WO2021131191A1 - Variable valve mechanism - Google Patents

Variable valve mechanism Download PDF

Info

Publication number
WO2021131191A1
WO2021131191A1 PCT/JP2020/035966 JP2020035966W WO2021131191A1 WO 2021131191 A1 WO2021131191 A1 WO 2021131191A1 JP 2020035966 W JP2020035966 W JP 2020035966W WO 2021131191 A1 WO2021131191 A1 WO 2021131191A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing arm
cam
swing
flat surface
variable valve
Prior art date
Application number
PCT/JP2020/035966
Other languages
French (fr)
Japanese (ja)
Inventor
寿恭 佐藤
悟 高雄
剛 松浦
祥典 中尾
健介 木本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2021131191A1 publication Critical patent/WO2021131191A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations

Definitions

  • the present invention relates to a variable valve mechanism of an engine.
  • variable valve mechanism that changes the lift characteristics of a valve that opens and closes an engine intake or exhaust port, that is, the valve opening / closing timing and opening / closing amount, etc. has been proposed.
  • Patent Document 1 discloses a variable valve mechanism of an internal combustion engine including a control cam for moving a swing arm (rocker arm) provided between a drive cam and a valve stem.
  • a control cam is rotatably arranged on the base end side of the swing arm, and a fulcrum portion of the base end of the swing arm is rotatably attached to a portion away from the rotation center of the control cam.
  • the tip of the swing arm is in contact with a cap provided at the upper end of the valve stem.
  • the control cam is rotated by a predetermined angle by the driving means.
  • variable valve mechanism when the control cam is rotated to change the lift characteristics of the valve, the fulcrum portion, which is the swing center of the swing arm, rotates and moves around the rotation axis of the control cam.
  • the contact surface pressure between the drive cam and the swing arm and the lift characteristics of the valve control the distance between the rotation center of the control cam and the fulcrum. It depends on many parameters such as the angle at which the cam is rotated, the positions of the swing arm and the control cam with respect to the rotation center of the drive cam, and the shape of the contact surface of the swing arm with the drive cam. Therefore, at the design stage, it is very important to study how to design the valve so that the desired valve lift characteristics can be changed while keeping the contact surface pressure between the drive cam and the swing arm within an allowable range. It takes time.
  • an object of the present invention is to provide a variable valve mechanism for an engine that can reduce the labor required for design.
  • variable valve mechanism is a variable valve mechanism that changes the lift characteristics of a valve that opens and closes an intake or exhaust port of an engine.
  • a cam that rotates in conjunction with the rotation of the crank shaft of the engine and a cam that is pressed by the rotating cam to swing around a swing shaft parallel to the rotation shaft of the cam, and the swing angle according to the swing angle.
  • a swing arm that operates the valve, a swing support that swingably supports the swing arm around the swing shaft, and a swing support together with the swing arm in a direction orthogonal to the valve axis.
  • the swing arm has a flat surface extending along the longitudinal direction of the swing arm, and the cam has the flat surface during one rotation. Contact with.
  • the moving device linearly moves the swing axis of the swing arm in the direction orthogonal to the valve axis. Therefore, it is only necessary to consider the simple linear movement of the swing arm, and it is possible to reduce the design parameters related to the position and shape of each component of the variable valve mechanism. Therefore, it becomes easy to design a valve capable of changing the lift characteristics of a desired valve while keeping the contact surface pressure between the cam and the swing arm within an allowable range, and the labor required for the design can be reduced.
  • variable valve mechanism of an engine that can reduce the labor required for design.
  • FIG. 1 is a schematic cross-sectional view showing the variable valve mechanism 20A on the exhaust side of the engine and its periphery according to the first embodiment. First, the configuration of the engine in which the variable valve mechanism 20A according to the first embodiment is adopted will be described.
  • the engine described in this embodiment is a double overhead camshaft type (DOHC type) engine.
  • the cylinder head 2 of the engine is provided with an intake port (not shown) and an exhaust port 4 connected to the combustion chamber 3. Further, the cylinder head 2 is provided with an intake valve (not shown) and an exhaust valve 10 for opening / closing the combustion chamber 3, respectively, for the intake port and the exhaust port 4.
  • the engine includes a variable valve mechanism on the intake side and a variable valve mechanism 20A on the exhaust side that open and close the intake valve and the exhaust valve 10.
  • the concept of the direction used in the embodiment shall be generally in line with the passenger of the motorcycle equipped with the engine.
  • the upper side of the paper in FIG. 1 is the “upper side” of the engine.
  • the lower side of the paper in FIG. 1 is defined as the "lower side” of the engine
  • the right side of the paper in FIG. 1 is defined as the "front side” of the engine
  • the left side of the paper in FIG. 1 is defined as the "rear side” of the engine.
  • the back side of the paper in FIG. 1 is defined as the "left side” of the engine
  • the front side of the paper in FIG. 1 is defined as the "right side” of the engine.
  • the downward direction in the direction concept of the embodiment defined in this way does not have to coincide with the vertical downward direction, the downward direction may be inclined with respect to the vertical downward direction, or the vertical upward direction may be used. They may match.
  • the valve axis C2 described later may be inclined with respect to the vertical direction.
  • valve 10 and the variable valve mechanism have substantially the same structure on the intake side and the exhaust side, the exhaust side will be described as a representative below. Further, in the following, the "exhaust valve 10" and the “exhaust port 4" will be simply referred to as “valve 10" and "port 4", respectively.
  • the valve 10 includes a valve body 11 having a flange portion 11a for opening and closing the port 4 and a stem portion 11b extending upward from the flange portion 11a.
  • a spring retainer 13 is attached to the upper end of the stem portion 11b via a cotter (not shown).
  • a spring seat 15 is attached to the upper surface of the cylinder head 2.
  • a valve spring 17 is interposed between the spring seat 15 and the spring retainer 13. The valve body 11 is urged upward by the valve spring 17. As a result, the flange portion 11a comes into contact with the peripheral edge portion (valve seat) 4a of the port 4, and the port 4 is closed.
  • a tappet 18 is attached to the upper end portion of the stem portion 11b (base end portion; the end portion opposite to the end portion provided with the flange portion 11a) via a shim (not shown).
  • a shim not shown.
  • the variable valve mechanism 20A changes the lift characteristics of the valve 10. Specifically, the variable valve mechanism 20A changes the maximum lift amount, opening / closing timing, and opening time of the valve 10.
  • the variable valve mechanism 20A includes a cam 21, a swing arm 31, a swing support 41, and a moving device 43.
  • the cam 21 rotates in conjunction with the rotation of the engine crankshaft (not shown).
  • a cam shaft 22 rotation shaft to which the cam 21 is fixed is arranged above the valve 10.
  • the cam shaft 22 extends horizontally in the left-right direction.
  • the cam shaft 22 is connected to the crank shaft via a rotation transmission mechanism (not shown) such as a chain, and rotates in conjunction with the crank shaft. In this way, the cam 21 fixed to the cam shaft 22 rotates together with the cam shaft 22.
  • the cam shaft 22 is orthogonal to the axis C2 of the valve 10 (that is, a straight line extending the center line of the stem portion 11b). More specifically, the axis C1 of the camshaft 22 is located on the axis C2 of the valve 10 when viewed from the direction along the axis C1. However, the axis C1 of the cam shaft 22 does not have to be located on the axis C2 of the valve 10 when viewed from the direction along the axis C1, and is located forward or rearward of the axis C2 of the valve 10. You may.
  • the outer peripheral surface of the cam 21 around the axis C1 is a perfect circular base circle 21a at a certain distance from the axis C1 of the cam shaft 22 and a cam ridge portion that bulges outward in the radial direction from the base circle 21a. 21b is included.
  • the swing arm 31 is provided between the cam 21 and the valve 10.
  • the swing arm 31 extends in a direction orthogonal to a direction parallel to the axis C1 of the cam shaft 22 (that is, a direction perpendicular to the axis C1). Further, when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, that is, when the swing arm 31 is not pressed by the cam 21, the swing arm 31 is aligned with the axis C2 of the valve 10. It extends in the orthogonal direction. That is, the swing arm 31 extends in the front-rear direction.
  • the swing arm 31 does not have to extend in the direction orthogonal to the axis C2 of the valve 10 when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, and the swing arm 31 does not have to extend in the direction orthogonal to the axis C2 of the valve 10. On the other hand, it may extend in a direction that intersects diagonally.
  • the outer peripheral surface (at least the cam ridge 21b) of the cam 21 comes into contact with the upper surface 32 of the swing arm 31, and the upper surface of the tappet 18 (hereinafter referred to as “tappet surface”) 18a touches the lower surface 33 of the swing arm 31.
  • the tappet surface 18a is a plane orthogonal to the valve axis C2. The shapes of the upper surface 32 and the lower surface 33 of the swing arm 31 will be described in detail later.
  • the swing support 41 is a member that swingably supports the swing arm 31 around a swing shaft 42 parallel to the cam shaft 22 (axis C1) of the cam 21. Specifically, the swing support 41 is located in front of the valve axis C2 when viewed from the direction along the axis C1. Then, one end portion (in this example, the front end portion) of the swing arm 31 in the extending direction is swingably connected to the swing support 41 via the swing shaft 42.
  • the swing shaft 42 may be integrally formed with the swing arm 31 or the swing support 41.
  • the swing arm 31 is pressed by the rotating cam 21 and swings around the swing shaft 42 (axis C3). Then, the valve 10 operates according to the swing angle of the swing arm 31.
  • the moving device 43 linearly moves the swing support 41 together with the swing arm 31 in a direction orthogonal to the valve axis C2 and orthogonal to a direction parallel to the axis C1 of the cam shaft 22. That is, the moving device 43 positions the swing support 41 in the front-rear direction, and thus positions the swing shaft 42.
  • the moving device 43 includes a fixing member 43a provided at a position fixed to the axis C1 of the cam shaft 22, and a movable portion 43b that moves (displaces) linearly with respect to the fixing member 43a.
  • the moving device 43 linearly moves the movable portion 43b in a direction orthogonal to the valve axis C2 (in this example, the front-rear direction) with respect to the fixing member 43a.
  • the fixing member 43a may be fixedly arranged with respect to the axis C1 of the cam shaft 22. In other words, the relative positional relationship between the fixing member 43a and the axis C1 of the cam shaft 22 may be fixed.
  • the fixing member 43a is fixed to, for example, one of a cylinder head 2, a cylinder head cover covering the upper portion of the cylinder head 2, and a casing covering the cylinder head 2.
  • a swing support 41 is attached to the movable portion 43b.
  • the movable portion 43b is formed in a rod shape extending in the front-rear direction, the front end portion of the rod is supported by the fixing member 43a, and the swing support 41 is fixed to the rear end portion of the rod.
  • the moving device 43 is a hydraulic linear actuator using a hydraulic control valve and a hydraulic cylinder.
  • the moving device 43 does not have to be a hydraulic type, and may have any configuration of, for example, a mechanical type, a motor type, or an electromagnet type.
  • the moving device 43 may be configured to include a linear motion mechanism using a link mechanism, a worm gear, a rack and pinion, or the like.
  • the lift characteristic of the valve 10 operated by the variable valve mechanism 20A changes.
  • the position of the swing support 41 is changed, at least the distance from the contact point between the cam 21 and the swing arm 31 to the swing shaft 42 is changed.
  • the range of the swing angle of the swing arm 31 changes, and the maximum lift amount of the valve 10 (that is, the maximum value of the distance from the valve seat 4a to the flange portion 11a when the cam 21 makes one rotation) changes. To do.
  • the moving device 43 changes the position of the swing support 41 from a predetermined distal region to a proximal region closer to the cam 21 than the distal region, the maximum lift amount of the valve 10 increases.
  • the rocking arm 31 and the rocking support 41 when the rocking support 41 is in the distal region are shown by solid lines, and when the rocking support 41 is in the proximal region.
  • the swing arm 31 and the swing support 41 are indicated by a two-dot chain line.
  • FIG. 2 is an enlarged view of the swing arm 31 of the variable valve mechanism 20A and its vicinity.
  • the upper surface 32 of the swing arm 31 includes a flat surface 32a and an inclined surface 32b.
  • the flat surface 32a is a plane extending along the longitudinal direction of the swing arm 31. That is, when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, the flat surface 32a extends in a direction orthogonal to the axis C1 of the cam shaft 22 and orthogonal to the axis C2 of the valve 10. There is.
  • the cam 21 comes into contact with the flat surface 32a while the cam 21 makes one rotation.
  • the inclined surface 32b is inclined with respect to the flat surface 32a.
  • the flat surface 32a and the inclined surface 32b are formed adjacent to each other in the front-rear direction.
  • the inclined surface 32b is located in front of the flat surface 32a.
  • the inclined surface 32b is arranged at a position closer to the swing shaft 42 than the flat surface 32a.
  • One side end portion (rear end portion in this example) of the inclined surface 32b in the longitudinal direction of the swing arm 31 is one side end portion (front end portion in this example) of the flat surface 32a in the longitudinal direction of the swing arm 31. )It is connected to the.
  • the inclined surface 32b is a flat surface 32a so that the upper surface 32 of the swing arm 31 (the surface of the swing arm facing the cam 21) is formed in a concave shape by the inclined surface 32b and the flat surface 32a. It is inclined with respect to. In other words, the inclined surface 32b is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a.
  • FIG. 3 is an enlarged cross-sectional view of a part of the upper surface 32 of the swing arm 31.
  • the inclined surface 32b has a curved surface portion 32b 1 connected to the flat surface 32a and a flat surface portion 32b 2 connected to the end portion of the curved surface portion 32b 1 on the opposite side of the flat surface 32a.
  • the curved surface portion 32b 1 is curved so that the inclination with respect to the flat surface 32a when viewed from the direction along the axis C1 gradually increases as the distance from the flat surface 32a increases.
  • the curved surface portion 32b 1 is smoothly connected to the flat surface portion 32b 2.
  • the inclination of the front end portion of the curved surface portion 32b 1 and the inclination of the rear end portion of the flat surface portion 32b 2 when viewed from the direction along the axis C1 are the same.
  • the inclined surface 32b may not have both the curved surface portion 32b 1 and the flat surface portion 32b 2.
  • the inclined surface 32b may have only one of the curved surface portion 32b 1 and the flat surface portion 32b 2. Good.
  • the swing arm 31 has a bulging portion that bulges toward the tappet 18.
  • the lower surface 33 of the swing arm 31 includes a bulging surface 33a that is convexly curved downward when viewed along the axis C1.
  • the bulging surface 33a comes into contact with the tappet surface 18a.
  • the swing arm 31 does not press the tappet 18, that is, when the base circle portion 21a of the cam 21 is at a position facing the swing arm 31, the bulging surface 33a is not in contact with the tappet surface 18a. May be good.
  • the moving device 43 moves the swing arm 31 within a range in which the bulging portion (bulging surface 33a) overlaps the tappet surface 18a when viewed along the valve axis C2.
  • the moving device 43 moves the position of the swing support 41 between the distal region and the proximal region.
  • the cam 21 contacts the flat surface 32a while the cam 21 makes one rotation, but contacts the inclined surface 32b. It is an area that does not.
  • the proximal region is a region that contacts both the flat surface 32a and the inclined surface 32b during one rotation of the cam 21 when the swing support 41 is in the proximal region.
  • the "distal region" in the present embodiment corresponds to the "first region” in the present invention
  • the "proximal region” in the present embodiment corresponds to the "second region” in the present invention.
  • the swing support 41 is closer to the cam 21 when it is in the proximal region than when it is in the distal region. That is, when the swing support 41 is in the proximal region, the swing shaft 42 is closer to the cam 21 and the maximum lift amount of the valve 10 is larger than when the swing support 41 is in the distal region. ..
  • FIG. 4 is a graph in which the rotation angle ⁇ of the cam 21 is on the horizontal axis and the lift amount of the valve 10 (that is, the distance from the valve seat 4a to the flange portion 11a) is on the vertical axis.
  • variable valve mechanism 20A when the swing support 41 is in the distal region will be described.
  • the cam 21 does not push down the swing arm 31 (0 ° ⁇ ⁇ ⁇ a , ⁇ b ⁇ ⁇ in FIG. 4). See 360 ° range). Since the swing arm 31 does not push down the valve body 11, the valve 10 is in a state where the port 4 is closed.
  • the base circle portion 21a of the cam 21 is at a position facing the swing arm 31, the base circle portion 21a does not have to be in contact with the swing arm 31.
  • the position of the swing support 41 is changed from the distal region to the proximal region.
  • the bulge surface 33a slides on the tappet surface 18a as the swing arm 31 moves. Therefore, the contact position with the bulging portion (bulging surface 33a) on the tappet surface 18a is also changed. That is, in the present embodiment, when the position of the swing support 41 is changed, the distance from the contact point between the cam 21 and the swing arm 31 to the swing shaft 42 is changed, but the tappet 18 and the swing arm are changed. The distance from the contact point with 31 to the swing shaft 42 is generally maintained.
  • valve body 11 is pushed down, whereby the flange portion 11a is separated from the valve seat 4a to open the port 4. Then, as the cam 21 rotates, the swing arm 31 swings around the swing shaft 42, and the amount of pushing down of the tappet 18 by the swing arm 31, that is, the lift amount of the valve body 11 gradually increases. ..
  • the cam ridge 21b begins to come into contact with the flat surface 32a at the same position regardless of whether the swing support 41 is in the distal region or the proximal region. Therefore, the timing of opening the valve 10 is the same as shown in FIG. 4 before and after the position change of the swing support 41.
  • the cam ridge 21b comes into contact with the inclined surface 32b, so that the swing arm 31 is in the cam ridge as compared with when the swing support 41 is in the distal region.
  • the time for being pressed by the portion 21b becomes longer. That is, the closing timing of the valve 10 when the swing support 41 is in the proximal region can be delayed as compared with when the swing support 41 is in the distal region.
  • the opening timing of the valve 10 is variable. That is, the timing of opening the valve 10 when the swing support 41 is in the proximal region is earlier than when the swing support 41 is in the distal region. Further, before and after the position change of the swing support 41, the timing of closing the valve 10 is the same.
  • variable valve mechanism 20A As described above, according to the variable valve mechanism 20A according to the present embodiment, the moving device 43 linearly moves the swing shaft 42 of the swing arm 31 in the direction orthogonal to the valve axis C2. Therefore, it is only necessary to consider the simple linear movement of the swing arm 31, and it is possible to reduce the design parameters related to the position and shape of each component of the variable valve mechanism 20A. Therefore, it becomes easy to design a valve 10 that can change the desired lift characteristic of the valve 10 while keeping the contact surface pressure between the cam 21 and the swing arm 31 within an allowable range, and the labor required for the design can be reduced. ..
  • the swing support 41 when the swing support 41 is in the distal region, the cam 21 contacts the flat surface 32a during one rotation, does not contact the inclined surface 32b, and the swing support 41 is close to it.
  • the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32b during one revolution.
  • the closing timing (or opening timing) of the valve 10 can be changed depending on whether the cam 21 contacts the inclined surface 32b or not. Therefore, in the variable valve mechanism 20A of the present embodiment, the open phase (open timing) and the closed phase (close timing) of the valve 10 can be designed separately, and the opening / closing timing (operating angle) of the valve 10 can be designed separately. ) Can be easily changed.
  • the upper surface 32 of the swing arm 31 is formed in a concave shape by the inclined surface 32b and the flat surface 32a, and the curved surface portion 32b 1 on the inclined surface 32b increases as the distance from the flat surface 32a increases. It is curved so that the inclination with respect to the flat surface 32a when viewed from the direction along the axis C1 gradually increases. Therefore, for example, as compared with the case where the upper surface 32 of the swing arm 31 is formed in a convex shape, when the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32b during one rotation, the cam 21 is particularly effective. Can reduce the contact surface pressure between the cam 21 and the swing arm 31 when the cam 21 is in contact with the curved surface portion 32b 1.
  • the cam shaft 22 which is the rotation axis of the cam 21 is orthogonal to the valve axis C2. Therefore, the portion of the swing arm 31 that is pressed by the cam 21 and the portion of the swing arm 31 that presses the valve 10 can be brought close to each other. Therefore, when the swing arm 31 is pressed by the cam 21, the force that acts on the swing arm 31 to bend the swing arm 31 can be reduced. Therefore, it is possible to design the swing arm 31 with the required strength suppressed.
  • the contact position of the tappet 18 with the bulging portion on the plane is also changed.
  • the swing arm 31 is moved from the contact position with the cam 21 of the swing arm 31.
  • the distance to the swing shaft 42 can be changed. Therefore, the lever ratio when the swing arm 31 is moved (that is, the distance from the contact position of the swing arm 31 with the tappet 18 to the swing shaft 42 of the swing arm 31 and the cam 21 of the swing arm 31).
  • the change in the maximum lift amount of the valve 10 with respect to the moving distance of the swing arm 31 can be increased by increasing the change (ratio from the contact position with the swing arm 31 to the swing shaft 42). it can.
  • FIG. 5 is an enlarged view of the swing arm 31 of the variable valve mechanism 20B according to the second embodiment and its vicinity.
  • the "distal region” and the “proximal region” correspond to the "first region” and the “second region” in the present invention, respectively, and will be described later. The same applies to the 7th to 11th embodiments.
  • the inclined surface 32b is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed in a convex shape by the inclined surface 32b and the flat surface 32a.
  • the inclined surface 32b is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a. Therefore, in the present embodiment, for example, when the cam 21 rotates counterclockwise in the drawing, the closing timing of the valve 10 when the swing support 41 is in the proximal region is set to the distal region. Instead of delaying, you can accelerate it compared to one time.
  • FIG. 6 is an enlarged view of the swing arm 31 of the variable valve mechanism 20C according to the third embodiment and its vicinity.
  • the upper surface 32 of the swing arm 31 includes an inclined surface 32c located behind the flat surface 32a instead of the inclined surface 32b located in front of the flat surface 32a. That is, the inclined surface 32c is arranged at a position farther from the swing shaft 42 than the flat surface 32a.
  • the inclined surface 32c is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed in a concave shape by the inclined surface 32c and the flat surface 32a. In other words, the inclined surface 32c is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a.
  • the moving device 43 moves the position of the swing support 41 between the distal region and the proximal region.
  • the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32c during one rotation.
  • the alternate long and short dash line in FIG. 6 when the swing support 41 is in the proximal region, the cam 21 comes into contact with the flat surface 32a during one rotation of the cam 21, but the inclined surface 32c Does not touch.
  • the "distal region” in the present embodiment corresponds to the "second region” in the present invention
  • the "proximal region” in the present embodiment corresponds to the "first region” in the present invention. The same applies to the embodiments. Therefore, the opening timing of the valve 10 (the closing timing when the cam 21 rotates clockwise in the drawing) can be changed depending on whether the cam 21 contacts the inclined surface 32c or not.
  • FIG. 7 is an enlarged view of the swing arm 31 of the variable valve mechanism 20D according to the fourth embodiment and its vicinity.
  • the inclined surface 32c is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed to be convex by the inclined surface 32c and the flat surface 32a. doing. In other words, the inclined surface 32c is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a.
  • FIG. 8 is an enlarged view of the swing arm 31 of the variable valve mechanism 20E according to the fifth embodiment and its vicinity.
  • the upper surface 32 of the swing arm 31 has a flat surface 32a, an inclined surface (first inclined surface) 32b located in front of the flat surface 32a, and an inclined surface (first inclined surface) located behind the flat surface 32a. 2 inclined surface) 32c and the like.
  • the first inclined surface 32b is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a
  • the second inclined surface 32c is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a. ).
  • the "distal region” (or “proximal region”) can correspond to both the “first region” and the “second region” in the present invention.
  • the swing support 41 When the swing support 41 is in the distal region, it contacts the flat surface 32a during one revolution of the cam 21 and not the first inclined surface 32b, and the swing support 41 is in the proximal region. During one rotation of the cam 21, it comes into contact with both the flat surface 32a and the first inclined surface 32b. That is, when the "distal region” corresponds to the "first region” of the present invention and the "proximal region” corresponds to the "second region” of the present invention, the "first inclined surface 32b" corresponds to the present invention. Corresponds to the "sloping surface" of.
  • the cam 21 contacts the flat surface 32a during one rotation and does not contact the second inclined surface 32c, and the swing support 41 is in the distal region. At this time, the cam 21 comes into contact with both the flat surface 32a and the second inclined surface 32c during one rotation. That is, when the "proximal region” corresponds to the "first region” of the present invention and the “distal region” corresponds to the "second region” of the present invention, the "second inclined surface 32c" corresponds to the present invention. Corresponds to the "sloping surface" of.
  • FIG. 9 is an enlarged view of the swing arm 31 of the variable valve mechanism 20F according to the sixth embodiment and its vicinity.
  • the upper surface 32 of the swing arm 31 does not include an inclined surface with which the cam 21 contacts. That is, the maximum lift amount of the valve 10 changes before and after the position change of the swing support 41, but the opening / closing timing of the valve 10 does not change.
  • FIG. 10 is an enlarged view of the swing arm 31 of the variable valve mechanism 20G according to the seventh embodiment and its vicinity.
  • variable valve mechanism 20G further comprises an urging member 51 that applies an urging force in the direction of pressing the swing arm 31 against the cam 21, and a support member 52 that supports one end of the urging member 51. Further prepare.
  • the support member 52 is arranged above the swing arm 31.
  • the support member 52 is fixedly arranged with respect to the axis C1 of the cam shaft 22, for example.
  • the support member 52 is fixed to, for example, one of a cylinder head 2, a cylinder head cover that covers the upper portion of the cylinder head 2, and a casing that covers the cylinder head 2.
  • the urging member 51 is provided between the swing arm 31 and the support member 52.
  • the urging member 51 is a coil spring.
  • the upper end portion 51a of the urging member 51 is connected to the support member 52, and the lower end portion 51b of the urging member 51 is connected to the swing arm 31. Since the swing arm 31 is pressed against the cam 21 by the urging member 51, it is possible to prevent the swing arm 31 from separating from the cam 21 while the cam 21 makes one rotation. That is, even when the base circular portion 21a of the cam 21 is in a position facing the swing arm 31, the swing arm 31 is maintained in contact with the cam 1. At this time, the tappet surface 18a does not have to be in contact with the swing arm 31.
  • FIG. 11 is an enlarged view of the swing arm 31 of the variable valve mechanism 20H according to the eighth embodiment and its vicinity.
  • the mounting position of the support member 54 that supports the urging member 51 is different from that in the seventh embodiment.
  • the support member 54 is fixed to the swing support 41.
  • the support member 54 includes a first extending portion 54a extending upward from the swing support 41 and a second extending portion 54b extending from the upper end portion of the first extending portion 54a toward the cam 21.
  • the urging member 51 is provided between the swing arm 31 and the second extending portion 54b of the support member 54.
  • the upper end portion 51a of the urging member 51 is connected to the second extending portion 54b of the support member 54, and the lower end portion 51b of the urging member 51 is connected to the swing arm 31.
  • the swing support 44 and the support member 54 move integrally.
  • the urging member 51 moves linearly in the direction orthogonal to the valve axis C2 integrally with the swing support 41, the urging member when the moving device 43 changes the position of the swing support 41.
  • the change in the urging force of 51 can be suppressed.
  • the urging member 51 that applies an urging force in the direction of pressing the swing arm 31 against the cam 21 is not limited to that shown in the seventh and eighth embodiments.
  • the urging member 51 may be provided below the swing arm 31 instead of above it.
  • the urging member 51 does not have to be a coil spring, but may be a torsion spring, a leaf spring, or the like.
  • FIG. 12 is an enlarged view of the swing arm 31 of the variable valve mechanism 20I according to the ninth embodiment and its vicinity.
  • the tappet surface 18a bulges toward the tappet 18 instead of the swing arm 31 bulging toward the tappet 18.
  • the lower surface 33 of the swing arm 31 includes a flat surface 33b parallel to the flat surface 32a.
  • the tappet surface 18a is curved upward in a convex shape when viewed along the axis C1.
  • the change in the lever ratio after the position change of the swing support 41 with respect to the lever ratio before the position change of the swing support 41 is smaller than that in the first embodiment, but this embodiment is also the same as in the first embodiment. The effect can be obtained.
  • FIG. 13 is an enlarged view of the swing arm 31 of the variable valve mechanism 20J according to the tenth embodiment and its vicinity.
  • the swing arm 31 is composed of a tip end side arm portion 31a and a proximal end side arm portion 31b.
  • the tip end side arm portion 31a is a portion of the swing arm 31 on the side far from the swing support 41.
  • a flat surface 32a is arranged on the upper surface of the tip end side arm portion 31a, and a bulging surface 33a is arranged on the lower surface of the tip end side arm portion 31a.
  • the base end side arm portion 31b is a portion of the swing arm 31 on the side close to the swing support 41.
  • An inclined surface 32b is arranged on the upper surface of the base end side arm portion 31b.
  • the tip side arm portion 31a extends in the direction along the flat surface 32a. That is, the tip end side arm portion 31a extends in a direction orthogonal to the axis C2 of the valve 10 when viewed from the direction along the axis C1.
  • the base end side arm portion 31b extends in a direction along the inclined surface 32b from the end portion of the tip end side arm portion 31a on the side close to the swing support 41. That is, the tip end side arm portion 31a extends in a direction inclined with respect to a direction orthogonal to the axis C2 of the valve 10 when viewed from the direction along the axis C1.
  • the front end portion of the tip end side arm portion 31a is swingably supported around the swing shaft 42 by the swing support 41.
  • the moving direction of the swing support 41 by the moving device 43 is the same as that of the first embodiment.
  • FIG. 14 is a schematic cross-sectional view showing the variable valve mechanism 20K of the engine and its periphery according to the eleventh embodiment.
  • variable valve mechanism 20K of this embodiment is applied to an overhead valve type (OHV type) engine instead of a double overhead camshaft type (DOHC type) engine. That is, the cam 21 and the cam shaft 22 are arranged on the side surface of the cylinder.
  • the variable valve mechanism 20K has a rocker arm 71 that abuts on the tappet surface 18a and presses downward, a support member 72 that swingably supports the rocker arm 71, and a push whose upper end is engaged with the rocker arm 71.
  • a rod 73 is provided.
  • the push rod 73 has a flat transmission surface 73a at the lower end.
  • a swing arm 31 is provided between the transmission surface 73a and the cam 21. That is, in the first embodiment, the swing arm 31 directly pushes down the tappet surface 18a, whereas in the present embodiment, the swing arm 31 pushes up the transmission surface 73a of the push rod 73 and passes through the rocker arm 71. Push down the tappet surface 18a.
  • the cam 21 is arranged below the swing arm 31, and the swing arm 31 extends forward from the swing support 41, so that the swing arm 31 swings.
  • "front” and “rear” are read as “rear” and "front”, respectively.
  • variable valve mechanism on the exhaust side has been described as a representative, but the present invention can also be applied to the variable valve mechanism on the intake side.
  • front and rear may be read as “rear” and "front”, respectively.
  • variable valve mechanism of the present invention may be applied to a single overhead camshaft type (SOHC type) engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

This variable valve mechanism is for changing the lift characteristics of a valve which opens/closes an intake port or an exhaust port of an engine, wherein said mechanism comprises: a cam which rotates in conjunction with rotation of a crankshaft of the engine; a swing arm which, when pressed by the rotating cam, swings about a swing axis that is parallel to the rotational axis of the cam, and actuates the valve in accordance with the swing angle; a swing support which swingably supports the swing arm about the swing axis; and a movement device which linearly moves the swing support together with the swing arm in a direction orthogonal to the valve axial line. The swing arm has a flat surface extending along the longitudinal direction of the swing arm, and the cam contacts the flat surface during a single rotation.

Description

可変動弁機構Variable valve mechanism
 本発明はエンジンの可変動弁機構に関する。 The present invention relates to a variable valve mechanism of an engine.
 従来から、エンジンの吸気用又は排気用のポートを開閉するバルブのリフト特性、すなわち、バルブの開閉タイミングや開閉量などを変更する可変動弁機構が提案されている。 Conventionally, a variable valve mechanism that changes the lift characteristics of a valve that opens and closes an engine intake or exhaust port, that is, the valve opening / closing timing and opening / closing amount, etc. has been proposed.
 例えば、特許文献1には、駆動カムとバルブステムの間に設けられた揺動アーム(ロッカーアーム)を動かす制御カムを備えた内燃機関の可変動弁機構が開示されている。揺動アームの基端側に制御カムが回転可能に配設されており、制御カムの回転中心から離れた部位に揺動アーム基端の支点部が回転自在に軸着されている。揺動アームの先端部は、バルブステム上端に設けられたキャップに当接している。制御カムは、駆動手段により所定角度回転する。駆動手段により制御カムを所定角度回転させることにより、駆動カムに対する揺動アームの位置が変化し、結果、揺動アームと駆動カムとの接触位置が変化し、バルブの開閉タイミング及び開閉量が変化する。 For example, Patent Document 1 discloses a variable valve mechanism of an internal combustion engine including a control cam for moving a swing arm (rocker arm) provided between a drive cam and a valve stem. A control cam is rotatably arranged on the base end side of the swing arm, and a fulcrum portion of the base end of the swing arm is rotatably attached to a portion away from the rotation center of the control cam. The tip of the swing arm is in contact with a cap provided at the upper end of the valve stem. The control cam is rotated by a predetermined angle by the driving means. By rotating the control cam by a drive means by a predetermined angle, the position of the swing arm with respect to the drive cam changes, and as a result, the contact position between the swing arm and the drive cam changes, and the valve opening / closing timing and opening / closing amount change. To do.
実開平3-5906号公報Jikkenhei 3-5906 Gazette
 上述の可変動弁機構では、バルブのリフト特性を変更するために制御カムを回転させたときに、揺動アームの揺動中心である支点部が制御カムの回転軸を中心に回転移動する。このような揺動アームの揺動中心が回転移動する構成では、駆動カムと揺動アームとの間の接触面圧やバルブのリフト特性が、制御カムの回転中心と支点部との距離、制御カムを回転させる角度、駆動カムの回転中心に対する揺動アーム及び制御カムの位置、揺動アームにおける駆動カムとの接触面の形状など多数のパラメータに依存する。このため、設計段階において、どのように設計すれば駆動カムと揺動アームとの間の接触面圧を許容範囲内に収めつつ所望のバルブのリフト特性の変更を実現できるかの検討に多大な時間を要する。 In the above-mentioned variable valve mechanism, when the control cam is rotated to change the lift characteristics of the valve, the fulcrum portion, which is the swing center of the swing arm, rotates and moves around the rotation axis of the control cam. In such a configuration in which the swing center of the swing arm rotates, the contact surface pressure between the drive cam and the swing arm and the lift characteristics of the valve control the distance between the rotation center of the control cam and the fulcrum. It depends on many parameters such as the angle at which the cam is rotated, the positions of the swing arm and the control cam with respect to the rotation center of the drive cam, and the shape of the contact surface of the swing arm with the drive cam. Therefore, at the design stage, it is very important to study how to design the valve so that the desired valve lift characteristics can be changed while keeping the contact surface pressure between the drive cam and the swing arm within an allowable range. It takes time.
 そこで本発明は、設計に要する労力を軽減することができるエンジンの可変動弁機構を提供することを目的とする。 Therefore, an object of the present invention is to provide a variable valve mechanism for an engine that can reduce the labor required for design.
 上記の課題を解決するために、本発明の一態様に係る可変動弁機構は、エンジンの吸気用又は排気用のポートを開閉するバルブのリフト特性を変更する可変動弁機構であって、前記エンジンのクランク軸の回転に連動して回転するカムと、回転する前記カムに押圧されて、前記カムの回転軸に平行な揺動軸を中心に揺動するとともに、揺動角度に応じて前記バルブを動作させる揺動アームと、前記揺動軸を中心に前記揺動アームを揺動可能に支持する揺動サポートと、前記揺動アームとともに前記揺動サポートを、前記バルブ軸線と直交する方向に直線的に移動させる移動装置と、を備え、前記揺動アームは、前記揺動アームの長手方向に沿って延在する平坦面を有し、前記カムは、一回転する間に前記平坦面と接触する。 In order to solve the above problems, the variable valve mechanism according to one aspect of the present invention is a variable valve mechanism that changes the lift characteristics of a valve that opens and closes an intake or exhaust port of an engine. A cam that rotates in conjunction with the rotation of the crank shaft of the engine and a cam that is pressed by the rotating cam to swing around a swing shaft parallel to the rotation shaft of the cam, and the swing angle according to the swing angle. A swing arm that operates the valve, a swing support that swingably supports the swing arm around the swing shaft, and a swing support together with the swing arm in a direction orthogonal to the valve axis. The swing arm has a flat surface extending along the longitudinal direction of the swing arm, and the cam has the flat surface during one rotation. Contact with.
 上記の構成によれば、移動装置が、揺動アームの揺動軸をバルブ軸線と直交する方向に直線的に移動させる。このため、揺動アームの単純な直線移動のみを考慮すればよく、可変動弁機構の各構成要素の位置や形状に関わる設計パラメータを減らすことが可能となる。従って、カムと揺動アームとの間の接触面圧を許容範囲内に収めつつ所望のバルブのリフト特性の変更を実現できる設計が容易となり、設計に要する労力を軽減することができる。 According to the above configuration, the moving device linearly moves the swing axis of the swing arm in the direction orthogonal to the valve axis. Therefore, it is only necessary to consider the simple linear movement of the swing arm, and it is possible to reduce the design parameters related to the position and shape of each component of the variable valve mechanism. Therefore, it becomes easy to design a valve capable of changing the lift characteristics of a desired valve while keeping the contact surface pressure between the cam and the swing arm within an allowable range, and the labor required for the design can be reduced.
 本発明によれば、設計に要する労力を軽減することができるエンジンの可変動弁機構を提供することができる。 According to the present invention, it is possible to provide a variable valve mechanism of an engine that can reduce the labor required for design.
第1実施形態に係る可変動弁機構及びその周辺を示した概略断面図である。It is schematic cross-sectional view which showed the variable valve mechanism which concerns on 1st Embodiment and its periphery. 第1実施形態に係る可変動弁機構の揺動アームとその近傍を拡大した図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 1st Embodiment and the vicinity thereof. カムに対向する揺動アームの面の拡大断面図である。It is an enlarged cross-sectional view of the surface of the swing arm facing a cam. カム回転角とバルブリフト量との関係を示すグラフである。It is a graph which shows the relationship between a cam rotation angle and a valve lift amount. 第2実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 2nd Embodiment and the vicinity thereof. 第3実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 3rd Embodiment and the vicinity thereof. 第4実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 4th Embodiment and the vicinity thereof. 第5実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 5th Embodiment and the vicinity thereof. 第6実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 6th Embodiment and the vicinity thereof. 第7実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 7th Embodiment and the vicinity thereof. 第8実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 8th Embodiment and the vicinity thereof. 第9実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on 9th Embodiment and the vicinity thereof. 第10実施形態に係る可変動弁機構の揺動アームとその近傍の拡大図である。It is an enlarged view of the swing arm of the variable valve mechanism which concerns on the tenth embodiment, and the vicinity thereof. 第11実施形態に係る可変動弁機構及びその周辺を示した概略断面図である。It is the schematic sectional drawing which showed the variable valve mechanism which concerns on eleventh embodiment and its periphery.
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図において同一又は類似の構成については同一の符号を付し、重複した説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, the same or similar configurations are designated by the same reference numerals, and duplicate description will be omitted.
 (第1実施形態)
 図1は、第1実施形態に係るエンジンの排気側の可変動弁機構20A及びその周辺を示した概略断面図である。まず、第1実施形態における可変動弁機構20Aが採用されるエンジンの構成について説明する。
(First Embodiment)
FIG. 1 is a schematic cross-sectional view showing the variable valve mechanism 20A on the exhaust side of the engine and its periphery according to the first embodiment. First, the configuration of the engine in which the variable valve mechanism 20A according to the first embodiment is adopted will be described.
 本実施形態で説明されるエンジンは、ダブル・オーバーヘッド・カムシャフト式(DOHC式)のエンジンである。当該エンジンのシリンダヘッド2には、燃焼室3に連なる吸気ポート(図示せず)及び排気ポート4が設けられている。また、シリンダヘッド2には、これら吸気ポート及び排気ポート4に対して、それぞれ、燃焼室3を開放/閉塞させる吸気バルブ(図示せず)及び排気バルブ10が設けられている。エンジンは、吸気バルブ及び排気バルブ10を開閉動作させる吸気側の可変動弁機構と排気側の可変動弁機構20Aとを備えている。 The engine described in this embodiment is a double overhead camshaft type (DOHC type) engine. The cylinder head 2 of the engine is provided with an intake port (not shown) and an exhaust port 4 connected to the combustion chamber 3. Further, the cylinder head 2 is provided with an intake valve (not shown) and an exhaust valve 10 for opening / closing the combustion chamber 3, respectively, for the intake port and the exhaust port 4. The engine includes a variable valve mechanism on the intake side and a variable valve mechanism 20A on the exhaust side that open and close the intake valve and the exhaust valve 10.
 このようなエンジンは、例えば自動二輪車に搭載される。以下では、説明の便宜上、実施の形態で用いる方向の概念は、当該エンジンを搭載する自動二輪車の搭乗者に概ね沿ったものとし、具体的には、図1における紙面上側をエンジンの「上側」として規定し、図1における紙面下側をエンジンの「下側」として規定し、図1における紙面右側をエンジンの「前側」として規定し、図1における紙面左側をエンジンの「後側」として規定し、図1における紙面奥側をエンジンの「左側」として規定し、図1における紙面手前側をエンジンの「右側」として規定する。なお、このように規定した実施形態の方向概念における下方向が鉛直下方向に一致していなくてもよく、当該下方向が鉛直下方向に対して傾斜していてもよいし、鉛直上方向に一致していてもよい。例えば後述のバルブ軸線C2は鉛直方向に対して傾斜していてもよい。 Such an engine is installed in, for example, a motorcycle. In the following, for convenience of explanation, the concept of the direction used in the embodiment shall be generally in line with the passenger of the motorcycle equipped with the engine. Specifically, the upper side of the paper in FIG. 1 is the “upper side” of the engine. The lower side of the paper in FIG. 1 is defined as the "lower side" of the engine, the right side of the paper in FIG. 1 is defined as the "front side" of the engine, and the left side of the paper in FIG. 1 is defined as the "rear side" of the engine. However, the back side of the paper in FIG. 1 is defined as the "left side" of the engine, and the front side of the paper in FIG. 1 is defined as the "right side" of the engine. It should be noted that the downward direction in the direction concept of the embodiment defined in this way does not have to coincide with the vertical downward direction, the downward direction may be inclined with respect to the vertical downward direction, or the vertical upward direction may be used. They may match. For example, the valve axis C2 described later may be inclined with respect to the vertical direction.
 また、吸気側と排気側とでバルブ及び可変動弁機構は略同一構造であるため、以下では排気側について代表して説明する。また、以下では、「排気バルブ10」及び「排気ポート4」を、それぞれ単に「バルブ10」及び「ポート4」と呼ぶこととする。 Further, since the valve and the variable valve mechanism have substantially the same structure on the intake side and the exhaust side, the exhaust side will be described as a representative below. Further, in the following, the "exhaust valve 10" and the "exhaust port 4" will be simply referred to as "valve 10" and "port 4", respectively.
 バルブ10は、ポート4を開閉するフランジ部11aと、フランジ部11aから上方に延びるステム部11bとを有するバルブ本体11を備えている。ステム部11bの上端部にはコッター(図示せず)を介してスプリングリテーナ13が取り付けられている。そして、シリンダヘッド2の上面には、スプリングシート15が取り付けられている。スプリングシート15とスプリングリテーナ13との間にバルブ用スプリング17が介装されている。バルブ用スプリング17によりバルブ本体11が上方に向けて付勢される。これにより、ポート4の周縁部(バルブシート)4aにフランジ部11aが当接して、ポート4が閉塞される。 The valve 10 includes a valve body 11 having a flange portion 11a for opening and closing the port 4 and a stem portion 11b extending upward from the flange portion 11a. A spring retainer 13 is attached to the upper end of the stem portion 11b via a cotter (not shown). A spring seat 15 is attached to the upper surface of the cylinder head 2. A valve spring 17 is interposed between the spring seat 15 and the spring retainer 13. The valve body 11 is urged upward by the valve spring 17. As a result, the flange portion 11a comes into contact with the peripheral edge portion (valve seat) 4a of the port 4, and the port 4 is closed.
 ステム部11bの上端部(基端部;フランジ部11aが設けられた端部とは反対側の端部)には、シム(図示せず)を介してタペット18が取り付けられている。このタペット18を可変動弁機構20Aが押し下げることで、フランジ部11aがバルブシート4aから離れて、ポート4が開放される。 A tappet 18 is attached to the upper end portion of the stem portion 11b (base end portion; the end portion opposite to the end portion provided with the flange portion 11a) via a shim (not shown). When the variable valve mechanism 20A pushes down the tappet 18, the flange portion 11a is separated from the valve seat 4a and the port 4 is opened.
 可変動弁機構20Aは、バルブ10のリフト特性を変更する。具体的には、可変動弁機構20Aは、バルブ10の最大リフト量、開閉タイミング及び開放時間を変更する。可変動弁機構20Aは、カム21、揺動アーム31、揺動サポート41及び移動装置43を備える。 The variable valve mechanism 20A changes the lift characteristics of the valve 10. Specifically, the variable valve mechanism 20A changes the maximum lift amount, opening / closing timing, and opening time of the valve 10. The variable valve mechanism 20A includes a cam 21, a swing arm 31, a swing support 41, and a moving device 43.
 カム21は、エンジンのクランク軸(図示せず)の回転に連動して回転する。具体的には、バルブ10の上方に、カム21が固定されたカム軸22(回転軸)が配置されている。カム軸22は、左右方向に水平に延びている。カム軸22は、クランク軸にチェーン等の回転伝達機構(図示せず)を介して接続されており、クランク軸に連動して回転する。こうして、カム軸22に固定されたカム21が、カム軸22とともに回転する。 The cam 21 rotates in conjunction with the rotation of the engine crankshaft (not shown). Specifically, a cam shaft 22 (rotation shaft) to which the cam 21 is fixed is arranged above the valve 10. The cam shaft 22 extends horizontally in the left-right direction. The cam shaft 22 is connected to the crank shaft via a rotation transmission mechanism (not shown) such as a chain, and rotates in conjunction with the crank shaft. In this way, the cam 21 fixed to the cam shaft 22 rotates together with the cam shaft 22.
 本実施形態では、カム軸22は、バルブ10の軸線C2(即ち、ステム部11bの中心線を延長した直線)と直交している。より詳しくは、カム軸22の軸線C1は、軸線C1に沿った方向から見たときに、バルブ10の軸線C2上に位置している。但し、カム軸22の軸線C1は、軸線C1に沿った方向から見たときに、バルブ10の軸線C2上に位置していなくてもよく、バルブ10の軸線C2に対して前方又は後方に位置してもよい。 In the present embodiment, the cam shaft 22 is orthogonal to the axis C2 of the valve 10 (that is, a straight line extending the center line of the stem portion 11b). More specifically, the axis C1 of the camshaft 22 is located on the axis C2 of the valve 10 when viewed from the direction along the axis C1. However, the axis C1 of the cam shaft 22 does not have to be located on the axis C2 of the valve 10 when viewed from the direction along the axis C1, and is located forward or rearward of the axis C2 of the valve 10. You may.
 軸線C1の周りのカム21の外周面は、カム軸22の軸線C1から一定の距離にある真円状のベース円部21aと、ベース円部21aよりも径方向外側に膨出したカム山部21bを含む。 The outer peripheral surface of the cam 21 around the axis C1 is a perfect circular base circle 21a at a certain distance from the axis C1 of the cam shaft 22 and a cam ridge portion that bulges outward in the radial direction from the base circle 21a. 21b is included.
 揺動アーム31は、カム21とバルブ10の間に設けられている。揺動アーム31は、カム軸22の軸線C1に平行な方向に対して直交する方向(つまり軸線C1に垂直な方向)に延びている。また、カム21のベース円部21aが揺動アーム31の上面32に対向するとき、すなわち、揺動アーム31がカム21に押圧されていないとき、揺動アーム31は、バルブ10の軸線C2と直交する方向に延びている。すなわち、揺動アーム31は、前後方向に延びている。但し、揺動アーム31は、カム21のベース円部21aが揺動アーム31の上面32に対向するときに、バルブ10の軸線C2と直交する方向に延びていなくてもよく、当該直交方向に対して斜めに交差する方向に延びていてもよい。 The swing arm 31 is provided between the cam 21 and the valve 10. The swing arm 31 extends in a direction orthogonal to a direction parallel to the axis C1 of the cam shaft 22 (that is, a direction perpendicular to the axis C1). Further, when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, that is, when the swing arm 31 is not pressed by the cam 21, the swing arm 31 is aligned with the axis C2 of the valve 10. It extends in the orthogonal direction. That is, the swing arm 31 extends in the front-rear direction. However, the swing arm 31 does not have to extend in the direction orthogonal to the axis C2 of the valve 10 when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, and the swing arm 31 does not have to extend in the direction orthogonal to the axis C2 of the valve 10. On the other hand, it may extend in a direction that intersects diagonally.
 揺動アーム31の上面32に、カム21の外周面(少なくともカム山部21b)は接触し、揺動アーム31の下面33に、タペット18の上面(以下、「タペット面」と称する。)18aが接触する。タペット面18aは、バルブ軸線C2と直交する平面である。揺動アーム31の上面32及び下面33の形状については、詳細は後述する。揺動アーム31は、回転するカム21に押圧されることにより、軸線C1に沿った方向から見たときのバルブ軸線C2に対する揺動アーム31の延在方向を変化させるように揺動する。 The outer peripheral surface (at least the cam ridge 21b) of the cam 21 comes into contact with the upper surface 32 of the swing arm 31, and the upper surface of the tappet 18 (hereinafter referred to as “tappet surface”) 18a touches the lower surface 33 of the swing arm 31. Contact. The tappet surface 18a is a plane orthogonal to the valve axis C2. The shapes of the upper surface 32 and the lower surface 33 of the swing arm 31 will be described in detail later. By being pressed by the rotating cam 21, the swing arm 31 swings so as to change the extending direction of the swing arm 31 with respect to the valve axis C2 when viewed from the direction along the axis C1.
 揺動サポート41は、カム21のカム軸22(の軸線C1)に平行な揺動軸42を中心に揺動アーム31を揺動可能に支持する部材である。具体的には、揺動サポート41は、軸線C1に沿った方向から見て、バルブ軸線C2より前方に位置している。そして、揺動サポート41には、揺動アーム31の延在方向の一端部(本例では、前端部)が揺動軸42を介して揺動可能に連結されている。揺動軸42は、揺動アーム31又は揺動サポート41と一体的に形成されていてもよい。揺動アーム31は、回転するカム21に押圧されて、揺動軸42(の軸線C3)を中心に揺動する。そして、揺動アーム31の揺動角度に応じて、バルブ10は動作する。 The swing support 41 is a member that swingably supports the swing arm 31 around a swing shaft 42 parallel to the cam shaft 22 (axis C1) of the cam 21. Specifically, the swing support 41 is located in front of the valve axis C2 when viewed from the direction along the axis C1. Then, one end portion (in this example, the front end portion) of the swing arm 31 in the extending direction is swingably connected to the swing support 41 via the swing shaft 42. The swing shaft 42 may be integrally formed with the swing arm 31 or the swing support 41. The swing arm 31 is pressed by the rotating cam 21 and swings around the swing shaft 42 (axis C3). Then, the valve 10 operates according to the swing angle of the swing arm 31.
 移動装置43は、揺動アーム31とともに揺動サポート41を、バルブ軸線C2に対し直交し、且つカム軸22の軸線C1に平行な方向に対し直交する方向に、直線的に移動させる。すなわち、移動装置43は、前後方向における揺動サポート41の位置決め、ひいては揺動軸42の位置決めを行う。 The moving device 43 linearly moves the swing support 41 together with the swing arm 31 in a direction orthogonal to the valve axis C2 and orthogonal to a direction parallel to the axis C1 of the cam shaft 22. That is, the moving device 43 positions the swing support 41 in the front-rear direction, and thus positions the swing shaft 42.
 移動装置43は、カム軸22の軸線C1に対して固定した位置に設けられた固定部材43aと、固定部材43aに対して直線状に可動(変位)する可動部43bとを備える。移動装置43は、固定部材43aに対してバルブ軸線C2と直交する方向(本例では前後方向)に直線的に可動部43bを可動させる。固定部材43aは、カム軸22の軸線C1に対して固定的に配置されていればよい。言い換えれば、固定部材43aとカム軸22の軸線C1との相対的な位置関係が固定的であればよい。固定部材43aは、例えば、シリンダヘッド2、当該シリンダヘッド2の上部を覆うシリンダヘッドカバー、及びシリンダヘッド2を覆うケーシングのいずれかに固定されている。可動部43bには、揺動サポート41が取り付けられている。例えば可動部43bは、前後方向に延びるロッド状に形成されており、ロッド前端部が固定部材43aに支持され、ロッド後端部には揺動サポート41が固定されている。 The moving device 43 includes a fixing member 43a provided at a position fixed to the axis C1 of the cam shaft 22, and a movable portion 43b that moves (displaces) linearly with respect to the fixing member 43a. The moving device 43 linearly moves the movable portion 43b in a direction orthogonal to the valve axis C2 (in this example, the front-rear direction) with respect to the fixing member 43a. The fixing member 43a may be fixedly arranged with respect to the axis C1 of the cam shaft 22. In other words, the relative positional relationship between the fixing member 43a and the axis C1 of the cam shaft 22 may be fixed. The fixing member 43a is fixed to, for example, one of a cylinder head 2, a cylinder head cover covering the upper portion of the cylinder head 2, and a casing covering the cylinder head 2. A swing support 41 is attached to the movable portion 43b. For example, the movable portion 43b is formed in a rod shape extending in the front-rear direction, the front end portion of the rod is supported by the fixing member 43a, and the swing support 41 is fixed to the rear end portion of the rod.
 例えば移動装置43は、油圧制御弁及び油圧シリンダを用いた油圧式の直動アクチュエータである。但し、移動装置43は、油圧式でなくてもよく、例えば機械式、モータ式、電磁石式のいずれの構成であってもよい。また、移動装置43は、リンク機構、ウォームギア、又はラック・アンド・ピニオンなどを用いた直動機構を備えた構成であってもよい。 For example, the moving device 43 is a hydraulic linear actuator using a hydraulic control valve and a hydraulic cylinder. However, the moving device 43 does not have to be a hydraulic type, and may have any configuration of, for example, a mechanical type, a motor type, or an electromagnet type. Further, the moving device 43 may be configured to include a linear motion mechanism using a link mechanism, a worm gear, a rack and pinion, or the like.
 移動装置43が揺動サポート41の位置を変更することにより、可変動弁機構20Aにより動作するバルブ10のリフト特性が変化する。例えば、揺動サポート41の位置が変更されると、少なくともカム21と揺動アーム31との接触箇所から揺動軸42までの距離が変更される。その結果、揺動アーム31の揺動角度の範囲が変化し、バルブ10の最大リフト量(つまり、カム21が一回転するときのバルブシート4aからフランジ部11aまでの距離の最大値)が変化する。 When the moving device 43 changes the position of the swing support 41, the lift characteristic of the valve 10 operated by the variable valve mechanism 20A changes. For example, when the position of the swing support 41 is changed, at least the distance from the contact point between the cam 21 and the swing arm 31 to the swing shaft 42 is changed. As a result, the range of the swing angle of the swing arm 31 changes, and the maximum lift amount of the valve 10 (that is, the maximum value of the distance from the valve seat 4a to the flange portion 11a when the cam 21 makes one rotation) changes. To do.
 例えば、移動装置43が、揺動サポート41の位置を、所定の遠位領域から、当該遠位領域よりカム21に近い近位領域に変更すると、バルブ10の最大リフト量は大きくなる。なお、図1及び下に示す各図において、揺動サポート41が遠位領域にあるときの揺動アーム31及び揺動サポート41を実線で示し、揺動サポート41が近位領域にあるときの揺動アーム31及び揺動サポート41を二点鎖線で示している。 For example, when the moving device 43 changes the position of the swing support 41 from a predetermined distal region to a proximal region closer to the cam 21 than the distal region, the maximum lift amount of the valve 10 increases. In addition, in FIG. 1 and each figure shown below, the rocking arm 31 and the rocking support 41 when the rocking support 41 is in the distal region are shown by solid lines, and when the rocking support 41 is in the proximal region. The swing arm 31 and the swing support 41 are indicated by a two-dot chain line.
 また、本実施形態では、移動装置43が揺動サポート41の位置を変更することにより、バルブ10の最大リフト量が変化するだけでなく、バルブ10の開閉タイミング及び開放時間も変化する。これについて、図2を参照して詳しく説明する。 Further, in the present embodiment, when the moving device 43 changes the position of the swing support 41, not only the maximum lift amount of the valve 10 changes, but also the opening / closing timing and opening time of the valve 10 change. This will be described in detail with reference to FIG.
 図2は、可変動弁機構20Aの揺動アーム31とその近傍の拡大図である。揺動アーム31の上面32は、平坦面32aと傾斜面32bとを含む。平坦面32aは、揺動アーム31の長手方向に沿って延在する平面である。すなわち、平坦面32aは、カム21のベース円部21aが揺動アーム31の上面32に対向するとき、カム軸22の軸線C1に直交し、且つバルブ10の軸線C2と直交する方向に延びている。平坦面32aには、カム21が一回転する間に当該カム21が接触する。 FIG. 2 is an enlarged view of the swing arm 31 of the variable valve mechanism 20A and its vicinity. The upper surface 32 of the swing arm 31 includes a flat surface 32a and an inclined surface 32b. The flat surface 32a is a plane extending along the longitudinal direction of the swing arm 31. That is, when the base circular portion 21a of the cam 21 faces the upper surface 32 of the swing arm 31, the flat surface 32a extends in a direction orthogonal to the axis C1 of the cam shaft 22 and orthogonal to the axis C2 of the valve 10. There is. The cam 21 comes into contact with the flat surface 32a while the cam 21 makes one rotation.
 傾斜面32bは、平坦面32aに対して傾斜している。平坦面32aと傾斜面32bとは、前後方向に互いに隣接して形成されている。本実施形態において、傾斜面32bは、平坦面32aの前方に位置する。言い換えれば、傾斜面32bは、平坦面32aよりも揺動軸42に近い位置に配置されている。揺動アーム31の長手方向における傾斜面32bの一方側端部(本例では、後端部)は、揺動アーム31の長手方向における平坦面32aの一方側端部(本例では、前端部)に接続されている。 The inclined surface 32b is inclined with respect to the flat surface 32a. The flat surface 32a and the inclined surface 32b are formed adjacent to each other in the front-rear direction. In the present embodiment, the inclined surface 32b is located in front of the flat surface 32a. In other words, the inclined surface 32b is arranged at a position closer to the swing shaft 42 than the flat surface 32a. One side end portion (rear end portion in this example) of the inclined surface 32b in the longitudinal direction of the swing arm 31 is one side end portion (front end portion in this example) of the flat surface 32a in the longitudinal direction of the swing arm 31. )It is connected to the.
 本実施形態では、傾斜面32bは、揺動アーム31の上面32(カム21に対向する揺動アームの面)が傾斜面32bと平坦面32aとにより凹状に形成されるように、平坦面32aに対して傾斜している。言い換えれば、傾斜面32bは、平坦面32aから離れる方向に向かうにつれてカム21側(上側)に傾斜している。 In the present embodiment, the inclined surface 32b is a flat surface 32a so that the upper surface 32 of the swing arm 31 (the surface of the swing arm facing the cam 21) is formed in a concave shape by the inclined surface 32b and the flat surface 32a. It is inclined with respect to. In other words, the inclined surface 32b is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a.
 図3は、揺動アーム31の上面32の一部を拡大した断面図である。傾斜面32bは、平坦面32aと接続する曲面部32bと、平坦面32aとは反対側で曲面部32bの端部に接続される平面部32bとを有する。曲面部32bは、平坦面32aから遠ざかるにつれて、軸線C1に沿った方向から見たときの当該平坦面32aに対する傾きが徐々に大きくなるように湾曲している。そして、曲面部32bは、平面部32bに滑らかにつながっている。言い換えれば、軸線C1に沿った方向から見た曲面部32bの前端部の傾きと平面部32bの後端部の傾きは一致している。なお、傾斜面32bは、曲面部32bと平面部32bの双方を有していなくてもよく、例えば、傾斜面32bは、曲面部32bと平面部32bの一方のみを有する構成でもよい。 FIG. 3 is an enlarged cross-sectional view of a part of the upper surface 32 of the swing arm 31. The inclined surface 32b has a curved surface portion 32b 1 connected to the flat surface 32a and a flat surface portion 32b 2 connected to the end portion of the curved surface portion 32b 1 on the opposite side of the flat surface 32a. The curved surface portion 32b 1 is curved so that the inclination with respect to the flat surface 32a when viewed from the direction along the axis C1 gradually increases as the distance from the flat surface 32a increases. The curved surface portion 32b 1 is smoothly connected to the flat surface portion 32b 2. In other words, the inclination of the front end portion of the curved surface portion 32b 1 and the inclination of the rear end portion of the flat surface portion 32b 2 when viewed from the direction along the axis C1 are the same. The inclined surface 32b may not have both the curved surface portion 32b 1 and the flat surface portion 32b 2. For example, the inclined surface 32b may have only one of the curved surface portion 32b 1 and the flat surface portion 32b 2. Good.
 図2に戻って、揺動アーム31は、タペット18に向かって膨出する膨出部を有している。言い換えれば、揺動アーム31の下面33は、軸線C1に沿って見たときに、下方に凸状に湾曲した膨出面33aを含む。当該膨出面33aは、タペット面18aに接触する。但し、揺動アーム31がタペット18を押圧しないとき、つまり、カム21のベース円部21aが揺動アーム31に対向する位置にあるときには、膨出面33aは、タペット面18aに接触していなくてもよい。 Returning to FIG. 2, the swing arm 31 has a bulging portion that bulges toward the tappet 18. In other words, the lower surface 33 of the swing arm 31 includes a bulging surface 33a that is convexly curved downward when viewed along the axis C1. The bulging surface 33a comes into contact with the tappet surface 18a. However, when the swing arm 31 does not press the tappet 18, that is, when the base circle portion 21a of the cam 21 is at a position facing the swing arm 31, the bulging surface 33a is not in contact with the tappet surface 18a. May be good.
 移動装置43は、バルブ軸線C2に沿って見て膨出部(膨出面33a)がタペット面18aに重なる範囲内で、揺動アーム31を移動させる。 The moving device 43 moves the swing arm 31 within a range in which the bulging portion (bulging surface 33a) overlaps the tappet surface 18a when viewed along the valve axis C2.
 また、本実施形態では、移動装置43は、揺動サポート41の位置を遠位領域と近位領域との間で移動させる。本実施形態において、遠位領域は、当該遠位領域に揺動サポート41があるときに、カム21が一回転する間に当該カム21が平坦面32aに接触するが、傾斜面32bには接触しない領域である。近位領域は、当該近位領域に揺動サポート41があるときに、カム21が一回転する間に平坦面32a及び傾斜面32bの双方に接触する領域である。なお、本実施形態における「遠位領域」が本発明における「第1領域」に対応し、本実施形態における「近位領域」が本発明における「第2領域」に対応する。 Further, in the present embodiment, the moving device 43 moves the position of the swing support 41 between the distal region and the proximal region. In the present embodiment, in the distal region, when the swing support 41 is in the distal region, the cam 21 contacts the flat surface 32a while the cam 21 makes one rotation, but contacts the inclined surface 32b. It is an area that does not. The proximal region is a region that contacts both the flat surface 32a and the inclined surface 32b during one rotation of the cam 21 when the swing support 41 is in the proximal region. The "distal region" in the present embodiment corresponds to the "first region" in the present invention, and the "proximal region" in the present embodiment corresponds to the "second region" in the present invention.
 本実施形態では、揺動サポート41は、遠位領域にあるときよりも近位領域にあるときの方がカム21に近くなる。即ち、揺動サポート41が近位領域にあるときは、揺動サポート41が遠位領域にあるときに比べて、揺動軸42がカム21に近くなり、バルブ10の最大リフト量は大きくなる。 In the present embodiment, the swing support 41 is closer to the cam 21 when it is in the proximal region than when it is in the distal region. That is, when the swing support 41 is in the proximal region, the swing shaft 42 is closer to the cam 21 and the maximum lift amount of the valve 10 is larger than when the swing support 41 is in the distal region. ..
 次に、可変動弁機構20Aの動作について、図2及び4を参照しつつ説明する。以下では、図2のカム21内に矢印で示すように、軸線C1に沿って左方を見たときに、カム21は反時計回りに回転するものとして説明する。なお、図4は、カム21の回転角θを横軸とし、バルブ10のリフト量(即ちバルブシート4aからフランジ部11aまでの距離)を縦軸としたグラフである。図4では、揺動サポート41が遠位領域にあるときの回転角θとリフト量の関係を実線で示し、揺動サポート41が近位領域にあるときの回転角θとリフト量の関係を二点鎖線で示している。 Next, the operation of the variable valve mechanism 20A will be described with reference to FIGS. 2 and 4. Hereinafter, as shown by an arrow in the cam 21 of FIG. 2, the cam 21 will be described as rotating counterclockwise when viewed to the left along the axis C1. FIG. 4 is a graph in which the rotation angle θ of the cam 21 is on the horizontal axis and the lift amount of the valve 10 (that is, the distance from the valve seat 4a to the flange portion 11a) is on the vertical axis. In FIG. 4, the relationship between the rotation angle θ and the lift amount when the swing support 41 is in the distal region is shown by a solid line, and the relationship between the rotation angle θ and the lift amount when the swing support 41 is in the proximal region is shown by a solid line. It is shown by a two-dot chain line.
 まず揺動サポート41が遠位領域にあるときの可変動弁機構20Aの動作について説明する。カム21のベース円部21aが揺動アーム31に対向する位置にあるとき、カム21は、揺動アーム31を押し下げることはない(図4の0°≦θ<θa,θb<θ<360°の範囲を参照)。揺動アーム31がバルブ本体11を下方に押し下げないため、バルブ10はポート4を閉弁した状態にある。なお、カム21のベース円部21aが揺動アーム31に対向する位置にあるとき、ベース円部21aは、揺動アーム31に接触していなくてもよい。 First, the operation of the variable valve mechanism 20A when the swing support 41 is in the distal region will be described. When the base circular portion 21a of the cam 21 is in a position facing the swing arm 31, the cam 21 does not push down the swing arm 31 (0 ° ≤ θ <θ a , θ b <θ <in FIG. 4). See 360 ° range). Since the swing arm 31 does not push down the valve body 11, the valve 10 is in a state where the port 4 is closed. When the base circle portion 21a of the cam 21 is at a position facing the swing arm 31, the base circle portion 21a does not have to be in contact with the swing arm 31.
 カム21が回転して、カム21のカム山部21bが揺動アーム31の平坦面32aに接触し始めると(図4のθ=θa)、カム21は、揺動アーム31を介してバルブ本体11を押し下げ、これにより、そのフランジ部11aがバルブシート4aから離れてポート4を開放する。そして、カム21が回転するにつれて、揺動アーム31は揺動軸42を中心に揺動し、揺動アーム31によるタペット18の押し下げ量、すなわち、バルブ本体11のリフト量は、徐々に大きくなり、その後、当該リフト量が最大となった時点以降は、カム山部21bが平坦面32aに接触しなくなる時点(図4のθ=θb)まで徐々に小さくなる。 When the cam 21 rotates and the cam peak portion 21b of the cam 21 begins to come into contact with the flat surface 32a of the swing arm 31 (θ = θ a in FIG. 4), the cam 21 valves via the swing arm 31. The main body 11 is pushed down, whereby the flange portion 11a is separated from the valve seat 4a to open the port 4. Then, as the cam 21 rotates, the swing arm 31 swings around the swing shaft 42, and the amount of pushing down of the tappet 18 by the swing arm 31, that is, the lift amount of the valve body 11 gradually increases. After that, after the time when the lift amount becomes maximum, the cam ridge portion 21b gradually decreases until the time when the cam ridge portion 21b does not come into contact with the flat surface 32a (θ = θ b in FIG. 4).
 揺動サポート41が遠位領域にあるとき、カム21は、一回転する間に平坦面32aに接触するが、傾斜面32bには接触しない。 When the swing support 41 is in the distal region, the cam 21 contacts the flat surface 32a during one rotation, but not the inclined surface 32b.
 移動装置43が、揺動サポート41を直線的に移動させることで、揺動サポート41の位置は、遠位領域から近位領域へと変更される。なお、揺動サポート41を移動させる際、揺動アーム31の移動に伴って、タペット面18aの上を膨出面33aが摺動する。従って、タペット面18aおける膨出部(膨出面33a)との接触位置も変更される。つまり、本実施形態では、揺動サポート41の位置が変更されるとき、カム21と揺動アーム31との接触箇所から揺動軸42までの距離は変更されるが、タペット18と揺動アーム31との接触箇所から揺動軸42までの距離は概ね維持される。 When the moving device 43 linearly moves the swing support 41, the position of the swing support 41 is changed from the distal region to the proximal region. When the swing support 41 is moved, the bulge surface 33a slides on the tappet surface 18a as the swing arm 31 moves. Therefore, the contact position with the bulging portion (bulging surface 33a) on the tappet surface 18a is also changed. That is, in the present embodiment, when the position of the swing support 41 is changed, the distance from the contact point between the cam 21 and the swing arm 31 to the swing shaft 42 is changed, but the tappet 18 and the swing arm are changed. The distance from the contact point with 31 to the swing shaft 42 is generally maintained.
 揺動サポート41が近位領域にあるときも、バルブ10を開閉する基本的な動作は、揺動サポート41が遠位領域にあるときと同様である。即ち、カム21のベース円部21aが揺動アーム31に対向する位置にあるとき、カム21は、バルブ10はポート4を閉弁した状態にある(図4の0°≦θ<θa,θc<θ<360°の範囲を参照)。そして、カム21が回転して、カム21のカム山部21bが揺動アーム31の平坦面32aに接触し始めると(図4のθ=θa)、カム21は、揺動アーム31を介してバルブ本体11を押し下げ、これにより、そのフランジ部11aがバルブシート4aから離れてポート4を開放する。そして、カム21が回転するにつれて、揺動アーム31は揺動軸42を中心に揺動し、揺動アーム31によるタペット18の押し下げ量、すなわち、バルブ本体11のリフト量は、徐々に大きくなる。 Even when the swing support 41 is in the proximal region, the basic operation of opening and closing the valve 10 is the same as when the swing support 41 is in the distal region. That is, when the base circular portion 21a of the cam 21 is in a position facing the swing arm 31, the cam 21 is in a state where the valve 10 is closed at the port 4 (0 ° ≤ θ <θ a in FIG. 4). See the range θ c <θ <360 °). Then, when the cam 21 rotates and the cam peak portion 21b of the cam 21 begins to come into contact with the flat surface 32a of the swing arm 31 (θ = θ a in FIG. 4), the cam 21 passes through the swing arm 31. The valve body 11 is pushed down, whereby the flange portion 11a is separated from the valve seat 4a to open the port 4. Then, as the cam 21 rotates, the swing arm 31 swings around the swing shaft 42, and the amount of pushing down of the tappet 18 by the swing arm 31, that is, the lift amount of the valve body 11 gradually increases. ..
 但し、揺動サポート41が近位領域にあるときには、カム21のカム山部21bは、一回転する間に平坦面32aだけでなく、傾斜面32bにも接触する。即ち、カム山部21bは、平坦面32aに接触した後に、傾斜面32bと接触し始める。その後、当該リフト量が最大となった時点以降は、カム山部21bが傾斜面32bに接触しなくなる時点(図4のθ=θc)まで徐々に小さくなる。 However, when the swing support 41 is in the proximal region, the cam ridge 21b of the cam 21 comes into contact with not only the flat surface 32a but also the inclined surface 32b during one rotation. That is, the cam ridge portion 21b comes into contact with the inclined surface 32b after coming into contact with the flat surface 32a. After that, after the time when the lift amount becomes maximum, the cam ridge portion 21b gradually decreases until the time when the cam ridge portion 21b does not come into contact with the inclined surface 32b (θ = θ c in FIG. 4).
 このように、揺動サポート41が遠位領域及び近位領域のいずれにあるときでも、カム山部21bは、同じ位置にある平坦面32aに接触し始める。このため、揺動サポート41の位置変更の前後で、バルブ10を開くタイミングは図4に示すように同じである。一方、揺動サポート41が近位領域にあるときは、カム山部21bが傾斜面32bと接触するため、揺動サポート41が遠位領域にあるときに比べて、揺動アーム31がカム山部21bに押圧される時間は長くなる。すなわち、揺動サポート41が近位領域にあるときのバルブ10の閉タイミングを、揺動サポート41が遠位領域にあるときに比べて遅らすことができる。 In this way, the cam ridge 21b begins to come into contact with the flat surface 32a at the same position regardless of whether the swing support 41 is in the distal region or the proximal region. Therefore, the timing of opening the valve 10 is the same as shown in FIG. 4 before and after the position change of the swing support 41. On the other hand, when the swing support 41 is in the proximal region, the cam ridge 21b comes into contact with the inclined surface 32b, so that the swing arm 31 is in the cam ridge as compared with when the swing support 41 is in the distal region. The time for being pressed by the portion 21b becomes longer. That is, the closing timing of the valve 10 when the swing support 41 is in the proximal region can be delayed as compared with when the swing support 41 is in the distal region.
 なお、カム21が図中時計回りに回転する場合には、当然のことながら、バルブ10の開タイミングのみ可変となる。すなわち、揺動サポート41が近位領域にあるときのバルブ10を開くタイミングが、揺動サポート41が遠位領域にあるときに比べて早くなる。また、揺動サポート41の位置変更の前後で、バルブ10を閉めるタイミングが同じになる。 When the cam 21 rotates clockwise in the figure, as a matter of course, only the opening timing of the valve 10 is variable. That is, the timing of opening the valve 10 when the swing support 41 is in the proximal region is earlier than when the swing support 41 is in the distal region. Further, before and after the position change of the swing support 41, the timing of closing the valve 10 is the same.
 以上に説明したように、本実施形態に係る可変動弁機構20Aによれば、移動装置43が、揺動アーム31の揺動軸42をバルブ軸線C2と直交する方向に直線的に移動させる。このため、揺動アーム31の単純な直線移動のみを考慮すればよく、可変動弁機構20Aの各構成要素の位置や形状に関わる設計パラメータを減らすことが可能となる。従って、カム21と揺動アーム31との間の接触面圧を許容範囲内に収めつつ所望のバルブ10のリフト特性の変更を実現できる設計が容易となり、設計に要する労力を軽減することができる。 As described above, according to the variable valve mechanism 20A according to the present embodiment, the moving device 43 linearly moves the swing shaft 42 of the swing arm 31 in the direction orthogonal to the valve axis C2. Therefore, it is only necessary to consider the simple linear movement of the swing arm 31, and it is possible to reduce the design parameters related to the position and shape of each component of the variable valve mechanism 20A. Therefore, it becomes easy to design a valve 10 that can change the desired lift characteristic of the valve 10 while keeping the contact surface pressure between the cam 21 and the swing arm 31 within an allowable range, and the labor required for the design can be reduced. ..
 また、本実施形態では、揺動サポート41が遠位領域にあるとき、カム21は、一回転する間に平坦面32aに接触し、傾斜面32bには接触せず、揺動サポート41が近位領域にあるとき、カム21は、一回転する間に平坦面32a及び傾斜面32bの双方に接触する。このように、カム21が傾斜面32bに接触する場合と接触しない場合で、バルブ10の閉タイミング(又は開タイミング)を変更できる。従って、本実施形態の可変動弁機構20Aでは、バルブ10の開位相(開のタイミング)と、閉位相(閉のタイミング)を別々に設計することが可能となり、バルブ10の開閉タイミング(作動角)を容易に変更することができる。 Further, in the present embodiment, when the swing support 41 is in the distal region, the cam 21 contacts the flat surface 32a during one rotation, does not contact the inclined surface 32b, and the swing support 41 is close to it. When in the position region, the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32b during one revolution. In this way, the closing timing (or opening timing) of the valve 10 can be changed depending on whether the cam 21 contacts the inclined surface 32b or not. Therefore, in the variable valve mechanism 20A of the present embodiment, the open phase (open timing) and the closed phase (close timing) of the valve 10 can be designed separately, and the opening / closing timing (operating angle) of the valve 10 can be designed separately. ) Can be easily changed.
 また、本実施形態では、揺動アーム31の上面32が傾斜面32bと平坦面32aとにより凹状に形成されており、また、傾斜面32bにおける曲面部32bは、平坦面32aから遠ざかるにつれて、軸線C1に沿った方向から見たときの当該平坦面32aに対する傾きが徐々に大きくなるように湾曲している。このため、例えば揺動アーム31の上面32が凸状に形成されている場合に比べて、カム21が一回転する間に平坦面32a及び傾斜面32bの双方に接触するとき、特に、カム21が曲面部32bに接触しているときに、カム21と揺動アーム31との間の接触面圧を小さくすることができる。 Further, in the present embodiment, the upper surface 32 of the swing arm 31 is formed in a concave shape by the inclined surface 32b and the flat surface 32a, and the curved surface portion 32b 1 on the inclined surface 32b increases as the distance from the flat surface 32a increases. It is curved so that the inclination with respect to the flat surface 32a when viewed from the direction along the axis C1 gradually increases. Therefore, for example, as compared with the case where the upper surface 32 of the swing arm 31 is formed in a convex shape, when the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32b during one rotation, the cam 21 is particularly effective. Can reduce the contact surface pressure between the cam 21 and the swing arm 31 when the cam 21 is in contact with the curved surface portion 32b 1.
 また、本実施形態では、揺動アーム31は、カム21とバルブ10との間に設けられるため、シンプルな構成のオーバーヘッドカム式の可変動弁機構を実現できる。 Further, in the present embodiment, since the swing arm 31 is provided between the cam 21 and the valve 10, an overhead cam type variable valve mechanism having a simple configuration can be realized.
 また、本実施形態では、カム21の回転軸であるカム軸22は、バルブ軸線C2と直交する。このため、揺動アーム31におけるカム21に押圧される箇所と、揺動アーム31におけるバルブ10を押圧する箇所とを近づけることができる。で、揺動アーム31がカム21に押圧される際に揺動アーム31に作用する揺動アーム31を撓ませる力を軽減することができる。このため、求められる強度を抑えた揺動アーム31の設計が可能となる。 Further, in the present embodiment, the cam shaft 22 which is the rotation axis of the cam 21 is orthogonal to the valve axis C2. Therefore, the portion of the swing arm 31 that is pressed by the cam 21 and the portion of the swing arm 31 that presses the valve 10 can be brought close to each other. Therefore, when the swing arm 31 is pressed by the cam 21, the force that acts on the swing arm 31 to bend the swing arm 31 can be reduced. Therefore, it is possible to design the swing arm 31 with the required strength suppressed.
 また、本実施形態では、揺動アーム31の移動に伴って、タペット18の平面における膨出部との接触位置も変更される。その結果、揺動アーム31におけるタペット18との接触位置から揺動アーム31の揺動軸42までの距離を概ね維持しながら、揺動アーム31におけるカム21との接触位置から揺動アーム31の揺動軸42までの距離を変更できる。従って、揺動アーム31を移動させたときのレバー比(つまり、揺動アーム31におけるタペット18との接触位置から揺動アーム31の揺動軸42までの距離と、揺動アーム31におけるカム21との接触位置から揺動アーム31の揺動軸42までの距離との比率)の変化を大きくして、揺動アーム31の移動距離に対するバルブ10の最大リフト量の変化量を大きくすることができる。 Further, in the present embodiment, as the swing arm 31 moves, the contact position of the tappet 18 with the bulging portion on the plane is also changed. As a result, while maintaining the distance from the contact position of the swing arm 31 with the tappet 18 to the swing shaft 42 of the swing arm 31, the swing arm 31 is moved from the contact position with the cam 21 of the swing arm 31. The distance to the swing shaft 42 can be changed. Therefore, the lever ratio when the swing arm 31 is moved (that is, the distance from the contact position of the swing arm 31 with the tappet 18 to the swing shaft 42 of the swing arm 31 and the cam 21 of the swing arm 31). The change in the maximum lift amount of the valve 10 with respect to the moving distance of the swing arm 31 can be increased by increasing the change (ratio from the contact position with the swing arm 31 to the swing shaft 42). it can.
 (第2実施形態)
 次に、第2実施形態に係る可変動弁機構20Bについて、図5を参照して説明する。図5は、第2実施形態に係る可変動弁機構20Bの揺動アーム31とその近傍の拡大図である。なお、本実施形態でも、第1実施形態と同様、「遠位領域」及び「近位領域」が、それぞれ、本発明における「第1領域」及び「第2領域」に対応し、後述する第7~第11実施形態も同様である。
(Second Embodiment)
Next, the variable valve mechanism 20B according to the second embodiment will be described with reference to FIG. FIG. 5 is an enlarged view of the swing arm 31 of the variable valve mechanism 20B according to the second embodiment and its vicinity. In the present embodiment as well, as in the first embodiment, the "distal region" and the "proximal region" correspond to the "first region" and the "second region" in the present invention, respectively, and will be described later. The same applies to the 7th to 11th embodiments.
 本実施形態では、傾斜面32bは、揺動アーム31の上面32が傾斜面32bと平坦面32aとにより凸状に形成されるように、平坦面32aに対して傾斜している。言い換えれば、傾斜面32bは、平坦面32aから離れる方向に向かうにつれてタペット18側(下側)に傾斜している。このため、本実施形態では、例えばカム21が図中反時計回りに回転する場合、揺動サポート41が近位領域にあるときのバルブ10の閉タイミングを、揺動サポート41が遠位領域にあるときに比べて、遅らす代わりに、早めることができる。 In the present embodiment, the inclined surface 32b is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed in a convex shape by the inclined surface 32b and the flat surface 32a. In other words, the inclined surface 32b is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a. Therefore, in the present embodiment, for example, when the cam 21 rotates counterclockwise in the drawing, the closing timing of the valve 10 when the swing support 41 is in the proximal region is set to the distal region. Instead of delaying, you can accelerate it compared to one time.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第3実施形態)
 次に、第3実施形態に係る可変動弁機構20Cについて、図6を参照して説明する。図6は、第3実施形態に係る可変動弁機構20Cの揺動アーム31とその近傍の拡大図である。
(Third Embodiment)
Next, the variable valve mechanism 20C according to the third embodiment will be described with reference to FIG. FIG. 6 is an enlarged view of the swing arm 31 of the variable valve mechanism 20C according to the third embodiment and its vicinity.
 本実施形態では、第1実施形態と異なり、揺動アーム31の上面32が、平坦面32aの前方に位置する傾斜面32bの代わりに、平坦面32aの後方に位置する傾斜面32cを含む。すなわち、傾斜面32cは、平坦面32aよりも揺動軸42から遠い位置に配置されている。当該傾斜面32cは、揺動アーム31の上面32が傾斜面32cと平坦面32aとにより凹状に形成されるように、平坦面32aに対して傾斜している。言い換えれば、傾斜面32cは、平坦面32aから離れる方向に向かうにつれてカム21側(上側)に傾斜している。 In the present embodiment, unlike the first embodiment, the upper surface 32 of the swing arm 31 includes an inclined surface 32c located behind the flat surface 32a instead of the inclined surface 32b located in front of the flat surface 32a. That is, the inclined surface 32c is arranged at a position farther from the swing shaft 42 than the flat surface 32a. The inclined surface 32c is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed in a concave shape by the inclined surface 32c and the flat surface 32a. In other words, the inclined surface 32c is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a.
 本実施形態でも、移動装置43は、揺動サポート41の位置を遠位領域と近位領域との間で移動させる。本実施形態では、図6に実線で示すように、揺動サポート41が遠位領域にあるときに、カム21が一回転する間に平坦面32a及び傾斜面32cの双方に接触する。また、図6に二点鎖線で示すように、揺動サポート41が近位領域にあるときに、カム21が一回転する間に当該カム21が平坦面32aに接触するが、傾斜面32cには接触しない。なお、本実施形態における「遠位領域」が本発明における「第2領域」に対応し、本実施形態における「近位領域」が本発明における「第1領域」に対応し、後述する第4実施形態も同様である。
このため、カム21が傾斜面32cに接触する場合と接触しない場合で、バルブ10の開タイミング(カム21が図中時計回りに回転する場合には閉タイミング)を変更できる。
Also in this embodiment, the moving device 43 moves the position of the swing support 41 between the distal region and the proximal region. In this embodiment, as shown by the solid line in FIG. 6, when the swing support 41 is in the distal region, the cam 21 comes into contact with both the flat surface 32a and the inclined surface 32c during one rotation. Further, as shown by the alternate long and short dash line in FIG. 6, when the swing support 41 is in the proximal region, the cam 21 comes into contact with the flat surface 32a during one rotation of the cam 21, but the inclined surface 32c Does not touch. The "distal region" in the present embodiment corresponds to the "second region" in the present invention, and the "proximal region" in the present embodiment corresponds to the "first region" in the present invention. The same applies to the embodiments.
Therefore, the opening timing of the valve 10 (the closing timing when the cam 21 rotates clockwise in the drawing) can be changed depending on whether the cam 21 contacts the inclined surface 32c or not.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第4実施形態)
 次に、第4実施形態に係る可変動弁機構20Dについて、図7を参照して説明する。図7は、第4実施形態に係る可変動弁機構20Dの揺動アーム31とその近傍の拡大図である。
(Fourth Embodiment)
Next, the variable valve mechanism 20D according to the fourth embodiment will be described with reference to FIG. 7. FIG. 7 is an enlarged view of the swing arm 31 of the variable valve mechanism 20D according to the fourth embodiment and its vicinity.
 本実施形態では、第3実施形態と異なり、傾斜面32cは、揺動アーム31の上面32が傾斜面32cと平坦面32aとにより凸状に形成されるように、平坦面32aに対して傾斜している。言い換えれば、傾斜面32cは、平坦面32aから離れる方向に向かうにつれてタペット18側(下側)に傾斜している。 In the present embodiment, unlike the third embodiment, the inclined surface 32c is inclined with respect to the flat surface 32a so that the upper surface 32 of the swing arm 31 is formed to be convex by the inclined surface 32c and the flat surface 32a. doing. In other words, the inclined surface 32c is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第5実施形態)
 次に、第5実施形態に係る可変動弁機構20Eについて、図8を参照して説明する。図8は、第5実施形態に係る可変動弁機構20Eの揺動アーム31とその近傍の拡大図である。
(Fifth Embodiment)
Next, the variable valve mechanism 20E according to the fifth embodiment will be described with reference to FIG. FIG. 8 is an enlarged view of the swing arm 31 of the variable valve mechanism 20E according to the fifth embodiment and its vicinity.
 本実施形態は、第1実施形態と第4実施形態との組み合わせである。具体的には、揺動アーム31の上面32は、平坦面32aと、平坦面32aの前方に位置する傾斜面(第1傾斜面)32bと、平坦面32aの後方に位置する傾斜面(第2傾斜面)32cとを含む。第1傾斜面32bは、平坦面32aから離れる方向に向かうにつれてカム21側(上側)に傾斜しており、第2傾斜面32cは、平坦面32aから離れる方向に向かうにつれてタペット18側(下側)に傾斜している。 This embodiment is a combination of the first embodiment and the fourth embodiment. Specifically, the upper surface 32 of the swing arm 31 has a flat surface 32a, an inclined surface (first inclined surface) 32b located in front of the flat surface 32a, and an inclined surface (first inclined surface) located behind the flat surface 32a. 2 inclined surface) 32c and the like. The first inclined surface 32b is inclined toward the cam 21 side (upper side) toward the direction away from the flat surface 32a, and the second inclined surface 32c is inclined toward the tappet 18 side (lower side) toward the direction away from the flat surface 32a. ).
 揺動サポート41が遠位領域にあるとき、カム21は、一回転する間に平坦面32a及び第2傾斜面32cの双方に接触するが、第1傾斜面32bには接触しない(図8の実線参照)。揺動サポート41が近位領域にあるとき、カム21は、一回転する間に平坦面32a及び第1傾斜面32bの双方に接触するが、第2傾斜面32cには接触しない(図8の二点鎖線参照)。 When the swing support 41 is in the distal region, the cam 21 contacts both the flat surface 32a and the second inclined surface 32c during one revolution, but not the first inclined surface 32b (FIG. 8). See solid line). When the swing support 41 is in the proximal region, the cam 21 contacts both the flat surface 32a and the first inclined surface 32b during one rotation, but not the second inclined surface 32c (FIG. 8). See two-dot chain line).
 なお、本実施形態では、「遠位領域」(又は「近位領域」)が本発明における「第1領域」及び「第2領域」のどちらにも対応し得る。揺動サポート41が遠位領域にあるとき、カム21が一回転する間に平坦面32aに接触し、第1傾斜面32bには接触せず、揺動サポート41が近位領域にあるとき、カム21が一回転する間に平坦面32a及び第1傾斜面32bの双方に接触する。つまり、「遠位領域」が本発明の「第1領域」に対応し、「近位領域」が本発明の「第2領域」に対応するとした場合、「第1傾斜面32b」が本発明の「傾斜面」に対応する。また、揺動サポート41が近位領域にあるとき、カム21が一回転する間に平坦面32aに接触し、第2傾斜面32cには接触せず、揺動サポート41が遠位領域にあるとき、カム21が一回転する間に平坦面32a及び第2傾斜面32cの双方に接触する。つまり、「近位領域」が本発明の「第1領域」に対応し、「遠位領域」が本発明の「第2領域」に対応するとした場合、「第2傾斜面32c」が本発明の「傾斜面」に対応する。 In the present embodiment, the "distal region" (or "proximal region") can correspond to both the "first region" and the "second region" in the present invention. When the swing support 41 is in the distal region, it contacts the flat surface 32a during one revolution of the cam 21 and not the first inclined surface 32b, and the swing support 41 is in the proximal region. During one rotation of the cam 21, it comes into contact with both the flat surface 32a and the first inclined surface 32b. That is, when the "distal region" corresponds to the "first region" of the present invention and the "proximal region" corresponds to the "second region" of the present invention, the "first inclined surface 32b" corresponds to the present invention. Corresponds to the "sloping surface" of. Further, when the swing support 41 is in the proximal region, the cam 21 contacts the flat surface 32a during one rotation and does not contact the second inclined surface 32c, and the swing support 41 is in the distal region. At this time, the cam 21 comes into contact with both the flat surface 32a and the second inclined surface 32c during one rotation. That is, when the "proximal region" corresponds to the "first region" of the present invention and the "distal region" corresponds to the "second region" of the present invention, the "second inclined surface 32c" corresponds to the present invention. Corresponds to the "sloping surface" of.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第6実施形態)
 次に、第6実施形態に係る可変動弁機構20Fについて、図9を参照して説明する。図9は、第6実施形態に係る可変動弁機構20Fの揺動アーム31とその近傍の拡大図である。
(Sixth Embodiment)
Next, the variable valve mechanism 20F according to the sixth embodiment will be described with reference to FIG. FIG. 9 is an enlarged view of the swing arm 31 of the variable valve mechanism 20F according to the sixth embodiment and its vicinity.
 本実施形態では、揺動アーム31の上面32は、カム21が接触する傾斜面を含まない。すなわち、揺動サポート41の位置変更の前後で、バルブ10の最大リフト量は変化するが、バルブ10の開閉タイミングは変化しない。 In the present embodiment, the upper surface 32 of the swing arm 31 does not include an inclined surface with which the cam 21 contacts. That is, the maximum lift amount of the valve 10 changes before and after the position change of the swing support 41, but the opening / closing timing of the valve 10 does not change.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第7実施形態)
 次に、第7実施形態に係る可変動弁機構20Gについて、図10を参照して説明する。図10は、第7実施形態に係る可変動弁機構20Gの揺動アーム31とその近傍の拡大図である。
(7th Embodiment)
Next, the variable valve mechanism 20G according to the seventh embodiment will be described with reference to FIG. FIG. 10 is an enlarged view of the swing arm 31 of the variable valve mechanism 20G according to the seventh embodiment and its vicinity.
 本実施形態では、揺動アーム31の形状は、第1実施形態と同じである。本実施形態では、可変動弁機構20Gが更に、揺動アーム31をカム21に押し付ける方向に付勢力を付与する付勢部材51と、当該付勢部材51の一端を支持する支持部材52とを更に備える。 In this embodiment, the shape of the swing arm 31 is the same as that in the first embodiment. In the present embodiment, the variable valve mechanism 20G further comprises an urging member 51 that applies an urging force in the direction of pressing the swing arm 31 against the cam 21, and a support member 52 that supports one end of the urging member 51. Further prepare.
 支持部材52は、揺動アーム31の上方に配置されている。支持部材52は、例えばカム軸22の軸線C1に対して固定的に配置されている。支持部材52は、例えば、シリンダヘッド2、当該シリンダヘッド2の上部を覆うシリンダヘッドカバー、及びシリンダヘッド2を覆うケーシングのいずれかに固定されている。 The support member 52 is arranged above the swing arm 31. The support member 52 is fixedly arranged with respect to the axis C1 of the cam shaft 22, for example. The support member 52 is fixed to, for example, one of a cylinder head 2, a cylinder head cover that covers the upper portion of the cylinder head 2, and a casing that covers the cylinder head 2.
 付勢部材51は、揺動アーム31と支持部材52の間に設けられている。例えば付勢部材51は、コイルばねである。付勢部材51の上端部51aは、支持部材52に接続されており、付勢部材51の下端部51bは、揺動アーム31に接続されている。付勢部材51により揺動アーム31がカム21に押し付けられるため、カム21が一回転する間、カム21から揺動アーム31が離れるのを防ぐことができる。すなわち、カム21のベース円部21aが揺動アーム31に対向する位置にあるときでも、揺動アーム31がカム1に接触した状態を維持する。このとき、タペット面18aは、揺動アーム31に接触していなくてもよい。 The urging member 51 is provided between the swing arm 31 and the support member 52. For example, the urging member 51 is a coil spring. The upper end portion 51a of the urging member 51 is connected to the support member 52, and the lower end portion 51b of the urging member 51 is connected to the swing arm 31. Since the swing arm 31 is pressed against the cam 21 by the urging member 51, it is possible to prevent the swing arm 31 from separating from the cam 21 while the cam 21 makes one rotation. That is, even when the base circular portion 21a of the cam 21 is in a position facing the swing arm 31, the swing arm 31 is maintained in contact with the cam 1. At this time, the tappet surface 18a does not have to be in contact with the swing arm 31.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、付勢部材51が揺動アーム31をカム21に押し付ける方向に付勢力を付与することで、ジャンピングやバウンスなどのバルブ10の動特性や揺動アーム31に対するカム21等の接触面圧を調整することができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained. Further, by applying an urging force in the direction in which the urging member 51 presses the swing arm 31 against the cam 21, the dynamic characteristics of the valve 10 such as jumping and bouncing and the contact surface pressure of the cam 21 and the like with respect to the swing arm 31 are applied. Can be adjusted.
 (第8実施形態)
 次に、第8実施形態に係る可変動弁機構20Hについて、図11を参照して説明する。図11は、第8実施形態に係る可変動弁機構20Hの揺動アーム31とその近傍の拡大図である。
(8th Embodiment)
Next, the variable valve mechanism 20H according to the eighth embodiment will be described with reference to FIG. FIG. 11 is an enlarged view of the swing arm 31 of the variable valve mechanism 20H according to the eighth embodiment and its vicinity.
 本実施形態では、第7実施形態とは、付勢部材51を支持する支持部材54の取り付け位置が異なる。本実施形態では、支持部材54は、揺動サポート41に固定されている。支持部材54は、揺動サポート41から上方に延びる第1延在部54aと、第1延在部54aの上端部から、カム21に向かって延びる第2延在部54bとを含む。 In the present embodiment, the mounting position of the support member 54 that supports the urging member 51 is different from that in the seventh embodiment. In this embodiment, the support member 54 is fixed to the swing support 41. The support member 54 includes a first extending portion 54a extending upward from the swing support 41 and a second extending portion 54b extending from the upper end portion of the first extending portion 54a toward the cam 21.
 付勢部材51は、揺動アーム31と支持部材54の第2延在部54bとの間に設けられている。付勢部材51の上端部51aは、支持部材54の第2延在部54bに接続されており、付勢部材51の下端部51bは、揺動アーム31に接続されている。 The urging member 51 is provided between the swing arm 31 and the second extending portion 54b of the support member 54. The upper end portion 51a of the urging member 51 is connected to the second extending portion 54b of the support member 54, and the lower end portion 51b of the urging member 51 is connected to the swing arm 31.
 本実施形態でも、第7実施形態と同様の効果を得ることができる。さらに、本実施形態では、揺動サポート44と支持部材54とが一体的に移動する。このように、付勢部材51が揺動サポート41と一体的にバルブ軸線C2と直交する方向に直線的に移動するため、移動装置43が揺動サポート41の位置を変更する際の付勢部材51の付勢力の変化を抑制できる。 In this embodiment as well, the same effect as in the seventh embodiment can be obtained. Further, in the present embodiment, the swing support 44 and the support member 54 move integrally. In this way, since the urging member 51 moves linearly in the direction orthogonal to the valve axis C2 integrally with the swing support 41, the urging member when the moving device 43 changes the position of the swing support 41. The change in the urging force of 51 can be suppressed.
 なお、揺動アーム31をカム21に押し付ける方向に付勢力を付与する付勢部材51は、第7及び第8実施形態で示されたものに限定されない。例えば、付勢部材51は、揺動アーム31の上方ではなく下方に設けられていてもよい。また、付勢部材51は、コイルばねでなくてもよく、ねじりバネや板バネなどであってもよい。 The urging member 51 that applies an urging force in the direction of pressing the swing arm 31 against the cam 21 is not limited to that shown in the seventh and eighth embodiments. For example, the urging member 51 may be provided below the swing arm 31 instead of above it. Further, the urging member 51 does not have to be a coil spring, but may be a torsion spring, a leaf spring, or the like.
 (第9実施形態)
 次に、第9実施形態に係る可変動弁機構20Iについて、図12を参照して説明する。図12は、第9実施形態に係る可変動弁機構20Iの揺動アーム31とその近傍の拡大図である。
(9th Embodiment)
Next, the variable valve mechanism 20I according to the ninth embodiment will be described with reference to FIG. FIG. 12 is an enlarged view of the swing arm 31 of the variable valve mechanism 20I according to the ninth embodiment and its vicinity.
 本実施形態では、第1実施形態と異なり、揺動アーム31が、タペット18に向かって膨出する代わりに、タペット面18aが、揺動アーム31に向かって膨出している。具体的には、揺動アーム31の下面33は、平坦面32aに平行な平坦面33bを含む。また、タペット面18aは、軸線C1に沿って見たときに、上方に凸状に湾曲している。 In the present embodiment, unlike the first embodiment, the tappet surface 18a bulges toward the tappet 18 instead of the swing arm 31 bulging toward the tappet 18. Specifically, the lower surface 33 of the swing arm 31 includes a flat surface 33b parallel to the flat surface 32a. Further, the tappet surface 18a is curved upward in a convex shape when viewed along the axis C1.
 このように、移動装置43が揺動サポート41を移動させる際、揺動アーム31の移動に伴って、平坦面33bが凸状のタペット面18aの上を摺動する。揺動アーム31の移動に伴って、揺動アーム31におけるタペット18との接触位置から揺動アーム31の揺動軸42までの距離は変化する。 In this way, when the moving device 43 moves the swing support 41, the flat surface 33b slides on the convex tappet surface 18a as the swing arm 31 moves. As the swing arm 31 moves, the distance from the contact position of the swing arm 31 with the tappet 18 to the swing shaft 42 of the swing arm 31 changes.
 揺動サポート41の位置変更前のレバー比に対する揺動サポート41の位置変更後のレバー比の変化は、第1実施形態に比べて小さくなるが、本実施形態でも、第1実施形態と同様の効果を得ることができる。 The change in the lever ratio after the position change of the swing support 41 with respect to the lever ratio before the position change of the swing support 41 is smaller than that in the first embodiment, but this embodiment is also the same as in the first embodiment. The effect can be obtained.
 (第10実施形態)
 次に、第10実施形態に係る可変動弁機構20Jについて、図13を参照して説明する。図13は、第10実施形態に係る可変動弁機構20Jの揺動アーム31とその近傍の拡大図である。
(10th Embodiment)
Next, the variable valve mechanism 20J according to the tenth embodiment will be described with reference to FIG. FIG. 13 is an enlarged view of the swing arm 31 of the variable valve mechanism 20J according to the tenth embodiment and its vicinity.
 本実施形態では、第1実施形態と異なり、揺動アーム31は、先端側アーム部31aと基端側アーム部31bとで構成される。先端側アーム部31aは、揺動アーム31における揺動サポート41から遠い側の部分である。先端側アーム部31aの上面に平坦面32aが配置されており、先端側アーム部31aの下面に膨出面33aが配置されている。基端側アーム部31bは、揺動アーム31における揺動サポート41に近い側の部分である。基端側アーム部31bの上面に傾斜面32bが配置されている。 In the present embodiment, unlike the first embodiment, the swing arm 31 is composed of a tip end side arm portion 31a and a proximal end side arm portion 31b. The tip end side arm portion 31a is a portion of the swing arm 31 on the side far from the swing support 41. A flat surface 32a is arranged on the upper surface of the tip end side arm portion 31a, and a bulging surface 33a is arranged on the lower surface of the tip end side arm portion 31a. The base end side arm portion 31b is a portion of the swing arm 31 on the side close to the swing support 41. An inclined surface 32b is arranged on the upper surface of the base end side arm portion 31b.
 先端側アーム部31aは、平坦面32aに沿った方向に延びている。即ち、先端側アーム部31aは、軸線C1に沿った方向から見て、バルブ10の軸線C2と直交する方向に延びている。一方、基端側アーム部31bは、先端側アーム部31aの揺動サポート41に近い側の端部から、傾斜面32bに沿った方向に延びている。即ち、先端側アーム部31aは、軸線C1に沿った方向から見て、バルブ10の軸線C2と直交する方向に対して傾斜した方向に延びている。先端側アーム部31aの前端部が、揺動サポート41により揺動軸42を中心に揺動可能に支持される。移動装置43による揺動サポート41の移動方向は、第1実施形態と同様である。 The tip side arm portion 31a extends in the direction along the flat surface 32a. That is, the tip end side arm portion 31a extends in a direction orthogonal to the axis C2 of the valve 10 when viewed from the direction along the axis C1. On the other hand, the base end side arm portion 31b extends in a direction along the inclined surface 32b from the end portion of the tip end side arm portion 31a on the side close to the swing support 41. That is, the tip end side arm portion 31a extends in a direction inclined with respect to a direction orthogonal to the axis C2 of the valve 10 when viewed from the direction along the axis C1. The front end portion of the tip end side arm portion 31a is swingably supported around the swing shaft 42 by the swing support 41. The moving direction of the swing support 41 by the moving device 43 is the same as that of the first embodiment.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (第11実施形態)
 次に、第11実施形態に係る可変動弁機構20Kについて、図14を参照して説明する。図14は、第11実施形態に係るエンジンの可変動弁機構20K及びその周辺を示した概略断面図である。
(11th Embodiment)
Next, the variable valve mechanism 20K according to the eleventh embodiment will be described with reference to FIG. FIG. 14 is a schematic cross-sectional view showing the variable valve mechanism 20K of the engine and its periphery according to the eleventh embodiment.
 本実施形態の可変動弁機構20Kは、ダブル・オーバーヘッド・カムシャフト式(DOHC式)のエンジンの代わりに、オーバヘッド・バルブ式(OHV式)のエンジンに適用されたものである。すなわち、カム21及びカム軸22は、シリンダ側面に配置されている。可変動弁機構20Kは、タペット面18aに当接して下方に押圧するロッカーアーム71と、ロッカーアーム71を揺動自在に支持する支持部材72と、上端部がロッカーアーム71に係合されたプッシュロッド73とを備える。プッシュロッド73は、下端部に平坦な伝達面73aを有する。 The variable valve mechanism 20K of this embodiment is applied to an overhead valve type (OHV type) engine instead of a double overhead camshaft type (DOHC type) engine. That is, the cam 21 and the cam shaft 22 are arranged on the side surface of the cylinder. The variable valve mechanism 20K has a rocker arm 71 that abuts on the tappet surface 18a and presses downward, a support member 72 that swingably supports the rocker arm 71, and a push whose upper end is engaged with the rocker arm 71. A rod 73 is provided. The push rod 73 has a flat transmission surface 73a at the lower end.
 この伝達面73aとカム21との間に、揺動アーム31が設けられている。すなわち、第1実施形態では、揺動アーム31がタペット面18aを直接押し下げるのに対し、本実施形態では、揺動アーム31が、プッシュロッド73の伝達面73aを押し上げて、ロッカーアーム71を介してタペット面18aを押し下げる。 A swing arm 31 is provided between the transmission surface 73a and the cam 21. That is, in the first embodiment, the swing arm 31 directly pushes down the tappet surface 18a, whereas in the present embodiment, the swing arm 31 pushes up the transmission surface 73a of the push rod 73 and passes through the rocker arm 71. Push down the tappet surface 18a.
 揺動アーム31、揺動サポート41及び移動装置43などの構造は、第1実施形態と同じであるため、説明を省略する。なお、本実施形態では、第1実施形態と異なり、揺動アーム31の下方にカム21が配置され、揺動サポート41から前方に揺動アーム31が伸びているため、揺動アーム31、揺動サポート41及び移動装置43の説明における方向に関して、「前」及び「後」は、それぞれ「後」及び「前」に読み替える。 Since the structures of the swing arm 31, the swing support 41, the moving device 43, and the like are the same as those in the first embodiment, the description thereof will be omitted. In the present embodiment, unlike the first embodiment, the cam 21 is arranged below the swing arm 31, and the swing arm 31 extends forward from the swing support 41, so that the swing arm 31 swings. Regarding the directions in the description of the dynamic support 41 and the moving device 43, "front" and "rear" are read as "rear" and "front", respectively.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 In this embodiment as well, the same effect as in the first embodiment can be obtained.
 (その他の実施形態)
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、上記実施形態では、排気側の可変動弁機構を代表して説明したが、本発明は、吸気側の可変動弁機構にも適用可能である。この場合、上記実施形態で用いた方向の概念に関して、「前」及び「後」は、それぞれ「後」及び「前」に読み替えてもよい。 For example, in the above embodiment, the variable valve mechanism on the exhaust side has been described as a representative, but the present invention can also be applied to the variable valve mechanism on the intake side. In this case, with respect to the concept of direction used in the above embodiment, "front" and "rear" may be read as "rear" and "front", respectively.
 また、上記の第1~第11実施形態やその変形例の構成は、適宜組み合わせて実施可能である。また、本発明の可変動弁機構は、シングル・オーバーヘッド・カムシャフト式(SOHC式)のエンジンに適用されてもよい。 Further, the configurations of the first to eleventh embodiments and the modifications thereof can be combined as appropriate. Further, the variable valve mechanism of the present invention may be applied to a single overhead camshaft type (SOHC type) engine.
2   :シリンダヘッド
3   :燃焼室
4   :ポート
10  :バルブ
20A,20B,20C,20D,20E,20F,20G,20H,20I,20J,20K :可変動弁機構
21  :カム
22  :カム軸(回転軸)
31  :揺動アーム
32a :平坦面
32b :傾斜面
32b :曲面部
32c :傾斜面
32d :傾斜面
32e :傾斜面
33a :膨出面
41  :揺動サポート
42  :揺動軸
43  :移動装置
2: Cylinder head 3: Combustion chamber 4: Port 10: Valves 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J, 20K: Variable valve mechanism 21: Cam 22: Cam shaft (rotation shaft) )
31: Swing arm 32a: Flat surface 32b: Inclined surface 32b 1 : Curved surface 32c: Inclined surface 32d: Inclined surface 32e: Inclined surface 33a: Swelling surface 41: Swing support 42: Swing shaft 43: Moving device

Claims (8)

  1.  エンジンの吸気用又は排気用のポートを開閉するバルブのリフト特性を変更する可変動弁機構であって、
     前記エンジンのクランク軸の回転に連動して回転するカムと、
     回転する前記カムに押圧されて、前記カムの回転軸に平行な揺動軸を中心に揺動するとともに、揺動角度に応じて前記バルブを動作させる揺動アームと、
     前記揺動軸を中心に前記揺動アームを揺動可能に支持する揺動サポートと、
     前記揺動アームとともに前記揺動サポートを、前記バルブ軸線と直交する方向に直線的に移動させる移動装置と、を備え、
     前記揺動アームは、前記揺動アームの長手方向に沿って延在する平坦面を有し、前記カムは、一回転する間に前記平坦面と接触する、可変動弁機構。
    A variable valve mechanism that changes the lift characteristics of a valve that opens and closes the intake or exhaust ports of an engine.
    A cam that rotates in conjunction with the rotation of the crankshaft of the engine,
    A swing arm that is pressed by the rotating cam to swing around a swing axis parallel to the rotation axis of the cam and operates the valve according to the swing angle.
    A swing support that swingably supports the swing arm around the swing shaft,
    A moving device for linearly moving the swing support together with the swing arm in a direction orthogonal to the valve axis is provided.
    A variable valve mechanism in which the swing arm has a flat surface extending along the longitudinal direction of the swing arm, and the cam comes into contact with the flat surface during one rotation.
  2.  前記移動装置は、前記揺動サポートの位置を第1領域と第2領域との間で変更し、
     前記揺動アームは、前記揺動アームの長手方向における前記平坦面の一方側端部に接続し、前記平坦面に対して傾斜した傾斜面を有し、
     前記揺動サポートが第1領域にあるとき、前記カムは、一回転する間に前記平坦面に接触し、前記傾斜面には接触せず、
     前記揺動サポートが第2領域にあるとき、前記カムは、一回転する間に前記平坦面及び前記傾斜面の双方に接触する、請求項1に記載の可変動弁機構。
    The moving device changes the position of the swing support between the first region and the second region.
    The swing arm is connected to one end of the flat surface in the longitudinal direction of the swing arm and has an inclined surface inclined with respect to the flat surface.
    When the swing support is in the first region, the cam contacts the flat surface during one revolution and does not contact the inclined surface.
    The variable valve mechanism according to claim 1, wherein when the swing support is in the second region, the cam comes into contact with both the flat surface and the inclined surface during one rotation.
  3.  前記傾斜面は、前記カムに対向する前記揺動アームの面が前記傾斜面と前記平坦面とにより凹状に形成されるように、前記平坦面に対して傾斜しており、
     前記傾斜面は、前記平坦面と接続する曲面部を有し、
     前記曲面部は、前記平坦面から遠ざかるにつれて前記平坦面に対する傾きが徐々に大きくなるように湾曲している、請求項2に記載の可変動弁機構。
    The inclined surface is inclined with respect to the flat surface so that the surface of the swing arm facing the cam is formed in a concave shape by the inclined surface and the flat surface.
    The inclined surface has a curved surface portion connected to the flat surface, and has a curved surface portion.
    The variable valve mechanism according to claim 2, wherein the curved surface portion is curved so that the inclination with respect to the flat surface gradually increases as the distance from the flat surface increases.
  4.  前記揺動アームを前記カムに押し付ける方向に付勢力を付与する付勢部材を更に備える、請求項1~3のいずれか1項に記載の可変動弁機構。 The variable valve operating mechanism according to any one of claims 1 to 3, further comprising an urging member that applies an urging force in a direction of pressing the swing arm against the cam.
  5.  前記移動装置は、前記揺動アーム及び前記揺動サポートと一体的に前記付勢部材を、前記バルブ軸線と直交する方向に直線的に移動させる、請求項4に記載の可変動弁機構。 The variable valve mechanism according to claim 4, wherein the moving device linearly moves the urging member in a direction orthogonal to the valve axis, integrally with the swing arm and the swing support.
  6.  前記揺動アームは、前記カムと前記バルブとの間に設けられる、請求項1~5のいずれか1項に記載の可変動弁機構。 The variable valve mechanism according to any one of claims 1 to 5, wherein the swing arm is provided between the cam and the valve.
  7.  前記カムの回転軸は、前記バルブ軸線と直交する、請求項6に記載の可変動弁機構。 The variable valve mechanism according to claim 6, wherein the rotation axis of the cam is orthogonal to the valve axis.
  8.  前記バルブの基端部には、前記バルブ軸線と直交する平面を有するタペットが取り付けられており、
     前記揺動アームは、前記タペットに向かって膨出し、前記タペットに接触する膨出部を有し、
     前記移動装置は、前記バルブ軸線に沿って見たときに、前記膨出部が前記平面に重なる範囲内で前記揺動アームを移動させる、請求項6又は7に記載の可変動弁機構。
    A tappet having a plane orthogonal to the valve axis is attached to the base end of the valve.
    The swing arm has a bulging portion that bulges toward the tappet and comes into contact with the tappet.
    The variable valve mechanism according to claim 6 or 7, wherein the moving device moves the swing arm within a range in which the bulging portion overlaps the plane when viewed along the valve axis.
PCT/JP2020/035966 2019-12-25 2020-09-24 Variable valve mechanism WO2021131191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234731 2019-12-25
JP2019234731A JP2021102947A (en) 2019-12-25 2019-12-25 Variable valve mechanism

Publications (1)

Publication Number Publication Date
WO2021131191A1 true WO2021131191A1 (en) 2021-07-01

Family

ID=76575303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035966 WO2021131191A1 (en) 2019-12-25 2020-09-24 Variable valve mechanism

Country Status (2)

Country Link
JP (1) JP2021102947A (en)
WO (1) WO2021131191A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205634A (en) * 1978-02-17 1980-06-03 Tourtelot Edward M Jr Variable valve timing mechanism
WO1983004070A1 (en) * 1982-05-17 1983-11-24 Investment Rarities, Incorporated Valve actuating apparatus utilizing a multi-profiled cam unit for controlling internal combustion engines
US5027760A (en) * 1988-01-19 1991-07-02 Franco Storchi Variable timing system for engine valve operating gear
DE4112833A1 (en) * 1990-12-19 1992-06-25 Audi Ag Variable valve control for IC engine gas exchange valve - has two parallel levers fitted between camshaft cam and valve sheet
CN104612778A (en) * 2013-11-04 2015-05-13 杨洪显 Valve mechanism with adjustable stroke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205634A (en) * 1978-02-17 1980-06-03 Tourtelot Edward M Jr Variable valve timing mechanism
WO1983004070A1 (en) * 1982-05-17 1983-11-24 Investment Rarities, Incorporated Valve actuating apparatus utilizing a multi-profiled cam unit for controlling internal combustion engines
US5027760A (en) * 1988-01-19 1991-07-02 Franco Storchi Variable timing system for engine valve operating gear
DE4112833A1 (en) * 1990-12-19 1992-06-25 Audi Ag Variable valve control for IC engine gas exchange valve - has two parallel levers fitted between camshaft cam and valve sheet
CN104612778A (en) * 2013-11-04 2015-05-13 杨洪显 Valve mechanism with adjustable stroke

Also Published As

Publication number Publication date
JP2021102947A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US7469669B2 (en) Variable valve train mechanism of internal combustion engine
JP2944264B2 (en) Valve train for internal combustion engine
US20060207533A1 (en) Valve mechanism for an internal combustion engine
JP3485434B2 (en) Valve train for internal combustion engine
US7640900B2 (en) Variable valve operating device
US8047168B2 (en) Continuously variable valve lift system for engine
US20010037781A1 (en) Variable valve mechanism having an eccentric-driven frame
US7823552B2 (en) Continuous variable valve lift apparatus
JP2005282573A (en) Adjustable lifting device
KR100319444B1 (en) Valve operation device of engine
JP2005264841A (en) Variable valve system for internal combustion engine
WO2021131191A1 (en) Variable valve mechanism
EP0807745B1 (en) Valve driving apparatus
JPH0874534A (en) Valve lift amount continuous variable mechanism
JPH06272525A (en) Valve timing control device of engine
WO2021131190A1 (en) Adjustable valve mechanism
JP4474075B2 (en) Variable lift valve gear
JP4031973B2 (en) Variable valve operating device for internal combustion engine
KR101090793B1 (en) Device for opening and closing valve of valve assembly of a combustion engine as well as for adjusting stroke of valve
US7302923B2 (en) Variable valve timing device adapted for internal combustion engine
JP4305335B2 (en) Variable valve mechanism
JP2008255873A (en) Variable valve gear for internal combustion engine
US7926459B2 (en) Device for opening and closing a valve of a valve assembly of a combustion engine as well as for adjusting the stroke of the valve
JPH0333414A (en) Valve system of 4 cycle engine
JPS5913283Y2 (en) Valve mechanism of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907154

Country of ref document: EP

Kind code of ref document: A1