WO2021131262A1 - Method for manufacturing balloon catheter, and device for manufacturing resin medical balloon - Google Patents

Method for manufacturing balloon catheter, and device for manufacturing resin medical balloon Download PDF

Info

Publication number
WO2021131262A1
WO2021131262A1 PCT/JP2020/039114 JP2020039114W WO2021131262A1 WO 2021131262 A1 WO2021131262 A1 WO 2021131262A1 JP 2020039114 W JP2020039114 W JP 2020039114W WO 2021131262 A1 WO2021131262 A1 WO 2021131262A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat jacket
mold
manufacturing
balloon
jacket
Prior art date
Application number
PCT/JP2020/039114
Other languages
French (fr)
Japanese (ja)
Inventor
聖康 四丸
貴哉 松▲崎▼
竜幸 前田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021566847A priority Critical patent/JPWO2021131262A1/ja
Priority to CN202080078372.XA priority patent/CN114728151A/en
Publication of WO2021131262A1 publication Critical patent/WO2021131262A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds

Definitions

  • the present invention relates to a method for manufacturing a balloon catheter having a medical balloon made of resin, and a device for manufacturing a medical balloon.
  • stenosis of blood vessels which is a flow path for blood circulation in the body, and stenosis of blood circulation.
  • stenosis of the coronary arteries that supply blood to the heart may lead to serious diseases such as angina pectoris and myocardial infarction.
  • As a method for treating such a stenotic part of a blood vessel there is a technique for expanding the stenotic part using a balloon catheter such as angioplasty such as PTA and PTCA.
  • Angioplasty is a minimally invasive therapy that does not require thoracotomy, such as bypass surgery, and is widely practiced.
  • Patent Document 1 states that a tubular parison made of a biflexible polymer material is blow-molded to form an expandable tubular portion of the balloon.
  • the ratio of the number of orientation distributions calculated by dividing the number of circumferential orientation distributions of the tubular part by the number of axial orientation distributions of the tubular part in the molding step is less than 2.
  • Patent Document 2 describes a prepared parison in which both sides of a tubular parison are stretched at a predetermined ratio and an unstretched portion having a predetermined width is left in the central portion.
  • a method for manufacturing a balloon for a catheter which comprises performing secondary molding in which a tapered portion and a connecting portion are thinned by a step of re-stretching, is described, and Patent Document 3 describes a circumference in a cross section perpendicular to the longitudinal direction.
  • a balloon for a balloon catheter which is characterized by being rare, and is a second balloon in which a molded first balloon is heat-treated in a local region and has a portion having different rigidity between a non-heated portion and a heated portion. 12 is described, and Patent Document 4 describes that the first step of molding the first balloon and the local region along the longitudinal direction of the first balloon are heat-treated to be more than the non-heated portion.
  • Patent Document 5 describes a shaft tube, a main lumen formed on the shaft tube, and a wall thickness of the shaft tube. At least one sublumen provided inside and opened to the outer peripheral portion on the distal end side of the shaft tube and the outer peripheral portion on the distal end side of the shaft tube are fused so as to surround the outer peripheral portion on the distal end side of the shaft tube.
  • a method of manufacturing a balloon catheter having a balloon communicating with a lumen is described.
  • the specific part of the resin tubular body is cooled to a lower temperature than the other parts, so that the specific part is rapidly cooled to increase the hardness. It is also possible to increase the extended stress at a specific part of the balloon as a result.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a method for manufacturing a balloon catheter capable of making a specific part of a resin tubular body hotter and colder than other parts, and a method for manufacturing a balloon catheter.
  • the purpose of the present invention is to provide a manufacturing apparatus for a resin medical balloon.
  • the first method for manufacturing a balloon catheter that has been able to solve the above problems includes a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft.
  • a method for manufacturing a balloon catheter which comprises a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket, and the heat jacket is made of the heat jacket. It presses the inclusions existing inside, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket.
  • the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position in the longitudinal direction of the mold.
  • a method for manufacturing a second balloon catheter that has been able to solve the above problems includes a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft.
  • a method for manufacturing a balloon catheter which includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket, and inclusions are contained inside the heat jacket.
  • the inclusions have recesses on the outer surface, the depth of the recesses is 10 ⁇ m or more, and the area in contact between the inner surface of the thermal jacket and the inclusions is the inner surface of the thermal jacket. It is characterized in that it differs depending on the position of.
  • the inclusion is preferably a housing member that includes at least a part of one or a plurality of molds.
  • the housing member has a convex portion on the outer surface.
  • the convex portion is a spacer member arranged on the outer surface of the housing member.
  • the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is attached to at least one of the partial housing members. It is preferably arranged.
  • the convex portion extends over the entire circumference of the housing member.
  • the lumen of the mold has a columnar portion and a cone-shaped portion existing on one end side and the other end side of the columnar portion, and the convex portion has a convex portion. It is preferably arranged in at least a part of the portion corresponding to the columnar portion.
  • the lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion has a convex portion. It is preferably arranged in at least a part of the portion corresponding to the cone-shaped portion.
  • the heat jacket has a plurality of partial heat jackets.
  • the heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. It is preferable that the inclusions are pressed by the first partial heat jacket and the second partial heat jacket approaching each other.
  • the first partial heat jacket and the second partial heat jacket are connected to each other.
  • the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. ..
  • a pore-containing metal body located on the outside of the mold and on the inside of the heat jacket.
  • the amount of elastic deformation per unit thickness of the pore-containing metal body is 3 ⁇ m / mm or more, and the thermal conductivity of the pore-containing metal body is 0.325 W / m ⁇ K or more. It is preferable to have.
  • the first resin medical balloon manufacturing apparatus capable of solving the above-mentioned problems has a mold in which a resin tubular body is inserted and a heat jacket containing the mold.
  • the heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket. It is a feature.
  • the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position in the longitudinal direction of the mold.
  • the second resin medical balloon manufacturing apparatus capable of solving the above-mentioned problems has a mold in which a resin tubular body is inserted and a heat jacket containing the mold.
  • the inclusions are arranged inside the heat jacket, and the inclusions have recesses on the outer surface, the depth of the recesses is 10 ⁇ m or more, and the inner side surface of the heat jacket is in contact with the inclusions.
  • the area is characterized in that it varies depending on the position of the inner surface of the thermal jacket.
  • the inclusion is preferably a housing member that includes at least a part of one or a plurality of molds.
  • the housing member has a convex portion on the outer surface.
  • the convex portion is preferably a spacer member arranged on the outer surface of the housing member.
  • the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is at least one of the partial housing members. It is preferable that they are arranged in one.
  • the convex portion extends over the entire circumference of the housing member.
  • the lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and is convex.
  • the portions are preferably arranged in at least a part of the portions corresponding to the columnar portions.
  • the cavity of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and is convex.
  • the portions are preferably arranged in at least a part of the portions corresponding to the cone-shaped portions.
  • the heat jacket preferably has a plurality of partial heat jackets.
  • the heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. It is preferable that the inclusions are pressed by the first partial heat jacket and the second partial heat jacket approaching each other.
  • the first partial heat jacket and the second partial heat jacket are connected to each other.
  • the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. Is preferable.
  • a pore-containing metal body that is arranged on the outside of the mold and on the inside of the heat jacket.
  • the amount of elastic deformation per unit thickness of the pore-containing metal body is 3 ⁇ m / mm or more, and the thermal conductivity of the pore-containing metal body is 0.325 W / m. It is preferably K or more.
  • the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner side surface of the heat jacket, so that the inner surface of the heat jacket is included.
  • the inclusions located in the high pressure area receive heat from the heat jacket more easily than the other parts, and when the heat jacket heats the inclusions, the temperature is higher than the other parts. When the heat jacket cools the inclusions, it can be cooler than the other parts.
  • the temperature of the heat jacket is transmitted to the inclusions located in the portion having a small area in contact with the inner surface of the heat jacket as compared with the other portions. It is difficult, and it is possible to make it cooler than other parts when the heat jacket is heating the inclusions, and hotter than other parts when the heat jacket is cooling the inclusions. Become.
  • the heat jacket presses the inclusions existing inside the heat jacket, and the inner surface of the heat jacket receives from the inclusions. Since the pressure differs depending on the position of the inner surface of the heat jacket, the temperature of the heat jacket is more easily transmitted to the inclusions located in the portion where the inner surface of the heat jacket receives a high pressure from the inclusions than the other parts. Therefore, when the heat jacket is heating the inclusions, it can be made hotter than the other parts, and when the heat jacket is cooling the inclusions, it is made cooler than the other parts. It becomes possible.
  • the inclusions arranged inside the heat jacket have recesses on the outer surface, and the inner side surface and inclusions of the heat jacket. Since the area in contact with the heat jacket depends on the position of the inner surface of the heat jacket, the inclusions located in the small part of the heat jacket in contact with the inner side surface of the heat jacket are larger than the other parts. It is difficult for the temperature to be transmitted. Therefore, when the heat jacket is heating the inclusions, the temperature can be lower than the other parts, and when the heat jacket is cooling the inclusions, the temperature can be higher than the other parts.
  • a front view of a resin medical balloon manufacturing apparatus is shown.
  • the II-II cross-sectional view of the resin medical balloon manufacturing apparatus shown in FIG. 1 is shown. It shows the III-III cross-sectional view of the manufacturing apparatus of the resin medical balloon shown in FIG.
  • the top view of the inclusion of the resin medical balloon manufacturing apparatus in the embodiment of the present invention is shown.
  • the VV cross-sectional view of the inclusion shown in FIG. 4 is shown.
  • FIG. 1 is a front view of the resin medical balloon manufacturing apparatus 1 according to the embodiment of the present invention
  • FIG. 2 is a front view of the resin tubular body 10 in the resin medical balloon manufacturing apparatus 1 shown in FIG. It is a cross section of II-II which is a cross section perpendicular to the longitudinal direction
  • FIG. 3 is a cross section perpendicular to the longitudinal direction of the resin tubular body 10 in the resin medical balloon manufacturing apparatus 1 shown in FIG. -III is a cross-sectional view
  • FIG. 4 is a top view of the inclusion 100 in the resin medical balloon manufacturing apparatus 1 as viewed from above.
  • the longitudinal direction of the resin tubular body 10 can be rephrased as the perspective direction of the resin tubular body 10.
  • the resin medical balloon in the present invention can be manufactured by applying pressure to the inside of the resin tubular body 10 to heat the resin tubular body 10 and stretching it in the longitudinal direction.
  • a resin medical balloon can be manufactured by blow molding the resin tubular body 10.
  • the inside of the resin tubular body 10 may be pressurized before stretching, the inside may be pressurized at the same time as stretching, or the inside may be pressurized during or after stretching. May be good.
  • To improve the manufacturing efficiency of the resin medical balloon by stretching the resin tubular body 10 in the longitudinal direction while applying pressure to the inside of the resin tubular body 10 to manufacture the resin medical balloon. Can be done.
  • the first resin medical balloon manufacturing apparatus 1 of the present invention includes a mold 20 in which a resin tubular body 10 is inserted and a heat jacket containing the mold 20.
  • the heat jacket 30 presses the inclusion 100 existing inside the heat jacket 30, and the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 is It is characterized in that it differs depending on the position of the inner surface of the heat jacket 30.
  • a resin medical balloon manufacturing device may be simply referred to as a “manufacturing device”. It is also possible to use the manufacturing apparatus of the present invention for manufacturing a balloon different from the resin medical balloon.
  • the resin tubular body 10 is made of synthetic resin and is a so-called parison used for blow molding.
  • the material constituting the resin tubular body 10 is preferably a thermoplastic resin.
  • the material constituting the resin tubular body 10 include polyolefin resins such as polyethylene, polypropylene and ethylene-propylene copolymer, polyester resins such as polyethylene terephthalate and polyester elastomer, and polyurethane resins such as polyurethane and polyurethane elastomer.
  • polyolefin resins such as polyethylene, polypropylene and ethylene-propylene copolymer
  • polyester resins such as polyethylene terephthalate and polyester elastomer
  • polyurethane resins such as polyurethane and polyurethane elastomer.
  • examples thereof include resins, polyphenylene sulfide-based resins, polyamide-based resins such as polyamide and polyamide elastomer, vinyl chloride-based resins, silicone-based resins, and natural rubbers such as latex rubber. Only one of these may be used, or two
  • a polyamide-based resin, a polyester-based resin, and a polyurethane-based resin are preferably used as the material constituting the resin tubular body 10.
  • an elastomer resin from the viewpoint of thinning and flexibility of the resin medical balloon.
  • nylon 12 is relatively easy to mold when blow molding. It is preferably used.
  • a polyamide elastomer such as a polyether ester amide elastomer and a polyamide ether elastomer is preferably used.
  • the polyether ester amide elastomer is preferably used because of its high yield strength and good dimensional stability of the resin medical balloon.
  • the wall thickness of the resin tubular body 10 can be set according to the wall thickness of the resin medical balloon. For example, 3 mm or less, 2 mm or less, 1 mm or less, 0.05 mm or more, 0.07 mm or more, It can be 0.1 mm or more.
  • the resin tubular body 10 can be manufactured by, for example, extrusion molding, injection molding, or the like. Above all, the resin tubular body 10 is preferably manufactured by extrusion molding. Since the resin tubular body 10 is manufactured by extrusion molding, the resin tubular body 10 can be manufactured in large quantities in a short time, and the production efficiency of the resin medical balloon can be improved.
  • the mold 20 has a resin tubular body 10 inserted therein, and the resin tubular body 10 is blow-molded to manufacture a resin medical balloon.
  • the mold 20 has a space having the same shape as the outer shape of the resin medical balloon inside, and the resin tubular body 10 is arranged in this internal space.
  • the mold 20 preferably has a plurality of partial molds. Specifically, for example, a central mold that forms a straight tube portion in the central portion of a resin medical balloon and an end metal that forms tapered portions located at both ends of the straight tube portion of the resin medical balloon. Examples thereof include a configuration in which the mold is provided on both sides of the central mold. Since the mold 20 has a central mold and end molds arranged on both sides of the central mold, resins having various shapes can be formed by replacing the central mold and the end mold. Manufacture Medical balloons can be manufactured.
  • the material constituting the mold 20 is preferably a metal, more preferably iron, copper, aluminum, or an alloy thereof.
  • examples of the iron alloy include stainless steel
  • examples of the copper alloy include brass
  • examples of the aluminum alloy include duralumin. Since the material constituting the mold 20 is iron, copper, aluminum, or an alloy thereof, the heat capacity of the mold 20 is large and the heat transfer property is high, so that the temperature of the entire mold 20 tends to be constant. As a result, temperature unevenness is less likely to occur in the resin tubular body 10 arranged inside the mold 20, and the resin medical balloon can be easily manufactured.
  • the length of the resin tubular body 10 in the longitudinal direction is preferably longer than the length of the internal space of the mold 20 in the longitudinal direction. That is, it is preferable that both ends of the resin tubular body 10 are exposed from the mold 20 in a state where the resin tubular body 10 is arranged inside the mold 20. Since the length of the resin tubular body 10 in the longitudinal direction is longer than the length of the internal space of the mold 20 in the longitudinal direction, the resin tubular body 10 can be easily blow-molded, and a resin medical balloon can be manufactured. It is possible to increase efficiency.
  • the length of the resin tubular body 10 in the longitudinal direction is preferably 1.05 times or more, more preferably 1.10 times or more, and 1.15 times the length of the internal space of the mold 20. It is more preferable that the amount is double or more.
  • the resin is formed during blow molding of the resin tubular body 10.
  • the resin tubular body 10 can be stretched to both sides in the longitudinal direction by sufficiently grasping both ends of the tubular body 10, and the stretching start step can be easily performed.
  • the upper limit of the ratio of the length of the resin tubular body 10 in the longitudinal direction to the length of the internal space of the mold 20 is, for example, 100 times or less and 90 times or less of the length of the internal space of the mold 20. It can be 80 times or less and 70 times or less.
  • the heat jacket 30 includes the mold 20 and adjusts the temperature of the mold 20. That is, the heat jacket 30 can heat and / or cool the mold 20.
  • the heat jacket 30 preferably has a temperature control object 40.
  • the temperature control object 40 when the heat jacket 30 is used for heating the mold 20 include a cartridge heater, and the temperature control object 40 when the heat jacket 30 is used for cooling the mold 20 includes a cooling water flow path and the like. Can be mentioned. Since the heat jacket 30 has the temperature control object 40, it becomes easy to change the temperature of the heat jacket 30.
  • the heat jacket 30 presses the inclusion 100 existing inside the heat jacket 30, and the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 depends on the position of the inner surface of the heat jacket 30. different. Since the inner side surface portion of the heat jacket 30 that receives high pressure from the inclusion 100 is in closer contact with the inclusion 100 than the other portions, the temperature of the heat jacket 30 is easily transmitted to the inclusion 100. Therefore, the inner surface of the heat jacket 30 receives different pressure from the inclusion 100 depending on the position of the inner surface of the heat jacket 30, so that the inner surface of the heat jacket 30 is located on the inner surface of the heat jacket 30 where the pressure received from the inclusion 100 is high.
  • the inclusion 100 can be heated so that the heat jacket 30 has a higher temperature than the other parts during heating, and the heat jacket 30 can be cooled so that the heat jacket 30 has a lower temperature than the other parts during cooling.
  • the temperature of the heat jacket 30 when the mold 20 is heated is the same as or higher than the heating target temperature of the mold 20, and the temperature of the heat jacket 30 when the mold 20 is cooled is the cooling of the mold 20. It is preferably the same as the target temperature or lower than the cooling target temperature.
  • the lower limit of the temperature of the heat jacket 30 when the mold 20 is heated is preferably 1 ° C. higher than the heating target temperature of the mold 20, more preferably 5 ° C. higher, and 10 ° C. higher.
  • the temperature is even more preferred, the temperature 15 ° C higher is even more preferred, and the temperature 20 ° C higher is particularly preferred.
  • the temperature of the mold 20 can be raised to the heating target temperature in a short time.
  • the upper limit of the temperature of the heat jacket 30 when the mold 20 is heated is preferably 250 ° C. higher than the heating target temperature of the mold 20, more preferably 225 ° C. higher, 200. It is more preferable that the temperature is higher than that of ° C.
  • the upper limit of the temperature of the heat jacket 30 in the above range the temperature of the mold 20 can be easily adjusted.
  • the upper limit of the temperature of the heat jacket 30 when the mold 20 is cooled is preferably 1 ° C. lower than the cooling target temperature of the mold 20, more preferably 3 ° C. lower, and 5 ° C. lower.
  • the temperature is even more preferable, the temperature is even more preferably 7 ° C. lower, and the temperature is particularly preferably 10 ° C. lower.
  • the lower limit of the temperature of the heat jacket 30 when the mold 20 is cooled is preferably 100 ° C. lower than the cooling target temperature of the mold 20, more preferably 90 ° C. lower, and 80 ° C. It is more preferable that the temperature is lower than that of ° C.
  • the lower limit of the temperature of the heat jacket 30 in the above range the temperature of the mold 20 can be easily adjusted.
  • the heat jacket 30 preferably has a heating jacket used for heating the mold 20 and a cooling jacket used for cooling the mold 20. Since the heat jacket 30 has both a heating jacket and a cooling jacket, the temperature of the heat jacket 30 is changed from, for example, a temperature suitable for heating the mold 20 to a temperature suitable for cooling the mold 20. In addition, it is not necessary to significantly change the temperature of the heat jacket 30 in the production of the resin medical balloon, and the time required for temperature control of the heat jacket 30 can be shortened. As a result, it becomes possible to improve the manufacturing efficiency of the resin medical balloon.
  • the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 may differ depending on the position of the inner surface of the heat jacket 30, for example, may differ depending on the position of the mold 20 in the longitudinal direction. It may be different depending on the position of the mold 20 in the circumferential direction. Above all, it is preferable that the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 differs depending on the position of the mold 20 in the longitudinal direction. Since the pressure received from the inner surface of the heat jacket 30 from the inclusion 100 differs depending on the position in the longitudinal direction of the mold 20, the temperature of the heat jacket 30 is easily transmitted in the longitudinal direction of the mold 20. A portion can be provided, for example, the central portion of the resin tubular body 10 in the longitudinal direction can be heated to a higher temperature than the other portions.
  • the second resin medical balloon manufacturing apparatus 1 of the present invention includes a mold 20 in which the resin tubular body 10 is inserted and a thermal jacket containing the mold 20. 30 and the inclusion 100 is arranged inside the heat jacket 30, the inclusion 100 has a recess 110 on the outer surface, and the depth of the recess 110 is 10 ⁇ m or more.
  • the area in which the inner surface of the heat jacket 30 and the inclusion 100 are in contact with each other is different depending on the position of the inner surface of the heat jacket 30.
  • the inclusion 100 arranged inside the heat jacket 30 has a recess 110 on the outer surface, and the area in contact between the inner surface of the heat jacket 30 and the inclusion 100 is the inner surface of the heat jacket 30.
  • the portion of the inclusion 100 located in the recess 110 is farther from the heat jacket 30 than the other parts of the inclusion 100, and is less likely to come into contact with the heat jacket 30.
  • the area in contact with the inner surface of the heat jacket 30 becomes smaller. Therefore, the portion of the inclusion 100 located in the recess 110 is less likely to transmit the temperature of the heat jacket 30 than the other portion of the inclusion 100, and when the heat jacket 30 is heating the inclusion 100, other parts are present.
  • the heat jacket 30 cools the inclusion 100, the temperature can be made lower than that of the other parts.
  • the depth of the recess 110 may be 10 ⁇ m or more, but is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or more.
  • the temperature of the heat jacket 30 is less likely to be transmitted to the portion of the inclusion 100 located in the recess 110, and the inclusion located in the recess 110.
  • the temperature of the portion 100 can be lower than the temperature of the other portion of the inclusion 100 when the inclusion 100 is heated and higher when the inclusion 100 is cooled.
  • the depth of the recess 110 is preferably 90% or less, more preferably 85% or less, and even more preferably 80% or less of the wall thickness of the inclusion 100.
  • the temperature of the heat jacket 30 is transmitted to the portion of the inclusion 100 located in the recess 110, and the entire resin tubular body 10 is sufficiently covered. Can be heated and cooled. As a result, it becomes possible to efficiently manufacture a resin medical balloon.
  • the recess 110 is preferably provided on the outer surface of the housing member 70. Since the recess 110 is provided on the outer surface of the housing member 70, the temperature of the portion of the inclusion 100 located in the recess 110 of the housing member 70 is heated more than the other portion of the housing member 70. Sometimes it tends to be low temperature, and when the inclusion 100 is cooled, it tends to be high temperature. Therefore, it becomes easy to make a temperature difference in the inclusion 100 at the time of manufacturing the resin medical balloon.
  • the recess 110 may have an integral structure with the housing member 70, or may be a member separate from the housing member 70 and attached to the housing member 70. Above all, the recess 110 is preferably a spacer member 121 arranged in the housing member 70. Since the recess 110 is the spacer member 121 arranged in the housing member 70, the position of the spacer member 121 can be changed so that the temperature becomes higher and lower than the other parts of the inclusion 100.
  • the inclusion 100 is preferably a housing member 70 that includes at least a part of one or a plurality of molds 20. That is, it is preferable that the housing member 70 that includes at least a part of one or a plurality of molds 20 into which the resin tubular body 10 is inserted is the inclusion 100. Since the inclusion 100 is the housing member 70, the mold 20 can be easily handled when the mold 20 is small or when the mold 20 has a plurality of partial molds. It is possible to improve the manufacturing efficiency of resin medical balloons.
  • the housing member 70 preferably has a convex portion 120 on the outer surface. Since the housing member 70 has the convex portion 120 on the outer surface, the portion of the convex portion 120 can be easily brought into close contact with the heat jacket 30. As a result, the temperature of the heat jacket 30 is easily transmitted to the portion of the inclusion 100 arranged in the portion where the convex portion 120 exists. It is easy to recognize the part to be formed, and it is easy to control the temperature at the time of manufacturing the resin medical balloon.
  • the height of the convex portion 120 is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or more. By setting the lower limit of the height of the convex portion 120 to the above range, the convex portion 120 is sufficiently pressed against the inner side surface of the heat jacket 30, and heat is applied to the inclusion 100 located at the portion of the convex portion 120. The temperature of the jacket 30 is easily transmitted.
  • the height of the convex portion 120 is preferably 90% or less, more preferably 85% or less, and further preferably 80% or less of the wall thickness of the housing member 70.
  • the temperature of the heat jacket 30 can be sufficiently transmitted to the portion of the housing member 70 other than the convex portion 120. Therefore, it is possible to shorten the time required for heating and cooling the resin tubular body 10, and it is possible to improve the manufacturing efficiency of the resin medical balloon.
  • the housing member 70 has both the convex portion 120 and the concave portion 110, and the convex portion 120 and the concave portion 110 are adjacent to each other, the height of the convex portion 120 does not include the depth of the concave portion 110. To do. That is, when measuring the height of the convex portion 120, the height of the convex portion 120 is obtained by subtracting the depth of the concave portion 110 from the height of the convex portion of the housing member 70.
  • the convex portion 120 may have an integral structure with the housing member 70, or may be a member separate from the housing member 70 and attached to the housing member 70. Above all, the convex portion 120 is preferably a spacer member 121 arranged on the outer surface of the housing member 70. Since the convex portion 120 is a spacer member 121 arranged on the outer surface of the housing member 70, the position of the spacer member 121 is changed to change the position where the temperature is higher or lower than the other parts of the inclusion 100. Is possible.
  • the housing member 70 has a plurality of partial housing members 71, 72, 73 arranged side by side in the longitudinal direction of the mold 20, and the spacer member 121 includes the partial housing members 71, It is preferably arranged in at least one of 72 and 73. Since the spacer member 121 is arranged in at least one of the partial housing members 71, 72, 73, it becomes easy to change the position of the convex portion 120 in the housing member 70, and the inclusion 100 by the heat jacket 30 It becomes easy to control the place where the temperature is desired to be higher than other parts when heating and the place where the temperature is desired to be lower than other parts when the inclusion 100 is cooled by the heat jacket 30.
  • the convex portion 120 preferably extends over the entire circumference of the housing member 70. Since the convex portion 120 extends over the entire circumference of the housing member 70, the entire circumference of the housing member 70 is likely to be in close contact with the inner circumference of the heat jacket 30 at the portion where the convex portion 120 is arranged. Therefore, the temperature of the heat jacket 30 is easily transmitted to the entire circumference of the inclusion 100 located at the portion where the convex portion 120 is arranged, and the inclusion 100 can be efficiently heated and cooled.
  • the convex portion 120 extends all around at least one of the partial housing members 71, 72, 73.
  • the convex portion 120 has the convex portion 120 because the convex portion 120 extends over the entire circumference of at least one mold 20 of the partial housing members 71, 72, 73. It is easier to keep the temperature higher than other parts when heating and lower when cooling.
  • FIG. 5 is a VV cross-sectional view of the inclusion 100 shown in FIG.
  • the lumen of the mold 20 has a columnar portion 21 and a conical portion 22 existing on one end side and the other end side of the columnar portion 21, and the convex portion 120. Is preferably arranged in at least a part of the portion corresponding to the columnar portion 21.
  • the columnar portion 21 of the mold 20 contributes to the formation of the straight tube portion of the resin medical balloon, and the cone-shaped portion 22 of the mold 20 is distal and proximal to the straight tube portion of the resin medical balloon. Contributes to the formation of the tapered portion of the resin medical balloon arranged in.
  • the convex portion 120 is arranged at least a part of the portion corresponding to the columnar portion 21, the portion that becomes the straight tube portion of the resin medical balloon after molding is more than the other portion when the inclusion 100 is heated. It can be heated to a high temperature, and when the inclusion 100 is cooled, it can be cooled to a lower temperature than other parts. Therefore, for example, a resin medical balloon in which the straight tube portion is thinned so that the straight tube portion can be easily expanded, or a resin medical balloon in which the straight tube portion has a high hardness and the dilated stress of the stenotic portion of the blood vessel is high. Can be manufactured.
  • the lumen of the mold 20 has a columnar portion 21 and a conical portion 22 existing on one end side and the other end side of the columnar portion 21, and has a convex portion. It is also preferable that 120 is arranged in at least a part of the portion corresponding to the conical portion 22.
  • the portion that becomes the tapered portion of the resin medical balloon after molding is more than the other portion when the inclusion 100 is heated. It can be heated to a high temperature, and when cooled, it can be cooled to a lower temperature than other parts.
  • the heat jacket 30 preferably has a plurality of partial heat jackets. That is, the heat jacket 30 is preferably composed of a plurality of partial heat jackets. Since the heat jacket 30 has a plurality of partial heat jackets, the heat jacket 30 can be divided, and the mold 20 can be easily arranged inside the heat jacket 30.
  • a plurality of partial heat jackets may be arranged in the circumferential direction of the mold 20, or a plurality of partial heat jackets may be arranged in the axial direction of the mold 20.
  • the heat jacket 30 can have a semi-cracked structure, and the mold 20 can be easily arranged inside the heat jacket 30.
  • the temperature of each partial heat jacket can be set, and the heating temperature or the cooling temperature of the mold 20 can be set in the axial direction of the mold 20. It can be different.
  • the heat jacket 30 includes a first partial heat jacket 31 on one side of the mold 20 and a second partial heat jacket 32 on the other side of the mold 20. It is preferable that the inclusion 100 is pressed by the first partial heat jacket 31 and the second partial heat jacket 32 approaching each other. Adjusting the distance between the first partial heat jacket 31 and the second partial heat jacket 32 by pressing the inclusion 100 by bringing the first partial heat jacket 31 and the second partial heat jacket 32 close to each other. This makes it possible to adjust the pressure that the inner surface of the heat jacket 30 receives from the inclusion 100. Therefore, it becomes easy for the heat jacket 30 to press the inclusion 100.
  • the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other.
  • the heat jacket 30 has a structure that can be opened and closed on one side and the other side of the mold 20. As a result, it becomes easy to arrange and remove the mold 20 inside the heat jacket 30, and it is possible to improve the efficiency of manufacturing the resin medical balloon.
  • the first partial heat jacket 31 and the second partial heat jacket 32 are connected via a cylinder, via a hinge. Methods such as connecting can be mentioned. Above all, it is preferable that the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder. Since the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder, the heat jacket 30 can be opened and closed by the cylinder, and the opening and closing operation of the heat jacket 30 is easy and reliable. It becomes.
  • first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder, the first partial heat jacket 31 and the second partial heat jacket 32 are included in the mold 20 and the like. It becomes possible to control the force of pressing against an object.
  • Examples of the type of cylinder include an air cylinder, a hydraulic cylinder, an electric cylinder, and the like.
  • the heat jacket 30 has a distal partial heat jacket 33 and a proximal partial heat jacket 34 arranged apart from each other in the longitudinal direction of the mold 20.
  • the heat jacket 30 has a distal partial heat jacket 33 and a proximal partial heat jacket 34 arranged apart from each other in the longitudinal direction of the mold 20, the distal partial heat jacket 33 And the proximal side partial heat jacket 34 can be easily set to different temperatures. Therefore, the heating temperature or the cooling temperature of the resin tubular body 10 can be set to a different temperature depending on each part.
  • the thermal jacket 30 has a distal partial thermal jacket 33 and a proximal partial thermal jacket 34 that are spaced apart from each other in the longitudinal direction of the mold 20, the distal partial thermal jacket 33 and The distance from the proximal partial heat jacket 34 is preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more.
  • the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be set. An appropriate distance can be taken, and the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be made less likely to be affected by temperature.
  • the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 is preferably 20 mm or less, more preferably 18 mm or less, and even more preferably 15 mm or less.
  • the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be set. It is possible to prevent a large amount of external air from entering between the mold 20 and the heat jacket 30 due to the gap becoming too large, and to improve the efficiency of heating and cooling the mold 20 by the heat jacket 30.
  • the heat jacket 30 may further have a partial heat jacket on the distal side of the distal partial heat jacket 33, and further has a partial heat jacket on the proximal side of the proximal partial heat jacket 34. You may have. Further, the number of partial heat jackets on one side of the mold 20 and the number of partial heat jackets on the other side of the mold 20 may be the same or different.
  • the manufacturing apparatus 1 has a pore-containing metal body 50 which is outside the mold 20 and is arranged inside the heat jacket 30. .. That is, it is preferable that the pore-containing metal body 50 is provided between the mold 20 and the heat jacket 30.
  • the pore-containing metal body 50 is a metal body having a plurality of pores.
  • the pore-containing metal body 50 By arranging the pore-containing metal body 50 outside the mold 20 and inside the heat jacket 30, the pore portion of the pore-containing metal body 50 sandwiched between the mold 20 and the heat jacket 30 is crushed and the pore-containing metal body 50 is crushed.
  • the body 50 is deformed, and the pore-containing metal body 50 can fill the gap existing between the mold 20 and the heat jacket 30.
  • the temperature of the heat jacket 30 can be easily transmitted to the mold 20 uniformly, so that the heat jacket 30 can uniformly heat or cool the mold 20, and the resin medical treatment with less uneven wall thickness and less bending. Balloons can be manufactured.
  • the amount of elastic deformation per unit thickness of the pore-containing metal body 50 is preferably 3 ⁇ m / mm or more, and the thermal conductivity of the pore-containing metal body 50 is preferably 0.325 W / m ⁇ K or more.
  • the amount of elastic deformation per unit thickness of the pore-containing metal body 50 is 3 ⁇ m / mm or more, and the thermal conductivity of the pore-containing metal body 50 is 0.325 W / m ⁇ K or more, so that the pore-containing metal body 50 Will have both elastic deformability and thermal conductivity. Therefore, the pore-containing metal body 50 can sufficiently fill the gap between the mold 20 and the heat jacket 30, and the temperature of the heat jacket 30 can be sufficiently transmitted to the mold 20. Therefore, the mold 20 can be sufficiently filled. It becomes easier to heat or cool evenly.
  • a pressure of 100 N / cm 2 was applied to the pore-containing metal body 50 five times to compress the pore-containing metal body 50 five times. Will be measured later.
  • the amount of elastic deformation per unit thickness of the pore-containing metal body 50 is preferably 3 ⁇ m / mm or more, more preferably 3.5 ⁇ m / mm or more, and further preferably 4 ⁇ m / mm or more.
  • the upper limit of the amount of elastic deformation per unit thickness of the pore-containing metal body 50 can be, for example, 30 ⁇ m / mm or less, 25 ⁇ m / mm or less, and 20 ⁇ m / mm or less.
  • the thermal conductivity of the pore-containing metal body 50 is preferably 0.325 W / m ⁇ K or more, more preferably 0.412 W / m ⁇ K or more, and 0.5 W / m ⁇ K or more. Is even more preferable.
  • the pore-containing metal body 50 has a structure having pores but has sufficient thermal conductivity, and the temperature of the heat jacket 30 is increased. Is easily transmitted to the mold 20, and the heat jacket 30 makes it possible to efficiently heat or cool the mold 20.
  • the upper limit of the thermal conductivity of the pore-containing metal body 50 can be, for example, 400 W / m ⁇ K or less, 300 W / m ⁇ K or less, and 200 W / m ⁇ K or less.
  • the amount of plastic deformation per unit thickness of the pore-containing metal body 50 is preferably 100 ⁇ m / mm or less. Since the amount of plastic deformation per unit thickness of the pore-containing metal body 50 is 100 ⁇ m / mm or less, when the pore-containing metal body 50 is arranged between the mold 20 and the heat jacket 30, the pore-containing metal body 50 is formed. The 50 is less likely to undergo large plastic deformation, and the pore-containing metal body 50 can sufficiently fill the gap between the mold 20 and the heat jacket 30.
  • the amount of plastic deformation per unit thickness of the pore-containing metal body 50 is preferably 100 ⁇ m / mm or less, more preferably 90 ⁇ m / mm or less, and further preferably 85 ⁇ m / mm or less.
  • the pore-containing metal body 50 is less likely to be plastically deformed, and the outer side of the mold 20 and the thermal jacket When the pore-containing metal body 50 is arranged inside the 30, the pore-containing metal body 50 easily fills the gap between the mold 20 and the heat jacket 30.
  • the lower limit of the amount of plastic deformation per unit thickness of the pore-containing metal body 50 can be, for example, 1 ⁇ m / mm or more, 3 ⁇ m / mm or more, and 5 ⁇ m / mm or more.
  • the metal content of the material constituting the pore-containing metal body 50 is preferably 90% or more. Since the metal content of the material constituting the pore-containing metal body 50 is 90% or more, the strength of the pore-containing metal body 50 is high, and the pore-containing metal body 50 is outside the mold 20 and the heat jacket 30 is used. It is possible to repeatedly place it inward. Further, since the thermal conductivity of the pore-containing metal body 50 can be increased, the temperature of the heat jacket 30 can be efficiently transmitted to the mold 20, and the production efficiency of the resin medical balloon can be improved.
  • the metal content of the material constituting the pore-containing metal body 50 is preferably 90% or more, more preferably 93% or more, and further preferably 95% or more.
  • the strength and thermal conductivity of the pore-containing metal body 50 can be increased.
  • the metal content of the material constituting the pore-containing metal body 50 is preferably high, and the upper limit of the metal content can be, for example, 100% or less, 99.5% or less, 99% or less.
  • the number of pores that the pore-containing metal body 50 has per inch is preferably 8 ppi or more and 8500 ppi or less.
  • the number of pores that the pore-containing metal body 50 has per inch is 8 ppi or more and 8500 ppi or less, the pore-containing metal body 50 is easily elastically deformed, and the mold 20 and the thermal jacket 30 It becomes easier to fill the gaps that exist between the two.
  • the number of pores that the pore-containing metal body 50 has per inch is preferably 8 ppi or more, more preferably 50 ppi or more, and further preferably 100 ppi or more.
  • the elasticity of the pore-containing metal body 50 can be increased.
  • the number of pores that the pore-containing metal body 50 has per inch is preferably 8500 ppi or less, more preferably 8000 ppi or less, and further preferably 7500 ppi.
  • the temperature of the heat jacket 30 can be increased while the pore-containing metal body 50 has sufficient elasticity. It becomes easy to be transmitted to the mold 20 through the pore-containing metal body 50, and it becomes possible to improve the efficiency of manufacturing a resin medical balloon.
  • the pore-containing metal body 50 preferably contains at least one of gold, platinum, silver, copper, aluminum, stainless steel, titanium, molybdenum, tantalum, nickel and cobalt. Since the pore-containing metal body 50 contains at least one of gold, platinum, silver, copper, aluminum, stainless steel, titanium, molybdenum, tantalum, nickel and cobalt, the pore-containing metal body 50 has elasticity and thermal conductivity. It can be sufficiently possessed.
  • the pore-containing metal body 50 more preferably contains at least one of silver, copper and nickel, and more preferably contains silver. Since the pore-containing metal body 50 contains at least one of silver, copper, and nickel, the pore-containing metal body 50 is easy to manufacture and handle, and the pores have a good balance between elasticity and thermal conductivity. It becomes the contained metal body 50.
  • the pore-containing metal body 50 may be arranged in the entire axial direction of the mold 20, but it is preferable that the metal body 50 is arranged in a part of the mold 20 in the axial direction. Since the pore-containing metal body 50 is arranged in a part of the mold 20 in the axial direction, there is no gap between the mold 20 and the heat jacket 30, and the mold 20 and the heat jacket 30 are made of the pore-containing metal. A portion in contact with the body 50 can be provided in the axial direction of the mold 20. The temperature of the heat jacket 30 can be transmitted to the mold 20 from the portion where the mold 20 and the heat jacket 30 are in contact with each other via the pore-containing metal body 50, and the heat jacket 30 can be uniformly heated or cooled.
  • the pore-containing metal body 50 is also arranged between the heat jacket 30 and the temperature control object 40. Since the pore-containing metal body 50 is arranged between the heat jacket 30 and the temperature control object 40, the pore-containing metal body 50 can fill the gap between the heat jacket 30 and the temperature control object 40. .. Therefore, the temperature of the temperature control object 40 is easily transmitted to the heat jacket 30, and the heat diffusion ability of the pore-containing metal body 50 in the surface direction is high, so that the temperature of the heat jacket 30 can be quickly made constant.
  • the pore-containing metal body 50 is arranged inside the heat jacket 30 and outside the housing member 70. That is, it is preferable that the pore-containing metal body 50 is arranged between the heat jacket 30 and the housing member 70. Since the pore-containing metal body 50 is arranged inside the heat jacket 30 and outside the housing member 70, the pore-containing metal body 50 fills the gap between the heat jacket 30 and the housing member 70, and heat is generated. The temperature of the jacket 30 can be uniformly transmitted to the housing member 70. As a result, the mold 20 can be uniformly heated or cooled via the housing member 70.
  • the material constituting the housing member 70 is, for example, a metal such as iron, copper, aluminum or an alloy thereof, an aromatic polyetherketone resin such as polyetheretherketone (PEEK), a polyimide resin, or ethylene-tetrafluoroethylene. Examples thereof include synthetic resins such as fluororesins such as copolymers (ETFE).
  • the material constituting the housing member 70 is preferably a metal, and more preferably the same metal as the metal constituting the mold 20. Since the material constituting the housing member 70 is metal, the temperature of the heat jacket 30 is easily transmitted to the housing member 70, and the temperature of the heat jacket 30 is easily transmitted uniformly to the mold 20 via the housing member 70.
  • the first method for manufacturing a balloon catheter of the present invention is a method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. Therefore, it has a step of inserting a resin tubular body into a mold and a step of arranging the mold inside the heat jacket, and the heat jacket exists inside the heat jacket. It presses the inclusions, and the pressure received from the inclusions on the inner surface of the thermal jacket differs depending on the position of the inner surface of the thermal jacket.
  • the second method for manufacturing a balloon catheter of the present invention is a method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. It has a process of inserting a resin tubular body into a mold and a process of arranging the mold inside the heat jacket, and the inclusions are arranged inside the heat jacket.
  • the object has a recess on the outer surface, the depth of the recess is 10 ⁇ m or more, and the area where the inner surface of the heat jacket and the inclusions are in contact varies depending on the position of the inner surface of the heat jacket. It is characterized by being.
  • the resin medical balloon may be simply referred to as a "balloon".
  • the distal side refers to the direction of the treatment object (affected part) side with respect to the extending direction of the balloon, and the proximal side is opposite to the distal side, that is, with respect to the extending direction of the balloon. It points in the direction of the user, that is, the operator's hand side. Further, the direction from the proximal side to the distal side of the balloon is referred to as a longitudinal direction.
  • the balloon catheter is configured so that fluid is supplied to the inside of the balloon through the shaft, and the expansion and contraction of the balloon can be controlled using an indeflator (balloon pressurizer).
  • the fluid may be a pressure fluid pressurized by a pump or the like.
  • the shaft extends in the perspective direction, and a fluid flow path is provided inside. Further, it is preferable that the shaft has a guide wire insertion passage inside.
  • a configuration in which the shaft has a fluid flow path and a guide wire insertion passage inside includes, for example, a configuration in which the shaft has an outer tube and an inner tube. With such a configuration of the shaft, the inner tube can function as an insertion passage for the guide wire, and the space between the inner tube and the outer tube can function as a fluid flow path. If the shaft has an outer tube and an inner tube, the inner tube extends from the distal end of the outer tube and penetrates the balloon in the perspective direction, the distal side of the balloon is joined to the inner tube and closer to the balloon. It is preferable that the position side is joined to the outer tube.
  • the present invention is a so-called over-the-wire type balloon catheter in which a wire is inserted from the distal side to the proximal side of the shaft, and a so-called rapid exchange type in which the wire is inserted halfway from the distal side to the proximal side of the shaft. It can be applied to any of the balloon catheters of.
  • the balloon catheter may have a hub on the proximal side of the shaft to deliver fluid to the shaft.
  • the hub preferably has a fluid injection section that communicates with the flow path of the fluid supplied to the inside of the balloon. Since the balloon catheter has a hub having a fluid injection portion, it is easy to supply fluid to the inside of the balloon to expand and contract the balloon.
  • the balloon catheter is an over-the-wire type
  • the joining between the shaft and the hub includes, for example, adhesion with an adhesive, welding, and the like. Above all, it is preferable that the shaft and the hub are joined by adhesion.
  • adhering the shaft and the hub for example, the shaft is made of a highly flexible material and the hub is made of a highly rigid material. Even if they are different, it is possible to increase the joint strength between the shaft and the hub and increase the durability of the balloon catheter.
  • the material constituting the shaft examples include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Above all, the material constituting the shaft is preferably at least one of a polyamide resin, a polyolefin resin, and a fluorine resin. When the material constituting the shaft is at least one of a polyamide resin, a polyolefin resin, and a fluorine resin, the slipperiness of the surface of the shaft can be improved and the insertability of the balloon catheter into a blood vessel can be improved. ..
  • the balloon is provided at the distal end of the shaft.
  • Examples of joining the balloon and the shaft include adhesion and welding with an adhesive, and caulking by attaching a ring-shaped member to a portion where the balloon and the shaft overlap.
  • it is preferable that the balloon and the shaft are joined by welding. Since the balloon and the shaft are welded together, the joint strength between the balloon and the shaft can be increased, and even if the balloon is repeatedly expanded and contracted, the joint between the balloon and the shaft is less likely to come off.
  • the balloon preferably has a straight pipe portion, a proximal taper portion connected to the proximal side of the straight pipe portion, and a distal taper portion connected to the distal side of the straight pipe portion. It is preferable that the proximal taper portion and the distal taper portion are formed so as to reduce the diameter as the distance from the straight pipe portion increases. Since the balloon has a straight tube portion, the straight tube portion is sufficiently in contact with the narrowed portion, and the narrowed portion can be easily expanded. Further, by having a proximal taper and a distal taper whose outer diameter becomes smaller as the balloon moves away from the straight tube, the balloon is distal when the balloon is contracted and wound around the shaft. Since the outer diameters of the end portion and the proximal end portion can be reduced to reduce the step between the shaft and the balloon, the balloon can be easily inserted in the longitudinal direction. In the present invention, the inflatable portion is regarded as a balloon.
  • the outer diameter of the balloon is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 1.5 mm or more.
  • the outer diameter of the balloon is preferably 35 mm or less, more preferably 30 mm or less, and even more preferably 25 mm or less.
  • the length of the balloon in the longitudinal direction is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more.
  • the length of the balloon in the longitudinal direction is preferably 300 mm or less, more preferably 200 mm or less, and even more preferably 100 mm or less.
  • the thickness of the balloon is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more.
  • the upper limit of the thickness of the balloon can be set according to the application of the balloon catheter, and can be, for example, 100 ⁇ m or less, 90 ⁇ m or less, and 80 ⁇ m or less.
  • the first and second balloon catheter manufacturing methods of the present invention include a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket.
  • the mold has a space inside that has the same shape as the outer shape of the resin medical balloon.
  • the resin tubular body is arranged in the internal space of the mold. After the step of inserting the resin tubular body into the mold, the resin tubular body is blow-molded to manufacture a balloon.
  • the heat jacket has a structure in which a mold can be placed inside, and the temperature of the contained mold is adjusted. In the process of arranging the mold inside the heat jacket, the heat jacket heats and cools the mold at least one of them.
  • the resin tubular body when the heat jacket heats the mold, the resin tubular body is blow-molded after the mold is heated by the heat jacket. Further, when the heat jacket cools the mold, it is possible to blow-mold the resin tubular body and then cool the mold with the heat jacket to cool the molded balloon.
  • the heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket is heat. It depends on the position of the inner surface of the jacket.
  • the pressure received from the inclusions is higher than the other parts.
  • the inner side part of the heat jacket is in closer contact with the inclusions than the other parts, making it easier for the temperature of the heat jacket to be transmitted to the inclusions. .. Therefore, the pressure that the inner surface of the heat jacket receives from the inclusions differs depending on the position of the inner surface of the heat jacket, so that the inclusions located on the inner surface of the heat jacket that receives high pressure from the inclusions.
  • an inclusion having a recess of 10 ⁇ m or more in depth is arranged on the outer surface, and the area where the inner surface of the heat jacket and the inclusion are in contact with each other is heat. Since it differs depending on the position of the inner surface of the jacket, the portion of the inclusion located in the recess is farther from the heat jacket than the other parts, and it becomes difficult to contact the heat jacket. The area in contact with the inner surface of the thermal jacket is reduced. Therefore, the temperature of the heat jacket is less likely to be transmitted to the portion of the inclusion located in the recess than to the other portion. As a result, when the heat jacket is heating the inclusions, it can be cooler than the other parts, and when the heat jacket is cooling the inclusions, it can be hotter than the other parts.
  • the first resin medical balloon manufacturing apparatus of the present invention has a mold in which a resin tubular body is inserted and a heat jacket containing the mold, and has heat.
  • the jacket presses the inclusions existing inside the heat jacket, and the pressure received by the inner side surface of the heat jacket from the inclusions differs depending on the position of the inner side surface of the heat jacket.
  • the first method for manufacturing a balloon catheter of the present invention includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket. Presses the inclusions existing inside the heat jacket, and the pressure received by the inner side surface of the heat jacket from the inclusions differs depending on the position of the inner side surface of the heat jacket. To do.
  • the heat jacket presses the inclusions existing inside the heat jacket, and heat is generated.
  • the pressure that the inner surface of the jacket receives from the inclusions depends on the position of the inner surface of the thermal jacket, so the inclusions that are located on the inner side of the thermal jacket where the pressure is higher from the inclusions are higher than the other parts. Since the temperature of the heat jacket is easily transmitted, it is possible to make the temperature higher than other parts when the heat jacket is heating the inclusions, and when the heat jacket is cooling the inclusions. Can be colder than other parts.
  • the second resin medical balloon manufacturing apparatus of the present invention has a mold in which a resin tubular body is inserted and a heat jacket containing the mold, and is contained inside the heat jacket. An object is arranged, and the inclusion is characterized by having a recess extending in the circumferential direction of the inclusion on the outer surface. Further, the second method for manufacturing a balloon catheter of the present invention includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside the heat jacket, and the heat jacket.
  • the inclusions are arranged inside the jacket, the inclusions have recesses on the outer surface, the depth of the recesses is 10 ⁇ m or more, and the area where the inner side surface of the heat jacket and the inclusions are in contact with each other is It is characterized in that it differs depending on the position of the inner surface of the heat jacket.
  • the inclusions arranged inside the heat jacket have recesses on the outer surface and heat. Since the area of contact between the inner surface of the jacket and the inclusions differs depending on the position of the inner surface of the thermal jacket, the portion of the inclusions located in the recess is the temperature of the thermal jacket more than the other parts. Is difficult to transmit, so when the heat jacket is heating the inclusions, it can be cooler than the other parts, and when the heat jacket is cooling the inclusions, it can be hotter than the other parts.
  • Resin medical balloon manufacturing equipment 10 Resin tubular body 20: Mold 21: Columnar part 22: Conical part 30: Heat jacket 31: First part heat jacket 32: Second part heat jacket 33: Distal partial heat jacket 34: Proximal partial heat jacket 40: Temperature control 50: Pore-containing metal body 70: Housing member 71: Partial housing member 72: Partial housing member 73: Partial housing member 100: Inclusion 110: Concave part 120: Convex part 121: Spacer member

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided is a method for manufacturing a balloon catheter with which the temperature a specific portion of a cylindrical resin body can be made higher or lower than those of other portions. This method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided to the distal end of the shaft comprises: a step for inserting a cylindrical resin body (10) into a mold (20); and a step for disposing the mold (20) on the inner side of a heat jacket (30). The heat jacket (30) presses an inclusion (100) present on the inner side of the heat jacket (30). The pressure received by the inner surface of the heat jacket (30) from the inclusion (100) differs depending on the position of the inner surface of the heat jacket (30).

Description

バルーンカテーテルの製造方法および樹脂製医療用バルーンの製造装置Balloon catheter manufacturing method and resin medical balloon manufacturing equipment
 本発明は、樹脂製である医療用バルーンを有するバルーンカテーテルの製造方法、および医療用バルーンの製造装置に関する。 The present invention relates to a method for manufacturing a balloon catheter having a medical balloon made of resin, and a device for manufacturing a medical balloon.
 体内で血液が循環するための流路である血管に狭窄が生じ、血液の循環が滞ることにより、様々な疾患が発生することが知られている。特に、心臓に血液を供給する冠状動脈に狭窄が生じると、狭心症、心筋梗塞等の重篤な疾病をもたらすおそれがある。このような血管の狭窄部を治療する方法として、PTA、PTCAといった血管形成術等の、バルーンカテーテルを用いて狭窄部を拡張させる手技がある。血管形成術は、バイパス手術のような開胸術を必要としない低侵襲療法であり、広く行われている。 It is known that various diseases occur due to stenosis of blood vessels, which is a flow path for blood circulation in the body, and stenosis of blood circulation. In particular, stenosis of the coronary arteries that supply blood to the heart may lead to serious diseases such as angina pectoris and myocardial infarction. As a method for treating such a stenotic part of a blood vessel, there is a technique for expanding the stenotic part using a balloon catheter such as angioplasty such as PTA and PTCA. Angioplasty is a minimally invasive therapy that does not require thoracotomy, such as bypass surgery, and is widely practiced.
 バルーンカテーテルに用いられる樹脂製の医療用バルーンの製造方法として、例えば、特許文献1には、複屈折性の高分子材料から構成される管状パリソンをブロー成形してバルーンの拡張自在の筒状部を成形する成形工程を有し、成形工程において筒状部の周方向配向分配数を筒状部の軸方向配向分配数によって除して算出される配向分配数の比率が2未満となるように筒状部が成形されるバルーンの製造方法が記載され、特許文献2には、チューブ状パリソンの両側を所定割合で延伸し、中央部に所定幅の未延伸部を残した状態の準備パリソンを形成して金型内に装着し、二次転移温度以上で一次転移温度以下の第一成形温度に加熱し、準備パリソン内に加圧流体を流入させると共に一次延伸して、金型内面形状に合致するバルーン部とテーパー部と小径接続部を有するバルーン形状に一次成形し、その後で金型を第一成形温度以上で一次転移温度以下の第二成形温度に加熱する工程と、前記パリソンの両側を再延伸する工程によりテーパー部および接続部を肉薄とする二次成形を行うことを特徴とするカテーテル用バルーンの製造方法が記載され、特許文献3には、長手方向に垂直な断面における円周部に、剛性の高い剛直部と剛性の低い柔軟部を有するバルーンであって、剛直部と柔軟部が同一材料で構成され、かつ、収縮させた際に柔軟部が翼部となって折畳まれることを特徴とするバルーンカテーテル用バルーンであって、成形した第1のバルーンに対して局所領域に加熱処理を行い、非加熱部と加熱部で剛直性の異なる部位を有する第2のバルーン12を作製することが記載され、特許文献4には、第1のバルーンを成形する第1の工程と第1のバルーンの長手方向に沿った局所領域に加熱処理を行い、非加熱部よりも剛直性を有する加熱部を形成させる第2の工程を含むバルーンの製造方法が記載され、特許文献5には、シャフトチューブと、該シャフトチューブに形成されたメインルーメンと、該シャフトチューブの壁厚内に設けられ、該シャフトチューブの先端側外周部に開口した少なくとも1つのサブルーメンと、該シャフトチューブの先端側外周部に、シャフトチューブの先端側外周部を囲むように融着され、該サブルーメンと連通するバルーンとを有するバルーンカテーテルの製造方法が記載されている。 As a method for manufacturing a resin-made medical balloon used for a balloon catheter, for example, Patent Document 1 states that a tubular parison made of a biflexible polymer material is blow-molded to form an expandable tubular portion of the balloon. The ratio of the number of orientation distributions calculated by dividing the number of circumferential orientation distributions of the tubular part by the number of axial orientation distributions of the tubular part in the molding step is less than 2. A method for manufacturing a balloon in which a tubular portion is formed is described, and Patent Document 2 describes a prepared parison in which both sides of a tubular parison are stretched at a predetermined ratio and an unstretched portion having a predetermined width is left in the central portion. It is formed and mounted in the mold, heated to the primary molding temperature above the secondary transition temperature and below the primary transition temperature, and the pressurized fluid flows into the preparation parison and is primarily stretched to form the inner surface shape of the mold. A step of primary molding into a balloon shape having a matching balloon portion, a tapered portion, and a small diameter connection portion, and then heating the mold to a second molding temperature above the first molding temperature and below the primary transition temperature, and both sides of the parison. A method for manufacturing a balloon for a catheter, which comprises performing secondary molding in which a tapered portion and a connecting portion are thinned by a step of re-stretching, is described, and Patent Document 3 describes a circumference in a cross section perpendicular to the longitudinal direction. A balloon having a rigid portion with high rigidity and a flexible portion with low rigidity, and the rigid portion and the flexible portion are made of the same material, and when contracted, the flexible portion becomes a wing portion and is folded. A balloon for a balloon catheter, which is characterized by being rare, and is a second balloon in which a molded first balloon is heat-treated in a local region and has a portion having different rigidity between a non-heated portion and a heated portion. 12 is described, and Patent Document 4 describes that the first step of molding the first balloon and the local region along the longitudinal direction of the first balloon are heat-treated to be more than the non-heated portion. A method for manufacturing a balloon including a second step of forming a heating portion having rigidity is described, and Patent Document 5 describes a shaft tube, a main lumen formed on the shaft tube, and a wall thickness of the shaft tube. At least one sublumen provided inside and opened to the outer peripheral portion on the distal end side of the shaft tube and the outer peripheral portion on the distal end side of the shaft tube are fused so as to surround the outer peripheral portion on the distal end side of the shaft tube. A method of manufacturing a balloon catheter having a balloon communicating with a lumen is described.
国際公開第2014/141382号International Publication No. 2014/141382 特開2008-023270号公報Japanese Unexamined Patent Publication No. 2008-023270 特開2014-057793号公報Japanese Unexamined Patent Publication No. 2014-057793 特開2014-057792号公報Japanese Unexamined Patent Publication No. 2014-057792 特開平06-335530号公報Japanese Unexamined Patent Publication No. 06-335530
 樹脂製医療用バルーンの製造において、樹脂製筒状体を加熱して樹脂製筒状体を拡張させるための流体を樹脂製筒状体の内部に送り込む、所謂ブロー成形を行う際、樹脂製筒状体の最も高温である部分から拡張されることが多い。樹脂製筒状体において初めに拡張された部分は、バルーンの厚みが他の部分よりも薄くなりやすい。バルーンの厚みが他の場所よりも薄い部分は、バルーンを拡張させた際にバルーンの拡張の起点となる傾向にある。そのため、樹脂製医療用バルーンの製造時に、樹脂製筒状体を加熱する部分とその部分への加熱温度を制御することができれば、バルーンの拡張の起点を制御することができ、バルーンの取り扱い性を向上させることができる。また、樹脂製筒状体を加熱した後の冷却工程においても、樹脂製筒状体の特定の部分を他の部分よりも低い温度にすることにより、この特定の部分を急冷して硬度を他の部分よりも高め、その結果、バルーンの特定の箇所の拡張応力を高めるということも可能である。 In the manufacture of resin medical balloons, when performing so-called blow molding, in which a fluid for heating a resin tubular body to expand the resin tubular body is sent into the resin tubular body, the resin tubular body is manufactured. It often extends from the hottest part of the body. The initially expanded portion of the resin tubular body tends to have a thinner balloon than the other portions. A portion of the balloon that is thinner than elsewhere tends to be the starting point for the expansion of the balloon when it is expanded. Therefore, when the resin medical balloon is manufactured, if the portion for heating the resin tubular body and the heating temperature for the portion can be controlled, the starting point of expansion of the balloon can be controlled, and the balloon can be handled easily. Can be improved. Also, in the cooling process after heating the resin tubular body, the specific part of the resin tubular body is cooled to a lower temperature than the other parts, so that the specific part is rapidly cooled to increase the hardness. It is also possible to increase the extended stress at a specific part of the balloon as a result.
 しかしながら、特許文献1~5のようなバルーンの製造方法では、樹脂製筒状体の加熱および冷却時に、樹脂製筒状体の特定の部分の温度を他の部分の温度よりも高温あるいは低温となるように制御することは困難である。 However, in the balloon manufacturing methods as in Patent Documents 1 to 5, when the resin tubular body is heated and cooled, the temperature of a specific part of the resin tubular body is set to be higher or lower than the temperature of the other parts. It is difficult to control so that it becomes.
 本発明は、前記の事情に鑑みてなされたものであり、その目的は、樹脂製筒状体の特定の部分を他の部分よりも高温および低温とすることができるバルーンカテーテルの製造方法、および樹脂製医療用バルーンの製造装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a method for manufacturing a balloon catheter capable of making a specific part of a resin tubular body hotter and colder than other parts, and a method for manufacturing a balloon catheter. The purpose of the present invention is to provide a manufacturing apparatus for a resin medical balloon.
 前記課題を解決することができた第1のバルーンカテーテルの製造方法は、長手方向に延在しているシャフトと、シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なるものであることを特徴とするものである。 The first method for manufacturing a balloon catheter that has been able to solve the above problems includes a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. A method for manufacturing a balloon catheter, which comprises a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket, and the heat jacket is made of the heat jacket. It presses the inclusions existing inside, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket.
 本発明のバルーンカテーテルの製造方法において、熱ジャケットの内側面が内包物から受ける圧力は、金型の長手方向の位置によって異なるものであることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position in the longitudinal direction of the mold.
 前記課題を解決することができた第2のバルーンカテーテルの製造方法は、長手方向に延在しているシャフトと、シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットの内側に内包物が配置されており、内包物は、外側面に凹部を有し、凹部の深さは、10μm以上であり、熱ジャケットの内側面と内包物とが接触している面積は、熱ジャケットの内側面の位置によって異なるものであることを特徴とするものである。 A method for manufacturing a second balloon catheter that has been able to solve the above problems includes a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. A method for manufacturing a balloon catheter, which includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket, and inclusions are contained inside the heat jacket. The inclusions have recesses on the outer surface, the depth of the recesses is 10 μm or more, and the area in contact between the inner surface of the thermal jacket and the inclusions is the inner surface of the thermal jacket. It is characterized in that it differs depending on the position of.
 本発明のバルーンカテーテルの製造方法において、内包物は、一つまたは複数の金型の少なくとも一部を内包するハウジング部材であることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the inclusion is preferably a housing member that includes at least a part of one or a plurality of molds.
 本発明のバルーンカテーテルの製造方法において、ハウジング部材は、外側面に凸部を有していることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the housing member has a convex portion on the outer surface.
 本発明のバルーンカテーテルの製造方法において、凸部は、ハウジング部材の外側面に配置されているスペーサー部材であることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the convex portion is a spacer member arranged on the outer surface of the housing member.
 本発明のバルーンカテーテルの製造方法において、ハウジング部材は、金型の長手方向に並んで配置されている複数の部分ハウジング部材を有しており、スペーサー部材は部分ハウジング部材の少なくともいずれか一つに配置されていることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is attached to at least one of the partial housing members. It is preferably arranged.
 本発明のバルーンカテーテルの製造方法において、凸部は、ハウジング部材の全周に延在していることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the convex portion extends over the entire circumference of the housing member.
 本発明のバルーンカテーテルの製造方法において、金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、凸部は、柱状部に対応する部分の少なくとも一部に配されていることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the lumen of the mold has a columnar portion and a cone-shaped portion existing on one end side and the other end side of the columnar portion, and the convex portion has a convex portion. It is preferably arranged in at least a part of the portion corresponding to the columnar portion.
 本発明のバルーンカテーテルの製造方法において、金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、凸部は、錐状部に対応する部分の少なくとも一部に配されていることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion has a convex portion. It is preferably arranged in at least a part of the portion corresponding to the cone-shaped portion.
 本発明のバルーンカテーテルの製造方法において、熱ジャケットは、複数の部分熱ジャケットを有していることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the heat jacket has a plurality of partial heat jackets.
 本発明のバルーンカテーテルの製造方法において、熱ジャケットは、金型の一方側面側にある第1部分熱ジャケットと、金型の他方側面側にある第2部分熱ジャケットと、を有しており、第1部分熱ジャケットと第2部分熱ジャケットとが互いに接近することにより内包物が押圧されることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. It is preferable that the inclusions are pressed by the first partial heat jacket and the second partial heat jacket approaching each other.
 本発明のバルーンカテーテルの製造方法において、第1部分熱ジャケットと第2部分熱ジャケットは、互いに接続されていることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the first partial heat jacket and the second partial heat jacket are connected to each other.
 本発明のバルーンカテーテルの製造方法において、熱ジャケットは、金型の長手方向に互いに離間して配置されている遠位側部分熱ジャケットと近位側部分熱ジャケットとを有していることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable that the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. ..
 本発明のバルーンカテーテルの製造方法において、金型の外方であって、かつ熱ジャケットの内方に配置されている気孔含有金属体を有していることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, it is preferable to have a pore-containing metal body located on the outside of the mold and on the inside of the heat jacket.
 本発明のバルーンカテーテルの製造方法において、気孔含有金属体の単位厚みあたりの弾性変形量は、3μm/mm以上であり、気孔含有金属体の熱伝導率は、0.325W/m・K以上であることが好ましい。 In the method for manufacturing a balloon catheter of the present invention, the amount of elastic deformation per unit thickness of the pore-containing metal body is 3 μm / mm or more, and the thermal conductivity of the pore-containing metal body is 0.325 W / m · K or more. It is preferable to have.
 前記課題を解決することができた第1の樹脂製医療用バルーンの製造装置は、樹脂製筒状体が内挿される金型と、金型を内包する熱ジャケットと、を有しており、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なるものであることを特徴とするものである。 The first resin medical balloon manufacturing apparatus capable of solving the above-mentioned problems has a mold in which a resin tubular body is inserted and a heat jacket containing the mold. The heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket. It is a feature.
 本発明の樹脂製医療用バルーンの製造装置において、熱ジャケットの内側面が内包物から受ける圧力は、金型の長手方向の位置によって異なるものであることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, it is preferable that the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position in the longitudinal direction of the mold.
 前記課題を解決することができた第2の樹脂製医療用バルーンの製造装置は、樹脂製筒状体が内挿される金型と、金型を内包する熱ジャケットと、を有しており、熱ジャケットの内側に内包物が配置されており、内包物は、外側面に凹部を有し、凹部の深さは、10μm以上であり、熱ジャケットの内側面と内包物とが接触している面積は、熱ジャケットの内側面の位置によって異なるものであることを特徴とするものである。 The second resin medical balloon manufacturing apparatus capable of solving the above-mentioned problems has a mold in which a resin tubular body is inserted and a heat jacket containing the mold. The inclusions are arranged inside the heat jacket, and the inclusions have recesses on the outer surface, the depth of the recesses is 10 μm or more, and the inner side surface of the heat jacket is in contact with the inclusions. The area is characterized in that it varies depending on the position of the inner surface of the thermal jacket.
 本発明の樹脂製医療用バルーンの製造装置において、内包物は、一つまたは複数の金型の少なくとも一部を内包するハウジング部材であることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the inclusion is preferably a housing member that includes at least a part of one or a plurality of molds.
 本発明の樹脂製医療用バルーンの製造装置において、ハウジング部材は、外側面に凸部を有していることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, it is preferable that the housing member has a convex portion on the outer surface.
 本発明の樹脂製医療用バルーンの製造装置において、凸部は、ハウジング部材の外側面に配置されているスペーサー部材であることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the convex portion is preferably a spacer member arranged on the outer surface of the housing member.
 本発明の樹脂製医療用バルーンの製造装置において、ハウジング部材は、金型の長手方向に並んで配置されている複数の部分ハウジング部材を有しており、スペーサー部材は部分ハウジング部材の少なくともいずれか一つに配置されていることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is at least one of the partial housing members. It is preferable that they are arranged in one.
 本発明の樹脂製医療用バルーンの製造装置において、凸部は、ハウジング部材の全周に延在していることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, it is preferable that the convex portion extends over the entire circumference of the housing member.
 本発明の樹脂製医療用バルーンの製造装置において、金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、凸部は、柱状部に対応する部分の少なくとも一部に配されていることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and is convex. The portions are preferably arranged in at least a part of the portions corresponding to the columnar portions.
 本発明の樹脂製医療用バルーンの製造装置において、金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、凸部は、錐状部に対応する部分の少なくとも一部に配されていることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the cavity of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and is convex. The portions are preferably arranged in at least a part of the portions corresponding to the cone-shaped portions.
 本発明の樹脂製医療用バルーンの製造装置において、熱ジャケットは、複数の部分熱ジャケットを有していることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the heat jacket preferably has a plurality of partial heat jackets.
 本発明の樹脂製医療用バルーンの製造装置において、熱ジャケットは、金型の一方側面側にある第1部分熱ジャケットと、金型の他方側面側にある第2部分熱ジャケットと、を有しており、第1部分熱ジャケットと第2部分熱ジャケットとが互いに接近することにより内包物が押圧されることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. It is preferable that the inclusions are pressed by the first partial heat jacket and the second partial heat jacket approaching each other.
 本発明の樹脂製医療用バルーンの製造装置において、第1部分熱ジャケットと第2部分熱ジャケットは、互いに接続されていることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, it is preferable that the first partial heat jacket and the second partial heat jacket are connected to each other.
 本発明の樹脂製医療用バルーンの製造装置において、熱ジャケットは、金型の長手方向に互いに離間して配置されている遠位側部分熱ジャケットと近位側部分熱ジャケットとを有していることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. Is preferable.
 本発明の樹脂製医療用バルーンの製造装置において、金型の外方であって、かつ熱ジャケットの内方に配置されている気孔含有金属体を有していることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, it is preferable to have a pore-containing metal body that is arranged on the outside of the mold and on the inside of the heat jacket.
 本発明の樹脂製医療用バルーンの製造装置において、気孔含有金属体の単位厚みあたりの弾性変形量は、3μm/mm以上であり、気孔含有金属体の熱伝導率は、0.325W/m・K以上であることが好ましい。 In the resin medical balloon manufacturing apparatus of the present invention, the amount of elastic deformation per unit thickness of the pore-containing metal body is 3 μm / mm or more, and the thermal conductivity of the pore-containing metal body is 0.325 W / m. It is preferably K or more.
 本発明の第1のバルーンカテーテルの製造方法によれば、熱ジャケットの内側面が内包物から受ける圧力は熱ジャケットの内側面の位置によって異なるものであることにより、熱ジャケットの内側面が内包物から受ける圧力の高い部分に位置している内包物は他の部分よりも熱ジャケットの温度が伝わりやすく、熱ジャケットが内包物を加熱している際には他の部分よりも高温に、また、熱ジャケットが内包物を冷却している際には他の部分よりも低温にすることが可能となる。また、本発明の第2のバルーンカテーテルの製造方法によれば、熱ジャケットの内側面に接触している面積の小さい部分に位置している内包物は他の部分よりも熱ジャケットの温度が伝わりにくく、熱ジャケットが内包物を加熱している際には他の部分よりも低温に、また、熱ジャケットが内包物を冷却している際には他の部分よりも高温にすることが可能となる。 According to the first method for manufacturing a balloon catheter of the present invention, the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner side surface of the heat jacket, so that the inner surface of the heat jacket is included. The inclusions located in the high pressure area receive heat from the heat jacket more easily than the other parts, and when the heat jacket heats the inclusions, the temperature is higher than the other parts. When the heat jacket cools the inclusions, it can be cooler than the other parts. Further, according to the second method for manufacturing a balloon catheter of the present invention, the temperature of the heat jacket is transmitted to the inclusions located in the portion having a small area in contact with the inner surface of the heat jacket as compared with the other portions. It is difficult, and it is possible to make it cooler than other parts when the heat jacket is heating the inclusions, and hotter than other parts when the heat jacket is cooling the inclusions. Become.
 本発明の第1の樹脂製医療用バルーンの製造装置によれば、熱ジャケットは該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は熱ジャケットの内側面の位置によって異なることにより、熱ジャケットの内側面が内包物から受ける圧力の高い部分に位置している内包物は他の部分よりも熱ジャケットの温度が伝わりやすい。そのため、熱ジャケットが内包物を加熱している際には他の部分よりも高温とすることが可能であり、熱ジャケットが内包物を冷却している際には他の部分よりも低温とすることが可能となる。また、本発明の第2の樹脂製医療用バルーンの製造装置によれば、熱ジャケットの内側に配置されている内包物が凹部を外側面に有しており、熱ジャケットの内側面と内包物とが接触している面積は熱ジャケットの内側面の位置によって異なることにより、熱ジャケットの内側面に接触している面積の小さい部分に位置している内包物は他の部分よりも熱ジャケットの温度が伝わりにくい。そのため、熱ジャケットが内包物を加熱している際には他の部分よりも低温にでき、熱ジャケットが内包物を冷却している際には他の部分よりも高温にできる。 According to the first resin medical balloon manufacturing apparatus of the present invention, the heat jacket presses the inclusions existing inside the heat jacket, and the inner surface of the heat jacket receives from the inclusions. Since the pressure differs depending on the position of the inner surface of the heat jacket, the temperature of the heat jacket is more easily transmitted to the inclusions located in the portion where the inner surface of the heat jacket receives a high pressure from the inclusions than the other parts. Therefore, when the heat jacket is heating the inclusions, it can be made hotter than the other parts, and when the heat jacket is cooling the inclusions, it is made cooler than the other parts. It becomes possible. Further, according to the second resin medical balloon manufacturing apparatus of the present invention, the inclusions arranged inside the heat jacket have recesses on the outer surface, and the inner side surface and inclusions of the heat jacket. Since the area in contact with the heat jacket depends on the position of the inner surface of the heat jacket, the inclusions located in the small part of the heat jacket in contact with the inner side surface of the heat jacket are larger than the other parts. It is difficult for the temperature to be transmitted. Therefore, when the heat jacket is heating the inclusions, the temperature can be lower than the other parts, and when the heat jacket is cooling the inclusions, the temperature can be higher than the other parts.
本発明の実施の形態における樹脂製医療用バルーンの製造装置の正面図を表す。A front view of a resin medical balloon manufacturing apparatus according to an embodiment of the present invention is shown. 図1に示した樹脂製医療用バルーンの製造装置のII-II断面図を表す。The II-II cross-sectional view of the resin medical balloon manufacturing apparatus shown in FIG. 1 is shown. 図1に示した樹脂製医療用バルーンの製造装置のIII-III断面図を表す。It shows the III-III cross-sectional view of the manufacturing apparatus of the resin medical balloon shown in FIG. 本発明の実施の形態における樹脂製医療用バルーンの製造装置の内包物の上面図を表す。The top view of the inclusion of the resin medical balloon manufacturing apparatus in the embodiment of the present invention is shown. 図4に示した内包物のV-V断面図を表す。The VV cross-sectional view of the inclusion shown in FIG. 4 is shown.
 以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 Hereinafter, the present invention will be described in more detail based on the following embodiments, but the present invention is not limited by the following embodiments as well as the present invention, and appropriate changes are made to the extent that it can be adapted to the purpose of the above and the following. In addition, it is of course possible to carry out, and all of them are included in the technical scope of the present invention. In each drawing, hatching, member reference numerals, and the like may be omitted for convenience, but in such cases, the specification and other drawings shall be referred to. In addition, the dimensions of various members in the drawings may differ from the actual dimensions because priority is given to contributing to the understanding of the features of the present invention.
 まず、本発明の第1の樹脂製医療用バルーンの製造装置について、図1~図5を参照して説明する。 First, the first resin medical balloon manufacturing apparatus of the present invention will be described with reference to FIGS. 1 to 5.
 図1は本発明の実施の形態における樹脂製医療用バルーンの製造装置1の正面図であり、図2は図1に示した樹脂製医療用バルーンの製造装置1における樹脂製筒状体10の長手方向に垂直な断面であるII-II断面図であり、図3は図1に示した樹脂製医療用バルーンの製造装置1における樹脂製筒状体10の長手方向に垂直な断面であるIII-III断面図であり、図4は樹脂製医療用バルーンの製造装置1における内包物100を上から見た上面図である。なお、樹脂製筒状体10の長手方向は、樹脂製筒状体10の遠近方向と言い換えることができる。 FIG. 1 is a front view of the resin medical balloon manufacturing apparatus 1 according to the embodiment of the present invention, and FIG. 2 is a front view of the resin tubular body 10 in the resin medical balloon manufacturing apparatus 1 shown in FIG. It is a cross section of II-II which is a cross section perpendicular to the longitudinal direction, and FIG. 3 is a cross section perpendicular to the longitudinal direction of the resin tubular body 10 in the resin medical balloon manufacturing apparatus 1 shown in FIG. -III is a cross-sectional view, and FIG. 4 is a top view of the inclusion 100 in the resin medical balloon manufacturing apparatus 1 as viewed from above. The longitudinal direction of the resin tubular body 10 can be rephrased as the perspective direction of the resin tubular body 10.
 本発明における樹脂製医療用バルーンは、樹脂製筒状体10の内部に圧力を加え、樹脂製筒状体10を加熱し、長手方向へ延伸することによって製造することができる。具体的には、樹脂製筒状体10にブロー成形をすることによって樹脂製医療用バルーンを製造できる。樹脂製医療用バルーンの製造において、樹脂製筒状体10の延伸前から内部を加圧してもよく、延伸と同時に内部を加圧してもよく、また、延伸中や延伸後に内部を加圧してもよい。中でも、樹脂製筒状体10の内部に圧力を加えた状態で樹脂製筒状体10を長手方向へ延伸することが好ましい。樹脂製筒状体10の内部に圧力を加えた状態で樹脂製筒状体10を長手方向へ延伸して樹脂製医療用バルーンを製造することにより、樹脂製医療用バルーンの製造効率を高めることができる。 The resin medical balloon in the present invention can be manufactured by applying pressure to the inside of the resin tubular body 10 to heat the resin tubular body 10 and stretching it in the longitudinal direction. Specifically, a resin medical balloon can be manufactured by blow molding the resin tubular body 10. In the production of a resin medical balloon, the inside of the resin tubular body 10 may be pressurized before stretching, the inside may be pressurized at the same time as stretching, or the inside may be pressurized during or after stretching. May be good. Above all, it is preferable to stretch the resin tubular body 10 in the longitudinal direction while applying pressure to the inside of the resin tubular body 10. To improve the manufacturing efficiency of the resin medical balloon by stretching the resin tubular body 10 in the longitudinal direction while applying pressure to the inside of the resin tubular body 10 to manufacture the resin medical balloon. Can be done.
 図1~図3に示すように、本発明の第1の樹脂製医療用バルーンの製造装置1は、樹脂製筒状体10が内挿される金型20と、金型20を内包する熱ジャケット30と、を有しており、熱ジャケット30は、該熱ジャケット30の内側に存在している内包物100を押圧するものであり、熱ジャケット30の内側面が内包物100から受ける圧力は、熱ジャケット30の内側面の位置によって異なるものであることを特徴とするものである。以下では、樹脂製医療用バルーンの製造装置を、単に「製造装置」ということがある。なお、本発明の製造装置を樹脂製医療用バルーンとは異なるものの製造に使用することも可能である。 As shown in FIGS. 1 to 3, the first resin medical balloon manufacturing apparatus 1 of the present invention includes a mold 20 in which a resin tubular body 10 is inserted and a heat jacket containing the mold 20. The heat jacket 30 presses the inclusion 100 existing inside the heat jacket 30, and the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 is It is characterized in that it differs depending on the position of the inner surface of the heat jacket 30. In the following, a resin medical balloon manufacturing device may be simply referred to as a “manufacturing device”. It is also possible to use the manufacturing apparatus of the present invention for manufacturing a balloon different from the resin medical balloon.
 樹脂製筒状体10は、合成樹脂から構成されており、所謂、ブロー成形に用いるパリソンである。 The resin tubular body 10 is made of synthetic resin and is a so-called parison used for blow molding.
 樹脂製筒状体10を構成する材料は、熱可塑性樹脂であることが好ましい。樹脂製筒状体10を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエステルエラストマー等のポリエステル系樹脂、ポリウレタン、ポリウレタンエラストマー等のポリウレタン系樹脂、ポリフェニレンサルファイド系樹脂、ポリアミド、ポリアミドエラストマー等のポリアミド系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、ラテックスゴム等の天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、樹脂製筒状体10を構成する材料は、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂が好適に用いられる。特に、樹脂製医療用バルーンの薄膜化や柔軟性の点からエラストマー樹脂を用いることが好ましい。例えば、ポリアミド系樹脂の中で樹脂製筒状体10に好適な材料としては、ナイロン12、ナイロン11等が挙げられ、ブロー成形する際に比較的容易に成形可能である点から、ナイロン12が好適に用いられる。また、樹脂製医療用バルーンの薄膜化や柔軟性の点から、ポリエーテルエステルアミドエラストマー、ポリアミドエーテルエラストマー等のポリアミドエラストマーが好ましく用いられる。中でも、降伏強度が高く、樹脂製医療用バルーンの寸法安定性が良好な点から、ポリエーテルエステルアミドエラストマーが好ましく用いられる。 The material constituting the resin tubular body 10 is preferably a thermoplastic resin. Examples of the material constituting the resin tubular body 10 include polyolefin resins such as polyethylene, polypropylene and ethylene-propylene copolymer, polyester resins such as polyethylene terephthalate and polyester elastomer, and polyurethane resins such as polyurethane and polyurethane elastomer. Examples thereof include resins, polyphenylene sulfide-based resins, polyamide-based resins such as polyamide and polyamide elastomer, vinyl chloride-based resins, silicone-based resins, and natural rubbers such as latex rubber. Only one of these may be used, or two or more thereof may be used in combination. Among them, a polyamide-based resin, a polyester-based resin, and a polyurethane-based resin are preferably used as the material constituting the resin tubular body 10. In particular, it is preferable to use an elastomer resin from the viewpoint of thinning and flexibility of the resin medical balloon. For example, among the polyamide-based resins, nylon 12, nylon 11, and the like are examples of materials suitable for the resin tubular body 10, and nylon 12 is relatively easy to mold when blow molding. It is preferably used. Further, from the viewpoint of thinning and flexibility of the resin medical balloon, a polyamide elastomer such as a polyether ester amide elastomer and a polyamide ether elastomer is preferably used. Among them, the polyether ester amide elastomer is preferably used because of its high yield strength and good dimensional stability of the resin medical balloon.
 樹脂製筒状体10の肉厚は、樹脂製医療用バルーンの肉厚に応じて設定することができるが、例えば、3mm以下、2mm以下、1mm以下、0.05mm以上、0.07mm以上、0.1mm以上とすることができる。 The wall thickness of the resin tubular body 10 can be set according to the wall thickness of the resin medical balloon. For example, 3 mm or less, 2 mm or less, 1 mm or less, 0.05 mm or more, 0.07 mm or more, It can be 0.1 mm or more.
 樹脂製筒状体10は、例えば、押出成形、射出成形等によって製造することができる。中でも、樹脂製筒状体10は、押出成形によって製造されていることが好ましい。樹脂製筒状体10が押出成形によって製造されていることにより、樹脂製筒状体10を短時間で大量に製造することが可能となり、樹脂製医療用バルーンの生産効率を高めることができる。 The resin tubular body 10 can be manufactured by, for example, extrusion molding, injection molding, or the like. Above all, the resin tubular body 10 is preferably manufactured by extrusion molding. Since the resin tubular body 10 is manufactured by extrusion molding, the resin tubular body 10 can be manufactured in large quantities in a short time, and the production efficiency of the resin medical balloon can be improved.
 金型20は、内部に樹脂製筒状体10を内挿し、樹脂製筒状体10をブロー成形して樹脂製医療用バルーンを製造する。金型20は、内部に樹脂製医療用バルーンの外形と同じ形状の空間を有しており、この内部空間に樹脂製筒状体10を配置する。 The mold 20 has a resin tubular body 10 inserted therein, and the resin tubular body 10 is blow-molded to manufacture a resin medical balloon. The mold 20 has a space having the same shape as the outer shape of the resin medical balloon inside, and the resin tubular body 10 is arranged in this internal space.
 金型20は、複数の部分金型を有していることが好ましい。具体的には、例えば、樹脂製医療用バルーンの中央部の直管部を形成する中央部金型と、樹脂製医療用バルーンの直管部の両端に位置するテーパー部を形成する端部金型を中央部金型の両側に有する構成等が挙げられる。金型20が中央部金型、および中央部金型の両側に配置される端部金型を有する構成であることにより、中央部金型や端部金型を取り替えることによって様々な形状の樹脂製医療用バルーンを製造することができる。 The mold 20 preferably has a plurality of partial molds. Specifically, for example, a central mold that forms a straight tube portion in the central portion of a resin medical balloon and an end metal that forms tapered portions located at both ends of the straight tube portion of the resin medical balloon. Examples thereof include a configuration in which the mold is provided on both sides of the central mold. Since the mold 20 has a central mold and end molds arranged on both sides of the central mold, resins having various shapes can be formed by replacing the central mold and the end mold. Manufacture Medical balloons can be manufactured.
 金型20を構成する材料は、金属であることが好ましく、鉄、銅、アルミニウム、またはこれらの合金であることがより好ましい。例えば、鉄の合金としてはステンレス等が挙げられ、銅の合金としては真鍮等が挙げられ、アルミニウムの合金としてはジュラルミン等が挙げられる。金型20を構成する材料が鉄、銅、アルミニウム、またはこれらの合金であることにより、金型20の熱容量が大きく、また、伝熱性が高いため、金型20全体の温度が一定となりやすい。その結果、金型20の内部に配置されている樹脂製筒状体10に温度ムラが発生しにくく、樹脂製医療用バルーンの製造が行いやすくなる。 The material constituting the mold 20 is preferably a metal, more preferably iron, copper, aluminum, or an alloy thereof. For example, examples of the iron alloy include stainless steel, examples of the copper alloy include brass, and examples of the aluminum alloy include duralumin. Since the material constituting the mold 20 is iron, copper, aluminum, or an alloy thereof, the heat capacity of the mold 20 is large and the heat transfer property is high, so that the temperature of the entire mold 20 tends to be constant. As a result, temperature unevenness is less likely to occur in the resin tubular body 10 arranged inside the mold 20, and the resin medical balloon can be easily manufactured.
 樹脂製筒状体10の長手方向の長さは、金型20の内部空間の長手方向の長さよりも長いことが好ましい。つまり、樹脂製筒状体10を金型20の内部に配置した状態において、樹脂製筒状体10の両端部が金型20から露出していることが好ましい。樹脂製筒状体10の長手方向の長さが金型20の内部空間の長手方向の長さよりも長いことにより、樹脂製筒状体10のブロー成形が行いやすく、樹脂製医療用バルーンの製造効率を高めることが可能となる。 The length of the resin tubular body 10 in the longitudinal direction is preferably longer than the length of the internal space of the mold 20 in the longitudinal direction. That is, it is preferable that both ends of the resin tubular body 10 are exposed from the mold 20 in a state where the resin tubular body 10 is arranged inside the mold 20. Since the length of the resin tubular body 10 in the longitudinal direction is longer than the length of the internal space of the mold 20 in the longitudinal direction, the resin tubular body 10 can be easily blow-molded, and a resin medical balloon can be manufactured. It is possible to increase efficiency.
 樹脂製筒状体10の長手方向の長さは、金型20の内部空間の長さの1.05倍以上であることが好ましく、1.10倍以上であることがより好ましく、1.15倍以上であることがさらに好ましい。樹脂製筒状体10の長手方向の長さと金型20の内部空間の長さとの比の下限値を上記の範囲に設定することにより、樹脂製筒状体10のブロー成形の際に、樹脂製筒状体10の両端部を十分に把持して、樹脂製筒状体10を長手方向両側へ伸張させることができ、伸張開始工程が行いやすくなる。また、樹脂製筒状体10の長手方向の長さと金型20の内部空間の長さとの比の上限値は、例えば、金型20の内部空間の長さの100倍以下、90倍以下、80倍以下、70倍以下とすることができる。 The length of the resin tubular body 10 in the longitudinal direction is preferably 1.05 times or more, more preferably 1.10 times or more, and 1.15 times the length of the internal space of the mold 20. It is more preferable that the amount is double or more. By setting the lower limit of the ratio of the length of the resin tubular body 10 in the longitudinal direction to the length of the internal space of the mold 20 within the above range, the resin is formed during blow molding of the resin tubular body 10. The resin tubular body 10 can be stretched to both sides in the longitudinal direction by sufficiently grasping both ends of the tubular body 10, and the stretching start step can be easily performed. Further, the upper limit of the ratio of the length of the resin tubular body 10 in the longitudinal direction to the length of the internal space of the mold 20 is, for example, 100 times or less and 90 times or less of the length of the internal space of the mold 20. It can be 80 times or less and 70 times or less.
 熱ジャケット30は、金型20を内包し、金型20の温度の調節を行う。つまり、熱ジャケット30は、金型20の加熱と冷却のいずれか一方または両方を行うことができる。 The heat jacket 30 includes the mold 20 and adjusts the temperature of the mold 20. That is, the heat jacket 30 can heat and / or cool the mold 20.
 図2および図3に示すように、熱ジャケット30は、温度調節物40を有していることが好ましい。熱ジャケット30を金型20の加熱に用いる場合の温度調節物40としてはカートリッジヒーター等が挙げられ、熱ジャケット30を金型20の冷却に用いる場合の温度調節物40としては冷却水流路等が挙げられる。熱ジャケット30が温度調節物40を有していることにより、熱ジャケット30の温度を変化させることが容易となる。 As shown in FIGS. 2 and 3, the heat jacket 30 preferably has a temperature control object 40. Examples of the temperature control object 40 when the heat jacket 30 is used for heating the mold 20 include a cartridge heater, and the temperature control object 40 when the heat jacket 30 is used for cooling the mold 20 includes a cooling water flow path and the like. Can be mentioned. Since the heat jacket 30 has the temperature control object 40, it becomes easy to change the temperature of the heat jacket 30.
 熱ジャケット30は、該熱ジャケット30の内側に存在している内包物100を押圧するものであり、熱ジャケット30の内側面が内包物100から受ける圧力は、熱ジャケット30の内側面の位置によって異なる。内包物100から受ける圧力が高い熱ジャケット30の内側面の部分は、他の部分よりも内包物100と密着しているため、熱ジャケット30の温度が内包物100に伝わりやすい。そのため、熱ジャケット30の内側面が内包物100から、熱ジャケット30の内側面の位置によって異なる圧力を受けることにより、内包物100から受ける圧力が高い熱ジャケット30の内側面の部分に位置している内包物100を、加熱時には熱ジャケット30が他の部分よりも高温となるように加熱することができ、冷却時には熱ジャケット30が他の部分よりも低温となるように冷却することができる。 The heat jacket 30 presses the inclusion 100 existing inside the heat jacket 30, and the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 depends on the position of the inner surface of the heat jacket 30. different. Since the inner side surface portion of the heat jacket 30 that receives high pressure from the inclusion 100 is in closer contact with the inclusion 100 than the other portions, the temperature of the heat jacket 30 is easily transmitted to the inclusion 100. Therefore, the inner surface of the heat jacket 30 receives different pressure from the inclusion 100 depending on the position of the inner surface of the heat jacket 30, so that the inner surface of the heat jacket 30 is located on the inner surface of the heat jacket 30 where the pressure received from the inclusion 100 is high. The inclusion 100 can be heated so that the heat jacket 30 has a higher temperature than the other parts during heating, and the heat jacket 30 can be cooled so that the heat jacket 30 has a lower temperature than the other parts during cooling.
 金型20の加熱時における熱ジャケット30の温度は、金型20の加熱目標温度と同じか加熱目標温度よりも高く、金型20の冷却時における熱ジャケット30の温度は、金型20の冷却目標温度と同じか冷却目標温度よりも低いことが好ましい。 The temperature of the heat jacket 30 when the mold 20 is heated is the same as or higher than the heating target temperature of the mold 20, and the temperature of the heat jacket 30 when the mold 20 is cooled is the cooling of the mold 20. It is preferably the same as the target temperature or lower than the cooling target temperature.
 金型20の加熱時における熱ジャケット30の温度の下限値は、金型20の加熱目標温度よりも1℃高い温度であることが好ましく、5℃高い温度であることがより好ましく、10℃高い温度であることがさらに好ましく、15℃高い温度であることがさらにより好ましく、20℃高い温度であることが特に好ましい。熱ジャケット30の温度の下限値を上記の範囲に設定することにより、金型20の温度を加熱目標温度まで短時間で上げることが可能となる。また、金型20の加熱時における熱ジャケット30の温度の上限値は、金型20の加熱目標温度よりも250℃高い温度であることが好ましく、225℃高い温度であることがより好ましく、200℃高い温度であることがさらに好ましい。熱ジャケット30の温度の上限値を上記の範囲に設定することにより、金型20の温度を調節しやすくなる。 The lower limit of the temperature of the heat jacket 30 when the mold 20 is heated is preferably 1 ° C. higher than the heating target temperature of the mold 20, more preferably 5 ° C. higher, and 10 ° C. higher. The temperature is even more preferred, the temperature 15 ° C higher is even more preferred, and the temperature 20 ° C higher is particularly preferred. By setting the lower limit of the temperature of the heat jacket 30 in the above range, the temperature of the mold 20 can be raised to the heating target temperature in a short time. Further, the upper limit of the temperature of the heat jacket 30 when the mold 20 is heated is preferably 250 ° C. higher than the heating target temperature of the mold 20, more preferably 225 ° C. higher, 200. It is more preferable that the temperature is higher than that of ° C. By setting the upper limit of the temperature of the heat jacket 30 in the above range, the temperature of the mold 20 can be easily adjusted.
 金型20の冷却時における熱ジャケット30の温度の上限値は、金型20の冷却目標温度よりも1℃低い温度であることが好ましく、3℃低い温度であることがより好ましく、5℃低い温度であることがさらに好ましく、7℃低い温度であることがさらにより好ましく、10℃低い温度であることが特に好ましい。熱ジャケット30の温度の上限値を上記の範囲に設定することにより、金型20の温度を素早く冷却目標温度まで低下させることができる。また、金型20の冷却時における熱ジャケット30の温度の下限値は、金型20の冷却目標温度よりも100℃低い温度であることが好ましく、90℃低い温度であることがより好ましく、80℃低い温度であることがさらに好ましい。熱ジャケット30の温度の下限値を上記の範囲に設定することにより、金型20の温度の調節が容易となる。 The upper limit of the temperature of the heat jacket 30 when the mold 20 is cooled is preferably 1 ° C. lower than the cooling target temperature of the mold 20, more preferably 3 ° C. lower, and 5 ° C. lower. The temperature is even more preferable, the temperature is even more preferably 7 ° C. lower, and the temperature is particularly preferably 10 ° C. lower. By setting the upper limit of the temperature of the heat jacket 30 in the above range, the temperature of the mold 20 can be quickly lowered to the cooling target temperature. Further, the lower limit of the temperature of the heat jacket 30 when the mold 20 is cooled is preferably 100 ° C. lower than the cooling target temperature of the mold 20, more preferably 90 ° C. lower, and 80 ° C. It is more preferable that the temperature is lower than that of ° C. By setting the lower limit of the temperature of the heat jacket 30 in the above range, the temperature of the mold 20 can be easily adjusted.
 熱ジャケット30は、金型20の加熱に用いる加熱ジャケットと、金型20の冷却に用いる冷却ジャケットを有していることが好ましい。熱ジャケット30が加熱ジャケットと冷却ジャケットの両方を有していることにより、熱ジャケット30の温度を、例えば、金型20の加熱に適した温度から金型20の冷却に適した温度に変えるように、樹脂製医療用バルーンの製造において熱ジャケット30の温度を大きく変化させる必要がなく、熱ジャケット30の温度調節にかかる時間を短縮することができる。その結果、樹脂製医療用バルーンの製造効率を向上させることが可能となる。 The heat jacket 30 preferably has a heating jacket used for heating the mold 20 and a cooling jacket used for cooling the mold 20. Since the heat jacket 30 has both a heating jacket and a cooling jacket, the temperature of the heat jacket 30 is changed from, for example, a temperature suitable for heating the mold 20 to a temperature suitable for cooling the mold 20. In addition, it is not necessary to significantly change the temperature of the heat jacket 30 in the production of the resin medical balloon, and the time required for temperature control of the heat jacket 30 can be shortened. As a result, it becomes possible to improve the manufacturing efficiency of the resin medical balloon.
 熱ジャケット30の内側面が内包物100から受ける圧力は、熱ジャケット30の内側面の位置によって異なっていればよく、例えば、金型20の長手方向の位置によって異なるものであってもよく、金型20の周方向の位置によって異なるものであってもよい。中でも、熱ジャケット30の内側面が内包物100から受ける圧力は、金型20の長手方向の位置によって異なるものであることが好ましい。熱ジャケット30の内側面が内包物100から受ける圧力が金型20の長手方向の位置によって異なるものであることにより、金型20の長手方向において、熱ジャケット30の温度が伝わりやすい内包物100の部分を設けることができ、例えば、樹脂製筒状体10の長手方向の中央部を他の部分よりも高温にすること等が可能となる。 The pressure received by the inner surface of the heat jacket 30 from the inclusion 100 may differ depending on the position of the inner surface of the heat jacket 30, for example, may differ depending on the position of the mold 20 in the longitudinal direction. It may be different depending on the position of the mold 20 in the circumferential direction. Above all, it is preferable that the pressure received by the inner surface of the heat jacket 30 from the inclusion 100 differs depending on the position of the mold 20 in the longitudinal direction. Since the pressure received from the inner surface of the heat jacket 30 from the inclusion 100 differs depending on the position in the longitudinal direction of the mold 20, the temperature of the heat jacket 30 is easily transmitted in the longitudinal direction of the mold 20. A portion can be provided, for example, the central portion of the resin tubular body 10 in the longitudinal direction can be heated to a higher temperature than the other portions.
 次に、本発明の第2の樹脂製医療用バルーンの製造装置について説明する。なお、下記の説明において、上記の説明と重複する部分は説明を省略する。 Next, the second resin medical balloon manufacturing apparatus of the present invention will be described. In the following description, the description of the part that overlaps with the above description will be omitted.
 図4および図5に示すように、本発明の第2の樹脂製医療用バルーンの製造装置1は、樹脂製筒状体10が内挿される金型20と、金型20を内包する熱ジャケット30と、を有しており、熱ジャケット30の内側に内包物100が配置されており、内包物100は、外側面に凹部110を有し、凹部110の深さは、10μm以上であり、熱ジャケット30の内側面と内包物100とが接触している面積は、熱ジャケット30の内側面の位置によって異なるものであることを特徴とするものである。 As shown in FIGS. 4 and 5, the second resin medical balloon manufacturing apparatus 1 of the present invention includes a mold 20 in which the resin tubular body 10 is inserted and a thermal jacket containing the mold 20. 30 and the inclusion 100 is arranged inside the heat jacket 30, the inclusion 100 has a recess 110 on the outer surface, and the depth of the recess 110 is 10 μm or more. The area in which the inner surface of the heat jacket 30 and the inclusion 100 are in contact with each other is different depending on the position of the inner surface of the heat jacket 30.
 熱ジャケット30の内側に配置されている内包物100が、外側面に凹部110を有しており、熱ジャケット30の内側面と内包物100とが接触している面積が熱ジャケット30の内側面の位置によって異なることにより、凹部110に位置している内包物100の部分は、内包物100の他の部分よりも熱ジャケット30との距離が離れており、熱ジャケット30と接触しにくくなって、熱ジャケット30の内側面と接触している面積が小さくなる。そのため、凹部110に位置している内包物100の部分は、内包物100の他の部分よりも熱ジャケット30の温度が伝わりにくく、熱ジャケット30が内包物100を加熱している際には他の部分よりも低温に、熱ジャケット30が内包物100を冷却している際には他の部分よりも高温にすることができる。 The inclusion 100 arranged inside the heat jacket 30 has a recess 110 on the outer surface, and the area in contact between the inner surface of the heat jacket 30 and the inclusion 100 is the inner surface of the heat jacket 30. The portion of the inclusion 100 located in the recess 110 is farther from the heat jacket 30 than the other parts of the inclusion 100, and is less likely to come into contact with the heat jacket 30. , The area in contact with the inner surface of the heat jacket 30 becomes smaller. Therefore, the portion of the inclusion 100 located in the recess 110 is less likely to transmit the temperature of the heat jacket 30 than the other portion of the inclusion 100, and when the heat jacket 30 is heating the inclusion 100, other parts are present. When the heat jacket 30 cools the inclusion 100, the temperature can be made lower than that of the other parts.
 凹部110の深さは、10μm以上であればよいが、15μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。凹部110の深さの下限値を上記の範囲に設定することにより、凹部110に位置している内包物100の部分へ熱ジャケット30の温度が伝わりにくくなり、凹部110に位置している内包物100の部分の温度を内包物100の他の部分の温度よりも、内包物100の加熱時には低く、内包物100の冷却時には高くすることができる。また、凹部110の深さは、内包物100の肉厚の90%以下であることが好ましく、85%以下であることがより好ましく、80%以下であることがさらに好ましい。凹部110の深さの上限値を上記の範囲に設定することにより、熱ジャケット30の温度を凹部110に位置している内包物100の部分へも伝わり、樹脂製筒状体10の全体を十分に加熱および冷却することができる。その結果、樹脂製医療用バルーンの製造を効率的に行うことが可能となる。 The depth of the recess 110 may be 10 μm or more, but is preferably 15 μm or more, more preferably 20 μm or more, and further preferably 30 μm or more. By setting the lower limit of the depth of the recess 110 in the above range, the temperature of the heat jacket 30 is less likely to be transmitted to the portion of the inclusion 100 located in the recess 110, and the inclusion located in the recess 110. The temperature of the portion 100 can be lower than the temperature of the other portion of the inclusion 100 when the inclusion 100 is heated and higher when the inclusion 100 is cooled. The depth of the recess 110 is preferably 90% or less, more preferably 85% or less, and even more preferably 80% or less of the wall thickness of the inclusion 100. By setting the upper limit of the depth of the recess 110 to the above range, the temperature of the heat jacket 30 is transmitted to the portion of the inclusion 100 located in the recess 110, and the entire resin tubular body 10 is sufficiently covered. Can be heated and cooled. As a result, it becomes possible to efficiently manufacture a resin medical balloon.
 凹部110は、ハウジング部材70の外側面に設けられていることが好ましい。凹部110がハウジング部材70の外側面に設けられていることにより、内包物100において、ハウジング部材70の凹部110に位置する部分の温度を、ハウジング部材70の他の部分よりも内包物100の加熱時には低温に、内包物100の冷却時には高温としやすくなる。そのため、樹脂製医療用バルーンの製造時において内包物100に温度差をつけやすくなる。 The recess 110 is preferably provided on the outer surface of the housing member 70. Since the recess 110 is provided on the outer surface of the housing member 70, the temperature of the portion of the inclusion 100 located in the recess 110 of the housing member 70 is heated more than the other portion of the housing member 70. Sometimes it tends to be low temperature, and when the inclusion 100 is cooled, it tends to be high temperature. Therefore, it becomes easy to make a temperature difference in the inclusion 100 at the time of manufacturing the resin medical balloon.
 凹部110は、ハウジング部材70と一体構造であってもよく、ハウジング部材70とは別部材であって、ハウジング部材70に取り付けられているものであってもよい。中でも、凹部110は、ハウジング部材70に配置されているスペーサー部材121であることが好ましい。凹部110がハウジング部材70に配置されているスペーサー部材121であることにより、スペーサー部材121の位置を変えることによって内包物100の他の部分よりも高温および低温となる位置を変化させることができる。 The recess 110 may have an integral structure with the housing member 70, or may be a member separate from the housing member 70 and attached to the housing member 70. Above all, the recess 110 is preferably a spacer member 121 arranged in the housing member 70. Since the recess 110 is the spacer member 121 arranged in the housing member 70, the position of the spacer member 121 can be changed so that the temperature becomes higher and lower than the other parts of the inclusion 100.
 内包物100は、一つまたは複数の金型20の少なくとも一部を内包するハウジング部材70であることが好ましい。つまり、樹脂製筒状体10が内挿される一つまたは複数の金型20の少なくとも一部を内包するハウジング部材70が内包物100であることが好ましい。内包物100がハウジング部材70であることにより、金型20が小型である場合や金型20が複数の部分金型を有している場合等に、金型20を取り扱いやすくすることができ、樹脂製医療用バルーンの製造効率を向上させることができる。 The inclusion 100 is preferably a housing member 70 that includes at least a part of one or a plurality of molds 20. That is, it is preferable that the housing member 70 that includes at least a part of one or a plurality of molds 20 into which the resin tubular body 10 is inserted is the inclusion 100. Since the inclusion 100 is the housing member 70, the mold 20 can be easily handled when the mold 20 is small or when the mold 20 has a plurality of partial molds. It is possible to improve the manufacturing efficiency of resin medical balloons.
 図4に示すように、ハウジング部材70は、外側面に凸部120を有していることが好ましい。ハウジング部材70が外側面に凸部120を有していることにより、凸部120の部分が熱ジャケット30に密着しやすくなる。その結果、凸部120が存在している部分に配置されている内包物100の部分へ熱ジャケット30の温度が伝わりやすくなるため、内包物100において他の部分よりも高温となる部分や低温となる部分が認識しやすく、樹脂製医療用バルーンの製造時における温度の制御が容易となる。 As shown in FIG. 4, the housing member 70 preferably has a convex portion 120 on the outer surface. Since the housing member 70 has the convex portion 120 on the outer surface, the portion of the convex portion 120 can be easily brought into close contact with the heat jacket 30. As a result, the temperature of the heat jacket 30 is easily transmitted to the portion of the inclusion 100 arranged in the portion where the convex portion 120 exists. It is easy to recognize the part to be formed, and it is easy to control the temperature at the time of manufacturing the resin medical balloon.
 凸部120の高さは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。凸部120の高さの下限値を上記の範囲に設定することにより、凸部120が熱ジャケット30の内側面へ十分に押し付けられ、凸部120の部分に位置している内包物100に熱ジャケット30の温度が伝わりやすくなる。また、凸部120の高さは、ハウジング部材70の肉厚の90%以下であることが好ましく、85%以下であることがより好ましく、80%以下であることがさらに好ましい。凸部120の高さの上限値を上記の範囲に設定することにより、ハウジング部材70の凸部120以外の部分にも熱ジャケット30の温度が十分に伝わることができる。そのため、樹脂製筒状体10への加熱および冷却にかかる時間を短縮することが可能となって、樹脂製医療用バルーンの製造効率を高めることができる。なお、ハウジング部材70が凸部120と凹部110の両方を有しており、凸部120と凹部110が隣接している場合、凸部120の高さに凹部110の深さは含まないこととする。つまり、凸部120の高さを測定する際に、ハウジング部材70の凸となっている部分の高さから凹部110の深さを引いたものを凸部120の高さとする。 The height of the convex portion 120 is preferably 10 μm or more, more preferably 20 μm or more, and further preferably 30 μm or more. By setting the lower limit of the height of the convex portion 120 to the above range, the convex portion 120 is sufficiently pressed against the inner side surface of the heat jacket 30, and heat is applied to the inclusion 100 located at the portion of the convex portion 120. The temperature of the jacket 30 is easily transmitted. The height of the convex portion 120 is preferably 90% or less, more preferably 85% or less, and further preferably 80% or less of the wall thickness of the housing member 70. By setting the upper limit of the height of the convex portion 120 within the above range, the temperature of the heat jacket 30 can be sufficiently transmitted to the portion of the housing member 70 other than the convex portion 120. Therefore, it is possible to shorten the time required for heating and cooling the resin tubular body 10, and it is possible to improve the manufacturing efficiency of the resin medical balloon. When the housing member 70 has both the convex portion 120 and the concave portion 110, and the convex portion 120 and the concave portion 110 are adjacent to each other, the height of the convex portion 120 does not include the depth of the concave portion 110. To do. That is, when measuring the height of the convex portion 120, the height of the convex portion 120 is obtained by subtracting the depth of the concave portion 110 from the height of the convex portion of the housing member 70.
 凸部120は、ハウジング部材70と一体構造であってもよく、ハウジング部材70とは別部材であって、ハウジング部材70に取り付けられているものであってもよい。中でも、凸部120は、ハウジング部材70の外側面に配置されているスペーサー部材121であることが好ましい。凸部120がハウジング部材70の外側面に配置されているスペーサー部材121であることにより、スペーサー部材121の位置を変えることによって内包物100の他の部分よりも高温および低温となる位置を変えることが可能となる。 The convex portion 120 may have an integral structure with the housing member 70, or may be a member separate from the housing member 70 and attached to the housing member 70. Above all, the convex portion 120 is preferably a spacer member 121 arranged on the outer surface of the housing member 70. Since the convex portion 120 is a spacer member 121 arranged on the outer surface of the housing member 70, the position of the spacer member 121 is changed to change the position where the temperature is higher or lower than the other parts of the inclusion 100. Is possible.
 図4に示すように、ハウジング部材70は、金型20の長手方向に並んで配置されている複数の部分ハウジング部材71、72、73を有しており、スペーサー部材121は部分ハウジング部材71、72、73の少なくともいずれか一つに配置されていることが好ましい。スペーサー部材121が部分ハウジング部材71、72、73の少なくともいずれか一つに配置されていることにより、ハウジング部材70における凸部120の位置を変更することが容易となり、熱ジャケット30による内包物100の加熱時に他の部分よりも高温にしたい場所、および熱ジャケット30による内包物100の冷却時に他の部分よりも低温にしたい場所を制御しやすくなる。 As shown in FIG. 4, the housing member 70 has a plurality of partial housing members 71, 72, 73 arranged side by side in the longitudinal direction of the mold 20, and the spacer member 121 includes the partial housing members 71, It is preferably arranged in at least one of 72 and 73. Since the spacer member 121 is arranged in at least one of the partial housing members 71, 72, 73, it becomes easy to change the position of the convex portion 120 in the housing member 70, and the inclusion 100 by the heat jacket 30 It becomes easy to control the place where the temperature is desired to be higher than other parts when heating and the place where the temperature is desired to be lower than other parts when the inclusion 100 is cooled by the heat jacket 30.
 図2および図3に示すように、凸部120は、ハウジング部材70の全周に延在していることが好ましい。凸部120がハウジング部材70の全周に延在していることにより、凸部120が配置されている部分において、ハウジング部材70の全周が熱ジャケット30の内周に密着しやすくなる。そのため、凸部120が配置されている部分に位置する内包物100の全周に熱ジャケット30の温度が伝わりやすくなり、内包物100を効率的に加熱および冷却することが可能となる。 As shown in FIGS. 2 and 3, the convex portion 120 preferably extends over the entire circumference of the housing member 70. Since the convex portion 120 extends over the entire circumference of the housing member 70, the entire circumference of the housing member 70 is likely to be in close contact with the inner circumference of the heat jacket 30 at the portion where the convex portion 120 is arranged. Therefore, the temperature of the heat jacket 30 is easily transmitted to the entire circumference of the inclusion 100 located at the portion where the convex portion 120 is arranged, and the inclusion 100 can be efficiently heated and cooled.
 ハウジング部材70が複数の部分ハウジング部材71、72、73を有している場合、凸部120は、部分ハウジング部材71、72、73の少なくとも1つの全周に延在していることが好ましい。凸部120が部分ハウジング部材71、72、73の少なくとも1つの金型20の全周に延在していることにより、部分ハウジング部材71、72、73のうち凸部120を有しているものを他の部分よりも加熱時には高温、冷却時には低温としやすくなる。 When the housing member 70 has a plurality of partial housing members 71, 72, 73, it is preferable that the convex portion 120 extends all around at least one of the partial housing members 71, 72, 73. Of the partial housing members 71, 72, 73, the convex portion 120 has the convex portion 120 because the convex portion 120 extends over the entire circumference of at least one mold 20 of the partial housing members 71, 72, 73. It is easier to keep the temperature higher than other parts when heating and lower when cooling.
 図5は図4に示した内包物100のV-V断面図である。図5に示すように、金型20の内腔は、柱状部21と、該柱状部21の一端側および他端側に存在している錐状部22とを有しており、凸部120は、柱状部21に対応する部分の少なくとも一部に配されていることが好ましい。金型20の柱状部21は樹脂製医療用バルーンの直管部の形成に寄与し、金型20の錐状部22は樹脂製医療用バルーンの直管部よりも遠位側および近位側に配されている樹脂製医療用バルーンのテーパー部の形成に寄与する。凸部120が柱状部21に対応する部分の少なくとも一部に配されていることにより、成形後に樹脂製医療用バルーンの直管部となる部分を、内包物100の加熱時には他の部分よりも高温にすることができ、また、内包物100の冷却時には他の部分よりも低温にすることができる。そのため、例えば、直管部の厚みを薄くして直管部が拡張されやすい樹脂製医療用バルーンや、直管部の硬度が高くて血管の狭窄部の拡張応力が高い樹脂製医療用バルーンを製造することができる。 FIG. 5 is a VV cross-sectional view of the inclusion 100 shown in FIG. As shown in FIG. 5, the lumen of the mold 20 has a columnar portion 21 and a conical portion 22 existing on one end side and the other end side of the columnar portion 21, and the convex portion 120. Is preferably arranged in at least a part of the portion corresponding to the columnar portion 21. The columnar portion 21 of the mold 20 contributes to the formation of the straight tube portion of the resin medical balloon, and the cone-shaped portion 22 of the mold 20 is distal and proximal to the straight tube portion of the resin medical balloon. Contributes to the formation of the tapered portion of the resin medical balloon arranged in. Since the convex portion 120 is arranged at least a part of the portion corresponding to the columnar portion 21, the portion that becomes the straight tube portion of the resin medical balloon after molding is more than the other portion when the inclusion 100 is heated. It can be heated to a high temperature, and when the inclusion 100 is cooled, it can be cooled to a lower temperature than other parts. Therefore, for example, a resin medical balloon in which the straight tube portion is thinned so that the straight tube portion can be easily expanded, or a resin medical balloon in which the straight tube portion has a high hardness and the dilated stress of the stenotic portion of the blood vessel is high. Can be manufactured.
 また、図示していないが、金型20の内腔は、柱状部21と、該柱状部21の一端側および他端側に存在している錐状部22とを有しており、凸部120は、錐状部22に対応する部分の少なくとも一部に配されていることも好ましい。凸部120が錐状部22に対応する部分の少なくとも一部に配されていることにより、成形後に樹脂製医療用バルーンのテーパー部となる部分を、内包物100の加熱時には他の部分よりも高温に、また、冷却時には他の部分よりも低温にすることができる。 Further, although not shown, the lumen of the mold 20 has a columnar portion 21 and a conical portion 22 existing on one end side and the other end side of the columnar portion 21, and has a convex portion. It is also preferable that 120 is arranged in at least a part of the portion corresponding to the conical portion 22. By arranging the convex portion 120 at least a part of the portion corresponding to the conical portion 22, the portion that becomes the tapered portion of the resin medical balloon after molding is more than the other portion when the inclusion 100 is heated. It can be heated to a high temperature, and when cooled, it can be cooled to a lower temperature than other parts.
 熱ジャケット30は、複数の部分熱ジャケットを有していることが好ましい。つまり、熱ジャケット30は、複数の部分熱ジャケットから構成されていることが好ましい。熱ジャケット30が複数の部分熱ジャケットを有していることにより、熱ジャケット30を分割することができ、熱ジャケット30の内方に金型20を配置することが容易となる。 The heat jacket 30 preferably has a plurality of partial heat jackets. That is, the heat jacket 30 is preferably composed of a plurality of partial heat jackets. Since the heat jacket 30 has a plurality of partial heat jackets, the heat jacket 30 can be divided, and the mold 20 can be easily arranged inside the heat jacket 30.
 部分熱ジャケットは、金型20の周方向に複数配置されていてもよく、金型20の軸方向に複数配置されていてもよい。部分熱ジャケットが金型20の周方向に複数配置されている場合は、例えば、熱ジャケット30を半割れ状の構造とすることができ、金型20を熱ジャケット30の内方に配置しやすくなる。部分熱ジャケットが金型20の軸方向に複数配置されている場合は、各部分熱ジャケットの温度をそれぞれ設定することができ、金型20の軸方向において金型20の加熱温度または冷却温度を異なるようにすることが可能となる。 A plurality of partial heat jackets may be arranged in the circumferential direction of the mold 20, or a plurality of partial heat jackets may be arranged in the axial direction of the mold 20. When a plurality of partial heat jackets are arranged in the circumferential direction of the mold 20, for example, the heat jacket 30 can have a semi-cracked structure, and the mold 20 can be easily arranged inside the heat jacket 30. Become. When a plurality of partial heat jackets are arranged in the axial direction of the mold 20, the temperature of each partial heat jacket can be set, and the heating temperature or the cooling temperature of the mold 20 can be set in the axial direction of the mold 20. It can be different.
 図1~図3に示すように、熱ジャケット30は、金型20の一方面側にある第1部分熱ジャケット31と、金型20の他方面側にある第2部分熱ジャケット32と、を有しており、第1部分熱ジャケット31と第2部分熱ジャケット32とが互いに接近することにより内包物100が押圧されることが好ましい。第1部分熱ジャケット31と第2部分熱ジャケット32とが互いに接近することによって内包物100が押圧されることにより、第1部分熱ジャケット31と第2部分熱ジャケット32との距離を調節することによって熱ジャケット30の内側面が内包物100から受ける圧力を調節することが可能となる。そのため、熱ジャケット30が内包物100を押圧することが容易となる。 As shown in FIGS. 1 to 3, the heat jacket 30 includes a first partial heat jacket 31 on one side of the mold 20 and a second partial heat jacket 32 on the other side of the mold 20. It is preferable that the inclusion 100 is pressed by the first partial heat jacket 31 and the second partial heat jacket 32 approaching each other. Adjusting the distance between the first partial heat jacket 31 and the second partial heat jacket 32 by pressing the inclusion 100 by bringing the first partial heat jacket 31 and the second partial heat jacket 32 close to each other. This makes it possible to adjust the pressure that the inner surface of the heat jacket 30 receives from the inclusion 100. Therefore, it becomes easy for the heat jacket 30 to press the inclusion 100.
 図1および図2に示すように、第1部分熱ジャケット31と第2部分熱ジャケット32は、互いに接続されていることが好ましい。第1部分熱ジャケット31と第2部分熱ジャケット32とが互いに接続されていることにより、熱ジャケット30が金型20の一方面側と他方面側とで開閉可能な構造となる。その結果、熱ジャケット30の内方に金型20を配置することや取り去ることが容易となり、樹脂製医療用バルーンの製造の効率を高めることができる。 As shown in FIGS. 1 and 2, it is preferable that the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other. By connecting the first partial heat jacket 31 and the second partial heat jacket 32 to each other, the heat jacket 30 has a structure that can be opened and closed on one side and the other side of the mold 20. As a result, it becomes easy to arrange and remove the mold 20 inside the heat jacket 30, and it is possible to improve the efficiency of manufacturing the resin medical balloon.
 第1部分熱ジャケット31と第2部分熱ジャケット32とを互いに接続する方法としては、例えば、第1部分熱ジャケット31と第2部分熱ジャケット32とをシリンダーを介して接続する、ヒンジを介して接続する等の方法が挙げられる。中でも、第1部分熱ジャケット31と第2部分熱ジャケット32は、シリンダーを介して互いに接続されていることが好ましい。第1部分熱ジャケット31と第2部分熱ジャケット32とがシリンダーを介して互いに接続されていることにより、熱ジャケット30の開閉をシリンダーによって行うことができ、熱ジャケット30の開閉操作が容易かつ確実となる。さらに、第1部分熱ジャケット31と第2部分熱ジャケット32とがシリンダーを介して互いに接続されていることによって、第1部分熱ジャケット31と第2部分熱ジャケット32とを金型20等の内包物に押し付ける力を制御することが可能となる。なお、シリンダーの種類としては、例えば、エアシリンダー、油圧シリンダー、電動シリンダー等が挙げられる。 As a method of connecting the first partial heat jacket 31 and the second partial heat jacket 32 to each other, for example, the first partial heat jacket 31 and the second partial heat jacket 32 are connected via a cylinder, via a hinge. Methods such as connecting can be mentioned. Above all, it is preferable that the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder. Since the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder, the heat jacket 30 can be opened and closed by the cylinder, and the opening and closing operation of the heat jacket 30 is easy and reliable. It becomes. Further, since the first partial heat jacket 31 and the second partial heat jacket 32 are connected to each other via a cylinder, the first partial heat jacket 31 and the second partial heat jacket 32 are included in the mold 20 and the like. It becomes possible to control the force of pressing against an object. Examples of the type of cylinder include an air cylinder, a hydraulic cylinder, an electric cylinder, and the like.
 図1に示すように、熱ジャケット30は、金型20の長手方向に互いに離間して配置されている遠位側部分熱ジャケット33と近位側部分熱ジャケット34とを有していることが好ましい。熱ジャケット30が金型20の長手方向に互いに離間して配置されている遠位側部分熱ジャケット33と近位側部分熱ジャケット34とを有していることにより、遠位側部分熱ジャケット33と近位側部分熱ジャケット34とで異なる温度に設定することが容易となる。そのため、樹脂製筒状体10の加熱温度または冷却温度を各部位によって異なる温度とすることが可能となる。 As shown in FIG. 1, the heat jacket 30 has a distal partial heat jacket 33 and a proximal partial heat jacket 34 arranged apart from each other in the longitudinal direction of the mold 20. preferable. Since the heat jacket 30 has a distal partial heat jacket 33 and a proximal partial heat jacket 34 arranged apart from each other in the longitudinal direction of the mold 20, the distal partial heat jacket 33 And the proximal side partial heat jacket 34 can be easily set to different temperatures. Therefore, the heating temperature or the cooling temperature of the resin tubular body 10 can be set to a different temperature depending on each part.
 熱ジャケット30が金型20の長手方向に互いに離間して配置されている遠位側部分熱ジャケット33と近位側部分熱ジャケット34とを有している場合、遠位側部分熱ジャケット33と近位側部分熱ジャケット34との距離は、1mm以上であることが好ましく、3mm以上であることがより好ましく、5mm以上であることがさらに好ましい。遠位側部分熱ジャケット33と近位側部分熱ジャケット34との距離の下限値を上記の範囲に設定することにより、遠位側部分熱ジャケット33と近位側部分熱ジャケット34との間に適度な距離をとることができ、遠位側部分熱ジャケット33および近位側部分熱ジャケット34が互いに温度の影響を与えにくくすることができる。また、遠位側部分熱ジャケット33と近位側部分熱ジャケット34との距離は、20mm以下であることが好ましく、18mm以下であることがより好ましく、15mm以下であることがさらに好ましい。遠位側部分熱ジャケット33と近位側部分熱ジャケット34との距離の上限値を上記の範囲に設定することにより、遠位側部分熱ジャケット33と近位側部分熱ジャケット34との間の隙間が大きくなりすぎることによって金型20と熱ジャケット30との間に外部の空気が大量に入り込むことを防ぎ、熱ジャケット30による金型20の加熱および冷却の効率を高めることが可能となる。なお、熱ジャケット30は、遠位側部分熱ジャケット33よりも遠位側に部分熱ジャケットをさらに有していてもよく、近位側部分熱ジャケット34よりも近位側に部分熱ジャケットをさらに有していてもよい。また、金型20の一方面側にある部分熱ジャケットの数と、金型20の他方面側にある部分熱ジャケットの数は、同じであってもよく、異なっていてもよい。 When the thermal jacket 30 has a distal partial thermal jacket 33 and a proximal partial thermal jacket 34 that are spaced apart from each other in the longitudinal direction of the mold 20, the distal partial thermal jacket 33 and The distance from the proximal partial heat jacket 34 is preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more. By setting the lower limit of the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 in the above range, the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be set. An appropriate distance can be taken, and the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be made less likely to be affected by temperature. The distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 is preferably 20 mm or less, more preferably 18 mm or less, and even more preferably 15 mm or less. By setting the upper limit of the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 in the above range, the distance between the distal partial heat jacket 33 and the proximal partial heat jacket 34 can be set. It is possible to prevent a large amount of external air from entering between the mold 20 and the heat jacket 30 due to the gap becoming too large, and to improve the efficiency of heating and cooling the mold 20 by the heat jacket 30. The heat jacket 30 may further have a partial heat jacket on the distal side of the distal partial heat jacket 33, and further has a partial heat jacket on the proximal side of the proximal partial heat jacket 34. You may have. Further, the number of partial heat jackets on one side of the mold 20 and the number of partial heat jackets on the other side of the mold 20 may be the same or different.
 図1および図2に示すように、製造装置1は、金型20の外方であって、かつ熱ジャケット30の内方に配置されている気孔含有金属体50を有していることが好ましい。つまり、金型20と熱ジャケット30の間に気孔含有金属体50が設けられていることが好ましい。 As shown in FIGS. 1 and 2, it is preferable that the manufacturing apparatus 1 has a pore-containing metal body 50 which is outside the mold 20 and is arranged inside the heat jacket 30. .. That is, it is preferable that the pore-containing metal body 50 is provided between the mold 20 and the heat jacket 30.
 気孔含有金属体50は、複数の気孔を有している金属体である。気孔含有金属体50を金型20の外方かつ熱ジャケット30の内方に配置することにより、金型20と熱ジャケット30に挟まれた気孔含有金属体50の気孔部分が潰れて気孔含有金属体50が変形し、気孔含有金属体50が金型20と熱ジャケット30との間に存在している隙間を埋めることができる。その結果、熱ジャケット30の温度を金型20へ均一に伝えやすくなるために熱ジャケット30が金型20を均一に加熱または冷却することが可能となり、肉厚のムラや曲がりの少ない樹脂製医療用バルーンを製造することができる。 The pore-containing metal body 50 is a metal body having a plurality of pores. By arranging the pore-containing metal body 50 outside the mold 20 and inside the heat jacket 30, the pore portion of the pore-containing metal body 50 sandwiched between the mold 20 and the heat jacket 30 is crushed and the pore-containing metal body 50 is crushed. The body 50 is deformed, and the pore-containing metal body 50 can fill the gap existing between the mold 20 and the heat jacket 30. As a result, the temperature of the heat jacket 30 can be easily transmitted to the mold 20 uniformly, so that the heat jacket 30 can uniformly heat or cool the mold 20, and the resin medical treatment with less uneven wall thickness and less bending. Balloons can be manufactured.
 気孔含有金属体50の単位厚みあたりの弾性変形量は3μm/mm以上であり、気孔含有金属体50の熱伝導率は0.325W/m・K以上であることが好ましい。気孔含有金属体50の単位厚みあたりの弾性変形量が3μm/mm以上であって、気孔含有金属体50の熱伝導率が0.325W/m・K以上であることにより、気孔含有金属体50が弾性変形性と熱伝導性の両方を備えたものとなる。そのため、金型20と熱ジャケット30との間の隙間を気孔含有金属体50が十分に埋めることができ、かつ、熱ジャケット30の温度を金型20に十分伝えることができるため、金型20を均一に加熱または冷却しやすくなる。 The amount of elastic deformation per unit thickness of the pore-containing metal body 50 is preferably 3 μm / mm or more, and the thermal conductivity of the pore-containing metal body 50 is preferably 0.325 W / m · K or more. The amount of elastic deformation per unit thickness of the pore-containing metal body 50 is 3 μm / mm or more, and the thermal conductivity of the pore-containing metal body 50 is 0.325 W / m · K or more, so that the pore-containing metal body 50 Will have both elastic deformability and thermal conductivity. Therefore, the pore-containing metal body 50 can sufficiently fill the gap between the mold 20 and the heat jacket 30, and the temperature of the heat jacket 30 can be sufficiently transmitted to the mold 20. Therefore, the mold 20 can be sufficiently filled. It becomes easier to heat or cool evenly.
 なお、気孔含有金属体50の単位厚みあたりの弾性変形量および熱伝導率は、気孔含有金属体50に100N/cmの圧力を5回印加して、気孔含有金属体50を5回圧縮した後に測定する。 Regarding the amount of elastic deformation and thermal conductivity per unit thickness of the pore-containing metal body 50, a pressure of 100 N / cm 2 was applied to the pore-containing metal body 50 five times to compress the pore-containing metal body 50 five times. Will be measured later.
 気孔含有金属体50の単位厚みあたりの弾性変形量は、3μm/mm以上であることが好ましく、3.5μm/mm以上であることがより好ましく、4μm/mm以上であることがさらに好ましい。気孔含有金属体50の単位厚みあたりの弾性変形量の下限値を上記の範囲に設定することにより、気孔含有金属体50が弾性変形しやすくなり、金型20と熱ジャケット30との間にある隙間の形状に気孔含有金属体50が沿いやすくなる。また、気孔含有金属体50の単位厚みあたりの弾性変形量の上限値は、例えば、30μm/mm以下、25μm/mm以下、20μm/mm以下とすることができる。 The amount of elastic deformation per unit thickness of the pore-containing metal body 50 is preferably 3 μm / mm or more, more preferably 3.5 μm / mm or more, and further preferably 4 μm / mm or more. By setting the lower limit of the amount of elastic deformation per unit thickness of the pore-containing metal body 50 in the above range, the pore-containing metal body 50 is easily elastically deformed and is located between the mold 20 and the thermal jacket 30. The pore-containing metal body 50 easily follows the shape of the gap. Further, the upper limit of the amount of elastic deformation per unit thickness of the pore-containing metal body 50 can be, for example, 30 μm / mm or less, 25 μm / mm or less, and 20 μm / mm or less.
 気孔含有金属体50の熱伝導率は、0.325W/m・K以上であることが好ましく、0.412W/m・K以上であることがより好ましく、0.5W/m・K以上であることがさらに好ましい。気孔含有金属体50の熱伝導率の下限値を上記の範囲に設定することにより、気孔含有金属体50が気孔を有する構成でありながら十分な熱伝導率を有するものとなり、熱ジャケット30の温度を金型20に伝えやすく、熱ジャケット30によって効率的に金型20を加熱または冷却することが可能となる。また、気孔含有金属体50の熱伝導率の上限値は、例えば、400W/m・K以下、300W/m・K以下、200W/m・K以下とすることができる。 The thermal conductivity of the pore-containing metal body 50 is preferably 0.325 W / m · K or more, more preferably 0.412 W / m · K or more, and 0.5 W / m · K or more. Is even more preferable. By setting the lower limit of the thermal conductivity of the pore-containing metal body 50 in the above range, the pore-containing metal body 50 has a structure having pores but has sufficient thermal conductivity, and the temperature of the heat jacket 30 is increased. Is easily transmitted to the mold 20, and the heat jacket 30 makes it possible to efficiently heat or cool the mold 20. Further, the upper limit of the thermal conductivity of the pore-containing metal body 50 can be, for example, 400 W / m · K or less, 300 W / m · K or less, and 200 W / m · K or less.
 気孔含有金属体50の初期の単位厚みあたりの塑性変形量は、100μm/mm以下であることが好ましい。気孔含有金属体50の初期の単位厚みあたりの塑性変形量が100μm/mm以下であることにより、金型20と熱ジャケット30の間に気孔含有金属体50を配置した際に、気孔含有金属体50に大きな塑性変形が生じにくく、金型20と熱ジャケット30との間の隙間を気孔含有金属体50が十分に埋めることが可能となる。 The amount of plastic deformation per unit thickness of the pore-containing metal body 50 is preferably 100 μm / mm or less. Since the amount of plastic deformation per unit thickness of the pore-containing metal body 50 is 100 μm / mm or less, when the pore-containing metal body 50 is arranged between the mold 20 and the heat jacket 30, the pore-containing metal body 50 is formed. The 50 is less likely to undergo large plastic deformation, and the pore-containing metal body 50 can sufficiently fill the gap between the mold 20 and the heat jacket 30.
 気孔含有金属体50の初期の単位厚みあたりの塑性変形量は、100μm/mm以下であることが好ましく、90μm/mm以下であることがより好ましく、85μm/mm以下であることがさらに好ましい。気孔含有金属体50の初期の単位厚みあたりの塑性変形量の上限値を上記の範囲に設定することにより、気孔含有金属体50が塑性変形しにくいものとなり、金型20の外方かつ熱ジャケット30の内方に気孔含有金属体50を配置した際に、気孔含有金属体50が金型20と熱ジャケット30との間にある隙間を埋めやすくなる。また、気孔含有金属体50の初期の単位厚みあたりの塑性変形量の下限値は、例えば、1μm/mm以上、3μm/mm以上、5μm/mm以上とすることができる。 The amount of plastic deformation per unit thickness of the pore-containing metal body 50 is preferably 100 μm / mm or less, more preferably 90 μm / mm or less, and further preferably 85 μm / mm or less. By setting the upper limit of the amount of plastic deformation per unit thickness of the pore-containing metal body 50 within the above range, the pore-containing metal body 50 is less likely to be plastically deformed, and the outer side of the mold 20 and the thermal jacket When the pore-containing metal body 50 is arranged inside the 30, the pore-containing metal body 50 easily fills the gap between the mold 20 and the heat jacket 30. Further, the lower limit of the amount of plastic deformation per unit thickness of the pore-containing metal body 50 can be, for example, 1 μm / mm or more, 3 μm / mm or more, and 5 μm / mm or more.
 気孔含有金属体50を構成する材料の金属含有率は、90%以上であることが好ましい。気孔含有金属体50を構成する材料の金属含有率が90%以上であることにより、気孔含有金属体50の強度が高く、気孔含有金属体50を金型20の外方であって熱ジャケット30の内方へ繰り返し配置することが可能となる。また、気孔含有金属体50の熱伝導率も高めることができるため、熱ジャケット30の温度を金型20に効率的に伝えることができ、樹脂製医療用バルーンの製造効率を高められる。 The metal content of the material constituting the pore-containing metal body 50 is preferably 90% or more. Since the metal content of the material constituting the pore-containing metal body 50 is 90% or more, the strength of the pore-containing metal body 50 is high, and the pore-containing metal body 50 is outside the mold 20 and the heat jacket 30 is used. It is possible to repeatedly place it inward. Further, since the thermal conductivity of the pore-containing metal body 50 can be increased, the temperature of the heat jacket 30 can be efficiently transmitted to the mold 20, and the production efficiency of the resin medical balloon can be improved.
 気孔含有金属体50を構成する材料の金属含有率は、90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることがさらに好ましい。気孔含有金属体50を構成する材料の金属含有率の下限値を上記の範囲に設定することにより、気孔含有金属体50の強度および熱伝導率を高めることができる。また、気孔含有金属体50を構成する材料の金属含有率は高いことが好ましく、金属含有率の上限値は、例えば、100%以下、99.5%以下、99%以下とすることができる。 The metal content of the material constituting the pore-containing metal body 50 is preferably 90% or more, more preferably 93% or more, and further preferably 95% or more. By setting the lower limit of the metal content of the material constituting the pore-containing metal body 50 in the above range, the strength and thermal conductivity of the pore-containing metal body 50 can be increased. Further, the metal content of the material constituting the pore-containing metal body 50 is preferably high, and the upper limit of the metal content can be, for example, 100% or less, 99.5% or less, 99% or less.
 気孔含有金属体50が1インチあたりに有している気孔の数は、8ppi以上8500ppi以下であることが好ましい。気孔含有金属体50が1インチあたりに有している気孔の数が8ppi以上8500ppi以下であることにより、気孔含有金属体50が弾性変形しやすいものとなって、金型20と熱ジャケット30との間に存在している隙間を埋めやすくなる。 The number of pores that the pore-containing metal body 50 has per inch is preferably 8 ppi or more and 8500 ppi or less. When the number of pores that the pore-containing metal body 50 has per inch is 8 ppi or more and 8500 ppi or less, the pore-containing metal body 50 is easily elastically deformed, and the mold 20 and the thermal jacket 30 It becomes easier to fill the gaps that exist between the two.
 気孔含有金属体50が1インチあたりに有している気孔の数は、8ppi以上であることが好ましく、50ppi以上であることがより好ましく、100ppi以上であることがさらに好ましい。気孔含有金属体50が1インチあたりに有している気孔の数の下限値を上記の範囲に設定することにより、気孔含有金属体50の弾性を高めることができる。また、気孔含有金属体50が1インチあたりに有している気孔の数は、8500ppi以下であることが好ましく、8000ppi以下であることがより好ましく、7500ppiであることがさらに好ましい。気孔含有金属体50が1インチあたりに有している気孔の数の上限値を上記の範囲に設定することにより、気孔含有金属体50が十分な弾性を有しながら、熱ジャケット30の温度が気孔含有金属体50を通して金型20に伝わりやすくなり、樹脂製医療用バルーンの製造の効率を高めることが可能となる。 The number of pores that the pore-containing metal body 50 has per inch is preferably 8 ppi or more, more preferably 50 ppi or more, and further preferably 100 ppi or more. By setting the lower limit of the number of pores that the pore-containing metal body 50 has per inch in the above range, the elasticity of the pore-containing metal body 50 can be increased. Further, the number of pores that the pore-containing metal body 50 has per inch is preferably 8500 ppi or less, more preferably 8000 ppi or less, and further preferably 7500 ppi. By setting the upper limit of the number of pores that the pore-containing metal body 50 has per inch in the above range, the temperature of the heat jacket 30 can be increased while the pore-containing metal body 50 has sufficient elasticity. It becomes easy to be transmitted to the mold 20 through the pore-containing metal body 50, and it becomes possible to improve the efficiency of manufacturing a resin medical balloon.
 気孔含有金属体50は、金、白金、銀、銅、アルミ、ステンレス、チタン、モリブデン、タンタル、ニッケルおよびコバルトの少なくとも1つを含んでいることが好ましい。気孔含有金属体50が金、白金、銀、銅、アルミ、ステンレス、チタン、モリブデン、タンタル、ニッケルおよびコバルトの少なくとも1つを含んでいることにより、気孔含有金属体50が弾性および熱伝導率を十分に有するものとすることができる。 The pore-containing metal body 50 preferably contains at least one of gold, platinum, silver, copper, aluminum, stainless steel, titanium, molybdenum, tantalum, nickel and cobalt. Since the pore-containing metal body 50 contains at least one of gold, platinum, silver, copper, aluminum, stainless steel, titanium, molybdenum, tantalum, nickel and cobalt, the pore-containing metal body 50 has elasticity and thermal conductivity. It can be sufficiently possessed.
 気孔含有金属体50は、中でも、銀、銅およびニッケルの少なくとも1つを含んでいることがより好ましく、銀を含んでいることがさらに好ましい。気孔含有金属体50が銀、銅およびニッケルの少なくとも1つを含んでいることにより、気孔含有金属体50の製造および取り扱いが容易であり、かつ、弾性と熱伝導率とのバランスがとれた気孔含有金属体50となる。 The pore-containing metal body 50 more preferably contains at least one of silver, copper and nickel, and more preferably contains silver. Since the pore-containing metal body 50 contains at least one of silver, copper, and nickel, the pore-containing metal body 50 is easy to manufacture and handle, and the pores have a good balance between elasticity and thermal conductivity. It becomes the contained metal body 50.
 気孔含有金属体50は、金型20の軸方向の全体に配置されていてもよいが、金型20の軸方向の一部に配置されていることが好ましい。金型20の軸方向の一部に気孔含有金属体50が配置されていることにより、金型20と熱ジャケット30との間に隙間のない、金型20と熱ジャケット30とが気孔含有金属体50を介して接触している部分を金型20の軸方向において設けることができる。金型20と熱ジャケット30とが気孔含有金属体50を介して接触している部分より、熱ジャケット30の温度を金型20へ伝え、均一に加熱または冷却することができる。 The pore-containing metal body 50 may be arranged in the entire axial direction of the mold 20, but it is preferable that the metal body 50 is arranged in a part of the mold 20 in the axial direction. Since the pore-containing metal body 50 is arranged in a part of the mold 20 in the axial direction, there is no gap between the mold 20 and the heat jacket 30, and the mold 20 and the heat jacket 30 are made of the pore-containing metal. A portion in contact with the body 50 can be provided in the axial direction of the mold 20. The temperature of the heat jacket 30 can be transmitted to the mold 20 from the portion where the mold 20 and the heat jacket 30 are in contact with each other via the pore-containing metal body 50, and the heat jacket 30 can be uniformly heated or cooled.
 図示していないが、気孔含有金属体50は、熱ジャケット30と温度調節物40との間にも配置されていることが好ましい。熱ジャケット30と温度調節物40との間に気孔含有金属体50が配置されていることにより、熱ジャケット30と温度調節物40との間にある隙間を気孔含有金属体50が埋めることができる。そのため、温度調節物40の温度が熱ジャケット30に伝わりやすく、また、気孔含有金属体50の表面方向への熱拡散能力が高いため、熱ジャケット30の温度を素早く一定にすることができる。 Although not shown, it is preferable that the pore-containing metal body 50 is also arranged between the heat jacket 30 and the temperature control object 40. Since the pore-containing metal body 50 is arranged between the heat jacket 30 and the temperature control object 40, the pore-containing metal body 50 can fill the gap between the heat jacket 30 and the temperature control object 40. .. Therefore, the temperature of the temperature control object 40 is easily transmitted to the heat jacket 30, and the heat diffusion ability of the pore-containing metal body 50 in the surface direction is high, so that the temperature of the heat jacket 30 can be quickly made constant.
 熱ジャケット30がハウジング部材70を内包している場合、気孔含有金属体50は、熱ジャケット30の内方であって、かつハウジング部材70の外方に配置されていることが好ましい。つまり、気孔含有金属体50は、熱ジャケット30とハウジング部材70との間に配置されていることが好ましい。気孔含有金属体50が熱ジャケット30の内方かつハウジング部材70の外方に配置されていることにより、熱ジャケット30とハウジング部材70との間にある隙間を気孔含有金属体50が埋め、熱ジャケット30の温度をハウジング部材70に均一に伝えることが可能となる。その結果、ハウジング部材70を介して金型20も均一に加熱または冷却することができる。 When the heat jacket 30 includes the housing member 70, it is preferable that the pore-containing metal body 50 is arranged inside the heat jacket 30 and outside the housing member 70. That is, it is preferable that the pore-containing metal body 50 is arranged between the heat jacket 30 and the housing member 70. Since the pore-containing metal body 50 is arranged inside the heat jacket 30 and outside the housing member 70, the pore-containing metal body 50 fills the gap between the heat jacket 30 and the housing member 70, and heat is generated. The temperature of the jacket 30 can be uniformly transmitted to the housing member 70. As a result, the mold 20 can be uniformly heated or cooled via the housing member 70.
 ハウジング部材70を構成する材料は、例えば、鉄、銅、アルミニウムまたはこれらの合金等の金属、ポリエーテルエーテルケトン(PEEK)等の芳香族ポリエーテルケトン系樹脂、ポリイミド系樹脂、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素樹脂等の合成樹脂等が挙げられる。中でも、ハウジング部材70を構成する材料は、金属であることが好ましく、金型20を構成する金属と同じ金属であることがより好ましい。ハウジング部材70を構成する材料が金属であることにより、熱ジャケット30の温度がハウジング部材70に伝わりやすく、熱ジャケット30の温度を、ハウジング部材70を介して金型20へ均一に伝えやすくなる。 The material constituting the housing member 70 is, for example, a metal such as iron, copper, aluminum or an alloy thereof, an aromatic polyetherketone resin such as polyetheretherketone (PEEK), a polyimide resin, or ethylene-tetrafluoroethylene. Examples thereof include synthetic resins such as fluororesins such as copolymers (ETFE). Above all, the material constituting the housing member 70 is preferably a metal, and more preferably the same metal as the metal constituting the mold 20. Since the material constituting the housing member 70 is metal, the temperature of the heat jacket 30 is easily transmitted to the housing member 70, and the temperature of the heat jacket 30 is easily transmitted uniformly to the mold 20 via the housing member 70.
 本発明の第1および第2のバルーンカテーテルの製造方法について説明する。なお、下記の説明において、上記の説明と重複する部分は説明を省略する。 The method for manufacturing the first and second balloon catheters of the present invention will be described. In the following description, the description of the part that overlaps with the above description will be omitted.
 本発明の第1のバルーンカテーテルの製造方法は、長手方向に延在しているシャフトと、シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なるものであることを特徴とする。 The first method for manufacturing a balloon catheter of the present invention is a method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. Therefore, it has a step of inserting a resin tubular body into a mold and a step of arranging the mold inside the heat jacket, and the heat jacket exists inside the heat jacket. It presses the inclusions, and the pressure received from the inclusions on the inner surface of the thermal jacket differs depending on the position of the inner surface of the thermal jacket.
 本発明の第2のバルーンカテーテルの製造方法は、長手方向に延在しているシャフトと、シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットの内側に内包物が配置されており、内包物は、外側面に凹部を有し、凹部の深さは、10μm以上であり、熱ジャケットの内側面と内包物とが接触している面積は、熱ジャケットの内側面の位置によって異なるものであることを特徴とする。 The second method for manufacturing a balloon catheter of the present invention is a method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft. It has a process of inserting a resin tubular body into a mold and a process of arranging the mold inside the heat jacket, and the inclusions are arranged inside the heat jacket. The object has a recess on the outer surface, the depth of the recess is 10 μm or more, and the area where the inner surface of the heat jacket and the inclusions are in contact varies depending on the position of the inner surface of the heat jacket. It is characterized by being.
 以下では、樹脂製医療用バルーンを、単に「バルーン」ということがある。本発明において、遠位側とはバルーンの延在方向に対して処置対象物(患部)側の方向を指し、近位側とは遠位側の反対側、すなわちバルーンの延在方向に対して使用者、つまり術者の手元側の方向を指す。また、バルーンの近位側から遠位側への方向を長手方向と称する。 In the following, the resin medical balloon may be simply referred to as a "balloon". In the present invention, the distal side refers to the direction of the treatment object (affected part) side with respect to the extending direction of the balloon, and the proximal side is opposite to the distal side, that is, with respect to the extending direction of the balloon. It points in the direction of the user, that is, the operator's hand side. Further, the direction from the proximal side to the distal side of the balloon is referred to as a longitudinal direction.
 バルーンカテーテルは、シャフトを通じてバルーンの内部に流体が供給されるように構成され、インデフレーター(バルーン用加圧器)を用いてバルーンの拡張および収縮を制御することができる。流体は、ポンプ等によって加圧した圧力流体であってもよい。 The balloon catheter is configured so that fluid is supplied to the inside of the balloon through the shaft, and the expansion and contraction of the balloon can be controlled using an indeflator (balloon pressurizer). The fluid may be a pressure fluid pressurized by a pump or the like.
 シャフトは、遠近方向に延在しており、内部に流体の流路が設けられている。また、シャフトは、内部にガイドワイヤの挿通路を有していることが好ましい。シャフトが内部に流体の流路およびガイドワイヤの挿通路を有する構成とするには、例えば、シャフトが外側チューブと内側チューブとを有する構成が挙げられる。シャフトがこのような構成であることにより、内側チューブがガイドワイヤの挿通路として機能し、内側チューブと外側チューブの間の空間が流体の流路として機能することができる。シャフトが外側チューブと内側チューブとを有している場合、内側チューブが外側チューブの遠位端から延出してバルーンを遠近方向に貫通し、バルーンの遠位側が内側チューブに接合され、バルーンの近位側が外側チューブと接合されることが好ましい。 The shaft extends in the perspective direction, and a fluid flow path is provided inside. Further, it is preferable that the shaft has a guide wire insertion passage inside. A configuration in which the shaft has a fluid flow path and a guide wire insertion passage inside includes, for example, a configuration in which the shaft has an outer tube and an inner tube. With such a configuration of the shaft, the inner tube can function as an insertion passage for the guide wire, and the space between the inner tube and the outer tube can function as a fluid flow path. If the shaft has an outer tube and an inner tube, the inner tube extends from the distal end of the outer tube and penetrates the balloon in the perspective direction, the distal side of the balloon is joined to the inner tube and closer to the balloon. It is preferable that the position side is joined to the outer tube.
 本発明は、シャフトの遠位側から近位側にわたってワイヤを挿通する、所謂オーバーザワイヤ型のバルーンカテーテルと、シャフトの遠位側から近位側に至る途中までワイヤを挿通する、所謂ラピッドエクスチェンジ型のバルーンカテーテルのいずれにも適用することができる。図示していないが、バルーンカテーテルがオーバーザワイヤ型である場合、シャフトに流体を送り込むために、シャフトの近位側にハブを有していてもよい。ハブは、バルーンの内部に供給される流体の流路と連通した流体注入部を有することが好ましい。バルーンカテーテルが流体注入部を有するハブを有していることにより、バルーンの内部に流体を供給してバルーンを拡張および収縮させる操作が容易となる。また、バルーンカテーテルがオーバーザワイヤ型である場合には、ガイドワイヤの挿通路と連通したガイドワイヤ挿入部を有することが好ましい。オーバーザワイヤ型のバルーンカテーテルがガイドワイヤ挿入部を備えるハブを有していることにより、ガイドワイヤに沿ってバルーンカテーテルを処置対象部位へ送り込む操作が行いやすくなる。 The present invention is a so-called over-the-wire type balloon catheter in which a wire is inserted from the distal side to the proximal side of the shaft, and a so-called rapid exchange type in which the wire is inserted halfway from the distal side to the proximal side of the shaft. It can be applied to any of the balloon catheters of. Although not shown, if the balloon catheter is of the over-the-wire type, it may have a hub on the proximal side of the shaft to deliver fluid to the shaft. The hub preferably has a fluid injection section that communicates with the flow path of the fluid supplied to the inside of the balloon. Since the balloon catheter has a hub having a fluid injection portion, it is easy to supply fluid to the inside of the balloon to expand and contract the balloon. Further, when the balloon catheter is an over-the-wire type, it is preferable to have a guide wire insertion portion communicating with the insertion passage of the guide wire. Since the over-the-wire type balloon catheter has a hub provided with a guide wire insertion portion, it becomes easy to perform an operation of feeding the balloon catheter to the treatment target site along the guide wire.
 シャフトとハブとの接合は、例えば、接着剤による接着、溶着等が挙げられる。中でも、シャフトとハブは、接着によって接合されていることが好ましい。シャフトとハブとが接着されていることにより、例えば、シャフトは柔軟性の高い材料から構成され、ハブは剛性の高い材料から構成されている等、シャフトを構成する材料とハブを構成する材料とが異なっている場合であっても、シャフトとハブとの接合強度を高めてバルーンカテーテルの耐久性を高めることが可能となる。 The joining between the shaft and the hub includes, for example, adhesion with an adhesive, welding, and the like. Above all, it is preferable that the shaft and the hub are joined by adhesion. By adhering the shaft and the hub, for example, the shaft is made of a highly flexible material and the hub is made of a highly rigid material. Even if they are different, it is possible to increase the joint strength between the shaft and the hub and increase the durability of the balloon catheter.
 シャフトを構成する材料は、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、シャフトを構成する材料は、ポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることが好ましい。シャフトを構成する材料がポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることにより、シャフトの表面の滑り性を高め、バルーンカテーテルの血管への挿通性を向上させることができる。 Examples of the material constituting the shaft include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Above all, the material constituting the shaft is preferably at least one of a polyamide resin, a polyolefin resin, and a fluorine resin. When the material constituting the shaft is at least one of a polyamide resin, a polyolefin resin, and a fluorine resin, the slipperiness of the surface of the shaft can be improved and the insertability of the balloon catheter into a blood vessel can be improved. ..
 バルーンは、シャフトの遠位端部に設けられている。バルーンとシャフトとの接合は、例えば、接着剤による接着、溶着、バルーンとシャフトとが重なっている箇所にリング状部材を取り付けてかしめること等が挙げられる。中でも、バルーンとシャフトは、溶着によって接合されていることが好ましい。バルーンとシャフトとが溶着されていることにより、バルーンとシャフトの接合強度を高めることができ、バルーンを繰り返し拡張および収縮させてもバルーンとシャフトとの接合が外れにくくなる。 The balloon is provided at the distal end of the shaft. Examples of joining the balloon and the shaft include adhesion and welding with an adhesive, and caulking by attaching a ring-shaped member to a portion where the balloon and the shaft overlap. Above all, it is preferable that the balloon and the shaft are joined by welding. Since the balloon and the shaft are welded together, the joint strength between the balloon and the shaft can be increased, and even if the balloon is repeatedly expanded and contracted, the joint between the balloon and the shaft is less likely to come off.
 バルーンは、直管部、直管部の近位側に接続される近位側テーパー部、および直管部の遠位側に接続される遠位側テーパー部を有することが好ましい。近位側テーパー部および遠位側テーパー部は、直管部から離れるにつれて縮径するように形成されていることが好ましい。バルーンが直管部を有していることにより、直管部が狭窄部と十分に接触して狭窄部の拡張が行いやすくなる。さらに、バルーンが直管部から離れるにつれて外径が小さくなる近位側テーパー部および遠位側テーパー部を有していることにより、バルーンを収縮させてシャフトに巻き付けた際に、バルーンの遠位端部および近位端部の外径を小さくして、シャフトとバルーンとの段差を小さくすることができるため、バルーンを長手方向に挿通させやすくなる。なお、本発明においては、膨張可能な部分をバルーンと見なす。 The balloon preferably has a straight pipe portion, a proximal taper portion connected to the proximal side of the straight pipe portion, and a distal taper portion connected to the distal side of the straight pipe portion. It is preferable that the proximal taper portion and the distal taper portion are formed so as to reduce the diameter as the distance from the straight pipe portion increases. Since the balloon has a straight tube portion, the straight tube portion is sufficiently in contact with the narrowed portion, and the narrowed portion can be easily expanded. Further, by having a proximal taper and a distal taper whose outer diameter becomes smaller as the balloon moves away from the straight tube, the balloon is distal when the balloon is contracted and wound around the shaft. Since the outer diameters of the end portion and the proximal end portion can be reduced to reduce the step between the shaft and the balloon, the balloon can be easily inserted in the longitudinal direction. In the present invention, the inflatable portion is regarded as a balloon.
 バルーンの外径は、0.5mm以上であることが好ましく、1mm以上であることがより好ましく、1.5mm以上であることがさらに好ましい。バルーンの外径の下限値を上記の範囲に設定することにより、血管内の狭窄部を十分に拡張することができる。また、バルーンの外径は、35mm以下であることが好ましく、30mm以下であることがより好ましく、25mm以下であることがさらに好ましい。バルーンの外径の上限値を上記の範囲に設定することにより、バルーンの外径が大きくなることを防止することができる。 The outer diameter of the balloon is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 1.5 mm or more. By setting the lower limit of the outer diameter of the balloon to the above range, the stenosis in the blood vessel can be sufficiently dilated. The outer diameter of the balloon is preferably 35 mm or less, more preferably 30 mm or less, and even more preferably 25 mm or less. By setting the upper limit value of the outer diameter of the balloon in the above range, it is possible to prevent the outer diameter of the balloon from becoming large.
 バルーンの長手方向の長さは、5mm以上であることが好ましく、10mm以上であることがより好ましく、15mm以上であることがさらに好ましい。バルーンの長手方向の長さの下限値を上記の範囲に設定することにより、一度に拡張できる狭窄部の面積を大きくして手技にかかる時間を短縮することが可能となる。また、バルーンの長手方向の長さは、300mm以下であることが好ましく、200mm以下であることがより好ましく、100mm以下であることがさらに好ましい。バルーンの長手方向の長さの上限値を上記の範囲に設定することにより、狭窄部の拡張のためにバルーンの内部に送り込む流体の量を減らし、バルーンを十分に拡張させるために必要な時間を短くすることができる。 The length of the balloon in the longitudinal direction is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more. By setting the lower limit of the length of the balloon in the longitudinal direction to the above range, it is possible to increase the area of the stenotic portion that can be expanded at one time and shorten the time required for the procedure. The length of the balloon in the longitudinal direction is preferably 300 mm or less, more preferably 200 mm or less, and even more preferably 100 mm or less. By setting the upper limit of the longitudinal length of the balloon to the above range, the amount of fluid sent into the balloon for dilation of the stenosis is reduced, and the time required for the balloon to expand sufficiently is increased. Can be shortened.
 バルーンの厚みは、5μm以上であることが好ましく、7μm以上であることがより好ましく、10μm以上であることがさらに好ましい。バルーンの厚みの下限値を上記の範囲に設定することにより、バルーンの強度を高めることができ、狭窄部を十分に拡張することができる。また、バルーンの厚みの上限値は、バルーンカテーテルの用途に応じて設定することができ、例えば、100μm以下、90μm以下、80μm以下とすることができる。 The thickness of the balloon is preferably 5 μm or more, more preferably 7 μm or more, and further preferably 10 μm or more. By setting the lower limit of the thickness of the balloon in the above range, the strength of the balloon can be increased and the narrowed portion can be sufficiently expanded. The upper limit of the thickness of the balloon can be set according to the application of the balloon catheter, and can be, for example, 100 μm or less, 90 μm or less, and 80 μm or less.
 本発明の第1および第2のバルーンカテーテルの製造方法は、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有している。 The first and second balloon catheter manufacturing methods of the present invention include a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket.
 金型は、内部に樹脂製医療用バルーンの外形と同じ形状の空間を有している。樹脂製筒状体を金型へ挿入する工程において、金型の内部空間に樹脂製筒状体を配置する。樹脂製筒状体を金型へ挿入する工程の後に、樹脂製筒状体をブロー成形し、バルーンを製造する。 The mold has a space inside that has the same shape as the outer shape of the resin medical balloon. In the step of inserting the resin tubular body into the mold, the resin tubular body is arranged in the internal space of the mold. After the step of inserting the resin tubular body into the mold, the resin tubular body is blow-molded to manufacture a balloon.
 熱ジャケットは、内部に金型を配置することができる構成であって、内包している金型の温度の調節を行う。金型を熱ジャケットの内側へ配置する工程において、熱ジャケットによって金型の加熱と冷却の少なくとも一方を行う。 The heat jacket has a structure in which a mold can be placed inside, and the temperature of the contained mold is adjusted. In the process of arranging the mold inside the heat jacket, the heat jacket heats and cools the mold at least one of them.
 具体例として、熱ジャケットが金型の加熱を行う場合、熱ジャケットによって金型の加熱を行った後に樹脂製筒状体のブロー成形を行うことが挙げられる。また、熱ジャケットが金型の冷却を行う場合、樹脂製筒状体をブロー成形した後に熱ジャケットによって金型の冷却を行って成形後のバルーンを冷却することが挙げられる。 As a specific example, when the heat jacket heats the mold, the resin tubular body is blow-molded after the mold is heated by the heat jacket. Further, when the heat jacket cools the mold, it is possible to blow-mold the resin tubular body and then cool the mold with the heat jacket to cool the molded balloon.
 本発明の第1のバルーンカテーテルの製造方法において、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なる。内包物から受ける圧力が他の部分よりも高くなっている熱ジャケットの内側面の部分は、他の部分よりも内包物と密着しており、熱ジャケットの温度が内包物に伝わりやすくなっている。そのため、熱ジャケットの内側面が内包物から受ける圧力が、熱ジャケットの内側面の位置によって異なることにより、内包物から高い圧力を受けている熱ジャケットの内側面の部分に位置している内包物を、加熱時には他の部分よりも高温となるように加熱することができ、冷却時には他の部分よりも低温となるように冷却することが可能である。 In the first method for manufacturing a balloon catheter of the present invention, the heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket is heat. It depends on the position of the inner surface of the jacket. The pressure received from the inclusions is higher than the other parts. The inner side part of the heat jacket is in closer contact with the inclusions than the other parts, making it easier for the temperature of the heat jacket to be transmitted to the inclusions. .. Therefore, the pressure that the inner surface of the heat jacket receives from the inclusions differs depending on the position of the inner surface of the heat jacket, so that the inclusions located on the inner surface of the heat jacket that receives high pressure from the inclusions. Can be heated so that it is hotter than the other parts when it is heated, and it is possible to cool it so that it is lower than the other parts when it is cooled.
 本発明の第2のバルーンカテーテルの製造方法において、外側面に深さ10μm以上の凹部を有する内包物が配置されており、熱ジャケットの内側面と内包物とが接触している面積が、熱ジャケットの内側面の位置によって異なるものであることにより、凹部に位置している内包物の部分は、他の部分よりも熱ジャケットとの距離が離れており、熱ジャケットと接触しにくくなって、熱ジャケットの内側面と接触している面積が小さくなる。そのため、凹部に位置している内包物の部分は、他の部分よりも熱ジャケットの温度が伝わりにくくなる。その結果、熱ジャケットが内包物を加熱している際には他の部分よりも低温に、熱ジャケットが内包物を冷却している際には他の部分よりも高温にすることができる。 In the second method for manufacturing a balloon catheter of the present invention, an inclusion having a recess of 10 μm or more in depth is arranged on the outer surface, and the area where the inner surface of the heat jacket and the inclusion are in contact with each other is heat. Since it differs depending on the position of the inner surface of the jacket, the portion of the inclusion located in the recess is farther from the heat jacket than the other parts, and it becomes difficult to contact the heat jacket. The area in contact with the inner surface of the thermal jacket is reduced. Therefore, the temperature of the heat jacket is less likely to be transmitted to the portion of the inclusion located in the recess than to the other portion. As a result, when the heat jacket is heating the inclusions, it can be cooler than the other parts, and when the heat jacket is cooling the inclusions, it can be hotter than the other parts.
 以上のように、本発明の第1の樹脂製医療用バルーンの製造装置は、樹脂製筒状体が内挿される金型と、金型を内包する熱ジャケットと、を有しており、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なるものであることを特徴とする。また、本発明の第1のバルーンカテーテルの製造方法は、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は、熱ジャケットの内側面の位置によって異なるものであることを特徴とする。本発明の第1の樹脂製医療用バルーンの製造装置および第1のバルーンカテーテルの製造方法によれば、熱ジャケットは該熱ジャケットの内側に存在している内包物を押圧するものであり、熱ジャケットの内側面が内包物から受ける圧力は熱ジャケットの内側面の位置によって異なることにより、熱ジャケットの内側面が内包物から受ける圧力の高い部分に位置している内包物は他の部分よりも熱ジャケットの温度が伝わりやすいため、熱ジャケットが内包物を加熱している際には他の部分よりも高温とすることが可能であり、また、熱ジャケットが内包物を冷却している際には他の部分よりも低温とすることが可能となる。 As described above, the first resin medical balloon manufacturing apparatus of the present invention has a mold in which a resin tubular body is inserted and a heat jacket containing the mold, and has heat. The jacket presses the inclusions existing inside the heat jacket, and the pressure received by the inner side surface of the heat jacket from the inclusions differs depending on the position of the inner side surface of the heat jacket. And. Further, the first method for manufacturing a balloon catheter of the present invention includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside a heat jacket. Presses the inclusions existing inside the heat jacket, and the pressure received by the inner side surface of the heat jacket from the inclusions differs depending on the position of the inner side surface of the heat jacket. To do. According to the first resin medical balloon manufacturing apparatus and the first balloon catheter manufacturing method of the present invention, the heat jacket presses the inclusions existing inside the heat jacket, and heat is generated. The pressure that the inner surface of the jacket receives from the inclusions depends on the position of the inner surface of the thermal jacket, so the inclusions that are located on the inner side of the thermal jacket where the pressure is higher from the inclusions are higher than the other parts. Since the temperature of the heat jacket is easily transmitted, it is possible to make the temperature higher than other parts when the heat jacket is heating the inclusions, and when the heat jacket is cooling the inclusions. Can be colder than other parts.
 本発明の第2の樹脂製医療用バルーンの製造装置は、樹脂製筒状体が内挿される金型と、金型を内包する熱ジャケットと、を有しており、熱ジャケットの内側に内包物が配置されており、内包物は、外側面に内包物の周方向に延在している凹部を有していることを特徴とする。また、本発明の第2のバルーンカテーテルの製造方法は、樹脂製筒状体を金型へ挿入する工程と、金型を熱ジャケットの内側へ配置する工程と、を有しており、熱ジャケットの内側に内包物が配置されており、内包物は、外側面に凹部を有し、凹部の深さは、10μm以上であり、熱ジャケットの内側面と内包物とが接触している面積は、熱ジャケットの内側面の位置によって異なるものであることを特徴とする。本発明の第2の樹脂製医療用バルーンの製造装置および第2のバルーンカテーテルの製造方法によれば、熱ジャケットの内側に配置されている内包物が凹部を外側面に有しており、熱ジャケットの内側面と内包物とが接触している面積は熱ジャケットの内側面の位置によって異なるものであることにより、凹部に位置している内包物の部分は他の部分よりも熱ジャケットの温度が伝わりにくいため、熱ジャケットが内包物を加熱している際には他の部分よりも低温にでき、熱ジャケットが内包物を冷却している際には他の部分よりも高温にできる。 The second resin medical balloon manufacturing apparatus of the present invention has a mold in which a resin tubular body is inserted and a heat jacket containing the mold, and is contained inside the heat jacket. An object is arranged, and the inclusion is characterized by having a recess extending in the circumferential direction of the inclusion on the outer surface. Further, the second method for manufacturing a balloon catheter of the present invention includes a step of inserting a resin tubular body into a mold and a step of arranging the mold inside the heat jacket, and the heat jacket. The inclusions are arranged inside the jacket, the inclusions have recesses on the outer surface, the depth of the recesses is 10 μm or more, and the area where the inner side surface of the heat jacket and the inclusions are in contact with each other is It is characterized in that it differs depending on the position of the inner surface of the heat jacket. According to the second resin medical balloon manufacturing apparatus and the second balloon catheter manufacturing method of the present invention, the inclusions arranged inside the heat jacket have recesses on the outer surface and heat. Since the area of contact between the inner surface of the jacket and the inclusions differs depending on the position of the inner surface of the thermal jacket, the portion of the inclusions located in the recess is the temperature of the thermal jacket more than the other parts. Is difficult to transmit, so when the heat jacket is heating the inclusions, it can be cooler than the other parts, and when the heat jacket is cooling the inclusions, it can be hotter than the other parts.
 本願は、2019年12月26日に出願された日本国特許出願第2019-237207号に基づく優先権の利益を主張するものである。2019年12月26日に出願された日本国特許出願第2019-237207号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-237207 filed on December 26, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-237207 filed on December 26, 2019 are incorporated herein by reference.
 1:樹脂製医療用バルーンの製造装置
 10:樹脂製筒状体
 20:金型
 21:柱状部
 22:錐状部
 30:熱ジャケット
 31:第1部分熱ジャケット
 32:第2部分熱ジャケット
 33:遠位側部分熱ジャケット
 34:近位側部分熱ジャケット
 40:温度調節物
 50:気孔含有金属体
 70:ハウジング部材
 71:部分ハウジング部材
 72:部分ハウジング部材
 73:部分ハウジング部材
 100:内包物
 110:凹部
 120:凸部
 121:スペーサー部材
1: Resin medical balloon manufacturing equipment 10: Resin tubular body 20: Mold 21: Columnar part 22: Conical part 30: Heat jacket 31: First part heat jacket 32: Second part heat jacket 33: Distal partial heat jacket 34: Proximal partial heat jacket 40: Temperature control 50: Pore-containing metal body 70: Housing member 71: Partial housing member 72: Partial housing member 73: Partial housing member 100: Inclusion 110: Concave part 120: Convex part 121: Spacer member

Claims (32)

  1.  長手方向に延在しているシャフトと、前記シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、
     樹脂製筒状体を金型へ挿入する工程と、
     前記金型を熱ジャケットの内側へ配置する工程と、を有しており、
     前記熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、前記熱ジャケットの内側面が前記内包物から受ける圧力は、前記熱ジャケットの内側面の位置によって異なるものであることを特徴とするバルーンカテーテルの製造方法。
    A method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft.
    The process of inserting the resin tubular body into the mold,
    It has a step of arranging the mold inside the heat jacket.
    The heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket. A method for manufacturing a balloon catheter.
  2.  前記熱ジャケットの内側面が前記内包物から受ける圧力は、前記金型の長手方向の位置によって異なるものである請求項1に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 1, wherein the pressure received by the inner surface of the heat jacket from the inclusions differs depending on the position in the longitudinal direction of the mold.
  3.  長手方向に延在しているシャフトと、前記シャフトの遠位端部に設けられている樹脂製医療用バルーンと、を有するバルーンカテーテルの製造方法であって、
     樹脂製筒状体を金型へ挿入する工程と、
     前記金型を熱ジャケットの内側へ配置する工程と、を有しており、
     前記熱ジャケットの内側に内包物が配置されており、
     前記内包物は、外側面に凹部を有し、
     前記凹部の深さは、10μm以上であり、
     前記熱ジャケットの内側面と前記内包物とが接触している面積は、前記熱ジャケットの内側面の位置によって異なるものであることを特徴とするバルーンカテーテルの製造方法。
    A method for manufacturing a balloon catheter having a shaft extending in the longitudinal direction and a resin medical balloon provided at the distal end of the shaft.
    The process of inserting the resin tubular body into the mold,
    It has a step of arranging the mold inside the heat jacket.
    Inclusions are placed inside the thermal jacket
    The inclusion has a recess on the outer surface and
    The depth of the recess is 10 μm or more.
    A method for manufacturing a balloon catheter, characterized in that the area in contact between the inner surface of the heat jacket and the inclusions varies depending on the position of the inner surface of the heat jacket.
  4.  前記内包物は、一つまたは複数の前記金型の少なくとも一部を内包するハウジング部材である請求項1~3のいずれか一項に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to any one of claims 1 to 3, wherein the inclusion is a housing member that includes at least a part of one or a plurality of the molds.
  5.  前記ハウジング部材は、外側面に凸部を有している請求項4に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 4, wherein the housing member has a convex portion on the outer surface.
  6.  前記凸部は、前記ハウジング部材の外側面に配置されているスペーサー部材である請求項5に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 5, wherein the convex portion is a spacer member arranged on the outer surface of the housing member.
  7.  前記ハウジング部材は、前記金型の長手方向に並んで配置されている複数の部分ハウジング部材を有しており、前記スペーサー部材は前記部分ハウジング部材の少なくともいずれか一つに配置されている請求項6に記載のバルーンカテーテルの製造方法。 Claim that the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is arranged in at least one of the partial housing members. 6. The method for manufacturing a balloon catheter according to 6.
  8.  前記凸部は、前記ハウジング部材の全周に延在している請求項5~7のいずれか一項に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to any one of claims 5 to 7, wherein the convex portion extends over the entire circumference of the housing member.
  9.  前記金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、前記凸部は、前記柱状部に対応する部分の少なくとも一部に配されている請求項5~8のいずれか一項に記載のバルーンカテーテルの製造方法。 The lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion is a portion corresponding to the columnar portion. The method for manufacturing a balloon catheter according to any one of claims 5 to 8, which is arranged at least in part.
  10.  前記金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、前記凸部は、前記錐状部に対応する部分の少なくとも一部に配されている請求項5~8のいずれか一項に記載のバルーンカテーテルの製造方法。 The lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion is a portion corresponding to the conical portion. The method for manufacturing a balloon catheter according to any one of claims 5 to 8, which is arranged in at least a part of the above.
  11.  前記熱ジャケットは、複数の部分熱ジャケットを有している請求項1~10のいずれか一項に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to any one of claims 1 to 10, wherein the heat jacket has a plurality of partial heat jackets.
  12.  前記熱ジャケットは、前記金型の一方側面側にある第1部分熱ジャケットと、前記金型の他方側面側にある第2部分熱ジャケットと、を有しており、前記第1部分熱ジャケットと前記第2部分熱ジャケットとが互いに接近することにより前記内包物が押圧される請求項1~11のいずれか一項に記載のバルーンカテーテルの製造方法。 The heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. The method for manufacturing a balloon catheter according to any one of claims 1 to 11, wherein the inclusions are pressed by the second partial heat jackets approaching each other.
  13.  前記第1部分熱ジャケットと前記第2部分熱ジャケットは、互いに接続されている請求項12に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 12, wherein the first partial heat jacket and the second partial heat jacket are connected to each other.
  14.  前記熱ジャケットは、前記金型の長手方向に互いに離間して配置されている遠位側部分熱ジャケットと近位側部分熱ジャケットとを有している請求項11に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 11, wherein the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. ..
  15.  前記金型の外方であって、かつ前記熱ジャケットの内方に配置されている気孔含有金属体を有している請求項1~14のいずれか一項に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to any one of claims 1 to 14, which is outside the mold and has a pore-containing metal body arranged inside the heat jacket.
  16.  前記気孔含有金属体の単位厚みあたりの弾性変形量は、3μm/mm以上であり、
     前記気孔含有金属体の熱伝導率は、0.325W/m・K以上である請求項15に記載のバルーンカテーテルの製造方法。
    The amount of elastic deformation per unit thickness of the pore-containing metal body is 3 μm / mm or more.
    The method for manufacturing a balloon catheter according to claim 15, wherein the pore-containing metal body has a thermal conductivity of 0.325 W / m · K or more.
  17.  樹脂製医療用バルーンの製造装置であって、
     樹脂製筒状体が内挿される金型と、
     前記金型を内包する熱ジャケットと、を有しており、
     前記熱ジャケットは、該熱ジャケットの内側に存在している内包物を押圧するものであり、前記熱ジャケットの内側面が前記内包物から受ける圧力は、前記熱ジャケットの内側面の位置によって異なるものであることを特徴とする樹脂製医療用バルーンの製造装置。
    A device for manufacturing resin medical balloons.
    A mold into which a resin tubular body is inserted, and
    It has a heat jacket that includes the mold, and
    The heat jacket presses the inclusions existing inside the heat jacket, and the pressure received from the inclusions on the inner surface of the heat jacket differs depending on the position of the inner surface of the heat jacket. A resin medical balloon manufacturing apparatus characterized by the above.
  18.  前記熱ジャケットの内側面が前記内包物から受ける圧力は、前記金型の長手方向の位置によって異なるものである請求項17に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to claim 17, wherein the pressure received by the inner surface of the heat jacket from the inclusions differs depending on the position in the longitudinal direction of the mold.
  19.  樹脂製医療用バルーンの製造装置であって、
     樹脂製筒状体が内挿される金型と、
     前記金型を内包する熱ジャケットと、を有しており、
     前記熱ジャケットの内側に内包物が配置されており、
     前記内包物は、外側面に凹部を有し、
     前記凹部の深さは、10μm以上であり、
     前記熱ジャケットの内側面と前記内包物とが接触している面積は、前記熱ジャケットの内側面の位置によって異なるものであることを特徴とする樹脂製医療用バルーンの製造装置。
    A device for manufacturing resin medical balloons.
    A mold into which a resin tubular body is inserted, and
    It has a heat jacket that includes the mold, and
    Inclusions are placed inside the thermal jacket
    The inclusion has a recess on the outer surface and
    The depth of the recess is 10 μm or more.
    A resin medical balloon manufacturing apparatus, wherein the area of contact between the inner surface of the heat jacket and the inclusions varies depending on the position of the inner surface of the heat jacket.
  20.  前記内包物は、一つまたは複数の前記金型の少なくとも一部を内包するハウジング部材である請求項17~19のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to any one of claims 17 to 19, wherein the inclusion is a housing member that includes at least a part of one or a plurality of the molds.
  21.  前記ハウジング部材は、外側面に凸部を有している請求項20に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to claim 20, wherein the housing member has a convex portion on the outer surface.
  22.  前記凸部は、前記ハウジング部材の外側面に配置されているスペーサー部材である請求項21に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to claim 21, wherein the convex portion is a spacer member arranged on the outer surface of the housing member.
  23.  前記ハウジング部材は、前記金型の長手方向に並んで配置されている複数の部分ハウジング部材を有しており、前記スペーサー部材は前記部分ハウジング部材の少なくともいずれか一つに配置されている請求項22に記載の樹脂製医療用バルーンの製造装置。 Claim that the housing member has a plurality of partial housing members arranged side by side in the longitudinal direction of the mold, and the spacer member is arranged in at least one of the partial housing members. The resin medical balloon manufacturing apparatus according to 22.
  24.  前記凸部は、前記ハウジング部材の全周に延在している請求項21~23のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to any one of claims 21 to 23, wherein the convex portion extends over the entire circumference of the housing member.
  25.  前記金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、前記凸部は、前記柱状部に対応する部分の少なくとも一部に配されている請求項21~24のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion is a portion corresponding to the columnar portion. The resin medical balloon manufacturing apparatus according to any one of claims 21 to 24, which is arranged at least in part.
  26.  前記金型の内腔は、柱状部と、該柱状部の一端側および他端側に存在している錐状部とを有しており、前記凸部は、前記錐状部に対応する部分の少なくとも一部に配されている請求項21~24のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The lumen of the mold has a columnar portion and a conical portion existing on one end side and the other end side of the columnar portion, and the convex portion is a portion corresponding to the conical portion. The resin medical balloon manufacturing apparatus according to any one of claims 21 to 24, which is arranged in at least a part of the above.
  27.  前記熱ジャケットは、複数の部分熱ジャケットを有している請求項17~26のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to any one of claims 17 to 26, wherein the heat jacket has a plurality of partial heat jackets.
  28.  前記熱ジャケットは、前記金型の一方側面側にある第1部分熱ジャケットと、前記金型の他方側面側にある第2部分熱ジャケットと、を有しており、前記第1部分熱ジャケットと前記第2部分熱ジャケットとが互いに接近することにより前記内包物が押圧される請求項17~27のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The heat jacket has a first partial heat jacket on one side surface side of the mold and a second partial heat jacket on the other side surface side of the mold. The apparatus for manufacturing a resin medical balloon according to any one of claims 17 to 27, wherein the inclusion is pressed when the second partial heat jacket approaches each other.
  29.  前記第1部分熱ジャケットと前記第2部分熱ジャケットは、互いに接続されている請求項28に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon manufacturing apparatus according to claim 28, wherein the first partial heat jacket and the second partial heat jacket are connected to each other.
  30.  前記熱ジャケットは、前記金型の長手方向に互いに離間して配置されている遠位側部分熱ジャケットと近位側部分熱ジャケットとを有している請求項27に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon according to claim 27, wherein the heat jacket has a distal partial heat jacket and a proximal partial heat jacket arranged apart from each other in the longitudinal direction of the mold. Manufacturing equipment.
  31.  前記金型の外方であって、かつ前記熱ジャケットの内方に配置されている気孔含有金属体を有している請求項17~30のいずれか一項に記載の樹脂製医療用バルーンの製造装置。 The resin medical balloon according to any one of claims 17 to 30, which is outside the mold and has a pore-containing metal body arranged inside the heat jacket. manufacturing device.
  32.  前記気孔含有金属体の単位厚みあたりの弾性変形量は、3μm/mm以上であり、
     前記気孔含有金属体の熱伝導率は、0.325W/m・K以上である請求項31に記載の樹脂製医療用バルーン製造装置。
    The amount of elastic deformation per unit thickness of the pore-containing metal body is 3 μm / mm or more.
    The resin medical balloon manufacturing apparatus according to claim 31, wherein the pore-containing metal body has a thermal conductivity of 0.325 W / m · K or more.
PCT/JP2020/039114 2019-12-26 2020-10-16 Method for manufacturing balloon catheter, and device for manufacturing resin medical balloon WO2021131262A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566847A JPWO2021131262A1 (en) 2019-12-26 2020-10-16
CN202080078372.XA CN114728151A (en) 2019-12-26 2020-10-16 Method for manufacturing balloon catheter and device for manufacturing medical balloon made of resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237207 2019-12-26
JP2019-237207 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131262A1 true WO2021131262A1 (en) 2021-07-01

Family

ID=76574207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039114 WO2021131262A1 (en) 2019-12-26 2020-10-16 Method for manufacturing balloon catheter, and device for manufacturing resin medical balloon

Country Status (3)

Country Link
JP (1) JPWO2021131262A1 (en)
CN (1) CN114728151A (en)
WO (1) WO2021131262A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335530A (en) * 1993-05-28 1994-12-06 Terumo Corp Production and apparatus for production of balloon catheter
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
JP2008535635A (en) * 2005-04-12 2008-09-04 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Stent attachment method for forming a balloon catheter with improved retention of a drug delivery stent
US20090096134A1 (en) * 2004-01-07 2009-04-16 Boston Scientific Scimed, Inc. Process and Apparatus for Forming Medical Device Balloons
JP2014057793A (en) * 2012-09-19 2014-04-03 Kaneka Corp Balloon for balloon catheter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988997B (en) * 2004-07-26 2012-02-15 株式会社Jms Heater unit and thermal fusion apparatus for synthetic resin members and thermal fusion method for synthetic resin members
FR2889820B1 (en) * 2005-08-18 2009-10-30 Sidel Sas BLOWING MOLD FOR THERMOPLASTIC CONTAINERS WITH INTEGRAL HANDLE, INSTALLATION EQUIPPED WITH SUCH MOLDS, AND CONTAINER MANUFACTURED WITH SUCH A MOLD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335530A (en) * 1993-05-28 1994-12-06 Terumo Corp Production and apparatus for production of balloon catheter
US20090096134A1 (en) * 2004-01-07 2009-04-16 Boston Scientific Scimed, Inc. Process and Apparatus for Forming Medical Device Balloons
JP2008535635A (en) * 2005-04-12 2008-09-04 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Stent attachment method for forming a balloon catheter with improved retention of a drug delivery stent
JP2008023270A (en) * 2006-07-25 2008-02-07 Nipro Corp Balloon for catheter and its manufacturing method
JP2014057793A (en) * 2012-09-19 2014-04-03 Kaneka Corp Balloon for balloon catheter

Also Published As

Publication number Publication date
CN114728151A (en) 2022-07-08
JPWO2021131262A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US8840743B2 (en) Soft tip balloon catheter
KR20040023570A (en) Medical balloon catheter
JP2009542363A (en) Balloon catheter shaft having high strength and flexibility and manufacturing method thereof
JP6483941B2 (en) Balloon, balloon catheter, and balloon manufacturing method
US8728110B2 (en) Balloon dilation catheter shaft having end transition
US6878329B2 (en) Method of making a catheter balloon using a polyimide covered mandrel
JP5537934B2 (en) Medical devices and related systems and methods
WO2021131262A1 (en) Method for manufacturing balloon catheter, and device for manufacturing resin medical balloon
JP4752657B2 (en) Catheter balloon and manufacturing method thereof
WO2015146259A1 (en) Balloon catheter and method for manufacturing balloon
WO2021131263A1 (en) Method for producing balloon catheter and device for producing resin medical balloon
JP2021104327A (en) Device for producing resin-made medical balloon and method for producing balloon catheter
CN111542364B (en) Catheter and method of manufacturing the same
US8871136B2 (en) Methods for manufacturing a catheter using an aluminum nitride bonding apparatus
JP6078371B2 (en) Method for manufacturing balloon for balloon catheter
WO2020184004A1 (en) Method for producing balloon catheter
JP2023183917A (en) Manufacturing method of balloon for balloon catheter
JP6134154B2 (en) Balloon for balloon catheter
JP2023183916A (en) Manufacturing method of balloon for balloon catheter and mold set
JP6462079B2 (en) Balloon manufacturing method
JP2003144553A (en) Balloon and balloon catheter
JP2022093711A (en) Balloon catheter
JP2017176345A (en) Expansion method of balloon catheter and medical system
JP2014057792A (en) Method of manufacturing balloon for balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566847

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906296

Country of ref document: EP

Kind code of ref document: A1