WO2021131441A1 - Method for producing cholesteric liquid crystal layer - Google Patents

Method for producing cholesteric liquid crystal layer Download PDF

Info

Publication number
WO2021131441A1
WO2021131441A1 PCT/JP2020/043231 JP2020043231W WO2021131441A1 WO 2021131441 A1 WO2021131441 A1 WO 2021131441A1 JP 2020043231 W JP2020043231 W JP 2020043231W WO 2021131441 A1 WO2021131441 A1 WO 2021131441A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
chiral agent
composition
spiral
crystal layer
Prior art date
Application number
PCT/JP2020/043231
Other languages
French (fr)
Japanese (ja)
Inventor
卓弘 林
市橋 光芳
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227019560A priority Critical patent/KR20220098776A/en
Priority to JP2021567075A priority patent/JP7420833B2/en
Priority to CN202080086871.3A priority patent/CN114868049A/en
Publication of WO2021131441A1 publication Critical patent/WO2021131441A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal

Definitions

  • This disclosure relates to a method for manufacturing a cholesteric liquid crystal layer.
  • liquid crystal change, for example, depending on the molecular arrangement. It is known that the molecular arrangement of liquid crystals changes due to various external factors.
  • Patent Document 1 discloses a method of inclining the spiral axis direction of a liquid crystal domain in a coating film by spraying a gas onto a coating film formed by using a polymerizable liquid crystal exhibiting cholesteric regularity. There is.
  • Patent Document 2 discloses a method of shearing a liquid crystal while applying an electric field as a kind of orientation treatment for a smectic layer.
  • a layer containing a cholesteric liquid crystal which is a type of liquid crystal (hereinafter referred to as "cholesteric liquid crystal layer”), has a property of selectively reflecting either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength range, for example.
  • the cholesteric liquid crystal layer is used, for example, as a projection image display member (for example, a reflective element) of a projection screen.
  • the properties of the cholesteric liquid crystal are considered to be due to the helical structure of the cholesteric liquid crystal. In the helical structure, a plurality of liquid crystal compounds are arranged while twisting along the helical axis.
  • the inclination angle of the spiral axis in a cross-sectional view in the thickness direction of the cholesteric liquid crystal layer, a straight line orthogonal to the spiral axis and the main surface of the cholesteric liquid crystal layer (relative to a curved surface).
  • the normal line Refers to the angle formed by. The same shall apply hereinafter.
  • the members used are limited to members having conductivity. Further, for example, when a material containing an organic solvent is used, the use of a method of applying an electric field to the material containing an organic solvent is limited depending on the working environment from the viewpoint of safety.
  • One aspect of the present disclosure is to provide a method for producing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
  • the present disclosure includes the following aspects. ⁇ 1> A step of applying a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes by light irradiation on a base material, and on the surface of the composition applied on the base material. , And the step of irradiating the composition to which the shearing force is applied with ultraviolet rays containing a wavelength that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by the light irradiation.
  • a method for producing a cholesteric liquid crystal layer including.
  • ⁇ 2> The method for producing a cholesteric liquid crystal layer according to ⁇ 1>, which comprises a step of curing the composition irradiated with ultraviolet rays.
  • ⁇ 3> The method for producing a cholesteric liquid crystal layer according to ⁇ 1> or ⁇ 2>, wherein the shear rate in the step of applying a shearing force to the surface of the composition is 1,000 seconds- 1 or more.
  • ⁇ 4> The cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 3>, which applies a shearing force to the surface of the composition by using a blade in a step of applying a shearing force to the surface of the composition. Manufacturing method.
  • ⁇ 5> The method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 4>, wherein the chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that causes photoisomerization.
  • ⁇ 6> The method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 5>, wherein the chiral agent whose spiral-inducing force is changed by light irradiation has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton.
  • ⁇ 7> The method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 6>, wherein the wavelength for changing the spiral inducing force is in the range of 200 nm to 380 nm.
  • the chiral agent whose spiral-inducing force is changed by light irradiation induces a right-handed helical structure with respect to the liquid crystal compound and a left-handed helical structure with respect to the liquid crystal compound.
  • the method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 7> which is at least one selected from the group consisting of chiral agents.
  • the ratio of the content of the chiral agent whose spiral inducing force is changed by the light irradiation to the content of the liquid crystal compound is 0.1 to 20 on a mass basis.
  • ⁇ 10> The method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 9>, wherein the composition contains a polymerization initiator.
  • ⁇ 11> The method for producing a cholesteric liquid crystal layer according to any one of ⁇ 1> to ⁇ 10>, wherein the composition contains a chiral agent whose spiral-inducing force does not change by light irradiation.
  • the chiral agent whose spiral-inducing force does not change by light irradiation is a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound
  • the chiral agent whose spiral-inducing force changes by light irradiation a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound, or a chiral agent whose spiral-inducing force does not change with light irradiation induces a left-handed helical structure with respect to the liquid crystal compound.
  • a method for manufacturing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • process is included in the term “process” as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
  • solid content means a component obtained by removing a solvent from all the components of an object.
  • the "solid content mass” means the mass obtained by subtracting the mass of the solvent from the mass of the object.
  • a liquid crystal compound and a chiral agent whose spiral-inducing force changes by light irradiation are placed on a substrate.
  • a step of applying the composition containing the mixture hereinafter, may be referred to as “step (A)" and a step of applying a shearing force to the surface of the composition coated on the substrate (hereinafter, “step”).
  • step (C) there is provided a method for manufacturing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
  • a shearing force is imparted by applying a shearing force to the surface of a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes with light irradiation. Since the spiral shafts are tilted all at once in the direction in which they are tilted, it is possible to reduce variations in the orientation of the tilted spiral shafts. By reducing the variation in the orientation of the spiral shaft, the controllability of the inclination angle of the spiral shaft in the next step (that is, step (C)) can be improved.
  • the length of the spiral shaft per one rotation of the spiral (hereinafter referred to as "spiral pitch").
  • the spiral pitch By changing the spiral pitch in the spiral structure, the inclination angle of the spiral axis changes. For example, as the spiral pitch increases, the tilt angle of the spiral axis increases. As the spiral pitch decreases, the tilt angle of the spiral axis decreases.
  • the range of the inclination angle of the spiral shaft that can be controlled by the step (B) is easily affected by, for example, the conditions of the step (B) (for example, temperature, film thickness, and shear rate).
  • step (C) By carrying out the step (C) in addition to the step (B), it is possible to control the inclination angle of the desired spiral axis with high accuracy. Therefore, according to the method for manufacturing a cholesteric liquid crystal layer according to the present disclosure, the controllability of the inclination angle of the spiral shaft is improved.
  • Step (A) In the step (A), a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes with light irradiation is applied onto the base material.
  • the step (A) will be specifically described.
  • coating the composition on a base material is not limited to bringing the composition into direct contact with the base material, but also includes contacting the base material with the composition via an arbitrary layer. .. Any layer may be one of the constituents of the substrate, or it may be a layer formed on the substrate prior to application of the composition.
  • Optional layers include, for example, an alignment layer, an easy-adhesion layer, and an antistatic layer. The method of forming the oriented layer will be described later.
  • the base material is preferably a base material containing a polymer.
  • the base material containing the polymer include a polyester-based base material (for example, polyethylene terephthalate and polyethylene naphthalate), a cellulose-based base material (for example, diacetyl cellulose and triacetyl cellulose (abbreviation: TAC)), and a polycarbonate-based base material.
  • Substrate poly (meth) acrylic substrate (eg, poly (meth) acrylate (eg, polymethylmethacrylate)), polystyrene-based substrate (eg, polystyrene and acrylonitrile styrene copolymer), olefin-based substrate (eg, olefin-based substrate (eg, polystyrene and acrylonitrile styrene copolymer)
  • polyamide-based substrates eg, polyvinyl chloride, nylon, and aromatic polyamides
  • polyimide-based substrates Polysulfone-based base material, polyethersulfone-based base material, polyether etherketone-based base material, polyphenylene sulfide-based base material, vinyl alcohol-based base material, polyvinylid
  • the total light transmittance of the base material is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the upper limit of the total light transmittance of the base material is not limited.
  • the total light transmittance of the base material may be determined, for example, in the range of 100% or less.
  • the total light transmittance of the base material is measured using a known spectrophotometer (for example, haze meter, NDH 2000, Nippon Denshoku Kogyo Co., Ltd.).
  • the shape of the base material is not limited.
  • the shape of the base material may be determined, for example, according to the intended use.
  • the base material is preferably a flat base material.
  • the thickness of the base material is preferably in the range of 10 ⁇ m to 250 ⁇ m, more preferably in the range of 40 ⁇ m to 150 ⁇ m, from the viewpoint of manufacturing suitability, manufacturing cost, and optical characteristics.
  • composition Liquid crystal compound- The composition comprises a liquid crystal compound.
  • the type of liquid crystal compound is not limited.
  • the liquid crystal compound for example, a known liquid crystal compound that forms a cholesteric liquid crystal can be used.
  • the liquid crystal compound may have a polymerizable group.
  • the liquid crystal compound may have one kind alone or two or more kinds of polymerizable groups.
  • the liquid crystal compound may have two or more homogeneous polymerizable groups. Since the liquid crystal compound has a polymerizable group, the liquid crystal compound can be polymerized. By polymerizing the liquid crystal compound, the stability of the cholesteric liquid crystal can be improved.
  • Examples of the polymerizable group include a group having an ethylenically unsaturated double bond, a cyclic ether group, and a nitrogen-containing heterocyclic group capable of causing a ring-opening reaction.
  • Examples of the group having an ethylenically unsaturated double bond include an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, and an allyl group.
  • Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
  • Examples of the nitrogen-containing heterocyclic group capable of causing a ring-opening reaction include an aziridinyl group.
  • the polymerizable group is preferably at least one selected from the group consisting of a group having an ethylenically unsaturated double bond and a cyclic ether group.
  • the polymerizable group is at least selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, an allyl group, an epoxy group, an oxetanyl group, and an aziridinyl group.
  • It is preferably one kind, and more preferably at least one kind selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, and a methacryloyloxy group, and more preferably a group consisting of an acryloyloxy group and a methacryloyloxy group. It is particularly preferable that it is at least one selected more.
  • Liquid crystal compounds are classified into, for example, rod-shaped liquid crystal compounds and disk-shaped liquid crystal compounds according to their chemical structure.
  • the rod-shaped liquid crystal compound is known as a liquid crystal compound having a rod-shaped chemical structure.
  • a known rod-shaped liquid crystal compound can be used.
  • the disc-shaped liquid crystal compound is known as a liquid crystal compound having a disc-shaped chemical structure.
  • a known disk-shaped liquid crystal compound can be used as the disk-shaped liquid crystal compound.
  • the liquid crystal compound is preferably a rod-shaped liquid crystal compound, and more preferably a rod-shaped thermotropic liquid crystal compound.
  • the rod-shaped thermotropic liquid crystal compound is a compound having a rod-shaped chemical structure and exhibiting liquid crystallinity in a specific temperature range.
  • a known rod-shaped thermotropic liquid crystal compound can be used as the rod-shaped thermotropic liquid crystal compound.
  • rod-shaped thermotropic liquid crystal compound examples include "Makromol. Chem., 190, 2255 (1989)", “Advanced Materials, 5, 107 (1993)", US Pat. No. 4,683,327, U.S. Pat. US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication No. 95/22586, International Publication No. 95/24455, International Publication No. 97/00600, International Publication No. 98/23580, International Publication No. 98/52905, Japanese Patent Application Laid-Open No. 1-272551, Japanese Patent Application Laid-Open No. 6-16616, Japanese Patent Application Laid-Open No. 7-110469, Japanese Patent Application Laid-Open No.
  • Japanese Patent Application Laid-Open No. 11-8801 Japanese Patent Application Laid-Open No. 11-8801
  • examples thereof include compounds described in Japanese Patent Application Laid-Open No. 328973 or Japanese Patent Application Laid-Open No. 2007-279688.
  • Examples of the rod-shaped thermotropic liquid crystal compound include a compound represented by the general formula 1 in JP-A-2016-81035 and a compound represented by the general formula (I) or the general formula (II) in JP-A-2007-279688. The compounds to be used are also mentioned.
  • the rod-shaped thermotropic liquid crystal compound is preferably a compound represented by the following general formula (1).
  • Q 1 and Q 2 each independently represent a polymerizable group
  • L 1 , L 2 , L 3 and L 4 independently represent a single bond or 2 respectively.
  • Representing a valent linking group A 1 and A 2 each independently represent a divalent hydrocarbon group having 2 to 20 carbon atoms, and M represents a mesogen group.
  • Examples of the polymerizable group represented by Q 1 and Q 2 in the general formula (1) include the above-mentioned polymerizable group.
  • the preferred embodiment of the polymerizable group represented by Q 1 and Q 2 is the same as that of the above-mentioned polymerizable group.
  • the divalent linking groups represented by L 1 , L 2 , L 3 , and L 4 are -O-, -S-, -CO-, -NR-, and -CO-O.
  • -, -O-CO-O-, -CO-NR-, -NR-CO-, -O-CO-, -O-CO-NR-, -NR-CO-O-, and NR-CO-NR It is preferably a divalent linking group selected from the group consisting of ⁇ .
  • R in the above-mentioned divalent linking group represents an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
  • At least one of L 3 and L 4 is preferably —O—CO—O ⁇ .
  • the divalent hydrocarbon group having 2 to 20 carbon atoms represented by A 1 and A 2 has an alkylene group having 2 to 12 carbon atoms and a carbon atom number. It is preferably an alkenylene group having 2 to 12 or an alkynylene group having 2 to 12 carbon atoms, and more preferably an alkylene group having 2 to 12 carbon atoms.
  • the divalent hydrocarbon group is preferably in the form of a chain.
  • the divalent hydrocarbon group may contain oxygen atoms that are not adjacent to each other or sulfur atoms that are not adjacent to each other.
  • the divalent hydrocarbon group may have a substituent. Substituents include, for example, halogen atoms (eg, fluorine, chlorine, and bromine), cyano groups, methyl groups, and ethyl groups.
  • the mesogen group represented by M is a group that forms the main skeleton of a liquid crystal compound that contributes to liquid crystal formation.
  • the mesogen group represented by M for example, the description (particularly, pages 7 to 16) of "Flusige Editorial in Table II" (VEB, Editorial, fur, Grundstoff, Industrie, Leipzig, 1984), and liquid crystal (pages 7 to 16). You can refer to the description (especially Chapter 3) of the Handbook Editorial Committee, edited by Maruzen, 2000).
  • the mesogen group represented by M is a group containing at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups, and alicyclic hydrocarbon groups. It is preferably a group containing an aromatic hydrocarbon group, and more preferably a group containing an aromatic hydrocarbon group.
  • the mesogen group represented by M is preferably a group containing 2 to 5 aromatic hydrocarbon groups, and is a group containing 3 to 5 aromatic hydrocarbon groups. Is more preferable.
  • the mesogen group represented by M is preferably a group containing 3 to 5 phenylene groups and the phenylene groups are linked to each other by -CO-O-.
  • the cyclic structure (for example, aromatic hydrocarbon group, heterocyclic group, and alicyclic hydrocarbon group) contained in the mesogen group represented by M may have a substituent.
  • the substituent include an alkyl group having 1 to 10 carbon atoms (for example, a methyl group).
  • rod-shaped thermotropic liquid crystal compound examples include any rod-shaped thermotropic liquid crystal compound.
  • the rod-shaped thermotropic liquid crystal compound is not limited to the compounds shown below.
  • the liquid crystal compound may be a synthetic product synthesized by a known method or a commercially available product.
  • Commercially available liquid crystal compounds are available from, for example, Tokyo Chemical Industry Co., Ltd. and Merck & Co., Inc.
  • the composition may contain one kind alone or two or more kinds of liquid crystal compounds.
  • the content of the liquid crystal compound is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the solid content mass of the composition. It is particularly preferable to have.
  • the upper limit of the content of the liquid crystal compound may be determined according to the content of the chiral agent.
  • the content of the liquid crystal compound may be determined in the range of, for example, less than 100% by mass with respect to the solid content mass of the composition.
  • the content of the liquid crystal compound may be 99% by mass or less, or 96% by mass or less, based on the solid content mass of the composition.
  • the content of the liquid crystal compound is preferably 70% by mass or more and less than 100% by mass, more preferably 80% by mass or more and less than 100% by mass, and 90% by mass, based on the solid content mass of the composition. It is particularly preferable that it is more than 100% by mass.
  • composition comprises a chiral agent whose spiral-inducing force changes upon light irradiation.
  • the spiral-inducing force changes by light irradiation means that there is a difference between the spiral-inducing force before light irradiation and the spiral-inducing force after light irradiation.
  • the spiral-inducing force (HTP) is known as an index showing the spiral-forming ability of a chiral agent.
  • the spiral inducing force is generally expressed as the reciprocal of the product of the length of one cycle of the spiral axis and the concentration of the chiral auxiliary.
  • the spiral inducing force depends, for example, on the type of chiral auxiliary and the concentration of the chiral agent.
  • the type of chiral agent is not limited as long as it is a chiral agent whose spiral-inducing force changes with light irradiation.
  • the type of chiral agent may be determined, for example, according to the inclination angle of the target spiral shaft.
  • the chiral agent may be a liquid crystal or non-liquid crystal chiral agent.
  • chiral agents contain asymmetric carbon atoms.
  • the chiral agent is not limited to compounds containing an asymmetric carbon atom.
  • examples of the chiral agent include an axial asymmetric compound containing no asymmetric carbon atom and a planar asymmetric compound.
  • the chiral agent may have a polymerizable group.
  • the chiral agent may have one kind alone or two or more kinds of polymerizable groups.
  • the chiral agent may have two or more homogeneous polymerizable groups.
  • Examples of the polymerizable group in the chiral agent include the polymerizable group described in the above section "Liquid crystal compound".
  • a preferred embodiment of the polymerizable group in the chiral agent is the same as that of the polymerizable group described in the above section "Liquid crystal compound".
  • Examples of the chiral agent include a photoreactive chiral agent.
  • a photoreactive chiral agent is a compound having a chiral site (a site that causes chirality; the same applies hereinafter) and a photoreactive site whose structure changes due to light irradiation.
  • the photoreactive chiral agent for example, greatly changes the twisted structure of the liquid crystal compound according to the amount of irradiation light.
  • Examples of the chiral site include the asymmetric carbon described in "Hiroyuki Nohira, Review of Chemistry, No. 22 Chemistry of Liquid Crystal, 73p: 1994".
  • Photochemical sites whose structure changes due to light irradiation include, for example, "photochromic compounds” (Kingo Uchida, Masahiro Irie, Chemical Industry, vol.64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemicals, vol.28 (9), 15p, 1999).
  • photochromic compounds Kingo Uchida, Masahiro Irie, Chemical Industry, vol.64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemicals, vol.28 (9), 15p, 1999.
  • Examples of the structural change due to light irradiation include decomposition, addition reaction, isomerization, and dimerization reaction.
  • the structural change due to light irradiation may be reversible or irreversible.
  • Examples of the photoreactive chiral agent include the photoreactive chiral agents described in paragraphs [0044] to [0047] of JP-A-2001-159709, paragraphs [0019] to paragraphs of JP-A-2002-179669.
  • the chiral agent is preferably a chiral agent that causes photoisomerization from the viewpoint that the spiral-inducing force is easily changed by light irradiation.
  • the chiral agent that causes photoisomerization is a chiral agent having a photoisomerization site.
  • the photoisomerization site is one of the above photoreaction sites.
  • the photoisomerization site absorbs less visible light, is prone to photoisomerization, and has a large difference in spiral-inducing force before and after light irradiation
  • the cinnamoyl site, coumarin site, azobenzene site, stilbene site, or It is preferably a coumarin moiety, more preferably a cinnamoyl moiety or a chalcone moiety.
  • the chiral agent preferably has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton, more preferably an isosorbide skeleton, or an isosorbide skeleton, from the viewpoint of a large difference in spiral-inducing force before and after light irradiation. It is particularly preferable to have.
  • the chiral agent shall be at least one selected from the group consisting of a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound and a chiral agent that induces a left-handed helical structure with respect to a liquid crystal compound. Is preferable.
  • a spiral structure having a desired winding direction can be formed.
  • a right-handed helical structure can be formed by using a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound.
  • the chiral agent may include a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound, and a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound.
  • the spiral-inducing force (including the amount of change in the spiral-inducing force before and after the step (C). The same shall apply hereinafter in this paragraph) can be adjusted.
  • the spiral-inducing force can be adjusted by adjusting the content of each chiral agent.
  • composition may contain one kind alone or two or more kinds of chiral agents.
  • the content of chiral auxiliary is not limited.
  • the content of the chiral agent may be determined, for example, according to the target spiral pitch.
  • the content of the chiral agent is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the solid content mass of the composition, from the viewpoint of the spiral orientation regulating force. It is particularly preferably 0.1% by mass or more.
  • the content of the chiral agent is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less, based on the solid content mass of the composition. Is particularly preferred.
  • the content of the chiral agent is preferably 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 10% by mass, and 0. It is particularly preferably 1% by mass to 5% by mass.
  • the ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.01 or more, preferably 0.05 or more, based on the mass, from the viewpoint of the spiral orientation regulating force. More preferably, it is particularly preferably 0.1 or more.
  • the ratio of the content of the chiral auxiliary to the content of the liquid crystal compound is preferably 20 or less, more preferably 10 or less, and 5 or less, on a mass basis, from the viewpoint of heat resistance. Is particularly preferable.
  • the ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.01 to 20, more preferably 0.05 to 20, and 0.1 to 20 on a mass basis. Is particularly preferred.
  • the ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.1 to 10 and more preferably 0.1 to 5 on a mass basis.
  • the composition may contain components other than the above-mentioned components (hereinafter, referred to as "other components").
  • other components include a solvent, an orientation regulator, a polymerization initiator, a leveling agent, an orientation auxiliary, a photopolymerization inhibitor, a sensitizer, and a chiral agent whose spiral-inducing force does not change by light irradiation.
  • the composition preferably contains a solvent.
  • the composition contains a solvent, and the coatability of the composition can be improved.
  • an organic solvent is preferable.
  • the organic solvent include an amide solvent (for example, N, N-dimethylformamide), a sulfoxide solvent (for example, dimethyl sulfoxide), a heterocyclic compound (for example, pyridine), a hydrocarbon solvent (for example, benzene, and hexane), and the like.
  • Alkyl halide solvents eg chloroform, dichloromethane
  • ester solvents eg methyl acetate and butyl acetate
  • ketone solvents eg acetone, methyl ethyl ketone, and cyclohexanone
  • ether solvents eg tetrahydrofuran, and 1, 2 -Dimethoxyethane.
  • the organic solvent is preferably at least one selected from the group consisting of an alkyl halide solvent and a ketone solvent, and more preferably a ketone solvent.
  • the composition may contain one kind alone or two or more kinds of solvents.
  • the content of the solid content in the composition is preferably 25% by mass to 40% by mass, more preferably 25% by mass to 35% by mass, based on the total mass of the composition.
  • orientation control agent examples include the compounds described in paragraphs [0012] to [0030] of JP2012-2011306A, and paragraphs [0037] to [0044] of JP2012-101999.
  • Examples include compounds.
  • a polymer containing the polymerization unit of the fluoroaliphatic group-containing monomer in an amount of more than 50% by mass of the total polymerization unit described in JP-A-2004-331812 may be used as the orientation control agent.
  • a vertical alignment agent can also be mentioned as an orientation control agent.
  • Examples of the vertical alignment agent include a boronic acid compound and / or an onium salt described in JP-A-2015-38598, and an onium salt described in JP-A-2008-26730.
  • the composition may contain one kind alone or two or more kinds of orientation control agents.
  • the content of the orientation control agent is preferably more than 0% by mass and 5.0% by mass or less, preferably 0.3% by mass, based on the solid content mass of the composition. More preferably, it is% to 2.0% by mass.
  • the composition preferably contains a polymerization initiator.
  • the curability of the composition can be improved.
  • polymerization initiator examples include a photopolymerization initiator and a thermal polymerization initiator.
  • the polymerization initiator is preferably a photopolymerization initiator from the viewpoint of suppressing deformation of the base material due to heat and deterioration of the composition.
  • the photopolymerization initiator include an ⁇ -carbonyl compound (for example, the compound described in US Pat. No. 2,376,661 or US Pat. No. 2,376,670) and an acyloin ether (for example, US Pat. No. 2,448,828).
  • ⁇ -carbonyl compound for example, the compound described in US Pat. No. 2,376,661 or US Pat. No. 2,376,670
  • an acyloin ether for example, US Pat. No. 2,448,828.
  • Compounds described in the specification ⁇ -hydrogen-substituted aromatic acidoine compounds (eg, compounds described in US Pat. No. 2,725,212), polynuclear quinone compounds (eg, US Pat. No. 3,46127, or A compound described in US Pat. No.
  • the ultraviolet absorption wavelength of the polymerization initiator is different from the ultraviolet absorption wavelength of the chiral agent. Since the ultraviolet absorption wavelength of the polymerization initiator is different from the ultraviolet absorption wavelength of the chiral agent, in step (C), the spiral inducing force of the chiral agent contained in the composition can be changed while suppressing the curing of the composition. it can. As a result of the above, the controllability of the inclination angle of the spiral shaft is further improved.
  • the composition may contain one kind alone or two or more kinds of polymerization initiators.
  • the content of the polymerization initiator is preferably 0.5% by mass to 5.0% by mass, and 1.0% by mass, based on the solid content mass of the composition. It is more preferably about 4.0% by mass.
  • the composition may contain a chiral agent whose spiral-inducing force does not change due to light irradiation (hereinafter, may be referred to as a "second chiral agent").
  • a chiral agent whose spiral-inducing force does not change due to light irradiation hereinafter, may be referred to as a "second chiral agent"
  • the spiral inducing force is increased by light irradiation due to the action of the first chiral agent whose spiral inducing force is reduced by light irradiation and the second chiral agent whose winding direction is different from that of the first chiral agent.
  • the tilt angle can be reduced.
  • the above-mentioned first chiral agent is one kind of chiral agent whose spiral-inducing force changes by light irradiation.
  • the second chiral agent is a chiral agent other than the chiral agent whose spiral-inducing force changes by light irradiation.
  • Examples of the second chiral agent include chiral agents that do not have a photoreactive site whose structure changes due to light irradiation.
  • the photoreactive site whose structure changes due to light irradiation is as described in the above section "Chiral agent”.
  • the second chiral agent is described in, for example, "Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Auxiliary for TN, STN, p. 199, Japan Society for the Promotion of Science, 42nd Committee, 1989". You may choose from agents.
  • the second chiral agent may have a polymerizable group.
  • the second chiral agent may have one kind alone or two or more kinds of polymerizable groups.
  • the second chiral agent may have two or more homogeneous polymerizable groups.
  • Examples of the polymerizable group in the second chiral agent include the polymerizable group described in the above section "Liquid crystal compound".
  • a preferred embodiment of the polymerizable group in the second chiral agent is the same as that of the polymerizable group described in the above section "Liquid crystal compound".
  • the second chiral agent preferably has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton, more preferably has an isosorbide skeleton or an isomannide skeleton, and particularly preferably has an isosorbide skeleton.
  • the second chiral agent may be a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound, or a chiral agent that induces a left-handed helical structure with respect to a liquid crystal compound.
  • the second chiral agent is a chiral agent that induces a right-handed spiral structure with respect to the liquid crystal compound
  • the chiral agent whose spiral-inducing force changes by light irradiation is a left-handed spiral with respect to the liquid crystal compound. It is preferably a chiral agent that induces a structure.
  • the second chiral agent is a chiral agent that induces a left-handed spiral structure with respect to the liquid crystal compound
  • the chiral agent whose spiral-inducing force changes by light irradiation is right-handed with respect to the liquid crystal compound.
  • It is preferably a chiral agent that induces a helical structure.
  • a spiral-inducing force (before and after step (C)). Includes the amount of change in the spiral-inducing force in.).
  • the method for producing the composition is not limited.
  • Examples of the method for producing the composition include a method of mixing the above-mentioned components.
  • As the mixing method a known mixing method can be used.
  • the method for producing the composition after mixing each of the above components, the obtained mixture may be filtered.
  • the method of applying the composition is not limited.
  • the coating method of the composition include an extrusion die coater method, a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, a slide coating method, and a blade coating method. , Gravure coating method, and wire bar method.
  • the amount of the composition applied is not limited.
  • the coating amount of the composition is determined according to, for example, the thickness of the target cholesteric liquid crystal layer or the thickness of the composition before the shearing force described in the section "Step (B)" below is applied. Just do it.
  • Step (B) In the step (B), a shearing force is applied to the surface of the composition applied on the base material.
  • the step (B) will be specifically described.
  • the shear force is preferably applied in one direction along the surface of the composition.
  • -Means to apply shear force- Means for applying shear forces include, for example, blades, air knives, bars, and applicators.
  • the thickness of the composition may change before and after the application of the shearing force.
  • the thickness of the composition after the shearing force is applied by the blade may be 1/2 or less or 1/3 or less of the thickness of the composition before the shearing force is applied.
  • the thickness of the composition after the shearing force is applied by the blade is preferably 1/4 or more of the thickness of the composition before the shearing force is applied.
  • the material of the blade is not limited.
  • the blade material include metals (eg, stainless steel) and resins (eg, Teflon® and polyetheretherketone (PEEK)).
  • the shape of the blade is not limited. Examples of the shape of the blade include a plate shape.
  • the blade is preferably a metal plate-shaped member from the viewpoint of easily applying a shearing force to the composition.
  • the thickness of the tip of the blade in contact with the composition is preferably 0.1 mm or more, and more preferably 1 mm or more, from the viewpoint of easily applying a shearing force to the composition.
  • the thickness of the blade may be determined in the range of, for example, 10 mm or less.
  • the shearing force is applied to the surface of the composition by blowing compressed air on the surface of the composition with the air knife.
  • the shear rate applied to the composition can be adjusted according to the rate at which the compressed air is blown (that is, the flow velocity).
  • the direction in which the compressed air is blown by the air knife may be the same direction or the opposite direction to the transport direction of the composition.
  • the direction in which the compressed air is blown by the air knife should be the same as the transport direction of the composition from the viewpoint of preventing the fragments of the composition scraped by the compressed air from adhering to the composition remaining on the substrate. Is preferable.
  • the cholesteric liquid crystal layer can be formed.
  • the shear rate is preferably 1,000 seconds-1 or more, more preferably 10,000 seconds- 1 or more, and particularly preferably 30,000 seconds-1 or more.
  • the upper limit of shear rate is not limited. Shear rate, for example, may be determined in the range of 1.0 ⁇ 10 6 sec -1 or less.
  • the shear rate is such that the shortest distance between the blade and the base material is “d” and the transfer speed of the composition in contact with the blade (that is, relative to the composition and the blade).
  • (velocity) is set to "V”
  • the shear rate is such that the thickness of the composition after applying shear is "h” and the relative speed between the composition surface and the substrate surface is “V”. Then, it is obtained by "V / 2h".
  • the surface temperature of the composition when the shearing force is applied may be determined according to the phase transition temperature of the liquid crystal compound contained in the composition.
  • the surface temperature of the composition when the shearing force is applied is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
  • the surface temperature of the composition is measured using a radiation thermometer whose emissivity is calibrated by the temperature value measured by a non-contact thermometer.
  • the surface temperature of the composition is measured within 10 cm from the surface on the side opposite to the measurement surface (that is, the back side) in the absence of reflectors.
  • composition thickness The thickness of the composition before the shearing force is applied is preferably in the range of 30 ⁇ m or less, more preferably in the range of 1 ⁇ m to 25 ⁇ m, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy. It is particularly preferably in the range of 3 ⁇ m to 25 ⁇ m.
  • the thickness of the composition after the shearing force is applied is preferably in the range of 20 ⁇ m or less, and more preferably in the range of 10 ⁇ m or less, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy.
  • the lower limit of the thickness of the composition after the shear force is applied is not limited.
  • the thickness of the composition after the shearing force is applied is preferably in the range of 0.5 ⁇ m or more.
  • Step (C) In the step (C), the composition to which the shearing force is applied is irradiated with ultraviolet rays having a wavelength that changes the spiral-inducing force of the chiral agent.
  • the step (C) will be specifically described.
  • the wavelength of ultraviolet rays is not limited as long as it includes a wavelength that changes the spiral-inducing force of the chiral auxiliary. Whether or not the wavelength of ultraviolet rays includes a wavelength that changes the spiral-inducing force of the chiral auxiliary is confirmed based on the change in the inclination angle of the spiral axis before and after the step (C). When the tilt angle of the spiral shaft after the step (C) is increased or decreased as compared with the tilt angle of the spiral shaft before the step (C), the wavelength of the ultraviolet ray changes the spiral-inducing force of the chiral auxiliary. It is considered to include the wavelength to be caused.
  • the wavelength at which the spiral inducing force is changed may be determined, for example, according to the type of chiral agent.
  • the wavelength for changing the spiral inducing force is preferably in the range of 180 nm to 400 nm, more preferably in the range of 200 nm to 380 nm, and particularly preferably in the range of 300 nm to 370 nm.
  • the wavelength of the ultraviolet rays irradiated in the step (C) is the polymerization initiator. It is preferable not to include the ultraviolet absorption wavelength of. Since the wavelength of the ultraviolet rays irradiated in the step (C) does not include the ultraviolet absorption wavelength of the polymerization initiator, it is possible to change the spiral-inducing force of the chiral agent contained in the composition while suppressing the curing of the composition. it can. As a result of the above, the controllability of the inclination angle of the spiral shaft is further improved.
  • the phrase "does not contain the UV absorption wavelength of the polymerization initiator” is not limited to the fact that the UV absorption wavelength of the polymerization initiator is not contained at all, and the polymerization initiator is used to suppress the curing of the composition caused by the polymerization initiator. Includes as little UV absorption wavelength as possible. For example, by using a long wavelength cut filter described later or an LED (light emitting diode) ultraviolet irradiator having a narrow irradiation wavelength band, the composition can be irradiated with ultraviolet rays that do not include the ultraviolet absorption wavelength of the polymerization initiator.
  • a member that selectively transmits or shields a specific wavelength may be used.
  • member having wavelength selectivity a specific wavelength
  • the wavelength range of the ultraviolet rays reaching the composition can be adjusted.
  • the member having wavelength selectivity include a long wavelength cut filter (Asahi Spectroscopy Co., Ltd., SH0325), a short wavelength cut filter, and a bandpass filter.
  • the exposure amount of ultraviolet rays (also referred to as integrated light amount) is not limited.
  • the amount of change in the spiral-inducing force of the chiral agent can be adjusted according to the amount of exposure to ultraviolet rays. As the amount of exposure to ultraviolet rays increases, the amount of change in the spiral-inducing force of the chiral agent tends to increase. As the amount of exposure to ultraviolet rays decreases, the amount of change in the spiral-inducing force of the chiral agent tends to decrease. Exposure of ultraviolet rays, for example, may be determined in the range of 1mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • Examples of the light source of ultraviolet rays include lamps (for example, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps, LED lamps, LED-UV (ultraviolet) lamps, and carbon arc lamps) and lasers.
  • lamps for example, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps, LED lamps, LED-UV (ultraviolet) lamps, and carbon arc lamps
  • lasers for example, semiconductor laser, helium neon laser, argon ion laser, helium cadmium laser, and YAG (Ytrium Aluminum Garnet) laser
  • light emitting diode and cathode line tube.
  • the method for producing a cholesteric liquid crystal layer according to the present disclosure may include steps other than the above-mentioned steps (hereinafter, referred to as "other steps” in this paragraph), if necessary. Hereinafter, other steps will be specifically described. However, the other steps are not limited to the steps shown below.
  • step (D) The method for producing a cholesteric liquid crystal layer according to the present disclosure includes a step of forming an orientation layer on a base material (hereinafter, may be referred to as "step (D)") before the step (A). May be good.
  • the alignment layer can give an orientation regulating force to the liquid crystal compound.
  • the method of forming the oriented layer is not limited.
  • a method for forming the alignment layer a known method can be used.
  • Examples of the method for forming the oriented layer include rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, and formation of a layer having microgrooves.
  • Step (E) When the composition contains a solvent, the method for producing a cholesteric liquid crystal layer according to the present disclosure determines the content of the solvent in the composition applied on the substrate between the steps (A) and (B). It may have a step (hereinafter, may be referred to as “step (E)”) of adjusting to a range of 50% by mass or less with respect to the total mass of the composition. By adjusting the content of the solvent in the composition to a range of 50% by mass or less, a cholesteric liquid crystal layer having high orientation accuracy can be formed.
  • the content of the solvent in the composition is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the composition.
  • the lower limit of the solvent content in the applied composition is not limited.
  • the content of the solvent in the applied composition may be 0% by mass or more than 0% by mass with respect to the total mass of the composition.
  • the content of the solvent in the applied composition is preferably 10% by mass or more from the viewpoint of easily suppressing deterioration of the surface condition of the applied composition.
  • the content of the solvent in the composition is measured by the absolute drying method.
  • the sample collected from the composition is dried at 60 ° C. for 24 hours, and then the mass change of the sample before and after drying (that is, the difference between the mass of the sample after drying and the mass of the sample before drying) is determined.
  • the content of the solvent in the sample is determined based on the mass change of the sample before and after drying.
  • the arithmetic mean of the values obtained by performing the above operation three times is taken as the solvent content.
  • Examples of the method for adjusting the content of the solvent in the applied composition in the step (E) include drying.
  • Drying means include, for example, ovens, hot air blowers, and infrared (IR) heaters.
  • warm air may be directly applied to the composition, or warm air may be applied to the surface opposite to the surface on which the composition of the base material is arranged. Further, a diffusion plate may be installed in order to prevent the surface of the composition from flowing due to warm air.
  • Drying may be done by inhalation.
  • a decompression chamber having an exhaust mechanism can be used. By inhaling the gas around the composition, the content of the solvent in the composition can be reduced.
  • the drying conditions are not limited as long as the content of the solvent in the composition can be adjusted in the range of 50% by mass or less.
  • the drying conditions may be determined, for example, according to the components contained in the composition, the coating amount of the composition, and the transport speed.
  • Step (F) The method for producing a cholesteric liquid crystal layer according to the present disclosure may include a step (hereinafter, may be referred to as "step (F)") of curing the composition irradiated with ultraviolet rays after the step (C). Good. By curing the composition in step (F), the molecular arrangement of the liquid crystal compound can be fixed.
  • Examples of the method for curing the composition include heating and irradiation with active energy rays.
  • the method for curing the composition is preferably irradiation with active energy rays from the viewpoint of production suitability.
  • active energy rays examples include ⁇ -rays, ⁇ -rays, X-rays, ultraviolet rays, infrared rays, visible rays, and electron beams.
  • the active energy ray is preferably ultraviolet rays from the viewpoint of curing sensitivity and availability of the apparatus.
  • Examples of the light source of ultraviolet rays include the light source described in the above section "Step (C)".
  • the peak wavelength of ultraviolet rays emitted from the light source of ultraviolet rays is preferably 200 nm to 400 nm.
  • the exposure amount of ultraviolet rays (also referred to as integrated light amount) is preferably 100 mJ / cm 2 to 500 mJ / cm 2.
  • the method for producing a cholesteric liquid crystal layer according to the present disclosure may be carried out by a roll-to-roll method.
  • each step is carried out while continuously transporting a long base material.
  • the method for producing a cholesteric liquid crystal layer according to the present disclosure may be carried out using a base material that is conveyed one by one.
  • Example 1 An orientation layer and a cholesteric liquid crystal layer were sequentially formed on the substrate by the following procedure.
  • a triacetyl cellulose (TAC) film (FUJIFILM Corporation, refractive index: 1.48, thickness: 40 ⁇ m, length: 300 mm, width: 200 mm) was prepared.
  • Step (D) A composition for forming an orientation layer was prepared by stirring a mixture containing pure water (96 parts by mass) and PVA-205 (Kuraray Co., Ltd., polyvinyl alcohol) in a container kept warm at 80 ° C. Using a bar (bar count: 6), the composition for forming an orientation layer was applied onto a substrate (triacetyl cellulose film), and then dried in an oven at 100 ° C. for 10 minutes. By the above procedure, an orientation layer (thickness: 2 ⁇ m) was formed on the base material.
  • a coating liquid (1) for forming a liquid crystal layer was prepared by filtering using a polypropylene filter (pore diameter: 0.2 ⁇ m).
  • Rod-shaped thermotropic liquid crystal compound (compound (A) below): 100 parts by mass (2) Chiral agent (compound (B) below): 1 part by mass (3) Photopolymerization initiator (PM758, Nippon Kayaku Co., Ltd.) Company): 3 parts by mass (4) Photopolymerization inhibitor (IRGANOX (registered trademark) 1010, BASF): 1 part by mass (5) Orientation inhibitor (compound (C) below): 0.5 parts by mass (6) Solvent (methyl ethyl ketone): 184 parts by mass (7) Solvent (cyclohexanone): 31 parts by mass
  • Compound (A) is a mixture of the following three compounds.
  • the content of each compound in the mixture is 84% by mass, 14% by mass, and 2% by mass in this order from the top.
  • Compound (B) has an isosorbide skeleton.
  • Compound (B) is a chiral agent that induces a right-handed helical structure.
  • the spiral-inducing force of compound (B) is changed by light irradiation (specifically, first ultraviolet irradiation described later).
  • a coating film (thickness: 10 ⁇ m) was formed by drying the liquid crystal layer forming coating liquid (1) coated on the alignment layer in an oven at 70 ° C. for 1 minute.
  • the content of the solvent in the coating film was 1% by mass or less with respect to the total mass of the coating film.
  • step (B) With the coating film heated to 70 ° C., a stainless steel blade heated to 70 ° C. is brought into contact with the coating film, and then the blade is moved at a speed of 1.5 m / min while still in contact with the coating film. As a result, a shearing force was applied to the coating film.
  • the length of the contact portion of the blade with the coating film was 30 mm.
  • the shear rate was 2,500 seconds -1 .
  • step (C) A chiral agent contained in the coating film by irradiating the coating film to which shearing force is applied with ultraviolet rays (exposure amount: 5 mJ / cm 2) using an ultra-high pressure mercury lamp (HOYA Corporation, UL750).
  • ultraviolet rays Exposure amount: 5 mJ / cm 2
  • the coating film was irradiated with ultraviolet rays via a long wavelength cut filter (Asahi Spectroscopy Co., Ltd., SH0325).
  • the ultraviolet rays applied to the coating film include a wavelength (for example, 315 nm) that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by light irradiation.
  • Step (F) After the first irradiation with ultraviolet rays, the coating film was cured by irradiating the coating film with ultraviolet rays (exposure amount: 500 mJ / cm 2) using a metal halide lamp.
  • Example 2 The alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 1 except that the exposure amount in the first ultraviolet irradiation was changed to 10 mJ / cm 2.
  • Example 3 The chiral agent (compound (B)) was changed to the components shown below, the amount of photopolymerization initiator (PM758) added was changed to 1 part by mass, and the exposure amount in the first ultraviolet irradiation was 750 mJ / cm.
  • the alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 1 except that the change was changed to 2.
  • Compound (D) has an isosorbide skeleton.
  • Compound (D) is a chiral agent that induces a right-handed helical structure. However, the spiral-inducing force of compound (D) does not change with light irradiation.
  • Compound (E) has an isomannide skeleton.
  • Compound (E) is a chiral agent that induces a left-handed helical structure.
  • the spiral-inducing force of compound (E) changes with light irradiation.
  • Table 1 show that the composition containing the liquid crystal compound and the chiral agent whose spiral-inducing force is changed by light irradiation is irradiated with ultraviolet rays having a wavelength that changes the spiral-inducing force of the chiral agent. By doing so, it is shown that the controllability of the tilt angle of the spiral axis is improved. For example, comparing Examples 1 and 2 and Comparative Example 1, the inclination angle of the spiral axis was increased by performing the first ultraviolet irradiation. Comparing Example 3 and Comparative Example 2, the inclination angle of the spiral axis was reduced by performing the first ultraviolet irradiation.

Abstract

The present disclosure provides a method for producing a cholesteric liquid crystal layer, said method comprising: a step for applying a composition to a base material, said composition containing a liquid crystalline compound and a chiral agent, the helical twisting power of which is changed by light irradiation; a step for applying a shear force to the surface of the composition applied to the base material; and a step for irradiating the composition, to which the shear force has been applied, with ultraviolet light that includes a wavelength that changes the helical twisting power of the chiral agent, the helical twisting power of which is changed by light irradiation.

Description

コレステリック液晶層の製造方法Manufacturing method of cholesteric liquid crystal layer
 本開示は、コレステリック液晶層の製造方法に関する。 This disclosure relates to a method for manufacturing a cholesteric liquid crystal layer.
 液晶の性質は、例えば、分子配列によって変化する。液晶の分子配列は、種々の外的要因によって変化することが知られている。 The properties of liquid crystal change, for example, depending on the molecular arrangement. It is known that the molecular arrangement of liquid crystals changes due to various external factors.
 特許文献1には、コレステリック規則性を示す重合性の液晶を用いて形成された塗布膜に対してガスを吹き付けることで、塗布膜中の液晶ドメインのらせん軸方向を傾斜させる方法が開示されている。 Patent Document 1 discloses a method of inclining the spiral axis direction of a liquid crystal domain in a coating film by spraying a gas onto a coating film formed by using a polymerizable liquid crystal exhibiting cholesteric regularity. There is.
 特許文献2には、スメクチック層に関する配向処理の一種として、液晶に電場を印加しながら剪断をかける方法が開示されている。 Patent Document 2 discloses a method of shearing a liquid crystal while applying an electric field as a kind of orientation treatment for a smectic layer.
特開2006-284862号公報Japanese Unexamined Patent Publication No. 2006-284862 特開平8-320470号公報Japanese Unexamined Patent Publication No. 8-320470
 液晶の一種であるコレステリック液晶を含む層(以下、「コレステリック液晶層」という。)は、例えば、特定の波長域において右円偏光及び左円偏光のいずれか一方を選択的に反射させる性質を有する層として知られている。コレステリック液晶層は、例えば、投影スクリーンの投影像表示用部材(例えば、反射素子)として用いられる。コレステリック液晶の性質は、コレステリック液晶が有するらせん構造に起因すると考えられる。らせん構造においては、複数の液晶性化合物がらせん軸に沿ってねじれながら配列している。コレステリック液晶層を種々の用途へ展開するにあたって、例えば、らせん軸の傾斜角(コレステリック液晶層の厚さ方向の断面視において、らせん軸とコレステリック液晶層の主面に直交する直線(曲面に対しては法線を指す。)とのなす角をいう。以下同じ。)を所望の角度に調節する方法が求められている。 A layer containing a cholesteric liquid crystal, which is a type of liquid crystal (hereinafter referred to as "cholesteric liquid crystal layer"), has a property of selectively reflecting either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength range, for example. Known as the layer. The cholesteric liquid crystal layer is used, for example, as a projection image display member (for example, a reflective element) of a projection screen. The properties of the cholesteric liquid crystal are considered to be due to the helical structure of the cholesteric liquid crystal. In the helical structure, a plurality of liquid crystal compounds are arranged while twisting along the helical axis. In developing the cholesteric liquid crystal layer for various purposes, for example, the inclination angle of the spiral axis (in a cross-sectional view in the thickness direction of the cholesteric liquid crystal layer, a straight line orthogonal to the spiral axis and the main surface of the cholesteric liquid crystal layer (relative to a curved surface). Refers to the normal line.) Refers to the angle formed by. The same shall apply hereinafter.) There is a demand for a method of adjusting the angle to a desired angle.
 しかしながら、特許文献1に開示された方法では、得られるコレステリック液晶層におけるらせん軸の傾斜角が小さいため、例えば、らせん軸の傾斜角が90度であるコレステリック液晶層を得ることはできない。つまり、特許文献1に開示された方法では、らせん軸の傾斜角を調節できる範囲が制限される。 However, with the method disclosed in Patent Document 1, since the inclination angle of the spiral axis in the obtained cholesteric liquid crystal layer is small, for example, the cholesteric liquid crystal layer having an inclination angle of 90 degrees cannot be obtained. That is, in the method disclosed in Patent Document 1, the range in which the inclination angle of the spiral axis can be adjusted is limited.
 特許文献2に開示された方法では、使用される部材が導電性を有する部材に制限される。また、例えば有機溶媒を含む材料を用いる場合、有機溶媒を含む材料に対して電場を印加する方法の利用は、安全性の観点から、作業環境に応じて制限される。 In the method disclosed in Patent Document 2, the members used are limited to members having conductivity. Further, for example, when a material containing an organic solvent is used, the use of a method of applying an electric field to the material containing an organic solvent is limited depending on the working environment from the viewpoint of safety.
 本開示は、上記の事情に鑑みてなされたものである。
 本開示の一態様は、らせん軸の傾斜角の制御性が向上したコレステリック液晶層の製造方法を提供することを目的とする。
This disclosure has been made in view of the above circumstances.
One aspect of the present disclosure is to provide a method for producing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
 本開示は、以下の態様を含む。
<1> 基材上に、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤と、を含む組成物を塗布する工程と、上記基材上に塗布された上記組成物の表面に、せん断力を付与する工程と、上記せん断力が付与された上記組成物に、上記光照射によってらせん誘起力が変化するキラル剤のらせん誘起力を変化させる波長を含む紫外線を照射する工程と、を含むコレステリック液晶層の製造方法。
<2> 上記紫外線が照射された上記組成物を硬化させる工程を含む<1>に記載のコレステリック液晶層の製造方法。
<3> 上記組成物の表面にせん断力を付与する工程におけるせん断速度が、1,000秒-1以上である<1>又は<2>に記載のコレステリック液晶層の製造方法。
<4> 上記組成物の表面にせん断力を付与する工程において、ブレードを用いて上記組成物の表面にせん断力を付与する<1>~<3>のいずれか1つに記載のコレステリック液晶層の製造方法。
<5> 上記光照射によってらせん誘起力が変化するキラル剤が、光異性化を起こすキラル剤である<1>~<4>のいずれか1つに記載のコレステリック液晶層の製造方法。
<6> 上記光照射によってらせん誘起力が変化するキラル剤が、イソソルビド骨格、イソマンニド骨格、又はビナフトール骨格を有する<1>~<5>のいずれか1つに記載のコレステリック液晶層の製造方法。
<7> 上記らせん誘起力を変化させる波長が、200nm~380nmの範囲内である<1>~<6>のいずれか1つに記載のコレステリック液晶層の製造方法。
<8> 上記光照射によってらせん誘起力が変化するキラル剤が、上記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、及び上記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤からなる群より選択される少なくとも1種である<1>~<7>のいずれか1つに記載のコレステリック液晶層の製造方法。
<9> 上記組成物において、上記液晶性化合物の含有量に対する上記光照射によってらせん誘起力が変化するキラル剤の含有量の比が、質量基準で、0.1~20である<1>~<8>のいずれか1つに記載のコレステリック液晶層の製造方法。
<10> 上記組成物が、重合開始剤を含む<1>~<9>のいずれか1つに記載のコレステリック液晶層の製造方法。
<11> 上記組成物が、光照射によってらせん誘起力が変化しないキラル剤を含む<1>~<10>のいずれか1つに記載のコレステリック液晶層の製造方法。
<12> 上記光照射によってらせん誘起力が変化しないキラル剤が、上記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤である場合、上記光照射によってらせん誘起力が変化するキラル剤が、上記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤であり、又は上記光照射によってらせん誘起力が変化しないキラル剤が、上記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤である場合、上記光照射によってらせん誘起力が変化するキラル剤が、上記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤である<11>に記載のコレステリック液晶層の製造方法。
The present disclosure includes the following aspects.
<1> A step of applying a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes by light irradiation on a base material, and on the surface of the composition applied on the base material. , And the step of irradiating the composition to which the shearing force is applied with ultraviolet rays containing a wavelength that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by the light irradiation. A method for producing a cholesteric liquid crystal layer including.
<2> The method for producing a cholesteric liquid crystal layer according to <1>, which comprises a step of curing the composition irradiated with ultraviolet rays.
<3> The method for producing a cholesteric liquid crystal layer according to <1> or <2>, wherein the shear rate in the step of applying a shearing force to the surface of the composition is 1,000 seconds- 1 or more.
<4> The cholesteric liquid crystal layer according to any one of <1> to <3>, which applies a shearing force to the surface of the composition by using a blade in a step of applying a shearing force to the surface of the composition. Manufacturing method.
<5> The method for producing a cholesteric liquid crystal layer according to any one of <1> to <4>, wherein the chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that causes photoisomerization.
<6> The method for producing a cholesteric liquid crystal layer according to any one of <1> to <5>, wherein the chiral agent whose spiral-inducing force is changed by light irradiation has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton.
<7> The method for producing a cholesteric liquid crystal layer according to any one of <1> to <6>, wherein the wavelength for changing the spiral inducing force is in the range of 200 nm to 380 nm.
<8> The chiral agent whose spiral-inducing force is changed by light irradiation induces a right-handed helical structure with respect to the liquid crystal compound and a left-handed helical structure with respect to the liquid crystal compound. The method for producing a cholesteric liquid crystal layer according to any one of <1> to <7>, which is at least one selected from the group consisting of chiral agents.
<9> In the above composition, the ratio of the content of the chiral agent whose spiral inducing force is changed by the light irradiation to the content of the liquid crystal compound is 0.1 to 20 on a mass basis. The method for producing a cholesteric liquid crystal layer according to any one of <8>.
<10> The method for producing a cholesteric liquid crystal layer according to any one of <1> to <9>, wherein the composition contains a polymerization initiator.
<11> The method for producing a cholesteric liquid crystal layer according to any one of <1> to <10>, wherein the composition contains a chiral agent whose spiral-inducing force does not change by light irradiation.
<12> When the chiral agent whose spiral-inducing force does not change by light irradiation is a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound, the chiral agent whose spiral-inducing force changes by light irradiation. However, a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound, or a chiral agent whose spiral-inducing force does not change with light irradiation induces a left-handed helical structure with respect to the liquid crystal compound. In the case of a chiral agent, the preparation of the cholesteric liquid crystal layer according to <11>, wherein the chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound. Method.
 本開示の一態様によれば、らせん軸の傾斜角の制御性が向上したコレステリック液晶層の製造方法が提供される。 According to one aspect of the present disclosure, there is provided a method for manufacturing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present disclosure will be described in detail. The present disclosure is not limited to the following embodiments, and may be carried out with appropriate modifications within the scope of the purpose of the present disclosure.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present disclosure, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。 In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the term "process" is included in the term "process" as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。 In the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において、「固形分」とは、対象物の全成分から溶媒を除いた成分を意味する。 In the present disclosure, "solid content" means a component obtained by removing a solvent from all the components of an object.
 本開示において、「固形分質量」とは、対象物の質量から溶媒の質量を除いた質量を意味する。 In the present disclosure, the "solid content mass" means the mass obtained by subtracting the mass of the solvent from the mass of the object.
<コレステリック液晶層の製造方法>
 本開示に係るコレステリック液晶層の製造方法は、基材上に、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤(以下、単に「キラル剤」という場合がある。)と、を含む組成物を塗布する工程(以下、「工程(A)」という場合がある。)と、上記基材上に塗布された上記組成物の表面に、せん断力を付与する工程(以下、「工程(B)」という場合がある。)と、上記せん断力が付与された上記組成物に、上記光照射によってらせん誘起力が変化するキラル剤のらせん誘起力を変化させる波長を含む紫外線を照射する工程(以下、「工程(C)」という場合がある。)と、を含む。上記態様によれば、らせん軸の傾斜角の制御性が向上したコレステリック液晶層の製造方法が提供される。
<Manufacturing method of cholesteric liquid crystal layer>
In the method for producing a cholesteric liquid crystal layer according to the present disclosure, a liquid crystal compound and a chiral agent whose spiral-inducing force changes by light irradiation (hereinafter, may be simply referred to as "chiral agent") are placed on a substrate. A step of applying the composition containing the mixture (hereinafter, may be referred to as "step (A)") and a step of applying a shearing force to the surface of the composition coated on the substrate (hereinafter, "step"). (B) ”), and the composition to which the shearing force is applied is irradiated with ultraviolet rays containing a wavelength that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by the light irradiation. It includes a step (hereinafter, may be referred to as “step (C)”). According to the above aspect, there is provided a method for manufacturing a cholesteric liquid crystal layer in which the controllability of the inclination angle of the spiral shaft is improved.
 本開示に係るコレステリック液晶層の製造方法が上記効果を奏する理由は、以下のように推察される。本開示に係るコレステリック液晶層の製造方法においては、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤と、を含む組成物の表面にせん断力を付与することで、せん断力が付与される方向へらせん軸が一斉に傾斜するため、傾斜するらせん軸の向きのばらつきを低減することができる。らせん軸の向きのばらつきを低減することで、次工程(すなわち、工程(C))におけるらせん軸の傾斜角の制御性を向上させることができる。そして、せん断力が付与された組成物にキラル剤のらせん誘起力を変化させる波長を含む紫外線を照射することで、らせん一回転あたりのらせん軸の長さ(以下、「らせんピッチ」という。)を変化させることができる。らせん構造におけるらせんピッチが変化することで、らせん軸の傾斜角が変化する。例えば、らせんピッチの増大に応じて、らせん軸の傾斜角は大きくなる。らせんピッチの減少に応じて、らせん軸の傾斜角は小さくなる。また、工程(B)によって制御できるらせん軸の傾斜角の範囲は、例えば、工程(B)の条件(例えば、温度、膜厚、及びせん断速度)の影響を受けやすい。工程(B)に加えて工程(C)を実施することにより所望のらせん軸の傾斜角に高精度に制御することができる。よって、本開示に係るコレステリック液晶層の製造方法によれば、らせん軸の傾斜角の制御性が向上する。 The reason why the method for producing the cholesteric liquid crystal layer according to the present disclosure exerts the above effect is presumed as follows. In the method for producing a cholesteric liquid crystal layer according to the present disclosure, a shearing force is imparted by applying a shearing force to the surface of a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes with light irradiation. Since the spiral shafts are tilted all at once in the direction in which they are tilted, it is possible to reduce variations in the orientation of the tilted spiral shafts. By reducing the variation in the orientation of the spiral shaft, the controllability of the inclination angle of the spiral shaft in the next step (that is, step (C)) can be improved. Then, by irradiating the composition to which the shearing force is applied with ultraviolet rays including a wavelength that changes the spiral-inducing force of the chiral agent, the length of the spiral shaft per one rotation of the spiral (hereinafter referred to as "spiral pitch"). Can be changed. By changing the spiral pitch in the spiral structure, the inclination angle of the spiral axis changes. For example, as the spiral pitch increases, the tilt angle of the spiral axis increases. As the spiral pitch decreases, the tilt angle of the spiral axis decreases. Further, the range of the inclination angle of the spiral shaft that can be controlled by the step (B) is easily affected by, for example, the conditions of the step (B) (for example, temperature, film thickness, and shear rate). By carrying out the step (C) in addition to the step (B), it is possible to control the inclination angle of the desired spiral axis with high accuracy. Therefore, according to the method for manufacturing a cholesteric liquid crystal layer according to the present disclosure, the controllability of the inclination angle of the spiral shaft is improved.
[工程(A)]
 工程(A)においては、基材上に、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤と、を含む組成物を塗布する。以下、工程(A)について具体的に説明する。
[Step (A)]
In the step (A), a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes with light irradiation is applied onto the base material. Hereinafter, the step (A) will be specifically described.
 本開示において、「基材上に組成物を塗布する」とは、基材に組成物を直接接触させることに限られず、基材に任意の層を介して組成物を接触させることを包含する。任意の層は、基材の構成要素の1つであってもよく、又は組成物の塗布前に基材上に形成された層であってもよい。任意の層としては、例えば、配向層、易接着層、及び帯電防止層が挙げられる。配向層の形成方法については後述する。 In the present disclosure, "coating the composition on a base material" is not limited to bringing the composition into direct contact with the base material, but also includes contacting the base material with the composition via an arbitrary layer. .. Any layer may be one of the constituents of the substrate, or it may be a layer formed on the substrate prior to application of the composition. Optional layers include, for example, an alignment layer, an easy-adhesion layer, and an antistatic layer. The method of forming the oriented layer will be described later.
(基材)
 基材としては、重合体を含む基材であることが好ましい。重合体を含む基材としては、例えば、ポリエステル系基材(例えば、ポリエチレンテレフタレート、及びポリエチレンナフタレート)、セルロース系基材(例えば、ジアセチルセルロース、及びトリアセチルセルロース(略称:TAC))、ポリカーボネート系基材、ポリ(メタ)アクリル系基材(例えば、ポリ(メタ)アクリレート(例えば、ポリメチルメタクリレート))、ポリスチレン系基材(例えば、ポリスチレン、及びアクリロニトリルスチレン共重合体)、オレフィン系基材(例えば、ポリエチレン、ポリプロピレン、環状構造(例えば、ノルボルネン構造)を有するポリオレフィン、及びエチレンプロピレン共重合体)、ポリアミド系基材(例えば、ポリ塩化ビニル、ナイロン、及び芳香族ポリアミド)、ポリイミド系基材、ポリスルホン系基材、ポリエーテルスルホン系基材、ポリエーテルエーテルケトン系基材、ポリフェニレンスルフィド系基材、ビニルアルコール系基材、ポリ塩化ビニリデン系基材、ポリビニルブチラール系基材、ポリオキシメチレン系基材、及びエポキシ樹脂系基材が挙げられる。基材は、2種以上の重合体(すなわち、ブレンドポリマー)を含む基材であってもよい。基材は、セルロース系基材であることが好ましく、トリアセチルセルロースを含む基材であることがより好ましい。
(Base material)
The base material is preferably a base material containing a polymer. Examples of the base material containing the polymer include a polyester-based base material (for example, polyethylene terephthalate and polyethylene naphthalate), a cellulose-based base material (for example, diacetyl cellulose and triacetyl cellulose (abbreviation: TAC)), and a polycarbonate-based base material. Substrate, poly (meth) acrylic substrate (eg, poly (meth) acrylate (eg, polymethylmethacrylate)), polystyrene-based substrate (eg, polystyrene and acrylonitrile styrene copolymer), olefin-based substrate (eg, olefin-based substrate (eg, polystyrene and acrylonitrile styrene copolymer) For example, polyethylene, polypropylene, polyolefins having a cyclic structure (eg, norbornene structure), and ethylene-propylene copolymers), polyamide-based substrates (eg, polyvinyl chloride, nylon, and aromatic polyamides), polyimide-based substrates, Polysulfone-based base material, polyethersulfone-based base material, polyether etherketone-based base material, polyphenylene sulfide-based base material, vinyl alcohol-based base material, polyvinylidene chloride-based base material, polyvinyl butyral-based base material, polyoxymethylene-based base material Examples include materials and epoxy resin-based substrates. The base material may be a base material containing two or more kinds of polymers (that is, a blend polymer). The base material is preferably a cellulosic base material, and more preferably a base material containing triacetyl cellulose.
 基材の全光線透過率は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが特に好ましい。基材の全光線透過率の上限は、制限されない。基材の全光線透過率は、例えば、100%以下の範囲で決定すればよい。基材の全光線透過率は、公知の分光光度計(例えば、ヘイズメーター、NDH 2000、日本電色工業株式会社)を用いて測定する。 The total light transmittance of the base material is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more. The upper limit of the total light transmittance of the base material is not limited. The total light transmittance of the base material may be determined, for example, in the range of 100% or less. The total light transmittance of the base material is measured using a known spectrophotometer (for example, haze meter, NDH 2000, Nippon Denshoku Kogyo Co., Ltd.).
 基材の形状は、制限されない。基材の形状は、例えば、用途に応じて決定すればよい。基材は、平板状の基材であることが好ましい。 The shape of the base material is not limited. The shape of the base material may be determined, for example, according to the intended use. The base material is preferably a flat base material.
 基材の厚さは、製造適性、製造原価、及び光学特性の観点から、10μm~250μmの範囲であることが好ましく、40μm~150μmの範囲であることがより好ましい。 The thickness of the base material is preferably in the range of 10 μm to 250 μm, more preferably in the range of 40 μm to 150 μm, from the viewpoint of manufacturing suitability, manufacturing cost, and optical characteristics.
(組成物)
-液晶性化合物-
 組成物は、液晶性化合物を含む。
(Composition)
-Liquid crystal compound-
The composition comprises a liquid crystal compound.
 液晶性化合物の種類は、制限されない。液晶性化合物としては、例えば、コレステリック液晶を形成する公知の液晶性化合物を利用することができる。 The type of liquid crystal compound is not limited. As the liquid crystal compound, for example, a known liquid crystal compound that forms a cholesteric liquid crystal can be used.
 液晶性化合物は、重合性基を有していてもよい。液晶性化合物は、1種単独、又は2種以上の重合性基を有していてもよい。液晶性化合物は、2つ以上の同種の重合性基を有していてもよい。液晶性化合物が重合性基を有することで、液晶性化合物を重合させることができる。液晶性化合物を重合させることで、コレステリック液晶の安定性を向上させることができる。 The liquid crystal compound may have a polymerizable group. The liquid crystal compound may have one kind alone or two or more kinds of polymerizable groups. The liquid crystal compound may have two or more homogeneous polymerizable groups. Since the liquid crystal compound has a polymerizable group, the liquid crystal compound can be polymerized. By polymerizing the liquid crystal compound, the stability of the cholesteric liquid crystal can be improved.
 重合性基としては、例えば、エチレン性不飽和二重結合を有する基、環状エーテル基、及び開環反応を起こすことが可能な含窒素複素環基が挙げられる。 Examples of the polymerizable group include a group having an ethylenically unsaturated double bond, a cyclic ether group, and a nitrogen-containing heterocyclic group capable of causing a ring-opening reaction.
 エチレン性不飽和二重結合を有する基としては、例えば、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニルフェニル基、及びアリル基が挙げられる。 Examples of the group having an ethylenically unsaturated double bond include an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, and an allyl group.
 環状エーテル基としては、例えば、エポキシ基、及びオキセタニル基が挙げられる。 Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
 開環反応を起こすことが可能な含窒素複素環基としては、例えば、アジリジニル基が挙げられる。 Examples of the nitrogen-containing heterocyclic group capable of causing a ring-opening reaction include an aziridinyl group.
 重合性基は、エチレン性不飽和二重結合を有する基、及び環状エーテル基からなる群より選択される少なくとも1種であることが好ましい。具体的に、重合性基は、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニルフェニル基、アリル基、エポキシ基、オキセタニル基、及びアジリジニル基からなる群より選択される少なくとも1種であることが好ましく、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、及びメタクリロイルオキシ基からなる群より選択される少なくとも1種であることがより好ましく、アクリロイルオキシ基、及びメタクリロイルオキシ基からなる群より選択される少なくとも1種であることが特に好ましい。 The polymerizable group is preferably at least one selected from the group consisting of a group having an ethylenically unsaturated double bond and a cyclic ether group. Specifically, the polymerizable group is at least selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, an allyl group, an epoxy group, an oxetanyl group, and an aziridinyl group. It is preferably one kind, and more preferably at least one kind selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, and a methacryloyloxy group, and more preferably a group consisting of an acryloyloxy group and a methacryloyloxy group. It is particularly preferable that it is at least one selected more.
 液晶性化合物は、化学構造に応じて、例えば、棒状液晶性化合物、及び円盤状液晶性化合物に分類される。棒状液晶性化合物は、棒状の化学構造を有する液晶性化合物として知られている。棒状液晶性化合物としては、例えば、公知の棒状液晶性化合物を利用することができる。円盤状液晶性化合物は、円盤状の化学構造を有する液晶性化合物として知られている。円盤状液晶性化合物としては、例えば、公知の円盤状液晶性化合物を利用することができる。 Liquid crystal compounds are classified into, for example, rod-shaped liquid crystal compounds and disk-shaped liquid crystal compounds according to their chemical structure. The rod-shaped liquid crystal compound is known as a liquid crystal compound having a rod-shaped chemical structure. As the rod-shaped liquid crystal compound, for example, a known rod-shaped liquid crystal compound can be used. The disc-shaped liquid crystal compound is known as a liquid crystal compound having a disc-shaped chemical structure. As the disk-shaped liquid crystal compound, for example, a known disk-shaped liquid crystal compound can be used.
 液晶性化合物は、製造コストの観点から、棒状液晶性化合物であることが好ましく、棒状サーモトロピック液晶性化合物であることがより好ましい。 From the viewpoint of manufacturing cost, the liquid crystal compound is preferably a rod-shaped liquid crystal compound, and more preferably a rod-shaped thermotropic liquid crystal compound.
 棒状サーモトロピック液晶性化合物は、棒状の化学構造を有し、かつ、特定の温度範囲で液晶性を示す化合物である。棒状サーモトロピック液晶性化合物としては、例えば、公知の棒状サーモトロピック液晶性化合物を利用することができる。 The rod-shaped thermotropic liquid crystal compound is a compound having a rod-shaped chemical structure and exhibiting liquid crystallinity in a specific temperature range. As the rod-shaped thermotropic liquid crystal compound, for example, a known rod-shaped thermotropic liquid crystal compound can be used.
 棒状サーモトロピック液晶性化合物としては、例えば、「Makromol. Chem.,190巻、2255頁(1989年)」、「Advanced Materials 5巻、107頁(1993年)」、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特表平11-513019号公報、特開平11-80081号公報、特開2001-328973号公報、又は特開2007-279688号公報に記載された化合物が挙げられる。棒状サーモトロピック液晶性化合物としては、例えば、特開2016-81035号公報において一般式1で表される化合物、及び特開2007-279688号公報において一般式(I)又は一般式(II)で表される化合物も挙げられる。 Examples of the rod-shaped thermotropic liquid crystal compound include "Makromol. Chem., 190, 2255 (1989)", "Advanced Materials, 5, 107 (1993)", US Pat. No. 4,683,327, U.S. Pat. US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication No. 95/22586, International Publication No. 95/24455, International Publication No. 97/00600, International Publication No. 98/23580, International Publication No. 98/52905, Japanese Patent Application Laid-Open No. 1-272551, Japanese Patent Application Laid-Open No. 6-16616, Japanese Patent Application Laid-Open No. 7-110469, Japanese Patent Application Laid-Open No. 11-513019, Japanese Patent Application Laid-Open No. 11-8801, Japanese Patent Application Laid-Open No. 11-8801 Examples thereof include compounds described in Japanese Patent Application Laid-Open No. 328973 or Japanese Patent Application Laid-Open No. 2007-279688. Examples of the rod-shaped thermotropic liquid crystal compound include a compound represented by the general formula 1 in JP-A-2016-81035 and a compound represented by the general formula (I) or the general formula (II) in JP-A-2007-279688. The compounds to be used are also mentioned.
 棒状サーモトロピック液晶性化合物は、下記一般式(1)で表される化合物であることが好ましい。 The rod-shaped thermotropic liquid crystal compound is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Q、及びQは、それぞれ独立して、重合性基を表し、L、L、L、及びLは、それぞれ独立して、単結合、又は2価の連結基を表し、A、及びAは、それぞれ独立して、炭素原子数が2~20である2価の炭化水素基を表し、Mは、メソゲン基を表す。 In the general formula (1), Q 1 and Q 2 each independently represent a polymerizable group, and L 1 , L 2 , L 3 and L 4 independently represent a single bond or 2 respectively. Representing a valent linking group, A 1 and A 2 each independently represent a divalent hydrocarbon group having 2 to 20 carbon atoms, and M represents a mesogen group.
 一般式(1)中、Q、及びQで表される重合性基としては、例えば、既述の重合性基が挙げられる。Q、及びQで表される重合性基の好ましい態様は、既述の重合性基と同様である。 Examples of the polymerizable group represented by Q 1 and Q 2 in the general formula (1) include the above-mentioned polymerizable group. The preferred embodiment of the polymerizable group represented by Q 1 and Q 2 is the same as that of the above-mentioned polymerizable group.
 一般式(1)中、L、L、L、及びLで表される2価の連結基は、-O-、-S-、-CO-、-NR-、-CO-O-、-O-CO-O-、-CO-NR-、-NR-CO-、-O-CO-、-O-CO-NR-、-NR-CO-O-、及びNR-CO-NR-からなる群より選択される2価の連結基であることが好ましい。上記した2価の連結基におけるRは、炭素原子数が1~7であるアルキル基、又は水素原子を表す。 In the general formula (1), the divalent linking groups represented by L 1 , L 2 , L 3 , and L 4 are -O-, -S-, -CO-, -NR-, and -CO-O. -, -O-CO-O-, -CO-NR-, -NR-CO-, -O-CO-, -O-CO-NR-, -NR-CO-O-, and NR-CO-NR It is preferably a divalent linking group selected from the group consisting of −. R in the above-mentioned divalent linking group represents an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
 一般式(1)中、L、及びLの少なくとも一方は、-O-CO-O-であることが好ましい。 In the general formula (1), at least one of L 3 and L 4 is preferably —O—CO—O−.
 一般式(1)中、Q-L-、及びQ-L-は、それぞれ独立して、CH=CH-CO-O-、CH=C(CH)-CO-O-、又はCH=C(Cl)-CO-O-であることが好ましく、CH=CH-CO-O-であることがより好ましい。 In the general formula (1), Q 1- L 1- and Q 2- L 2- are independent of each other, CH 2 = CH-CO-O-, CH 2 = C (CH 3 ) -CO-O. -Or, CH 2 = C (Cl) -CO-O- is preferable, and CH 2 = CH-CO-O- is more preferable.
 一般式(1)中、A、及びAで表される、炭素原子数が2~20である2価の炭化水素基は、炭素原子数が2~12であるアルキレン基、炭素原子数が2~12であるアルケニレン基、又は炭素原子数が2~12であるアルキニレン基であることが好ましく、炭素原子数が2~12であるアルキレン基であることがより好ましい。2価の炭化水素基は、鎖状であることが好ましい。2価の炭化水素基は、互いに隣接していない酸素原子、又は互いに隣接していない硫黄原子を含んでいてもよい。2価の炭化水素基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(例えば、フッ素、塩素、及び臭素)、シアノ基、メチル基、及びエチル基が挙げられる。 In the general formula (1), the divalent hydrocarbon group having 2 to 20 carbon atoms represented by A 1 and A 2 has an alkylene group having 2 to 12 carbon atoms and a carbon atom number. It is preferably an alkenylene group having 2 to 12 or an alkynylene group having 2 to 12 carbon atoms, and more preferably an alkylene group having 2 to 12 carbon atoms. The divalent hydrocarbon group is preferably in the form of a chain. The divalent hydrocarbon group may contain oxygen atoms that are not adjacent to each other or sulfur atoms that are not adjacent to each other. The divalent hydrocarbon group may have a substituent. Substituents include, for example, halogen atoms (eg, fluorine, chlorine, and bromine), cyano groups, methyl groups, and ethyl groups.
 一般式(1)中、Mで表されるメソゲン基は、液晶形成に寄与する液晶性化合物の主要骨格を形成する基である。Mで表されるメソゲン基については、例えば、「FlussigeKristalle in Tabellen II」(VEB DeutscheVerlag fur Grundstoff Industrie,Leipzig、1984年刊)の記載(特に第7頁~第16頁)、及び「液晶便覧」(液晶便覧編集委員会編、丸善、2000年刊)の記載(特に第3章)を参照することができる。 In the general formula (1), the mesogen group represented by M is a group that forms the main skeleton of a liquid crystal compound that contributes to liquid crystal formation. Regarding the mesogen group represented by M, for example, the description (particularly, pages 7 to 16) of "Flusige Editorial in Table II" (VEB, Editorial, fur, Grundstoff, Industrie, Leipzig, 1984), and liquid crystal (pages 7 to 16). You can refer to the description (especially Chapter 3) of the Handbook Editorial Committee, edited by Maruzen, 2000).
 一般式(1)中、Mで表されるメソゲン基の具体的な構造としては、例えば、特開2007-279688号公報の段落[0086]に記載された構造が挙げられる。 In the general formula (1), as a specific structure of the mesogen group represented by M, for example, the structure described in paragraph [0086] of JP-A-2007-279688 can be mentioned.
 一般式(1)中、Mで表されるメソゲン基は、芳香族炭化水素基、複素環基、及び脂環式炭化水素基からなる群より選択される少なくとも1種の環状構造を含む基であることが好ましく、芳香族炭化水素基を含む基であることがより好ましい。 In the general formula (1), the mesogen group represented by M is a group containing at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups, and alicyclic hydrocarbon groups. It is preferably a group containing an aromatic hydrocarbon group, and more preferably a group containing an aromatic hydrocarbon group.
 一般式(1)中、Mで表されるメソゲン基は、2個~5個の芳香族炭化水素基を含む基であることが好ましく、3個~5個の芳香族炭化水素基を含む基であることがより好ましい。 In the general formula (1), the mesogen group represented by M is preferably a group containing 2 to 5 aromatic hydrocarbon groups, and is a group containing 3 to 5 aromatic hydrocarbon groups. Is more preferable.
 一般式(1)中、Mで表されるメソゲン基は、3個~5個のフェニレン基を含み、かつ、上記フェニレン基が互いに-CO-O-によって連結された基であることが好ましい。 In the general formula (1), the mesogen group represented by M is preferably a group containing 3 to 5 phenylene groups and the phenylene groups are linked to each other by -CO-O-.
 一般式(1)中、Mで表されるメソゲン基に含まれる環状構造(例えば、芳香族炭化水素基、複素環基、及び脂環式炭化水素基)は、置換基を有していてもよい。置換基としては、例えば、炭素数が1~10であるアルキル基(例えば、メチル基)が挙げられる。 In the general formula (1), the cyclic structure (for example, aromatic hydrocarbon group, heterocyclic group, and alicyclic hydrocarbon group) contained in the mesogen group represented by M may have a substituent. Good. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms (for example, a methyl group).
 一般式(1)で表される化合物の具体例を以下に示す。ただし、一般式(1)で表される化合物は、以下に示す化合物に制限されるものではない。以下に示す化合物の化学構造において、「-Me」は、メチル基を表す。 Specific examples of the compound represented by the general formula (1) are shown below. However, the compound represented by the general formula (1) is not limited to the compounds shown below. In the chemical structure of the compounds shown below, "-Me" represents a methyl group.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 棒状サーモトロピック液晶性化合物の具体例を以下に示す。ただし、棒状サーモトロピック液晶性化合物は、以下に示す化合物に制限されるものではない。 Specific examples of the rod-shaped thermotropic liquid crystal compound are shown below. However, the rod-shaped thermotropic liquid crystal compound is not limited to the compounds shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 液晶性化合物は、公知の方法によって合成した合成品、又は市販品であってもよい。液晶性化合物の市販品は、例えば、東京化成工業株式会社、及びメルク社から入手可能である。 The liquid crystal compound may be a synthetic product synthesized by a known method or a commercially available product. Commercially available liquid crystal compounds are available from, for example, Tokyo Chemical Industry Co., Ltd. and Merck & Co., Inc.
 組成物は、1種単独、又は2種以上の液晶性化合物を含んでいてもよい。 The composition may contain one kind alone or two or more kinds of liquid crystal compounds.
 液晶性化合物の含有率は、耐熱性の観点から、組成物の固形分質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。液晶性化合物の含有率の上限は、キラル剤の含有量に応じて決定すればよい。液晶性化合物の含有率は、組成物の固形分質量に対して、例えば、100質量%未満の範囲で決定すればよい。液晶性化合物の含有率は、組成物の固形分質量に対して、99質量%以下、又は96質量%以下であってもよい。液晶性化合物の含有率は、組成物の固形分質量に対して、70質量%以上100質量%未満であることが好ましく、80質量%以上100質量%未満であることがより好ましく、90質量%以上100質量%未満であることが特に好ましい。 From the viewpoint of heat resistance, the content of the liquid crystal compound is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the solid content mass of the composition. It is particularly preferable to have. The upper limit of the content of the liquid crystal compound may be determined according to the content of the chiral agent. The content of the liquid crystal compound may be determined in the range of, for example, less than 100% by mass with respect to the solid content mass of the composition. The content of the liquid crystal compound may be 99% by mass or less, or 96% by mass or less, based on the solid content mass of the composition. The content of the liquid crystal compound is preferably 70% by mass or more and less than 100% by mass, more preferably 80% by mass or more and less than 100% by mass, and 90% by mass, based on the solid content mass of the composition. It is particularly preferable that it is more than 100% by mass.
-キラル剤-
 組成物は、光照射によってらせん誘起力が変化するキラル剤を含む。
-Chiral agent-
The composition comprises a chiral agent whose spiral-inducing force changes upon light irradiation.
 本開示において、「光照射によってらせん誘起力が変化する」とは、光照射前のらせん誘起力と光照射後のらせん誘起力との間で差が生じることを意味する。らせん誘起力(HTP)は、キラル剤のらせん形成能力を表す指標として知られている。らせん誘起力は、一般的に、らせん軸の一周期の長さとキラル剤の濃度との積の逆数で表される。らせん誘起力は、例えば、キラル剤の種類、及びキラル剤の濃度に依存する。 In the present disclosure, "the spiral-inducing force changes by light irradiation" means that there is a difference between the spiral-inducing force before light irradiation and the spiral-inducing force after light irradiation. The spiral-inducing force (HTP) is known as an index showing the spiral-forming ability of a chiral agent. The spiral inducing force is generally expressed as the reciprocal of the product of the length of one cycle of the spiral axis and the concentration of the chiral auxiliary. The spiral inducing force depends, for example, on the type of chiral auxiliary and the concentration of the chiral agent.
 キラル剤の種類は、光照射によってらせん誘起力が変化するキラル剤であれば制限されない。キラル剤の種類は、例えば、目的とするらせん軸の傾斜角に応じて決定すればよい。 The type of chiral agent is not limited as long as it is a chiral agent whose spiral-inducing force changes with light irradiation. The type of chiral agent may be determined, for example, according to the inclination angle of the target spiral shaft.
 キラル剤は、液晶性、又は非液晶性のキラル剤であってもよい。 The chiral agent may be a liquid crystal or non-liquid crystal chiral agent.
 キラル剤の多くは、不斉炭素原子を含む。ただし、キラル剤は、不斉炭素原子を含む化合物に制限されない。キラル剤としては、例えば、不斉炭素原子を含まない軸性不斉化合物、及び面性不斉化合物も挙げられる。 Most chiral agents contain asymmetric carbon atoms. However, the chiral agent is not limited to compounds containing an asymmetric carbon atom. Examples of the chiral agent include an axial asymmetric compound containing no asymmetric carbon atom and a planar asymmetric compound.
 キラル剤は、重合性基を有していてもよい。キラル剤は、1種単独、又は2種以上の重合性基を有していてもよい。キラル剤は、2つ以上の同種の重合性基を有していてもよい。キラル剤における重合性基としては、例えば、上記「液晶性化合物」の項において説明した重合性基が挙げられる。キラル剤における重合性基の好ましい態様は、上記「液晶性化合物」の項において説明した重合性基と同様である。 The chiral agent may have a polymerizable group. The chiral agent may have one kind alone or two or more kinds of polymerizable groups. The chiral agent may have two or more homogeneous polymerizable groups. Examples of the polymerizable group in the chiral agent include the polymerizable group described in the above section "Liquid crystal compound". A preferred embodiment of the polymerizable group in the chiral agent is the same as that of the polymerizable group described in the above section "Liquid crystal compound".
 キラル剤としては、例えば、光反応型キラル剤が挙げられる。光反応型キラル剤は、キラル部位(キラリティを生じさせる部位をいう。以下同じ。)と、光照射によって構造変化する光反応部位と、を有する化合物である。光反応型キラル剤は、例えば、照射光量に応じて液晶性化合物のねじれ構造を大きく変化させる。 Examples of the chiral agent include a photoreactive chiral agent. A photoreactive chiral agent is a compound having a chiral site (a site that causes chirality; the same applies hereinafter) and a photoreactive site whose structure changes due to light irradiation. The photoreactive chiral agent, for example, greatly changes the twisted structure of the liquid crystal compound according to the amount of irradiation light.
 キラル部位としては、例えば、「野平博之、化学総説、No.22液晶の化学、73p:1994」に記載された不斉炭素が挙げられる。 Examples of the chiral site include the asymmetric carbon described in "Hiroyuki Nohira, Review of Chemistry, No. 22 Chemistry of Liquid Crystal, 73p: 1994".
 光照射によって構造変化する光反応部位は、例えば、「フォトクロミック化合物」(内田欣吾、入江正浩、化学工業、vol.64、640p,1999、内田欣吾、入江正浩、ファインケミカル、vol.28(9)、15p,1999)に記載されている。光照射による構造変化としては、例えば、分解、付加反応、異性化、及び2量化反応が挙げられる。光照射による構造変化は、可逆的、又は不可逆的であってもよい。 Photochemical sites whose structure changes due to light irradiation include, for example, "photochromic compounds" (Kingo Uchida, Masahiro Irie, Chemical Industry, vol.64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemicals, vol.28 (9), 15p, 1999). Examples of the structural change due to light irradiation include decomposition, addition reaction, isomerization, and dimerization reaction. The structural change due to light irradiation may be reversible or irreversible.
 光反応型キラル剤としては、例えば、特開2001-159709号公報の段落[0044]~段落[0047]に記載の光反応型キラル剤、特開2002-179669号公報の段落[0019]~段落[0043]に記載の光学活性化合物、特開2002-179633号公報の段落[0020]~段落[0044]に記載の光学活性化合物、特開2002-179670号公報の段落[0016]~段落[0040]に記載の光学活性化合物、特開2002-179668号公報の段落[0017]~段落[0050]に記載の光学活性化合物、特開2002-180051号公報の段落[0018]~段落[0044]に記載の光学活性化合物、特開2002-338575号公報の段落[0016]~段落[0055]に記載の光学活性化合物、及び特開2002-179682号公報の段落[0020]~段落[0049]に記載の光学活性化合物が挙げられる。 Examples of the photoreactive chiral agent include the photoreactive chiral agents described in paragraphs [0044] to [0047] of JP-A-2001-159709, paragraphs [0019] to paragraphs of JP-A-2002-179669. The optically active compound described in Japanese Patent Application Laid-Open No. 2002-179633, paragraphs [0020] to paragraph [0044] of JP-A-2002-179633, paragraphs [0016] to paragraph [0040] of JP-A-2002-179670. ], The optically active compounds described in JP-A-2002-179668, paragraphs [0017] to paragraph [0050], and the optically active compounds described in JP-A-2002-180051, paragraphs [0018] to paragraphs [0044]. The optically active compound described, the optically active compound described in paragraphs [0016] to paragraph [0055] of JP-A-2002-338575, and paragraphs [0020] to paragraph [0049] of JP-A-2002-179682. Optically active compounds of.
 キラル剤は、光照射によってらせん誘起力が変化しやすいという観点から、光異性化を起こすキラル剤であることが好ましい。光異性化を起こすキラル剤は、光異性化部位を有するキラル剤である。光異性化部位は、上記光反応部位の一種である。光異性化部位は、可視光の吸収が小さく、光異性化が起こりやすく、かつ、光照射前後のらせん誘起力の差が大きいという観点から、シンナモイル部位、カルコン部位、アゾベンゼン部位、スチルベン部位、又はクマリン部位であることが好ましく、シンナモイル部位、又はカルコン部位であることがより好ましい。 The chiral agent is preferably a chiral agent that causes photoisomerization from the viewpoint that the spiral-inducing force is easily changed by light irradiation. The chiral agent that causes photoisomerization is a chiral agent having a photoisomerization site. The photoisomerization site is one of the above photoreaction sites. From the viewpoint that the photoisomerization site absorbs less visible light, is prone to photoisomerization, and has a large difference in spiral-inducing force before and after light irradiation, the cinnamoyl site, coumarin site, azobenzene site, stilbene site, or It is preferably a coumarin moiety, more preferably a cinnamoyl moiety or a chalcone moiety.
 キラル剤は、光照射前後のらせん誘起力の差が大きいという観点から、イソソルビド骨格、イソマンニド骨格、又はビナフトール骨格を有することが好ましく、イソソルビド骨格、又はイソマンニド骨格を有することがより好ましく、イソソルビド骨格を有することが特に好ましい。 The chiral agent preferably has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton, more preferably an isosorbide skeleton, or an isosorbide skeleton, from the viewpoint of a large difference in spiral-inducing force before and after light irradiation. It is particularly preferable to have.
 キラル剤は、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、及び液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤からなる群より選択される少なくとも1種であることが好ましい。上記のようなキラル剤の種類に応じて、所望の巻き方向を有するらせん構造を形成することができる。例えば、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤を用いることで、右巻きのらせん構造を形成することができる。また、後述するように、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、及び液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤を併用することで、らせん誘起力(工程(C)の前後におけるらせん誘起力の変化量を含む。)を調節することもできる。 The chiral agent shall be at least one selected from the group consisting of a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound and a chiral agent that induces a left-handed helical structure with respect to a liquid crystal compound. Is preferable. Depending on the type of chiral agent as described above, a spiral structure having a desired winding direction can be formed. For example, a right-handed helical structure can be formed by using a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound. Further, as will be described later, by using a chiral agent that induces a right-handed spiral structure for a liquid crystal compound and a chiral agent that induces a left-handed spiral structure for a liquid crystal compound, a spiral-inducing force ( It is also possible to adjust the amount of change in the spiral-inducing force before and after the step (C).
 キラル剤は、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、及び液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤を含んでもよい。上記2種のキラル剤を併用することで、らせん誘起力(工程(C)の前後におけるらせん誘起力の変化量を含む。以下、本段落において同じ。)を調節することができる。上記2種のキラル剤を併用する場合、例えば、各キラル剤の含有率を調節することで、らせん誘起力を調節することもできる。 The chiral agent may include a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound, and a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound. By using the above two kinds of chiral agents in combination, the spiral-inducing force (including the amount of change in the spiral-inducing force before and after the step (C). The same shall apply hereinafter in this paragraph) can be adjusted. When the above two types of chiral agents are used in combination, for example, the spiral-inducing force can be adjusted by adjusting the content of each chiral agent.
 組成物は、1種単独、又は2種以上のキラル剤を含んでいてもよい。 The composition may contain one kind alone or two or more kinds of chiral agents.
 キラル剤の含有率は、制限されない。キラル剤の含有率は、例えば、目的とするらせんピッチに応じて決定すればよい。キラル剤の含有率は、らせん配向規制力の観点から、組成物の固形分質量に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることが特に好ましい。キラル剤の含有率は、耐熱性の観点から、組成物の固形分質量に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。キラル剤の含有率は、組成物の固形分質量に対して、0.01質量%~20質量%であることが好ましく、0.05質量%~10質量%であることがより好ましく、0.1質量%~5質量%であることが特に好ましい。 The content of chiral auxiliary is not limited. The content of the chiral agent may be determined, for example, according to the target spiral pitch. The content of the chiral agent is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the solid content mass of the composition, from the viewpoint of the spiral orientation regulating force. It is particularly preferably 0.1% by mass or more. From the viewpoint of heat resistance, the content of the chiral agent is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less, based on the solid content mass of the composition. Is particularly preferred. The content of the chiral agent is preferably 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 10% by mass, and 0. It is particularly preferably 1% by mass to 5% by mass.
 組成物において、液晶性化合物の含有量に対するキラル剤の含有量の比は、らせん配向規制力の観点から、質量基準で、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.1以上であることが特に好ましい。組成物において、液晶性化合物の含有量に対するキラル剤の含有量の比は、熱に対する耐性の観点から、質量基準で、20以下であることが好ましく、10以下であることがより好ましく、5以下であることが特に好ましい。液晶性化合物の含有量に対するキラル剤の含有量の比は、質量基準で、0.01~20であることが好ましく、0.05~20であることがより好ましく、0.1~20であることが特に好ましい。さらに、液晶性化合物の含有量に対するキラル剤の含有量の比は、質量基準で、0.1~10であることが好ましく、0.1~5であることがより好ましい。 In the composition, the ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.01 or more, preferably 0.05 or more, based on the mass, from the viewpoint of the spiral orientation regulating force. More preferably, it is particularly preferably 0.1 or more. In the composition, the ratio of the content of the chiral auxiliary to the content of the liquid crystal compound is preferably 20 or less, more preferably 10 or less, and 5 or less, on a mass basis, from the viewpoint of heat resistance. Is particularly preferable. The ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.01 to 20, more preferably 0.05 to 20, and 0.1 to 20 on a mass basis. Is particularly preferred. Further, the ratio of the content of the chiral agent to the content of the liquid crystal compound is preferably 0.1 to 10 and more preferably 0.1 to 5 on a mass basis.
-他の成分-
 組成物は、上記した成分以外の成分(以下、「他の成分」という。)を含んでいてもよい。他の成分としては、例えば、溶媒、配向規制剤、重合開始剤、レベリング剤、配向助剤、光重合禁止剤、増感剤、及び光照射によってらせん誘起力が変化しないキラル剤が挙げられる。
-Other ingredients-
The composition may contain components other than the above-mentioned components (hereinafter, referred to as "other components"). Examples of other components include a solvent, an orientation regulator, a polymerization initiator, a leveling agent, an orientation auxiliary, a photopolymerization inhibitor, a sensitizer, and a chiral agent whose spiral-inducing force does not change by light irradiation.
 組成物は、溶媒を含むことが好ましい。組成物が溶媒を含むこと、組成物の塗布性を向上させることができる。 The composition preferably contains a solvent. The composition contains a solvent, and the coatability of the composition can be improved.
 溶媒としては、有機溶媒が好ましい。有機溶媒としては、例えば、アミド溶媒(例えば、N,N-ジメチルホルムアミド)、スルホキシド溶媒(例えば、ジメチルスルホキシド)、ヘテロ環化合物(例えば、ピリジン)、炭化水素溶媒(例えば、ベンゼン、及びヘキサン)、ハロゲン化アルキル溶媒(例えば、クロロホルム、ジクロロメタン)、エステル溶媒(例えば、酢酸メチル、及び酢酸ブチル)、ケトン溶媒(例えば、アセトン、メチルエチルケトン、及びシクロヘキサノン)、及びエーテル溶媒(例えば、テトラヒドロフラン、及び1、2-ジメトキシエタン)が挙げられる。有機溶媒は、ハロゲン化アルキル溶媒、及びケトン溶媒からなる群より選択される少なくとも1種であることが好ましく、ケトン溶媒であることがより好ましい。 As the solvent, an organic solvent is preferable. Examples of the organic solvent include an amide solvent (for example, N, N-dimethylformamide), a sulfoxide solvent (for example, dimethyl sulfoxide), a heterocyclic compound (for example, pyridine), a hydrocarbon solvent (for example, benzene, and hexane), and the like. Alkyl halide solvents (eg chloroform, dichloromethane), ester solvents (eg methyl acetate and butyl acetate), ketone solvents (eg acetone, methyl ethyl ketone, and cyclohexanone), and ether solvents (eg tetrahydrofuran, and 1, 2 -Dimethoxyethane). The organic solvent is preferably at least one selected from the group consisting of an alkyl halide solvent and a ketone solvent, and more preferably a ketone solvent.
 組成物は、1種単独、又は2種以上の溶媒を含んでいてもよい。 The composition may contain one kind alone or two or more kinds of solvents.
 組成物中の固形分の含有率は、組成物の全質量に対して、25質量%~40質量%であることが好ましく、25質量%~35質量%であることがより好ましい。 The content of the solid content in the composition is preferably 25% by mass to 40% by mass, more preferably 25% by mass to 35% by mass, based on the total mass of the composition.
 配向規制剤としては、例えば、特開2012-211306号公報の段落[0012]~段落[0030]に記載された化合物、特開2012-101999号公報の段落[0037]~段落[0044]に記載された化合物、特開2007-272185号公報の段落[0018]~段落[0043]に記載された含フッ素(メタ)アクリレートポリマー、及び特開2005-099258号公報に合成方法と共に詳細に記載された化合物が挙げられる。特開2004-331812号公報に記載されている、フルオロ脂肪族基含有モノマーの重合単位を全重合単位の50質量%超で含むポリマーを配向規制剤として用いてもよい。 Examples of the orientation control agent include the compounds described in paragraphs [0012] to [0030] of JP2012-2011306A, and paragraphs [0037] to [0044] of JP2012-101999. The compound, the fluorine-containing (meth) acrylate polymer described in paragraphs [0018] to [0043] of JP-A-2007-272185, and JP-A-2005-099258, which are described in detail together with the synthesis method. Examples include compounds. A polymer containing the polymerization unit of the fluoroaliphatic group-containing monomer in an amount of more than 50% by mass of the total polymerization unit described in JP-A-2004-331812 may be used as the orientation control agent.
 配向規制剤としては、垂直配向剤も挙げられる。垂直配向剤としては、例えば、特開2015-38598号公報に記載されたボロン酸化合物及び/又はオニウム塩、並びに特開2008-26730号公報に記載されたオニウム塩が挙げられる。 A vertical alignment agent can also be mentioned as an orientation control agent. Examples of the vertical alignment agent include a boronic acid compound and / or an onium salt described in JP-A-2015-38598, and an onium salt described in JP-A-2008-26730.
 組成物は、1種単独、又は2種以上の配向規制剤を含んでいてもよい。 The composition may contain one kind alone or two or more kinds of orientation control agents.
 組成物が配向規制剤を含む場合、配向規制剤の含有率は、組成物の固形分質量に対して、0質量%を超えて5.0質量%以下であることが好ましく、0.3質量%~2.0質量%であることがより好ましい。 When the composition contains an orientation control agent, the content of the orientation control agent is preferably more than 0% by mass and 5.0% by mass or less, preferably 0.3% by mass, based on the solid content mass of the composition. More preferably, it is% to 2.0% by mass.
 組成物は、重合開始剤を含むことが好ましい。組成物が重合開始剤を含むことで、組成物の硬化性を向上させることができる。 The composition preferably contains a polymerization initiator. When the composition contains a polymerization initiator, the curability of the composition can be improved.
 重合開始剤としては、例えば、光重合開始剤、及び熱重合開始剤が挙げられる。 Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator.
 重合開始剤は、熱による基材の変形、及び組成物の変質を抑制する観点から、光重合開始剤であることが好ましい。光重合開始剤としては、例えば、α-カルボニル化合物(例えば、米国特許第2367661号明細書、又は米国特許第2367670号明細書に記載された化合物)、アシロインエーテル(例えば、米国特許第2448828号明細書に記載された化合物)、α-炭化水素置換芳香族アシロイン化合物(例えば、米国特許第2722512号明細書に記載された化合物)、多核キノン化合物(例えば、米国特許第3046127号明細書、又は米国特許第2951758号明細書に記載された化合物)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(例えば、米国特許第3549367号明細書に記載された化合物)、アクリジン化合物(例えば、特開昭60-105667号公報、又は米国特許第4239850号明細書に記載された化合物)、フェナジン化合物(例えば、特開昭60-105667号公報、又は米国特許第4239850号明細書に記載された化合物)、オキサジアゾール化合物(例えば、米国特許第4212970号明細書記載の化合物)、及びアシルフォスフィンオキシド化合物(例えば、特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、又は特開平10-29997号公報に記載された化合物)が挙げられる。 The polymerization initiator is preferably a photopolymerization initiator from the viewpoint of suppressing deformation of the base material due to heat and deterioration of the composition. Examples of the photopolymerization initiator include an α-carbonyl compound (for example, the compound described in US Pat. No. 2,376,661 or US Pat. No. 2,376,670) and an acyloin ether (for example, US Pat. No. 2,448,828). Compounds described in the specification), α-hydrogen-substituted aromatic acidoine compounds (eg, compounds described in US Pat. No. 2,725,212), polynuclear quinone compounds (eg, US Pat. No. 3,46127, or A compound described in US Pat. No. 2,951,758), a combination of a triarylimidazole dimer and a p-aminophenyl ketone (eg, a compound described in US Pat. No. 3,549,637), an acridin compound (eg, special treatment). Kaisho 60-105667, or a compound described in US Pat. No. 4,239,850), a phenazine compound (for example, JP-A-60-105667, or a compound described in US Pat. No. 4,239,850). ), Oxaziazole compounds (for example, the compounds described in US Pat. No. 4,212,970), and acylphosphine oxide compounds (for example, Japanese Patent Application Laid-Open No. 63-40799, Japanese Patent Application Laid-Open No. 5-29234, JP-A-10- Examples thereof include compounds described in Japanese Patent Application Laid-Open No. 95788 or JP-A-10-29997).
 重合開始剤の紫外線吸収波長は、キラル剤の紫外線吸収波長と異なることが好ましい。重合開始剤の紫外線吸収波長がキラル剤の紫外線吸収波長と異なることで、工程(C)において、組成物の硬化を抑制しつつ、組成物に含まれるキラル剤のらせん誘起力を変化させることができる。上記の結果、らせん軸の傾斜角の制御性がより向上する。 It is preferable that the ultraviolet absorption wavelength of the polymerization initiator is different from the ultraviolet absorption wavelength of the chiral agent. Since the ultraviolet absorption wavelength of the polymerization initiator is different from the ultraviolet absorption wavelength of the chiral agent, in step (C), the spiral inducing force of the chiral agent contained in the composition can be changed while suppressing the curing of the composition. it can. As a result of the above, the controllability of the inclination angle of the spiral shaft is further improved.
 組成物は、1種単独、又は2種以上の重合開始剤を含んでいてもよい。 The composition may contain one kind alone or two or more kinds of polymerization initiators.
 組成物が重合開始剤を含む場合、重合開始剤の含有率は、組成物の固形分質量に対して、0.5質量%~5.0質量%であることが好ましく、1.0質量%~4.0質量%であることがより好ましい。 When the composition contains a polymerization initiator, the content of the polymerization initiator is preferably 0.5% by mass to 5.0% by mass, and 1.0% by mass, based on the solid content mass of the composition. It is more preferably about 4.0% by mass.
 組成物は、光照射によってらせん誘起力が変化しないキラル剤(以下、「第2のキラル剤」という場合がある。)を含んでもよい。例えば光照射によってらせん誘起力が減少する第1のキラル剤、及び第1のキラル剤と巻き方向が異なる第2のキラル剤の各作用によって、光照射によりらせん誘起力が増大し、らせん軸の傾斜角を減少させることができる。上記した第1のキラル剤は、光照射によってらせん誘起力が変化するキラル剤の1種である。 The composition may contain a chiral agent whose spiral-inducing force does not change due to light irradiation (hereinafter, may be referred to as a "second chiral agent"). For example, the spiral inducing force is increased by light irradiation due to the action of the first chiral agent whose spiral inducing force is reduced by light irradiation and the second chiral agent whose winding direction is different from that of the first chiral agent. The tilt angle can be reduced. The above-mentioned first chiral agent is one kind of chiral agent whose spiral-inducing force changes by light irradiation.
 第2のキラル剤は、光照射によってらせん誘起力が変化するキラル剤以外のキラル剤である。第2のキラル剤としては、例えば、光照射によって構造変化する光反応部位を有しないキラル剤が挙げられる。光照射によって構造変化する光反応部位については、上記「キラル剤」の項において説明したとおりである。 The second chiral agent is a chiral agent other than the chiral agent whose spiral-inducing force changes by light irradiation. Examples of the second chiral agent include chiral agents that do not have a photoreactive site whose structure changes due to light irradiation. The photoreactive site whose structure changes due to light irradiation is as described in the above section "Chiral agent".
 第2のキラル剤は、例えば、「液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989」に記載されたキラル剤から選択してもよい。 The second chiral agent is described in, for example, "Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Auxiliary for TN, STN, p. 199, Japan Society for the Promotion of Science, 42nd Committee, 1989". You may choose from agents.
 第2のキラル剤は、重合性基を有していてもよい。第2のキラル剤は、1種単独、又は2種以上の重合性基を有していてもよい。第2のキラル剤は、2つ以上の同種の重合性基を有していてもよい。第2のキラル剤における重合性基としては、例えば、上記「液晶性化合物」の項において説明した重合性基が挙げられる。第2のキラル剤における重合性基の好ましい態様は、上記「液晶性化合物」の項において説明した重合性基と同様である。 The second chiral agent may have a polymerizable group. The second chiral agent may have one kind alone or two or more kinds of polymerizable groups. The second chiral agent may have two or more homogeneous polymerizable groups. Examples of the polymerizable group in the second chiral agent include the polymerizable group described in the above section "Liquid crystal compound". A preferred embodiment of the polymerizable group in the second chiral agent is the same as that of the polymerizable group described in the above section "Liquid crystal compound".
 第2のキラル剤は、イソソルビド骨格、イソマンニド骨格、又はビナフトール骨格を有することが好ましく、イソソルビド骨格、又はイソマンニド骨格を有することがより好ましく、イソソルビド骨格を有することが特に好ましい。 The second chiral agent preferably has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton, more preferably has an isosorbide skeleton or an isomannide skeleton, and particularly preferably has an isosorbide skeleton.
 第2のキラル剤は、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、又は液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤であってもよい。第2のキラル剤が、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤である場合、光照射によってらせん誘起力が変化するキラル剤は、上記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤であることが好ましい。一方、第2のキラル剤が、液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤である場合、光照射によってらせん誘起力が変化するキラル剤は、液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤であることが好ましい。上記「キラル剤」の項において説明したように、右巻きのらせん構造を誘起するキラル剤、及び左巻きのらせん構造を誘起するキラル剤を併用することで、らせん誘起力(工程(C)の前後におけるらせん誘起力の変化量を含む。)を調節することができる。 The second chiral agent may be a chiral agent that induces a right-handed helical structure with respect to a liquid crystal compound, or a chiral agent that induces a left-handed helical structure with respect to a liquid crystal compound. When the second chiral agent is a chiral agent that induces a right-handed spiral structure with respect to the liquid crystal compound, the chiral agent whose spiral-inducing force changes by light irradiation is a left-handed spiral with respect to the liquid crystal compound. It is preferably a chiral agent that induces a structure. On the other hand, when the second chiral agent is a chiral agent that induces a left-handed spiral structure with respect to the liquid crystal compound, the chiral agent whose spiral-inducing force changes by light irradiation is right-handed with respect to the liquid crystal compound. It is preferably a chiral agent that induces a helical structure. As explained in the section of "chiral agent" above, by using a chiral agent that induces a right-handed spiral structure and a chiral agent that induces a left-handed spiral structure in combination, a spiral-inducing force (before and after step (C)). Includes the amount of change in the spiral-inducing force in.).
-組成物の製造方法-
 組成物の製造方法は、制限されない。組成物の製造方法としては、例えば、上記各成分を混合する方法が挙げられる。混合方法としては、公知の混合方法を利用することができる。組成物の製造方法においては、上記各成分を混合した後、得られた混合物をろ過してもよい。
-Composition manufacturing method-
The method for producing the composition is not limited. Examples of the method for producing the composition include a method of mixing the above-mentioned components. As the mixing method, a known mixing method can be used. In the method for producing the composition, after mixing each of the above components, the obtained mixture may be filtered.
(塗布方法)
 組成物の塗布方法は、制限されない。組成物の塗布方法としては、例えば、エクストルージョンダイコータ法、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、及びワイヤーバー法が挙げられる。
(Applying method)
The method of applying the composition is not limited. Examples of the coating method of the composition include an extrusion die coater method, a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, a slide coating method, and a blade coating method. , Gravure coating method, and wire bar method.
(塗布量)
 組成物の塗布量は、制限されない。組成物の塗布量は、例えば、目的とするコレステリック液晶層の厚さ、又は下記「工程(B)」の項において説明するせん断力が付与される前の組成物の厚さに応じて決定すればよい。
(Applying amount)
The amount of the composition applied is not limited. The coating amount of the composition is determined according to, for example, the thickness of the target cholesteric liquid crystal layer or the thickness of the composition before the shearing force described in the section "Step (B)" below is applied. Just do it.
[工程(B)]
 工程(B)においては、基材上に塗布された組成物の表面に、せん断力を付与する。以下、工程(B)について具体的に説明する。
[Step (B)]
In the step (B), a shearing force is applied to the surface of the composition applied on the base material. Hereinafter, the step (B) will be specifically described.
-せん断力を付与する方向-
 工程(B)において、せん断力は、組成物の表面に沿う一方向へ付与されることが好ましい。組成物の表面に沿う一方向へせん断力が付与されることで、らせん軸の向きのばらつきをより低減することができる。
-Direction to apply shear force-
In step (B), the shear force is preferably applied in one direction along the surface of the composition. By applying the shearing force in one direction along the surface of the composition, it is possible to further reduce the variation in the orientation of the spiral axis.
-せん断力を付与する手段-
 せん断力を付与する手段としては、例えば、ブレード、エアナイフ、バー、及びアプリケーターが挙げられる。工程(B)においては、ブレード、又はエアナイフを用いて組成物の表面にせん断力を付与することが好ましく、ブレードを用いて組成物の表面にせん断力を付与することがより好ましい。
-Means to apply shear force-
Means for applying shear forces include, for example, blades, air knives, bars, and applicators. In the step (B), it is preferable to apply a shearing force to the surface of the composition by using a blade or an air knife, and it is more preferable to apply a shearing force to the surface of the composition by using a blade.
 ブレードを用いて組成物の表面にせん断力を付与する方法においては、ブレードによって組成物の表面を掻き取ることが好ましい。上記方法においては、せん断力の付与前後で組成物の厚さが変化する場合がある。ブレードによってせん断力が付与された後の組成物の厚さは、せん断力が付与される前の組成物の厚さに対して、1/2以下、又は1/3以下であってもよい。ブレードによってせん断力が付与された後の組成物の厚さは、せん断力が付与される前の組成物の厚さに対して、1/4以上であることが好ましい。 In the method of applying a shearing force to the surface of the composition using a blade, it is preferable to scrape the surface of the composition with the blade. In the above method, the thickness of the composition may change before and after the application of the shearing force. The thickness of the composition after the shearing force is applied by the blade may be 1/2 or less or 1/3 or less of the thickness of the composition before the shearing force is applied. The thickness of the composition after the shearing force is applied by the blade is preferably 1/4 or more of the thickness of the composition before the shearing force is applied.
 ブレードの材料は、制限されない。ブレードの材料としては、例えば、金属(例えば、ステンレス)、及び樹脂(例えば、テフロン(登録商標)、及びポリエーテルエーテルケトン(PEEK))が挙げられる。 The material of the blade is not limited. Examples of the blade material include metals (eg, stainless steel) and resins (eg, Teflon® and polyetheretherketone (PEEK)).
 ブレードの形状は、制限されない。ブレードの形状としては、例えば、板状が挙げられる。 The shape of the blade is not limited. Examples of the shape of the blade include a plate shape.
 ブレードは、組成物に対してせん断力を付与しやすいという観点から、金属製の板状部材であることが好ましい。 The blade is preferably a metal plate-shaped member from the viewpoint of easily applying a shearing force to the composition.
 組成物に接触するブレードの先端部の厚さは、組成物に対してせん断力を付与しやすいという観点から、0.1mm以上であることが好ましく、1mm以上であることがより好ましい。ブレードの厚さの上限は、制限されない。ブレードの厚さは、例えば、10mm以下の範囲で決定すればよい。 The thickness of the tip of the blade in contact with the composition is preferably 0.1 mm or more, and more preferably 1 mm or more, from the viewpoint of easily applying a shearing force to the composition. There is no upper limit to the thickness of the blade. The thickness of the blade may be determined in the range of, for example, 10 mm or less.
 エアナイフを用いて組成物の表面にせん断力を付与する方法においては、組成物の表面にエアナイフによって圧縮空気を吹き付けることで、組成物の表面にせん断力が付与される。圧縮空気を吹き付ける速度(すなわち、流速)に応じて、組成物に付与するせん断速度を調節することができる。 In the method of applying a shearing force to the surface of the composition using an air knife, the shearing force is applied to the surface of the composition by blowing compressed air on the surface of the composition with the air knife. The shear rate applied to the composition can be adjusted according to the rate at which the compressed air is blown (that is, the flow velocity).
 エアナイフによる圧縮空気の吹き付け方向は、組成物の搬送方向に対して、同じ方向、又は反対方向であってもよい。エアナイフによる圧縮空気の吹き付け方向は、圧縮空気によって掻き取られた組成物の断片が基材上に残る組成物に付着することを防止するという観点から、組成物の搬送方向と同じ方向であることが好ましい。 The direction in which the compressed air is blown by the air knife may be the same direction or the opposite direction to the transport direction of the composition. The direction in which the compressed air is blown by the air knife should be the same as the transport direction of the composition from the viewpoint of preventing the fragments of the composition scraped by the compressed air from adhering to the composition remaining on the substrate. Is preferable.
-せん断速度-
 工程(B)におけるせん断速度が大きいほど、配向精度が高い(らせん軸の向きのばらつきが少ないことをいう。以下同じ。)コレステリック液晶層を形成することができる。せん断速度は、1,000秒-1以上であることが好ましく、10,000秒-1以上であることがより好ましく、30,000秒-1以上であることが特に好ましい。せん断速度の上限は、制限されない。せん断速度は、例えば、1.0×10-1以下の範囲で決定すればよい。
-Shear velocity-
The higher the shear rate in the step (B), the higher the orientation accuracy (meaning that there is less variation in the orientation of the spiral axis. The same applies hereinafter). The cholesteric liquid crystal layer can be formed. The shear rate is preferably 1,000 seconds-1 or more, more preferably 10,000 seconds- 1 or more, and particularly preferably 30,000 seconds-1 or more. The upper limit of shear rate is not limited. Shear rate, for example, may be determined in the range of 1.0 × 10 6 sec -1 or less.
 以下、せん断速度の求め方について説明する。例えば、ブレードを用いてせん断力を付与する場合、せん断速度は、ブレードと基材との最短距離を「d」とし、ブレードに接触する組成物の搬送速度(すなわち、組成物とブレードとの相対速度)を「V」としたとき、「V/d」によって求められる。また、例えば、エアナイフを用いてせん断力を付与する場合、せん断速度は、せん断付与後の組成物の厚さを「h」とし、組成物表面と基材表面との相対速度を「V」としたとき、「V/2h」によって求められる。 The method of obtaining the shear rate will be explained below. For example, when a shear force is applied using a blade, the shear rate is such that the shortest distance between the blade and the base material is "d" and the transfer speed of the composition in contact with the blade (that is, relative to the composition and the blade). When (velocity) is set to "V", it is obtained by "V / d". Further, for example, when a shear force is applied using an air knife, the shear rate is such that the thickness of the composition after applying shear is "h" and the relative speed between the composition surface and the substrate surface is "V". Then, it is obtained by "V / 2h".
-組成物の表面温度-
 せん断力が付与される際の組成物の表面温度は、組成物に含まれる液晶性化合物の相転移温度に応じて決定すればよい。せん断力が付与される際の組成物の表面温度は、50℃~120℃であることが好ましく、60℃~100℃であることがより好ましい。組成物の表面温度を上記範囲に調節することで、配向精度が高いコレステリック液晶層を得ることができる。組成物の表面温度は、非接触式温度計で測定した温度値によって放射率が校正された放射温度計を用いて測定する。組成物の表面温度は、測定面とは反対側(すなわち、裏側)の表面から10cm以内に反射物がない状態で測定する。
-Surface temperature of the composition-
The surface temperature of the composition when the shearing force is applied may be determined according to the phase transition temperature of the liquid crystal compound contained in the composition. The surface temperature of the composition when the shearing force is applied is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C. By adjusting the surface temperature of the composition within the above range, a cholesteric liquid crystal layer having high orientation accuracy can be obtained. The surface temperature of the composition is measured using a radiation thermometer whose emissivity is calibrated by the temperature value measured by a non-contact thermometer. The surface temperature of the composition is measured within 10 cm from the surface on the side opposite to the measurement surface (that is, the back side) in the absence of reflectors.
-組成物の厚さ-
 せん断力が付与される前の組成物の厚さは、配向精度が高いコレステリック液晶層を形成するという観点から、30μm以下の範囲であることが好ましく、1μm~25μmの範囲であることがより好ましく、3μm~25μmの範囲であることが特に好ましい。
-Composition thickness-
The thickness of the composition before the shearing force is applied is preferably in the range of 30 μm or less, more preferably in the range of 1 μm to 25 μm, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy. It is particularly preferably in the range of 3 μm to 25 μm.
 せん断力が付与された後の組成物の厚さは、配向精度が高いコレステリック液晶層を形成するという観点から、20μm以下の範囲であることが好ましく、10μm以下の範囲であることがより好ましい。せん断力が付与された後の組成物の厚さの下限は、制限されない。せん断力が付与された後の組成物の厚さは、0.5μm以上の範囲であることが好ましい。 The thickness of the composition after the shearing force is applied is preferably in the range of 20 μm or less, and more preferably in the range of 10 μm or less, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy. The lower limit of the thickness of the composition after the shear force is applied is not limited. The thickness of the composition after the shearing force is applied is preferably in the range of 0.5 μm or more.
[工程(C)]
 工程(C)においては、せん断力が付与された組成物に、キラル剤のらせん誘起力を変化させる波長を含む紫外線を照射する。以下、工程(C)について具体的に説明する。
[Step (C)]
In the step (C), the composition to which the shearing force is applied is irradiated with ultraviolet rays having a wavelength that changes the spiral-inducing force of the chiral agent. Hereinafter, the step (C) will be specifically described.
 紫外線の波長は、キラル剤のらせん誘起力を変化させる波長を含む限り、制限されない。紫外線の波長がキラル剤のらせん誘起力を変化させる波長を含むか否かは、工程(C)の前後におけるらせん軸の傾斜角の変化に基づいて確認する。工程(C)後のらせん軸の傾斜角が、工程(C)前のらせん軸の傾斜角に比べて、増大、又は減少している場合、紫外線の波長は、キラル剤のらせん誘起力を変化させる波長を含むとみなす。 The wavelength of ultraviolet rays is not limited as long as it includes a wavelength that changes the spiral-inducing force of the chiral auxiliary. Whether or not the wavelength of ultraviolet rays includes a wavelength that changes the spiral-inducing force of the chiral auxiliary is confirmed based on the change in the inclination angle of the spiral axis before and after the step (C). When the tilt angle of the spiral shaft after the step (C) is increased or decreased as compared with the tilt angle of the spiral shaft before the step (C), the wavelength of the ultraviolet ray changes the spiral-inducing force of the chiral auxiliary. It is considered to include the wavelength to be caused.
 らせん誘起力を変化させる波長は、例えば、キラル剤の種類に応じて決定すればよい。らせん誘起力を変化させる波長は、180nm~400nmの範囲内であることが好ましく、200nm~380nmの範囲内であることがより好ましく、300nm~370nmの範囲内であることが特に好ましい。 The wavelength at which the spiral inducing force is changed may be determined, for example, according to the type of chiral agent. The wavelength for changing the spiral inducing force is preferably in the range of 180 nm to 400 nm, more preferably in the range of 200 nm to 380 nm, and particularly preferably in the range of 300 nm to 370 nm.
 組成物が重合開始剤を含む場合(特に、キラル剤の紫外線吸収波長に対して重合開始剤の紫外線吸収波長が重複する場合)、工程(C)において照射される紫外線の波長は、重合開始剤の紫外線吸収波長を含まないことが好ましい。工程(C)において照射される紫外線の波長が重合開始剤の紫外線吸収波長を含まないことで、組成物の硬化を抑制しつつ、組成物に含まれるキラル剤のらせん誘起力を変化させることができる。上記の結果、らせん軸の傾斜角の制御性がより向上する。「重合開始剤の紫外線吸収波長を含まない」とは、重合開始剤の紫外線吸収波長を全く含まないことに限られず、重合開始剤によって引き起こされる組成物の硬化を抑制するために重合開始剤の紫外線吸収波長を可能な限り含まないことを包含する。例えば、後述する長波長カットフィルター、又は照射波長帯域が狭いLED(発光ダイオード)紫外線照射機を用いることで、重合開始剤の紫外線吸収波長を含まない紫外線を組成物に照射することができる。 When the composition contains a polymerization initiator (particularly when the ultraviolet absorption wavelength of the polymerization initiator overlaps with the ultraviolet absorption wavelength of the chiral agent), the wavelength of the ultraviolet rays irradiated in the step (C) is the polymerization initiator. It is preferable not to include the ultraviolet absorption wavelength of. Since the wavelength of the ultraviolet rays irradiated in the step (C) does not include the ultraviolet absorption wavelength of the polymerization initiator, it is possible to change the spiral-inducing force of the chiral agent contained in the composition while suppressing the curing of the composition. it can. As a result of the above, the controllability of the inclination angle of the spiral shaft is further improved. The phrase "does not contain the UV absorption wavelength of the polymerization initiator" is not limited to the fact that the UV absorption wavelength of the polymerization initiator is not contained at all, and the polymerization initiator is used to suppress the curing of the composition caused by the polymerization initiator. Includes as little UV absorption wavelength as possible. For example, by using a long wavelength cut filter described later or an LED (light emitting diode) ultraviolet irradiator having a narrow irradiation wavelength band, the composition can be irradiated with ultraviolet rays that do not include the ultraviolet absorption wavelength of the polymerization initiator.
 工程(C)において、特定の波長を選択的に透過、又は遮蔽する部材(以下、「波長選択性を有する部材」という。)を用いてもよい。例えば、波長選択性を有する部材を介して組成物に紫外線を照射することで、組成物に到達する紫外線の波長域を調節することができる。波長選択性を有する部材としては、例えば、長波長カットフィルター(朝日分光株式会社、SH0325)、短波長カットフィルター、及びバンドパスフィルターが挙げられる。 In step (C), a member that selectively transmits or shields a specific wavelength (hereinafter, referred to as "member having wavelength selectivity") may be used. For example, by irradiating the composition with ultraviolet rays through a member having wavelength selectivity, the wavelength range of the ultraviolet rays reaching the composition can be adjusted. Examples of the member having wavelength selectivity include a long wavelength cut filter (Asahi Spectroscopy Co., Ltd., SH0325), a short wavelength cut filter, and a bandpass filter.
 紫外線の露光量(積算光量ともいう。)は、制限されない。紫外線の露光量に応じて、例えば、キラル剤のらせん誘起力の変化量を調節することができる。紫外線の露光量が増大することで、キラル剤のらせん誘起力の変化量が増大する傾向にある。紫外線の露光量が減少することで、キラル剤のらせん誘起力の変化量が減少する傾向にある。紫外線の露光量は、例えば、1mJ/cm~1,000mJ/cmの範囲で決定すればよい。 The exposure amount of ultraviolet rays (also referred to as integrated light amount) is not limited. For example, the amount of change in the spiral-inducing force of the chiral agent can be adjusted according to the amount of exposure to ultraviolet rays. As the amount of exposure to ultraviolet rays increases, the amount of change in the spiral-inducing force of the chiral agent tends to increase. As the amount of exposure to ultraviolet rays decreases, the amount of change in the spiral-inducing force of the chiral agent tends to decrease. Exposure of ultraviolet rays, for example, may be determined in the range of 1mJ / cm 2 ~ 1,000mJ / cm 2.
 紫外線の光源としては、例えば、ランプ(例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、LEDランプ、LED-UV(紫外線)ランプ、及びカーボンアークランプ)、レーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、及びYAG(Yttrium Aluminum Garnet)レーザー)、発光ダイオード、及び陰極線管が挙げられる。 Examples of the light source of ultraviolet rays include lamps (for example, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps, LED lamps, LED-UV (ultraviolet) lamps, and carbon arc lamps) and lasers. (For example, semiconductor laser, helium neon laser, argon ion laser, helium cadmium laser, and YAG (Ytrium Aluminum Garnet) laser), light emitting diode, and cathode line tube.
(他の工程)
 本開示に係るコレステリック液晶層の製造方法は、必要に応じて、上記した工程以外の工程(以下、本段落において「他の工程」という。)を有していてもよい。以下、他の工程について具体的に説明する。ただし、他の工程は、以下に示す工程に制限されるものではない。
(Other processes)
The method for producing a cholesteric liquid crystal layer according to the present disclosure may include steps other than the above-mentioned steps (hereinafter, referred to as "other steps" in this paragraph), if necessary. Hereinafter, other steps will be specifically described. However, the other steps are not limited to the steps shown below.
-工程(D)-
 本開示に係るコレステリック液晶層の製造方法は、工程(A)の前に、基材上に配向層を形成する工程(以下、「工程(D)」という場合がある。)を有していてもよい。配向層は、液晶性化合物に対して配向規制力を与えることができる。
-Process (D)-
The method for producing a cholesteric liquid crystal layer according to the present disclosure includes a step of forming an orientation layer on a base material (hereinafter, may be referred to as "step (D)") before the step (A). May be good. The alignment layer can give an orientation regulating force to the liquid crystal compound.
 配向層の形成方法は、制限されない。配向層の形成方法としては、公知の方法を利用することができる。配向層の形成方法としては、例えば、有機化合物(好ましくは重合体)のラビング処理、無機化合物の斜方蒸着、及びマイクログルーブを有する層の形成が挙げられる。 The method of forming the oriented layer is not limited. As a method for forming the alignment layer, a known method can be used. Examples of the method for forming the oriented layer include rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, and formation of a layer having microgrooves.
(工程(E))
 組成物が溶媒を含む場合、本開示に係るコレステリック液晶層の製造方法は、工程(A)と工程(B)との間に、基材上に塗布された組成物中の溶媒の含有率を上記組成物の全質量に対して50質量%以下の範囲に調整する工程(以下、「工程(E)」という場合がある。)を有していてもよい。組成物中の溶媒の含有率を50質量%以下の範囲に調整することで、配向精度が高いコレステリック液晶層を形成することができる。
(Step (E))
When the composition contains a solvent, the method for producing a cholesteric liquid crystal layer according to the present disclosure determines the content of the solvent in the composition applied on the substrate between the steps (A) and (B). It may have a step (hereinafter, may be referred to as “step (E)”) of adjusting to a range of 50% by mass or less with respect to the total mass of the composition. By adjusting the content of the solvent in the composition to a range of 50% by mass or less, a cholesteric liquid crystal layer having high orientation accuracy can be formed.
 工程(E)において、組成物中の溶媒の含有率は、上記組成物の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。塗布された組成物中の溶媒の含有率の下限は、制限されない。塗布された組成物中の溶媒の含有率は、上記組成物の全質量に対して、0質量%であってもよく、又は0質量%を超えてもよい。塗布された組成物中の溶媒の含有率は、塗布された組成物の表面状態の悪化を抑制しやすいという観点から、10質量%以上であることが好ましい。 In the step (E), the content of the solvent in the composition is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the composition. The lower limit of the solvent content in the applied composition is not limited. The content of the solvent in the applied composition may be 0% by mass or more than 0% by mass with respect to the total mass of the composition. The content of the solvent in the applied composition is preferably 10% by mass or more from the viewpoint of easily suppressing deterioration of the surface condition of the applied composition.
 組成物中の溶媒の含有率は、絶乾法によって測定する。以下、測定方法の具体的な手順を説明する。組成物から採取した試料を、60℃で24時間乾燥した後、乾燥前後の試料の質量変化(すなわち、乾燥後の試料の質量と乾燥前の試料の質量との差)を求める。乾燥前後の試料の質量変化に基づいて、試料中の溶媒の含有率を求める。上記操作を3回行うことで得られた値の算術平均を、溶媒の含有率とする。 The content of the solvent in the composition is measured by the absolute drying method. Hereinafter, a specific procedure of the measurement method will be described. The sample collected from the composition is dried at 60 ° C. for 24 hours, and then the mass change of the sample before and after drying (that is, the difference between the mass of the sample after drying and the mass of the sample before drying) is determined. The content of the solvent in the sample is determined based on the mass change of the sample before and after drying. The arithmetic mean of the values obtained by performing the above operation three times is taken as the solvent content.
 工程(E)において、塗布された組成物中の溶媒の含有率を調整する方法としては、例えば、乾燥が挙げられる。 Examples of the method for adjusting the content of the solvent in the applied composition in the step (E) include drying.
 組成物の乾燥手段としては、公知の乾燥手段を利用することができる。乾燥手段として、例えば、オーブン、温風機、及び赤外線(IR)ヒーターが挙げられる。 As a means for drying the composition, a known drying means can be used. Drying means include, for example, ovens, hot air blowers, and infrared (IR) heaters.
 温風機を用いる乾燥においては、組成物に対して温風を直接当ててもよく、又は基材の組成物が配置された面とは反対側の面に対して温風を当ててもよい。また、組成物の表面が温風によって流動することを抑制するために、拡散板を設置してもよい。 In drying using a warm air blower, warm air may be directly applied to the composition, or warm air may be applied to the surface opposite to the surface on which the composition of the base material is arranged. Further, a diffusion plate may be installed in order to prevent the surface of the composition from flowing due to warm air.
 乾燥は、吸気によって行ってもよい。吸気による乾燥においては、例えば、排気機構を有する減圧室を用いることができる。組成物の周囲の気体を吸気することで、組成物中の溶媒の含有率を低減することができる。 Drying may be done by inhalation. In drying by intake air, for example, a decompression chamber having an exhaust mechanism can be used. By inhaling the gas around the composition, the content of the solvent in the composition can be reduced.
 乾燥条件は、組成物中の溶媒の含有率を50質量%以下の範囲に調整することができれば制限されない。乾燥条件は、例えば、組成物に含まれる成分、組成物の塗布量、及び搬送速度に応じて決定すればよい。 The drying conditions are not limited as long as the content of the solvent in the composition can be adjusted in the range of 50% by mass or less. The drying conditions may be determined, for example, according to the components contained in the composition, the coating amount of the composition, and the transport speed.
(工程(F))
 本開示に係るコレステリック液晶層の製造方法は、工程(C)の後に、紫外線が照射された組成物を硬化させる工程(以下、「工程(F)」という場合がある。)を含んでいてもよい。工程(F)において組成物を硬化させることで、液晶性化合物の分子配列を固定することができる。
(Step (F))
The method for producing a cholesteric liquid crystal layer according to the present disclosure may include a step (hereinafter, may be referred to as "step (F)") of curing the composition irradiated with ultraviolet rays after the step (C). Good. By curing the composition in step (F), the molecular arrangement of the liquid crystal compound can be fixed.
 組成物を硬化させる方法としては、例えば、加熱、及び活性エネルギー線の照射が挙げられる。組成物を硬化させる方法は、製造適性の観点から、活性エネルギー線の照射であることが好ましい。 Examples of the method for curing the composition include heating and irradiation with active energy rays. The method for curing the composition is preferably irradiation with active energy rays from the viewpoint of production suitability.
 活性エネルギー線としては、例えば、α線、γ線、X線、紫外線、赤外線、可視光線、及び電子線が挙げられる。活性エネルギー線は、硬化感度、及び装置の入手容易性の観点から、紫外線であることが好ましい。 Examples of active energy rays include α-rays, γ-rays, X-rays, ultraviolet rays, infrared rays, visible rays, and electron beams. The active energy ray is preferably ultraviolet rays from the viewpoint of curing sensitivity and availability of the apparatus.
 紫外線の光源としては、例えば、上記「工程(C)」の項において説明した光源が挙げられる。 Examples of the light source of ultraviolet rays include the light source described in the above section "Step (C)".
 紫外線の光源から発せられる紫外線のピーク波長は、200nm~400nmであることが好ましい。 The peak wavelength of ultraviolet rays emitted from the light source of ultraviolet rays is preferably 200 nm to 400 nm.
 紫外線の露光量(積算光量ともいう。)は、100mJ/cm~500mJ/cmであることが好ましい。 The exposure amount of ultraviolet rays (also referred to as integrated light amount) is preferably 100 mJ / cm 2 to 500 mJ / cm 2.
(製造方式)
 本開示に係るコレステリック液晶層の製造方法は、ロールトゥロール(Roll to Roll)方式によって実施してもよい。ロールトゥロール方式においては、例えば、長尺の基材を連続搬送しながら各工程を実施する。本開示に係るコレステリック液晶層の製造方法は、1つずつ搬送される基材を用いて実施してもよい。
(Manufacturing method)
The method for producing a cholesteric liquid crystal layer according to the present disclosure may be carried out by a roll-to-roll method. In the roll-to-roll method, for example, each step is carried out while continuously transporting a long base material. The method for producing a cholesteric liquid crystal layer according to the present disclosure may be carried out using a base material that is conveyed one by one.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in detail by way of examples. However, the present disclosure is not limited to the following examples.
<実施例1>
 以下の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Example 1>
An orientation layer and a cholesteric liquid crystal layer were sequentially formed on the substrate by the following procedure.
[基材の用意]
 基材として、トリアセチルセルロース(TAC)フィルム(富士フイルム株式会社、屈折率:1.48、厚さ:40μm、長さ:300mm、幅:200mm)を用意した。
[Preparation of base material]
As a base material, a triacetyl cellulose (TAC) film (FUJIFILM Corporation, refractive index: 1.48, thickness: 40 μm, length: 300 mm, width: 200 mm) was prepared.
[配向層の形成:工程(D)]
 80℃で保温された容器中で、純水(96質量部)、及びPVA-205(株式会社クラレ、ポリビニルアルコール)を含む混合物を撹拌することによって、配向層形成用組成物を調製した。バー(バーの番手:6)を用いて、基材(トリアセチルセルロースフィルム)上に上記配向層形成用組成物を塗布し、次いで、100℃のオーブン内で10分間乾燥した。以上の手順によって、基材の上に配向層(厚さ:2μm)を形成した。
[Formation of Orientation Layer: Step (D)]
A composition for forming an orientation layer was prepared by stirring a mixture containing pure water (96 parts by mass) and PVA-205 (Kuraray Co., Ltd., polyvinyl alcohol) in a container kept warm at 80 ° C. Using a bar (bar count: 6), the composition for forming an orientation layer was applied onto a substrate (triacetyl cellulose film), and then dried in an oven at 100 ° C. for 10 minutes. By the above procedure, an orientation layer (thickness: 2 μm) was formed on the base material.
[コレステリック液晶層の形成]
 以下の手順によって、配向層の上にコレステリック液晶層(厚さ:10μm)を形成した。
[Formation of cholesteric liquid crystal layer]
A cholesteric liquid crystal layer (thickness: 10 μm) was formed on the oriented layer by the following procedure.
(液晶層形成用塗布液(1)の調製)
 下記に示す各成分を混合した後、ポリプロピレン製フィルター(孔径:0.2μm)を用いてろ過することによって、液晶層形成用塗布液(1)を調製した。
(Preparation of coating liquid (1) for forming a liquid crystal layer)
After mixing each of the components shown below, a coating liquid (1) for forming a liquid crystal layer was prepared by filtering using a polypropylene filter (pore diameter: 0.2 μm).
-成分-
 (1)棒状サーモトロピック液晶性化合物(下記化合物(A)):100質量部
 (2)キラル剤(下記化合物(B)):1質量部
 (3)光重合開始剤(PM758、日本化薬株式会社):3質量部
 (4)光重合禁止剤(IRGANOX(登録商標) 1010、BASF社):1質量部
 (5)配向規制剤(下記化合物(C)):0.5質量部
 (6)溶媒(メチルエチルケトン):184質量部
 (7)溶媒(シクロヘキサノン):31質量部
-component-
(1) Rod-shaped thermotropic liquid crystal compound (compound (A) below): 100 parts by mass (2) Chiral agent (compound (B) below): 1 part by mass (3) Photopolymerization initiator (PM758, Nippon Kayaku Co., Ltd.) Company): 3 parts by mass (4) Photopolymerization inhibitor (IRGANOX (registered trademark) 1010, BASF): 1 part by mass (5) Orientation inhibitor (compound (C) below): 0.5 parts by mass (6) Solvent (methyl ethyl ketone): 184 parts by mass (7) Solvent (cyclohexanone): 31 parts by mass
 化合物(A)は、以下に示す3つの化合物の混合物である。混合物中の各化合物の含有率は、上から順に、84質量%、14質量%、及び2質量%である。 Compound (A) is a mixture of the following three compounds. The content of each compound in the mixture is 84% by mass, 14% by mass, and 2% by mass in this order from the top.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 化合物(B)の化学構造を以下に示す。化合物(B)は、イソソルビド骨格を有する。化合物(B)は、右巻きのらせん構造を誘起するキラル剤である。化合物(B)のらせん誘起力は、光照射(具体的には、後述する第1の紫外線照射)によって変化する。 The chemical structure of compound (B) is shown below. Compound (B) has an isosorbide skeleton. Compound (B) is a chiral agent that induces a right-handed helical structure. The spiral-inducing force of compound (B) is changed by light irradiation (specifically, first ultraviolet irradiation described later).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 化合物(C)の化学構造を以下に示す。 The chemical structure of compound (C) is shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(塗布:工程(A))
 配向層を有する基材を70℃で加熱し、次いで、バー(バーの番手:18)を用いて、配向層の上に液晶層形成用塗布液(1)を塗布した。
(Application: Step (A))
The base material having the alignment layer was heated at 70 ° C., and then the liquid crystal layer forming coating liquid (1) was applied onto the alignment layer using a bar (bar count: 18).
(乾燥:工程(E))
 配向層の上に塗布された液晶層形成用塗布液(1)を、70℃のオーブン内で1分間乾燥することによって塗膜(厚さ:10μm)を形成した。塗膜中の溶媒の含有率は、上記塗膜の全質量に対して、1質量%以下であった。
(Drying: Step (E))
A coating film (thickness: 10 μm) was formed by drying the liquid crystal layer forming coating liquid (1) coated on the alignment layer in an oven at 70 ° C. for 1 minute. The content of the solvent in the coating film was 1% by mass or less with respect to the total mass of the coating film.
(せん断力の付与:工程(B))
 塗膜を70℃に加熱した状態で、70℃に加熱したステンレス製ブレードを塗膜に接触させ、次いで、上記塗膜に接触させたまま、上記ブレードを1.5m/分の速度で移動させることによって、上記塗膜に対してせん断力を与えた。上記ブレードの塗膜との接触部の長さは、30mmであった。せん断速度は、2,500秒-1であった。
(Applying shear force: step (B))
With the coating film heated to 70 ° C., a stainless steel blade heated to 70 ° C. is brought into contact with the coating film, and then the blade is moved at a speed of 1.5 m / min while still in contact with the coating film. As a result, a shearing force was applied to the coating film. The length of the contact portion of the blade with the coating film was 30 mm. The shear rate was 2,500 seconds -1 .
(第1の紫外線照射(キラル剤のらせん誘起力の変化):工程(C))
 せん断力が与えられた塗膜に対して、超高圧水銀ランプ(HOYA株式会社、UL750)を用いて紫外線(露光量:5mJ/cm)を照射することによって、上記塗膜に含まれるキラル剤を変性させた。上記方法においては、長波長カットフィルター(朝日分光株式会社、SH0325)を介して塗膜に紫外線を照射した。塗膜に照射される紫外線は、光照射によってらせん誘起力が変化するキラル剤のらせん誘起力を変化させる波長(例えば、315nm)を含む。
(First ultraviolet irradiation (change in spiral-inducing force of chiral agent): step (C))
A chiral agent contained in the coating film by irradiating the coating film to which shearing force is applied with ultraviolet rays (exposure amount: 5 mJ / cm 2) using an ultra-high pressure mercury lamp (HOYA Corporation, UL750). Was denatured. In the above method, the coating film was irradiated with ultraviolet rays via a long wavelength cut filter (Asahi Spectroscopy Co., Ltd., SH0325). The ultraviolet rays applied to the coating film include a wavelength (for example, 315 nm) that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by light irradiation.
(第2の紫外線照射(硬化):工程(F))
 第1の紫外線照射の後、塗膜に対して、メタルハライドランプを用いて紫外線(露光量:500mJ/cm)を照射することによって、上記塗膜を硬化させた。
(Second UV irradiation (curing): Step (F))
After the first irradiation with ultraviolet rays, the coating film was cured by irradiating the coating film with ultraviolet rays (exposure amount: 500 mJ / cm 2) using a metal halide lamp.
<実施例2>
 第1の紫外線照射における露光量を10mJ/cmに変更したこと以外は、実施例1と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Example 2>
The alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 1 except that the exposure amount in the first ultraviolet irradiation was changed to 10 mJ / cm 2.
<実施例3>
 キラル剤(化合物(B))を以下に示す成分に変更したこと、光重合開始剤(PM758)の添加量を1質量部に変更したこと、及び第1の紫外線照射における露光量を750mJ/cmに変更したこと以外は、実施例1と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Example 3>
The chiral agent (compound (B)) was changed to the components shown below, the amount of photopolymerization initiator (PM758) added was changed to 1 part by mass, and the exposure amount in the first ultraviolet irradiation was 750 mJ / cm. The alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 1 except that the change was changed to 2.
-成分-
 (1)キラル剤(下記化合物(D)、Paliocolor(登録商標) LC756、BASF社):2.4質量部
 (2)キラル剤(下記化合物(E)):1.7質量部
-component-
(1) Chiral agent (compound (D) below, Palocolor® LC756, BASF): 2.4 parts by mass (2) Chiral agent (compound (E) below): 1.7 parts by mass
 化合物(D)の化学構造を以下に示す。化合物(D)は、イソソルビド骨格を有する。化合物(D)は、右巻きのらせん構造を誘起するキラル剤である。ただし、化合物(D)のらせん誘起力は、光照射によって変化しない。 The chemical structure of compound (D) is shown below. Compound (D) has an isosorbide skeleton. Compound (D) is a chiral agent that induces a right-handed helical structure. However, the spiral-inducing force of compound (D) does not change with light irradiation.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 化合物(E)の化学構造を以下に示す。化合物(E)は、イソマンニド骨格を有する。化合物(E)は、左巻きのらせん構造を誘起するキラル剤である。化合物(E)のらせん誘起力は、光照射によって変化する。 The chemical structure of compound (E) is shown below. Compound (E) has an isomannide skeleton. Compound (E) is a chiral agent that induces a left-handed helical structure. The spiral-inducing force of compound (E) changes with light irradiation.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<比較例1>
 第1の紫外線照射を実施しなかったこと以外は、実施例1と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Comparative example 1>
The alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 1 except that the first ultraviolet irradiation was not performed.
<比較例2>
 第1の紫外線照射を実施しなかったこと以外は、実施例3と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Comparative example 2>
The alignment layer and the cholesteric liquid crystal layer were sequentially formed on the substrate by the same procedure as in Example 3 except that the first ultraviolet irradiation was not performed.
<比較例3>
 キラル剤(化合物(B))をキラル剤(化合物(D)、1.2質量部)に変更したこと、及び第1の紫外線照射を実施しなかったこと以外は、実施例1と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Comparative example 3>
The procedure was the same as in Example 1 except that the chiral agent (compound (B)) was changed to the chiral agent (compound (D), 1.2 parts by mass) and the first ultraviolet irradiation was not performed. An oriented layer and a cholesteric liquid crystal layer were sequentially formed on the substrate.
<比較例4>
 キラル剤(化合物(B))をキラル剤(化合物(D)、1.2質量部)に変更したこと以外は、実施例1と同様の手順によって、基材上に、配向層、及びコレステリック液晶層を順番に形成した。
<Comparative example 4>
An orientation layer and a cholesteric liquid crystal were placed on the substrate by the same procedure as in Example 1 except that the chiral agent (compound (B)) was changed to the chiral agent (compound (D), 1.2 parts by mass). The layers were formed in sequence.
<らせん軸の傾斜角>
 各コレステリック液晶層の厚さ方向の断面を偏光顕微鏡(株式会社ニコン製 NV100LPOL、対物レンズの倍率:100倍)で観察した。各コレステリック液晶層の断面画像において、5つのらせん軸とコレステリック液晶層の主面に直交する直線とのなす角をそれぞれ測定し、測定値を算術平均することによってらせん軸の傾斜角を算出した。測定結果を表1に示す。
<Inclination angle of spiral axis>
The cross section of each cholesteric liquid crystal layer in the thickness direction was observed with a polarizing microscope (NV100LPOL manufactured by Nikon Corporation, magnification of objective lens: 100 times). In the cross-sectional image of each cholesteric liquid crystal layer, the angle formed by the five spiral axes and the straight line orthogonal to the main surface of the cholesteric liquid crystal layer was measured, and the inclination angle of the spiral axis was calculated by arithmetically averaging the measured values. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1において、「キラル剤」の欄に記載されたアルファベットは、キラル剤として用いた化合物に付したアルファベットである。 In Table 1, the alphabets listed in the "chiral agent" column are the alphabets attached to the compounds used as chiral agents.
 表1において、「第1の紫外線照射」の欄に記載された「-」は、第1の紫外線照射を実施しなかったことを意味する。 In Table 1, "-" described in the column of "first ultraviolet irradiation" means that the first ultraviolet irradiation was not performed.
 表1に示される結果は、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤と、を含む組成物に対して、上記キラル剤のらせん誘起力を変化させる波長を含む紫外線を照射することで、らせん軸の傾斜角の制御性が向上したことを示す。例えば、実施例1~2、及び比較例1を比較すると、第1の紫外線照射を実施することでらせん軸の傾斜角は大きくなった。実施例3、及び比較例2を比較すると、第1の紫外線照射を実施することでらせん軸の傾斜角は小さくなった。一方、キラル剤として、光照射によってらせん誘起力が変化しないキラル剤(すなわち、化合物(D))のみを用いた比較例3~4において、第1の紫外線照射を実施した比較例4におけるらせん軸の傾斜角は、第1の紫外線照射を実施しなかった比較例3におけるらせん軸の傾斜角と同じであった。 The results shown in Table 1 show that the composition containing the liquid crystal compound and the chiral agent whose spiral-inducing force is changed by light irradiation is irradiated with ultraviolet rays having a wavelength that changes the spiral-inducing force of the chiral agent. By doing so, it is shown that the controllability of the tilt angle of the spiral axis is improved. For example, comparing Examples 1 and 2 and Comparative Example 1, the inclination angle of the spiral axis was increased by performing the first ultraviolet irradiation. Comparing Example 3 and Comparative Example 2, the inclination angle of the spiral axis was reduced by performing the first ultraviolet irradiation. On the other hand, in Comparative Examples 3 to 4 in which only the chiral agent (that is, compound (D)) whose spiral-inducing force does not change by light irradiation was used as the chiral agent, the spiral shaft in Comparative Example 4 in which the first ultraviolet irradiation was performed. The tilt angle of the spiral axis was the same as the tilt angle of the spiral axis in Comparative Example 3 in which the first ultraviolet irradiation was not performed.
 2019年12月26日に出願された日本国特許出願2019-237297号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2019-237297 filed on December 26, 2019 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (12)

  1.  基材上に、液晶性化合物と、光照射によってらせん誘起力が変化するキラル剤と、を含む組成物を塗布する工程と、
     前記基材上に塗布された前記組成物の表面に、せん断力を付与する工程と、
     前記せん断力が付与された前記組成物に、前記光照射によってらせん誘起力が変化するキラル剤のらせん誘起力を変化させる波長を含む紫外線を照射する工程と、
     を含むコレステリック液晶層の製造方法。
    A step of applying a composition containing a liquid crystal compound and a chiral agent whose spiral-inducing force changes by light irradiation on a base material.
    A step of applying a shearing force to the surface of the composition applied on the base material, and
    A step of irradiating the composition to which the shearing force is applied with ultraviolet rays having a wavelength that changes the spiral-inducing force of the chiral agent whose spiral-inducing force is changed by the light irradiation.
    A method for manufacturing a cholesteric liquid crystal layer including.
  2.  前記紫外線が照射された前記組成物を硬化させる工程を含む請求項1に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to claim 1, which comprises a step of curing the composition irradiated with ultraviolet rays.
  3.  前記組成物の表面にせん断力を付与する工程におけるせん断速度が、1,000秒-1以上である請求項1又は請求項2に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to claim 1 or 2, wherein the shear rate in the step of applying a shearing force to the surface of the composition is 1,000 seconds- 1 or more.
  4.  前記組成物の表面にせん断力を付与する工程において、ブレードを用いて前記組成物の表面にせん断力を付与する請求項1~請求項3のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 3, wherein in the step of applying a shearing force to the surface of the composition, a shearing force is applied to the surface of the composition by using a blade. ..
  5.  前記光照射によってらせん誘起力が変化するキラル剤が、光異性化を起こすキラル剤である請求項1~請求項4のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 4, wherein the chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that causes photoisomerization.
  6.  前記光照射によってらせん誘起力が変化するキラル剤が、イソソルビド骨格、イソマンニド骨格、又はビナフトール骨格を有する請求項1~請求項5のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 5, wherein the chiral agent whose spiral-inducing force is changed by light irradiation has an isosorbide skeleton, an isomannide skeleton, or a binaphthol skeleton.
  7.  前記らせん誘起力を変化させる波長が、200nm~380nmの範囲内である請求項1~請求項6のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 6, wherein the wavelength for changing the spiral inducing force is in the range of 200 nm to 380 nm.
  8.  前記光照射によってらせん誘起力が変化するキラル剤が、前記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤、及び前記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤からなる群より選択される少なくとも1種である請求項1~請求項7のいずれか1項に記載のコレステリック液晶層の製造方法。 The chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that induces a right-handed helical structure with respect to the liquid crystal compound, and a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound. The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 7, which is at least one selected from the group.
  9.  前記組成物において、前記液晶性化合物の含有量に対する前記光照射によってらせん誘起力が変化するキラル剤の含有量の比が、質量基準で、0.1~20である請求項1~請求項8のいずれか1項に記載のコレステリック液晶層の製造方法。 Claims 1 to 8 in which, in the composition, the ratio of the content of the chiral agent whose spiral-inducing force is changed by the light irradiation to the content of the liquid crystal compound is 0.1 to 20 on a mass basis. The method for producing a cholesteric liquid crystal layer according to any one of the above items.
  10.  前記組成物が、重合開始剤を含む請求項1~請求項9のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 9, wherein the composition contains a polymerization initiator.
  11.  前記組成物が、光照射によってらせん誘起力が変化しないキラル剤を含む請求項1~請求項10のいずれか1項に記載のコレステリック液晶層の製造方法。 The method for producing a cholesteric liquid crystal layer according to any one of claims 1 to 10, wherein the composition contains a chiral agent whose spiral-inducing force does not change by light irradiation.
  12.  前記光照射によってらせん誘起力が変化しないキラル剤が、前記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤である場合、前記光照射によってらせん誘起力が変化するキラル剤が、前記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤であり、又は前記光照射によってらせん誘起力が変化しないキラル剤が、前記液晶性化合物に対して左巻きのらせん構造を誘起するキラル剤である場合、前記光照射によってらせん誘起力が変化するキラル剤が、前記液晶性化合物に対して右巻きのらせん構造を誘起するキラル剤である請求項11に記載のコレステリック液晶層の製造方法。 When the chiral agent whose spiral-inducing force does not change by light irradiation is a chiral agent that induces a right-handed spiral structure with respect to the liquid crystal compound, the chiral agent whose spiral-inducing force changes by light irradiation is the above-mentioned. A chiral agent that induces a left-handed helical structure with respect to a liquid crystal compound, or a chiral agent whose spiral-inducing force does not change with light irradiation is a chiral agent that induces a left-handed helical structure with respect to the liquid crystal compound. The method for producing a cholesteric liquid crystal layer according to claim 11, wherein the chiral agent whose spiral-inducing force is changed by light irradiation is a chiral agent that induces a right-handed spiral structure with respect to the liquid crystal compound.
PCT/JP2020/043231 2019-12-26 2020-11-19 Method for producing cholesteric liquid crystal layer WO2021131441A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227019560A KR20220098776A (en) 2019-12-26 2020-11-19 Method for manufacturing a cholesteric liquid crystal layer
JP2021567075A JP7420833B2 (en) 2019-12-26 2020-11-19 Method for manufacturing cholesteric liquid crystal layer
CN202080086871.3A CN114868049A (en) 2019-12-26 2020-11-19 Method for manufacturing cholesteric liquid crystal layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-237297 2019-12-26
JP2019237297 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131441A1 true WO2021131441A1 (en) 2021-07-01

Family

ID=76575364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043231 WO2021131441A1 (en) 2019-12-26 2020-11-19 Method for producing cholesteric liquid crystal layer

Country Status (4)

Country Link
JP (1) JP7420833B2 (en)
KR (1) KR20220098776A (en)
CN (1) CN114868049A (en)
WO (1) WO2021131441A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195945A (en) * 2013-03-29 2014-10-16 凸版印刷株式会社 Fluorescent latent image medium, verifier, and verification method
JP2016128910A (en) * 2010-07-23 2016-07-14 エルジー・ケム・リミテッド Reflective polarizing plate and display device
JP2017227924A (en) * 2017-09-25 2017-12-28 富士フイルム株式会社 Circularly polarized light separation film and production method of circularly polarized light separation film, and infrared ray sensor
JP6299923B1 (en) * 2017-11-17 2018-03-28 大日本印刷株式会社 Light control device
WO2018079168A1 (en) * 2016-10-25 2018-05-03 富士フイルム株式会社 Viewing system, presentation device, stage installation, and polymerizable liquid crystal composition
WO2019035419A1 (en) * 2017-08-15 2019-02-21 富士フイルム株式会社 Reflective film, transparent screen, colour filter, and decorative film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532295B2 (en) 1995-05-25 2004-05-31 出光興産株式会社 Manufacturing method of liquid crystal optical element
KR100675996B1 (en) 1999-07-02 2007-01-29 메르크 파텐트 게엠베하 Process of preparing a multilayer cholesteric film
ATE420150T1 (en) * 2001-09-25 2009-01-15 Merck Patent Gmbh ANISOTROPIC POLYMER FILM
KR101230815B1 (en) 2004-07-07 2013-02-06 메르크 파텐트 게엠베하 Biaxial film having local birefringence that varies periodically
JP4355676B2 (en) 2005-03-31 2009-11-04 大日本印刷株式会社 Method for manufacturing anisotropic optical element
JP5176269B2 (en) 2005-09-28 2013-04-03 凸版印刷株式会社 Anti-counterfeit medium and authenticity determination method
EP2442160A4 (en) * 2009-06-11 2012-11-07 Fujifilm Corp Process for production of light reflection film
JP2015072410A (en) * 2013-10-04 2015-04-16 富士フイルム株式会社 Thermal compression bonding film containing cholesteric liquid crystal layer and application of the same
JP6616885B2 (en) * 2016-03-28 2019-12-04 富士フイルム株式会社 Method for manufacturing reflective layer and reflective layer
CN111902749B (en) 2018-03-23 2022-09-20 富士胶片株式会社 Method for producing cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128910A (en) * 2010-07-23 2016-07-14 エルジー・ケム・リミテッド Reflective polarizing plate and display device
JP2014195945A (en) * 2013-03-29 2014-10-16 凸版印刷株式会社 Fluorescent latent image medium, verifier, and verification method
WO2018079168A1 (en) * 2016-10-25 2018-05-03 富士フイルム株式会社 Viewing system, presentation device, stage installation, and polymerizable liquid crystal composition
WO2019035419A1 (en) * 2017-08-15 2019-02-21 富士フイルム株式会社 Reflective film, transparent screen, colour filter, and decorative film
JP2017227924A (en) * 2017-09-25 2017-12-28 富士フイルム株式会社 Circularly polarized light separation film and production method of circularly polarized light separation film, and infrared ray sensor
JP6299923B1 (en) * 2017-11-17 2018-03-28 大日本印刷株式会社 Light control device

Also Published As

Publication number Publication date
JPWO2021131441A1 (en) 2021-07-01
JP7420833B2 (en) 2024-01-23
KR20220098776A (en) 2022-07-12
CN114868049A (en) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2021153095A1 (en) Cholesteric liquid crystal film and production method for same
WO2021152976A1 (en) Cholesteric liquid crystal film
JP4580045B2 (en) Method for manufacturing optical element combination
WO2021153096A1 (en) Cholesteric liquid crystal film and method for producing same
TW200417597A (en) Process of preparing films comprising polymerised liguid crystal material
JP5720795B2 (en) Pattern retardation film and method for producing the same
JP5391692B2 (en) Method for producing circularly polarized light separating sheet and coating film forming apparatus
WO2021182248A1 (en) Composition, method for producing optical film, and optical film
WO2020196659A1 (en) Method for producing cholesteric liquid crystal film
TW201039026A (en) Process of preparing an anisotropic multilayer using particle beam alignment
WO2021131441A1 (en) Method for producing cholesteric liquid crystal layer
JP2003139953A (en) Method for manufacturing optical element, optical element, optical film and illuminator and liquid crystal display device using them
JP5332449B2 (en) Method for producing retardation film
JP6832781B2 (en) Manufacturing method of optical film
WO2021132113A1 (en) Transparent screen
JP7408828B2 (en) Manufacturing method and coating device for cholesteric liquid crystal layer
WO2022209937A1 (en) Optical element, laminate, and image display device
WO2020196658A1 (en) Method for producing cholesteric liquid crystal film
JP2013076762A (en) Composition for pattern alignment layer and manufacturing method of pattern alignment film and pattern retardation film
JP7200394B2 (en) Photon upconversion film, laminate
WO2022059569A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
WO2022030218A1 (en) Optically anisotropic layer
WO2021033639A1 (en) Method for producing optical film
EP0977075B1 (en) Process for preparing an optical retardation film
WO2021065088A1 (en) Optical film and method for manufacturing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567075

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019560

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905291

Country of ref document: EP

Kind code of ref document: A1