alkali metal hydroxide may be used alone, or if it is a combination capable of producing PAS, two or more kinds may be mixed and used. You may.
 有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが更により好ましく、NMPが特に好ましい。 Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound. Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl-ε-caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone. Compounds; tetraalkylurea compounds such as tetramethylurea; hexaalkylphosphate triamide compounds such as hexamethylphosphate triamide, and the like can be mentioned. Examples of the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone. Examples of the aprotic organic polar solvent composed of the cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran. Among them, an organic amide solvent is preferable in terms of availability, handleability, etc., and N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactam compound, and N, N-dialkylimidazolidinone compound are more preferable. , NMP, N-methyl-ε-caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
 有機極性溶媒の使用量は、重合反応の効率等の観点から、上記硫黄源1モルに対し、1~30モルが好ましく、3~15モルがより好ましい。 The amount of the organic polar solvent used is preferably 1 to 30 mol, more preferably 3 to 15 mol, with respect to 1 mol of the sulfur source, from the viewpoint of efficiency of the polymerization reaction and the like.
 硫黄源としては、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素を挙げることができ、アルカリ金属硫化物及びアルカリ金属水硫化物であることが好ましい。硫黄源は、例えば、水性スラリー及び水溶液のいずれかの状態で扱うことができ、計量性、搬送性等のハンドリング性の観点から、水溶液の状態であることが好ましい。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムが挙げられる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウムが挙げられる。 Examples of the sulfur source include alkali metal sulfide, alkali metal hydrosulfide, and hydrogen sulfide, and alkali metal sulfide and alkali metal hydrosulfide are preferable. The sulfur source can be handled in either an aqueous slurry state or an aqueous solution state, and is preferably in an aqueous solution state from the viewpoint of handleability such as measurable property and transportability. Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
 ポリハロ芳香族化合物とは、芳香環に直結した2個以上の水素原子がハロゲン原子で置換された芳香族化合物を指し、芳香環に直結した2個の水素原子がハロゲン原子で置換された芳香族化合物(即ち、ジハロ芳香族化合物)でも、芳香環に直結した3個以上の水素原子がハロゲン原子で置換された芳香族化合物(「ハロゲン置換数3以上のポリハロ芳香族化合物」ともいう。)でもよい。 A polyhalo aromatic compound refers to an aromatic compound in which two or more hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms, and an aromatic compound in which two hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms. Whether it is a compound (that is, a dihalo aromatic compound) or an aromatic compound in which three or more hydrogen atoms directly connected to an aromatic ring are substituted with halogen atoms (also referred to as "polyhalo aromatic compound having three or more halogen substitutions"). Good.
 ポリハロ芳香族化合物としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等のジハロ芳香族化合物;1,2,3-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,3,5-トリクロロベンゼン、ヘキサクロロベンゼン、1,2,3,4-テトラクロロベンゼン、1,2,4,5-テトラクロロベンゼン、1,3,5-トリクロロ-2,4,6-トリメチルベンゼン、2,4,6-トリクロロトルエン、1,2,3-トリクロロナフタレン、1,2,4-トリクロロナフタレン、1,2,3,4-テトラクロロナフタレン、2,2’,4,4’-テトラクロロビフェニル、2,2’,4,4’-テトラクロロベンゾフェノン、2,4,2’-トリクロロベンゾフェノン等の、ハロゲン置換数3以上のポリハロ芳香族化合物が挙げられる。ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、ポリハロ芳香族化合物における2個以上のハロゲン原子は、同じでも異なっていてもよい。中でも、入手性、反応性等の点で、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(以下、「pDCB」とも称する。)が特に好ましい。 Examples of the polyhaloaromatic compound include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone, and dihalo. Dihalo aromatic compounds such as diphenylsulfoxide and dihalodiphenylketone; 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,3 4-Tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, 1,3,5-trichloro-2,4,6-trimethylbenzene, 2,4,6-trichlorotoluene, 1,2,3-trichloronaphthalene , 1,2,4-trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,2', 4,4'-tetrachlorobiphenyl, 2,2', 4,4'-tetrachlorobenzophenone, Examples thereof include polyhaloaromatic compounds having 3 or more halogen substitutions, such as 2,4,2'-trichlorobenzophenone. The halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine, and two or more halogen atoms in the polyhalo aromatic compound may be the same or different. Among them, p-dichlorobenzene, m-dihalobenzene, and a mixture thereof are preferable, p-dichlorobenzene is more preferable, and p-dichlorobenzene (hereinafter, also referred to as "pDCB") is preferable in terms of availability, reactivity, and the like. Especially preferable.
 ポリハロ芳香族化合物の使用量は、硫黄源の仕込み量1モルに対し、好ましくは0.90~1.50モルであり、より好ましくは0.92~1.10モルであり、更により好ましくは0.95~1.05モルである。上記使用量が上記範囲内であると、分解反応が生じにくく、安定的な重合反応の実施が容易であり、高分子量ポリマーを生成させやすい。 The amount of the polyhalo aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, and even more preferably, with respect to 1 mol of the sulfur source charged. It is 0.95 to 1.05 mol. When the amount used is within the above range, the decomposition reaction is unlikely to occur, the stable polymerization reaction can be easily carried out, and the high molecular weight polymer can be easily produced.
 アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。 Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
(脱水工程)
 脱水工程は、仕込み工程の前に、有機極性溶媒、硫黄源、及びアルカリ金属水酸化物を含有する混合物を含む系内から、水を含む留出物の少なくとも一部を系外に排出する工程である。硫黄源とポリハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって促進又は阻害される等の影響を受ける。したがって、上記水分量が重合反応を阻害しないように、重合の前に脱水処理を行うことにより、重合反応系内の水分量を減らすことが好ましい。
(Dehydration process)
The dehydration step is a step of discharging at least a part of the distillate containing water from the inside of the system containing the mixture containing the organic polar solvent, the sulfur source, and the alkali metal hydroxide to the outside of the system before the preparation step. Is. The polymerization reaction between the sulfur source and the polyhalo aromatic compound is affected by the amount of water present in the polymerization reaction system, such as being promoted or inhibited. Therefore, it is preferable to reduce the amount of water in the polymerization reaction system by performing a dehydration treatment before the polymerization so that the amount of water does not inhibit the polymerization reaction.
 脱水工程では、不活性ガス雰囲気下での加熱により脱水を行うことが好ましい。脱水工程で脱水されるべき水分とは、脱水工程で仕込んだ各原料が含有する水、水性混合物の水媒体、各原料間の反応により副生する水等である。 In the dehydration step, it is preferable to perform dehydration by heating in an inert gas atmosphere. The water to be dehydrated in the dehydration step is water contained in each raw material prepared in the dehydration step, an aqueous medium of an aqueous mixture, water produced as a by-product by the reaction between each raw material, and the like.
 脱水工程における加熱温度は、300℃以下であれば特に限定されず、好ましくは100~250℃である。加熱時間は、15分~24時間であることが好ましく、30分~10時間であることがより好ましい。 The heating temperature in the dehydration step is not particularly limited as long as it is 300 ° C. or lower, and is preferably 100 to 250 ° C. The heating time is preferably 15 minutes to 24 hours, more preferably 30 minutes to 10 hours.
 脱水工程では、水分量が所定の範囲内になるまで脱水する。即ち、脱水工程では、仕込み混合物(後述)における硫黄源(以下、「仕込み硫黄源」又は「有効硫黄源」とも称する)1.0モルに対して、好ましくは0.5~2.4モルになるまで脱水することが望ましい。脱水工程で水分量が少なくなり過ぎた場合は、重合工程に先立つ仕込み工程において水を添加して所望の水分量に調節すればよい。 In the dehydration process, dehydration is performed until the amount of water is within a predetermined range. That is, in the dehydration step, the amount is preferably 0.5 to 2.4 mol with respect to 1.0 mol of the sulfur source (hereinafter, also referred to as "charged sulfur source" or "effective sulfur source") in the charged mixture (described later). It is desirable to dehydrate until it becomes. When the water content becomes too small in the dehydration step, water may be added in the preparation step prior to the polymerization step to adjust the water content to a desired level.
(仕込み工程)
 仕込み工程は、有機極性溶媒、硫黄源、及びポリハロ芳香族化合物を含有する混合物を調製する工程である。仕込み工程において仕込まれる混合物を、「仕込み混合物」とも称する。
(Preparation process)
The charging step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, and a polyhalo aromatic compound. The mixture charged in the charging process is also referred to as "prepared mixture".
 脱水工程を行う場合、仕込み混合物における硫黄源の量(以下、「仕込み硫黄源の量」又は「有効硫黄源の量」とも称する。)は、原料として投入した硫黄源のモル量から、脱水工程で揮散した硫化水素のモル量を引くことによって、算出することができる。 When the dehydration step is performed, the amount of the sulfur source in the charged mixture (hereinafter, also referred to as "the amount of the charged sulfur source" or "the amount of the effective sulfur source") is determined from the molar amount of the sulfur source input as the raw material in the dehydration step. It can be calculated by subtracting the molar amount of hydrogen sulfide volatilized in.
 脱水工程を行う場合、仕込み工程では脱水工程後に系内に残存する混合物に、必要に応じてアルカリ金属水酸化物及び水を添加することが出来る。特に、脱水時に生成した硫化水素の量と脱水時に生成したアルカリ金属水酸化物の量とを考慮したうえで、アルカリ金属水酸化物を添加することが出来る。なお、アルカリ金属水酸化物のモル数は、仕込み工程で添加するアルカリ金属水酸化物のモル数、並びに、脱水工程を行う場合には、脱水工程において必要に応じて添加したアルカリ金属水酸化物のモル数、及び、脱水工程において硫化水素の生成に伴い生成するアルカリ金属水酸化物のモル数に基づいて算出される。硫黄源がアルカリ金属硫化物を含む場合には、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数は、アルカリ金属硫化物のモル数を含めて算出するものとする。硫黄源に硫化水素を使用する場合には、生成するアルカリ金属硫化物のモル数を含めて、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数を算出するものとする。ただし、他の目的で添加されるアルカリ金属水酸化物のモル数、例えば、重合助剤及び/又は相分離剤として有機カルボン酸金属塩を有機カルボン酸とアルカリ金属水酸化物との組み合わせの態様で使用する場合には、中和等の反応で消費したアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。更に、何らかの理由で、無機酸及び有機酸からなる群より選択される少なくとも1種の酸が使用される場合等は、上記少なくとも1種の酸を中和するに必要なアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。 When the dehydration step is performed, the alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step as needed in the preparation step. In particular, the alkali metal hydroxide can be added in consideration of the amount of hydrogen sulfide produced during dehydration and the amount of alkali metal hydroxide generated during dehydration. The number of moles of the alkali metal hydroxide is the number of moles of the alkali metal hydroxide added in the preparation step, and in the case of performing the dehydration step, the alkali metal hydroxide added as necessary in the dehydration step. It is calculated based on the number of moles of the alkali metal hydroxide generated by the production of hydrogen sulfide in the dehydration step. When the sulfur source contains alkali metal sulfide, the number of moles of alkali metal hydroxide per mol of sulfur source (charged sulfur source) shall be calculated including the number of moles of alkali metal sulfide. When hydrogen sulfide is used as the sulfur source, the number of moles of alkali metal hydroxide per mole of sulfur source (charged sulfur source) shall be calculated including the number of moles of alkali metal sulfide produced. .. However, the number of moles of the alkali metal hydroxide added for other purposes, for example, an embodiment of a combination of an organic carboxylic acid metal salt as a polymerization aid and / or an alkali metal hydroxide with an organic carboxylic acid and an alkali metal hydroxide. The number of moles of alkali metal hydroxide consumed in reactions such as neutralization shall not be included in the number of moles of alkali metal hydroxide per mole of sulfur source (prepared sulfur source). .. Further, when at least one acid selected from the group consisting of inorganic acids and organic acids is used for some reason, the alkali metal hydroxide required to neutralize the at least one acid is used. The number of moles shall not be included in the number of moles of alkali metal hydroxide per mole of the sulfur source (charged sulfur source).
 仕込み混合物において、有機極性溶媒及びポリハロ芳香族化合物の各々の使用量は、例えば、硫黄源の仕込み量1モルに対し、有機極性溶媒及びポリハロ芳香族化合物に関する上記説明中で示す範囲に設定される。 In the charged mixture, the amounts of each of the organic polar solvent and the polyhalo aromatic compound used are set in the ranges shown in the above description regarding the organic polar solvent and the polyhalo aromatic compound, for example, with respect to 1 mol of the charged amount of the sulfur source. ..
(第一重合工程)
 第一重合工程は、カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で、有機極性溶媒、硫黄源、水、ポリハロ芳香族化合物、及びアルカリ金属水酸化物を含有する混合物を加熱して重合反応を開始させ、ポリハロ芳香族化合物の転化率が50モル%以上のプレポリマーを含有する反応混合物を生成させる工程である。第一重合工程では、生成するポリマーが均一に有機極性溶媒に溶解した反応系での重合反応が行われる。なお、本明細書において、反応混合物とは、上記重合反応で生じる反応生成物を含む混合物をいい、上記重合反応の開始と同時に生成が始まる。
(First polymerization step)
The first polymerization step consists of a group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates. A mixture containing an organic polar solvent, a sulfur source, water, a polyhalo aromatic compound, and an alkali metal hydroxide is heated in the presence of at least one auxiliary agent of choice to initiate a polymerization reaction to initiate the polyhalo aromatic. This is a step of producing a reaction mixture containing a prepolymer having a conversion rate of a group compound of 50 mol% or more. In the first polymerization step, a polymerization reaction is carried out in a reaction system in which the produced polymer is uniformly dissolved in an organic polar solvent. In the present specification, the reaction mixture means a mixture containing a reaction product produced in the above-mentioned polymerization reaction, and the formation starts at the same time as the start of the above-mentioned polymerization reaction.
 重合サイクル時間を短縮する目的のために、重合反応方式としては、2つ以上の反応槽を用いる方式を用いてもかまわない。 For the purpose of shortening the polymerization cycle time, a method using two or more reaction tanks may be used as the polymerization reaction method.
 第一重合工程では、仕込み工程で調製した混合物、即ち、仕込み混合物を温度170~270℃の温度に加熱して重合反応を開始させ、ポリハロ芳香族化合物の転化率が50モル%以上のプレポリマーを生成させることが好ましい。第一重合工程での重合温度は、180~265℃の範囲から選択することが、副反応や分解反応を抑制する上で好ましい。 In the first polymerization step, the mixture prepared in the charging step, that is, the charged mixture is heated to a temperature of 170 to 270 ° C. to initiate the polymerization reaction, and the prepolymer having a conversion rate of the polyhalo aromatic compound of 50 mol% or more is started. It is preferable to generate. The polymerization temperature in the first polymerization step is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
 ポリハロ芳香族化合物の転化率は、好ましくは50~98%、より好ましくは60~97%、更により好ましくは65~96%、特に好ましくは70~95%である。ポリハロ芳香族化合物の転化率は、反応混合物中に残存するポリハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とポリハロ芳香族化合物の仕込み量と硫黄源の仕込み量に基づいて算出することができる。 The conversion rate of the polyhalo aromatic compound is preferably 50 to 98%, more preferably 60 to 97%, even more preferably 65 to 96%, and particularly preferably 70 to 95%. The conversion rate of the polyhalo aromatic compound is calculated based on the amount of the polyhalo aromatic compound remaining in the reaction mixture determined by gas chromatography, the residual amount, the amount of the polyhalo aromatic compound charged, and the amount of the sulfur source charged. Can be done.
 重合反応の途中で、水及び有機極性溶媒の少なくとも1種の量を変化させてもよい。例えば、重合途中で水を反応系に加えることができる。ただし、第一重合工程において、通常は、仕込み工程で調製した仕込み混合物を用いて重合反応を開始し、且つ第一重合工程における反応を終了させることが好ましい。 During the polymerization reaction, the amount of at least one of water and the organic polar solvent may be changed. For example, water can be added to the reaction system during polymerization. However, in the first polymerization step, it is usually preferable to start the polymerization reaction using the charging mixture prepared in the charging step and end the reaction in the first polymerization step.
 第一重合工程の開始時において、水の含有量は、硫黄源1.0モル当たり0.5~2.4モルであることが好ましく、0.5~2.0モルであることがより好ましく、1.0~1.5モルであることが更により好ましい。第一重合工程の開始時において、水の含有量を上記範囲とすることで、硫黄源を有機極性溶媒に可溶化し、反応を好適に進めることができる。 At the start of the first polymerization step, the water content is preferably 0.5 to 2.4 mol, more preferably 0.5 to 2.0 mol, per 1.0 mol of the sulfur source. , 1.0 to 1.5 mol, even more preferably. By setting the water content within the above range at the start of the first polymerization step, the sulfur source can be solubilized in an organic polar solvent and the reaction can proceed suitably.
 第一段重合工程は、カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で行われる。これにより、本発明に係るPASの製造方法では、高分子量PASが得られやすい。入手性、取り扱い性等の観点から、助剤はカルボン酸塩であることが好ましい。 The first stage polymerization step is a group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates. It is carried out in the presence of at least one of the more selected auxiliaries. As a result, in the method for producing PAS according to the present invention, high molecular weight PAS can be easily obtained. From the viewpoint of availability, handleability, etc., the auxiliary agent is preferably a carboxylate.
 第一段重合工程において助剤が存在している限り、助剤を添加する段階としては、特に限定されず、例えば、脱水工程、仕込み工程、又は第一重合工程が挙げられる。 As long as the auxiliary agent is present in the first-stage polymerization step, the step of adding the auxiliary agent is not particularly limited, and examples thereof include a dehydration step, a preparation step, and a first polymerization step.
 助剤は、カルボン酸塩等の上述の化合物そのものとして反応系内に添加してもよいし、対応する有機酸又は無機酸の形態で反応系内に添加し、反応系内のアルカリ金属水酸化物との中和反応により助剤に該当する化合物を生成させることで、第一段重合工程において存在するようにしてもよい。 The auxiliary agent may be added to the reaction system as the above-mentioned compound itself such as a carboxylate, or may be added to the reaction system in the form of a corresponding organic acid or inorganic acid to carry out alkali metal hydroxylation in the reaction system. It may be present in the first-stage polymerization step by producing a compound corresponding to an auxiliary agent by a neutralization reaction with a substance.
 助剤の量は、硫黄源1モル当たり、好ましくは0.1~50モル%、より好ましくは1~40モル%、更により好ましくは5~30モル%である。助剤の量が上記範囲内であると、高分子量PASがより得られやすい。 The amount of the auxiliary agent is preferably 0.1 to 50 mol%, more preferably 1 to 40 mol%, and even more preferably 5 to 30 mol% per 1 mol of the sulfur source. When the amount of the auxiliary agent is within the above range, the high molecular weight PAS is more likely to be obtained.
(相分離剤添加工程)
 相分離剤添加工程は、第一重合工程後に、前記反応混合物に相分離剤を添加する工程である。相分離剤としては、特に限定されず、例えば、水、有機カルボン酸金属塩、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、及び無極性溶媒からなる群より選ばれる少なくとも1種が挙げられる。中でも、コストが安価で、後処理が容易な水が好ましい。また、有機カルボン酸塩と水との組合せ、特に、アルカリ金属カルボン酸塩と水とを含む混合物も好ましい。上記の塩類は、対応する酸と塩基を別々に添加する態様であっても差しつかえない。
(Phase separator addition step)
The phase separation agent addition step is a step of adding the phase separation agent to the reaction mixture after the first polymerization step. The phase separating agent is not particularly limited, and is, for example, water, an organic carboxylic acid metal salt, an organic sulfonic acid metal salt, an alkali metal halide, an alkaline earth metal halide, an alkaline earth metal salt of an aromatic carboxylic acid, and a phosphoric acid. At least one selected from the group consisting of alkali metal salts, alcohols, and non-polar solvents can be mentioned. Of these, water is preferable because it is inexpensive and easy to post-treat. Further, a combination of an organic carboxylate and water, particularly a mixture containing an alkali metal carboxylate and water is also preferable. The above salts may be in the form of adding the corresponding acid and base separately.
 無極性溶媒としては、例えば、炭化水素が挙げられ、プレポリマー同士の反応を促すために、無極性溶媒はプレポリマーを溶解しない方がより高分子量のPASを得やすいことから、脂肪族炭化水素が好ましく、アルカン(パラフィン系炭化水素類)がより好ましく、直鎖状アルカンが更により好ましい。炭化水素、脂肪族炭化水素、アルカン、及び直鎖状アルカンの炭素数としては、第2重合工程において炭化水素、脂肪族炭化水素、アルカン、及び直鎖状アルカンを溶媒として使用できる限り、特に限定されず、例えば、6~24が挙げられ、取り扱い性等の観点から、7~20が好ましく、8~18がより好ましく、9~16が更により好ましく、10~14が特に好ましい。無極性溶媒の具体例としては、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタン、n-ノナン、n-デカン、n-ドデカン、n-テトラデカン、n-ヘキサデカン、n-オクタデカン、n-エイコサン、n-テトラコサン等が挙げられ、より高分子量のPASを得やすく、取り扱い性、入手性等に優れることから、イソオクタン、n-デカン、及びn-テトラデカンが好ましく、n-デカン及びn-テトラデカンがより好ましい。 Examples of the non-polar solvent include hydrocarbons, and in order to promote the reaction between prepolymers, it is easier to obtain a high-molecular-weight PAS when the non-polar solvent does not dissolve the prepolymer. Therefore, an aliphatic hydrocarbon Is preferable, alkanes (paraffinic hydrocarbons) are more preferable, and linear alkanes are even more preferable. The number of carbon atoms of hydrocarbons, aliphatic hydrocarbons, alkanes, and linear alkanes is particularly limited as long as hydrocarbons, aliphatic hydrocarbons, alkanes, and linear alkanes can be used as solvents in the second polymerization step. However, for example, 6 to 24 are mentioned, and from the viewpoint of handleability and the like, 7 to 20 is preferable, 8 to 18 is more preferable, 9 to 16 is even more preferable, and 10 to 14 is particularly preferable. Specific examples of the non-polar solvent include n-hexane, n-heptane, n-octane, isooctane, n-nonane, n-decane, n-dodecane, n-tetradecane, n-hexadecan, n-octadecan, and n-eicosane. , N-Tetradecane and the like, and since it is easy to obtain a higher molecular weight PAS and is excellent in handleability, availability, etc., isooctane, n-decane, and n-tetradecane are preferable, and n-decane and n-tetradecane are preferable. More preferred.
 相分離剤の使用量は、用いる化合物の種類によって異なるが、有機極性溶媒1kgに対し、通常、1~10モルの範囲内である。特に、第二重合工程における反応系内の水分量が有機極性溶媒1kg当たり4モル超過20モル以下となるように、相分離剤添加工程において相分離剤として水を添加する方法を採用することが好ましい。本発明において、相分離剤は水を含み、相分離剤添加工程における有機極性溶媒に対する水のモル比は、0.5~3.0であり、粒子強度の観点から、好ましくは0.6~2.0であり、より好ましくは0.65~1.5である。相分離剤の使用量を上記範囲とすることで、粒子強度が高いPAS粒子を高収率で製造することができる。 The amount of the phase separation agent used varies depending on the type of compound used, but is usually in the range of 1 to 10 mol with respect to 1 kg of the organic polar solvent. In particular, it is possible to adopt a method of adding water as a phase separation agent in the phase separation agent addition step so that the amount of water in the reaction system in the second polymerization step is more than 4 mol and 20 mol or less per 1 kg of the organic polar solvent. preferable. In the present invention, the phase separation agent contains water, and the molar ratio of water to the organic polar solvent in the phase separation agent addition step is 0.5 to 3.0, preferably 0.6 to 0.6 from the viewpoint of particle strength. It is 2.0, more preferably 0.65 to 1.5. By setting the amount of the phase separator used in the above range, PAS particles having high particle strength can be produced in a high yield.
 なお、相分離剤として、アルカリ金属カルボン酸塩と水とを含む混合物とを用いる場合、この混合物の使用量は、アルカリ金属カルボン酸塩の量が硫黄源1モル当たり30モル以下となるように調整することが好ましい。本実施形態に係る相分離剤の添加方法としては、特に限定されず、例えば、一度に全量を添加する方法や、複数回に分けて添加する方法が挙げられる。 When a mixture containing an alkali metal carboxylate and water is used as the phase separator, the amount of the mixture used is such that the amount of the alkali metal carboxylate is 30 mol or less per 1 mol of the sulfur source. It is preferable to adjust. The method for adding the phase separating agent according to the present embodiment is not particularly limited, and examples thereof include a method of adding the entire amount at a time and a method of adding the phase separating agent in a plurality of times.
(第二重合工程)
 第二重合工程は、相分離剤添加工程後に、重合反応を継続する工程である。第二重合工程では、相分離剤の存在下で反応系内がポリマー濃厚相とポリマー希薄相とに相分離した状態で重合反応を継続する、相分離重合が行われる。具体的には、相分離剤を添加することにより、重合反応系(重合反応混合物)をポリマー濃厚相(溶融PASを主とする相)とポリマー希薄相(有機極性溶媒を主とする相)に相分離させる。
(Second polymerization step)
The second polymerization step is a step of continuing the polymerization reaction after the step of adding the phase separator. In the second polymerization step, phase-separated polymerization is carried out in which the polymerization reaction is continued in a state where the inside of the reaction system is phase-separated into a polymer-rich phase and a polymer-lean phase in the presence of a phase-separating agent. Specifically, by adding a phase separator, the polymerization reaction system (polymerization reaction mixture) becomes a polymer-rich phase (phase mainly composed of molten PAS) and a polymer-lean phase (phase mainly composed of an organic polar solvent). Phase-separate.
 第二重合工程での重合温度については、245~290℃、好ましくは250~285℃、より好ましくは255~280℃に加熱して重合反応を継続する。重合温度は、一定の温度に維持してもよいし、必要に応じて、段階的に昇温又は降温してもよい。重合反応の制御の観点から、一定の温度に維持することが好ましい。重合反応時間は、一般に10分間~72時間の範囲であり、望ましくは30分間~48時間である。 Regarding the polymerization temperature in the second polymerization step, the polymerization reaction is continued by heating to 245 to 290 ° C., preferably 250 to 285 ° C., more preferably 255 to 280 ° C. The polymerization temperature may be maintained at a constant temperature, or may be raised or lowered stepwise as needed. From the viewpoint of controlling the polymerization reaction, it is preferable to maintain a constant temperature. The polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
 収率向上の観点から、第二重合工程後の反応混合物のpHを8~11としてもよく、9~10.5としてもよい。反応混合物のpHを調整する方法としては、特に限定されず、例えば、仕込み工程におけるアルカリ金属水酸化物の含有量を調整する方法や、後からアルカリ金属水酸化物や無機酸及び/又は有機酸を添加する方法が挙げられる。 From the viewpoint of improving the yield, the pH of the reaction mixture after the second polymerization step may be 8 to 11 or 9 to 10.5. The method for adjusting the pH of the reaction mixture is not particularly limited, and for example, a method for adjusting the content of alkali metal hydroxide in the charging step, or a method for adjusting the alkali metal hydroxide, an inorganic acid and / or an organic acid later. Can be mentioned as a method of adding.
(冷却工程)
 冷却工程は、第二重合工程後に、前記反応混合物を冷却する工程である。冷却工程では、生成ポリマーを含有する液相を冷却する。冷却工程において、最大増粘温度より5℃以上高く、且つ250℃未満である温度において反応混合物に冷却剤が添加され、且つ最大増粘温度における冷却速度は、2.2℃/分以上6.0℃/分以下である。
 上記の範囲内の温度で冷却剤の反応混合物への添加を行うとともに、最大増粘温度における冷却速度を上記の範囲内とすることによって、粒状PASを形成するための冷却工程にかかる時間を短縮することができ、且つ、得られる粒状PASの平均粒子径の増大を抑制することができる。
(Cooling process)
The cooling step is a step of cooling the reaction mixture after the second polymerization step. In the cooling step, the liquid phase containing the produced polymer is cooled. In the cooling step, a coolant is added to the reaction mixture at a temperature higher than the maximum thickening temperature by 5 ° C. or higher and lower than 250 ° C., and the cooling rate at the maximum thickening temperature is 2.2 ° C./min or higher. It is 0 ° C./min or less.
By adding the coolant to the reaction mixture at a temperature within the above range and setting the cooling rate at the maximum thickening temperature within the above range, the time required for the cooling step for forming the granular PAS is shortened. And it is possible to suppress an increase in the average particle size of the obtained granular PAS.
 冷却速度の下限は、2.2℃/分以上であり、好ましくは2.3℃/分以上であり、より好ましくは2.4℃/分以上であり、更により好ましくは2.5℃/分以上であり、特に好ましくは2.6℃/分以上である。上記冷却速度が2.2℃/分以上であると、粒状PASを形成するための冷却工程にかかる時間を短縮することができ、且つ、得られる粒状PASの平均粒子径の増大を抑制することができる。上記冷却速度の上限は、特に限定されず、例えば、6.0℃/分以下でよく、5.0℃/分以下でも4.0℃/分以下でも3.9℃/分以下でもよい。 The lower limit of the cooling rate is 2.2 ° C./min or more, preferably 2.3 ° C./min or more, more preferably 2.4 ° C./min or more, and even more preferably 2.5 ° C./min. Minutes or more, particularly preferably 2.6 ° C./min or more. When the cooling rate is 2.2 ° C./min or more, the time required for the cooling step for forming the granular PAS can be shortened, and the increase in the average particle size of the obtained granular PAS can be suppressed. Can be done. The upper limit of the cooling rate is not particularly limited, and may be, for example, 6.0 ° C./min or less, 5.0 ° C./min or less, 4.0 ° C./min or less, or 3.9 ° C./min or less.
 冷却工程において、冷却剤の反応混合物への添加が上記の所定の範囲内の温度で行われ、且つ最大増粘温度における冷却速度が上記の範囲である限り、冷却速度のプロファイルは特に限定されない。よって、最大増粘温度以外の温度における冷却速度は、例えば、自然空冷による冷却速度でもよく、冷却工程の時間を短縮する観点からは、最大増粘温度における冷却速度と同一でもよい。また、例えば、後述する冷却剤を用いて冷却を行う場合、反応缶の容量が限られているために冷却剤の添加量が制限されるときには、まず、自然空冷を行い、その後、反応缶の内容物の温度が最大増粘温度の近傍まで低下してきたら、最大増粘温度を超える温度における冷却速度を最大増粘温度における冷却速度と同一にする冷却速度調節を行ってもよい。この際、上記冷却速度調節を行う温度としては、反応缶の容量等に応じて、適宜、設定すればよく、例えば、最大増粘温度超(最大増粘温度+20℃)以下が挙げられ、(最大増粘温度+5℃)以上(最大増粘温度+15℃)以下でもよく、(最大増粘温度+8℃)以上(最大増粘温度+12℃)以下でもよく、最大増粘温度+10℃でもよい。 In the cooling step, the profile of the cooling rate is not particularly limited as long as the coolant is added to the reaction mixture at a temperature within the above-mentioned predetermined range and the cooling rate at the maximum thickening temperature is within the above range. Therefore, the cooling rate at a temperature other than the maximum thickening temperature may be, for example, a cooling rate by natural air cooling, and may be the same as the cooling rate at the maximum thickening temperature from the viewpoint of shortening the time of the cooling step. Further, for example, in the case of cooling using a coolant described later, when the amount of the coolant added is limited due to the limited capacity of the reaction can, first natural air cooling is performed, and then the reaction can is cooled. When the temperature of the contents drops to the vicinity of the maximum thickening temperature, the cooling rate may be adjusted so that the cooling rate at a temperature exceeding the maximum thickening temperature is the same as the cooling rate at the maximum thickening temperature. At this time, the temperature for adjusting the cooling rate may be appropriately set according to the capacity of the reaction can, and for example, the maximum thickening temperature (maximum thickening temperature + 20 ° C.) or less can be mentioned. The maximum thickening temperature + 5 ° C.) or higher (maximum thickening temperature + 15 ° C.) may be used, the (maximum thickening temperature + 8 ° C.) or higher (maximum thickening temperature + 12 ° C.) or lower, or the maximum thickening temperature + 10 ° C. may be used.
 冷却工程において、最大増粘温度より5℃以上高く、且つ250℃未満である温度において反応混合物に冷却剤が添加される。このため、最大増粘温度における冷却速度が2.2℃/分以上6.0℃/分以下となるような冷却方法は、少なくとも冷却剤の反応混合物への添加を含む。冷却剤の添加による冷却と、他の冷却方法とを組み合わせて実施してもよい。他の冷却方法は、特に限定されず、例えば、扇風機、サーキュレーター等の気流発生装置による強制空冷;重合反応槽のジャケットにおける冷媒の循環;リフラックスコンデンサーによる、反応混合物中の気相の還流等が挙げられる。中でも、重合反応槽の壁面からの冷却による該壁面へのPAS付着を防止しやすい点等から、反応混合物への冷却剤の添加が好ましい。冷却剤としては、特に限定されず、後処理工程においてPASから分離しやすい点から、水及び/又は氷;有機極性溶媒(例えば、NMP等の有機アミド溶媒)が好ましく、比熱や蒸発潜熱が大きい点から、水及び/又は氷がより好ましい。また、反応混合物の相分離性が向上しやすく、PASの収率が向上しやすい点からも、冷却剤としては、水及び/又氷がより好ましい。 In the cooling step, the coolant is added to the reaction mixture at a temperature that is 5 ° C. or higher and less than 250 ° C. above the maximum thickening temperature. Therefore, a cooling method such that the cooling rate at the maximum thickening temperature is 2.2 ° C./min or more and 6.0 ° C./min or less includes at least addition of a coolant to the reaction mixture. Cooling by adding a coolant may be carried out in combination with other cooling methods. Other cooling methods are not particularly limited, and for example, forced air cooling by an air flow generator such as a fan or a circulator; circulation of the refrigerant in the jacket of the polymerization reaction tank; reflux of the gas phase in the reaction mixture by the reflux condenser, etc. Can be mentioned. Above all, it is preferable to add a coolant to the reaction mixture because it is easy to prevent PAS from adhering to the wall surface due to cooling from the wall surface of the polymerization reaction tank. The coolant is not particularly limited, and water and / or ice; an organic polar solvent (for example, an organic amide solvent such as NMP) is preferable from the viewpoint of easy separation from PAS in the post-treatment step, and the specific heat and latent heat of evaporation are large. From the point of view, water and / or ice is more preferred. Further, water and / or ice are more preferable as the coolant from the viewpoint that the phase separation property of the reaction mixture is easily improved and the yield of PAS is easily improved.
 最大増粘温度において、反応混合物における冷却剤の含有量は、量に応じた十分な冷却が行われやすい点から、前記硫黄源1モルに対し、好ましくは2.7モル以上6.0モル以下であり、より好ましくは3.0モル以上5.5モル以下であり、更により好ましくは4.0モル以上5.0モル以下である。 At the maximum thickening temperature, the content of the coolant in the reaction mixture is preferably 2.7 mol or more and 6.0 mol or less with respect to 1 mol of the sulfur source, from the viewpoint that sufficient cooling is easily performed according to the amount. It is more preferably 3.0 mol or more and 5.5 mol or less, and even more preferably 4.0 mol or more and 5.0 mol or less.
 本明細書において、最大増粘温度とは、前記第二重合工程後の前記反応混合物を自然空冷により255℃から冷却する際、240℃から220℃までの間で該反応混合物の撹拌トルクを測定し、該撹拌トルクが最大となる温度をいう。 In the present specification, the maximum thickening temperature refers to the stirring torque of the reaction mixture measured between 240 ° C. and 220 ° C. when the reaction mixture after the second polymerization step is cooled from 255 ° C. by natural air cooling. The temperature at which the stirring torque is maximized.
(後処理工程(分離工程、洗浄工程、回収工程等))
 本実施形態におけるPASの製造方法においては、重合反応後の後処理工程を、常法によって、例えば、特開2016-056232号公報に記載の方法によって、行うことができる。
(Post-treatment process (separation process, cleaning process, recovery process, etc.))
In the method for producing PAS in the present embodiment, the post-treatment step after the polymerization reaction can be carried out by a conventional method, for example, by the method described in JP-A-2016-0562332.
(得られるPAS)
 本実施形態におけるPASの製造方法によって得られるPASは、平均粒子径が好ましくは2000μm以下、より好ましくは1800μm以下、更により好ましくは1500μm以下である。上記PASの平均粒子径の下限は、特に限定されず、例えば、200μm以上でよく、300μm以上でも400μm以上でもよい。なお、本明細書において、平均粒子径とは、篩分により、後述の実施例に記載の通りにして測定した値をいう。
(Obtained PAS)
The PAS obtained by the method for producing PAS in the present embodiment has an average particle size of preferably 2000 μm or less, more preferably 1800 μm or less, and even more preferably 1500 μm or less. The lower limit of the average particle size of the PAS is not particularly limited, and may be, for example, 200 μm or more, 300 μm or more, or 400 μm or more. In this specification, the average particle size means a value measured by sieving as described in Examples described later.
 本実施形態におけるPASの製造方法によって得られるPASは、温度310℃及び剪断速度1,216sec-1で測定した溶融粘度が、好ましくは1000Pa・s以下、より好ましくは300Pa・s以下、更により好ましくは150Pa・s以下である。上記PASの上記溶融粘度の下限は、特に限定されず、例えば、1Pa・s以上でよく、5Pa・s以上でも8Pa・s以上でもよい。なお、本明細書において、溶融粘度とは、PASの乾燥ポリマー約20gを用いてキャピログラフを使用して、上記温度及び剪断速度において測定した値をいう。 The PAS obtained by the method for producing PAS in the present embodiment has a melt viscosity measured at a temperature of 310 ° C. and a shear rate of 1,216 sec -1 , preferably 1000 Pa · s or less, more preferably 300 Pa · s or less, and even more preferably. Is 150 Pa · s or less. The lower limit of the melt viscosity of the PAS is not particularly limited, and may be, for example, 1 Pa · s or more, 5 Pa · s or more, or 8 Pa · s or more. In the present specification, the melt viscosity means a value measured at the above temperature and a shear rate using a capillograph using about 20 g of a dry polymer of PAS.
 本実施形態におけるPASの製造方法により得られるPASは、そのまま、又は酸化架橋させた後、単独で、又は所望により各種無機充填剤、繊維状充填剤、各種合成樹脂を配合し、種々の射出成形品又はシート、フィルム、繊維、及びパイプ等の押出成形品に成形することができる。 The PAS obtained by the method for producing PAS in the present embodiment can be used as it is, or after being oxidatively crosslinked, it can be used alone or, if desired, by blending various inorganic fillers, fibrous fillers and various synthetic resins, and various injection moldings. It can be molded into products or extruded products such as sheets, films, fibers, and pipes.
 本実施形態におけるPASの製造方法において、PASは、特に限定されず、PPSであることが好ましい。 In the method for producing PAS in the present embodiment, PAS is not particularly limited and is preferably PPS.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the disclosed technical means is also the present invention. Included in the technical scope. In addition, all the documents described in the present specification are incorporated by reference.
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。実施例及び比較例における操作は、特に断らない限り、室温で行った。また、本明細書において、重量平均分子量(以下、「Mw」ともいう。)とは、ゲルパーミエーションクロマトグラフィにより測定されたポリスチレン換算の重量平均分子量をいう。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the examples. Unless otherwise specified, the operations in Examples and Comparative Examples were carried out at room temperature. Further, in the present specification, the weight average molecular weight (hereinafter, also referred to as “Mw”) means a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography.
(1)溶融粘度
 PASの溶融粘度は、キャピラリーとして1.0mmφ、長さ10.0mmのノズルを装着した(株)東洋精機製作所製キャピログラフ(登録商標)1Dにより測定した。設定温度を310℃とした。ポリマー試料を装置内に導入し、5分間保持した後、剪断速度1,200sec-1で溶融粘度を測定した。
(1) Melt Viscosity The melt viscosity of PAS was measured by Capilliograph (registered trademark) 1D manufactured by Toyo Seiki Seisakusho Co., Ltd., which was equipped with a nozzle having a diameter of 1.0 mm and a length of 10.0 mm as a capillary. The set temperature was 310 ° C. The polymer sample was introduced into the apparatus, held for 5 minutes, and then the melt viscosity was measured at a shear rate of 1,200 sec -1.
(2)平均粒子径
 PASの平均粒子径は、使用篩として、篩目開き2,800μm(7メッシュ(目数/インチ))、篩目開き1,410μm(12メッシュ(目数/インチ))、篩目開き1,000μm(16メッシュ(目数/インチ))、篩目開き710μm(24メッシュ(目数/インチ))、篩目開き500μm(32メッシュ(目数/インチ))、篩目開き250μm(60メッシュ(目数/インチ))、篩目開き150μm(100メッシュ(目数/インチ))、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))、篩目開き38μm(400メッシュ(目数/インチ))の篩を用いた篩分法により測定し、各篩の篩上物の質量から、累積質量が50%質量となる時の平均粒径を算出した。
(2) Average particle size The average particle size of PAS is 2,800 μm (7 meshes (mesh / inch)) and 1,410 μm (12 mesh (mesh / inch)) as the sieve used. , Sift opening 1,000 μm (16 mesh (mesh / inch)), Simming opening 710 μm (24 mesh (mesh / inch)), Simming opening 500 μm (32 mesh (mesh / inch)), Sift Opening 250 μm (60 mesh (mesh / inch)), sieving opening 150 μm (100 mesh (mesh / inch)), sieving opening 105 μm (145 mesh (mesh / inch)), sieving opening 75 μm (200 mesh) (Number of meshes / inch)), measured by the sieving method using a sieve with a mesh size of 38 μm (400 mesh (number of meshes / inch)), and the cumulative mass is 50% mass from the mass of the sieving material of each sieving. The average particle size at the time of
[実施例1]
(脱水工程)
 20リットルのオートクレーブに、NMP6,005g、水硫化ナトリウム水溶液(NaSH:純度62.24質量%)2,003g、水酸化ナトリウム(NaOH:純度73.40質量%)1,071g、及び酢酸ナトリウム180gを仕込んだ。該オートクレーブ内を窒素ガスで置換後、約4時間かけて、撹拌機により回転数250rpmで撹拌しながら、徐々に200℃まで昇温し、水(HO)902g、NMP763g、及び硫化水素(HS)15gを留出させた。
[Example 1]
(Dehydration process)
In a 20 liter autoclave, add 6,005 g of NMP, 2,003 g of sodium hydrosulfide aqueous solution (NaSH: purity 62.24% by mass), 1,071 g of sodium hydroxide (NaOH: purity 73.40% by mass), and 180 g of sodium acetate. I prepared it. After replacing the inside of the autoclave with nitrogen gas, over a period of about 4 hours while stirring at a rotation speed of 250rpm by a stirrer, the temperature was gradually raised to 200 ° C., water (H 2 O) 902g, NMP763g , and hydrogen sulfide ( H 2 S) to distill 15 g.
(第一重合工程)
 上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、pDCB3,244g、NMP3,302g、水酸化ナトリウム8g、及び水107gを加え、撹拌しながら、220℃まで昇温後、260℃まで1.5時間で昇温し、第一重合工程を行った。缶内のNMP/仕込み硫黄源(以下、「仕込みS」と略記する。)の比率(g/モル)は、391、pDCB/仕込みS(モル/モル)は1.010、HO/仕込みS(モル/モル)は1.50であった。第一重合工程におけるpDCBの転化率は、93%であった。
(First polymerization step)
After the dehydration step, the contents of the autoclave are cooled to 150 ° C., pDCB 3,244 g, NMP 3,302 g, sodium hydroxide 8 g, and water 107 g are added, and the temperature is raised to 220 ° C. with stirring, and then to 260 ° C. 1 The temperature was raised in 5 hours, and the first polymerization step was performed. The ratio (g / mol) of NMP / charged sulfur source (hereinafter abbreviated as “prepared S”) in the can is 391, pDCB / charged S (mol / mol) is 1.010, and H 2 O / charged. S (molar / mol) was 1.50. The conversion rate of pDCB in the first polymerization step was 93%.
(相分離剤添加工程)
 第一重合工程終了後、オートクレーブの内容物を撹拌しながら水酸化ナトリウム60g及びイオン交換水445gを圧入し、撹拌機の回転数を400rpmに上げた。HO/NMP(モル/モル)は0.67、HO/仕込みS(モル/モル)は2.63であった。
(Phase separator addition step)
After the completion of the first polymerization step, 60 g of sodium hydroxide and 445 g of ion-exchanged water were press-fitted while stirring the contents of the autoclave, and the rotation speed of the stirrer was increased to 400 rpm. H 2 O / NMP (mol / mol) was 0.67, and H 2 O / charged S (mol / mol) was 2.63.
(第二重合工程)
 イオン交換水の圧入後、オートクレーブの内容物を265℃まで昇温し、2.5時間反応させて第二重合工程を行った。
(Second polymerization step)
After press-fitting the ion-exchanged water, the contents of the autoclave were heated to 265 ° C. and reacted for 2.5 hours to carry out the second polymerization step.
(冷却工程)
 第二重合工程の終了後、自然空冷により冷却速度0.56℃/分で265℃からオートクレーブの内容物を冷却し、該内容物の温度が最大増粘温度+10℃となった時点で、HO/仕込みS(モル/モル)が2.63から5.00となるようにオートクレーブ内に室温の水を圧入して、冷却速度を上昇させ、その後、室温まで冷却を行った。なお、最大増粘温度における冷却速度は、2.6℃/分であった。
(Cooling process)
After the completion of the second polymerization step, the contents of the autoclave are cooled from 265 ° C. at a cooling rate of 0.56 ° C./min by natural air cooling, and when the temperature of the contents reaches the maximum thickening temperature + 10 ° C., H Water at room temperature was press-fitted into the autoclave so that 2 O / charged S (mol / mol) was 2.63 to 5.00 to increase the cooling rate, and then cooling was performed to room temperature. The cooling rate at the maximum thickening temperature was 2.6 ° C./min.
 なお、最大増粘温度の測定方法は以下の通りである。高分子量PASの製造が可能な、相分離重合系を伴う、重合反応終了後の反応缶内では、PASは溶融状態で存在し、相分離剤によって濃厚相と希薄相に相分離していること、が知られている。そして、系を撹拌下に冷却すると、PASは溶融状態から固形化し、粉状あるいは粒子状あるいは顆粒状の固体として、懸濁した状態で存在するようになるが、この過程で系の粘度変化が起こる。即ち、溶融したPASを含む分散系を撹拌下に冷却すると、冷却に伴うPASの増粘により系全体の見掛け粘度が次第に増大し、ある温度に達すると、却って系全体の見掛け粘度は低下するようになる。この系の最大増粘温度は、一定撹拌下における撹拌トルクあるいは撹拌機への供給動力として検出され得る。最大増粘温度は、クランプ電力計CW140(横河電機株式会社)をオートクレーブの撹拌機モータに設置して測定した消費電力の極大値に基づいて前もって測定した。 The method for measuring the maximum thickening temperature is as follows. In the reaction can after the completion of the polymerization reaction, which is accompanied by a phase-separated polymerization system capable of producing a high-molecular-weight PAS, the PAS exists in a molten state and is phase-separated into a concentrated phase and a dilute phase by a phase separating agent. ,It has been known. Then, when the system is cooled under stirring, PAS solidifies from the molten state and exists in a suspended state as a powdery, particulate or granular solid, but in this process, the viscosity of the system changes. Occur. That is, when the dispersion system containing the molten PAS is cooled under stirring, the apparent viscosity of the entire system gradually increases due to the thickening of the PAS accompanying the cooling, and when a certain temperature is reached, the apparent viscosity of the entire system decreases. become. The maximum thickening temperature of this system can be detected as a stirring torque under constant stirring or as a power supply to the stirrer. The maximum thickening temperature was measured in advance based on the maximum value of power consumption measured by installing a clamp wattmeter CW140 (Yokogawa Electric Co., Ltd.) in an autoclave stirrer motor.
(後処理工程)
 冷却工程後、オートクレーブの内容物を目開き径150μm(100メッシュ)のスクリーンで篩分けし、アセトン及びイオン交換水で洗浄後、酢酸水溶液で洗浄し、一昼夜乾燥を行い、粒状PPSを得た。冷却工程における条件等を表1に示し、粒状ポリマーの物性等を表2に示す(以下、同様)。
(Post-treatment process)
After the cooling step, the contents of the autoclave were sieved with a screen having an opening diameter of 150 μm (100 mesh), washed with acetone and ion-exchanged water, washed with an acetic acid aqueous solution, and dried for 24 hours to obtain granular PPS. Table 1 shows the conditions and the like in the cooling step, and Table 2 shows the physical characteristics and the like of the granular polymer (the same applies hereinafter).
[実施例2]
 冷却工程において、室温の水に代えて氷水をオートクレーブ内に圧入し、更に、氷水の圧入と同時に、扇風機によるオートクレーブの強制空冷を開始した以外は、実施例1と同様にして、粒状PPSを得た。なお、最大増粘温度における冷却速度は、3.9℃/分であった。
[Example 2]
In the cooling step, granular PPS was obtained in the same manner as in Example 1 except that ice water was press-fitted into the autoclave instead of room temperature water, and forced air cooling of the autoclave was started at the same time as the press-fitting of ice water. It was. The cooling rate at the maximum thickening temperature was 3.9 ° C./min.
[実施例3]
 室温の水を圧入する温度を、最大増粘温度+20℃に変えることの他は、実施例1と同様にして、粒状PPSを得た。なお、最大増粘温度における冷却速度は、2.8℃/分であった。
[Example 3]
Granular PPS was obtained in the same manner as in Example 1 except that the temperature at which water at room temperature was press-fitted was changed to the maximum thickening temperature + 20 ° C. The cooling rate at the maximum thickening temperature was 2.8 ° C./min.
[実施例4]
 室温の水を圧入する温度を、最大増粘温度+5℃に変えることの他は、実施例1と同様にして、粒状PPSを得た。なお、最大増粘温度における冷却速度は、2.7℃/分であった。
[Example 4]
Granular PPS was obtained in the same manner as in Example 1 except that the temperature at which water at room temperature was press-fitted was changed to the maximum thickening temperature + 5 ° C. The cooling rate at the maximum thickening temperature was 2.7 ° C./min.
[比較例1]
 冷却工程において、自然空冷により冷却速度0.56℃/分で265℃から室温までオートクレーブの内容物を冷却した以外は、実施例1と同様にして、粒状PPSを得た。なお、最大増粘温度における冷却速度は、0.56℃/分であった。
[Comparative Example 1]
In the cooling step, granular PPS was obtained in the same manner as in Example 1 except that the contents of the autoclave were cooled from 265 ° C. to room temperature at a cooling rate of 0.56 ° C./min by natural air cooling. The cooling rate at the maximum thickening temperature was 0.56 ° C./min.
[比較例2]
 冷却工程における水の含有量が増加したことによる影響を確認するため、冷却工程において、第二重合工程の終了後ただちに、オートクレーブ内に室温の水を圧入して、HO/仕込みS(モル/モル)を2.63から5.00とし、また、最大増粘温度における冷却速度が比較例1における値に近い0.54℃/分であった以外は、実施例1と同様にして、粒状PPSを得た。
[Comparative Example 2]
In order to confirm the effect of the increase in water content in the cooling step, in the cooling step, immediately after the completion of the second polymerization step, room temperature water was press-fitted into the autoclave to H 2 O / charge S (mol). / Mol) was set to 2.63 to 5.00, and the same as in Example 1 except that the cooling rate at the maximum thickening temperature was 0.54 ° C./min, which was close to the value in Comparative Example 1. Granular PPS was obtained.
[比較例3]
 冷却速度による影響を確認するため、冷却工程において、HO/仕込みS(モル/モル)が2.63から5.00となるようにオートクレーブ内に室温の水を圧入する代わりに、扇風機によるオートクレーブの強制空冷を行い、また、最大増粘温度における冷却速度が1.7℃/分であった以外は、実施例1と同様にして、粒状PPSを得た。
[Comparative Example 3]
In order to confirm the effect of the cooling rate, in the cooling process, instead of press-fitting room temperature water into the autoclave so that H 2 O / charged S (mol / mol) becomes 2.63 to 5.00, a fan is used. Granular PPS was obtained in the same manner as in Example 1 except that the autoclave was forcibly air-cooled and the cooling rate at the maximum thickening temperature was 1.7 ° C./min.
[比較例4]
 粒状PASの平均粒子径の増大を抑制するために必要な冷却速度を確認するため、冷却工程において、水の圧入スピードを調整した結果、最大増粘温度における冷却速度が1.8℃/分であった以外は、実施例1と同様にして、粒状PPSを得た。
[Comparative Example 4]
As a result of adjusting the press-fitting speed of water in the cooling step in order to confirm the cooling rate required to suppress the increase in the average particle size of the granular PAS, the cooling rate at the maximum thickening temperature was 1.8 ° C./min. Granular PPS was obtained in the same manner as in Example 1 except that it was present.
[比較例5]
 粒状PASの平均粒子径の増大を抑制するために必要な冷却剤の添加温度を確認するため、冷却工程において水添加温度を250℃に加えるとともに、水の添加後に扇風機によるオートクレーブの強制空冷を行うこと以外は、実施例1と同様にして、粒状PPSを得た。
[Comparative Example 5]
In order to confirm the addition temperature of the coolant required to suppress the increase in the average particle size of the granular PAS, the water addition temperature is added to 250 ° C. in the cooling step, and after the water is added, the autoclave is forcibly air-cooled by a fan. Granular PPS was obtained in the same manner as in Example 1 except for the above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2から明らかな通り、本発明に係るPASの製造方法によれば、粒状PASを形成するための冷却工程にかかる時間を短縮することができ、且つ、得られる粒状PASの平均粒子径の増大を抑制することができる。 As is clear from Tables 1 and 2, according to the method for producing PAS according to the present invention, the time required for the cooling step for forming granular PAS can be shortened, and the average particle size of the obtained granular PAS can be shortened. Can be suppressed from increasing.

Claims (4)

  1.  カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で、有機極性溶媒、硫黄源、水、ポリハロ芳香族化合物、及びアルカリ金属水酸化物を含有する混合物を加熱して重合反応を開始させ、ポリハロ芳香族化合物の転化率が50モル%以上のプレポリマーを含有する反応混合物を生成させる第一重合工程と、
     前記第一重合工程後に、前記反応混合物に相分離剤を添加する相分離剤添加工程と、
     前記相分離剤添加工程後に、重合反応を継続する第二重合工程と、
     前記第二重合工程後に、前記反応混合物を冷却する冷却工程と、を含み、
    前記冷却工程において、最大増粘温度より5℃以上高く、且つ250℃未満である温度において前記反応混合物に前記冷却剤が添加され、且つ、最大増粘温度における冷却速度は2.2℃/分以上6.0℃/分以下であるポリアリーレンスルフィドの製造方法。
    At least one selected from the group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates. In the presence of the auxiliary agent, a mixture containing an organic polar solvent, a sulfur source, water, a polyhalo aromatic compound, and an alkali metal hydroxide is heated to initiate a polymerization reaction, and the conversion rate of the polyhalo aromatic compound is increased. The first polymerization step to produce a reaction mixture containing 50 mol% or more of prepolymer, and
    After the first polymerization step, a phase separation agent addition step of adding a phase separation agent to the reaction mixture,
    After the phase separation agent addition step, a second polymerization step in which the polymerization reaction is continued, and
    A cooling step of cooling the reaction mixture after the second polymerization step is included.
    In the cooling step, the coolant is added to the reaction mixture at a temperature higher than the maximum thickening temperature by 5 ° C. or more and lower than 250 ° C., and the cooling rate at the maximum thickening temperature is 2.2 ° C./min. A method for producing a polyarylene sulfide having a temperature of 6.0 ° C./min or less.
  2.  前記冷却工程において、前記反応混合物に冷却剤を添加する請求項1に記載のポリアリーレンスルフィドの製造方法。 The method for producing polyarylene sulfide according to claim 1, wherein a coolant is added to the reaction mixture in the cooling step.
  3.  前記冷却剤は水及び/又氷である請求項2に記載のポリアリーレンスルフィドの製造方法。 The method for producing polyarylene sulfide according to claim 2, wherein the coolant is water and / or ice.
  4.  前記最大増粘温度において、前記反応混合物における冷却剤の含有量は、前記硫黄源1モルに対し2.7モル以上6.0モル以下である請求項2又は3に記載のポリアリーレンスルフィドの製造方法。 The production of polyarylene sulfide according to claim 2 or 3, wherein at the maximum thickening temperature, the content of the coolant in the reaction mixture is 2.7 mol or more and 6.0 mol or less with respect to 1 mol of the sulfur source. Method.
PCT/JP2020/047030 2019-12-26 2020-12-16 Method for producing polyarylene sulfide WO2021131985A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021567346A JP7357695B2 (en) 2019-12-26 2020-12-16 Method for producing polyarylene sulfide
KR1020227021415A KR20220107236A (en) 2019-12-26 2020-12-16 Method for preparing polyarylene sulfide
US17/757,811 US20230033026A1 (en) 2019-12-26 2020-12-16 Method for producing polyarylene sulfide
CN202080081689.9A CN114787241B (en) 2019-12-26 2020-12-16 Method for producing polyarylene sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237137 2019-12-26
JP2019-237137 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131985A1 true WO2021131985A1 (en) 2021-07-01

Family

ID=76573251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047030 WO2021131985A1 (en) 2019-12-26 2020-12-16 Method for producing polyarylene sulfide

Country Status (5)

Country Link
US (1) US20230033026A1 (en)
JP (1) JP7357695B2 (en)
KR (1) KR20220107236A (en)
CN (1) CN114787241B (en)
WO (1) WO2021131985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029328A1 (en) * 2001-09-27 2003-04-10 Kureha Chemical Industry Company, Limited Process for production of polyarylene sulfide
JP2003246858A (en) * 2002-02-25 2003-09-05 Toray Ind Inc Method for producing polyarylene sulfide resin
JP2004051732A (en) * 2002-07-18 2004-02-19 Kureha Chem Ind Co Ltd Method for producing polyarylene sulfide
WO2018147233A1 (en) * 2017-02-07 2018-08-16 株式会社クレハ Method for producing particulate poly(arylene sulfide), and particulate poly(arylene sulfide)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153264A (en) * 1988-10-25 1992-10-06 Kureha Kagaku Kogyo K.K. Poly(arylene thioether) block copolymer and production process thereof
US5153279A (en) * 1988-10-25 1992-10-06 Kureha Kagaku Kogyo K.K. Poly(arylene thioether) block copolymer and production process thereof
US5312894A (en) * 1992-04-30 1994-05-17 Kureha Kagaku Kogyo K.K. Granular high-melt-stable poly(arylene thioether-ketone) and production process thereof
JP5196458B2 (en) 1999-07-21 2013-05-15 東レ株式会社 Method for producing granular polyarylene sulfide resin
CN101161726B (en) * 2007-09-28 2010-10-13 深圳市科聚新材料有限公司 Highly-conductive polyphenylene sulfide composite material and method for making same
CN101387017B (en) * 2008-10-31 2010-12-29 吉林大学 Method for preparing modified polyetheretherketone fiber
CN102675640B (en) * 2011-03-18 2014-06-25 四川得阳工程塑料开发有限公司 Method for controlling process conditions for production and synthesis of polyphenylene sulfide
CN102386384B (en) * 2011-11-28 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 Spherical hard carbon lithium ion battery cathode material and preparation method thereof
CN105544000B (en) * 2015-12-21 2018-04-10 苏州金泉新材料股份有限公司 High-temperature oxidation resistant composite Nano PPS/Ti SiOx chopped fibers and preparation method thereof
CN107170966B (en) * 2017-05-04 2019-08-27 超威电源有限公司 A kind of power lead acid battery magnetic force mixing paste technology
CN108997666B (en) * 2018-07-19 2020-11-17 浙江工业大学 Polymer microporous foam material with double-peak pore structure and preparation method thereof
CN108854601A (en) * 2018-07-31 2018-11-23 合肥峰腾节能科技有限公司 A kind of preparation method of farm's air cleaning film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029328A1 (en) * 2001-09-27 2003-04-10 Kureha Chemical Industry Company, Limited Process for production of polyarylene sulfide
JP2003246858A (en) * 2002-02-25 2003-09-05 Toray Ind Inc Method for producing polyarylene sulfide resin
JP2004051732A (en) * 2002-07-18 2004-02-19 Kureha Chem Ind Co Ltd Method for producing polyarylene sulfide
WO2018147233A1 (en) * 2017-02-07 2018-08-16 株式会社クレハ Method for producing particulate poly(arylene sulfide), and particulate poly(arylene sulfide)

Also Published As

Publication number Publication date
CN114787241A (en) 2022-07-22
CN114787241B (en) 2024-08-09
JPWO2021131985A1 (en) 2021-07-01
KR20220107236A (en) 2022-08-02
US20230033026A1 (en) 2023-02-02
JP7357695B2 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
JP5623277B2 (en) Method for producing granular polyarylene sulfide
JP5221877B2 (en) Process for producing polyarylene sulfide
JP5731196B2 (en) Process for producing polyarylene sulfide having a reduced content of terminal halogen groups
JP6420668B2 (en) Method for producing polyarylene sulfide and polyarylene sulfide
JP5189293B2 (en) Branched polyarylene sulfide resin, process for producing the same, and use thereof as a polymer modifier
CN108602954B (en) Method for producing granular polyarylene sulfide, method for increasing average particle diameter of granular polyarylene sulfide, method for improving particle strength of granular polyarylene sulfide, and granular polyarylene sulfide
KR101940547B1 (en) Method for preparing of polyphenylene sulfide and highly viscous polyphenylene sulfide
JPWO2013147141A1 (en) Granular polyarylene sulfide and process for producing the same
KR102094448B1 (en) Method for preparing polyarylene sulfide
JP6306601B2 (en) Branched polyarylene sulfide resin, process for producing the same, and use thereof as a polymer modifier
JP6784782B2 (en) Method for producing granular polyarylene sulfide and granular polyarylene sulfide
JP2016108488A (en) Fine particulate high branched type polyarylene sulfide and manufacturing method therefor, and high molecule modifier containing the polyarylene sulfide
CN110637046B (en) Process for producing polyarylene sulfide
JP7357695B2 (en) Method for producing polyarylene sulfide
KR20190074797A (en) Method for preparing polyarylene sulfide
JP2003176357A (en) Method for producing polyarylene sulfide film
JP6889271B2 (en) Method for producing polyarylene sulfide
JP7394987B2 (en) Method for producing polyarylene sulfide
CN110446741B (en) Process for producing polyarylene sulfide
WO2020121785A1 (en) Method for producing polyarylene sulfide
WO2021192413A1 (en) Method for producing polyarylene sulfide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227021415

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021567346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908006

Country of ref document: EP

Kind code of ref document: A1