WO2021131417A1 - Robot, humanoid robot, and fall control method for robot - Google Patents

Robot, humanoid robot, and fall control method for robot Download PDF

Info

Publication number
WO2021131417A1
WO2021131417A1 PCT/JP2020/042961 JP2020042961W WO2021131417A1 WO 2021131417 A1 WO2021131417 A1 WO 2021131417A1 JP 2020042961 W JP2020042961 W JP 2020042961W WO 2021131417 A1 WO2021131417 A1 WO 2021131417A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
switching elements
side switching
braking force
robot
Prior art date
Application number
PCT/JP2020/042961
Other languages
French (fr)
Japanese (ja)
Inventor
掃部 雅幸
純一 烏山
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2021131417A1 publication Critical patent/WO2021131417A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the present invention relates to a robot, a humanoid robot, and a fall control method for the robot, and more particularly to a robot including a motor on which a dynamic brake is activated, a humanoid robot, and a fall control method for the robot.
  • a synchronous motor in which a dynamic brake is activated at the time of an emergency stop is known.
  • a synchronous motor is disclosed in, for example, Japanese Patent No. 3279102.
  • Japanese Patent No. 3279102 describes a transistor module including a transistor (switching element) for driving a synchronous electric motor using a U, V, and W phase three-phase power supply, and a transistor of the transistor module to apply braking force by dynamic braking.
  • a synchronous electric motor including a dynamic brake control circuit for generating a dynamic brake and a dynamic brake circuit for generating a braking force by a dynamic brake using a resistor while being connected to the output side of a transistor module is disclosed.
  • the motor in the initial stage of an emergency stop, the motor is decelerated so that the current flowing through the motor becomes constant by on / off control of the transistor (switching element) of the dynamic brake control circuit.
  • the power supply line is switched to the dynamic brake circuit including the resistor. Is short-circuited through a resistor to decelerate the motor and then stop it. This prevents the braking force due to the dynamic brake from weakening in the latter half of the emergency stop, and generates a strong braking force during the entire period of the emergency stop, thereby reducing the time until the synchronous motor stops. It is shortened.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is a robot, a humanoid robot, and a fall control of a robot capable of suppressing damage at an abnormal stop. To provide a method.
  • the robot according to the first aspect of the present invention has a robot main body including a plurality of joints, a plurality of motors provided in each of the plurality of joints, and a three-phase winding of the motor.
  • a circuit control unit is provided, the drive circuit unit includes a plurality of upper arm side switching elements constituting the upper arm, and a plurality of lower arm side switching elements constituting the lower arm, and the drive circuit control unit abnormally stops.
  • the abnormal stop is a broad concept including the emergency stop of the robot by the operation of the user and the abnormal stop of the robot due to the abnormality.
  • the drive circuit control unit is at least one of the plurality of upper arm side switching elements when stopping at least one of the plurality of motors at the time of abnormal stop. It is configured to control to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part of the lower arm side switching element of the part or a plurality of lower arm side switching elements. ..
  • the braking force of the dynamic brake is reduced, so that the robot stops relatively gently.
  • the robot is a bipedal walking robot such as a humanoid robot, the robot is prevented from falling vigorously.
  • the robot falls down gently. Further, in the case of a quadruped walking robot, the impact due to an abnormal stop can be mitigated. As a result, damage at the time of abnormal stop can be suppressed. Further, as described above, since the control is performed to reduce the braking force of the dynamic brake until the motor is stopped, the motor is different from the case where the braking force of the dynamic brake is increased again until the motor is stopped. It is possible to prevent the robot from suddenly stopping and falling vigorously until it stops (on the way).
  • the control for reducing the braking force of the dynamic brake is performed by alternately repeating the on state and the off state of the switching element for driving the motor. By configuring the motor to stop, the joints are prevented from being fixed by the strong braking force of the dynamic brake, and the robot is damaged due to the robot tipping over while the joints are fixed. Can be suppressed.
  • the joints are fixed by a strong braking force when the arm is raised and the knee is extended.
  • a strong braking force when the arm is raised and the knee is extended.
  • the humanoid robot includes a humanoid robot main body including a plurality of joints corresponding to a plurality of human joints, a plurality of motors provided in each of the plurality of joints, and a winding of the motors.
  • the motor is driven by supplying three-phase AC power to the motor, and the drive circuit section and the drive circuit section that operate the dynamic brake on the motor are controlled, and the braking force of the dynamic brake by the drive circuit section is controlled.
  • the drive circuit unit includes a plurality of upper arm-side switching elements constituting the upper arm and a plurality of lower arm-side switching elements constituting the lower arm.
  • At least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements is turned on and off. Is configured to reduce the braking force of the dynamic brake until the motor stops by alternately repeating.
  • the drive circuit control unit of the plurality of upper arm side switching elements when stopping at least one of the plurality of motors at the time of abnormal stop. It is configured to control to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part or a plurality of lower arm side switching elements. ing.
  • the braking force of the dynamic brake is reduced, so that the humanoid robot stops relatively gently. This prevents the humanoid robot from tipping over vigorously. That is, the humanoid robot collapses gently.
  • the motor applies the braking force of the dynamic brake by alternately repeating the on state and the off state of the switching element that drives the motor.
  • the joint is suppressed from being fixed by the strong braking force of the dynamic brake, which is caused by the humanoid robot falling while the joint is fixed. It is possible to suppress damage to the humanoid robot.
  • the fall control method for a robot is a fall control method for a robot including a plurality of joints, and is a voltage of a power supply path for supplying power to a plurality of motors provided in each of the plurality of joints. And by supplying three-phase AC power to the windings of multiple motors based on the step of detecting at least one of the currents and at least one of the detected voltages and currents in the power supply path. At least a part of the plurality of upper arm side switching elements or at least a part of the lower arm side switching elements included in the drive circuit unit that activates the dynamic brake for at least one of the plurality of motors. It includes a step of performing feedback control that reduces the braking force of the dynamic brake until the motor stops by alternately repeating the on state and the off state.
  • three-phase AC is applied to the windings of a plurality of motors based on at least one of the detected voltage and current of the power supply path.
  • a step is provided in which feedback control is performed to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part of the switching element.
  • control for reducing the braking force of the dynamic brake is performed by alternately repeating the on state and the off state of the switching element that drives the motor. By configuring the motor to stop until it stops, the joints are prevented from being fixed by the strong braking force of the dynamic brake, so that the robot is damaged due to the robot falling while the joints are fixed. It is possible to provide a fall control method for a robot that can suppress the above.
  • the joints are fixed by a strong braking force when the arm is raised and the knee is extended.
  • a strong braking force when the arm is raised and the knee is extended.
  • the configuration of the humanoid robot 100 (humanoid robot main body 100a) having a plurality of joints corresponding to the plurality of human joints according to the present embodiment will be described with reference to FIGS. 1 to 3.
  • the humanoid robot 100 is also called a humanoid.
  • the humanoid robot 100 and the humanoid robot body 100a are examples of the "robot” and the “robot body” in the claims, respectively.
  • the humanoid robot 100 includes a head 1, a neck 2, an upper body 3, a lower body 4, arms 5, hands 6, legs 7, and feet 8. There is.
  • the upper body portion 3 and the lower body portion 4 are flexibly connected to each other via the waist joint 10a.
  • the upper body portion 3 can perform a forward bending operation, a backward bending operation, and a left / right turning operation with respect to the lower body portion 4.
  • the lower torso 4 corresponds to the human pelvis.
  • the hip joint 10a corresponds to the human waist.
  • the arm portion 5 has a plurality of links 20 and an elbow joint 10b that flexibly supports the plurality of links 20. Then, the adjacent links 20 bend each other via the elbow joint 10b, so that the arm portion 5 performs a bending motion.
  • the hand part 6 is provided at the tip of the arm part 5.
  • the hand portion 6 has a plurality of links (not shown) and a knuckle (not shown) that flexibly supports the plurality of links.
  • the leg portion 7 has a plurality of links 20 and a knee joint 10c that flexibly supports the plurality of links 20. Then, the adjacent links 20 bend each other via the knee joint 10c, so that the leg portion 7 performs a bending motion. Then, by moving the foot portion 8 by controlling the bending motion of the leg portion 7, the humanoid robot 100 can perform bipedal walking.
  • the upper body portion 3 and the arm portion 5 are connected by a shoulder joint 10d. Further, the lower body portion 4 and the leg portion 7 are connected by a hip joint 10e. The leg 7 and the foot 8 are connected by an ankle joint (ankle joint) 10f.
  • the lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e, and ankle joint 10f are examples of "joints" within the scope of the claim.
  • the lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint 10f have the lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint, respectively.
  • a motor 30 for driving the 10f is provided.
  • the humanoid robot 100 performs a flexion motion and a turning motion by driving the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f by the motor 30.
  • joints and motors 30 are also provided in parts other than those shown in FIG. 1, but they are omitted for the sake of brevity.
  • the humanoid robot 100 (humanoid robot main body 100a) is provided with a power supply 40, a power supply relay board 50, and an amplifier unit 60 in addition to the above motor 30.
  • the broken line arrow represents a communication signal.
  • the thin solid arrow represents the control power.
  • the thick solid line arrow represents the motor power for driving the motor 30.
  • the humanoid robot 100 (humanoid robot main body 100a) is provided with a posture sensor 70.
  • the posture sensor 70 is configured to detect information regarding the posture of the humanoid robot 100 (whether standing, sitting, arms raised, arms lowered, etc.).
  • Motor drive power is supplied from the power supply 40 to the power supply relay board 50.
  • the power relay board 50 is configured to supply electric power for driving the motor 30 to the amplifier unit 60.
  • Control power is supplied to the power relay board 50 from the power supply 40.
  • the power relay board 50 is configured to supply electric power for controlling the amplifier unit 60.
  • the amplifier unit 60 includes a plurality of amplifiers (servo amplifiers) 61.
  • the amplifier 61 is provided for each of the plurality of motors 30 provided in the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, the ankle joint 10f (see FIG. 1), and the like. .. Further, the amplifier 61 controls the drive of the motor 30.
  • the amplifier 61 includes an inverter unit 61a and a control unit 61b that controls the inverter unit 61a.
  • the inverter unit 61a is configured to drive the motor 30 by supplying three-phase AC power to the windings of the motor 30 and to operate a dynamic brake on the motor 30.
  • the inverter unit 61a includes a plurality of upper arm side switching elements SW1, SW2 and SW3 forming the upper arm (three in the present embodiment) and a plurality of upper arm side switching elements SW1, SW2 and SW3 (three in the present embodiment).
  • the lower arm side switching elements SW4, SW5 and SW6 are included.
  • the control unit 61b controls the inverter unit 61a and also controls the braking force of the dynamic brake by the inverter unit 61a. Specifically, the control unit 61b controls the on / off of the switching elements (SW1 to SW6), so that the motor 30 is supplied with power of three desired phases (U, V, and W). Further, a description of controlling the braking force of the dynamic brake by the control unit 61b will be described later.
  • the inverter unit 61a is an example of the "drive circuit unit” in the claims. Further, the control unit 61b is an example of the "drive circuit control unit” in the claims.
  • Each of the switching elements includes a bipolar transistor.
  • the collectors C of the upper arm side switching elements SW1, SW2 and SW3 are connected to the positive potential wiring 62.
  • the emitters E of the lower arm side switching elements SW4, SW5 and SW6 are connected to the negative side potential wiring 63. Further, the emitters E of the upper arm side switching elements SW1, SW2 and SW3, and the collector C of the lower arm side switching elements SW4, SW5 and SW6 are connected to the motor 30 via the power supply wiring 64.
  • the power supply wiring 64 includes three wirings of U phase, V phase, and W phase. Further, the power supply wiring 64 is an example of the "power supply path" in the claims.
  • a voltage detection unit 61c for detecting at least one of the voltage and the current of the power supply wiring 64 for supplying power to the motor 30 (voltage in the present embodiment) is provided. Specifically, the voltage detection unit 61c detects the voltage of the power supply wiring 64 between the switching elements (SW1 to SW6) and the motor 30. Further, the motor 30 is provided with an encoder 65 that detects the rotation speed and the rotation position of the motor 30. The rotation speed and rotation position of the motor 30 detected by the encoder 65 are input to the control unit 61b.
  • the voltage detection unit 61c is an example of the "detection unit" in the claims.
  • the emergency stop of the humanoid robot 100 will be described.
  • the emergency stop is an operation of stopping the humanoid robot 100 by stopping the motor 30 by pressing the emergency stop button 80 (see FIG. 3) by the user.
  • the operation of the amplifier 61 (see FIG. 2) is stopped, and the power supply from the power supply 40 is stopped.
  • the emergency stop is an example of "abnormal stop" in the claims.
  • At the time of emergency stop at least a part of the three lower arm side switching elements SW4, SW5 and SW6 (all three in the present embodiment) are turned on, so that the lower arm side switching elements SW4, SW5 and SW5 are turned on.
  • a closed path including the SW6, the power supply wiring 64, and the motor 30 is formed.
  • the upper arm side switching elements SW1, SW2, and SW3 are turned off.
  • the torque proportional to this current works in the direction of decelerating the motor 30. That is, the dynamic brake acts on the motor 30. As a result, a braking force acts on the motor 30.
  • control unit 61b when the control unit 61b stops the plurality of motors 30 at the time of emergency stop, at least a part or a plurality (3) of the plurality (three) upper arm side switching elements SW1, SW2 and SW3.
  • control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. It is configured in.
  • the control unit 61b stops the plurality of motors 30 at the time of emergency stop, the control unit 61b alternates between all the on states and the off states of the plurality (three) lower arm side switching elements SW4, SW5 and SW6. To repeat.
  • the humanoid robot 100 gradually changes its posture. Further, until the operation of the humanoid robot 100 having the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f corresponding to a plurality of human joints is completely stopped. , The braking force of the dynamic brake is reduced.
  • control unit 61b turns on all three upper arm side switching elements SW1, SW2, and SW3 when controlling the collapse of the humanoid robot main body 100a at the time of emergency stop.
  • the control unit 61b turns on all three upper arm side switching elements SW1, SW2, and SW3 when controlling the collapse of the humanoid robot main body 100a at the time of emergency stop.
  • the braking force of the dynamic brake is reduced until the motor 30 is stopped.
  • a machine for fixing maintaining a posture
  • No special brake electromagagnetic brake
  • the humanoid robot main body 100a finally collapses.
  • the dynamic brake in which the braking force is reduced by turning on / off the three lower arm side switching elements SW4, SW5 and SW6, the humanoid robot main body 100a collapses relatively gently. Control to be.
  • the amplifier 61 (inverter unit 61a) is provided for each of a plurality of joints (lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint 10f). It is individually provided for each of the motors 30 of the above. Then, when the motor 30 is stopped at the time of emergency stop, the control unit 61b sets all the on and off states of the lower arm side switching elements SW4, SW5 and SW6 of the inverter unit 61a provided for each motor 30. It is configured to individually control the braking force of the dynamic brake with respect to the plurality of motors 30 by alternately repeating the process.
  • each inverter unit 61a provided for each motor 30 three lower arm side switching elements are based on the voltage of the power supply wiring 64 detected by the voltage detection unit 61c provided for each inverter unit 61a.
  • SW4 and SW6 is controlled.
  • the rotation speed of each of the motors 30 of the plurality of joints may be different.
  • joints in which the dynamic brake operates and joints in which the dynamic brake does not operate may coexist.
  • the inverter unit 61a is an example of the "drive circuit unit" in the claims.
  • the control unit 61b when the motor 30 is stopped at the time of emergency stop, the control unit 61b is in all the ON states of the lower arm side switching elements SW4, SW5 and SW6 of the inverter unit 61a provided for each motor 30.
  • the joint to which the braking force is reduced includes at least one of the knee joint 10c and the shoulder joint 10d (both in the present embodiment).
  • the hip joint 10e and the ankle joint 10f are also controlled to reduce the braking force of the dynamic brake.
  • the braking force of the dynamic brake can be adjusted by changing a predetermined threshold value to be compared with the voltage of the power supply wiring 64 detected by the voltage detection unit 61c.
  • the braking force of the dynamic brake of at least one (in this embodiment, both) of the knee joint 10c or the shoulder joint 10d is based on the position information of the knee joint 10c and the position information of the shoulder joint 10d. It is configured to perform control to reduce. Specifically, information on the posture of the humanoid robot 100 from the posture sensor 70 provided on the humanoid robot main body 100a (whether standing, sitting, arms raised, arms lowered, etc.) ), And the position information of the knee joint 10c (whether the knee is extended or bent, etc.) and the position information of the shoulder joint 10d (the arm part 5 is raised around the shoulder joint 10d, the arm part 5). Is down, etc.) is acquired.
  • control is performed to reduce the braking force of the dynamic brake of the knee joint 10c and the shoulder joint 10d.
  • the humanoid robot 100 is standing (knees are extended) based on the information about the posture of the humanoid robot 100 from the posture sensor 70, the humanoid robot 100 is gently tilted down.
  • the control for reducing the braking force of the dynamic brakes of the knee joint 10c, the hip joint 10e and the ankle joint 10f is performed.
  • the arm portion of the humanoid robot 100 is determined. Control is performed to reduce the braking force of the dynamic brake of the shoulder joint 10d so that 5 is gently lowered.
  • the voltage of the power supply wiring 64 that supplies power to the motor 30 is detected by the voltage detection unit 61c. Then, when the motor 30 is stopped, the control unit 61b is in all the ON states of the three lower arm side switching elements SW4, SW5, and SW6 based on the voltage of the power supply wiring 64 detected by the voltage detection unit 61c. It is configured to perform feedback control that reduces the braking force of the dynamic brake until the motor 30 is stopped by alternately repeating the off state and the off state. Specifically, the control unit 61b compares the voltage of the power supply wiring 64 detected by the voltage detection unit 61c with a predetermined threshold value when the motor 30 is stopped at the time of an emergency stop.
  • the predetermined threshold value is set so that the voltage of the power supply wiring 64 becomes a relatively low voltage (for example, 30 V or more and 60 V or less) at the time of emergency stop. That is, the predetermined threshold value is lower than the reference voltage to which the regenerative resistor is connected during normal operation.
  • the control unit 61b lowers the voltage of the power supply wiring 64 detected by the voltage detection unit 61c when the voltage of the power supply wiring 64 exceeds a predetermined threshold value when the motor 30 is stopped at the time of emergency stop. All of the arm-side switching elements SW4, SW5 and SW6 are turned on. Further, when the voltage of the power supply wiring 64 is equal to or less than a predetermined threshold value, the control unit 61b turns off all of the lower arm side switching elements SW4, SW5 and SW6. As a result, the control unit 61b is configured to perform feedback control that reduces the braking force of the dynamic brake until the motor 30 is stopped.
  • step S1 shown in FIG. 4 the emergency stop button 80 is pressed. As a result, the emergency stop signal is input to the control unit 61b of the amplifier 61.
  • step S2 the voltage of the power supply wiring 64 that supplies power to the plurality of motors 30 provided in each of the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f is the voltage detection unit. Detected by 61c.
  • step S3 the voltage of the power supply wiring 64 detected by the voltage detection unit 61c and a predetermined threshold value are compared by the control unit 61b.
  • step S3 when the voltage of the power supply wiring 64 detected by the voltage detection unit 61c is larger than a predetermined threshold value, the process proceeds to step S4 and all of the lower arm side switching elements SW4, SW5 and SW6. Is turned on. As a result, the dynamic brake is activated.
  • step S3 when the voltage of the power supply wiring 64 detected by the voltage detection unit 61c is equal to or less than a predetermined threshold value, the process proceeds to step S5, and all of the lower arm side switching elements SW4, SW5, and SW6 are turned off. .. As a result, the operation of the dynamic brake is stopped.
  • steps S3 to S5 are continued until the motor 30 is stopped.
  • feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped.
  • the emergency stop button 80 (see FIG. 3) is pressed, the power supply to the motor 30 is stopped. Further, in the humanoid robot 100, the lumbar joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e and the ankle joint 10f (motor 30) are mechanically fixed (that is, the posture is maintained). Since the electromagnetic brake is not provided, the humanoid robot 100 cannot maintain its posture because the supply of power to the motor 30 is stopped. Therefore, the humanoid robot 100 collapses from an upright state so as to bend the knee joint 10c and the hip joint 10e of the leg portion 7 and the ankle joint 10f of the foot portion 8 as shown in FIG.
  • the arm portion 5 is centered on the shoulder joint 10d of the humanoid robot 100 based on the information on the posture of the humanoid robot 100 from the posture sensor 70.
  • control is performed to reduce the braking force of the dynamic brake of the shoulder joint 10d so that the arm 5 of the humanoid robot 100 is gently lowered.
  • the emergency stop button 80 is pressed in the state of the humanoid robot 100 of FIG. 6, the knee joint 10c, the hip joint 10e, and the ankle joint 10f are also bent as described above. A case where only the posture of the arm 5 changes without bending the knee joint 10c, the hip joint 10e, and the ankle joint 10f will be described.
  • the braking force of the dynamic brake is weakened, so that the arm portion 5 rotates relatively gently around the shoulder joint 10d and then stops. In this way, since the arm portion 5 stops relatively gently, it is possible to prevent the arm portion 5 from vigorously colliding with the upper body portion 3 or the lower body portion 4.
  • the emergency stop button 80 when the emergency stop button 80 is pressed while the humanoid robot 100 is moving (when the rotation speed of the motor 30 is relatively high), it is based on the information about the posture of the humanoid robot 100 from the posture sensor 70. Therefore, it is determined which joint of the humanoid robot 100 the braking force of the dynamic brake is to be reduced.
  • the rotation speed of the motor 30 is relatively high, the voltage of the electric power generated by the motor 30 is relatively high, so that the dynamic brake operates.
  • the control unit 61b stops the plurality of motors 30 at the time of emergency stop, at least a part or a plurality of lower arm sides of the plurality of upper arm side switching elements SW1, SW2 and SW3
  • the motor 30 is stopped by alternately repeating the on state and the off state of at least a part of the switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). It is configured to control to reduce the braking force of the dynamic brake. As a result, when the motor 30 is stopped at the time of emergency stop, the braking force of the dynamic brake is reduced, so that the humanoid robot 100 stops relatively gently.
  • the humanoid robot 100 is prevented from falling vigorously. That is, the humanoid robot 100 gently collapses. As a result, it is possible to suppress damage caused by the humanoid robot 100 falling vigorously at the time of an emergency stop. Further, as described above, since the control for reducing the braking force of the dynamic brake is performed until the motor 30 is stopped, unlike the case where the braking force of the dynamic brake is increased again until the motor 30 is stopped, the braking force of the dynamic brake is increased again. It is possible to prevent the humanoid robot 100 from suddenly stopping and the humanoid robot 100 from tipping over vigorously until the motor 30 is stopped (on the way).
  • the humanoid robot 100 may fall while the joints of the humanoid robot 100 are fixed by the strong braking force of the dynamic brake. This may also damage the humanoid robot 100.
  • the on state and the off state of the switching elements (lower arm side switching elements SW4, SW5 and SW6) for driving the motor 30 are alternately repeated.
  • the joints are subjected to strong braking force in a state where the arm portion 5 (arm) is raised and when the knee is extended. It is possible to suppress the fixation and to gradually shift to a state in which the arm portion 5 is lowered and a state in which the knee is bent (a crouched posture) due to the reduced weak braking force, and the joint can be overturned. This makes it possible to effectively suppress damage caused by falling, especially in the humanoid robot 100.
  • the control unit 61b is at least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 when controlling the tilt of the humanoid robot main body 100a at the time of emergency stop.
  • the control is configured to reduce the braking force of the dynamic brake until the motor 30 is stopped.
  • the inverter unit 61a includes a plurality of motors provided for each of the plurality of hip joints 10a, elbow joints 10b, knee joints 10c, shoulder joints 10d, hip joints 10e, and ankle joints 10f.
  • the control unit 61b is individually provided for each 30.
  • the control unit 61b is provided for each of the plurality of upper arm side switching elements SW1, SW2 and SW3 of the inverter unit 61a provided for each motor 30.
  • At least a part or at least a part of the lower arm side switching elements SW4, SW5 and SW6 are alternately turned on and off.
  • the braking force of the dynamic brakes for the plurality of motors 30 is individually controlled.
  • the joint (motor 30) for which the braking force of the dynamic brake should be weakened can be selected and individually controlled according to the posture of the humanoid robot 100 immediately before the emergency stop.
  • the robot 100 can be appropriately shifted depending on the crouched state.
  • the control unit 61b has a plurality of upper arm side switching elements SW1 and SW2 of the inverter unit 61a provided for each motor 30. And at least a part of SW3 or at least a part of the lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6) are turned on and off.
  • a part of the plurality of joints is configured to be controlled to reduce the braking force of the dynamic brake as compared with the other joints.
  • the braking force of the dynamic brake is not reduced for all joints (only some joints are reduced for the braking force of the dynamic brake). In some cases, damage to the humanoid robot 100 due to a fall can be suppressed. Therefore, as described above, the braking force of the dynamic brake is reduced for all the joints by configuring some of the plurality of joints to reduce the braking force of the dynamic brake as compared with the other joints. Compared with the case of performing control, the control load of the humanoid robot 100 can be reduced.
  • the joint whose braking force is reduced includes at least one of the knee joint 10c and the shoulder joint 10d.
  • the knee joint 10c is fixed by the strong braking force of the dynamic brake, so that the humanoid robot 100 is in a state where the knee is extended. Robot 100 falls. That is, since the humanoid robot 100 cannot be overturned by gradually shifting to a state in which the knee is bent (a crouched posture), the humanoid robot 100 may be damaged by the overturn.
  • the humanoid robot 100 can be overturned by gradually shifting to a state in which the knee is bent (a crouched posture). It is possible to suppress damage to the humanoid robot 100 due to a fall. Further, if the braking force of the dynamic brake with respect to the shoulder joint 10d is too strong during an emergency stop, the shoulder joint 10d is fixed by the strong braking force of the dynamic brake. Therefore, for example, the arm is centered on the shoulder joint 10d of the humanoid robot 100. The humanoid robot 100 falls while the portion 5 is raised horizontally.
  • the humanoid robot 100 cannot be overturned by gradually shifting from the state in which the arm 5 is horizontally raised around the shoulder joint 10d to the state in which the arm 5 is lowered, so that the humanoid robot 100 cannot be overturned. May be damaged. Therefore, as described above, by reducing the braking force of the dynamic brake with respect to the shoulder joint 10d, the arm 5 is gradually shifted from the state in which the arm 5 is horizontally raised around the shoulder joint 10d to the state in which the arm 5 is lowered. Since the humanoid robot 100 can be overturned, damage to the humanoid robot 100 due to the overturning can be suppressed.
  • the braking force of at least one of the knee joint 10c or the shoulder joint 10d is reduced based on the position information of the knee joint 10c and the position information of the shoulder joint 10d. It is configured to provide control.
  • the amount is reduced in the state immediately before the emergency stop. It is not necessary to gradually shift to a state in which the knee is bent (a crouched posture) and a state in which the arm portion 5 is lowered due to a weak braking force.
  • the humanoid robot main body 100a includes a plurality of hip joints 10a, elbow joints 10b, knee joints 10c, shoulder joints 10d, hip joints 10e and legs corresponding to a plurality of human joints. It has a joint 10f.
  • the switching elements that drive the motor 30 in this embodiment, the lower arm side switching elements SW4, SW5, and SW6 are dynamically repeated in an on state and an off state. Controlling to reduce the braking force of the brake is particularly effective in suppressing damage to the humanoid robot 100, which is relatively prone to tipping over.
  • the voltage detection unit 61c for detecting at least one of the voltage and the current of the power supply wiring 64 that supplies power to the motor 30 (voltage in the present embodiment) is provided. Further, a plurality of control units 61b are provided based on at least one of the voltage and current of the power supply wiring 64 (voltage in this embodiment) detected by the voltage detection unit 61c when the motor 30 is stopped. At least a part of the upper arm side switching elements SW1, SW2 and SW3 or at least a part of a plurality of lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6).
  • At least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 or at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6 based on the comparison with a predetermined threshold value in this embodiment, By alternately repeating the on state and the off state of the lower arm side switching elements SW4, SW5, and SW6), feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. ing.
  • the voltage (current) of the electric power generated by the motor 30 is suppressed from rising above the voltage (current) corresponding to the predetermined threshold, and the voltage is close to the voltage (current) corresponding to the predetermined threshold. Since it is maintained at (current), the braking force of the dynamic brake with respect to the motor 30 can be maintained at a desired weak magnitude.
  • the control unit 61b receives at least one of the voltage and the current of the power supply wiring 64 detected by the voltage detection unit 61c when the motor 30 is stopped at the time of emergency stop ( In the present embodiment, when the voltage) exceeds a predetermined threshold value, at least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 or at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6.
  • all of the lower arm side switching elements SW4, SW5, and SW6 are turned on, and when at least one of the voltage and the current of the power supply wiring 64 is equal to or less than a predetermined threshold value, the plurality of upper arms Turn off at least a part of the side switching elements SW1, SW2 and SW3 or at least a part of a plurality of lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6).
  • feedback control is configured to reduce the braking force of the dynamic brake until the motor 30 is stopped.
  • the voltage (current) of the power supply wiring 64 can be reduced.
  • at least one of the voltage and current of the power supply wiring 64 detected by the voltage detection unit 61c is equal to or less than a predetermined threshold value, at least a part or a plurality of upper arm side switching elements SW1, SW2, and SW3 are used.
  • the voltage (current) of the power supply wiring 64 can be increased.
  • the voltage (current) of the electric power generated by the motor 30 can be easily maintained at a voltage (current) close to the voltage (current) corresponding to a predetermined threshold value.
  • three phases are wound on the windings of the plurality of motors 30 based on at least one of the detected voltages and currents of the power supply wiring 64 (voltage in the present embodiment).
  • At least a part or a lower arm of a plurality of upper arm side switching elements SW1, SW2 and SW3 included in the inverter unit 61a that drives the motor 30 by supplying the AC power of The motor 30 is stopped by alternately repeating the on state and the off state of at least a part of the side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6).
  • a step of performing feedback control for reducing the braking force of the dynamic brake is provided.
  • the dynamic brake is controlled by alternately repeating the on state and the off state of the switching element for driving the motor 30 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6).
  • the control By configuring the control to reduce the power until the motor 30 stops, the joints are suppressed from being fixed by the strong braking force of the dynamic brake. Therefore, the humanoid robot 100 is in a state where the joints are fixed. It is possible to provide a fall control method for the humanoid robot 100 that can suppress damage to the humanoid robot 100 due to the fall.
  • the present invention is not limited to this.
  • the present invention may be applied to a bipedal walking robot or a quadrupedal walking robot that imitates an animal other than the humanoid robot 100.
  • the impact caused by an abnormal stop can be mitigated, so that damage at the time of an abnormal stop can be suppressed.
  • a closed circuit is formed by a path via the positive potential wiring 62, a negative potential wiring 63, a freewheeling diode of the lower arm side switching element SW5, a V-phase power supply wiring 64, and a path via the motor 30. Is possible. This makes it possible to exert a braking force on the motor 30.
  • control unit 61b shows an example of comparing the voltage of the power supply wiring 64 detected by the voltage detection unit 61c with a predetermined threshold value when the motor 30 is stopped at the time of emergency stop.
  • the present invention is not limited to this.
  • the control unit may compare the current of the power supply wiring 64 detected by the detection unit that detects the current with a predetermined threshold value (current threshold value) when the motor 30 is stopped at the time of emergency stop. .. Further, the control unit may compare the voltage and current of the power supply wiring 64 with the respective threshold values.
  • the predetermined threshold value for turning on / off the lower arm side switching elements SW4, SW5 and SW6 at the time of emergency stop is lower than the reference voltage to which the regenerative resistor is connected during normal operation.
  • the present invention is not limited to this.
  • the predetermined threshold value may be equal to the reference voltage to which the regenerative resistor is connected.
  • the humanoid robot 100 is emergency-stopped when the emergency stop button 80 is pressed by the user, but the present invention is not limited to this.
  • the humanoid robot 100 may be provided with a sensor, and the humanoid robot 100 may be automatically stopped in an emergency based on the sensor detecting the posture and movement of the humanoid robot 100. Further, when an abnormality occurs in the humanoid robot 100, control may be performed to reduce the braking force of the dynamic brake until the motor 30 stops.
  • the on state and the off state of the lower arm side switching elements SW4, SW5 and SW6 are alternately repeated based on the voltage of the power supply wiring 64.
  • the present invention is not limited to this.
  • the lower arm side switching elements SW4, SW5 and SW6 or the upper arm side switching elements SW1, SW2 and SW3 are turned on based on the detected rotation speed of the motor 30.
  • the state and the off state may be repeated alternately.
  • the present invention is not limited to this.
  • the braking force of the dynamic brakes for the plurality of motors 30 may be controlled all at once. That is, a voltage detection unit 61c for detecting the voltage of the power supply wiring 64 is commonly provided for the plurality of amplifiers 61, and all the amplifiers 61 are based on the voltage detected by the commonly provided voltage detection unit 61c.
  • the on / off of the lower arm side switching elements SW4, SW5 and SW6 (or the upper arm side switching elements SW1, SW2 and SW3) may be controlled.
  • the present invention is not limited to this.
  • the braking force of the dynamic brakes of all joints may be reduced (decreased as compared with the time of regeneration).
  • the braking force of the dynamic brakes of the joints other than the knee joint 10c (hip joint 10e, ankle joint 10f) and the shoulder joint 10d may be reduced.
  • the posture sensor 70 provided in the humanoid robot main body 100a provides information on the posture of the humanoid robot 100 (whether the humanoid robot 100 is standing, sitting, the arm is raised, or the arm is lowered. , Etc.) have been shown, but the present invention is not limited to this.
  • the encoder 65 provided in the motor 30 may acquire information regarding the posture of the humanoid robot 100. That is, information on the posture of the humanoid robot 100 based on the difference between the rotation position of the motor 30 in the posture of the humanoid robot 100 as a reference and the rotation position of the motor 30 in the posture of the humanoid robot 100 at the time of emergency stop. And, based on the acquired posture, the joint that reduces the braking force of the dynamic brake may be selected. Further, both the posture sensor 70 and the encoder 65 may be used to acquire information on the posture of the humanoid robot 100.
  • control may be performed to reduce the braking force of the dynamic brake only for one of the plurality of motors 30 provided in the humanoid robot 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

This robot (100) has a drive circuit control unit (61b) that, when stopping at least one of a plurality of motors (30) during an abnormal stop, performs control that makes a plurality of lower arm–side switching elements (W4, SW5, SW6) repeatedly alternate between an ON state and an OFF state and thereby reduces the braking force of a dynamic brake until the motor stops.

Description

ロボット、人型ロボットおよびロボットの倒れ制御方法Robots, humanoid robots, and robot fall control methods
 この発明は、ロボット、人型ロボットおよびロボットの倒れ制御方法に関し、特に、ダイナミックブレーキが作動されるモータを備えるロボット、人型ロボットおよびロボットの倒れ制御方法に関する。 The present invention relates to a robot, a humanoid robot, and a fall control method for the robot, and more particularly to a robot including a motor on which a dynamic brake is activated, a humanoid robot, and a fall control method for the robot.
 従来、非常停止時に、ダイナミックブレーキが作動される同期電動機(モータ)が知られている。このような、同期電動機は、たとえば、特許第3279102号公報に開示されている。 Conventionally, a synchronous motor (motor) in which a dynamic brake is activated at the time of an emergency stop is known. Such a synchronous motor is disclosed in, for example, Japanese Patent No. 3279102.
 特許第3279102号公報には、U、VおよびW相の三相電源を用いた同期電動機を駆動するトランジスタ(スイッチング素子)を含むトランジスタモジュールと、トランジスタモジュールのトランジスタを用いてダイナミックブレーキによる制動力を発生させるダイナミックブレーキ制御回路と、トランジスタモジュールの出力側に接続されるとともに抵抗を用いてダイナミックブレーキによる制動力を発生させるダイナミックブレーキ回路とを備える同期電動機が開示されている。 Japanese Patent No. 3279102 describes a transistor module including a transistor (switching element) for driving a synchronous electric motor using a U, V, and W phase three-phase power supply, and a transistor of the transistor module to apply braking force by dynamic braking. A synchronous electric motor including a dynamic brake control circuit for generating a dynamic brake and a dynamic brake circuit for generating a braking force by a dynamic brake using a resistor while being connected to the output side of a transistor module is disclosed.
 この同期電動機では、非常停止時の初期は、ダイナミックブレーキ制御回路のトランジスタ(スイッチング素子)のオンオフ制御により、モータに流れる電流が一定になるようにモータを減速する制御が行われる。そして、その後、誘起電圧が減少してモータに流れる電流が一定にならなくなってから(スイッチング素子によるダイナミックブレーキの制動力が弱まる時点から)は、抵抗を含むダイナミックブレーキ回路に切り替えて、電源供給線を抵抗を介して短絡させて、モータを減速させた後停止させる。これにより、非常停止時の後半にダイナミックブレーキによる制動力が弱まるのを防止して、非常停止時の全期間において強い制動力を発生させることによって、同期電動機(モータ)が停止するまでの時間を短縮している。 In this synchronous motor, in the initial stage of an emergency stop, the motor is decelerated so that the current flowing through the motor becomes constant by on / off control of the transistor (switching element) of the dynamic brake control circuit. After that, after the induced voltage decreases and the current flowing through the motor becomes constant (from the time when the braking force of the dynamic brake by the switching element weakens), the power supply line is switched to the dynamic brake circuit including the resistor. Is short-circuited through a resistor to decelerate the motor and then stop it. This prevents the braking force due to the dynamic brake from weakening in the latter half of the emergency stop, and generates a strong braking force during the entire period of the emergency stop, thereby reducing the time until the synchronous motor stops. It is shortened.
特許第3279102号公報Japanese Patent No. 3279102
 しかしながら、特許第3279102号公報の同期電動機のように、同期電動機が非常停止される際に、ダイナミックブレーキによる制動力が弱まるのを防止して同期電動機が停止するまでの時間が短縮された場合、同期電動機に対するダイナミックブレーキの制動力が強くなり過ぎる場合があると考えらえる。特に、特許第3279102号公報の同期電動機を人型ロボットのような2足歩行ロボットのモータに適用した場合、非常停止時にダイナミックブレーキの制動力が強くなり過ぎることに起因して、急激にロボットが停止する。その結果、ロボットが勢いよく転倒することにより、ロボットが破損する場合があるという問題点がある。また、特許第3279102号公報の同期電動機を4足歩行ロボットのモータに適用した場合、非常停止時(異常停止時)に4足歩行ロボットは転倒しないものの、非常停止による衝撃により破損する場合があるという問題点がある。 However, as in the case of the synchronous motor of Japanese Patent No. 3279102, when the synchronous motor is stopped in an emergency, the braking force due to the dynamic brake is prevented from being weakened and the time until the synchronous motor is stopped is shortened. It is considered that the braking force of the dynamic brake for the synchronous motor may become too strong. In particular, when the synchronous motor of Japanese Patent No. 3279102 is applied to the motor of a bipedal walking robot such as a humanoid robot, the robot suddenly becomes too strong due to the excessively strong braking force of the dynamic brake at the time of emergency stop. Stop. As a result, there is a problem that the robot may be damaged due to the robot falling vigorously. Further, when the synchronous motor of Japanese Patent No. 3279102 is applied to the motor of a quadruped walking robot, the quadruped walking robot does not fall during an emergency stop (abnormal stop), but may be damaged by the impact of the emergency stop. There is a problem.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、異常停止時における破損を抑制することが可能なロボット、人型ロボットおよびロボットの倒れ制御方法を提供することである。 The present invention has been made to solve the above-mentioned problems, and one object of the present invention is a robot, a humanoid robot, and a fall control of a robot capable of suppressing damage at an abnormal stop. To provide a method.
 上記目的を達成するために、この発明の第1の局面によるロボットは、複数の関節を含むロボット本体部と、複数の関節の各々に設けられる複数のモータと、モータの巻線に3相の交流電力を供給することによりモータを駆動するとともに、モータに対してダイナミックブレーキを作動させる駆動回路部と、駆動回路部を制御するとともに、駆動回路部によるダイナミックブレーキの制動力を制御するための駆動回路制御部とを備え、駆動回路部は、上アームを構成する複数の上アーム側スイッチング素子と、下アームを構成する複数の下アーム側スイッチング素子とを含み、駆動回路制御部は、異常停止時に複数のモータのうちの少なくとも1つを停止させる際に、複数の上アーム側スイッチング素子の少なくとも一部または複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。また、異常停止とは、ユーザの操作によってロボットを非常停止させることと、異常によってロボットが異常停止することとを含む広い概念である。 In order to achieve the above object, the robot according to the first aspect of the present invention has a robot main body including a plurality of joints, a plurality of motors provided in each of the plurality of joints, and a three-phase winding of the motor. A drive for driving a motor by supplying AC power, controlling a drive circuit unit for operating a dynamic brake on the motor, a drive circuit unit, and controlling the braking force of the dynamic brake by the drive circuit unit. A circuit control unit is provided, the drive circuit unit includes a plurality of upper arm side switching elements constituting the upper arm, and a plurality of lower arm side switching elements constituting the lower arm, and the drive circuit control unit abnormally stops. Occasionally, when stopping at least one of the plurality of motors, at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements are alternately repeated on and off. By doing so, it is configured to control to reduce the braking force of the dynamic brake until the motor is stopped. Further, the abnormal stop is a broad concept including the emergency stop of the robot by the operation of the user and the abnormal stop of the robot due to the abnormality.
 この発明の第1の局面によるロボットでは、上記のように、駆動回路制御部は、異常停止時に複数のモータのうちの少なくとも1つを停止させる際に、複数の上アーム側スイッチング素子の少なくとも一部または複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。これにより、異常停止時にモータを停止させる際に、ダイナミックブレーキの制動力が減少されるので、比較的緩やかにロボットが停止する。これにより、ロボットが人型ロボットのように2足歩行ロボットの場合、ロボットが勢いよく転倒するのが抑制される。つまり、ロボットは、緩やかに倒れ込む。また、4足歩行ロボットの場合、異常停止による衝撃を緩和することができる。これらの結果、異常停止時における破損を抑制することができる。また、上記のように、モータが停止するまでダイナミックブレーキの制動力を減少させる制御が行われるので、モータが停止するまでの間に再びダイナミックブレーキの制動力が増加される場合と異なり、モータが停止するまでの間(途中)に、急激にロボットが停止して、ロボットが勢いよく転倒するのを抑制することができる。 In the robot according to the first aspect of the present invention, as described above, the drive circuit control unit is at least one of the plurality of upper arm side switching elements when stopping at least one of the plurality of motors at the time of abnormal stop. It is configured to control to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part of the lower arm side switching element of the part or a plurality of lower arm side switching elements. .. As a result, when the motor is stopped at the time of abnormal stop, the braking force of the dynamic brake is reduced, so that the robot stops relatively gently. As a result, when the robot is a bipedal walking robot such as a humanoid robot, the robot is prevented from falling vigorously. That is, the robot falls down gently. Further, in the case of a quadruped walking robot, the impact due to an abnormal stop can be mitigated. As a result, damage at the time of abnormal stop can be suppressed. Further, as described above, since the control is performed to reduce the braking force of the dynamic brake until the motor is stopped, the motor is different from the case where the braking force of the dynamic brake is increased again until the motor is stopped. It is possible to prevent the robot from suddenly stopping and falling vigorously until it stops (on the way).
 また、ダイナミックブレーキの制動力が強すぎる場合、ロボットの関節がダイナミックブレーキの強い制動力により固定された状態でロボットが転倒する場合がある。これによっても、ロボットが破損する場合がある。これに対して、本発明の第1の局面によるロボットでは、上記のように、モータを駆動するスイッチング素子のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力を減少させる制御をモータが停止するまで行うように構成することによって、関節がダイナミックブレーキの強い制動力により固定されるのが抑制されるので、関節が固定された状態でロボットが転倒することに起因するロボットの破損を抑制することができる。特に、人型ロボットに本発明を適用した場合には、腕(アーム)が上がった状態、および、膝が伸びた状態で関節(肩関節および膝関節)が強い制動力により固定されるのを抑制することができるとともに、減少された弱い制動力により腕が下がった状態および膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行して転倒させることができる。これにより、特に、人型ロボットにおいて、転倒することに起因する破損を効果的に抑制することができる。 Also, if the braking force of the dynamic brake is too strong, the robot may fall while the joints of the robot are fixed by the strong braking force of the dynamic brake. This can also damage the robot. On the other hand, in the robot according to the first aspect of the present invention, as described above, the control for reducing the braking force of the dynamic brake is performed by alternately repeating the on state and the off state of the switching element for driving the motor. By configuring the motor to stop, the joints are prevented from being fixed by the strong braking force of the dynamic brake, and the robot is damaged due to the robot tipping over while the joints are fixed. Can be suppressed. In particular, when the present invention is applied to a humanoid robot, the joints (shoulder joint and knee joint) are fixed by a strong braking force when the arm is raised and the knee is extended. In addition to being able to suppress it, it is possible to gradually shift to a state in which the arm is lowered and a state in which the knee is bent (a crouched posture) due to the reduced weak braking force, and the person can fall. This makes it possible to effectively suppress damage caused by falling, especially in a humanoid robot.
 この発明の第2の局面による人型ロボットは、人間の複数の関節に対応する複数の関節を含む人型ロボット本体部と、複数の関節の各々に設けられる複数のモータと、モータの巻線に3相の交流電力を供給することによりモータを駆動するとともに、モータに対してダイナミックブレーキを作動させる駆動回路部と、駆動回路部を制御するとともに、駆動回路部によるダイナミックブレーキの制動力を制御するための駆動回路制御部とを備え、駆動回路部は、上アームを構成する複数の上アーム側スイッチング素子と、下アームを構成する複数の下アーム側スイッチング素子とを含み、駆動回路制御部は、異常停止時に複数のモータのうちの少なくとも1つを停止させる際に、複数の上アーム側スイッチング素子の少なくとも一部または複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。 The humanoid robot according to the second aspect of the present invention includes a humanoid robot main body including a plurality of joints corresponding to a plurality of human joints, a plurality of motors provided in each of the plurality of joints, and a winding of the motors. The motor is driven by supplying three-phase AC power to the motor, and the drive circuit section and the drive circuit section that operate the dynamic brake on the motor are controlled, and the braking force of the dynamic brake by the drive circuit section is controlled. The drive circuit unit includes a plurality of upper arm-side switching elements constituting the upper arm and a plurality of lower arm-side switching elements constituting the lower arm. When stopping at least one of the plurality of motors at the time of abnormal stop, at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements is turned on and off. Is configured to reduce the braking force of the dynamic brake until the motor stops by alternately repeating.
 この発明の第2の局面による人型ロボットでは、上記のように、駆動回路制御部は、異常停止時に複数のモータのうちの少なくとも1つを停止させる際に、複数の上アーム側スイッチング素子の少なくとも一部または複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。これにより、異常停止時にモータを停止させる際に、ダイナミックブレーキの制動力が減少されるので、比較的緩やかに人型ロボットが停止する。これにより、人型ロボットが勢いよく転倒するのが抑制される。つまり、人型ロボットは、緩やかに倒れ込む。その結果、異常停止時において人型ロボットが勢いよく転倒することに起因する破損を抑制することができる。また、上記のように、モータが停止するまでダイナミックブレーキの制動力を減少させる制御が行われるので、モータが停止するまでの間に再びダイナミックブレーキの制動力が増加される場合と異なり、モータが停止するまでの間(途中)に、急激に人型ロボットが停止して、人型ロボットが勢いよく転倒するのを抑制することができる。 In the humanoid robot according to the second aspect of the present invention, as described above, the drive circuit control unit of the plurality of upper arm side switching elements when stopping at least one of the plurality of motors at the time of abnormal stop. It is configured to control to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part or a plurality of lower arm side switching elements. ing. As a result, when the motor is stopped at the time of abnormal stop, the braking force of the dynamic brake is reduced, so that the humanoid robot stops relatively gently. This prevents the humanoid robot from tipping over vigorously. That is, the humanoid robot collapses gently. As a result, it is possible to suppress damage caused by the humanoid robot falling vigorously at the time of abnormal stop. Further, as described above, since the control is performed to reduce the braking force of the dynamic brake until the motor is stopped, the motor is different from the case where the braking force of the dynamic brake is increased again until the motor is stopped. It is possible to prevent the humanoid robot from suddenly stopping and falling vigorously until it stops (on the way).
 また、ダイナミックブレーキの制動力が強すぎる場合、人型ロボットの関節がダイナミックブレーキの強い制動力により固定された状態で人型ロボットが転倒する場合がある。これによっても、人型ロボットが破損する場合がある。これに対して、本発明の第2の局面による人型ロボットでは、上記のように、モータを駆動するスイッチング素子のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力をモータが停止するまで減少させる制御を行うように構成することによって、関節がダイナミックブレーキの強い制動力により固定されるのが抑制されるので、関節が固定された状態で人型ロボットが転倒することに起因する人型ロボットの破損を抑制することができる。また、人型ロボットの腕(アーム)が上がった状態、および、膝が伸びた状態で関節(肩関節および膝関節)が強い制動力により固定されるのを抑制することができるとともに、減少された弱い制動力により腕が下がった状態および膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行して転倒させることができる。これにより、特に、人型ロボットにおいて、転倒することに起因する破損を効果的に抑制することができる。 Also, if the braking force of the dynamic brake is too strong, the humanoid robot may fall while the joints of the humanoid robot are fixed by the strong braking force of the dynamic brake. This may also damage the humanoid robot. On the other hand, in the humanoid robot according to the second aspect of the present invention, as described above, the motor applies the braking force of the dynamic brake by alternately repeating the on state and the off state of the switching element that drives the motor. By configuring the control to decrease until it stops, the joint is suppressed from being fixed by the strong braking force of the dynamic brake, which is caused by the humanoid robot falling while the joint is fixed. It is possible to suppress damage to the humanoid robot. In addition, it is possible to suppress the joints (shoulder joint and knee joint) from being fixed by a strong braking force when the arm of the humanoid robot is raised and when the knee is extended, and the amount is reduced. Due to the weak braking force, it is possible to gradually shift to a state in which the arm is lowered and a state in which the knee is bent (a crouched posture) and fall. This makes it possible to effectively suppress damage caused by falling, especially in a humanoid robot.
 この発明の第3の局面によるロボットの倒れ制御方法は、複数の関節を含むロボットの倒れ制御方法であって、複数の関節の各々に設けられる複数のモータに電力を供給する電力供給経路の電圧および電流のうちの少なくとも一方を検出するステップと、検出された電力供給経路の電圧および電流のうちの少なくとも一方に基づいて、複数のモータの巻線に3相の交流電力を供給することによりモータを駆動するとともに、複数のモータのうちの少なくとも1つに対してダイナミックブレーキを作動させる駆動回路部に含まれる複数の上アーム側スイッチング素子の少なくとも一部または下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うステップとを備える。 The fall control method for a robot according to the third aspect of the present invention is a fall control method for a robot including a plurality of joints, and is a voltage of a power supply path for supplying power to a plurality of motors provided in each of the plurality of joints. And by supplying three-phase AC power to the windings of multiple motors based on the step of detecting at least one of the currents and at least one of the detected voltages and currents in the power supply path. At least a part of the plurality of upper arm side switching elements or at least a part of the lower arm side switching elements included in the drive circuit unit that activates the dynamic brake for at least one of the plurality of motors. It includes a step of performing feedback control that reduces the braking force of the dynamic brake until the motor stops by alternately repeating the on state and the off state.
 この発明の第3の局面によるロボットの倒れ制御方法では、上記のように、検出された電力供給経路の電圧および電流のうちの少なくとも一方に基づいて、複数のモータの巻線に3相の交流電力を供給することによりモータを駆動するとともに、複数のモータのうちの少なくとも1つに対してダイナミックブレーキを作動させる駆動回路部に含まれる複数の上アーム側スイッチング素子の少なくとも一部または下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータが停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うステップを備える。これにより、異常停止時にモータを停止させる際に、ダイナミックブレーキの制動力が減少されるので、比較的緩やかにロボットが停止する。これにより、ロボットが人型ロボットのように2足歩行ロボットの場合、ロボットが勢いよく転倒するのが抑制される。つまり、ロボットは、緩やかに倒れ込む。また、4足歩行ロボットの場合、異常停止による衝撃を緩和することができる。これらの結果、異常停止時においてロボットが勢いよく転倒することに起因する破損を抑制することが可能なロボットの倒れ制御方法を提供することができる。また、上記のように、モータが停止するまでダイナミックブレーキの制動力を減少させる制御が行われるので、モータが停止するまでの間に再びダイナミックブレーキの制動力が増加される場合と異なり、モータが停止するまでの間(途中)に、急激にロボットが停止して、ロボットが勢いよく転倒するのを抑制することが可能なロボットの倒れ制御方法を提供することができる。 In the robot tilt control method according to the third aspect of the present invention, as described above, three-phase AC is applied to the windings of a plurality of motors based on at least one of the detected voltage and current of the power supply path. At least a part or a lower arm side of a plurality of upper arm side switching elements included in a drive circuit unit that drives a motor by supplying electric power and activates a dynamic brake for at least one of the plurality of motors. A step is provided in which feedback control is performed to reduce the braking force of the dynamic brake until the motor is stopped by alternately repeating the on state and the off state of at least a part of the switching element. As a result, when the motor is stopped at the time of abnormal stop, the braking force of the dynamic brake is reduced, so that the robot stops relatively gently. As a result, when the robot is a bipedal walking robot such as a humanoid robot, the robot is prevented from falling vigorously. That is, the robot falls down gently. Further, in the case of a quadruped walking robot, the impact due to an abnormal stop can be mitigated. As a result, it is possible to provide a fall control method for the robot that can suppress damage caused by the robot falling vigorously at the time of abnormal stop. Further, as described above, since the control is performed to reduce the braking force of the dynamic brake until the motor is stopped, the motor is different from the case where the braking force of the dynamic brake is increased again until the motor is stopped. It is possible to provide a fall control method for a robot that can prevent the robot from suddenly stopping and vigorously falling until it stops (on the way).
 また、ダイナミックブレーキの制動力が強すぎる場合、ロボットの関節がダイナミックブレーキの強い制動力により固定された状態でロボットが転倒する場合がある。これによっても、ロボットが破損する場合がある。これに対して、本発明の第3の局面によるロボットでは、上記のように、モータを駆動するスイッチング素子のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力を減少させる制御をモータが停止するまで行うように構成することによって、関節がダイナミックブレーキの強い制動力により固定されるのが抑制されるので、関節が固定された状態でロボットが転倒することに起因するロボットの破損を抑制することが可能なロボットの倒れ制御方法を提供することができる。特に、人型ロボットに本発明を適用した場合には、腕(アーム)が上がった状態、および、膝が伸びた状態で関節(肩関節および膝関節)が強い制動力により固定されるのを抑制することができるとともに、減少された弱い制動力により腕が下がった状態および膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行して転倒させることができる。これにより、特に、人型ロボットにおいて、転倒することに起因する破損を効果的に抑制することが可能なロボットの倒れ制御方法を提供することができる。 Also, if the braking force of the dynamic brake is too strong, the robot may fall while the joints of the robot are fixed by the strong braking force of the dynamic brake. This can also damage the robot. On the other hand, in the robot according to the third aspect of the present invention, as described above, control for reducing the braking force of the dynamic brake is performed by alternately repeating the on state and the off state of the switching element that drives the motor. By configuring the motor to stop until it stops, the joints are prevented from being fixed by the strong braking force of the dynamic brake, so that the robot is damaged due to the robot falling while the joints are fixed. It is possible to provide a fall control method for a robot that can suppress the above. In particular, when the present invention is applied to a humanoid robot, the joints (shoulder joint and knee joint) are fixed by a strong braking force when the arm is raised and the knee is extended. In addition to being able to suppress it, it is possible to gradually shift to a state in which the arm is lowered and a state in which the knee is bent (a crouched posture) due to the reduced weak braking force, and the person can fall. This makes it possible to provide a fall control method for a humanoid robot, which can effectively suppress damage caused by a fall.
 本発明によれば、上記のように、異常停止時における破損を抑制することができる。 According to the present invention, as described above, damage at the time of abnormal stop can be suppressed.
本発明の一実施形態による人型ロボットの斜視図である。It is a perspective view of the humanoid robot according to one Embodiment of this invention. 本発明の一実施形態による人型ロボット(人型ロボット本体部)のブロック図である。It is a block diagram of the humanoid robot (humanoid robot main body part) by one Embodiment of this invention. 本発明の一実施形態による人型ロボットのアンプの回路図である。It is a circuit diagram of the amplifier of the humanoid robot according to one Embodiment of this invention. 本発明の一実施形態による人型ロボットの倒れ制御方法を説明するためのフロー図である。It is a flow diagram for demonstrating the fall control method of the humanoid robot by one Embodiment of this invention. 本発明の一実施形態による人型ロボットがしゃがみ込む状態を示す図である。It is a figure which shows the state which the humanoid robot crouches according to one Embodiment of this invention. 本発明の一実施形態による人型ロボットの腕部が水平方向に沿うように配置された状態を示す図である。It is a figure which shows the state which the arm part of the humanoid robot according to one Embodiment of this invention is arranged along the horizontal direction.
 以下、本発明を具体化した本発明の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention that embodies the present invention will be described with reference to the drawings.
 図1~図3を参照して、本実施形態による人間の複数の関節に対応する複数の関節を有する人型ロボット100(人型ロボット本体部100a)の構成について説明する。また、人型ロボット100は、ヒューマノイドとも呼ばれる。なお、人型ロボット100および人型ロボット本体部100aは、それぞれ、請求の範囲の「ロボット」および「ロボット本体部」の一例である。 The configuration of the humanoid robot 100 (humanoid robot main body 100a) having a plurality of joints corresponding to the plurality of human joints according to the present embodiment will be described with reference to FIGS. 1 to 3. The humanoid robot 100 is also called a humanoid. The humanoid robot 100 and the humanoid robot body 100a are examples of the "robot" and the "robot body" in the claims, respectively.
 図1に示すように、人型ロボット100は、頭部1、首部2、上胴体部3、下胴体部4、腕部5、手部6、脚部7、および、足部8を備えている。上胴体部3と下胴体部4とは、腰関節10aを介して屈曲可能に接続されている。これにより、上胴体部3は、下胴体部4に対して、前屈動作、後屈動作、および、左右の旋回動作を行うことが可能である。下胴体部4は、人間の骨盤に対応する。また、腰関節10aは、人間の腰に対応している。 As shown in FIG. 1, the humanoid robot 100 includes a head 1, a neck 2, an upper body 3, a lower body 4, arms 5, hands 6, legs 7, and feet 8. There is. The upper body portion 3 and the lower body portion 4 are flexibly connected to each other via the waist joint 10a. As a result, the upper body portion 3 can perform a forward bending operation, a backward bending operation, and a left / right turning operation with respect to the lower body portion 4. The lower torso 4 corresponds to the human pelvis. Further, the hip joint 10a corresponds to the human waist.
 また、腕部5は、複数のリンク20と、複数のリンク20を屈曲可能に支持する肘関節10bとを有する。そして、隣り合うリンク20が肘関節10bを介して互いに屈曲することにより、腕部5は、屈曲動作を行う。 Further, the arm portion 5 has a plurality of links 20 and an elbow joint 10b that flexibly supports the plurality of links 20. Then, the adjacent links 20 bend each other via the elbow joint 10b, so that the arm portion 5 performs a bending motion.
 手部6は、腕部5の先端に設けられている。手部6は、複数のリンク(図示せず)と、複数のリンクを屈曲可能に支持する指関節(図示せず)とを有する。 The hand part 6 is provided at the tip of the arm part 5. The hand portion 6 has a plurality of links (not shown) and a knuckle (not shown) that flexibly supports the plurality of links.
 脚部7は、複数のリンク20と、複数のリンク20を屈曲可能に支持する膝関節10cとを有する。そして、隣り合うリンク20が膝関節10cを介して互いに屈曲することにより、脚部7は、屈曲動作を行う。そして、脚部7の屈曲動作が制御されることにより足部8を移動させることによって、人型ロボット100は、二足歩行を行うことが可能になる。 The leg portion 7 has a plurality of links 20 and a knee joint 10c that flexibly supports the plurality of links 20. Then, the adjacent links 20 bend each other via the knee joint 10c, so that the leg portion 7 performs a bending motion. Then, by moving the foot portion 8 by controlling the bending motion of the leg portion 7, the humanoid robot 100 can perform bipedal walking.
 上胴体部3と腕部5とは、肩関節10dにより接続されている。また、下胴体部4と脚部7とは、股関節10eにより接続されている。脚部7と足部8とは、足関節(足首の関節)10fにより接続されている。なお、腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fは、請求の範囲の「関節」の一例である。 The upper body portion 3 and the arm portion 5 are connected by a shoulder joint 10d. Further, the lower body portion 4 and the leg portion 7 are connected by a hip joint 10e. The leg 7 and the foot 8 are connected by an ankle joint (ankle joint) 10f. The lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e, and ankle joint 10f are examples of "joints" within the scope of the claim.
 上記の腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fには、各々、腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fを駆動させるためのモータ30が設けられている。モータ30によって、腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fを駆動させることにより、人型ロボット100は、屈曲動作や旋回動作を行う。なお、実際には、図1に図示された部位以外の部位にも関節およびモータ30が設けられているが、説明の簡略化のため省略している。 The lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint 10f have the lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint, respectively. A motor 30 for driving the 10f is provided. The humanoid robot 100 performs a flexion motion and a turning motion by driving the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f by the motor 30. In reality, joints and motors 30 are also provided in parts other than those shown in FIG. 1, but they are omitted for the sake of brevity.
 図2に示すように、人型ロボット100(人型ロボット本体部100a)には、上記のモータ30に加えて、電源40と、電源中継基板50と、アンプユニット60とが設けられている。なお、図2では、破線の矢印は、通信信号を表している。また、細い実線の矢印は、制御電力を表している。また、太い実線の矢印は、モータ30を駆動するモータ電力を表している。 As shown in FIG. 2, the humanoid robot 100 (humanoid robot main body 100a) is provided with a power supply 40, a power supply relay board 50, and an amplifier unit 60 in addition to the above motor 30. In FIG. 2, the broken line arrow represents a communication signal. The thin solid arrow represents the control power. Further, the thick solid line arrow represents the motor power for driving the motor 30.
 人型ロボット100(人型ロボット本体部100a)には、姿勢センサ70が設けられている。姿勢センサ70は、人型ロボット100の姿勢に関する情報(立っているか、座っているか、腕が上がっているか、腕が下がっているか、など)を検知するように構成されている。 The humanoid robot 100 (humanoid robot main body 100a) is provided with a posture sensor 70. The posture sensor 70 is configured to detect information regarding the posture of the humanoid robot 100 (whether standing, sitting, arms raised, arms lowered, etc.).
 電源中継基板50には、電源40からモータ駆動電力が供給される。そして、電源中継基板50は、アンプユニット60に対して、モータ30を駆動するための電力を供給するように構成されている。 Motor drive power is supplied from the power supply 40 to the power supply relay board 50. The power relay board 50 is configured to supply electric power for driving the motor 30 to the amplifier unit 60.
 電源中継基板50には、電源40から制御電力が供給される。そして、電源中継基板50は、アンプユニット60を制御するための電力を供給するように構成されている。 Control power is supplied to the power relay board 50 from the power supply 40. The power relay board 50 is configured to supply electric power for controlling the amplifier unit 60.
 アンプユニット60は、複数のアンプ(サーボアンプ)61を含む。アンプ61は、上記腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10f(図1参照)などに設けられた複数のモータ30の各々に対して設けられている。また、アンプ61は、モータ30の駆動を制御する。 The amplifier unit 60 includes a plurality of amplifiers (servo amplifiers) 61. The amplifier 61 is provided for each of the plurality of motors 30 provided in the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, the ankle joint 10f (see FIG. 1), and the like. .. Further, the amplifier 61 controls the drive of the motor 30.
 図3に示すように、アンプ61は、インバータ部61aと、インバータ部61aを制御する制御部61bとを含む。インバータ部61aは、モータ30の巻線に3相の交流電力を供給することによりモータ30を駆動するとともに、モータ30に対してダイナミックブレーキを作動させるように構成されている。また、インバータ部61aは、上アームを構成する複数(本実施形態では、3つ)の上アーム側スイッチング素子SW1、SW2およびSW3と、下アームを構成する複数(本実施形態では、3つ)の下アーム側スイッチング素子SW4、SW5およびSW6とを含む。制御部61bは、インバータ部61aを制御するとともに、インバータ部61aによるダイナミックブレーキの制動力を制御する。具体的には、制御部61bにより、スイッチング素子(SW1~SW6)のオンオフが制御されることにより、モータ30に所望の3相(U、VおよびW)の電力が供給される。また、制御部61bによるダイナミックブレーキの制動力の制御の説明は、後述する。なお、インバータ部61aは、請求の範囲の「駆動回路部」の一例である。また、制御部61bは、請求の範囲の「駆動回路制御部」の一例である。 As shown in FIG. 3, the amplifier 61 includes an inverter unit 61a and a control unit 61b that controls the inverter unit 61a. The inverter unit 61a is configured to drive the motor 30 by supplying three-phase AC power to the windings of the motor 30 and to operate a dynamic brake on the motor 30. Further, the inverter unit 61a includes a plurality of upper arm side switching elements SW1, SW2 and SW3 forming the upper arm (three in the present embodiment) and a plurality of upper arm side switching elements SW1, SW2 and SW3 (three in the present embodiment). The lower arm side switching elements SW4, SW5 and SW6 are included. The control unit 61b controls the inverter unit 61a and also controls the braking force of the dynamic brake by the inverter unit 61a. Specifically, the control unit 61b controls the on / off of the switching elements (SW1 to SW6), so that the motor 30 is supplied with power of three desired phases (U, V, and W). Further, a description of controlling the braking force of the dynamic brake by the control unit 61b will be described later. The inverter unit 61a is an example of the "drive circuit unit" in the claims. Further, the control unit 61b is an example of the "drive circuit control unit" in the claims.
 スイッチング素子(SW1~SW6)は、各々、バイポーラトランジスタを含んでいる。上アーム側スイッチング素子SW1、SW2およびSW3のコレクタCは、正側電位配線62に接続されている。下アーム側スイッチング素子SW4、SW5およびSW6のエミッタEは、負側電位配線63に接続されている。また、上アーム側スイッチング素子SW1、SW2およびSW3のエミッタE、および、下アーム側スイッチング素子SW4、SW5およびSW6のコレクタCは、電力供給配線64を介して、モータ30に接続されている。なお、電力供給配線64は、U相、V相およびW相の3つの配線を含む。また、電力供給配線64は、請求の範囲の「電力供給経路」の一例である。 Each of the switching elements (SW1 to SW6) includes a bipolar transistor. The collectors C of the upper arm side switching elements SW1, SW2 and SW3 are connected to the positive potential wiring 62. The emitters E of the lower arm side switching elements SW4, SW5 and SW6 are connected to the negative side potential wiring 63. Further, the emitters E of the upper arm side switching elements SW1, SW2 and SW3, and the collector C of the lower arm side switching elements SW4, SW5 and SW6 are connected to the motor 30 via the power supply wiring 64. The power supply wiring 64 includes three wirings of U phase, V phase, and W phase. Further, the power supply wiring 64 is an example of the "power supply path" in the claims.
 また、本実施形態では、モータ30に電力を供給する電力供給配線64の電圧および電流のうちの少なくとも一方(本実施形態では、電圧)を検出するための電圧検出部61cが設けられている。具体的には、電圧検出部61cは、スイッチング素子(SW1~SW6)と、モータ30との間の電力供給配線64の電圧を検出する。また、モータ30には、モータ30の回転速度と回転位置とを検出するエンコーダ65が設けられている。エンコーダ65によって検出されたモータ30の回転速度と回転位置とは、制御部61bに入力される。なお、電圧検出部61cは、請求の範囲の「検出部」の一例である。 Further, in the present embodiment, a voltage detection unit 61c for detecting at least one of the voltage and the current of the power supply wiring 64 for supplying power to the motor 30 (voltage in the present embodiment) is provided. Specifically, the voltage detection unit 61c detects the voltage of the power supply wiring 64 between the switching elements (SW1 to SW6) and the motor 30. Further, the motor 30 is provided with an encoder 65 that detects the rotation speed and the rotation position of the motor 30. The rotation speed and rotation position of the motor 30 detected by the encoder 65 are input to the control unit 61b. The voltage detection unit 61c is an example of the "detection unit" in the claims.
 (通常時の回生動作)
 通常時には、人型ロボット100のモータ30(図2参照)に対して、減速や反転の指令が行われる際に電力の回生が行われる。電力の回生の際に、正側電位配線62の電圧が大きくなり過ぎないように、図示しない回生抵抗が接続される。たとえば、通常時の回生動作の際には、正側電位配線62の電圧が200Vを超えると、図示しない回生抵抗が接続されることにより、正側電位配線62の電圧の上昇が抑制される。これにより、回生される電力の一部が回生抵抗によって熱として消費されるので、正側電位配線62の電圧が大きくなり過ぎるのを抑制することが可能になる。また、回生された電力のうち、回生抵抗によって熱として消費されない部分は、電源40に蓄電される。
(Regenerative operation during normal operation)
Normally, electric power is regenerated when a deceleration or reversal command is given to the motor 30 (see FIG. 2) of the humanoid robot 100. A regenerative resistor (not shown) is connected so that the voltage of the positive potential wiring 62 does not become too large during power regeneration. For example, in the normal regeneration operation, when the voltage of the positive potential wiring 62 exceeds 200 V, the voltage rise of the positive potential wiring 62 is suppressed by connecting a regenerative resistor (not shown). As a result, a part of the regenerated electric power is consumed as heat by the regenerative resistance, so that it is possible to prevent the voltage of the positive potential wiring 62 from becoming too large. Further, of the regenerated electric power, the portion that is not consumed as heat by the regenerative resistance is stored in the power supply 40.
 (非常停止時のダイナミックブレーキ弱め制御)
 人型ロボット100の非常停止について説明する。非常停止とは、ユーザが非常停止ボタン80(図3参照)を押下することにより、モータ30を停止させることによって、人型ロボット100を停止させる動作である。非常停止時には、アンプ61(図2参照)の動作が停止されるとともに、電源40からの電力供給が停止される。なお、非常停止は、請求の範囲の「異常停止」の一例である。
(Dynamic brake weakening control at emergency stop)
The emergency stop of the humanoid robot 100 will be described. The emergency stop is an operation of stopping the humanoid robot 100 by stopping the motor 30 by pressing the emergency stop button 80 (see FIG. 3) by the user. At the time of emergency stop, the operation of the amplifier 61 (see FIG. 2) is stopped, and the power supply from the power supply 40 is stopped. The emergency stop is an example of "abnormal stop" in the claims.
 また、非常停止時に、3つの下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では3つ全て)がオンされることにより、オンされた下アーム側スイッチング素子SW4、SW5およびSW6、電力供給配線64、および、モータ30からなる閉じた経路が形成される。なお、上アーム側スイッチング素子SW1、SW2およびSW3は、オフされている。この際、モータ30には、各相に誘起電圧が発生しているので、各相に電流が流れる。そして、この電流に比例したトルクがモータ30を減速させる方向に働く。すなわち、モータ30に対して、ダイナミックブレーキが作用する。これにより、モータ30に制動力が働く。 Further, at the time of emergency stop, at least a part of the three lower arm side switching elements SW4, SW5 and SW6 (all three in the present embodiment) are turned on, so that the lower arm side switching elements SW4, SW5 and SW5 are turned on. A closed path including the SW6, the power supply wiring 64, and the motor 30 is formed. The upper arm side switching elements SW1, SW2, and SW3 are turned off. At this time, since an induced voltage is generated in each phase of the motor 30, a current flows in each phase. Then, the torque proportional to this current works in the direction of decelerating the motor 30. That is, the dynamic brake acts on the motor 30. As a result, a braking force acts on the motor 30.
 ここで、本実施形態では、制御部61bは、非常停止時に複数のモータ30を停止させる際に、複数(3つ)の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数(3つ)の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。具体的には、制御部61bは、非常停止時に複数のモータ30を停止させる際に、複数(3つ)の下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させる。これにより、人型ロボット100は、徐々に姿勢を変化させる。また、人間の複数の関節に対応する腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fを有している人型ロボット100の動作が完全に停止されるまで、ダイナミックブレーキの制動力が減少される。 Here, in the present embodiment, when the control unit 61b stops the plurality of motors 30 at the time of emergency stop, at least a part or a plurality (3) of the plurality (three) upper arm side switching elements SW1, SW2 and SW3. By alternately repeating at least a part of the lower arm side switching elements SW4, SW5 and SW6 in the on state and the off state, control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. It is configured in. Specifically, when the control unit 61b stops the plurality of motors 30 at the time of emergency stop, the control unit 61b alternates between all the on states and the off states of the plurality (three) lower arm side switching elements SW4, SW5 and SW6. To repeat. As a result, the humanoid robot 100 gradually changes its posture. Further, until the operation of the humanoid robot 100 having the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f corresponding to a plurality of human joints is completely stopped. , The braking force of the dynamic brake is reduced.
 また、本実施形態では、制御部61bは、非常停止時に人型ロボット本体部100aの倒れを制御する際に、3つの上アーム側スイッチング素子SW1、SW2およびSW3の全てをオン状態にするとともに、3つの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。人型ロボット本体部100aには、人型ロボット本体部100aの腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fを固定する(姿勢を維持する)ための機械的なブレーキ(電磁ブレーキ)などは設けられていない。このため、非常停止時には、最終的に、人型ロボット本体部100aは、倒れ込む。本実施形態では、3つの下アーム側スイッチング素子SW4、SW5およびSW6のオンオフにより制動力が減少されたダイナミックブレーキを作動させることによって、人型ロボット本体部100aの倒れ込み方が比較的緩やかな倒れ込みになるように制御する。 Further, in the present embodiment, the control unit 61b turns on all three upper arm side switching elements SW1, SW2, and SW3 when controlling the collapse of the humanoid robot main body 100a at the time of emergency stop. By alternately repeating all the on and off states of the three lower arm side switching elements SW4, SW5 and SW6, the braking force of the dynamic brake is reduced until the motor 30 is stopped. ing. A machine for fixing (maintaining a posture) the lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e, and ankle joint 10f of the humanoid robot main body 100a to the humanoid robot main body 100a. No special brake (electromagnetic brake) is provided. Therefore, at the time of emergency stop, the humanoid robot main body 100a finally collapses. In the present embodiment, by activating the dynamic brake in which the braking force is reduced by turning on / off the three lower arm side switching elements SW4, SW5 and SW6, the humanoid robot main body 100a collapses relatively gently. Control to be.
 また、本実施形態では、アンプ61(インバータ部61a)は、複数の関節(腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10f)毎に設けられている複数のモータ30毎に個別に設けられている。そして、制御部61bは、非常停止時にモータ30を停止させる際に、モータ30毎に設けられているインバータ部61aの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させることにより、複数のモータ30に対するダイナミックブレーキの制動力を個別に制御するように構成されている。すなわち、モータ30毎に設けられているインバータ部61a毎において、インバータ部61a毎に設けられている電圧検出部61cにより検出された電力供給配線64の電圧に基づいて、3つの下アーム側スイッチング素子SW4、SW5およびSW6のオンオフが制御される。たとえば、ある時点において、複数の関節の各々のモータ30の回転数(モータ30の回転によって発生する誘起電圧)が異なる場合がある。この場合、ダイナミックブレーキが作動する関節と作動しない関節とが混在する場合がある。なお、インバータ部61aは、請求の範囲の「駆動回路部」の一例である。 Further, in the present embodiment, the amplifier 61 (inverter unit 61a) is provided for each of a plurality of joints (lumbar joint 10a, elbow joint 10b, knee joint 10c, shoulder joint 10d, hip joint 10e and ankle joint 10f). It is individually provided for each of the motors 30 of the above. Then, when the motor 30 is stopped at the time of emergency stop, the control unit 61b sets all the on and off states of the lower arm side switching elements SW4, SW5 and SW6 of the inverter unit 61a provided for each motor 30. It is configured to individually control the braking force of the dynamic brake with respect to the plurality of motors 30 by alternately repeating the process. That is, in each inverter unit 61a provided for each motor 30, three lower arm side switching elements are based on the voltage of the power supply wiring 64 detected by the voltage detection unit 61c provided for each inverter unit 61a. On / off of SW4, SW5 and SW6 is controlled. For example, at a certain point in time, the rotation speed of each of the motors 30 of the plurality of joints (induced voltage generated by the rotation of the motors 30) may be different. In this case, joints in which the dynamic brake operates and joints in which the dynamic brake does not operate may coexist. The inverter unit 61a is an example of the "drive circuit unit" in the claims.
 また、本実施形態では、制御部61bは、非常停止時にモータ30を停止させる際に、モータ30毎に設けられているインバータ部61aの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させることにより、複数の関節の一部については、他の関節よりもダイナミックブレーキの制動力を減少させる制御を行うように構成されている。具体的には、制動力が減少される関節は、膝関節10c、または、肩関節10dの少なくとも一方(本実施形態では、両方)を含む。なお、本実施形態では、後述するように、膝関節10cに加えて、股関節10eおよび足関節10fについても、ダイナミックブレーキの制動力を減少させる制御を行う。また、ダイナミックブレーキの制動力は、電圧検出部61cにより検出された電力供給配線64の電圧と比較される所定の閾値を変更することにより、調整することが可能である。 Further, in the present embodiment, when the motor 30 is stopped at the time of emergency stop, the control unit 61b is in all the ON states of the lower arm side switching elements SW4, SW5 and SW6 of the inverter unit 61a provided for each motor 30. By alternately repeating the off state and the off state, a part of the plurality of joints is configured to be controlled to reduce the braking force of the dynamic brake as compared with the other joints. Specifically, the joint to which the braking force is reduced includes at least one of the knee joint 10c and the shoulder joint 10d (both in the present embodiment). In the present embodiment, as will be described later, in addition to the knee joint 10c, the hip joint 10e and the ankle joint 10f are also controlled to reduce the braking force of the dynamic brake. Further, the braking force of the dynamic brake can be adjusted by changing a predetermined threshold value to be compared with the voltage of the power supply wiring 64 detected by the voltage detection unit 61c.
 また、本実施形態では、膝関節10cの位置情報、および、肩関節10dの位置情報に基づいて、膝関節10cまたは肩関節10dの少なくとも一方(本実施形態では、両方)のダイナミックブレーキの制動力を減少させる制御を行うように構成されている。具体的には、人型ロボット本体部100aに設けられた姿勢センサ70からの人型ロボット100の姿勢に関する情報(立っているか、座っているか、腕が上がっているか、腕が下がっているか、など)に基づいて、膝関節10cの位置情報(膝が伸びているか、曲がっているかなど)、および、肩関節10dの位置情報(肩関節10dを中心に腕部5が上がっている、腕部5が下がっているなど)が取得される。そして、取得された膝関節10cの位置情報、および、肩関節10dの位置情報に基づいて、膝関節10cおよび肩関節10dのダイナミックブレーキの制動力を減少させる制御が行われる。たとえば、姿勢センサ70からの人型ロボット100の姿勢に関する情報に基づいて、人型ロボット100が立っている(膝が伸びている)と判断される場合、人型ロボット100を緩やかに倒れ込ませるように、膝関節10c、股関節10eおよび足関節10fのダイナミックブレーキの制動力を減少させる制御が行われる。また、姿勢センサ70からの人型ロボット100の姿勢に関する情報に基づいて、人型ロボット100の肩関節10dを中心に腕部5が上がっていると判断される場合、人型ロボット100の腕部5が緩やかに降ろされるように、肩関節10dのダイナミックブレーキの制動力を減少させる制御が行われる。 Further, in the present embodiment, the braking force of the dynamic brake of at least one (in this embodiment, both) of the knee joint 10c or the shoulder joint 10d is based on the position information of the knee joint 10c and the position information of the shoulder joint 10d. It is configured to perform control to reduce. Specifically, information on the posture of the humanoid robot 100 from the posture sensor 70 provided on the humanoid robot main body 100a (whether standing, sitting, arms raised, arms lowered, etc.) ), And the position information of the knee joint 10c (whether the knee is extended or bent, etc.) and the position information of the shoulder joint 10d (the arm part 5 is raised around the shoulder joint 10d, the arm part 5). Is down, etc.) is acquired. Then, based on the acquired position information of the knee joint 10c and the position information of the shoulder joint 10d, control is performed to reduce the braking force of the dynamic brake of the knee joint 10c and the shoulder joint 10d. For example, when it is determined that the humanoid robot 100 is standing (knees are extended) based on the information about the posture of the humanoid robot 100 from the posture sensor 70, the humanoid robot 100 is gently tilted down. As described above, the control for reducing the braking force of the dynamic brakes of the knee joint 10c, the hip joint 10e and the ankle joint 10f is performed. Further, when it is determined that the arm portion 5 is raised around the shoulder joint 10d of the humanoid robot 100 based on the information regarding the posture of the humanoid robot 100 from the attitude sensor 70, the arm portion of the humanoid robot 100 is determined. Control is performed to reduce the braking force of the dynamic brake of the shoulder joint 10d so that 5 is gently lowered.
 また、本実施形態では、モータ30に電力を供給する電力供給配線64の電圧が電圧検出部61cにより検出される。そして、制御部61bは、モータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧に基づいて、3つの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている。具体的には、制御部61bは、非常停止時にモータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧と、所定の閾値とを比較する。そして、電力供給配線64の電圧と、所定の閾値との比較に基づいて、3つの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させる。これにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御が行われる。なお、所定の閾値は、非常停止時には、電力供給配線64の電圧が比較的低い電圧(たとえば、30V以上60V以下)となるように設定されている。つまり、所定の閾値は、通常動作時に回生抵抗が接続される基準となる電圧よりも低い。 Further, in the present embodiment, the voltage of the power supply wiring 64 that supplies power to the motor 30 is detected by the voltage detection unit 61c. Then, when the motor 30 is stopped, the control unit 61b is in all the ON states of the three lower arm side switching elements SW4, SW5, and SW6 based on the voltage of the power supply wiring 64 detected by the voltage detection unit 61c. It is configured to perform feedback control that reduces the braking force of the dynamic brake until the motor 30 is stopped by alternately repeating the off state and the off state. Specifically, the control unit 61b compares the voltage of the power supply wiring 64 detected by the voltage detection unit 61c with a predetermined threshold value when the motor 30 is stopped at the time of an emergency stop. Then, based on the comparison between the voltage of the power supply wiring 64 and the predetermined threshold value, all the on and off states of the three lower arm side switching elements SW4, SW5, and SW6 are alternately repeated. As a result, feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. The predetermined threshold value is set so that the voltage of the power supply wiring 64 becomes a relatively low voltage (for example, 30 V or more and 60 V or less) at the time of emergency stop. That is, the predetermined threshold value is lower than the reference voltage to which the regenerative resistor is connected during normal operation.
 詳細には、本実施形態では、制御部61bは、非常停止時にモータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧が所定の閾値を超えた場合に、下アーム側スイッチング素子SW4、SW5およびSW6の全てをオン状態とする。また、制御部61bは、電力供給配線64の電圧が所定の閾値以下の場合に、下アーム側スイッチング素子SW4、SW5およびSW6の全てをオフ状態とする。これにより、制御部61bは、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている。 Specifically, in the present embodiment, the control unit 61b lowers the voltage of the power supply wiring 64 detected by the voltage detection unit 61c when the voltage of the power supply wiring 64 exceeds a predetermined threshold value when the motor 30 is stopped at the time of emergency stop. All of the arm-side switching elements SW4, SW5 and SW6 are turned on. Further, when the voltage of the power supply wiring 64 is equal to or less than a predetermined threshold value, the control unit 61b turns off all of the lower arm side switching elements SW4, SW5 and SW6. As a result, the control unit 61b is configured to perform feedback control that reduces the braking force of the dynamic brake until the motor 30 is stopped.
 (倒れ制御方法)
 次に、図1および図4を参照して、人型ロボット100の非常停止時における倒れ制御方法について説明する。
(Fall control method)
Next, with reference to FIGS. 1 and 4, a fall control method for the humanoid robot 100 at the time of an emergency stop will be described.
 図4に示すステップS1において、非常停止ボタン80が押下される。これにより、非常停止信号がアンプ61の制御部61bに入力される。 In step S1 shown in FIG. 4, the emergency stop button 80 is pressed. As a result, the emergency stop signal is input to the control unit 61b of the amplifier 61.
 ステップS2において、腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fの各々に設けられる複数のモータ30に電力を供給する電力供給配線64の電圧が電圧検出部61cにより検出される。 In step S2, the voltage of the power supply wiring 64 that supplies power to the plurality of motors 30 provided in each of the hip joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e, and the ankle joint 10f is the voltage detection unit. Detected by 61c.
 ステップS3において、電圧検出部61cにより検出された電力供給配線64の電圧と、所定の閾値とが制御部61bにより比較される。 In step S3, the voltage of the power supply wiring 64 detected by the voltage detection unit 61c and a predetermined threshold value are compared by the control unit 61b.
 そして、本実施形態では、検出された電力供給配線64の電圧に基づいて、インバータ部61aに含まれる下アーム側スイッチング素子SW4、SW5およびSW6のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御が行われる。なお、この際、上アーム側スイッチング素子SW1およびSW2およびSW3は、全てオフ状態である。具体的には、ステップS3において、電圧検出部61cにより検出された電力供給配線64の電圧が所定の閾値よりも大きい場合、ステップS4に進んで、下アーム側スイッチング素子SW4、SW5およびSW6の全てがオンされる。これにより、ダイナミックブレーキが作動される。また、ステップS3において、電圧検出部61cにより検出された電力供給配線64の電圧が所定の閾値以下の場合、ステップS5に進んで、下アーム側スイッチング素子SW4、SW5およびSW6の全てがオフされる。これにより、ダイナミックブレーキの作動が停止される。 Then, in the present embodiment, based on the detected voltage of the power supply wiring 64, the lower arm side switching elements SW4, SW5, and SW6 included in the inverter unit 61a are alternately repeated on and off. , Feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. At this time, the upper arm side switching elements SW1, SW2, and SW3 are all in the off state. Specifically, in step S3, when the voltage of the power supply wiring 64 detected by the voltage detection unit 61c is larger than a predetermined threshold value, the process proceeds to step S4 and all of the lower arm side switching elements SW4, SW5 and SW6. Is turned on. As a result, the dynamic brake is activated. Further, in step S3, when the voltage of the power supply wiring 64 detected by the voltage detection unit 61c is equal to or less than a predetermined threshold value, the process proceeds to step S5, and all of the lower arm side switching elements SW4, SW5, and SW6 are turned off. .. As a result, the operation of the dynamic brake is stopped.
 なお、ステップS3~ステップS5の動作は、モータ30が停止するまで継続される。これにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御が行われる。 The operations of steps S3 to S5 are continued until the motor 30 is stopped. As a result, feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped.
 次に、人型ロボット100が非常停止時に倒れる動作を、具体的に説明する。 Next, the operation in which the humanoid robot 100 collapses at the time of an emergency stop will be specifically described.
 たとえば、図1に示すように、非常停止時の前の時点において、姿勢センサ70からの人型ロボット100の姿勢に関する情報に基づいて、人型ロボット100が立っていると判断される場合(たとえば、内蔵PC40により判断される場合)、人型ロボット100を緩やかに倒れ込ませるように、膝関節10c、股関節10eおよび足関節10fのダイナミックブレーキの制動力を減少させる制御が行われる。なお、膝関節10c、股関節10eおよび足関節10f以外の関節については、ダイナミックブレーキの制動力を減少させる制御が行われないとする。 For example, as shown in FIG. 1, when it is determined that the humanoid robot 100 is standing based on the information about the posture of the humanoid robot 100 from the posture sensor 70 at the time before the emergency stop (for example,). (When determined by the built-in PC40), control is performed to reduce the braking force of the dynamic brakes of the knee joint 10c, the hip joint 10e, and the ankle joint 10f so that the humanoid robot 100 gently collapses. It is assumed that the joints other than the knee joint 10c, the hip joint 10e, and the ankle joint 10f are not controlled to reduce the braking force of the dynamic brake.
 非常停止ボタン80(図3参照)が押下されると、モータ30への電源の供給が停止される。また、人型ロボット100では、腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10f(モータ30)を固定する(つまり、姿勢を維持する)ための機械的な電磁ブレーキが設けられていないので、モータ30への電源の供給が停止されることにより、人型ロボット100は、姿勢を維持することができない。このため、人型ロボット100は、直立している状態から、図5に示すように、脚部7の膝関節10cおよび股関節10eならびに足部8の足関節10fを折り曲げるように倒れこむ。 When the emergency stop button 80 (see FIG. 3) is pressed, the power supply to the motor 30 is stopped. Further, in the humanoid robot 100, the lumbar joint 10a, the elbow joint 10b, the knee joint 10c, the shoulder joint 10d, the hip joint 10e and the ankle joint 10f (motor 30) are mechanically fixed (that is, the posture is maintained). Since the electromagnetic brake is not provided, the humanoid robot 100 cannot maintain its posture because the supply of power to the motor 30 is stopped. Therefore, the humanoid robot 100 collapses from an upright state so as to bend the knee joint 10c and the hip joint 10e of the leg portion 7 and the ankle joint 10f of the foot portion 8 as shown in FIG.
 膝関節10c、股関節10eおよび足関節10fを折り曲げる際、モータ30への電力の供給が停止されているため、モータ30は、発電を行うように動作する。そして、膝関節10c、股関節10eおよび足関節10fを折り曲げる際にモータ30の回転数が徐々に上昇するとともに、発電された電力(電圧)が上昇する。また、発電された電力は、電力供給配線64に供給される。これにより、電力供給配線64の電圧も上昇する。そして、電力供給配線64の電圧が電圧検出部61cによって検出される。 When the knee joint 10c, the hip joint 10e, and the ankle joint 10f are bent, the supply of electric power to the motor 30 is stopped, so that the motor 30 operates to generate electric power. Then, when the knee joint 10c, the hip joint 10e, and the ankle joint 10f are bent, the rotation speed of the motor 30 gradually increases, and the generated electric power (voltage) increases. Further, the generated electric power is supplied to the electric power supply wiring 64. As a result, the voltage of the power supply wiring 64 also rises. Then, the voltage of the power supply wiring 64 is detected by the voltage detection unit 61c.
 そして、検出された電力供給配線64の電圧に基づいて、下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまで、ダイナミックブレーキの制動力を減少させるフィードバック制御が行われる。なお、所定の閾値は比較的低く設定されているので、モータ30に対するダイナミックブレーキは、モータ30の回転数が比較的小さい状態で作用し始めるとともに、ダイナミックブレーキの制動力は、比較的弱い。これにより、膝関節10c、股関節10eおよび足関節10fを緩やかに折り曲げるように、人型ロボット100の姿勢が移行された後、人型ロボット100は動作を停止する。その後、人型ロボット100は倒れ込む(転倒する)。このように、人型ロボット100は、比較的緩やかに停止するので、人型ロボット100が勢いよく転倒するのが抑制される。 Then, based on the detected voltage of the power supply wiring 64, all the on-states and off-states of the lower arm-side switching elements SW4, SW5, and SW6 are alternately repeated so as to be dynamic until the motor 30 is stopped. Feedback control is performed to reduce the braking force of the brake. Since the predetermined threshold value is set relatively low, the dynamic brake with respect to the motor 30 starts to act in a state where the rotation speed of the motor 30 is relatively small, and the braking force of the dynamic brake is relatively weak. As a result, the humanoid robot 100 stops its operation after the posture of the humanoid robot 100 is changed so as to gently bend the knee joint 10c, the hip joint 10e, and the ankle joint 10f. After that, the humanoid robot 100 collapses (falls down). In this way, since the humanoid robot 100 stops relatively gently, it is possible to prevent the humanoid robot 100 from falling vigorously.
 また、図6に示すように、非常停止時の前の時点において、姿勢センサ70からの人型ロボット100の姿勢に関する情報に基づいて、人型ロボット100の肩関節10dを中心に腕部5が上がっていると判断される場合、人型ロボット100の腕部5が緩やかに降ろされるように、肩関節10dのダイナミックブレーキの制動力を減少させる制御が行われる。なお、図6の人型ロボット100の状態で、非常停止ボタン80が押下されると、上記のように、膝関節10c、股関節10eおよび足関節10fも折り曲げられが、説明の簡略化のため、膝関節10c、股関節10eおよび足関節10fが折り曲げられずに、腕部5の姿勢のみが変化する場合について説明する。 Further, as shown in FIG. 6, at the time before the emergency stop, the arm portion 5 is centered on the shoulder joint 10d of the humanoid robot 100 based on the information on the posture of the humanoid robot 100 from the posture sensor 70. When it is determined that the robot 100 is raised, control is performed to reduce the braking force of the dynamic brake of the shoulder joint 10d so that the arm 5 of the humanoid robot 100 is gently lowered. When the emergency stop button 80 is pressed in the state of the humanoid robot 100 of FIG. 6, the knee joint 10c, the hip joint 10e, and the ankle joint 10f are also bent as described above. A case where only the posture of the arm 5 changes without bending the knee joint 10c, the hip joint 10e, and the ankle joint 10f will be described.
 この状態で、非常停止ボタン80が押下されると、アンプ61およびモータ30への電源の供給が停止される。人型ロボット100では、肩関節10dを固定するためのブレーキが設けられていないので、腕部5の自重によって、肩関節10dが回動する。これにより、水平方向に沿うように配置されていた腕部5は、肩関節10dを中心として、弧を描くように回動する。この際、モータ30への電力の供給が停止されているため、モータ30は、発電を行うように動作する。そして、肩関節10dが回動している状態で、電力供給配線64の電圧が、所定の閾値と比較され、下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とが交互に繰り返される。これにより、ダイナミックブレーキの制動力が弱められるので、腕部5は、肩関節10dを中心として、比較的緩やかに回動した後、停止する。このように、腕部5は、比較的緩やかに停止するので、腕部5が勢いよく上胴体部3または下胴体部4などに衝突するのが抑制される。 In this state, when the emergency stop button 80 is pressed, the power supply to the amplifier 61 and the motor 30 is stopped. Since the humanoid robot 100 is not provided with a brake for fixing the shoulder joint 10d, the shoulder joint 10d rotates due to the weight of the arm portion 5. As a result, the arm portion 5 arranged along the horizontal direction rotates around the shoulder joint 10d in an arc. At this time, since the supply of electric power to the motor 30 is stopped, the motor 30 operates to generate electric power. Then, while the shoulder joint 10d is rotating, the voltage of the power supply wiring 64 is compared with a predetermined threshold value, and all the on and off states of the lower arm side switching elements SW4, SW5, and SW6 alternate. Is repeated in. As a result, the braking force of the dynamic brake is weakened, so that the arm portion 5 rotates relatively gently around the shoulder joint 10d and then stops. In this way, since the arm portion 5 stops relatively gently, it is possible to prevent the arm portion 5 from vigorously colliding with the upper body portion 3 or the lower body portion 4.
 また、人型ロボット100が動いている状態(モータ30の回転数が比較的高い場合)において、非常停止ボタン80が押下されると、姿勢センサ70からの人型ロボット100の姿勢に関する情報に基づいて、人型ロボット100のいずれの関節のダイナミックブレーキの制動力を減少させるのかが判断される。そして、モータ30の回転数が比較的高い場合では、モータ30によって発電される電力の電圧が比較的高いのでダイナミックブレーキが作用する。これにより、モータ30の回転数が低下し、発電される電力の電圧が所定の閾値の近傍に低下した状態で、ダイナミックブレーキの制動力が減少されるモータ30に対応するインバータ部61aの下アーム側スイッチング素子SW4、SW5およびSW6の全てのオン状態とオフ状態とを交互に繰り返される。これにより、ダイナミックブレーキの制動力が弱められる。その結果、人型ロボット100の関節が固定された状態(硬直状態)で人型ロボット100が転倒するのが抑制される。 Further, when the emergency stop button 80 is pressed while the humanoid robot 100 is moving (when the rotation speed of the motor 30 is relatively high), it is based on the information about the posture of the humanoid robot 100 from the posture sensor 70. Therefore, it is determined which joint of the humanoid robot 100 the braking force of the dynamic brake is to be reduced. When the rotation speed of the motor 30 is relatively high, the voltage of the electric power generated by the motor 30 is relatively high, so that the dynamic brake operates. As a result, the lower arm of the inverter unit 61a corresponding to the motor 30 in which the braking force of the dynamic brake is reduced in a state where the rotation speed of the motor 30 is reduced and the voltage of the generated electric power is lowered to the vicinity of a predetermined threshold value. All the on and off states of the side switching elements SW4, SW5 and SW6 are alternately repeated. As a result, the braking force of the dynamic brake is weakened. As a result, it is possible to prevent the humanoid robot 100 from tipping over while the joints of the humanoid robot 100 are fixed (rigid state).
 [本実施形態の効果]
 本実施形態では、以下のような効果を得ることができる。
[Effect of this embodiment]
In this embodiment, the following effects can be obtained.
 本実施形態では、上記のように、制御部61bは、非常停止時に複数のモータ30を停止させる際に、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。これにより、非常停止時にモータ30を停止させる際に、ダイナミックブレーキの制動力が減少されるので、比較的緩やかに人型ロボット100が停止する。これにより、人型ロボット100が勢いよく転倒するのが抑制される。つまり、人型ロボット100は、緩やかに倒れ込む。その結果、非常停止時において人型ロボット100が勢いよく転倒することに起因する破損を抑制することができる。また、上記のように、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御が行われるので、モータ30が停止するまでの間に再びダイナミックブレーキの制動力が増加される場合と異なり、モータ30が停止するまでの間(途中)に、急激に人型ロボット100が停止して、人型ロボット100が勢いよく転倒するのを抑制することができる。 In the present embodiment, as described above, when the control unit 61b stops the plurality of motors 30 at the time of emergency stop, at least a part or a plurality of lower arm sides of the plurality of upper arm side switching elements SW1, SW2 and SW3 The motor 30 is stopped by alternately repeating the on state and the off state of at least a part of the switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). It is configured to control to reduce the braking force of the dynamic brake. As a result, when the motor 30 is stopped at the time of emergency stop, the braking force of the dynamic brake is reduced, so that the humanoid robot 100 stops relatively gently. As a result, the humanoid robot 100 is prevented from falling vigorously. That is, the humanoid robot 100 gently collapses. As a result, it is possible to suppress damage caused by the humanoid robot 100 falling vigorously at the time of an emergency stop. Further, as described above, since the control for reducing the braking force of the dynamic brake is performed until the motor 30 is stopped, unlike the case where the braking force of the dynamic brake is increased again until the motor 30 is stopped, the braking force of the dynamic brake is increased again. It is possible to prevent the humanoid robot 100 from suddenly stopping and the humanoid robot 100 from tipping over vigorously until the motor 30 is stopped (on the way).
 また、ダイナミックブレーキの制動力が強すぎる場合、人型ロボット100の関節がダイナミックブレーキの強い制動力により固定された状態で人型ロボット100が転倒する場合がある。これによっても、人型ロボット100が破損する場合がある。これに対して、本実施形態の人型ロボット100では、上記のように、モータ30を駆動するスイッチング素子(下アーム側スイッチング素子SW4、SW5およびSW6)のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力をモータ30が停止するまで減少させる制御を行うように構成することによって、関節がダイナミックブレーキの強い制動力により固定されるのが抑制されるので、関節が固定された状態で人型ロボット100が転倒することに起因する人型ロボット100の破損を抑制することができる。特に、人型ロボット100に本発明を適用した場合には、腕部5(アーム)が上がった状態、および、膝が伸びた状態で関節(肩関節10dおよび膝関節10c)が強い制動力により固定されるのを抑制することができるとともに、減少された弱い制動力により腕部5が下がった状態および膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行して転倒させることができる。これにより、特に、人型ロボット100において、転倒することに起因する破損を効果的に抑制することができる。 Further, if the braking force of the dynamic brake is too strong, the humanoid robot 100 may fall while the joints of the humanoid robot 100 are fixed by the strong braking force of the dynamic brake. This may also damage the humanoid robot 100. On the other hand, in the humanoid robot 100 of the present embodiment, as described above, the on state and the off state of the switching elements (lower arm side switching elements SW4, SW5 and SW6) for driving the motor 30 are alternately repeated. By configuring the control to reduce the braking force of the dynamic brake until the motor 30 stops, the joint is suppressed from being fixed by the strong braking force of the dynamic brake, so that the joint is fixed. It is possible to suppress damage to the humanoid robot 100 due to the humanoid robot 100 falling over in the state. In particular, when the present invention is applied to the humanoid robot 100, the joints (shoulder joint 10d and knee joint 10c) are subjected to strong braking force in a state where the arm portion 5 (arm) is raised and when the knee is extended. It is possible to suppress the fixation and to gradually shift to a state in which the arm portion 5 is lowered and a state in which the knee is bent (a crouched posture) due to the reduced weak braking force, and the joint can be overturned. This makes it possible to effectively suppress damage caused by falling, especially in the humanoid robot 100.
 また、本実施形態では、上記のように、制御部61bは、非常停止時に人型ロボット本体部100aの倒れを制御する際に、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御を行うように構成されている。これにより、人型ロボット本体部100aの倒れ制御を行う際に、倒れる動作の期間中、ダイナミックブレーキの制動力が減少されるので、比較的緩やかに人型ロボット本体部100aが倒れ込むように制御することができる。 Further, in the present embodiment, as described above, the control unit 61b is at least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 when controlling the tilt of the humanoid robot main body 100a at the time of emergency stop. Alternatively, by alternately repeating the on state and the off state of at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). , The control is configured to reduce the braking force of the dynamic brake until the motor 30 is stopped. As a result, when controlling the fall of the humanoid robot body 100a, the braking force of the dynamic brake is reduced during the period of the fall operation, so that the humanoid robot body 100a is controlled to fall relatively gently. be able to.
 また、本実施形態では、上記のように、インバータ部61aは、複数の腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10f毎に設けられている複数のモータ30毎に個別に設けられており、制御部61bは、非常停止時にモータ30を停止させる際に、モータ30毎に設けられているインバータ部61aの複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、複数のモータ30に対するダイナミックブレーキの制動力を個別に制御するように構成されている。これにより、非常停止時の直前の人型ロボット100の姿勢に応じて、ダイナミックブレーキの制動力の弱め制御を行うべき関節(モータ30)を選択して個別に制御することができるので、人型ロボット100をしゃがみ込んだ状態により適切に移行させることができる。 Further, in the present embodiment, as described above, the inverter unit 61a includes a plurality of motors provided for each of the plurality of hip joints 10a, elbow joints 10b, knee joints 10c, shoulder joints 10d, hip joints 10e, and ankle joints 10f. The control unit 61b is individually provided for each 30. When the motor 30 is stopped at the time of emergency stop, the control unit 61b is provided for each of the plurality of upper arm side switching elements SW1, SW2 and SW3 of the inverter unit 61a provided for each motor 30. At least a part or at least a part of the lower arm side switching elements SW4, SW5 and SW6 (in the present embodiment, all of the lower arm side switching elements SW4, SW5 and SW6) are alternately turned on and off. By repeating the process, the braking force of the dynamic brakes for the plurality of motors 30 is individually controlled. As a result, the joint (motor 30) for which the braking force of the dynamic brake should be weakened can be selected and individually controlled according to the posture of the humanoid robot 100 immediately before the emergency stop. The robot 100 can be appropriately shifted depending on the crouched state.
 また、本実施形態では、上記のように、制御部61bは、非常停止時にモータ30を停止させる際に、モータ30毎に設けられているインバータ部61aの複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、複数の関節の一部については、他の関節よりもダイナミックブレーキの制動力を減少させる制御を行うように構成されている。ここで、非常停止時の直前の人型ロボット100の姿勢によっては、全ての関節についてダイナミックブレーキの制動力を減少させる制御を行うことなく(一部の関節のみダイナミックブレーキの制動力を減少させるだけで)、転倒による人型ロボット100の破損を抑制することができる場合がある。そこで、上記のように、複数の関節の一部について、他の関節よりもダイナミックブレーキの制動力を減少させる制御を行うように構成することによって、全ての関節についてダイナミックブレーキの制動力を減少させる制御を行う場合と比べて、人型ロボット100の制御負荷を軽減することができる。 Further, in the present embodiment, as described above, when the motor 30 is stopped at the time of emergency stop, the control unit 61b has a plurality of upper arm side switching elements SW1 and SW2 of the inverter unit 61a provided for each motor 30. And at least a part of SW3 or at least a part of the lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6) are turned on and off. By alternately repeating the joints, a part of the plurality of joints is configured to be controlled to reduce the braking force of the dynamic brake as compared with the other joints. Here, depending on the posture of the humanoid robot 100 immediately before the emergency stop, the braking force of the dynamic brake is not reduced for all joints (only some joints are reduced for the braking force of the dynamic brake). In some cases, damage to the humanoid robot 100 due to a fall can be suppressed. Therefore, as described above, the braking force of the dynamic brake is reduced for all the joints by configuring some of the plurality of joints to reduce the braking force of the dynamic brake as compared with the other joints. Compared with the case of performing control, the control load of the humanoid robot 100 can be reduced.
 また、本実施形態では、上記のように、制動力が減少される関節は、膝関節10c、または、肩関節10dの少なくとも一方を含む。ここで、非常停止時に、膝関節10cに対するダイナミックブレーキの制動力が強過ぎると、膝関節10cがダイナミックブレーキの強い制動力により固定されるので、人型ロボット100の膝が伸びた状態で人型ロボット100が転倒する。すなわち、膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行させて人型ロボット100を転倒させることができなくなるので、転倒により人型ロボット100が破損する場合がある。そこで、上記のように、膝関節10cに対するダイナミックブレーキの制動力を減少させることによって、膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行させて人型ロボット100を転倒させることができるので、転倒による人型ロボット100の破損を抑制することができる。また、非常停止時に、肩関節10dに対するダイナミックブレーキの制動力が強過ぎると、肩関節10dがダイナミックブレーキの強い制動力により固定されるので、たとえば、人型ロボット100の肩関節10dを中心に腕部5が水平に上がった状態で人型ロボット100が転倒する。すなわち、肩関節10dを中心に腕部5が水平に上がった状態から腕部5が下がった状態に徐々に移行させて人型ロボット100を転倒させることができなくなるので、転倒により人型ロボット100が破損する場合がある。そこで、上記のように、肩関節10dに対するダイナミックブレーキの制動力を減少させることによって、肩関節10dを中心に腕部5が水平に上がった状態から腕部5が下がった状態に徐々に移行させて人型ロボット100を転倒させることができるので、転倒による人型ロボット100の破損を抑制することができる。 Further, in the present embodiment, as described above, the joint whose braking force is reduced includes at least one of the knee joint 10c and the shoulder joint 10d. Here, if the braking force of the dynamic brake on the knee joint 10c is too strong during an emergency stop, the knee joint 10c is fixed by the strong braking force of the dynamic brake, so that the humanoid robot 100 is in a state where the knee is extended. Robot 100 falls. That is, since the humanoid robot 100 cannot be overturned by gradually shifting to a state in which the knee is bent (a crouched posture), the humanoid robot 100 may be damaged by the overturn. Therefore, as described above, by reducing the braking force of the dynamic brake on the knee joint 10c, the humanoid robot 100 can be overturned by gradually shifting to a state in which the knee is bent (a crouched posture). It is possible to suppress damage to the humanoid robot 100 due to a fall. Further, if the braking force of the dynamic brake with respect to the shoulder joint 10d is too strong during an emergency stop, the shoulder joint 10d is fixed by the strong braking force of the dynamic brake. Therefore, for example, the arm is centered on the shoulder joint 10d of the humanoid robot 100. The humanoid robot 100 falls while the portion 5 is raised horizontally. That is, the humanoid robot 100 cannot be overturned by gradually shifting from the state in which the arm 5 is horizontally raised around the shoulder joint 10d to the state in which the arm 5 is lowered, so that the humanoid robot 100 cannot be overturned. May be damaged. Therefore, as described above, by reducing the braking force of the dynamic brake with respect to the shoulder joint 10d, the arm 5 is gradually shifted from the state in which the arm 5 is horizontally raised around the shoulder joint 10d to the state in which the arm 5 is lowered. Since the humanoid robot 100 can be overturned, damage to the humanoid robot 100 due to the overturning can be suppressed.
 また、本実施形態では、上記のように、膝関節10cの位置情報、および、肩関節10dの位置情報に基づいて、膝関節10cまたは肩関節10dの少なくとも一方のダイナミックブレーキの制動力を減少させる制御を行うように構成されている。ここで、非常停止時の直前の状態で、人型ロボット100の膝関節10cが予め折れ曲がった状態(しゃがみ込んだ姿勢)である場合や、腕部5が下がった状態である場合は、減少された弱い制動力により膝が折れ曲がった状態(しゃがみ込んだ姿勢)および腕部5が下がった状態に徐々に移行させる必要がない。そこで、上記のように、膝関節10cの位置情報、および、肩関節10dの位置情報に基づいて、膝関節10cまたは肩関節10dの少なくとも一方のダイナミックブレーキの制動力を減少させる制御を行うことによって、ダイナミックブレーキの制動力を減少させる必要がない場合にまでダイナミックブレーキの制動力を減少させる制御が行われるのを抑制することができる。これにより、人型ロボット100の制御負荷を軽減することができる。 Further, in the present embodiment, as described above, the braking force of at least one of the knee joint 10c or the shoulder joint 10d is reduced based on the position information of the knee joint 10c and the position information of the shoulder joint 10d. It is configured to provide control. Here, in the state immediately before the emergency stop, if the knee joint 10c of the humanoid robot 100 is in a pre-bent state (a crouched posture) or if the arm portion 5 is in a lowered state, the amount is reduced. It is not necessary to gradually shift to a state in which the knee is bent (a crouched posture) and a state in which the arm portion 5 is lowered due to a weak braking force. Therefore, as described above, by performing control to reduce the braking force of at least one of the knee joint 10c and the shoulder joint 10d based on the position information of the knee joint 10c and the position information of the shoulder joint 10d. , It is possible to suppress the control of reducing the braking force of the dynamic brake even when it is not necessary to reduce the braking force of the dynamic brake. Thereby, the control load of the humanoid robot 100 can be reduced.
 また、本実施形態では、上記のように、人型ロボット本体部100aは、人間の複数の関節に対応する複数の腰関節10a、肘関節10b、膝関節10c、肩関節10d、股関節10eおよび足関節10fを有する。ここで、人型ロボット本体部100aは、2足歩行を行うので、比較的転倒しやすい。このため、上記のように、非常停止時に、モータ30を駆動するスイッチング素子(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6)のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力を減少させる制御を行うことは、比較的転倒しやすい人型ロボット100が破損するのを抑制する場合において特に有効である。 Further, in the present embodiment, as described above, the humanoid robot main body 100a includes a plurality of hip joints 10a, elbow joints 10b, knee joints 10c, shoulder joints 10d, hip joints 10e and legs corresponding to a plurality of human joints. It has a joint 10f. Here, since the humanoid robot main body 100a walks on two legs, it is relatively easy to fall. Therefore, as described above, during an emergency stop, the switching elements that drive the motor 30 (in this embodiment, the lower arm side switching elements SW4, SW5, and SW6) are dynamically repeated in an on state and an off state. Controlling to reduce the braking force of the brake is particularly effective in suppressing damage to the humanoid robot 100, which is relatively prone to tipping over.
 また、本実施形態では、上記のように、モータ30に電力を供給する電力供給配線64の電圧および電流のうちの少なくとも一方(本実施形態では、電圧)を検出するための電圧検出部61cをさらに備え、制御部61bは、モータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方(本実施形態では、電圧)に基づいて、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている。ここで、モータ30の回転数の増加とともに、モータ30によって発電される電力(電力供給配線64の電圧および電流)が大きくなる。そこで、上記のように、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方に基づいて、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、モータ30の回転数(電圧および電圧)が過度に増加するのを抑制することができる。これにより、モータ30に対するダイナミックブレーキの制動力が過度に強くなるのを抑制することができる。 Further, in the present embodiment, as described above, the voltage detection unit 61c for detecting at least one of the voltage and the current of the power supply wiring 64 that supplies power to the motor 30 (voltage in the present embodiment) is provided. Further, a plurality of control units 61b are provided based on at least one of the voltage and current of the power supply wiring 64 (voltage in this embodiment) detected by the voltage detection unit 61c when the motor 30 is stopped. At least a part of the upper arm side switching elements SW1, SW2 and SW3 or at least a part of a plurality of lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). ) Is alternately repeated in an on state and an off state to perform feedback control that reduces the braking force of the dynamic brake until the motor 30 is stopped. Here, as the number of rotations of the motor 30 increases, the electric power generated by the motor 30 (voltage and current of the power supply wiring 64) increases. Therefore, as described above, at least a part or a plurality of the plurality of upper arm side switching elements SW1, SW2, and SW3 are based on at least one of the voltage and the current of the power supply wiring 64 detected by the voltage detection unit 61c. By alternately repeating at least a part of the lower arm side switching elements SW4, SW5, and SW6 in the on state and the off state, it is possible to suppress an excessive increase in the rotation speed (voltage and voltage) of the motor 30. Can be done. As a result, it is possible to prevent the braking force of the dynamic brake with respect to the motor 30 from becoming excessively strong.
 また、本実施形態では、上記のように、制御部61bは、非常停止時にモータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方と、所定の閾値との比較に基づいて、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている。これにより、モータ30によって発電される電力の電圧(電流)が、所定の閾値に応じた電圧(電流)よりも上昇するのが抑制されて、所定の閾値に応じた電圧(電流)に近い電圧(電流)に維持されるので、モータ30に対するダイナミックブレーキの制動力を所望の弱い大きさに維持することができる。 Further, in the present embodiment, as described above, the control unit 61b and at least one of the voltage and the current of the power supply wiring 64 detected by the voltage detection unit 61c when the motor 30 is stopped at the time of emergency stop. , At least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 or at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6 based on the comparison with a predetermined threshold value (in this embodiment, By alternately repeating the on state and the off state of the lower arm side switching elements SW4, SW5, and SW6), feedback control is performed to reduce the braking force of the dynamic brake until the motor 30 is stopped. ing. As a result, the voltage (current) of the electric power generated by the motor 30 is suppressed from rising above the voltage (current) corresponding to the predetermined threshold, and the voltage is close to the voltage (current) corresponding to the predetermined threshold. Since it is maintained at (current), the braking force of the dynamic brake with respect to the motor 30 can be maintained at a desired weak magnitude.
 また、本実施形態では、上記のように、制御部61bは、非常停止時にモータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方(本実施形態では、電圧)が所定の閾値を超えた場合に、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)をオン状態とし、電力供給配線64の電圧および電流のうちの少なくとも一方が所定の閾値以下の場合に、複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)をオフ状態とすることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている。これにより、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方が所定の閾値を超えた場合に複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部がオン状態にされるので、電力供給配線64の電圧(電流)を低下させることができる。また、電圧検出部61cにより検出された電力供給配線64の電圧および電流のうちの少なくとも一方が所定の閾値以下の場合に複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または複数の下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部がオフ状態にされるので、電力供給配線64の電圧(電流)を上昇させることができる。これにより、モータ30によって発電される電力の電圧(電流)を、容易に所定の閾値に応じた電圧(電流)に近い電圧(電流)に維持することができる。 Further, in the present embodiment, as described above, the control unit 61b receives at least one of the voltage and the current of the power supply wiring 64 detected by the voltage detection unit 61c when the motor 30 is stopped at the time of emergency stop ( In the present embodiment, when the voltage) exceeds a predetermined threshold value, at least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 or at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6. (In this embodiment, all of the lower arm side switching elements SW4, SW5, and SW6) are turned on, and when at least one of the voltage and the current of the power supply wiring 64 is equal to or less than a predetermined threshold value, the plurality of upper arms Turn off at least a part of the side switching elements SW1, SW2 and SW3 or at least a part of a plurality of lower arm side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). By setting the state, feedback control is configured to reduce the braking force of the dynamic brake until the motor 30 is stopped. As a result, when at least one of the voltage and current of the power supply wiring 64 detected by the voltage detection unit 61c exceeds a predetermined threshold value, at least a part of the plurality of upper arm side switching elements SW1, SW2 and SW3 or Since at least a part of the plurality of lower arm side switching elements SW4, SW5 and SW6 is turned on, the voltage (current) of the power supply wiring 64 can be reduced. Further, when at least one of the voltage and current of the power supply wiring 64 detected by the voltage detection unit 61c is equal to or less than a predetermined threshold value, at least a part or a plurality of upper arm side switching elements SW1, SW2, and SW3 are used. Since at least a part of the lower arm side switching elements SW4, SW5 and SW6 is turned off, the voltage (current) of the power supply wiring 64 can be increased. As a result, the voltage (current) of the electric power generated by the motor 30 can be easily maintained at a voltage (current) close to the voltage (current) corresponding to a predetermined threshold value.
 また、本実施形態では、上記のように、検出された電力供給配線64の電圧および電流のうちの少なくとも一方(本実施形態では、電圧)に基づいて、複数のモータ30の巻線に3相の交流電力を供給することによりモータ30を駆動するとともに、モータ30に対してダイナミックブレーキを作動させるインバータ部61aに含まれる複数の上アーム側スイッチング素子SW1、SW2およびSW3の少なくとも一部または下アーム側スイッチング素子SW4、SW5およびSW6の少なくとも一部(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返させることにより、モータ30が停止するまでダイナミックブレーキの制動力を減少させるフィードバック制御を行うステップを備える。これにより、非常停止時にモータ30を停止させる際に、ダイナミックブレーキの制動力が減少されるので、比較的緩やかに人型ロボット100が停止する。これにより、人型ロボット100が勢いよく転倒するのが抑制される。つまり、人型ロボット100は、緩やかに倒れ込む。その結果、非常停止時において人型ロボット100が勢いよく転倒することに起因する破損を抑制することが可能な人型ロボット100の倒れ制御方法を提供することができる。また、上記のように、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御が行われるので、モータ30が停止するまでの間に再びダイナミックブレーキの制動力が増加される場合と異なり、モータ30が停止するまでの間(途中)に、急激に人型ロボット100が停止して、人型ロボット100が勢いよく転倒するのを抑制することが可能な人型ロボット100の倒れ制御方法を提供することができる。 Further, in the present embodiment, as described above, three phases are wound on the windings of the plurality of motors 30 based on at least one of the detected voltages and currents of the power supply wiring 64 (voltage in the present embodiment). At least a part or a lower arm of a plurality of upper arm side switching elements SW1, SW2 and SW3 included in the inverter unit 61a that drives the motor 30 by supplying the AC power of The motor 30 is stopped by alternately repeating the on state and the off state of at least a part of the side switching elements SW4, SW5 and SW6 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). A step of performing feedback control for reducing the braking force of the dynamic brake is provided. As a result, when the motor 30 is stopped at the time of emergency stop, the braking force of the dynamic brake is reduced, so that the humanoid robot 100 stops relatively gently. As a result, the humanoid robot 100 is prevented from falling vigorously. That is, the humanoid robot 100 gently collapses. As a result, it is possible to provide a fall control method for the humanoid robot 100, which can suppress damage caused by the humanoid robot 100 falling vigorously at the time of an emergency stop. Further, as described above, since the control for reducing the braking force of the dynamic brake is performed until the motor 30 is stopped, unlike the case where the braking force of the dynamic brake is increased again until the motor 30 is stopped, the braking force of the dynamic brake is increased again. A method for controlling the fall of the humanoid robot 100, which can prevent the humanoid robot 100 from suddenly stopping and the humanoid robot 100 from falling vigorously until the motor 30 stops (on the way). Can be provided.
 また、上記のように、モータ30を駆動するスイッチング素子(本実施形態では、下アーム側スイッチング素子SW4、SW5およびSW6の全て)のオン状態とオフ状態とを交互に繰り返すことによりダイナミックブレーキの制動力を減少させる制御をモータ30が停止するまで行うように構成することによって、関節がダイナミックブレーキの強い制動力により固定されるのが抑制されるので、関節が固定された状態で人型ロボット100が転倒することに起因する人型ロボット100の破損を抑制することが可能な人型ロボット100の倒れ制御方法を提供することができる。また、腕部5(アーム)が上がった状態、および、膝が伸びた状態で関節(肩関節10dおよび膝関節10c)が強い制動力により固定されるのを抑制することができるとともに、減少された弱い制動力により腕部5が下がった状態および膝が折れ曲がった状態(しゃがみ込んだ姿勢)に徐々に移行して転倒させることができるので、転倒することに起因する破損を効果的に抑制することが可能な人型ロボット100の倒れ制御方法を提供することができる。 Further, as described above, the dynamic brake is controlled by alternately repeating the on state and the off state of the switching element for driving the motor 30 (in this embodiment, all of the lower arm side switching elements SW4, SW5 and SW6). By configuring the control to reduce the power until the motor 30 stops, the joints are suppressed from being fixed by the strong braking force of the dynamic brake. Therefore, the humanoid robot 100 is in a state where the joints are fixed. It is possible to provide a fall control method for the humanoid robot 100 that can suppress damage to the humanoid robot 100 due to the fall. In addition, it is possible to suppress the joints (shoulder joint 10d and knee joint 10c) from being fixed by a strong braking force when the arm portion 5 (arm) is raised and the knee is extended, and the amount is reduced. It is possible to gradually shift to a state in which the arm 5 is lowered and a state in which the knee is bent (a crouched posture) due to a weak braking force and to fall, so that damage caused by the fall is effectively suppressed. It is possible to provide a fall control method for the humanoid robot 100 capable of this.
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification example]
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the claims rather than the description of the above-described embodiment, and further includes all modifications (modifications) within the meaning and scope equivalent to the claims.
 たとえば、上記実施形態では、人型ロボット100に本発明が適用される例を示したが、本発明はこれに限られない。たとえば、人型ロボット100以外の動物を模した2足歩行のロボットや4足歩行ロボットなどに本発明を適用してもよい。4足歩行ロボットに適用した場合、異常停止による衝撃を緩和することができるので、異常停止時における破損を抑制することができる。 For example, in the above embodiment, an example in which the present invention is applied to the humanoid robot 100 is shown, but the present invention is not limited to this. For example, the present invention may be applied to a bipedal walking robot or a quadrupedal walking robot that imitates an animal other than the humanoid robot 100. When applied to a quadruped walking robot, the impact caused by an abnormal stop can be mitigated, so that damage at the time of an abnormal stop can be suppressed.
 また、上記実施形態では、非常停止時に下アーム側スイッチング素子SW4、SW5およびSW6の全てがオンオフされる例を示したが、本発明はこれに限られない。たとえば、非常停止時に下アーム側スイッチング素子SW4、SW5およびSW6のうちの2つをオンオフしてもよい。また、非常停止時に上アーム側スイッチング素子SW1、SW2およびSW3の全て(または、上アーム側スイッチング素子SW1、SW2およびSW3のうちの2つ)をオンオフしてもよい。この場合、下アーム側スイッチング素子SW4、SW5およびSW6は、非常停止時にオフされている。なお、非常停止時にアンプ61への電力の供給が停止された場合でも、たとえば、図3に示すように、モータ30、U相の電力供給配線64、上アーム側スイッチング素子SW1の還流ダイオード、および、正側電位配線62を介する経路と、負側電位配線63、下アーム側スイッチング素子SW5の還流ダイオード、V相の電力供給配線64、および、モータ30を介する経路とによって閉回路を形成することが可能である。これにより、モータ30に対して制動力を働かせることが可能になる。 Further, in the above embodiment, an example is shown in which all of the lower arm side switching elements SW4, SW5 and SW6 are turned on and off at the time of emergency stop, but the present invention is not limited to this. For example, at the time of emergency stop, two of the lower arm side switching elements SW4, SW5 and SW6 may be turned on and off. Further, all of the upper arm side switching elements SW1, SW2 and SW3 (or two of the upper arm side switching elements SW1, SW2 and SW3) may be turned on and off at the time of emergency stop. In this case, the lower arm side switching elements SW4, SW5 and SW6 are turned off at the time of emergency stop. Even when the power supply to the amplifier 61 is stopped at the time of emergency stop, for example, as shown in FIG. 3, the motor 30, the U-phase power supply wiring 64, the freewheeling diode of the upper arm side switching element SW1, and the freewheeling diode of the upper arm side switching element SW1. A closed circuit is formed by a path via the positive potential wiring 62, a negative potential wiring 63, a freewheeling diode of the lower arm side switching element SW5, a V-phase power supply wiring 64, and a path via the motor 30. Is possible. This makes it possible to exert a braking force on the motor 30.
 また、上記実施形態では、制御部61bは、非常停止時にモータ30を停止させる際に、電圧検出部61cにより検出された電力供給配線64の電圧と、所定の閾値とを比較する例を示したが、本発明はこれに限られない。たとえば、制御部は、非常停止時にモータ30を停止させる際に、電流を検出する検出部により検出された電力供給配線64の電流と、所定の閾値(電流の閾値)とを比較してもよい。また、制御部は、電力供給配線64の電圧および電流を、各々の閾値と比較してもよい。 Further, in the above embodiment, the control unit 61b shows an example of comparing the voltage of the power supply wiring 64 detected by the voltage detection unit 61c with a predetermined threshold value when the motor 30 is stopped at the time of emergency stop. However, the present invention is not limited to this. For example, the control unit may compare the current of the power supply wiring 64 detected by the detection unit that detects the current with a predetermined threshold value (current threshold value) when the motor 30 is stopped at the time of emergency stop. .. Further, the control unit may compare the voltage and current of the power supply wiring 64 with the respective threshold values.
 また、上記実施形態では、非常停止時に下アーム側スイッチング素子SW4、SW5およびSW6をオンオフする所定の閾値が、通常動作時に回生抵抗が接続される基準となる電圧よりも低い例を示したが、本発明はこれに限られない。たとえば、通常動作時に回生抵抗が接続される基準となる電圧が比較的低ければ、所定の閾値が、回生抵抗が接続される基準となる電圧と同等であってもよい。 Further, in the above embodiment, an example is shown in which the predetermined threshold value for turning on / off the lower arm side switching elements SW4, SW5 and SW6 at the time of emergency stop is lower than the reference voltage to which the regenerative resistor is connected during normal operation. The present invention is not limited to this. For example, if the reference voltage to which the regenerative resistor is connected is relatively low during normal operation, the predetermined threshold value may be equal to the reference voltage to which the regenerative resistor is connected.
 また、上記実施形態では、非常停止ボタン80がユーザにより押下されることにより、人型ロボット100が非常停止される例を示したが、本発明はこれに限られない。たとえば、人型ロボット100にセンサを設けて、センサが人型ロボット100の姿勢や動作を検知することに基づいて、人型ロボット100が自動的に非常停止されてもよい。また、人型ロボット100に異常が発生した場合に、モータ30が停止するまでダイナミックブレーキの制動力を減少させる制御を行ってもよい。 Further, in the above embodiment, an example is shown in which the humanoid robot 100 is emergency-stopped when the emergency stop button 80 is pressed by the user, but the present invention is not limited to this. For example, the humanoid robot 100 may be provided with a sensor, and the humanoid robot 100 may be automatically stopped in an emergency based on the sensor detecting the posture and movement of the humanoid robot 100. Further, when an abnormality occurs in the humanoid robot 100, control may be performed to reduce the braking force of the dynamic brake until the motor 30 stops.
 また、上記実施形態では、非常停止時にモータ30を停止させる際に、電力供給配線64の電圧に基づいて、下アーム側スイッチング素子SW4、SW5およびSW6のオン状態とオフ状態とを交互に繰り返す例を示したが、本発明はこれに限られない。たとえば、モータ30の回転数を検出するとともに、検出されたモータ30の回転数に基づいて、下アーム側スイッチング素子SW4、SW5およびSW6(または、上アーム側スイッチング素子SW1、SW2およびSW3)のオン状態とオフ状態とを交互に繰り返してもよい。 Further, in the above embodiment, when the motor 30 is stopped at the time of emergency stop, the on state and the off state of the lower arm side switching elements SW4, SW5 and SW6 are alternately repeated based on the voltage of the power supply wiring 64. However, the present invention is not limited to this. For example, while detecting the rotation speed of the motor 30, the lower arm side switching elements SW4, SW5 and SW6 (or the upper arm side switching elements SW1, SW2 and SW3) are turned on based on the detected rotation speed of the motor 30. The state and the off state may be repeated alternately.
 また、上記実施形態では、複数のモータ30に対するダイナミックブレーキの制動力が個別に制御される例を示したが、本発明はこれに限られない。たとえば、複数のモータ30に対するダイナミックブレーキの制動力を一斉に制御してもよい。すなわち、電力供給配線64の電圧を検出する電圧検出部61cが複数のアンプ61に対して共通に設けられ、共通に設けられた電圧検出部61cによって検出された電圧に基づいて、全てのアンプ61の下アーム側スイッチング素子SW4、SW5およびSW6(または、上アーム側スイッチング素子SW1、SW2およびSW3)のオンオフを制御してもよい。 Further, in the above embodiment, an example in which the braking force of the dynamic brake for a plurality of motors 30 is individually controlled is shown, but the present invention is not limited to this. For example, the braking force of the dynamic brakes for the plurality of motors 30 may be controlled all at once. That is, a voltage detection unit 61c for detecting the voltage of the power supply wiring 64 is commonly provided for the plurality of amplifiers 61, and all the amplifiers 61 are based on the voltage detected by the commonly provided voltage detection unit 61c. The on / off of the lower arm side switching elements SW4, SW5 and SW6 (or the upper arm side switching elements SW1, SW2 and SW3) may be controlled.
 また、上記実施形態では、膝関節10c(股関節10e、足関節10f)、および、肩関節10dのダイナミックブレーキの制動力が減少される例を示したが、本発明はこれに限られない。たとえば、全ての関節のダイナミックブレーキの制動力を減少(回生時に比べて減少)させてもよい。また、膝関節10c(股関節10e、足関節10f)、および、肩関節10d以外の関節のダイナミックブレーキの制動力を減少させてもよい。 Further, in the above embodiment, an example is shown in which the braking force of the dynamic brakes of the knee joint 10c (hip joint 10e, ankle joint 10f) and the shoulder joint 10d is reduced, but the present invention is not limited to this. For example, the braking force of the dynamic brakes of all joints may be reduced (decreased as compared with the time of regeneration). Further, the braking force of the dynamic brakes of the joints other than the knee joint 10c (hip joint 10e, ankle joint 10f) and the shoulder joint 10d may be reduced.
 また、上記実施形態では、人型ロボット本体部100aに設けられた姿勢センサ70によって、人型ロボット100の姿勢に関する情報(立っているか、座っているか、腕が上がっているか、腕が下がっているか、など)が取得される例を示したが、本発明はこれに限られない。たとえば、モータ30に設けられるエンコーダ65によって、人型ロボット100の姿勢に関する情報を取得してもよい。すなわち、基準となる人型ロボット100の姿勢におけるモータ30の回転位置と、非常停止時の人型ロボット100の姿勢におけるモータ30の回転位置との差分に基づいて、人型ロボット100の姿勢に関する情報を取得し、取得された姿勢に基づいて、ダイナミックブレーキの制動力を減少させる関節を選択してもよい。また、姿勢センサ70およびエンコーダ65の両方を用いて、人型ロボット100の姿勢に関する情報を取得するようにしてもよい。 Further, in the above embodiment, the posture sensor 70 provided in the humanoid robot main body 100a provides information on the posture of the humanoid robot 100 (whether the humanoid robot 100 is standing, sitting, the arm is raised, or the arm is lowered. , Etc.) have been shown, but the present invention is not limited to this. For example, the encoder 65 provided in the motor 30 may acquire information regarding the posture of the humanoid robot 100. That is, information on the posture of the humanoid robot 100 based on the difference between the rotation position of the motor 30 in the posture of the humanoid robot 100 as a reference and the rotation position of the motor 30 in the posture of the humanoid robot 100 at the time of emergency stop. And, based on the acquired posture, the joint that reduces the braking force of the dynamic brake may be selected. Further, both the posture sensor 70 and the encoder 65 may be used to acquire information on the posture of the humanoid robot 100.
 また、上記実施形態では、人型ロボット100に設けられる複数のモータ30に対して、ダイナミックブレーキの制動力を減少させる制御を行う例を示したが、本発明はこれに限られない。たとえば、人型ロボット100に設けられる複数のモータ30のうちの1つのモータ30のみに対して、ダイナミックブレーキの制動力を減少させる制御を行ってもよい。 Further, in the above embodiment, an example of controlling the plurality of motors 30 provided in the humanoid robot 100 to reduce the braking force of the dynamic brake has been shown, but the present invention is not limited to this. For example, control may be performed to reduce the braking force of the dynamic brake only for one of the plurality of motors 30 provided in the humanoid robot 100.
 10a 腰関節(関節)
 10b 肘関節(関節)
 10c 膝関節(関節)
 10d 肩関節(関節)
 10e 股関節(関節)
 10f 足関節(関節)
 30 モータ
 60 アンプユニット
 61a インバータ部(駆動回路部)
 61b 制御部(駆動回路制御部)
 61c 電圧検出部(検出部)
 64 電力供給配線(電力供給経路)
 70 姿勢センサ
 100 人型ロボット(ロボット)
 100a 人型ロボット本体部(ロボット本体部)
 SW1、SW2、SW3 上アーム側スイッチング素子
 SW4、SW5、SW6 下アーム側スイッチング素子
10a hip joint (joint)
10b Elbow joint (joint)
10c knee joint (joint)
10d shoulder joint (joint)
10e hip joint (joint)
10f ankle joint (joint)
30 Motor 60 Amplifier unit 61a Inverter section (drive circuit section)
61b Control unit (drive circuit control unit)
61c Voltage detector (detector)
64 Power supply wiring (power supply path)
70 Posture sensor 100 Humanoid robot (robot)
100a Humanoid robot body (robot body)
SW1, SW2, SW3 Upper arm side switching element SW4, SW5, SW6 Lower arm side switching element

Claims (12)

  1.  複数の関節を含むロボット本体部と、
     前記複数の関節の各々に設けられる複数のモータと、
     前記モータの巻線に3相の交流電力を供給することにより前記モータを駆動するとともに、前記モータに対してダイナミックブレーキを作動させる駆動回路部と、
     前記駆動回路部を制御するとともに、前記駆動回路部による前記ダイナミックブレーキの制動力を制御するための駆動回路制御部とを備え、
     前記駆動回路部は、上アームを構成する複数の上アーム側スイッチング素子と、下アームを構成する複数の下アーム側スイッチング素子とを含み、
     前記駆動回路制御部は、異常停止時に前記複数のモータのうちの少なくとも1つを停止させる際に、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させる制御を行うように構成されている、ロボット。
    The robot body including multiple joints and
    A plurality of motors provided in each of the plurality of joints,
    A drive circuit unit that drives the motor by supplying three-phase AC power to the windings of the motor and also operates a dynamic brake on the motor.
    A drive circuit control unit for controlling the drive circuit unit and controlling the braking force of the dynamic brake by the drive circuit unit is provided.
    The drive circuit unit includes a plurality of upper arm side switching elements constituting the upper arm and a plurality of lower arm side switching elements constituting the lower arm.
    When the drive circuit control unit stops at least one of the plurality of motors at the time of abnormal stop, at least a part of the plurality of upper arm side switching elements or at least one of the plurality of lower arm side switching elements. A robot configured to control to reduce the braking force of the dynamic brake until the motor stops by alternately repeating the on state and the off state of the unit.
  2.  前記駆動回路制御部は、異常停止時に前記ロボット本体部の倒れを制御する際に、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させる制御を行うように構成されている、請求項1に記載のロボット。 The drive circuit control unit is in an ON state of at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements when controlling the collapse of the robot main body unit at the time of abnormal stop. The robot according to claim 1, wherein the robot is configured to control to reduce the braking force of the dynamic brake until the motor stops by alternately repeating the off state and the off state.
  3.  前記駆動回路部は、前記複数の関節毎に設けられている前記複数のモータ毎に個別に設けられており、
     前記駆動回路制御部は、異常停止時に前記モータを停止させる際に、前記モータ毎に設けられている前記駆動回路部の前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記複数のモータに対する前記ダイナミックブレーキの制動力を個別に制御するように構成されている、請求項1に記載のロボット。
    The drive circuit unit is individually provided for each of the plurality of motors provided for each of the plurality of joints.
    When the motor is stopped at the time of abnormal stop, the drive circuit control unit is provided at least a part of the plurality of upper arm side switching elements of the drive circuit unit provided for each motor, or the plurality of lower arm sides. The first aspect of the present invention, wherein the braking force of the dynamic brake with respect to the plurality of motors is individually controlled by alternately repeating an on state and an off state of at least a part of the switching element. robot.
  4.  前記駆動回路制御部は、異常停止時に前記モータを停止させる際に、前記モータ毎に設けられている前記駆動回路部の前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記複数の関節の一部については、他の関節よりも前記ダイナミックブレーキの制動力を減少させる制御を行うように構成されている、請求項3に記載のロボット。 When the motor is stopped at the time of abnormal stop, the drive circuit control unit is provided at least a part of the plurality of upper arm side switching elements of the drive circuit unit provided for each motor, or the plurality of lower arm sides. By alternately repeating the on state and the off state of at least a part of the switching element, the braking force of the dynamic brake is controlled to be reduced for a part of the plurality of joints as compared with the other joints. The robot according to claim 3, which is configured.
  5.  前記制動力が減少される関節は、膝関節、または、肩関節の少なくとも一方を含む、請求項4に記載のロボット。 The robot according to claim 4, wherein the joint whose braking force is reduced includes at least one of a knee joint and a shoulder joint.
  6.  前記膝関節の位置情報、および、前記肩関節の位置情報に基づいて、前記膝関節または前記肩関節の少なくとも一方の前記ダイナミックブレーキの制動力を減少させる制御を行うように構成されている、請求項5に記載のロボット。 Based on the position information of the knee joint and the position information of the shoulder joint, the claim is configured to control to reduce the braking force of the knee joint or at least one of the shoulder joints of the dynamic brake. Item 5. The robot according to item 5.
  7.  前記ロボット本体部は、人間の複数の関節に対応する複数の前記関節を有する人型ロボット本体部を含む、請求項1に記載のロボット。 The robot according to claim 1, wherein the robot main body includes a humanoid robot main body having a plurality of the joints corresponding to a plurality of human joints.
  8.  前記モータに電力を供給する電力供給経路の電圧および電流のうちの少なくとも一方を検出するための検出部をさらに備え、
     前記駆動回路制御部は、前記モータを停止させる際に、前記検出部により検出された前記電力供給経路の電圧および電流のうちの少なくとも一方に基づいて、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている、請求項1に記載のロボット。
    Further, a detector for detecting at least one of the voltage and the current of the power supply path for supplying power to the motor is provided.
    The drive circuit control unit is at least one of the plurality of upper arm side switching elements based on at least one of the voltage and the current of the power supply path detected by the detection unit when the motor is stopped. By alternately repeating the on state and the off state of at least a part of the unit or the plurality of lower arm side switching elements, feedback control for reducing the braking force of the dynamic brake is performed until the motor is stopped. The robot according to claim 1, which is configured.
  9.  前記駆動回路制御部は、異常停止時に前記モータを停止させる際に、前記検出部により検出された前記電力供給経路の電圧および電流のうちの少なくとも一方と、所定の閾値との比較に基づいて、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている、請求項8に記載のロボット。 When the motor is stopped at the time of abnormal stop, the drive circuit control unit compares at least one of the voltage and current of the power supply path detected by the detection unit with a predetermined threshold value. By alternately repeating the on state and the off state of at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements, the dynamic brake of the dynamic brake is operated until the motor is stopped. The robot according to claim 8, wherein the robot is configured to perform feedback control for reducing braking force.
  10.  前記駆動回路制御部は、異常停止時に前記モータを停止させる際に、前記検出部により検出された前記電力供給経路の電圧および電流のうちの少なくとも一方が前記所定の閾値を超えた場合に、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部をオン状態とし、前記電力供給経路の電圧および電流のうちの少なくとも一方が前記所定の閾値以下の場合に、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部をオフ状態とすることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させるフィードバック制御を行うように構成されている、請求項9に記載のロボット。 When at least one of the voltage and the current of the power supply path detected by the detection unit exceeds the predetermined threshold when the motor is stopped at the time of abnormal stop, the drive circuit control unit may use the drive circuit control unit. When at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements is turned on and at least one of the voltage and the current of the power supply path is equal to or less than the predetermined threshold value. In addition, by turning off at least a part of the plurality of upper arm side switching elements or at least a part of the plurality of lower arm side switching elements, the braking force of the dynamic brake is reduced until the motor is stopped. The robot according to claim 9, which is configured to perform feedback control.
  11.  人間の複数の関節に対応する前記複数の関節を含む人型ロボット本体部と、
     前記複数の関節の各々に設けられる複数のモータと、
     前記モータの巻線に3相の交流電力を供給することにより前記モータを駆動するとともに、前記モータに対してダイナミックブレーキを作動させる駆動回路部と、
     前記駆動回路部を制御するとともに、前記駆動回路部による前記ダイナミックブレーキの制動力を制御するための駆動回路制御部とを備え、
     前記駆動回路部は、上アームを構成する複数の上アーム側スイッチング素子と、下アームを構成する複数の下アーム側スイッチング素子とを含み、
     前記駆動回路制御部は、異常停止時に前記複数のモータのうちの少なくとも1つを停止させる際に、前記複数の上アーム側スイッチング素子の少なくとも一部または前記複数の下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させる制御を行うように構成されている、人型ロボット。
    A humanoid robot body including the plurality of joints corresponding to a plurality of human joints,
    A plurality of motors provided in each of the plurality of joints,
    A drive circuit unit that drives the motor by supplying three-phase AC power to the windings of the motor and also operates a dynamic brake on the motor.
    A drive circuit control unit for controlling the drive circuit unit and controlling the braking force of the dynamic brake by the drive circuit unit is provided.
    The drive circuit unit includes a plurality of upper arm side switching elements constituting the upper arm and a plurality of lower arm side switching elements constituting the lower arm.
    When the drive circuit control unit stops at least one of the plurality of motors at the time of abnormal stop, at least a part of the plurality of upper arm side switching elements or at least one of the plurality of lower arm side switching elements. A humanoid robot configured to control to reduce the braking force of the dynamic brake until the motor stops by alternately repeating the on state and the off state of the unit.
  12.  複数の関節を含むロボットの倒れ制御方法であって、
     前記複数の関節の各々に設けられる複数のモータに電力を供給する電力供給経路の電圧および電流のうちの少なくとも一方を検出するステップと、
     検出された前記電力供給経路の電圧および電流のうちの少なくとも一方に基づいて、前記複数のモータの巻線に3相の交流電力を供給することにより前記モータを駆動するとともに、前記複数のモータのうちの少なくとも1つに対してダイナミックブレーキを作動させる駆動回路部に含まれる複数の上アーム側スイッチング素子の少なくとも一部または下アーム側スイッチング素子の少なくとも一部のオン状態とオフ状態とを交互に繰り返させることにより、前記モータが停止するまで前記ダイナミックブレーキの制動力を減少させるフィードバック制御を行うステップとを備える、ロボットの倒れ制御方法。
     
     
    It is a fall control method for robots that include multiple joints.
    A step of detecting at least one of a voltage and a current of a power supply path for supplying power to a plurality of motors provided in each of the plurality of joints.
    Based on at least one of the detected voltages and currents of the power supply path, the motors are driven by supplying three-phase AC power to the windings of the plurality of motors, and the motors of the plurality of motors are driven. At least a part of the plurality of upper arm side switching elements included in the drive circuit unit that activates the dynamic brake for at least one of them, or at least a part of the lower arm side switching elements are alternately turned on and off. A method for controlling a fall of a robot, comprising a step of performing feedback control for reducing the braking force of the dynamic brake until the motor is stopped by repeating the process.

PCT/JP2020/042961 2019-12-25 2020-11-18 Robot, humanoid robot, and fall control method for robot WO2021131417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-235174 2019-12-25
JP2019235174A JP7393201B2 (en) 2019-12-25 2019-12-25 Robots, humanoid robots, and robot fall control methods

Publications (1)

Publication Number Publication Date
WO2021131417A1 true WO2021131417A1 (en) 2021-07-01

Family

ID=76575405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042961 WO2021131417A1 (en) 2019-12-25 2020-11-18 Robot, humanoid robot, and fall control method for robot

Country Status (2)

Country Link
JP (1) JP7393201B2 (en)
WO (1) WO2021131417A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179741A (en) * 2012-02-28 2013-09-09 Fanuc Ltd Motor drive device incorporating dynamic brake control means
JP2019014008A (en) * 2017-07-06 2019-01-31 株式会社デンソーウェーブ Control device for robot
JP2019161924A (en) * 2018-03-15 2019-09-19 ファナック株式会社 Motor controller and motor control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179741A (en) * 2012-02-28 2013-09-09 Fanuc Ltd Motor drive device incorporating dynamic brake control means
JP2019014008A (en) * 2017-07-06 2019-01-31 株式会社デンソーウェーブ Control device for robot
JP2019161924A (en) * 2018-03-15 2019-09-19 ファナック株式会社 Motor controller and motor control method

Also Published As

Publication number Publication date
JP2021102254A (en) 2021-07-15
JP7393201B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP4657796B2 (en) Overcurrent prevention device for legged mobile robot
JP5459311B2 (en) Motor drive system, motor drive system control method, and travel device
US7366587B2 (en) Legged mobile robot
KR101689793B1 (en) Motor control apparatus and control method the same
US20040176875A1 (en) Legged mobile robot
US20050162117A1 (en) Robot apparatus, and load absorbing apparatus and method
JP2017169384A (en) Motor control device
CN109069338B (en) Device and system for controlled collapse of an exoskeleton
WO2021131417A1 (en) Robot, humanoid robot, and fall control method for robot
JP2009303480A (en) Method and system for dynamic braking of motor
Hooks et al. Implementation of a versatile 3d zmp trajectory optimization algorithm on a multi-modal legged robotic platform
KR20220100937A (en) Method, robot and computer program product for controlling at least one servo motor in a braking manner
JP2022551310A (en) Fault detection response in robot arm
JP7381322B2 (en) Robots, humanoid robots, and robot fall control methods
US7365508B2 (en) Motor, actuator and controller thereof
JP5633241B2 (en) Seating movement support device
KR102494387B1 (en) How to move the exoskeleton
JP2000006065A (en) Joint device, robot device, and joint control method
JP4086765B2 (en) Robot equipment
JP2021102233A (en) Control apparatus and robot device
JP4115374B2 (en) Robot device
US6219588B1 (en) Robot apparatus
JP2006272470A (en) Control method of bipedal walking robot
JP7198929B2 (en) How to test a robot arm for motor failure
JP2006149041A (en) Motor apparatus, controller of motor, control method of motor and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907168

Country of ref document: EP

Kind code of ref document: A1