WO2021131091A1 - Computer program, estimation device, method for generating training model, and system for estimating load weight of specially-equipped vehicle - Google Patents

Computer program, estimation device, method for generating training model, and system for estimating load weight of specially-equipped vehicle Download PDF

Info

Publication number
WO2021131091A1
WO2021131091A1 PCT/JP2020/012591 JP2020012591W WO2021131091A1 WO 2021131091 A1 WO2021131091 A1 WO 2021131091A1 JP 2020012591 W JP2020012591 W JP 2020012591W WO 2021131091 A1 WO2021131091 A1 WO 2021131091A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement data
equipped vehicle
specially equipped
learning model
load weight
Prior art date
Application number
PCT/JP2020/012591
Other languages
French (fr)
Japanese (ja)
Inventor
成宏 上田
堀 崇展
善朗 村下
允 桝井
床本 勲
典明 宮崎
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019234977A external-priority patent/JP7208888B2/en
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Publication of WO2021131091A1 publication Critical patent/WO2021131091A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/10Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having fluid weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/12Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having electrical weight-sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a computer program, an estimation device, a learning model generation method, and a load weight estimation system for a specially equipped vehicle.
  • the load applied to each tire on the front, rear, left and right is measured by using the load sensors attached to both ends of the front and rear axles, and the load weight is calculated from the total output of each load sensor.
  • the total output of each load sensor is converted into the load weight. Therefore, when the vehicle is on a slope, the load on the loading platform is not evenly balanced, etc. It may not be possible to measure the correct load weight.
  • An object of the present invention is to provide a computer program capable of accurately estimating the load weight, an estimation device, a learning model generation method, and a load weight estimation system for a specially equipped vehicle.
  • the computer program acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts of the specially equipped vehicle, respectively, and the measurement data related to the displacement amount.
  • the learning model in which the relationship between the above and the load weight of the specially equipped vehicle is learned
  • the calculation using the learning model is executed, and the execution result of the calculation is executed.
  • This is a computer program for executing a process of estimating the load weight of the specially equipped vehicle based on the above.
  • the amount of displacement is defined as "the magnitude of the displacement that occurs in the portion itself” or “the magnitude of the relative displacement of the portion as compared with other portions” when a load is applied to a plurality of portions in the specially equipped vehicle.
  • the displacement sensor refers not only to a sensor directly attached to the plurality of parts, but also to a sensor built in a measuring member (for example, a load cell) attached to the part.
  • the estimation device includes an acquisition unit that acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure displacement amounts of a plurality of parts in a specially equipped vehicle, and measurement data related to the displacement amount.
  • an acquisition unit that acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure displacement amounts of a plurality of parts in a specially equipped vehicle, and measurement data related to the displacement amount.
  • a computer is used to acquire measurement data relating to displacements measured for a plurality of parts of the specially equipped vehicle and a value of the loaded weight measured for the specially equipped vehicle.
  • the acquired measurement data and the load weight value are used as training data to generate a learning model configured to output the calculation result for the load weight of the specially equipped vehicle in response to the input of the measurement data related to the displacement amount.
  • the load weight estimation system for a specially equipped vehicle acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts of the specially equipped vehicle on which the load due to the load acts.
  • the learning model configured to output the calculation result of the load weight in response to the input of the measurement data related to the displacement amount
  • the load is loaded. It includes an estimation unit that estimates the weight and a notification unit that notifies information about the loaded weight estimated by the estimation unit.
  • the amount of displacement is defined as "the magnitude of the displacement that occurs in the portion itself” or “the magnitude of the relative displacement of the portion as compared with other portions” when a load is applied to a plurality of portions in the specially equipped vehicle.
  • the displacement sensor refers not only to a sensor directly attached to the plurality of parts, but also to a sensor built in a measuring member (for example, a load cell) attached to the part.
  • the acquisition unit acquires measurement data related to the inclination from an inclinometer that measures the inclination of the own vehicle, and the estimation unit obtains the load weight according to the input of the displacement amount and the measurement data related to the inclination. It is preferable to estimate the load weight by inputting the displacement amount and the inclination measurement data acquired by the acquisition unit into the learning model configured to output the calculation result of.
  • a determination unit for determining the loading state of the load according to the load weight estimated by the estimation unit is provided, and the notification unit determines the loading state in an manner according to the determination result of the determination unit. It is preferable to notify.
  • the notification unit includes a display device provided at a visible portion of the packing box on which the load is loaded, and displays the load state on the display device in a display mode according to the determination result. Is preferable.
  • a state detection unit for detecting the state of the own vehicle is provided, and the notification unit notifies information about the state detected by the state detection unit.
  • the state detected by the state detection unit preferably includes at least one of the state of the packing box on which the load is loaded and the state of the load.
  • the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the own vehicle and attached to a plurality of places of the structure fixed to the chassis frame.
  • the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the own vehicle and are attached to a plurality of positions on the axle.
  • the load weight can be estimated accurately.
  • FIG. It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 1.
  • FIG. It is a top view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 1.
  • FIG. It is a side view of the state where the packing box is upright.
  • It is a block diagram explaining the internal structure of an estimation apparatus.
  • It is a conceptual diagram which shows an example of the measurement value table.
  • It is a schematic diagram explaining the structure of a learning model.
  • It is a flowchart explaining the generation procedure of a learning model.
  • It is a flowchart explaining the procedure of estimating the load weight using a learning model.
  • It is a schematic diagram which shows the display example of the load weight.
  • It is a graph which shows the measurement result.
  • FIG. It is a graph which shows the estimation result of a learning model. It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 2. It is a flowchart explaining the procedure of the process executed by the estimation apparatus in Embodiment 3.
  • FIG. It is a flowchart explaining the re-learning procedure of a learning model. It is a flowchart explaining the procedure for notifying a loading state. It is a schematic diagram which shows the notification example of the loading state. It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 6.
  • 6 is a flowchart illustrating a procedure of processing executed by the estimation device according to the sixth embodiment. It is a schematic diagram which shows the notification example of the state of a packing box. It is a schematic diagram explaining the structure of the learning model in Embodiment 6. It is a schematic diagram which shows the notification example of the loading state of a packing box.
  • FIG. 1 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the first embodiment
  • FIG. 2 is a plan view thereof
  • FIG. 3 is a side view of a state in which a packing box is erected.
  • the specially equipped vehicle 1 illustrated in FIGS. 1 to 3 is a dump truck including a truck chassis 2 which is a traveling unit and a dump device 3 which is an example of a mounting device mounted on the traveling unit.
  • each direction of front / rear, left / right, and up / down shall represent each direction of front / rear, left / right, and up / down as seen from the driver sitting in the driver's seat of the truck chassis 2.
  • FIG. 2 shows a state in which the dump device 3 is removed for the sake of explanation.
  • the truck chassis 2 includes a cab 20 provided with a driver's seat and a chassis frame 21 supporting the cab 20.
  • the chassis frame 21 is composed of a pair of left and right main frames (vertical joists) 21A and 21A extending in the front-rear direction and cross members (horizontal joists) 21B, 21B, ..., 21B connecting a pair of left and right main frames 21A and 21A. (See FIG. 2).
  • the front wheels 22F and the rear wheels 22R of the truck chassis 2 are rotatably attached to the main frame via a suspension device (not shown).
  • the truck chassis 2 includes an engine (motor) not shown in the figure and a transmission connected to the engine via a clutch, and applies the driving force of the engine to the drive system of the drive wheels (for example, the front wheels 22F). It is configured to travel by transmitting via a transmission.
  • engine motor
  • a transmission connected to the engine via a clutch, and applies the driving force of the engine to the drive system of the drive wheels (for example, the front wheels 22F). It is configured to travel by transmitting via a transmission.
  • the dump device 3 includes a subframe 30 fixed on the chassis frame 21 and a packing box 4 supported by the subframe 30 and loaded with loads such as earth and sand.
  • the packing box 4 is rotatably supported around a hinge shaft 31 extending in the left-right direction at the rear end of the subframe 30.
  • the packing box 4 is a box body whose upper side is open, and includes a front panel 41 arranged so as to surround a rectangular bottom portion 40, a pair of left and right side panels 42, and a rear panel (rear tilt) 43.
  • the rear panel 43 is configured to be openable and closable.
  • the dump device 3 includes a hoist mechanism 5 for tilting the packing box 4.
  • the hoist mechanism 5 includes, for example, a lift arm 51, a hydraulic cylinder 52, and a tension link 53.
  • the packing box 4 is maintained in a horizontal posture when the hydraulic cylinder 52 is contracted.
  • the hydraulic cylinder 52 is extended, the front portion of the packing box 4 is lifted and rotates around the hinge shaft 31. As a result, as shown in FIG. 3, the packing box 4 is tilted backward.
  • the specially equipped vehicle 1 is equipped with various sensors for detecting the vehicle condition.
  • the specially equipped vehicle 1 includes strain sensors 81A to 81D as an example of a displacement sensor that measures the amount of displacement of a plurality of portions on which a load due to a load acts.
  • the strain sensors 81A to 81D are composed of, for example, strain gauges.
  • the strain sensor 81A is attached near the right end of the axle 23F of the front wheel 22F
  • the strain sensor 81B is attached near the left end of the axle 23F of the front wheel 22F.
  • the strain sensor 81C is attached near the right end of the axle 23R of the rear wheel 22R
  • the strain sensor 81D is attached near the left end of the axle 23R of the rear wheel 22R.
  • the strain sensors 81A and 81B and the strain sensors 81C and 81D are mounted symmetrically with respect to the center line in the front-rear direction of the specially equipped vehicle 1, for example.
  • the strain sensors 81A to 81D measure the strain amount of the axles 23F and 23R according to the load in time series, and output the measurement data related to the measured strain amount.
  • each of the strain sensors 81A to 81D individually it is also simply described as the strain sensor 81 (see FIG. 4).
  • the specially equipped vehicle 1 may be provided with an inclinometer 82 for measuring the inclination of the truck chassis 2.
  • the inclinometer 82 is attached to an appropriate position (for example, near the center in the front-rear direction and the left-right direction) of the chassis frame 21.
  • the inclinometer 82 measures the inclination (pitch) in the front-rear direction and the inclination (roll) in the left-right direction of the track chassis 2 in time series, and outputs measurement data related to the measured inclination.
  • the specially equipped vehicle 1 may be provided with an inclinometer (not shown) for measuring the inclination of the packing box 4, and the measurement data related to the inclination (pitch) in the front-rear direction and the inclination (roll) in the left-right direction of the packing box 4 are time-series. It may be acquired as a target.
  • the specially equipped vehicle 1 may include a thermometer 83 that measures the temperature (environmental temperature) at the mounting position of the strain sensor 81 and its vicinity. Since the ambient temperature measured by the thermometer 83 can be used to calibrate the value of the strain sensor 81, the thermometer 83 is mounted at a location suitable for measuring the ambient temperature of the strain sensor 81. For example, the thermometer 83 is attached to at least one place such as the chassis frame 21, the subframe 30, and the axles 23F and 23R. The thermometer 83 measures the environmental temperature in time series and outputs measurement data related to the measured temperature.
  • the specially equipped vehicle 1 may include a pressure gauge 84 that measures the cylinder pressure of the hydraulic cylinder 52.
  • the pressure gauge 84 measures the cylinder pressure of the hydraulic cylinder 52 in time series, and outputs measurement data related to the measured cylinder pressure.
  • the specially equipped vehicle 1 includes an estimation device 100 that estimates the weight of the load (load weight) based on various measurement data including the amount of strain measured by the strain sensor 81.
  • the load weight is the traveling unit and the erection that constitute the specially equipped vehicle 1, such as the load loaded on the packing box 4, the occupant on the specially equipped vehicle 1, and the fuel loaded on the specially equipped vehicle 1. Represents the total weight of non-devices. It is assumed that the total weight of the traveling unit and the mounting device (hereinafter referred to as the vehicle weight) when the load is not loaded is known.
  • the internal configuration of the estimation device 100 and the content of the processing executed by the estimation device 100 will be described in detail later, but in the present embodiment, the relationship between the measurement data including the amount of strain and the load weight of the specially equipped vehicle 1 is
  • the loaded weight of the specially equipped vehicle 1 is estimated using the learned learning model LM1.
  • the estimation device 100 is attached to, for example, the chassis frame 21. Alternatively, the estimation device 100 may be provided inside the cab 20.
  • a dump truck provided with a dump device 3 will be described as an example of the specially equipped vehicle 1, but the specially equipped vehicle 1 is not limited to the dump truck, but is not limited to the dump truck, but is also a dry van, a refrigerator truck, a liquid carrier, a powder carrier, It may be any specially equipped vehicle such as a water truck, a sprinkler truck, a garbage truck, etc., whose load weight can be changed depending on the load.
  • FIG. 4 is a block diagram illustrating the internal configuration of the estimation device 100.
  • the estimation device 100 is a dedicated or general-purpose computer, and includes a control unit 101, a storage unit 102, an operation unit 103, an input unit 104, an output unit 105, and a communication unit 106.
  • the control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the estimation device 100.
  • the CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, and controls the operation of each hardware unit to control the operation of the hardware unit, thereby performing the estimation device according to the present embodiment. Realize the function as 100.
  • the RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
  • the control unit 101 is configured to include a CPU, ROM, and RAM, but instead, GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, volatile or It may be one or more arithmetic circuits or control circuits including a non-volatile memory or the like. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • quantum processor volatile or It may be one or more arithmetic circuits or control circuits including a non-volatile memory or the like.
  • the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the
  • the storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like.
  • the storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the estimation device 100, and the like.
  • the computer program stored in the storage unit 102 includes a learning program PG1 for generating the learning model LM1, an estimation program PG2 for estimating the load weight of the specially equipped vehicle 1 using the learning model LM1, and the like.
  • These computer programs may be provided by a non-temporary recording medium M in which the computer programs are readablely recorded.
  • the recording medium M is, for example, a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card.
  • the control unit 101 reads various programs from the recording medium M using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
  • the storage unit 102 may include a measurement value table TB1 that stores measurement data obtained from the strain sensor 81, the inclinometer 82, the thermometer 83, and the pressure gauge 84 in chronological order.
  • FIG. 5 is a conceptual diagram showing an example of the measured value table TB1.
  • the measured value table TB1 is measured by the strain amount measured by the strain sensor 81, the tilt angle (pitch and roll) of the specially equipped vehicle 1 measured by the inclinometer 82, the environmental temperature measured by the thermometer 83, and the pressure gauge 84. It is a table which stores the measurement data of the cylinder pressure of the hydraulic cylinder 52 to be performed in association with time (measurement time).
  • the measured value table TB1 is a table that stores the measured value by fixing the loaded weight to 1 ton, a table that stores the measured value by fixing the loaded weight to 2 tons, and a table that stores the measured value by fixing the loaded weight to 3 tons. It is prepared for each load weight, such as a table that stores the measured values measured in the above.
  • the value stored in the measurement value table TB1 may be the output value of the sensor or may be a physical quantity converted from the output value of the sensor.
  • the storage unit 102 may include a learning model LM1 for estimating the load weight of the specially equipped vehicle 1 from the measurement data including the amount of distortion.
  • the learning model LM1 is configured to output a calculation result regarding the load weight when measurement data including a strain amount is input.
  • the learning model LM1 is defined by its definition information.
  • the definition information of the learning model LM1 includes, for example, information defining the structure of the learning model LM1 (type and type of layer, number of nodes, etc.) and parameters such as a coupling load determined by learning. The details of the learning model LM1 will be described in detail later.
  • the operation unit 103 is composed of switches, buttons, etc., and accepts various operations.
  • the control unit 101 executes an appropriate process based on the operation received through the operation unit 103.
  • the estimation device 100 is provided with the operation unit 103, but the operation unit 103 is not indispensable, and the operation is received via an externally connected device or communication unit 106. May be good.
  • the input unit 104 is provided with an interface for connecting various sensors, and sensors such as a strain sensor 81, an inclinometer 82, a thermometer 83, and a pressure gauge 84 are connected. These sensors may be connected to the input unit 104 by wire or wirelessly.
  • the input unit 104 contains measurement data related to the amount of strain output from the strain sensor 81, measurement data related to the inclination of the specially equipped vehicle 1 output from the tilt meter 82, measurement data related to the temperature output from the thermometer 83, and pressure. Measurement data and the like related to the cylinder pressure of the hydraulic cylinder 52 output from the total 84 are appropriately input.
  • the output unit 105 includes an output interface for connecting a display device 120 such as a liquid crystal monitor.
  • the display device 120 is provided near the driver's seat of the cab 20, for example. Alternatively, the display device 120 may be provided on the rear surface side of the front panel 41.
  • the output interface included in the output unit 105 may be an output interface that outputs an analog format video signal, and is a digital format video signal such as DVI (Digital Visual Interface) or HDMI (High-Definition Multimedia Interface, registered trademark). It may be an output interface that outputs.
  • the output unit 105 outputs display data to the display device 120 so that the display device 120 can display the estimation result of the loaded weight using the learning model LM1.
  • the display device 120 is connected to the outside of the estimation device 100, but the estimation device 100 may be equipped with the display device 120.
  • the communication unit 106 includes a communication interface for transmitting and receiving various data to and from an external device.
  • An example of a partner with which the estimation device 100 communicates via the communication unit 106 is various ECUs (Electronic Controller Units) and PLCs (Programmable Logic Controllers) mounted on the specially equipped vehicle 1.
  • the communication unit 106 may be provided with a communication port conforming to, for example, RS-485 in order to communicate with various ECUs and PLCs mounted on the specially equipped vehicle 1, and is used for in-vehicle communication such as CAN (Controller Area Network).
  • a communication interface conforming to the communication standard of the above may be provided.
  • the other party with which the estimation device 100 communicates via the communication unit 106 are a server device installed outside the specially equipped vehicle 1 and a mobile terminal owned by the user.
  • the communication unit 106 provides a communication interface conforming to a wireless communication communication standard such as WiFi (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution). You may prepare.
  • FIG. 6 is a schematic diagram illustrating the configuration of the learning model LM1.
  • the learning model LM1 in the present embodiment is, for example, a support vector regression model, and includes an input layer into which various measurement data are input and an intermediate layer including a kernel that performs a predetermined operation based on the measurement data input to the input layer. , It is provided with an output layer that combines the outputs from the intermediate layer and outputs the calculation result.
  • the nodes of each layer are connected in one direction with the nodes existing in the previous and next layers by a coupling load.
  • the coupling load from the intermediate layer to the output layer is adaptively determined by learning.
  • the coupling load from the input layer to the intermediate layer is fixed and can be obtained mechanically from the training data.
  • Measurement data including the amount of distortion is input to the input layer of the learning model LM1.
  • the strain amount of the front wheel right axle (the strain amount measured by the strain sensor 81A), the strain amount of the front wheel left axle (the strain amount measured by the strain sensor 81B), and the strain amount of the rear wheel right axle.
  • Strain amount (strain amount measured by strain sensor 81C), strain amount of rear wheel left axle (strain amount measured by strain sensor 81D), inclination including roll and pitch (inclination measured by inclination meter 82),
  • the measurement data related to the environmental temperature is input to the input layer of the learning model LM1.
  • the measurement data input to the input layer is weighted by the coupling load determined using the training data and output to the intermediate layer.
  • the intermediate layer executes operations using the kernel based on the data input from the input layer.
  • the data calculated in each kernel of the intermediate layer is weighted by the coupling load determined by learning and output to the output layer.
  • the output layer outputs the calculation result regarding the load weight by combining the data input from the intermediate layer.
  • the calculation result output by the output layer may be an estimated value of the load weight, or may be a probability corresponding to a certain load weight.
  • the output layer is composed of a plurality of nodes, and the probability that the load weight is 1 ton from the first node, the probability that the load weight is 2 tons from the second node, ...,
  • the learning model LM1 shown in FIG. 6 has a load weight according to the input of measurement data relating to the strain amount measured by the strain sensor 81, the tilt measured by the inclinometer 82, and the environmental temperature measured by the thermometer 83.
  • the configuration is such that the calculation result related to is output, the input / output relationship in the learning model LM1 is not limited to the above, and can be set as appropriate.
  • the learning model LM1 may be configured to output a calculation result regarding the load weight in response to input of measurement data including the cylinder pressure of the hydraulic cylinder 52 measured by the pressure gauge 84.
  • the learning model LM1 may be configured to input measurement data related to the amount of strain measured by the strain sensor 81 and output a calculation result related to the loaded weight.
  • the selected two or three measurement data among the measurement data of the strain sensors 81A to 81D may be input to the learning model LM1 and the calculation result regarding the load weight may be output.
  • the learning model LM1 may be configured to input either the measurement data of the strain amount or the measurement data of the inclination or the environmental temperature and output the calculation result regarding the load weight.
  • the control unit 101 performs preprocessing for correcting the strain amount measured by the strain sensor 81 using the environmental temperature measured by the thermometer 83, and transfers the data including the corrected strain amount to the learning model LM1. You may enter it.
  • the estimation device 100 generates the learning model LM1 as described above by collecting measurement data including the amount of strain and learning using the collected measurement data as training data in the learning phase in the stage before the start of operation. To do.
  • FIG. 7 is a flowchart illustrating a procedure for generating the learning model LM1.
  • the control unit 101 of the estimation device 100 collects measurement data including the amount of strain measured by the plurality of strain sensors 81 prior to learning (step S101). At this time, the control unit 101 fixes the load weight and collects measurement data including the amount of strain. When sufficient measurement data is obtained for the load weight, the control unit 101 changes the load weight and distorts with the changed load weight. Collect measurement data, including quantities. The control unit 101 may sequentially collect measurement data while changing the load weight. In this way, measurement data including the amount of strain when the load weight is variously changed can be obtained.
  • the posture of the specially equipped vehicle 1 when measuring the amount of distortion or the like may be not only a horizontal posture but also various inclined postures such as front lowering, rear lowering, left lowering, and right lowering.
  • the load weight may be given by loading an article having a known weight on the packing box 4, or may be actually measured using a measuring instrument such as a truck scale.
  • the measurement data collected in step S101 is stored in the measurement value table TB1 of the storage unit 102 for each load weight.
  • the type of measurement data to be collected in step S101 may be selected according to the configuration of the learning model LM1 to be generated. For example, when generating the learning model LM1 that outputs the calculation result regarding the load weight in response to the input of the measurement data related to the strain amount, the inclination, and the ambient temperature, the control unit 101 controls the strain amount measured by the strain sensor 81. , The inclination measured by the inclinometer 82, and the measurement data related to the ambient temperature measured by the thermometer 83 may be collected. The same applies to the case where the learning model LM1 whose input / output relationship is different from the above is generated. For example, the learning model LM1 that outputs the calculation result regarding the load weight is generated in response to the input of the measurement data related to the strain amount. In this case, the control unit 101 may collect only the measurement data related to the amount of strain measured by the strain sensor 81.
  • control unit 101 After collecting the measurement data, the control unit 101 executes the following processing by reading the learning program PG1 from the storage unit 102 and executing it.
  • the control unit 101 selects a set of training data from the measured value table TB1 (step S102).
  • the training data includes a series of measurement data measured at the same time and a load weight value when these measurement data are obtained.
  • control unit 101 inputs the selected training data to the learning model LM1 (step S103), and executes the calculation by the learning model LM1 (step S104). That is, the control unit 101 inputs measurement data such as strain amount, inclination, and ambient temperature to the nodes constituting the input layer of the learning model LM1, executes an operation using the kernel of the intermediate layer, and outputs the operation result. Performs the process of outputting from the layer. In the initial stage before the learning is started, an initial value is given to the definition information that describes the learning model LM1.
  • control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the training data.
  • the control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function becomes less than or equal to the threshold value (or more than or equal to the threshold value), learning is completed. You may judge that you have done so. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the coupling load between the nodes of the learning model LM1 (step S107), returns the process to step S102, and another training data.
  • the control unit 101 can update the coupling load between the nodes by using the error back propagation method that sequentially updates the coupling load between the nodes from the output layer to the input layer of the learning model LM1.
  • control unit 101 stores the learned learning model LM1 in the storage unit 102 (step S108), and ends the process according to this flowchart.
  • the estimation device 100 collects measurement data including the amount of strain when the load weight is known, and uses the load weight and the measurement data as training data to obtain the learning model LM1. Can be generated.
  • the estimation device 100 is configured to generate the learning model LM1, but an external server (not shown) for generating the learning model LM1 may be provided and the learning model LM1 may be generated by the external server. Good.
  • the external server may acquire the training data collected by the specially equipped vehicle 1 by communication or the like, and generate the learning model LM1 using the acquired training data.
  • the estimation device 100 may acquire the learned learning model LM1 from the external server by communication or the like, and store the acquired learning model LM1 in the storage unit 102.
  • the estimation device 100 can estimate the load weight by inputting the measurement data including the strain amount into the trained learning model LM1.
  • FIG. 8 is a flowchart illustrating a procedure for estimating the load weight using the learning model LM1.
  • the control unit 101 of the estimation device 100 reads the estimation program PG2 from the storage unit 102 and executes it to execute the following processing.
  • control unit 101 When the control unit 101 acquires measurement data including the amount of strain measured by the plurality of strain sensors 81 through the input unit 104, the control unit 101 inputs the acquired measurement data to the learning model LM1 (step S121), and the learning model LM1 is used. The operation is executed (step S122). At this time, the control unit 101 gives the acquired measurement data to the nodes constituting the input layer of the learning model LM1. The data given to the input layer is weighted by the coupling load determined using the training data and output to the intermediate layer. In the intermediate layer, operations using the kernel are executed, weighted by the coupling load determined by learning, and output to the output layer. The node of the output layer outputs the calculation result regarding the load weight.
  • the control unit 101 estimates the load weight based on the calculation result of the learning model LM1 (step S123).
  • the control unit 101 may estimate the output value of the learning model LM1 as the loaded weight. Further, when the learning model LM1 is configured to output the probability that the load weight is a specific load weight, the control unit 101 can estimate the load weight by selecting the value of the load weight having the highest probability.
  • FIG. 9 is a schematic view showing a display example of the loaded weight.
  • FIG. 9 shows an example in which the display device 120 displays the estimated value of the loaded weight, the loading rate, and the information of the estimated date and time as character information.
  • the estimated value of the load weight is the value of the load weight estimated using the learning model LM1 described above.
  • the loading rate is a value calculated as a ratio of the loading weight (estimated value) to the upper limit value.
  • the estimated date and time is the date and time when the load weight is estimated using the learning model LM1, and is information obtained from, for example, the built-in clock of the control unit 101.
  • the control unit 101 generates and generates display screen data based on the estimated value of the load weight estimated using the learning model LM1, the load rate calculated as a ratio to the upper limit value, and the date and time information obtained from the built-in clock.
  • the estimated load weight is displayed on the display device 120 as character information, but the estimated value of the load weight may be schematically displayed by a graph display, a meter display, or the like. Further, in the present embodiment, the estimated load weight is displayed on the display device 120, but the user terminal or the like may be notified by transmitting the estimated load weight information from the communication unit 106.
  • the control unit 101 may output the estimated load weight information as voice.
  • FIG. 10 is a graph showing the measurement results.
  • the graph shown in FIG. 10 shows a state in which the specially equipped vehicle 1 carries a load of a known weight (4000 kg in this example), travels on a general road, discharges the load at the destination where it arrives, and has no load.
  • the results of measuring the amount of strain, the tilt angle, and the environmental temperature using the strain sensor 81, the inclinometer 82, and the thermometer 83 when the vehicle is stopped are shown.
  • the horizontal axis of the graph represents the elapsed time (more accurately, the measurement timing), and the vertical axis represents the strain amount ( ⁇ ST), the inclination angle (degrees), or the environmental temperature (° C.).
  • the strain amount of the front wheel right axle represents the strain amount measured by the strain sensor 81A attached near the right end of the axle 23F of the front wheel 22F.
  • the amount of distortion of the front left axle, the rear right axle, and the rear left axle is near the left end of the front wheel 22F axle 23F, near the right end of the rear wheel 22R axle 23R, and near the left end of the rear wheel 22R axle 23R.
  • It represents the amount of strain measured by the strain sensors 81B to 81D attached to each.
  • the inclination (roll and pitch) represents the inclination angle (roll and pitch) of the specially equipped vehicle 1 measured by the inclinometer 82
  • the environmental temperature represents the temperature measured by the thermometer 83.
  • the amount of strain measured by the strain sensor 81 is a measured value when the specially equipped vehicle 1 is tilted in the front-rear direction and the left-right direction within a range of ⁇ 5 degrees, and is measured when the environmental temperature changes variously. Includes a value.
  • the number of times the strain amount, the inclination angle, and the environmental temperature are measured is 4809 times, and the measured values measured at each time are stored in the measured value table TB1.
  • FIG. 11 is a graph showing the estimation result of the learning model LM1.
  • the horizontal axis of the graph represents the elapsed time, and the vertical axis represents the estimated load weight (kg).
  • a part of the measurement data (see FIG. 10) when the load weight is 4000 kg and a part of the measurement data (not shown) when the load weight is 0 kg are used as training data.
  • the learning model LM1 was generated, and the remaining measurement data was input to the trained learning model LM1 to estimate the load weight of the specially equipped vehicle 1. More specifically, of the 4809 sets of measured values of strain amount, tilt angle, and environmental temperature, 70% is used for training data to generate a learning model LM1, and the remaining 30% is a learning model LM1.
  • the load weight of the specially equipped vehicle 1 was estimated by inputting to.
  • the load weight is not limited to 4000 kg and 0 kg, and measurement data based on other load weights can also be used.
  • the estimation result estimated using the learned learning model LM1 is shown by a solid line (corrected) graph.
  • the measurement result of the loaded weight measured by the conventional self-weight meter is shown by a graph of a broken line (before correction).
  • the load weight of the specially equipped vehicle 1 is 4000 kg
  • the conventional self-weight scale shows a measured value of about 2200 kg to 4500 kg, and it can be seen that the median value is 3350 kg and an error of ⁇ 1150 kg is obtained.
  • an estimated value of about 4000 ⁇ 50 kg is obtained, and the load weight can be estimated more accurately than the conventional self-weight meter. You can see that.
  • the estimation result shown in FIG. 11 is a learning model LM1 generated by using a part of the measurement data when the load weight is 4000 kg and a part of the measurement data when the load weight is 0 kg as training data.
  • various loading weights can be estimated by collecting measurement data by changing the loading weight in various ways and generating a learning model LM1 using the collected measurement data. It is possible.
  • the calculation result regarding the load weight is obtained according to the input of the measurement data relating to the strain amount measured by the strain sensor 81, the inclination measured by the inclinometer 82, and the environmental temperature measured by the thermometer 83.
  • the result of estimating the load weight using the learning model LM1 configured to output the above is shown, but the input / output relationship in the learning model LM1 is not limited to the above and can be set as appropriate. ..
  • the learning model LM1 may be configured to output the calculation result regarding the load weight in response to the input of the measurement data including the cylinder pressure of the hydraulic cylinder 52 measured by the pressure gauge 84.
  • the learning model LM1 may be configured to input measurement data related to the amount of strain measured by the strain sensor 81 and output a calculation result related to the loaded weight. Further, the selected two or three measurement data among the measurement data of the strain sensors 81A to 81D may be input to the learning model LM1 and the calculation result regarding the load weight may be output. Further, the learning model LM1 may be configured to input either the measurement data of the strain amount or the measurement data of the inclination or the environmental temperature and output the calculation result regarding the load weight.
  • the load weight can be accurately measured regardless of the inclination of the specially equipped vehicle 1. Can be estimated.
  • the support vector regression model has been described as an example of the learning model LM1, but a regression analysis method such as linear regression or logistic regression may be used.
  • methods using search trees such as decision trees, regression trees, random forests, and gradient boosting trees, Bayesian estimation methods including simple Bayes, AR (AutoRegressive), MA (MovingAverage), state space models, etc.
  • Time series prediction method including, clustering method including K neighborhood method, method using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering method including topic model, association analysis, emphasis
  • a learning model trained by other methods including filtering and the like may be used.
  • the learning model LM1 may be configured by a neural network by deep learning, a convolutional neural network, a recurrent neural network, or the like.
  • the measurement data related to the amount of strain is acquired from the strain sensors 81 attached to the axles 23F and 23R, but the attachment location of the strain sensor 81 is not limited to the axles 23F and 23R. Absent.
  • the strain sensor 81 is attached to the structure fixed to the chassis frame 21 in the first embodiment.
  • FIG. 12 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the second embodiment.
  • the specially equipped vehicle 1 shown in FIG. 12 differs from the first embodiment only in the attachment location of the strain sensor 81.
  • the strain sensor 81 according to the second embodiment is attached to a plurality of locations of the structure fixed to the chassis frame 21.
  • An example of a structure fixed to the chassis frame 21 is a subframe 30.
  • the example of FIG. 12 shows a configuration in which strain sensors 81 are attached to two locations separated in the front-rear direction of the subframe 30.
  • the strain sensors 81 are attached to two locations separated in the front-rear direction of the subframe 30, but the strain sensors 81 are attached to two locations symmetrical with respect to the center line in the front-rear direction of the specially equipped vehicle 1. You may. Further, the number of strain sensors 81 to be attached is not limited to two, and three or more strain sensors 81 may be attached. Further, a dedicated bracket for attaching the strain sensor 81 may be prepared, and the strain sensor 81 may be attached to the subframe 30 via the dedicated bracket.
  • the estimation device 100 generates a learning model LM1 similar to that of the first embodiment by using the measurement data including the strain amount measured by the strain sensor 81 attached to the subframe 30, and uses the generated learning model LM1. Therefore, the weight of the load loaded on the packing box 4 can be estimated.
  • the load weight can be estimated without making any modification to the truck chassis 2.
  • the load weight of the specially equipped vehicle 1 is estimated using the learning model LM1.
  • the total weight of the specially equipped vehicle 1 including the load can be actually measured. If the vehicle weight when not loaded is known, the loaded weight can be obtained by subtracting the vehicle weight from the total weight actually measured by the truck scale.
  • the third embodiment a configuration will be described in which the degree of deviation between the loaded weight estimated by using the learning model LM1 and the loaded weight obtained by using the truck scale is determined, and information related to the degree of deviation is output. Since the overall configuration of the specially equipped vehicle 1 and the internal configuration of the estimation device 100 are the same as those in the first embodiment, the description thereof will be omitted.
  • FIG. 13 is a flowchart illustrating a procedure of processing executed by the estimation device 100 in the third embodiment.
  • the control unit 101 of the estimation device 100 acquires the measured value of the loaded weight by the truck scale (step S301). Since the total weight of the specially equipped vehicle 1 including the load can be measured by using the truck scale, the load weight can be obtained by subtracting the vehicle weight from the total weight measured by the truck scale. It is assumed that the vehicle weight is known.
  • the load weight may be calculated by the control unit 101 or at an external terminal or the like. When acquiring the loaded weight calculated by an external terminal or the like, a numerical input may be accepted through the operation unit 103, the measured value printed on the paper is read by the external terminal or the like, and the read measured value is read from the external terminal or the like. It may be acquired by communication.
  • control unit 101 acquires the estimation result of the loaded weight by the learning model LM1 (step S302). That is, the control unit 101 acquires the estimation result of the loaded weight by inputting the measurement data including the strain amount into the learning model LM1 and performing the calculation using the learning model LM1 as in the first embodiment.
  • control unit 101 determines the degree of deviation between the actually measured value of the loaded weight obtained from the truck scale and the estimated value of the loaded weight obtained from the learning model LM1 (step S303).
  • the control unit 101 may determine the degree of divergence by subtracting the measured value from the estimated value of the loaded weight, and divides the value obtained by subtracting the measured value from the estimated value of the loaded weight by the measured value to determine the degree of divergence. You may judge.
  • control unit 101 outputs the determination result of step S303 (step S304).
  • the control unit 101 may display the information indicating the degree of deviation from the output unit 105 on the display device 120, or may notify the external terminal or the like from the communication unit 106. Further, the control unit 101 may notify the external terminal or the like together with the date and time information indicating the date and time when the loaded weight is estimated, the identification information for identifying the specially equipped vehicle 1, and the like.
  • the learning model LM1 may not be able to estimate accurately. Therefore, the learning model LM1 may be relearned, or the mounting position of the strain sensor 81 or the like may be changed. It is possible to take measures such as exchanging.
  • the load weight estimated by the estimation device 100 the load weight actually measured by the truck scale, the date and time when the load weight is estimated, and the specially equipped vehicle 1 are identified.
  • Information such as an identifier to be used may be notified to the terminal of the certification body, and the certification body may issue a certificate of conformity with the technical standard for the weight scale.
  • FIG. 14 is a flowchart illustrating a re-learning procedure of the learning model LM1.
  • the control unit 101 compares the measured value of the loaded weight by the truck scale with the estimated value by the learning model LM1 at an appropriate timing after the start of the operation phase (step S401).
  • the measured value may be acquired by accepting the input from the operation unit 103, the measured value of the track scale printed on the paper is read by an external terminal or the like, and the read value is acquired by communication from the external terminal or the like. You may.
  • the control unit 101 determines whether or not to execute re-learning based on the comparison result (step S402).
  • the control unit 101 determines that re-learning is not executed (S402: NO), and processes according to this flowchart. To finish.
  • the control unit 101 determines that the re-learning is executed (S402: YES).
  • the control unit 101 collects measurement data (step S403). That is, as in the first embodiment, after fixing the load weight, the strain amount, the inclination, the environmental temperature, and the cylinder pressure are measured by using the strain sensor 81, the inclinometer 82, the thermometer 83, and the pressure gauge 84. Just do it.
  • the collected measurement data is stored in the measurement value table TB1.
  • control unit 101 selects a set of training data from the measured value table TB1 (step S404).
  • the training data includes a series of measurement data measured at the same time and a load weight value when these measurement data are obtained.
  • control unit 101 inputs the selected training data to the learning model LM1 (step S405), and executes the calculation by the learning model LM1 (step S406). That is, the control unit 101 inputs measurement data such as strain amount, inclination, and ambient temperature to the nodes constituting the input layer of the learning model LM1, executes an operation using the kernel of the intermediate layer, and outputs the operation result. Performs the process of outputting from the layer. Before starting the re-learning, an initial value may be given to the definition information that describes the learning model LM1.
  • control unit 101 evaluates the calculation result obtained in step S406 (step S407), and determines whether or not the learning is completed (step S408). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S406 and the training data.
  • the control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function becomes less than or equal to the threshold value (or more than or equal to the threshold value), learning is completed. You may judge that you have done so. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the coupling load between the nodes of the learning model LM1 (step S409), returns the process to step S404, and another training data. Continue learning with.
  • the control unit 101 can update the coupling load between the nodes by using the error back propagation method that sequentially updates the coupling load between the nodes from the output layer to the input layer of the learning model LM1.
  • control unit 101 stores the learned learning model LM1 in the storage unit 102 (step S410), and ends the process according to this flowchart.
  • the estimation device 100 can relearn the learning model LM1 when the measured value of the loaded weight and the estimated value deviate from each other.
  • FIG. 15 is a flowchart illustrating a procedure for notifying the loading state.
  • the control unit 101 of the estimation device 100 executes the following processing at a periodic timing after the loading operation into the packing box 4 is started, for example.
  • the control unit 101 estimates the loaded weight by the same procedure as the procedure shown in the flowchart of FIG. That is, the control unit 101 inputs the measurement data including the amount of distortion measured by the plurality of strain sensors 81 into the learning model LM1 (step S501), executes the calculation by the learning model LM1 (step S502), and executes the calculation by the learning model LM1 (step S502).
  • the load weight is estimated based on the calculation result of (step S503).
  • the control unit 101 determines the loading state based on the estimated loading weight (step S504). For example, when the control unit 101 stores the estimated load weight in the built-in memory, compares the estimated load weight in step S503 with the preset upper limit value, and the estimated load weight still has a margin ( For example, when it is less than 90% of the upper limit value), it is determined that the loading state is "loadable”. Further, the control unit 101 compares the estimated load weight with the preset upper limit value, and when the estimated load weight is close to the upper limit value (for example, when it exceeds 90% of the upper limit value and is less than 100%). , It may be determined that the loading state is "close to the upper limit value".
  • control unit 101 may determine that the loading state is the "loading stop” state when the estimated loading weight reaches the upper limit value. Further, when the estimated load weight exceeds a preset upper limit value of the load weight, the control unit 101 may determine that the load state is “overload”.
  • the control unit 101 notifies the loading state in an manner according to the determination result in step S504 (step S505).
  • FIG. 16 is a schematic diagram showing an example of notification of the loading state.
  • FIG. 16 shows a state in which the specially equipped vehicle 1 is viewed from the rear side.
  • the display device 120 is composed of indicator lights that can be turned on, blinked, and turned off in blue or red, and is provided on the upper portion of the front panel 41 on the rear surface side.
  • FIG. 16A shows an example of notification when it is determined that the loading state is “loadable”.
  • the control unit 101 determines that the current loading state is "loadable” based on the loading weight estimated using the learning model LM1
  • the display device 120 blinks the display device 120, for example, in blue only once per second. Take control. As a result, the display device 120 transitions from the extinguished state to the state of slowly blinking in blue. By confirming the display mode (in this case, slowly blinking in blue) on the display device 120, the operator can grasp that the current loading state is “loadable”.
  • FIG. 16B shows an example of notification when it is determined that the loading state is "close to the upper limit value".
  • the control unit 101 determines that the current loading state is "close to the upper limit value” based on the loading weight estimated using the learning model LM1
  • the display device 120 blinks the display device 120 in blue, for example, five times per second. Take control. As a result, the display device 120 transitions from a slow blinking state to a fast blinking state. By confirming the display mode (in this case, blinking blue quickly) on the display device 120, the operator can grasp that the current loading state is "close to the upper limit value".
  • FIG. 16C shows an example of notification when the loading state is determined to be "loading stop”.
  • the control unit 101 executes control to turn on the display device 120, for example, in blue when it is determined that the current loading state is "loading stop” based on the loading weight estimated by using the learning model LM1.
  • the display device 120 transitions from the blinking blue state to the lit state.
  • the operator can grasp that the current loading state is "loading stop”.
  • FIG. 16D shows an example of notification when the loading state is determined to be "overloaded”.
  • the control unit 101 executes control for blinking the display device 120, for example, in red when it is determined that the current load weight is "overloaded” based on the load weight estimated using the learning model LM1.
  • the display device 120 transitions from the blue lighting state to the red blinking state.
  • the operator can grasp that the current loading state is “overloaded”.
  • the current loading state in the packing box 4 can be notified to the operator by changing the display mode in the display device 120.
  • the installation location of the display device 120 is not limited to the location shown in FIG. , It may be installed in any installation place as long as it can be visually recognized by the operator.
  • the display device 120 may be installed on the side surface of the front panel 41, or may be installed on the side panel 42 or the rear panel 43 other than the front panel 41. Further, the display device 120 may be installed in the vicinity of the driver's seat. Further, the mobile terminal possessed by the worker may be notified by communication.
  • the display mode of the display device 120 is changed according to the loading state by changing the color and the lighting / blinking state, but the display device 120 displays characters or figures according to the loading state. It may be displayed in. Further, the loading state may be notified not only by the display by the display device 120 but also by sound or voice.
  • FIG. 17 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the sixth embodiment.
  • the specially equipped vehicle 1 according to the sixth embodiment includes an inclinometer 85 for measuring the inclination of the loading platform and an imaging device 86 for imaging the inside of the packing box 4.
  • the specially equipped vehicle 1 may further include a GPS (Global Positioning System) receiver 87 for positioning the current position of the own vehicle.
  • GPS Global Positioning System
  • the inclinometer 85 is attached to an appropriate position in the packing box 4, measures the tilt (pitch) in the front-rear direction of the packing box 4 in time series, and outputs measurement data related to the measured tilt to the estimation device 100.
  • the inclinometer 85 may measure the inclination (roll) in the left-right direction in time series in addition to the inclination (pitch) in the front-rear direction of the packing box.
  • the image pickup device 86 is installed so as to image a range obliquely downward and rearward from the upper part of the front panel 41, for example, and images the inside of the packing box 4 in chronological order.
  • the image pickup device 86 includes, for example, a solid-state image sensor such as CMOS (Complementary Metal Oxide Semiconductor), and outputs digital-format image data obtained from the solid-state image sensor to the estimation device 100.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image pickup device 86 is more preferably one that can acquire distance information such as a stereo camera or a distance image sensor.
  • the GPS receiver 87 receives radio waves transmitted from GPS satellites (not shown) and positions the current position of the specially equipped vehicle 1 in chronological order.
  • the GPS receiver 87 outputs the position information related to the current position of the specially equipped vehicle 1 to the estimation device 100.
  • FIG. 18 is a flowchart illustrating a procedure of processing executed by the estimation device 100 in the sixth embodiment.
  • the control unit 101 of the estimation device 100 acquires the measurement data output from the inclinometer 85 through the input unit 104 (step S601)
  • the control unit 101 determines the state of the packing box 4 based on the acquired measurement data (step S602). ..
  • the control unit 101 may determine whether or not the packing box 4 is in an inclined state (lifted up state) with respect to the chassis frame 21. Further, the control unit 101 may calculate the highest height (vehicle height) of the packing box 4 from the inclination angle as the state of the packing box 4.
  • FIG. 19 is a schematic view showing an example of notifying the state of the packing box 4.
  • the control unit 101 can notify the dump status by outputting characters and figures indicating the dump status from the output unit 105 to the display device 120.
  • FIG. 19A shows a state in which the display device 120 displays the fact that the dump is being performed as character information.
  • FIG. 19B shows a state in which the display device 120 schematically indicates that the top height of the packing box 4 has reached 4.8 m. Further, the control unit 101 may output an alert when the calculated top height of the packing box 4 exceeds the set value.
  • control unit 101 acquires the image data output from the image pickup device 86 through the input unit 104 (step S604), the control unit 101 determines the loading state in the packing box 4 based on the acquired image data (step S605).
  • the control unit 101 uses, for example, a learning model LM2 (see FIG. 20) configured to output information on the loading state in response to input of image data captured inside the packing box 4, and is loaded. The state can be determined.
  • FIG. 20 is a schematic diagram illustrating the configuration of the learning model LM2 in the sixth embodiment.
  • the learning model LM2 in the sixth embodiment is, for example, a learning model by CNN (Convolutional Neural Networks), and includes an input layer, an intermediate layer, and an output layer.
  • the learning model LM2 is learned in advance so as to output, for example, information on the height of the load in response to the input of image data obtained by imaging the inside of the packing box 4.
  • Image data from the image pickup device 86 obtained by imaging the inside of the packing box 4 is input to the input layer.
  • the image data input to the input layer is sent to the intermediate layer through the nodes constituting the input layer.
  • the intermediate layer is composed of, for example, a convolution layer, a pooling layer, and a fully connected layer.
  • a plurality of convolution layers and pooling layers may be provided alternately.
  • the convolution layer and the pooling layer extract the features of the image input through the input layer by the calculation using the nodes of each layer.
  • the fully connected layer combines the data from which the feature portion is extracted by the convolution layer and the pooling layer into one node, and outputs the feature variable converted by the activation function.
  • the feature variable is output to the output layer through the fully connected layer.
  • the output layer includes one or more nodes.
  • the output layer converts the characteristic variables input from the fully connected layer of the intermediate layer into probabilities using the softmax function, and outputs the estimation result regarding the height of the load.
  • the output form of the estimation result by the output layer is arbitrary.
  • the output layer is composed of n nodes from the first node to the nth node, the probability that the height of the load exceeds the upper limit from the first node, and the height of the load from the second node. Probability of reaching the upper limit, probability that the height of the load is 90% of the upper limit from the 3rd node, probability that the height of the load is 80% of the upper limit from the 4th node, and so on.
  • the probability regarding the height of the load may be output from each node constituting the output layer.
  • the number of nodes constituting the output layer and the contents output from each node are not limited to the above, and can be appropriately designed.
  • the estimation device 100 collects a large amount of image data captured by the image pickup device 86 and a large amount of load height data (for example, actually measured values) when the image data is captured, and the collected image data and height data.
  • a learning model LM2 as shown in FIG. 20 can be generated.
  • the learning model LM2 may be generated by the external server and the learned learning model LM2 may be acquired from the external server.
  • the estimation device 100 stores the learning model LM2 generated by its own device or the learning model LM2 acquired from an external server in the storage unit 102.
  • control unit 101 of the estimation device 100 acquires the image data output from the image pickup device 86 in step S604 of the flowchart shown in FIG. 18, the control unit 101 inputs the acquired image data to the learning model LM2 and uses the learning model LM2. Perform the operation.
  • the control unit 101 refers to the calculation result by the learning model LM2 and determines the load state (in this example, the height of the load). At this time, the control unit 101 can determine the loading state in the packing box 4 by selecting the state having the highest probability among the probabilities output from each node of the output layer.
  • FIG. 21 is a schematic view showing an example of notifying the loading state of the packing box 4.
  • the control unit 101 can notify the load state by outputting character information indicating the height of the load from the output unit 105 to the display device 120.
  • the example of FIG. 21 shows a state in which the display device 120 displays character information indicating that the height of the load exceeds the upper limit value.
  • the state of the specially equipped vehicle 1 can be detected and the detected state of the specially equipped vehicle 1 can be notified to the occupants.
  • the procedure is to execute the determination and notification of the loading state after the determination and notification of the state of the packing box 4 are executed, but the execution order of these may be arbitrarily set. Further, only one of the determination and notification of the state of the packing box 4 and the determination and notification of the loading state may be executed.
  • the state of the specially equipped vehicle 1 the configuration of detecting the state of the packing box 4 and the state of the load in the packing box 4 and notifying the detection result has been described, but it is measured by the inclinometer 82.
  • the inclination (roll and pitch) of the specially equipped vehicle 1 and the upper limit value for the inclination may be notified.
  • the state of the specially equipped vehicle 1 is displayed on the display device 120, but it may be notified to an external management server.
  • an identifier that identifies the specially equipped vehicle 1 and the position information of the specially equipped vehicle 1 that is positioned by the GPS receiver 87 may be added, and the management server may manage the position information and the state of the specially equipped vehicle 1 for each specially equipped vehicle 1.
  • the display device 120 is not limited to the one provided in the visible portion of the packing box 4, and may be a mobile terminal such as a smartphone owned by the operator.
  • the height of the load is estimated using the learning model LM2, but the image obtained from the image pickup apparatus 86 is analyzed to specify the height position of the load in the image. This may be a configuration for estimating the height of the load.
  • a dump truck including an estimation device 100 for estimating the load weight, a display device 120 for notifying information on the load weight estimated by the estimation device 100, and a dump device 3 is an example.
  • the present invention is applicable not only to dump trucks but also to various specially equipped vehicles. For example, it can be applied to specially equipped vehicles such as dust trucks, mixer trucks, tank trucks, suction trucks, and container desorption vehicles.
  • the strain sensor 81 is composed of a strain gauge, but the present invention is not limited to this, and the strain sensor 81 can be a strain gauge type load cell. In that case, the shape of the load cell may be either a bar type or a pin type.
  • the strain sensor 81 is attached to the axles 23F, 23R or the subframe 30, but the present invention is not limited to this, and the strain sensor 81 may be attached to another place.
  • the strain sensor may be attached to the packing box 4 in the dump device 3, or may be attached to the hinge shaft 31 connecting the packing box 4 and the subframe 30.
  • the strain sensor 81 may be attached to the chassis frame 21 or a suspension device (not shown). For example, when mounting the strain sensor 81 on a suspension device, it is also useful to measure how much the mounting portion of the strain sensor 81 sinks as compared with other portions.
  • a displacement sensor laser distance sensor or the like
  • a displacement sensor that measures the amount of subduction with respect to another part
  • the amount of displacement such as the amount of subduction
  • it is easily affected by the air pressure of the front wheels 22F or the rear wheels 22R of the specially equipped vehicle 1, so these measurement data are also measured using a tire pressure monitor or the like. It is more preferable to add it to TB1.
  • the estimation device 100 is provided inside the chassis frame 21 and the cab 20 of the specially equipped vehicle 1, but the present invention is not limited to this, and the estimation device 100 is referred to as a specially equipped vehicle 1 such as a management center. May be provided at another remote location.
  • the specially equipped vehicle 1 is provided with various sensors such as a strain sensor 81, an inclinometer 82, a thermometer 83, and a pressure gauge 84, a communication device, and a display device, and data from these various sensors is estimated by the communication device. It may be transmitted to the device 100.
  • the estimation device 100 may process data from various received sensors and transmit the result to the communication device of the specially equipped vehicle 1, whereby the display device of the specially equipped vehicle 1 may display the estimated result of the loaded weight.
  • the load weight is estimated from the plurality of strain sensors 81 based on the measurement data related to the amount of strain, but the load weight is estimated based on the measurement data related to the amount of change in oil pressure from the plurality of oil pressure sensors. It may be based on other indicators such as those that estimate.
  • the hydraulic cylinder 52 is slightly extended so that the packing box 4 is slightly tilted, and the load weight is estimated based on the measurement data of the oil pressure in the pressure gauge 84 and the load cell.
  • Such measurement data is not limited to the strain, oil pressure, etc. described above, and other displacement amounts can be appropriately measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Provided are a computer program, an estimation device, a method for generating a training model, and a system for estimating a load weight of a specially-equipped vehicle. Executed in a computer are processes for: acquiring measurement data pertaining to displacement amounts from a plurality of displacement sensors that respectively measure displacement amounts of a plurality of parts in a specially-equipped vehicle; executing a calculation using a training model by inputting the measurement data acquired from the plurality of displacement sensors to the training model that has been trained for a relationship between measurement data pertaining to a displacement amount and a load weight of the specially-equipped vehicle; and estimating the load weight of the specially-equipped vehicle on the basis of the execution result of the calculation.

Description

コンピュータプログラム、推定装置、学習モデルの生成方法、及び特装車の積載重量推定システムComputer program, estimation device, learning model generation method, and specially equipped vehicle load weight estimation system
 本発明は、コンピュータプログラム、推定装置、学習モデルの生成方法、及び特装車の積載重量推定システムに関する。 The present invention relates to a computer program, an estimation device, a learning model generation method, and a load weight estimation system for a specially equipped vehicle.
 近年、トラック等の大型車両において、自重(積載重量)を計測する自重計が搭載されたものが知られている。 In recent years, it is known that large vehicles such as trucks are equipped with a self-weight meter that measures their own weight (loading weight).
 従来の自重計では、フロント及びリアの車軸両端部に取り付けられた荷重センサを用いて、前後左右の各タイヤに掛かる荷重を計測し、各荷重センサの出力の合計から積載重量を求めている。 In the conventional self-weight gauge, the load applied to each tire on the front, rear, left and right is measured by using the load sensors attached to both ends of the front and rear axles, and the load weight is calculated from the total output of each load sensor.
特開2004-132871号公報Japanese Unexamined Patent Publication No. 2004-132871
 しかしながら、従来の自重計では、各荷重センサの出力の合計を積載重量に換算する方式が取られているので、車両が傾斜地に存在する場合、荷台上の積み荷のバランスが均等でない場合等において、正しい積載重量を計測できないことがある。 However, in the conventional self-weight gauge, the total output of each load sensor is converted into the load weight. Therefore, when the vehicle is on a slope, the load on the loading platform is not evenly balanced, etc. It may not be possible to measure the correct load weight.
 本発明は、積載重量を精度良く推定できるコンピュータプログラム、推定装置、学習モデルの生成方法、及び特装車の積載重量推定システムを提供することを目的とする。 An object of the present invention is to provide a computer program capable of accurately estimating the load weight, an estimation device, a learning model generation method, and a load weight estimation system for a specially equipped vehicle.
 本発明の一態様に係るコンピュータプログラムは、コンピュータに、特装車における複数の部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得し、前記変位量に係る計測データと前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データを入力することにより、前記学習モデルを用いた演算を実行し、前記演算の実行結果に基づき、前記特装車の積載重量を推定する処理を実行させるためのコンピュータプログラムである。
 なお、前記変位量は、特装車における複数の部位に負荷がかかる際に、「当該部位そのものに生じる変位の大きさ」または「当該部位が他の部位と比較した相対的な変位の大きさ」の少なくともいずれかを指している。また、前記変位センサは、前記複数の部位に直接的に取り付けられるセンサだけでなく、当該部位に取り付けられる計測部材(例えばロードセル)に内蔵されたセンサも指している。
The computer program according to one aspect of the present invention acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts of the specially equipped vehicle, respectively, and the measurement data related to the displacement amount. By inputting the measurement data acquired from the plurality of displacement sensors into the learning model in which the relationship between the above and the load weight of the specially equipped vehicle is learned, the calculation using the learning model is executed, and the execution result of the calculation is executed. This is a computer program for executing a process of estimating the load weight of the specially equipped vehicle based on the above.
The amount of displacement is defined as "the magnitude of the displacement that occurs in the portion itself" or "the magnitude of the relative displacement of the portion as compared with other portions" when a load is applied to a plurality of portions in the specially equipped vehicle. Refers to at least one. Further, the displacement sensor refers not only to a sensor directly attached to the plurality of parts, but also to a sensor built in a measuring member (for example, a load cell) attached to the part.
 本発明の一態様に係る推定装置は、特装車における複数の部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得する取得部と、前記変位量に係る計測データと前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データを入力することにより、前記学習モデルを用いた演算を実行し、前記演算の実行結果に基づき、前記特装車の積載重量を推定する推定部とを備える。 The estimation device according to one aspect of the present invention includes an acquisition unit that acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure displacement amounts of a plurality of parts in a specially equipped vehicle, and measurement data related to the displacement amount. By inputting the measurement data acquired from the plurality of displacement sensors into the learning model in which the relationship between the above and the load weight of the specially equipped vehicle is learned, the calculation using the learning model is executed, and the execution result of the calculation is executed. It is provided with an estimation unit for estimating the load weight of the specially equipped vehicle based on the above.
 本発明の一態様に係る学習モデルの生成方法は、コンピュータを用いて、特装車における複数の部位について計測された変位量に係る計測データと、前記特装車について計測された積載重量の値とを取得し、取得した計測データと積載重量の値とを訓練データに用いて、変位量に係る計測データの入力に応じて、前記特装車の積載重量についての演算結果を出力するよう構成される学習モデルを生成する。 In the method of generating a learning model according to one aspect of the present invention, a computer is used to acquire measurement data relating to displacements measured for a plurality of parts of the specially equipped vehicle and a value of the loaded weight measured for the specially equipped vehicle. , The acquired measurement data and the load weight value are used as training data to generate a learning model configured to output the calculation result for the load weight of the specially equipped vehicle in response to the input of the measurement data related to the displacement amount. To do.
 本発明の一態様に係る特装車の積載重量推定システムは、積載物による荷重が作用する特装車の複数部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得する取得部と、前記変位量に係る計測データの入力に応じて、積載重量についての演算結果を出力するように構成される学習モデルに、前記取得部にて取得した計測データを入力することにより、積載重量を推定する推定部と、該推定部が推定した積載重量に関する情報を報知する報知部とを備える。
 なお、前記変位量は、特装車における複数の部位に負荷がかかる際に、「当該部位そのものに生じる変位の大きさ」または「当該部位が他の部位と比較した相対的な変位の大きさ」の少なくともいずれかを指している。また、前記変位センサは、前記複数の部位に直接的に取り付けられるセンサだけでなく、当該部位に取り付けられる計測部材(例えばロードセル)に内蔵されたセンサも指している。
The load weight estimation system for a specially equipped vehicle according to one aspect of the present invention acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts of the specially equipped vehicle on which the load due to the load acts. By inputting the measurement data acquired by the acquisition unit into the learning model configured to output the calculation result of the load weight in response to the input of the measurement data related to the displacement amount, the load is loaded. It includes an estimation unit that estimates the weight and a notification unit that notifies information about the loaded weight estimated by the estimation unit.
The amount of displacement is defined as "the magnitude of the displacement that occurs in the portion itself" or "the magnitude of the relative displacement of the portion as compared with other portions" when a load is applied to a plurality of portions in the specially equipped vehicle. Refers to at least one. Further, the displacement sensor refers not only to a sensor directly attached to the plurality of parts, but also to a sensor built in a measuring member (for example, a load cell) attached to the part.
 前記取得部は、自車両の傾斜を計測する傾斜計から、前記傾斜に係る計測データを取得し、前記推定部は、前記変位量及び前記傾斜に係る計測データの入力に応じて、積載重量についての演算結果を出力するように構成される学習モデルに、前記取得部にて取得した前記変位量及び前記傾斜の計測データを入力することにより、積載重量を推定することが好ましい。 The acquisition unit acquires measurement data related to the inclination from an inclinometer that measures the inclination of the own vehicle, and the estimation unit obtains the load weight according to the input of the displacement amount and the measurement data related to the inclination. It is preferable to estimate the load weight by inputting the displacement amount and the inclination measurement data acquired by the acquisition unit into the learning model configured to output the calculation result of.
 また、前記推定部により推定された積載重量に応じて、前記積載物の積載状態を判定する判定部を備え、前記報知部は、前記判定部の判定結果に応じた態様にて前記積載状態を報知することが好ましい。 Further, a determination unit for determining the loading state of the load according to the load weight estimated by the estimation unit is provided, and the notification unit determines the loading state in an manner according to the determination result of the determination unit. It is preferable to notify.
 また、前記報知部は、前記積載物が積載される荷箱の視認可能な部位に設けられる表示装置を含み、前記判定結果に応じた表示態様にて前記積載状態を前記表示装置に表示することが好ましい。 Further, the notification unit includes a display device provided at a visible portion of the packing box on which the load is loaded, and displays the load state on the display device in a display mode according to the determination result. Is preferable.
 また、自車両の状態を検知する状態検知部を備え、前記報知部は、前記状態検知部が検知した状態に関する情報を報知することが好ましい。 Further, it is preferable that a state detection unit for detecting the state of the own vehicle is provided, and the notification unit notifies information about the state detected by the state detection unit.
 また、前記状態検知部が検知する状態は、前記積載物が積載される荷箱の状態、及び前記積載物の積載状態の少なくとも1つを含むことが好ましい。 Further, the state detected by the state detection unit preferably includes at least one of the state of the packing box on which the load is loaded and the state of the load.
 また、前記変位センサは、自車両の前後方向又は左右方向に離隔して、シャシフレームに固定される構造物の複数箇所に取り付けてあることが好ましい。 Further, it is preferable that the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the own vehicle and attached to a plurality of places of the structure fixed to the chassis frame.
 また、前記変位センサは、自車両の前後方向又は左右方向に離隔して、車軸の複数箇所に取り付けてあることが好ましい。 Further, it is preferable that the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the own vehicle and are attached to a plurality of positions on the axle.
 本願によれば、積載重量を精度良く推定できる。 According to the present application, the load weight can be estimated accurately.
実施の形態1に係る特装車の全体構成を示す側面図である。It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る特装車の全体構成を示す平面図である。It is a top view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 1. FIG. 荷箱を起立させた状態の側面図である。It is a side view of the state where the packing box is upright. 推定装置の内部構成を説明するブロック図である。It is a block diagram explaining the internal structure of an estimation apparatus. 計測値テーブルの一例を示す概念図である。It is a conceptual diagram which shows an example of the measurement value table. 学習モデルの構成を説明する模式図である。It is a schematic diagram explaining the structure of a learning model. 学習モデルの生成手順を説明するフローチャートである。It is a flowchart explaining the generation procedure of a learning model. 学習モデルを用いた積載重量の推定手順を説明するフローチャートである。It is a flowchart explaining the procedure of estimating the load weight using a learning model. 積載重量の表示例を示す模式図である。It is a schematic diagram which shows the display example of the load weight. 計測結果を示すグラフである。It is a graph which shows the measurement result. 学習モデルの推定結果を示すグラフである。It is a graph which shows the estimation result of a learning model. 実施の形態2に係る特装車の全体構成を示す側面図である。It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 2. 実施の形態3における推定装置が実行する処理の手順について説明するフローチャートである。It is a flowchart explaining the procedure of the process executed by the estimation apparatus in Embodiment 3. FIG. 学習モデルの再学習手順を説明するフローチャートである。It is a flowchart explaining the re-learning procedure of a learning model. 積載状態を報知する手順を説明するフローチャートである。It is a flowchart explaining the procedure for notifying a loading state. 積載状態の報知例を示す模式図である。It is a schematic diagram which shows the notification example of the loading state. 実施の形態6に係る特装車の全体構成を示す側面図である。It is a side view which shows the whole structure of the specially equipped vehicle which concerns on Embodiment 6. 実施の形態6における推定装置が実行する処理の手順を説明するフローチャートである。6 is a flowchart illustrating a procedure of processing executed by the estimation device according to the sixth embodiment. 荷箱の状態の報知例を示す模式図である。It is a schematic diagram which shows the notification example of the state of a packing box. 実施の形態6における学習モデルの構成を説明する模式図である。It is a schematic diagram explaining the structure of the learning model in Embodiment 6. 荷箱の積載状態の報知例を示す模式図である。It is a schematic diagram which shows the notification example of the loading state of a packing box.
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施の形態1)
 図1は実施の形態1に係る特装車1の全体構成を示す側面図、図2はその平面図、図3は荷箱を起立させた状態の側面図である。図1~図3に例示する特装車1は、走行部であるトラックシャシ2と、走行部に搭載される架装装置の一例であるダンプ装置3とを備えるダンプトラックである。以下の説明において、前後、左右、上下の各方向は、トラックシャシ2の運転席に座った運転手から見た前後、左右、上下の各方向を表すものとする。なお、図2では、説明のために、ダンプ装置3を取り除いた状態を示している。
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the first embodiment, FIG. 2 is a plan view thereof, and FIG. 3 is a side view of a state in which a packing box is erected. The specially equipped vehicle 1 illustrated in FIGS. 1 to 3 is a dump truck including a truck chassis 2 which is a traveling unit and a dump device 3 which is an example of a mounting device mounted on the traveling unit. In the following description, each direction of front / rear, left / right, and up / down shall represent each direction of front / rear, left / right, and up / down as seen from the driver sitting in the driver's seat of the truck chassis 2. Note that FIG. 2 shows a state in which the dump device 3 is removed for the sake of explanation.
 トラックシャシ2は、運転席が設けられるキャブ20と、キャブ20を支持するシャシフレーム21とを備える。シャシフレーム21は、前後方向に延びる左右一対のメインフレーム(縦根太)21A,21Aと、左右一対のメインフレーム21A,21Aを連結するクロスメンバ(横根太)21B,21B,…,21Bとにより構成される(図2を参照)。トラックシャシ2の前輪22F及び後輪22Rは不図示の懸架装置を介してメインフレームに回転可能に取り付けられる。トラックシャシ2は、図に示していないエンジン(原動機)と、このエンジンにクラッチを介して連結される変速機とを備えており、駆動輪(例えば前輪22F)の駆動系にエンジンの駆動力を変速機を介して伝達することによって、走行するように構成されている。 The truck chassis 2 includes a cab 20 provided with a driver's seat and a chassis frame 21 supporting the cab 20. The chassis frame 21 is composed of a pair of left and right main frames (vertical joists) 21A and 21A extending in the front-rear direction and cross members (horizontal joists) 21B, 21B, ..., 21B connecting a pair of left and right main frames 21A and 21A. (See FIG. 2). The front wheels 22F and the rear wheels 22R of the truck chassis 2 are rotatably attached to the main frame via a suspension device (not shown). The truck chassis 2 includes an engine (motor) not shown in the figure and a transmission connected to the engine via a clutch, and applies the driving force of the engine to the drive system of the drive wheels (for example, the front wheels 22F). It is configured to travel by transmitting via a transmission.
 ダンプ装置3は、シャシフレーム21上に固定されるサブフレーム30と、サブフレーム30によって支持され、土砂などの荷が積載される荷箱4とを備える。荷箱4は、サブフレーム30の後端部にて左右方向に延びるヒンジ軸31の回りに回動可能に支持されている。荷箱4は、上方が開放された箱体であり、矩形状の底部40を囲むように配置されたフロントパネル41、左右一対のサイドパネル42、及びリアパネル(後アオリ)43を備える。リアパネル43は開閉可能に構成されている。 The dump device 3 includes a subframe 30 fixed on the chassis frame 21 and a packing box 4 supported by the subframe 30 and loaded with loads such as earth and sand. The packing box 4 is rotatably supported around a hinge shaft 31 extending in the left-right direction at the rear end of the subframe 30. The packing box 4 is a box body whose upper side is open, and includes a front panel 41 arranged so as to surround a rectangular bottom portion 40, a pair of left and right side panels 42, and a rear panel (rear tilt) 43. The rear panel 43 is configured to be openable and closable.
 ダンプ装置3は、荷箱4を傾斜させるためのホイスト機構5を備える。ホイスト機構5は、例えば、リフトアーム51、油圧シリンダ52、テンションリンク53を備える。油圧シリンダ52が収縮した状態において、荷箱4は水平な姿勢に保たれる。一方、油圧シリンダ52が伸長すると、荷箱4はその前部が持ち上げられ、ヒンジ軸31の回りに回動する。その結果、図3に示すように荷箱4は後下がりに傾斜する。 The dump device 3 includes a hoist mechanism 5 for tilting the packing box 4. The hoist mechanism 5 includes, for example, a lift arm 51, a hydraulic cylinder 52, and a tension link 53. The packing box 4 is maintained in a horizontal posture when the hydraulic cylinder 52 is contracted. On the other hand, when the hydraulic cylinder 52 is extended, the front portion of the packing box 4 is lifted and rotates around the hinge shaft 31. As a result, as shown in FIG. 3, the packing box 4 is tilted backward.
 特装車1は、車両状態を検出する様々なセンサを備える。特装車1は、例えば、積載物による荷重が作用する複数の部位の変位量を計測する変位センサの一例として、歪センサ81A~81Dを備える。歪センサ81A~81Dは、例えば歪ゲージにより構成される。ここで、歪センサ81Aは前輪22Fの車軸23Fの右端付近に取り付けられ、歪センサ81Bは前輪22Fの車軸23Fの左端付近に取り付けられる。歪センサ81Cは後輪22Rの車軸23Rの右端付近に取り付けられ、歪センサ81Dは後輪22Rの車軸23Rの左端付近に取り付けられる。歪センサ81A,81B並びに歪センサ81C,81Dは、例えば、特装車1の前後方向の中心線に対して左右対称に取り付けられる。歪センサ81A~81Dは、荷重に応じた車軸23F,23Rの歪量を時系列的に計測し、計測した歪量に係る計測データを出力する。なお、以下の説明において、歪センサ81A~81Dのそれぞれを個別に説明する必要がない場合、単に歪センサ81とも記載する(図4を参照)。 The specially equipped vehicle 1 is equipped with various sensors for detecting the vehicle condition. The specially equipped vehicle 1 includes strain sensors 81A to 81D as an example of a displacement sensor that measures the amount of displacement of a plurality of portions on which a load due to a load acts. The strain sensors 81A to 81D are composed of, for example, strain gauges. Here, the strain sensor 81A is attached near the right end of the axle 23F of the front wheel 22F, and the strain sensor 81B is attached near the left end of the axle 23F of the front wheel 22F. The strain sensor 81C is attached near the right end of the axle 23R of the rear wheel 22R, and the strain sensor 81D is attached near the left end of the axle 23R of the rear wheel 22R. The strain sensors 81A and 81B and the strain sensors 81C and 81D are mounted symmetrically with respect to the center line in the front-rear direction of the specially equipped vehicle 1, for example. The strain sensors 81A to 81D measure the strain amount of the axles 23F and 23R according to the load in time series, and output the measurement data related to the measured strain amount. In the following description, when it is not necessary to explain each of the strain sensors 81A to 81D individually, it is also simply described as the strain sensor 81 (see FIG. 4).
 特装車1は、トラックシャシ2の傾斜を計測する傾斜計82を備えてもよい。傾斜計82は、シャシフレーム21の適宜箇所(例えば前後方向及び左右方向の中央付近)に取り付けられる。傾斜計82は、トラックシャシ2の前後方向の傾斜(ピッチ)、及び左右方向の傾斜(ロール)を時系列的に計測し、計測した傾斜に係る計測データを出力する。特装車1は、荷箱4の傾斜を計測する傾斜計(不図示)を備えてもよく、荷箱4の前後方向の傾斜(ピッチ)及び左右方向の傾斜(ロール)に係る計測データを時系列的に取得してもよい。 The specially equipped vehicle 1 may be provided with an inclinometer 82 for measuring the inclination of the truck chassis 2. The inclinometer 82 is attached to an appropriate position (for example, near the center in the front-rear direction and the left-right direction) of the chassis frame 21. The inclinometer 82 measures the inclination (pitch) in the front-rear direction and the inclination (roll) in the left-right direction of the track chassis 2 in time series, and outputs measurement data related to the measured inclination. The specially equipped vehicle 1 may be provided with an inclinometer (not shown) for measuring the inclination of the packing box 4, and the measurement data related to the inclination (pitch) in the front-rear direction and the inclination (roll) in the left-right direction of the packing box 4 are time-series. It may be acquired as a target.
 特装車1は、歪センサ81の取り付け位置及びその近傍の温度(環境温度)を計測する温度計83を備えてもよい。温度計83により計測される環境温度は歪センサ81の値を校正するために用いることができるので、温度計83は、歪センサ81の環境温度を計測するのに適した場所に取り付けられる。例えば、温度計83は、シャシフレーム21、サブフレーム30、車軸23F,23Rなどの少なくとも一箇所に取り付けられる。温度計83は、環境温度を時系列的に計測し、計測した温度に係る計測データを出力する。 The specially equipped vehicle 1 may include a thermometer 83 that measures the temperature (environmental temperature) at the mounting position of the strain sensor 81 and its vicinity. Since the ambient temperature measured by the thermometer 83 can be used to calibrate the value of the strain sensor 81, the thermometer 83 is mounted at a location suitable for measuring the ambient temperature of the strain sensor 81. For example, the thermometer 83 is attached to at least one place such as the chassis frame 21, the subframe 30, and the axles 23F and 23R. The thermometer 83 measures the environmental temperature in time series and outputs measurement data related to the measured temperature.
 特装車1は、油圧シリンダ52のシリンダ圧を計測する圧力計84を備えてもよい。圧力計84は、油圧シリンダ52のシリンダ圧を時系列的に計測し、計測したシリンダ圧に係る計測データを出力する。 The specially equipped vehicle 1 may include a pressure gauge 84 that measures the cylinder pressure of the hydraulic cylinder 52. The pressure gauge 84 measures the cylinder pressure of the hydraulic cylinder 52 in time series, and outputs measurement data related to the measured cylinder pressure.
 特装車1は、歪センサ81により計測される歪量を含む各種計測データに基づき、積載物の重量(積載重量)を推定する推定装置100を備える。本実施の形態において、積載重量は、荷箱4に積載されている積載物、特装車1に乗車している乗員、特装車1に積まれている燃料など、特装車1を構成する走行部及び架装装置以外の重量の合計を表す。なお、荷を積んでいないときの走行部及び架装装置の重量の合計(以下、車両重量という)は既知であるとする。推定装置100の内部構成、及び推定装置100が実行する処理の内容については後に詳述することとするが、本実施の形態では、歪量を含む計測データと特装車1の積載重量との関係が学習された学習モデルLM1を用いて、特装車1の積載重量を推定する。推定装置100は、例えばシャシフレーム21に取り付けられる。代替的に、推定装置100は、キャブ20の内部に設けられてもよい。 The specially equipped vehicle 1 includes an estimation device 100 that estimates the weight of the load (load weight) based on various measurement data including the amount of strain measured by the strain sensor 81. In the present embodiment, the load weight is the traveling unit and the erection that constitute the specially equipped vehicle 1, such as the load loaded on the packing box 4, the occupant on the specially equipped vehicle 1, and the fuel loaded on the specially equipped vehicle 1. Represents the total weight of non-devices. It is assumed that the total weight of the traveling unit and the mounting device (hereinafter referred to as the vehicle weight) when the load is not loaded is known. The internal configuration of the estimation device 100 and the content of the processing executed by the estimation device 100 will be described in detail later, but in the present embodiment, the relationship between the measurement data including the amount of strain and the load weight of the specially equipped vehicle 1 is The loaded weight of the specially equipped vehicle 1 is estimated using the learned learning model LM1. The estimation device 100 is attached to, for example, the chassis frame 21. Alternatively, the estimation device 100 may be provided inside the cab 20.
 本実施の形態では、特装車1の一例としてダンプ装置3を備えたダンプトラックについて説明するが、特装車1は、ダンプトラックに限らず、ドライバン、冷凍冷蔵車、液体運搬車、粉体運搬車、給水車、散水車、塵芥収集車など、積載物によって積載重量が変化し得る任意の特装車であってもよい。 In the present embodiment, a dump truck provided with a dump device 3 will be described as an example of the specially equipped vehicle 1, but the specially equipped vehicle 1 is not limited to the dump truck, but is not limited to the dump truck, but is also a dry van, a refrigerator truck, a liquid carrier, a powder carrier, It may be any specially equipped vehicle such as a water truck, a sprinkler truck, a garbage truck, etc., whose load weight can be changed depending on the load.
 以下、推定装置100について説明する。
 図4は推定装置100の内部構成を説明するブロック図である。推定装置100は、専用又は汎用のコンピュータであり、制御部101、記憶部102、操作部103、入力部104、出力部105、及び通信部106を備える。
Hereinafter, the estimation device 100 will be described.
FIG. 4 is a block diagram illustrating the internal configuration of the estimation device 100. The estimation device 100 is a dedicated or general-purpose computer, and includes a control unit 101, a storage unit 102, an operation unit 103, an input unit 104, an output unit 105, and a communication unit 106.
 制御部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部101が備えるROMには、推定装置100が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部101内のCPUは、ROMに記憶された制御プログラムや後述する記憶部102に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御することによって、本実施の形態における推定装置100としての機能を実現する。制御部101が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。 The control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the estimation device 100. The CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, and controls the operation of each hardware unit to control the operation of the hardware unit, thereby performing the estimation device according to the present embodiment. Realize the function as 100. The RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
 制御部101は、CPU、ROM、及びRAMを備える構成としたが、代替的に、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、量子プロセッサ、揮発性又は不揮発性のメモリ等を備える1又は複数の演算回路又は制御回路であってもよい。また、制御部101は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えていてもよい。 The control unit 101 is configured to include a CPU, ROM, and RAM, but instead, GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, volatile or It may be one or more arithmetic circuits or control circuits including a non-volatile memory or the like. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
 記憶部102は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部102には、制御部101によって実行されるコンピュータプログラム、外部から取得した各種データ、推定装置100の内部にて生成した各種データ等が記憶される。 The storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the estimation device 100, and the like.
 記憶部102に記憶されるコンピュータプログラムは、学習モデルLM1を生成するための学習プログラムPG1、及び学習モデルLM1を用いて特装車1の積載重量を推定するための推定プログラムPG2等を含む。 The computer program stored in the storage unit 102 includes a learning program PG1 for generating the learning model LM1, an estimation program PG2 for estimating the load weight of the specially equipped vehicle 1 using the learning model LM1, and the like.
 これらのコンピュータプログラムは、コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体Mにより提供されてもよい。記録媒体Mは、例えば、CD-ROM、USBメモリ、SD(Secure Digital)カードなどの可搬型メモリである。制御部101は、図に示していない読取装置を用いて、記録媒体Mから各種プログラムを読み取り、読み取った各種プログラムを記憶部102に記憶させる。 These computer programs may be provided by a non-temporary recording medium M in which the computer programs are readablely recorded. The recording medium M is, for example, a portable memory such as a CD-ROM, a USB memory, or an SD (Secure Digital) card. The control unit 101 reads various programs from the recording medium M using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
 記憶部102は、歪センサ81、傾斜計82、温度計83、及び圧力計84から得られる計測データを時系列的に記憶する計測値テーブルTB1を備えてもよい。図5は計測値テーブルTB1の一例を示す概念図である。計測値テーブルTB1は、歪センサ81により計測される歪量、傾斜計82により計測される特装車1の傾斜角度(ピッチ及びロール)、温度計83により計測される環境温度、及び圧力計84により計測される油圧シリンダ52のシリンダ圧の計測データを時間(計測時刻)に関連付けて記憶したテーブルである。計測値テーブルTB1は、積載重量を1トンに固定して計測した計測値を記憶するテーブル、積載重量を2トンに固定して計測した計測値を記憶するテーブル、積載重量を3トンに固定して計測した計測値を記憶するテーブルといったように積載重量毎に用意される。なお、計測値テーブルTB1に記憶される値は、センサの出力値であってもよく、センサの出力値から換算した物理量であってもよい。 The storage unit 102 may include a measurement value table TB1 that stores measurement data obtained from the strain sensor 81, the inclinometer 82, the thermometer 83, and the pressure gauge 84 in chronological order. FIG. 5 is a conceptual diagram showing an example of the measured value table TB1. The measured value table TB1 is measured by the strain amount measured by the strain sensor 81, the tilt angle (pitch and roll) of the specially equipped vehicle 1 measured by the inclinometer 82, the environmental temperature measured by the thermometer 83, and the pressure gauge 84. It is a table which stores the measurement data of the cylinder pressure of the hydraulic cylinder 52 to be performed in association with time (measurement time). The measured value table TB1 is a table that stores the measured value by fixing the loaded weight to 1 ton, a table that stores the measured value by fixing the loaded weight to 2 tons, and a table that stores the measured value by fixing the loaded weight to 3 tons. It is prepared for each load weight, such as a table that stores the measured values measured in the above. The value stored in the measurement value table TB1 may be the output value of the sensor or may be a physical quantity converted from the output value of the sensor.
 記憶部102は、歪量を含む計測データから特装車1の積載重量を推定するための学習モデルLM1を備えてもよい。学習モデルLM1は、歪量を含む計測データが入力された場合、積載重量に関する演算結果を出力するように構成される。学習モデルLM1は、その定義情報によって定義される。学習モデルLM1の定義情報には、例えば、学習モデルLM1の構造(層の種類や種類、ノードの数など)を規定する情報や学習によって定められる結合荷重などのパラメータなどが含まれる。学習モデルLM1の詳細については後に詳述する。 The storage unit 102 may include a learning model LM1 for estimating the load weight of the specially equipped vehicle 1 from the measurement data including the amount of distortion. The learning model LM1 is configured to output a calculation result regarding the load weight when measurement data including a strain amount is input. The learning model LM1 is defined by its definition information. The definition information of the learning model LM1 includes, for example, information defining the structure of the learning model LM1 (type and type of layer, number of nodes, etc.) and parameters such as a coupling load determined by learning. The details of the learning model LM1 will be described in detail later.
 操作部103は、スイッチやボタンなどにより構成されており、各種の操作を受付ける。制御部101は、操作部103を通じて受付けた操作に基づき、適宜の処理を実行する。なお、本実施の形態では、推定装置100が操作部103を備える構成としたが、操作部103は必須ではなく、外部に接続された機器や通信部106を介して操作を受付ける構成であってもよい。 The operation unit 103 is composed of switches, buttons, etc., and accepts various operations. The control unit 101 executes an appropriate process based on the operation received through the operation unit 103. In the present embodiment, the estimation device 100 is provided with the operation unit 103, but the operation unit 103 is not indispensable, and the operation is received via an externally connected device or communication unit 106. May be good.
 入力部104は、各種センサを接続するためのインタフェースを備え、歪センサ81、傾斜計82、温度計83、圧力計84などのセンサが接続される。入力部104には、これらのセンサが有線によって接続されてもよく、無線によって接続されてもよい。入力部104には、歪センサ81より出力される歪量に係る計測データ、傾斜計82より出力される特装車1の傾斜に係る計測データ、温度計83より出力される温度に係る計測データ、圧力計84より出力される油圧シリンダ52のシリンダ圧に係る計測データ等が適宜入力される。 The input unit 104 is provided with an interface for connecting various sensors, and sensors such as a strain sensor 81, an inclinometer 82, a thermometer 83, and a pressure gauge 84 are connected. These sensors may be connected to the input unit 104 by wire or wirelessly. The input unit 104 contains measurement data related to the amount of strain output from the strain sensor 81, measurement data related to the inclination of the specially equipped vehicle 1 output from the tilt meter 82, measurement data related to the temperature output from the thermometer 83, and pressure. Measurement data and the like related to the cylinder pressure of the hydraulic cylinder 52 output from the total 84 are appropriately input.
 出力部105は、液晶モニタなどの表示装置120を接続するための出力インタフェースを備える。表示装置120は、例えばキャブ20の運転席近傍に設けられる。代替的に、表示装置120は、フロントパネル41の後面側に設けられてもよい。出力部105が備える出力インタフェースは、アナログ形式の映像信号を出力する出力インタフェースであってもよく、DVI(Digital Visual Interface)やHDMI(High-Definition Multimedia Interface、登録商標)などのデジタル形式の映像信号を出力する出力インタフェースであってもよい。出力部105は、例えば、学習モデルLM1を用いた積載重量の推定結果を表示装置120に表示させるべく、表示データを表示装置120へ出力する。 The output unit 105 includes an output interface for connecting a display device 120 such as a liquid crystal monitor. The display device 120 is provided near the driver's seat of the cab 20, for example. Alternatively, the display device 120 may be provided on the rear surface side of the front panel 41. The output interface included in the output unit 105 may be an output interface that outputs an analog format video signal, and is a digital format video signal such as DVI (Digital Visual Interface) or HDMI (High-Definition Multimedia Interface, registered trademark). It may be an output interface that outputs. For example, the output unit 105 outputs display data to the display device 120 so that the display device 120 can display the estimation result of the loaded weight using the learning model LM1.
 本実施の形態では、推定装置100の外部に表示装置120を接続する構成としたが、推定装置100が表示装置120を搭載するものであってもよい。 In the present embodiment, the display device 120 is connected to the outside of the estimation device 100, but the estimation device 100 may be equipped with the display device 120.
 通信部106は、外部機器との間で各種のデータを送受信する通信インタフェースを備える。推定装置100が通信部106を介して通信する相手先の一例は、特装車1に搭載される各種ECU(Electronic Controller Unit)やPLC(Programmable Logic Controller)である。この場合、通信部106は、特装車1に搭載される各種ECUやPLCと通信するために、例えばRS-485に準拠した通信ポートを備えてもよく、CAN(Controller Area Network)などの車内通信用の通信規格に準拠した通信インタフェースを備えてもよい。推定装置100が通信部106を介して通信する相手先の他の例は、特装車1の外部に設置されるサーバ装置やユーザが所持する携帯端末などである。この場合、通信部106は、外部のサーバ装置などと通信するために、WiFi(登録商標)、3G、4G、5G、LTE(Long Term Evolution)等の無線通信の通信規格に準じた通信インタフェースを備えてもよい。 The communication unit 106 includes a communication interface for transmitting and receiving various data to and from an external device. An example of a partner with which the estimation device 100 communicates via the communication unit 106 is various ECUs (Electronic Controller Units) and PLCs (Programmable Logic Controllers) mounted on the specially equipped vehicle 1. In this case, the communication unit 106 may be provided with a communication port conforming to, for example, RS-485 in order to communicate with various ECUs and PLCs mounted on the specially equipped vehicle 1, and is used for in-vehicle communication such as CAN (Controller Area Network). A communication interface conforming to the communication standard of the above may be provided. Other examples of the other party with which the estimation device 100 communicates via the communication unit 106 are a server device installed outside the specially equipped vehicle 1 and a mobile terminal owned by the user. In this case, in order to communicate with an external server device or the like, the communication unit 106 provides a communication interface conforming to a wireless communication communication standard such as WiFi (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution). You may prepare.
 以下、学習モデルLM1について説明する。
 図6は学習モデルLM1の構成を説明する模式図である。本実施の形態における学習モデルLM1は、例えばサポートベクタ回帰モデルであり、各種計測データが入力される入力層と、入力層に入力された計測データに基づき所定の演算を行うカーネルを含む中間層と、中間層からの出力を結合し、演算結果を出力する出力層とを備える。
Hereinafter, the learning model LM1 will be described.
FIG. 6 is a schematic diagram illustrating the configuration of the learning model LM1. The learning model LM1 in the present embodiment is, for example, a support vector regression model, and includes an input layer into which various measurement data are input and an intermediate layer including a kernel that performs a predetermined operation based on the measurement data input to the input layer. , It is provided with an output layer that combines the outputs from the intermediate layer and outputs the calculation result.
 学習モデルLM1の入力層、中間層、及び出力層には、1つまたは複数のノードが存在し、各層のノードは前後の層に存在するノードと一方向に結合荷重で結合されている。なお、カーネルトリックを用いて非線形に拡張したサポートベクタマシンでは、中間層から出力層への結合荷重が学習により適応的に決定される。一方、入力層から中間層への結合荷重は固定であり、訓練データから機械的に求められる。 There are one or more nodes in the input layer, intermediate layer, and output layer of the learning model LM1, and the nodes of each layer are connected in one direction with the nodes existing in the previous and next layers by a coupling load. In a support vector machine that is non-linearly extended using kernel tricks, the coupling load from the intermediate layer to the output layer is adaptively determined by learning. On the other hand, the coupling load from the input layer to the intermediate layer is fixed and can be obtained mechanically from the training data.
 学習モデルLM1の入力層には歪量を含む計測データが入力される。例えば、図6に示すように、前輪右車軸の歪量(歪センサ81Aによって計測される歪量)、前輪左車軸の歪量(歪センサ81Bによって計測される歪量)、後輪右車軸の歪量(歪センサ81Cによって計測される歪量)、後輪左車軸の歪量(歪センサ81Dによって計測される歪量)、ロール及びピッチを含む傾斜(傾斜計82によって計測される傾斜)、並びに、環境温度(温度計83によって計測される温度)に係る計測データが学習モデルLM1の入力層に入力される。 Measurement data including the amount of distortion is input to the input layer of the learning model LM1. For example, as shown in FIG. 6, the strain amount of the front wheel right axle (the strain amount measured by the strain sensor 81A), the strain amount of the front wheel left axle (the strain amount measured by the strain sensor 81B), and the strain amount of the rear wheel right axle. Strain amount (strain amount measured by strain sensor 81C), strain amount of rear wheel left axle (strain amount measured by strain sensor 81D), inclination including roll and pitch (inclination measured by inclination meter 82), In addition, the measurement data related to the environmental temperature (the temperature measured by the thermometer 83) is input to the input layer of the learning model LM1.
 入力層に入力された計測データは、訓練データを用いて決定された結合荷重により重み付けされて中間層へ出力される。中間層は、入力層から入力されたデータに基づきカーネルを用いた演算を実行する。中間層の各カーネルにおいて演算されたデータは、学習によって決定された結合荷重により重み付けされて出力層へ出力される。出力層は、中間層から入力されたデータを結合することにより、積載重量に関する演算結果を出力する。ここで、出力層が出力する演算結果は、積載重量の推定値であってもよく、ある積載重量に該当する確率であってもよい。後者の場合、出力層は、複数のノードにより構成され、第1ノードからは積載重量が1トンである確率、第2ノードからは積載重量が2トンである確率、…、第Nノード(Nは2以上の整数)からは積載重量がNトンである確率といったように、ある積載重量である確率を出力すればよい。 The measurement data input to the input layer is weighted by the coupling load determined using the training data and output to the intermediate layer. The intermediate layer executes operations using the kernel based on the data input from the input layer. The data calculated in each kernel of the intermediate layer is weighted by the coupling load determined by learning and output to the output layer. The output layer outputs the calculation result regarding the load weight by combining the data input from the intermediate layer. Here, the calculation result output by the output layer may be an estimated value of the load weight, or may be a probability corresponding to a certain load weight. In the latter case, the output layer is composed of a plurality of nodes, and the probability that the load weight is 1 ton from the first node, the probability that the load weight is 2 tons from the second node, ..., The Nth node (N). Is an integer of 2 or more), it is sufficient to output the probability that the load weight is a certain load weight, such as the probability that the load weight is N tons.
 図6に示す学習モデルLM1は、歪センサ81によって計測される歪量、傾斜計82によって計測される傾斜、及び温度計83によって計測される環境温度に係る計測データの入力に応じて、積載重量に関する演算結果を出力する構成としたが、学習モデルLM1における入出力の関係は上記に限定されるものではなく、適宜設定することが可能である。例えば、学習モデルLM1は、圧力計84により計測される油圧シリンダ52のシリンダ圧を更に含む計測データの入力に応じて、積載重量に関する演算結果を出力する構成としてもよい。また、学習モデルLM1は、歪センサ81によって計測される歪量に係る計測データを入力とし、積載重量に関する演算結果を出力する構成としてもよい。更に、歪センサ81A~81Dの計測データのうち、選択した2つ又は3つの計測データを学習モデルLM1へ入力し、積載重量に関する演算結果を出力する構成としてもよい。また、学習モデルLM1は、歪量の計測データと、傾斜又は環境温度の計測データの何れか一方を入力とし、積載重量に関する演算結果を出力する構成としてもよい。更に、制御部101は、温度計83により計測される環境温度を用いて、歪センサ81によって計測される歪量を補正する前処理を行い、補正後の歪量を含むデータを学習モデルLM1へ入力してもよい。 The learning model LM1 shown in FIG. 6 has a load weight according to the input of measurement data relating to the strain amount measured by the strain sensor 81, the tilt measured by the inclinometer 82, and the environmental temperature measured by the thermometer 83. Although the configuration is such that the calculation result related to is output, the input / output relationship in the learning model LM1 is not limited to the above, and can be set as appropriate. For example, the learning model LM1 may be configured to output a calculation result regarding the load weight in response to input of measurement data including the cylinder pressure of the hydraulic cylinder 52 measured by the pressure gauge 84. Further, the learning model LM1 may be configured to input measurement data related to the amount of strain measured by the strain sensor 81 and output a calculation result related to the loaded weight. Further, the selected two or three measurement data among the measurement data of the strain sensors 81A to 81D may be input to the learning model LM1 and the calculation result regarding the load weight may be output. Further, the learning model LM1 may be configured to input either the measurement data of the strain amount or the measurement data of the inclination or the environmental temperature and output the calculation result regarding the load weight. Further, the control unit 101 performs preprocessing for correcting the strain amount measured by the strain sensor 81 using the environmental temperature measured by the thermometer 83, and transfers the data including the corrected strain amount to the learning model LM1. You may enter it.
 推定装置100は、運用を開始する前段階の学習フェーズにおいて、歪量を含む計測データを収集し、収集した計測データを訓練データに用いて学習することにより、上述したような学習モデルLM1を生成する。 The estimation device 100 generates the learning model LM1 as described above by collecting measurement data including the amount of strain and learning using the collected measurement data as training data in the learning phase in the stage before the start of operation. To do.
 図7は学習モデルLM1の生成手順を説明するフローチャートである。推定装置100の制御部101は、学習に先立ち、複数の歪センサ81により計測される歪量を含む計測データを収集する(ステップS101)。このとき、制御部101は、積載重量を固定して歪量を含む計測データを収集し、その積載重量について計測データが十分得られた場合、積載重量を変更し、変更した積載重量にて歪量を含む計測データを収集する。制御部101は、積載重量を変更しながら、順次計測データを収集すればよい。このようにして、積載重量を様々に変更したときの歪量を含む計測データが得られる。なお、歪量などを計測する際の特装車1の姿勢は、水平姿勢だけでなく、前下がり、後下がり、左下がり、右下がりといった様々な傾斜姿勢をとってもよい。積載重量については、重量が既知の物品を荷箱4に積載することによって与えてもよく、トラックスケールなどの計測器を用いて実測してもよい。ステップS101で収集した計測データは、記憶部102の計測値テーブルTB1に積載重量毎に記憶される。 FIG. 7 is a flowchart illustrating a procedure for generating the learning model LM1. The control unit 101 of the estimation device 100 collects measurement data including the amount of strain measured by the plurality of strain sensors 81 prior to learning (step S101). At this time, the control unit 101 fixes the load weight and collects measurement data including the amount of strain. When sufficient measurement data is obtained for the load weight, the control unit 101 changes the load weight and distorts with the changed load weight. Collect measurement data, including quantities. The control unit 101 may sequentially collect measurement data while changing the load weight. In this way, measurement data including the amount of strain when the load weight is variously changed can be obtained. The posture of the specially equipped vehicle 1 when measuring the amount of distortion or the like may be not only a horizontal posture but also various inclined postures such as front lowering, rear lowering, left lowering, and right lowering. The load weight may be given by loading an article having a known weight on the packing box 4, or may be actually measured using a measuring instrument such as a truck scale. The measurement data collected in step S101 is stored in the measurement value table TB1 of the storage unit 102 for each load weight.
 なお、ステップS101において収集する計測データの種類は、生成する学習モデルLM1の構成に応じて選択すればよい。例えば、歪量、傾斜、及び環境温度に係る計測データの入力に応じて、積載重量に関する演算結果を出力する学習モデルLM1を生成する場合、制御部101は、歪センサ81によって計測される歪量、傾斜計82によって計測される傾斜、及び温度計83によって計測される環境温度に係る計測データを収集すればよい。入出力の関係が上記とは異なる学習モデルLM1を生成する場合についても同様であり、例えば、歪量に係る計測データの入力に応じて、積載重量に関する演算結果を出力する学習モデルLM1を生成する場合、制御部101は、歪センサ81によって計測される歪量に係る計測データのみを収集してもよい。 The type of measurement data to be collected in step S101 may be selected according to the configuration of the learning model LM1 to be generated. For example, when generating the learning model LM1 that outputs the calculation result regarding the load weight in response to the input of the measurement data related to the strain amount, the inclination, and the ambient temperature, the control unit 101 controls the strain amount measured by the strain sensor 81. , The inclination measured by the inclinometer 82, and the measurement data related to the ambient temperature measured by the thermometer 83 may be collected. The same applies to the case where the learning model LM1 whose input / output relationship is different from the above is generated. For example, the learning model LM1 that outputs the calculation result regarding the load weight is generated in response to the input of the measurement data related to the strain amount. In this case, the control unit 101 may collect only the measurement data related to the amount of strain measured by the strain sensor 81.
 計測データの収集後、制御部101は、記憶部102から学習プログラムPG1を読み出して実行することにより、以下の処理を実行する。 After collecting the measurement data, the control unit 101 executes the following processing by reading the learning program PG1 from the storage unit 102 and executing it.
 制御部101は、計測値テーブルTB1から一組の訓練データを選択する(ステップS102)。訓練データは、同じ時間に計測された一連の計測データと、これらの計測データが得られたときの積載重量の値とを含む。 The control unit 101 selects a set of training data from the measured value table TB1 (step S102). The training data includes a series of measurement data measured at the same time and a load weight value when these measurement data are obtained.
 次いで、制御部101は、選択した訓練データを学習モデルLM1へ入力し(ステップS103)、学習モデルLM1による演算を実行する(ステップS104)。すなわち、制御部101は、学習モデルLM1の入力層を構成するノードに、歪量、傾斜、環境温度などの計測データを入力し、中間層のカーネルを用いた演算を実行し、演算結果を出力層から出力する処理を行う。なお、学習が開始される前の初期段階には、学習モデルLM1を記述する定義情報には初期値が与えられる。 Next, the control unit 101 inputs the selected training data to the learning model LM1 (step S103), and executes the calculation by the learning model LM1 (step S104). That is, the control unit 101 inputs measurement data such as strain amount, inclination, and ambient temperature to the nodes constituting the input layer of the learning model LM1, executes an operation using the kernel of the intermediate layer, and outputs the operation result. Performs the process of outputting from the layer. In the initial stage before the learning is started, an initial value is given to the definition information that describes the learning model LM1.
 次いで、制御部101は、ステップS104で得られた演算結果を評価し(ステップS105)、学習が完了したか否かを判断する(ステップS106)。具体的には、制御部101は、ステップS104で得られる演算結果と訓練データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、例えば、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する課程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断してもよい。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the training data. The control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function becomes less than or equal to the threshold value (or more than or equal to the threshold value), learning is completed. You may judge that you have done so. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了してないと判断した場合(S106:NO)、制御部101は、学習モデルLM1のノード間における結合荷重を更新して(ステップS107)、処理をステップS102へ戻し、別の訓練データを用いた学習を継続する。制御部101は、学習モデルLM1の出力層から入力層に向かって、ノード間の結合荷重を順次更新する誤差逆伝搬法を用いて、ノード間の結合荷重を更新することができる。 When it is determined that the learning is not completed (S106: NO), the control unit 101 updates the coupling load between the nodes of the learning model LM1 (step S107), returns the process to step S102, and another training data. Continue learning with. The control unit 101 can update the coupling load between the nodes by using the error back propagation method that sequentially updates the coupling load between the nodes from the output layer to the input layer of the learning model LM1.
 学習が完了したと判断した場合(S106:YES)、制御部101は、学習済みの学習モデルLM1として記憶部102に記憶させ(ステップS108)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S106: YES), the control unit 101 stores the learned learning model LM1 in the storage unit 102 (step S108), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る推定装置100は、積載重量が既知である場合の歪量を含む計測データを収集し、積載重量及び計測データを訓練データに用いることにより、学習モデルLM1を生成することができる。 As described above, the estimation device 100 according to the present embodiment collects measurement data including the amount of strain when the load weight is known, and uses the load weight and the measurement data as training data to obtain the learning model LM1. Can be generated.
 なお、本実施の形態では、推定装置100において学習モデルLM1を生成する構成としたが、学習モデルLM1を生成する外部サーバ(不図示)を設け、外部サーバにて学習モデルLM1を生成してもよい。この場合、外部サーバは、特装車1により収集される訓練データを通信等により取得し、取得した訓練データを用いて学習モデルLM1を生成すればよい。また、推定装置100は、通信等により、外部サーバから学習済みの学習モデルLM1を取得し、取得した学習モデルLM1を記憶部102に記憶させればよい。 In the present embodiment, the estimation device 100 is configured to generate the learning model LM1, but an external server (not shown) for generating the learning model LM1 may be provided and the learning model LM1 may be generated by the external server. Good. In this case, the external server may acquire the training data collected by the specially equipped vehicle 1 by communication or the like, and generate the learning model LM1 using the acquired training data. Further, the estimation device 100 may acquire the learned learning model LM1 from the external server by communication or the like, and store the acquired learning model LM1 in the storage unit 102.
 推定装置100は、運用フェーズにおいて、歪量を含む計測データを学習済みの学習モデルLM1へ入力することにより、積載重量を推定することができる。 In the operation phase, the estimation device 100 can estimate the load weight by inputting the measurement data including the strain amount into the trained learning model LM1.
 図8は学習モデルLM1を用いた積載重量の推定手順を説明するフローチャートである。推定装置100の制御部101は、記憶部102から推定プログラムPG2を読み出して実行することにより、以下の処理を実行する。 FIG. 8 is a flowchart illustrating a procedure for estimating the load weight using the learning model LM1. The control unit 101 of the estimation device 100 reads the estimation program PG2 from the storage unit 102 and executes it to execute the following processing.
 制御部101は、入力部104を通じて、複数の歪センサ81により計測される歪量を含む計測データを取得した場合、取得した計測データを学習モデルLM1へ入力し(ステップS121)、学習モデルLM1による演算を実行する(ステップS122)。このとき、制御部101は、取得した計測データを学習モデルLM1の入力層を構成するノードに与える。入力層に与えられたデータは、訓練データを用いて決定された結合荷重により重み付けされて中間層へ出力される。中間層では、カーネルを用いた演算が実行され、学習によって決定された結合荷重により重み付けされて出力層へ出力される。出力層のノードは積載重量に関する演算結果を出力する。 When the control unit 101 acquires measurement data including the amount of strain measured by the plurality of strain sensors 81 through the input unit 104, the control unit 101 inputs the acquired measurement data to the learning model LM1 (step S121), and the learning model LM1 is used. The operation is executed (step S122). At this time, the control unit 101 gives the acquired measurement data to the nodes constituting the input layer of the learning model LM1. The data given to the input layer is weighted by the coupling load determined using the training data and output to the intermediate layer. In the intermediate layer, operations using the kernel are executed, weighted by the coupling load determined by learning, and output to the output layer. The node of the output layer outputs the calculation result regarding the load weight.
 制御部101は、学習モデルLM1の演算結果に基づき積載重量を推定する(ステップS123)。学習モデルLM1が積載重量の推定値を出力する構成としてある場合、制御部101は、学習モデルLM1の出力値を積載重量として推定すればよい。また、学習モデルLM1がある特定の積載重量である確率を出力する構成としてある場合、制御部101は、確率が最も高い積載重量の値を選択することにより、積載重量を推定することができる。 The control unit 101 estimates the load weight based on the calculation result of the learning model LM1 (step S123). When the learning model LM1 is configured to output the estimated value of the loaded weight, the control unit 101 may estimate the output value of the learning model LM1 as the loaded weight. Further, when the learning model LM1 is configured to output the probability that the load weight is a specific load weight, the control unit 101 can estimate the load weight by selecting the value of the load weight having the highest probability.
 次いで、制御部101は、推定した積載重量を報知する(ステップS124)。このとき、制御部101は、推定した積載重量の情報を出力部105より出力し、表示装置120に表示させる。図9は積載重量の表示例を示す模式図である。図9では、積載重量の推定値、積載率、及び推定日時の情報を文字情報として表示装置120に表示させた例を示している。ここで、積載重量の推定値は、上述した学習モデルLM1を用いて推定した積載重量の値である。積載率は、上限値に対する積載重量(推定値)の割合として算出される値である。推定日時は、学習モデルLM1を用いて積載重量を推定した日時であり、例えば制御部101の内蔵クロックから得られる情報である。制御部101は、学習モデルLM1を用いて推定した積載重量の推定値、上限値に対する割合として算出される積載率、内蔵クロックから得られる日時の情報に基づき、表示画面のデータを生成し、生成した表示画面のデータを表示装置120へ出力することにより、図9に示すような画面を表示装置120に表示させることができる。 Next, the control unit 101 notifies the estimated load weight (step S124). At this time, the control unit 101 outputs the estimated load weight information from the output unit 105 and displays it on the display device 120. FIG. 9 is a schematic view showing a display example of the loaded weight. FIG. 9 shows an example in which the display device 120 displays the estimated value of the loaded weight, the loading rate, and the information of the estimated date and time as character information. Here, the estimated value of the load weight is the value of the load weight estimated using the learning model LM1 described above. The loading rate is a value calculated as a ratio of the loading weight (estimated value) to the upper limit value. The estimated date and time is the date and time when the load weight is estimated using the learning model LM1, and is information obtained from, for example, the built-in clock of the control unit 101. The control unit 101 generates and generates display screen data based on the estimated value of the load weight estimated using the learning model LM1, the load rate calculated as a ratio to the upper limit value, and the date and time information obtained from the built-in clock. By outputting the data of the displayed display screen to the display device 120, the screen as shown in FIG. 9 can be displayed on the display device 120.
 なお、本実施の形態では、推定した積載重量を文字情報として表示装置120に表示させる構成したが、グラフ表示やメータ表示などにより、積載重量の推定値を模式的に表示してもよい。
 また、本実施の形態では、推定した積載重量を表示装置120に表示させる構成としたが、推定した積載重量の情報を通信部106より送信することにより、ユーザ端末等に通知してもよい。推定装置100にスピーカなどの音声出力装置が接続されている場合、制御部101は、推定した積載重量の情報を音声として出力してもよい。
In the present embodiment, the estimated load weight is displayed on the display device 120 as character information, but the estimated value of the load weight may be schematically displayed by a graph display, a meter display, or the like.
Further, in the present embodiment, the estimated load weight is displayed on the display device 120, but the user terminal or the like may be notified by transmitting the estimated load weight information from the communication unit 106. When a voice output device such as a speaker is connected to the estimation device 100, the control unit 101 may output the estimated load weight information as voice.
 以下、計測データの実測値、及び学習モデルLM1による推定結果の一例を示す。
 図10は計測結果を示すグラフである。図10に示すグラフは、特装車1が既知の重量(この例では4000kg)の積載物を積載して一般道を走行し、到着した目的地において積載物を排出して、さらに積載物が無い状態で走行する間において、停車時に歪センサ81、傾斜計82、温度計83を用いて、歪量、傾斜角度、及び環境温度を計測した結果を示している。グラフの横軸は経過時間(より正確には計測タイミング)を表し、縦軸は歪量(μST)、傾斜角度(度)、又は環境温度(℃)を表す。
The actual measurement values of the measurement data and an example of the estimation result by the learning model LM1 are shown below.
FIG. 10 is a graph showing the measurement results. The graph shown in FIG. 10 shows a state in which the specially equipped vehicle 1 carries a load of a known weight (4000 kg in this example), travels on a general road, discharges the load at the destination where it arrives, and has no load. The results of measuring the amount of strain, the tilt angle, and the environmental temperature using the strain sensor 81, the inclinometer 82, and the thermometer 83 when the vehicle is stopped are shown. The horizontal axis of the graph represents the elapsed time (more accurately, the measurement timing), and the vertical axis represents the strain amount (μST), the inclination angle (degrees), or the environmental temperature (° C.).
 図10に示すグラフにおいて、前輪右車軸の歪量は、前輪22Fの車軸23Fの右端付近に取り付けられた歪センサ81Aにより計測された歪量を表す。同様に、前輪左車軸、後輪右車軸、後輪左車軸の歪量は、前輪22Fの車軸23Fの左端付近、後輪22Rの車軸23Rの右端付近、後輪22Rの車軸23Rの左端付近にそれぞれ取り付けられた歪センサ81B~81Dにより計測された歪量を表す。また、傾斜(ロール及びピッチ)は、傾斜計82により計測された特装車1の傾斜角度(ロール及びピッチ)を表し、環境温度は、温度計83により計測された温度を表す。図10に示すように、歪センサ81により計測される歪量は、特装車1が前後方向及び左右方向に±5度の範囲で傾斜した場合の計測値、環境温度が様々に変化した場合の計測値を含む。 In the graph shown in FIG. 10, the strain amount of the front wheel right axle represents the strain amount measured by the strain sensor 81A attached near the right end of the axle 23F of the front wheel 22F. Similarly, the amount of distortion of the front left axle, the rear right axle, and the rear left axle is near the left end of the front wheel 22F axle 23F, near the right end of the rear wheel 22R axle 23R, and near the left end of the rear wheel 22R axle 23R. It represents the amount of strain measured by the strain sensors 81B to 81D attached to each. The inclination (roll and pitch) represents the inclination angle (roll and pitch) of the specially equipped vehicle 1 measured by the inclinometer 82, and the environmental temperature represents the temperature measured by the thermometer 83. As shown in FIG. 10, the amount of strain measured by the strain sensor 81 is a measured value when the specially equipped vehicle 1 is tilted in the front-rear direction and the left-right direction within a range of ± 5 degrees, and is measured when the environmental temperature changes variously. Includes a value.
 なお、図10の例において、歪量、傾斜角度、及び環境温度の計測回数は4809回であり、各回において計測された計測値は計測値テーブルTB1に記憶される。 In the example of FIG. 10, the number of times the strain amount, the inclination angle, and the environmental temperature are measured is 4809 times, and the measured values measured at each time are stored in the measured value table TB1.
 図11は学習モデルLM1の推定結果を示すグラフである。グラフの横軸は経過時間を表し、縦軸は積載重量の推定値(kg)を表す。図11の例では、積載重量が4000kgであるときの計測データ(図10を参照)の一部と、積載重量が0kgであるときの計測データ(不図示)の一部とを訓練データに用いて、学習モデルLM1を生成し、残りの計測データを学習済みの学習モデルLM1に入力することにより、特装車1の積載重量を推定した。より具体的には、計測された歪量、傾斜角度、及び環境温度の4809組の計測値のうち、70%を訓練データに用いて学習モデルLM1を生成し、残りの30%を学習モデルLM1に入力して特装車1の積載重量を推定した。なお、計測データに関しては、積載重量が4000kgと0kgだけに限らず、他の積載重量に基づく計測データを用いることも可能である。 FIG. 11 is a graph showing the estimation result of the learning model LM1. The horizontal axis of the graph represents the elapsed time, and the vertical axis represents the estimated load weight (kg). In the example of FIG. 11, a part of the measurement data (see FIG. 10) when the load weight is 4000 kg and a part of the measurement data (not shown) when the load weight is 0 kg are used as training data. Then, the learning model LM1 was generated, and the remaining measurement data was input to the trained learning model LM1 to estimate the load weight of the specially equipped vehicle 1. More specifically, of the 4809 sets of measured values of strain amount, tilt angle, and environmental temperature, 70% is used for training data to generate a learning model LM1, and the remaining 30% is a learning model LM1. The load weight of the specially equipped vehicle 1 was estimated by inputting to. Regarding the measurement data, the load weight is not limited to 4000 kg and 0 kg, and measurement data based on other load weights can also be used.
 学習済みの学習モデルLM1を用いて推定した推定結果を実線(補正後)のグラフにより示す。また、参考として、従来の自重計により計測した積載重量の計測結果を破線(補正前)のグラフにより示す。特装車1の積載重量を4000kgとしたとき、従来の自重計は、およそ2200kgから4500kgの計測値を示しており、中央値を3350kgとして±1150kgの誤差を有していることが分かる。これに対し、学習モデルLM1を用いて特装車1の積載重量を推定した結果、およそ4000±50kgの推定値が得られており、従来の自重計と比較して精度良く積載重量を推定できていることが分かる。 The estimation result estimated using the learned learning model LM1 is shown by a solid line (corrected) graph. In addition, as a reference, the measurement result of the loaded weight measured by the conventional self-weight meter is shown by a graph of a broken line (before correction). When the load weight of the specially equipped vehicle 1 is 4000 kg, the conventional self-weight scale shows a measured value of about 2200 kg to 4500 kg, and it can be seen that the median value is 3350 kg and an error of ± 1150 kg is obtained. On the other hand, as a result of estimating the load weight of the specially equipped vehicle 1 using the learning model LM1, an estimated value of about 4000 ± 50 kg is obtained, and the load weight can be estimated more accurately than the conventional self-weight meter. You can see that.
 なお、図11に示す推定結果は、積載重量が4000kgであるときの計測データの一部と、積載重量が0kgであるときの計測データの一部とを訓練データに用いて生成した学習モデルLM1による推定結果を示したものであるが、積載重量を様々に変更して計測データを収集し、収集した計測データを用いて学習モデルLM1を生成することにより、様々な積載重量を推定することが可能である。 The estimation result shown in FIG. 11 is a learning model LM1 generated by using a part of the measurement data when the load weight is 4000 kg and a part of the measurement data when the load weight is 0 kg as training data. Although the estimation results are shown by, various loading weights can be estimated by collecting measurement data by changing the loading weight in various ways and generating a learning model LM1 using the collected measurement data. It is possible.
 また、図11では、歪センサ81によって計測される歪量、傾斜計82によって計測される傾斜、及び温度計83によって計測される環境温度に係る計測データの入力に応じて、積載重量に関する演算結果を出力するよう構成された学習モデルLM1を用いて積載重量を推定した結果を示したが、学習モデルLM1における入出力の関係は上記に限定されるものではなく、適宜設定することが可能である。上述したように、学習モデルLM1は、圧力計84により計測される油圧シリンダ52のシリンダ圧を更に含む計測データの入力に応じて、積載重量に関する演算結果を出力する構成としてもよい。また、学習モデルLM1は、歪センサ81によって計測される歪量に係る計測データを入力とし、積載重量に関する演算結果を出力する構成としてもよい。更に、歪センサ81A~81Dの計測データのうち、選択した2つ又は3つの計測データを学習モデルLM1へ入力し、積載重量に関する演算結果を出力する構成としてもよい。また、学習モデルLM1は、歪量の計測データと、傾斜又は環境温度の計測データの何れか一方を入力とし、積載重量に関する演算結果を出力する構成としてもよい。 Further, in FIG. 11, the calculation result regarding the load weight is obtained according to the input of the measurement data relating to the strain amount measured by the strain sensor 81, the inclination measured by the inclinometer 82, and the environmental temperature measured by the thermometer 83. The result of estimating the load weight using the learning model LM1 configured to output the above is shown, but the input / output relationship in the learning model LM1 is not limited to the above and can be set as appropriate. .. As described above, the learning model LM1 may be configured to output the calculation result regarding the load weight in response to the input of the measurement data including the cylinder pressure of the hydraulic cylinder 52 measured by the pressure gauge 84. Further, the learning model LM1 may be configured to input measurement data related to the amount of strain measured by the strain sensor 81 and output a calculation result related to the loaded weight. Further, the selected two or three measurement data among the measurement data of the strain sensors 81A to 81D may be input to the learning model LM1 and the calculation result regarding the load weight may be output. Further, the learning model LM1 may be configured to input either the measurement data of the strain amount or the measurement data of the inclination or the environmental temperature and output the calculation result regarding the load weight.
 以上のように、本実施の形態では、歪量を含む計測データと積載重量との関係が学習された学習モデルLM1を用いることにより、特装車1の傾斜の有無に関わらず、積載重量を精度良く推定することができる。 As described above, in the present embodiment, by using the learning model LM1 in which the relationship between the measurement data including the amount of strain and the load weight is learned, the load weight can be accurately measured regardless of the inclination of the specially equipped vehicle 1. Can be estimated.
 なお、本実施の形態では、学習モデルLM1の一例としてサポートベクタ回帰モデルについて説明したが、線形回帰、ロジスティック回帰等の回帰分析手法を用いてもよい。また、決定木、回帰木、ランダムフォレスト、勾配ブースティング木等の探索木を用いた手法、単純ベイズ等を含むベイズ推定法、AR(Auto Regressive)、MA(Moving Average)、状態空間モデル等を含む時系列予測手法、K近傍法等を含むクラスタリング手法、ブースティング、バギング等を含むアンサンブル学習を用いた手法、階層型クラスタリング、非階層型クラスタリング、トピックモデル等を含むクラスタリング手法、アソシエーション分析、強調フィルタリング等を含むその他の手法により学習された学習モデルを用いてもよい。また、学習モデルLM1を、深層学習によるニューラルネットワーク、畳み込みニューラルネットワーク、再帰型ニューラルネットワークなどにより構成してもよい。 In the present embodiment, the support vector regression model has been described as an example of the learning model LM1, but a regression analysis method such as linear regression or logistic regression may be used. In addition, methods using search trees such as decision trees, regression trees, random forests, and gradient boosting trees, Bayesian estimation methods including simple Bayes, AR (AutoRegressive), MA (MovingAverage), state space models, etc. Time series prediction method including, clustering method including K neighborhood method, method using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering method including topic model, association analysis, emphasis A learning model trained by other methods including filtering and the like may be used. Further, the learning model LM1 may be configured by a neural network by deep learning, a convolutional neural network, a recurrent neural network, or the like.
(実施の形態2)
 実施の形態1では、車軸23F,23Rに取り付けられた歪センサ81から歪量に係る計測データを取得する構成としたが、歪センサ81の取り付け箇所は、車軸23F,23Rに限定されるものではない。
 実施の形態2では、シャシフレーム21に固定される構造物に歪センサ81を取り付けた構成について説明する。
(Embodiment 2)
In the first embodiment, the measurement data related to the amount of strain is acquired from the strain sensors 81 attached to the axles 23F and 23R, but the attachment location of the strain sensor 81 is not limited to the axles 23F and 23R. Absent.
In the second embodiment, a configuration in which the strain sensor 81 is attached to the structure fixed to the chassis frame 21 will be described.
 図12は実施の形態2に係る特装車1の全体構成を示す側面図である。図12に示す特装車1は、歪センサ81の取り付け箇所のみが実施の形態1と異なる。実施の形態2における歪センサ81は、シャシフレーム21に固定される構造物の複数箇所に取り付けられる。シャシフレーム21に固定される構造物の一例はサブフレーム30である。図12の例は、このサブフレーム30の前後方向に離隔した2箇所に歪センサ81を取り付けた構成を示している。 FIG. 12 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the second embodiment. The specially equipped vehicle 1 shown in FIG. 12 differs from the first embodiment only in the attachment location of the strain sensor 81. The strain sensor 81 according to the second embodiment is attached to a plurality of locations of the structure fixed to the chassis frame 21. An example of a structure fixed to the chassis frame 21 is a subframe 30. The example of FIG. 12 shows a configuration in which strain sensors 81 are attached to two locations separated in the front-rear direction of the subframe 30.
 なお、図12では、サブフレーム30の前後方向に離隔した2箇所に歪センサ81を取り付ける構成としたが、特装車1の前後方向の中心線に対して左右対称の2箇所に歪センサ81を取り付けてもよい。また、取り付ける歪センサ81の個数は2個に限定されるものではなく、3箇所以上の歪センサ81が取り付けられてもよい。更に、歪センサ81を取り付けるための専用ブラケットを用意し、専用ブラケットを介して歪センサ81をサブフレーム30に取り付けてもよい。 In FIG. 12, the strain sensors 81 are attached to two locations separated in the front-rear direction of the subframe 30, but the strain sensors 81 are attached to two locations symmetrical with respect to the center line in the front-rear direction of the specially equipped vehicle 1. You may. Further, the number of strain sensors 81 to be attached is not limited to two, and three or more strain sensors 81 may be attached. Further, a dedicated bracket for attaching the strain sensor 81 may be prepared, and the strain sensor 81 may be attached to the subframe 30 via the dedicated bracket.
 推定装置100は、サブフレーム30に取り付けられた歪センサ81により計測される歪量を含む計測データを用いて、実施の形態1と同様の学習モデルLM1を生成し、生成した学習モデルLM1を用いて、荷箱4に積載される積載物の重量を推定することができる。 The estimation device 100 generates a learning model LM1 similar to that of the first embodiment by using the measurement data including the strain amount measured by the strain sensor 81 attached to the subframe 30, and uses the generated learning model LM1. Therefore, the weight of the load loaded on the packing box 4 can be estimated.
 以上のように、実施の形態2では、歪センサ81をサブフレーム30に取り付ける構成としたので、トラックシャシ2に対して何ら改変を加えることなく、積載重量の推定が可能となる。 As described above, in the second embodiment, since the strain sensor 81 is attached to the subframe 30, the load weight can be estimated without making any modification to the truck chassis 2.
(実施の形態3)
 実施の形態1では、学習モデルLM1を用いて特装車1の積載重量を推定する構成としたが、例えばトラックスケールを用いることにより、積載物を含む特装車1の全重量を実測することができるので、荷を積んでいないときの車両重量が既知であれば、トラックスケールにより実測された全重量から車両重量を差し引くことにより、積載重量を求めることができる。
 実施の形態3では、学習モデルLM1を用いて推定した積載重量と、トラックスケールを用いて求めた積載重量との乖離度を判定し、乖離度に係る情報を出力する構成について説明する。なお、特装車1の全体構成、及び推定装置100の内部構成等については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 3)
In the first embodiment, the load weight of the specially equipped vehicle 1 is estimated using the learning model LM1. However, for example, by using a truck scale, the total weight of the specially equipped vehicle 1 including the load can be actually measured. If the vehicle weight when not loaded is known, the loaded weight can be obtained by subtracting the vehicle weight from the total weight actually measured by the truck scale.
In the third embodiment, a configuration will be described in which the degree of deviation between the loaded weight estimated by using the learning model LM1 and the loaded weight obtained by using the truck scale is determined, and information related to the degree of deviation is output. Since the overall configuration of the specially equipped vehicle 1 and the internal configuration of the estimation device 100 are the same as those in the first embodiment, the description thereof will be omitted.
 図13は実施の形態3における推定装置100が実行する処理の手順について説明するフローチャートである。推定装置100の制御部101は、トラックスケールによる積載重量の実測値を取得する(ステップS301)。トラックスケールを用いることにより、積載物を含む特装車1の全重量を実測することができるので、トラックスケールにより実測された全重量から車両重量を差し引くことにより、積載重量を求めることができる。車両重量については既知であるとする。なお、積載重量の計算は制御部101が行ってもよく、外部端末等において行ってもよい。外部端末等で計算された積載重量を取得する場合、操作部103を通じて数値入力を受け付けてもよく、用紙上に印刷された実測値を外部端末等により読み取り、読み取った実測値を外部端末等から通信により取得してもよい。 FIG. 13 is a flowchart illustrating a procedure of processing executed by the estimation device 100 in the third embodiment. The control unit 101 of the estimation device 100 acquires the measured value of the loaded weight by the truck scale (step S301). Since the total weight of the specially equipped vehicle 1 including the load can be measured by using the truck scale, the load weight can be obtained by subtracting the vehicle weight from the total weight measured by the truck scale. It is assumed that the vehicle weight is known. The load weight may be calculated by the control unit 101 or at an external terminal or the like. When acquiring the loaded weight calculated by an external terminal or the like, a numerical input may be accepted through the operation unit 103, the measured value printed on the paper is read by the external terminal or the like, and the read measured value is read from the external terminal or the like. It may be acquired by communication.
 次いで、制御部101は、学習モデルLM1による積載重量の推定結果を取得する(ステップS302)。すなわち、制御部101は、実施の形態1と同様に、歪量を含む計測データを学習モデルLM1に入力し、学習モデルLM1を用いた演算を行うことにより、積載重量の推定結果を取得する。 Next, the control unit 101 acquires the estimation result of the loaded weight by the learning model LM1 (step S302). That is, the control unit 101 acquires the estimation result of the loaded weight by inputting the measurement data including the strain amount into the learning model LM1 and performing the calculation using the learning model LM1 as in the first embodiment.
 次いで、制御部101は、トラックスケールより得られる積載重量の実測値と、学習モデルLM1より得られる積載重量の推定値との乖離度を判定する(ステップS303)。制御部101は、積載重量の推定値から実測値を差し引くことにより、乖離度を判定してもよく、積載重量の推定値から実測値を差し引いた値を実測値で除算することにより乖離度を判定してもよい。 Next, the control unit 101 determines the degree of deviation between the actually measured value of the loaded weight obtained from the truck scale and the estimated value of the loaded weight obtained from the learning model LM1 (step S303). The control unit 101 may determine the degree of divergence by subtracting the measured value from the estimated value of the loaded weight, and divides the value obtained by subtracting the measured value from the estimated value of the loaded weight by the measured value to determine the degree of divergence. You may judge.
 次いで、制御部101は、ステップS303の判定結果を出力する(ステップS304)。このとき、制御部101は、乖離の度合いを示す情報を出力部105より出力することにより、表示装置120に表示させてもよく、通信部106より外部端末等へ通知してもよい。また、制御部101は、積載重量を推定した日時を示す日時情報、特装車1を識別する識別情報等を併せて外部端末等へ通知してもよい。 Next, the control unit 101 outputs the determination result of step S303 (step S304). At this time, the control unit 101 may display the information indicating the degree of deviation from the output unit 105 on the display device 120, or may notify the external terminal or the like from the communication unit 106. Further, the control unit 101 may notify the external terminal or the like together with the date and time information indicating the date and time when the loaded weight is estimated, the identification information for identifying the specially equipped vehicle 1, and the like.
 実測値と推定値との乖離度が大きい場合、学習モデルLM1により精度良く推定できていない可能性があるので、学習モデルLM1を再学習したり、歪センサ81等の取り付け位置を変更したり、交換したりするなどの対処が可能となる。 If the degree of deviation between the measured value and the estimated value is large, the learning model LM1 may not be able to estimate accurately. Therefore, the learning model LM1 may be relearned, or the mounting position of the strain sensor 81 or the like may be changed. It is possible to take measures such as exchanging.
 また、特装車1の積載重量を計測する自重計の検査が要求されている場合、推定装置100において推定した積載重量、トラックスケールにより実測された積載重量、積載重量を推定した日時、特装車1を識別する識別子などの情報を、検定機関の端末へ通知し、検定機関より自重計技術基準適合証の交付を受けるようにしてもよい。 Further, when the inspection of the self-weight meter for measuring the load weight of the specially equipped vehicle 1 is required, the load weight estimated by the estimation device 100, the load weight actually measured by the truck scale, the date and time when the load weight is estimated, and the specially equipped vehicle 1 are identified. Information such as an identifier to be used may be notified to the terminal of the certification body, and the certification body may issue a certificate of conformity with the technical standard for the weight scale.
(実施の形態4)
 実施の形態4では、学習モデルLM1を再学習する構成について説明する。
 なお、特装車1の全体構成、及び推定装置100の内部構成等については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 4)
In the fourth embodiment, a configuration for re-learning the learning model LM1 will be described.
Since the overall configuration of the specially equipped vehicle 1 and the internal configuration of the estimation device 100 are the same as those in the first embodiment, the description thereof will be omitted.
 図14は学習モデルLM1の再学習手順を説明するフローチャートである。制御部101は、運用フェーズ開始後の適宜のタイミングにて、トラックスケールによる積載重量の実測値と、学習モデルLM1による推定値とを比較する(ステップS401)。なお、実測値は、操作部103による入力を受付けることによって取得してもよく、用紙上に印刷されたトラックスケールの実測値を外部端末等により読み取り、読み取った値を外部端末等から通信により取得してもよい。 FIG. 14 is a flowchart illustrating a re-learning procedure of the learning model LM1. The control unit 101 compares the measured value of the loaded weight by the truck scale with the estimated value by the learning model LM1 at an appropriate timing after the start of the operation phase (step S401). The measured value may be acquired by accepting the input from the operation unit 103, the measured value of the track scale printed on the paper is read by an external terminal or the like, and the read value is acquired by communication from the external terminal or the like. You may.
 制御部101は、比較結果に基づき、再学習を実行するか否かを判断する(ステップS402)。学習モデルLM1による推定値が実測値に近い場合(例えば、両者の差が20%未満である場合)、制御部101は、再学習を実行しないと判断し(S402:NO)、本フローチャートによる処理を終了する。 The control unit 101 determines whether or not to execute re-learning based on the comparison result (step S402). When the estimated value by the learning model LM1 is close to the measured value (for example, when the difference between the two is less than 20%), the control unit 101 determines that re-learning is not executed (S402: NO), and processes according to this flowchart. To finish.
 一方、学習モデルLM1による推定値が実測値に近くない場合(例えば、両者の差が20%以上である場合)、制御部101は、再学習を実行すると判断する(S402:YES)。 On the other hand, when the estimated value by the learning model LM1 is not close to the measured value (for example, when the difference between the two is 20% or more), the control unit 101 determines that the re-learning is executed (S402: YES).
 再学習すると判断した場合、制御部101は、計測データの収集を行う(ステップS403)。すなわち、実施の形態1と同様に、積載重量を固定した上で、歪センサ81、傾斜計82、温度計83、圧力計84を用いて、歪量、傾斜、環境温度、シリンダ圧を計測すればよい。収集した計測データは計測値テーブルTB1に記憶される。 If it is determined to relearn, the control unit 101 collects measurement data (step S403). That is, as in the first embodiment, after fixing the load weight, the strain amount, the inclination, the environmental temperature, and the cylinder pressure are measured by using the strain sensor 81, the inclinometer 82, the thermometer 83, and the pressure gauge 84. Just do it. The collected measurement data is stored in the measurement value table TB1.
 次いで、制御部101は、計測値テーブルTB1から一組の訓練データを選択する(ステップS404)。訓練データは、同じ時間に計測された一連の計測データと、これらの計測データが得られたときの積載重量の値とを含む。 Next, the control unit 101 selects a set of training data from the measured value table TB1 (step S404). The training data includes a series of measurement data measured at the same time and a load weight value when these measurement data are obtained.
 次いで、制御部101は、選択した訓練データを学習モデルLM1へ入力し(ステップS405)、学習モデルLM1による演算を実行する(ステップS406)。すなわち、制御部101は、学習モデルLM1の入力層を構成するノードに、歪量、傾斜、環境温度などの計測データを入力し、中間層のカーネルを用いた演算を実行し、演算結果を出力層から出力する処理を行う。なお、再学習を開始する前に、学習モデルLM1を記述する定義情報に初期値を与えてもよい。 Next, the control unit 101 inputs the selected training data to the learning model LM1 (step S405), and executes the calculation by the learning model LM1 (step S406). That is, the control unit 101 inputs measurement data such as strain amount, inclination, and ambient temperature to the nodes constituting the input layer of the learning model LM1, executes an operation using the kernel of the intermediate layer, and outputs the operation result. Performs the process of outputting from the layer. Before starting the re-learning, an initial value may be given to the definition information that describes the learning model LM1.
 次いで、制御部101は、ステップS406で得られた演算結果を評価し(ステップS407)、学習が完了したか否かを判断する(ステップS408)。具体的には、制御部101は、ステップS406で得られる演算結果と訓練データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、例えば、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する課程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断してもよい。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S406 (step S407), and determines whether or not the learning is completed (step S408). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S406 and the training data. The control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function becomes less than or equal to the threshold value (or more than or equal to the threshold value), learning is completed. You may judge that you have done so. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了してないと判断した場合(S408:NO)、制御部101は、学習モデルLM1のノード間における結合荷重を更新して(ステップS409)、処理をステップS404へ戻し、別の訓練データを用いた学習を継続する。制御部101は、学習モデルLM1の出力層から入力層に向かって、ノード間の結合荷重を順次更新する誤差逆伝搬法を用いて、ノード間の結合荷重を更新することができる。 When it is determined that the learning is not completed (S408: NO), the control unit 101 updates the coupling load between the nodes of the learning model LM1 (step S409), returns the process to step S404, and another training data. Continue learning with. The control unit 101 can update the coupling load between the nodes by using the error back propagation method that sequentially updates the coupling load between the nodes from the output layer to the input layer of the learning model LM1.
 学習が完了したと判断した場合(S408:YES)、制御部101は、学習済みの学習モデルLM1として記憶部102に記憶させ(ステップS410)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S408: YES), the control unit 101 stores the learned learning model LM1 in the storage unit 102 (step S410), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る推定装置100は、積載重量の実測値と推定値とが乖離している場合、学習モデルLM1を再学習することができる。 As described above, the estimation device 100 according to the present embodiment can relearn the learning model LM1 when the measured value of the loaded weight and the estimated value deviate from each other.
(実施の形態5)
 実施の形態5では、推定した積載重量から積載状態を判定し、判定結果に応じた態様にて積載状態を報知する構成について説明する。
(Embodiment 5)
In the fifth embodiment, a configuration will be described in which the loading state is determined from the estimated loading weight and the loading state is notified in an manner according to the determination result.
 図15は積載状態を報知する手順を説明するフローチャートである。推定装置100の制御部101は、例えば、荷箱4への積み込み作業が開始された後の定期的なタイミングにて以下の処理を実行する。 FIG. 15 is a flowchart illustrating a procedure for notifying the loading state. The control unit 101 of the estimation device 100 executes the following processing at a periodic timing after the loading operation into the packing box 4 is started, for example.
 制御部101は、図8のフローチャートに示す手順と同様の手順により、積載重量を推定する。すなわち、制御部101は、複数の歪センサ81により計測される歪量を含む計測データを学習モデルLM1へ入力し(ステップS501)、学習モデルLM1による演算を実行し(ステップS502)、学習モデルLM1の演算結果に基づき積載重量を推定する(ステップS503)。 The control unit 101 estimates the loaded weight by the same procedure as the procedure shown in the flowchart of FIG. That is, the control unit 101 inputs the measurement data including the amount of distortion measured by the plurality of strain sensors 81 into the learning model LM1 (step S501), executes the calculation by the learning model LM1 (step S502), and executes the calculation by the learning model LM1 (step S502). The load weight is estimated based on the calculation result of (step S503).
 制御部101は、推定した積載重量に基づき積載状態を判定する(ステップS504)。例えば、制御部101は、推定した積載重量を内蔵メモリに記憶させておき、ステップS503において推定した積載重量と予め設定された上限値とを比較し、推定した積載重量にまだ余裕がある場合(例えば上限値の90%未満である場合)、積載状態が「積み込み可」であると判定する。また、制御部101は、推定した積載重量と予め設定された上限値とを比較し、推定した積載重量が上限値に近い場合(例えば上限値の90%を超え、100%未満である場合)、積載状態が「上限値間近」であると判定してもよい。更に、制御部101は、推定した積載重量が上限値に達した場合、積載状態が「積み込みストップ」の状態であると判定してもよい。更に、制御部101は、推定した積載重量が予め設定された積載重量の上限値を超えた場合、積載状態が「過積載」であると判定してもよい。 The control unit 101 determines the loading state based on the estimated loading weight (step S504). For example, when the control unit 101 stores the estimated load weight in the built-in memory, compares the estimated load weight in step S503 with the preset upper limit value, and the estimated load weight still has a margin ( For example, when it is less than 90% of the upper limit value), it is determined that the loading state is "loadable". Further, the control unit 101 compares the estimated load weight with the preset upper limit value, and when the estimated load weight is close to the upper limit value (for example, when it exceeds 90% of the upper limit value and is less than 100%). , It may be determined that the loading state is "close to the upper limit value". Further, the control unit 101 may determine that the loading state is the "loading stop" state when the estimated loading weight reaches the upper limit value. Further, when the estimated load weight exceeds a preset upper limit value of the load weight, the control unit 101 may determine that the load state is “overload”.
 制御部101は、ステップS504の判定結果に応じた態様にて積載状態を報知する(ステップS505)。 The control unit 101 notifies the loading state in an manner according to the determination result in step S504 (step S505).
 図16は積載状態の報知例を示す模式図である。図16は特装車1を後側から眺めた状態を示している。図16の例において、表示装置120は、青色又は赤色にて点灯・点滅・消灯が可能な表示灯により構成されており、フロントパネル41の後面側の上部に設けられている。 FIG. 16 is a schematic diagram showing an example of notification of the loading state. FIG. 16 shows a state in which the specially equipped vehicle 1 is viewed from the rear side. In the example of FIG. 16, the display device 120 is composed of indicator lights that can be turned on, blinked, and turned off in blue or red, and is provided on the upper portion of the front panel 41 on the rear surface side.
 図16Aは、積載状態が「積み込み可」であると判定された場合の報知例を示している。制御部101は、学習モデルLM1を用いて推定した積載重量に基づき、現在の積載状態が「積み込み可」であると判定した場合、表示装置120を例えば青色にて1秒間に1回だけ点滅させる制御を実行する。この結果、表示装置120は、消灯状態から青色でゆっくりと点滅した状態に遷移する。作業者は、表示装置120における表示態様(この場合、青色でゆっくり点滅)を確認することにより、現在の積載状態が「積み込み可」であると把握することができる。 FIG. 16A shows an example of notification when it is determined that the loading state is “loadable”. When the control unit 101 determines that the current loading state is "loadable" based on the loading weight estimated using the learning model LM1, the display device 120 blinks the display device 120, for example, in blue only once per second. Take control. As a result, the display device 120 transitions from the extinguished state to the state of slowly blinking in blue. By confirming the display mode (in this case, slowly blinking in blue) on the display device 120, the operator can grasp that the current loading state is “loadable”.
 図16Bは、積載状態が「上限値間近」であると判定された場合の報知例を示している。制御部101は、学習モデルLM1を用いて推定した積載重量に基づき、現在の積載状態が「上限値間近」であると判定した場合、表示装置120を例えば青色にて1秒間に5回点滅させる制御を実行する。この結果、表示装置120はゆっくりとした点滅状態から早い点滅状態に遷移する。作業者は、表示装置120における表示態様(この場合、青色で早く点滅)を確認することにより、現在の積載状態が「上限値間近」であると把握することができる。 FIG. 16B shows an example of notification when it is determined that the loading state is "close to the upper limit value". When the control unit 101 determines that the current loading state is "close to the upper limit value" based on the loading weight estimated using the learning model LM1, the display device 120 blinks the display device 120 in blue, for example, five times per second. Take control. As a result, the display device 120 transitions from a slow blinking state to a fast blinking state. By confirming the display mode (in this case, blinking blue quickly) on the display device 120, the operator can grasp that the current loading state is "close to the upper limit value".
 図16Cは、積載状態が「積み込みストップ」であると判定された場合の報知例を示している。制御部101は、学習モデルLM1を用いて推定した積載重量に基づき、現在の積載状態が「積み込みストップ」であると判定した場合、表示装置120を例えば青色で点灯させる制御を実行する。この結果、表示装置120は、青色の点滅状態から点灯状態に遷移する。作業者は、表示装置120における表示態様(この場合、青色で点灯)を確認することにより、現在の積載状態が「積み込みストップ」であると把握することができる。 FIG. 16C shows an example of notification when the loading state is determined to be "loading stop". The control unit 101 executes control to turn on the display device 120, for example, in blue when it is determined that the current loading state is "loading stop" based on the loading weight estimated by using the learning model LM1. As a result, the display device 120 transitions from the blinking blue state to the lit state. By confirming the display mode (in this case, lit in blue) on the display device 120, the operator can grasp that the current loading state is "loading stop".
 図16Dは、積載状態が「過積載」であると判定された場合の報知例を示している。制御部101は、学習モデルLM1を用いて推定した積載重量に基づき、現在の積載重量が「過積載」であると判定した場合、表示装置120を例えば赤色で点滅させる制御を実行する。この結果、表示装置120は、青色の点灯状態から赤色の点滅状態に遷移する。作業者は、表示装置120における表示態様(この場合、赤色で点滅)を確認することにより、現在の積載状態が「過積載」であると把握することができる。 FIG. 16D shows an example of notification when the loading state is determined to be "overloaded". The control unit 101 executes control for blinking the display device 120, for example, in red when it is determined that the current load weight is "overloaded" based on the load weight estimated using the learning model LM1. As a result, the display device 120 transitions from the blue lighting state to the red blinking state. By confirming the display mode (in this case, blinking in red) on the display device 120, the operator can grasp that the current loading state is “overloaded”.
 以上のように、本実施の形態では、表示装置120における表示態様を異ならせることによって、荷箱4における現在の積載状態を作業者に報知することができる。 As described above, in the present embodiment, the current loading state in the packing box 4 can be notified to the operator by changing the display mode in the display device 120.
 本実施の形態では、一例として、表示装置120をフロントパネル41の後面側の上部に設けた構成について説明したが、表示装置120の設置場所は図16に示した場所に限定されるものではなく、作業者が視認できる場所であれば任意の設置場所に設置してもよい。例えば、表示装置120は、フロントパネル41の側面部に設置されてもよく、フロントパネル41以外のサイドパネル42やリアパネル43に設置されてもよい。また、表示装置120は、運転席の近傍に設置されてもよい。更に、作業者が所持する携帯端末に通信により報知する構成としてもよい。 In the present embodiment, as an example, the configuration in which the display device 120 is provided on the upper portion on the rear surface side of the front panel 41 has been described, but the installation location of the display device 120 is not limited to the location shown in FIG. , It may be installed in any installation place as long as it can be visually recognized by the operator. For example, the display device 120 may be installed on the side surface of the front panel 41, or may be installed on the side panel 42 or the rear panel 43 other than the front panel 41. Further, the display device 120 may be installed in the vicinity of the driver's seat. Further, the mobile terminal possessed by the worker may be notified by communication.
 また、本実施の形態では、色及び点灯・点滅状態を変更することによって表示装置120における表示態様を積載状態に応じて異ならせる構成としたが、積載状態に応じた文字又は図形を表示装置120に表示させてもよい。また、表示装置120による表示だけでなく、音や音声によって積載状態を報知してもよい。 Further, in the present embodiment, the display mode of the display device 120 is changed according to the loading state by changing the color and the lighting / blinking state, but the display device 120 displays characters or figures according to the loading state. It may be displayed in. Further, the loading state may be notified not only by the display by the display device 120 but also by sound or voice.
(実施の形態6)
 実施の形態6では、自車両の状態を検知し、検知した自車両の状態に関する情報を報知する構成について説明する。
(Embodiment 6)
In the sixth embodiment, a configuration will be described in which the state of the own vehicle is detected and the information regarding the detected state of the own vehicle is notified.
 図17は実施の形態6に係る特装車1の全体構成を示す側面図である。実施の形態6に係る特装車1は、上述した構成に加え、荷台の傾斜を計測する傾斜計85、及び荷箱4の内部を撮像する撮像装置86を備える。特装車1は、更に、自車両の現在位置を測位するGPS(Global Positioning System)受信機87を備えてもよい。 FIG. 17 is a side view showing the overall configuration of the specially equipped vehicle 1 according to the sixth embodiment. In addition to the above-described configuration, the specially equipped vehicle 1 according to the sixth embodiment includes an inclinometer 85 for measuring the inclination of the loading platform and an imaging device 86 for imaging the inside of the packing box 4. The specially equipped vehicle 1 may further include a GPS (Global Positioning System) receiver 87 for positioning the current position of the own vehicle.
 傾斜計85は、荷箱4の適宜箇所に取り付けられ、荷箱4の前後方向の傾斜(ピッチ)を時系列的に計測し、計測した傾斜に係る計測データを推定装置100へ出力する。傾斜計85は、荷箱の前後方向の傾斜(ピッチ)に加え、左右方向の傾斜(ロール)を時系列的に計測してもよい。 The inclinometer 85 is attached to an appropriate position in the packing box 4, measures the tilt (pitch) in the front-rear direction of the packing box 4 in time series, and outputs measurement data related to the measured tilt to the estimation device 100. The inclinometer 85 may measure the inclination (roll) in the left-right direction in time series in addition to the inclination (pitch) in the front-rear direction of the packing box.
 撮像装置86は、例えばフロントパネル41の上部から斜め下後方の範囲を撮像するように設置され、荷箱4の内部を時系列的に撮像する。撮像装置86は、例えばCMOS(Complementary Metal Oxide Semiconductor)などの固体撮像素子を備え、固体撮像素子より得られるデジタル形式の画像データを推定装置100へ出力する。撮像装置86は、ステレオカメラや距離画像センサなどの距離情報を取得できるものがより好ましい。 The image pickup device 86 is installed so as to image a range obliquely downward and rearward from the upper part of the front panel 41, for example, and images the inside of the packing box 4 in chronological order. The image pickup device 86 includes, for example, a solid-state image sensor such as CMOS (Complementary Metal Oxide Semiconductor), and outputs digital-format image data obtained from the solid-state image sensor to the estimation device 100. The image pickup device 86 is more preferably one that can acquire distance information such as a stereo camera or a distance image sensor.
 GPS受信機87は、GPS衛星(不図示)から送信される電波を受信し、特装車1の現在位置を時系列的に測位する。GPS受信機87は、特装車1の現在位置に係る位置情報を推定装置100へ出力する。 The GPS receiver 87 receives radio waves transmitted from GPS satellites (not shown) and positions the current position of the specially equipped vehicle 1 in chronological order. The GPS receiver 87 outputs the position information related to the current position of the specially equipped vehicle 1 to the estimation device 100.
 図18は実施の形態6における推定装置100が実行する処理の手順を説明するフローチャートである。推定装置100の制御部101は、入力部104を通じて、傾斜計85から出力される計測データを取得した場合(ステップS601)、取得した計測データに基づき荷箱4の状態を判定する(ステップS602)。このとき、制御部101は、荷箱4がシャシフレーム21に対して傾斜した状態(リフトアップした状態)であるか否かを判定してもよい。また、制御部101は、荷箱4の状態として、傾斜角から荷箱4の最上位の高さ(車両高さ)を算出してもよい。 FIG. 18 is a flowchart illustrating a procedure of processing executed by the estimation device 100 in the sixth embodiment. When the control unit 101 of the estimation device 100 acquires the measurement data output from the inclinometer 85 through the input unit 104 (step S601), the control unit 101 determines the state of the packing box 4 based on the acquired measurement data (step S602). .. At this time, the control unit 101 may determine whether or not the packing box 4 is in an inclined state (lifted up state) with respect to the chassis frame 21. Further, the control unit 101 may calculate the highest height (vehicle height) of the packing box 4 from the inclination angle as the state of the packing box 4.
 制御部101は、ステップS602において判定した荷箱4の状態を報知する(ステップS603)。図19は荷箱4の状態の報知例を示す模式図である。制御部101は、ダンプの状態を示す文字や図形を出力部105より表示装置120へ出力することにより、ダンプの状態を報知することができる。図19Aはダンプ中である旨を文字情報として表示装置120に表示させた状態を示している。図19Bは荷箱4の最上位の高さが4.8mに達していることを表示装置120に模式的に表示させた状態を示している。また、制御部101は、算出した荷箱4の最上位の高さが設定値を超える場合、アラートを出力してもよい。 The control unit 101 notifies the state of the packing box 4 determined in step S602 (step S603). FIG. 19 is a schematic view showing an example of notifying the state of the packing box 4. The control unit 101 can notify the dump status by outputting characters and figures indicating the dump status from the output unit 105 to the display device 120. FIG. 19A shows a state in which the display device 120 displays the fact that the dump is being performed as character information. FIG. 19B shows a state in which the display device 120 schematically indicates that the top height of the packing box 4 has reached 4.8 m. Further, the control unit 101 may output an alert when the calculated top height of the packing box 4 exceeds the set value.
 制御部101は、入力部104を通じて、撮像装置86から出力される画像データを取得した場合(ステップS604)、取得した画像データに基づき荷箱4における積載状態を判定する(ステップS605)。制御部101は、例えば、荷箱4の内部が撮像された画像データの入力に応じて、積載状態に関する情報を出力するように構成された学習モデルLM2(図20を参照)を用いて、積載状態を判定することができる。 When the control unit 101 acquires the image data output from the image pickup device 86 through the input unit 104 (step S604), the control unit 101 determines the loading state in the packing box 4 based on the acquired image data (step S605). The control unit 101 uses, for example, a learning model LM2 (see FIG. 20) configured to output information on the loading state in response to input of image data captured inside the packing box 4, and is loaded. The state can be determined.
 図20は実施の形態6における学習モデルLM2の構成を説明する模式図である。実施の形態6における学習モデルLM2は、例えば、CNN(Convolutional Neural Networks)による学習モデルであり、入力層、中間層及び出力層を備える。学習モデルLM2は、荷箱4の内部を撮像して得られる画像データの入力に対して、例えば積載物の高さに関する情報を出力するように予め学習される。 FIG. 20 is a schematic diagram illustrating the configuration of the learning model LM2 in the sixth embodiment. The learning model LM2 in the sixth embodiment is, for example, a learning model by CNN (Convolutional Neural Networks), and includes an input layer, an intermediate layer, and an output layer. The learning model LM2 is learned in advance so as to output, for example, information on the height of the load in response to the input of image data obtained by imaging the inside of the packing box 4.
 入力層には、荷箱4の内部を撮像して得られる撮像装置86からの画像データが入力される。入力層に入力された画像データは、入力層を構成するノードを通じて中間層へ送出される。 Image data from the image pickup device 86 obtained by imaging the inside of the packing box 4 is input to the input layer. The image data input to the input layer is sent to the intermediate layer through the nodes constituting the input layer.
 中間層は、例えば、畳み込み層、プーリング層、及び全結合層により構成される。畳み込み層及びプーリング層は交互に複数設けられてもよい。畳み込み層及びプーリング層は、各層のノードを用いた演算によって、入力層を通じて入力される画像の特徴を抽出する。全結合層は、畳み込み層及びプーリング層によって特徴部分が抽出されたデータを1つのノードに結合し、活性化関数によって変換された特徴変数を出力する。特徴変数は、全結合層を通じて出力層へ出力される。 The intermediate layer is composed of, for example, a convolution layer, a pooling layer, and a fully connected layer. A plurality of convolution layers and pooling layers may be provided alternately. The convolution layer and the pooling layer extract the features of the image input through the input layer by the calculation using the nodes of each layer. The fully connected layer combines the data from which the feature portion is extracted by the convolution layer and the pooling layer into one node, and outputs the feature variable converted by the activation function. The feature variable is output to the output layer through the fully connected layer.
 出力層は、1つ又は複数のノードを備える。出力層は、中間層の全結合層から入力される特徴変数を基に、ソフトマックス関数を用いて確率に変換し、積載物の高さに関する推定結果を出力する。出力層による推定結果の出力形態は任意である。例えば、出力層を第1ノードから第nノードまでのn個のノードで構成し、第1ノードから積載物の高さが上限値を超えている確率、第2ノードから積載物の高さが上限値に達している確率、第3ノードから積載物の高さが上限値の90%である確率、第4ノードから積載物の高さが上限値の80%である確率、…といったように、出力層を構成する各ノードから積載物の高さに関する確率を出力すればよい。出力層を構成するノードの数、及び各ノードから出力する内容は、上記に限定されるものではなく、適宜設計することが可能である。 The output layer includes one or more nodes. The output layer converts the characteristic variables input from the fully connected layer of the intermediate layer into probabilities using the softmax function, and outputs the estimation result regarding the height of the load. The output form of the estimation result by the output layer is arbitrary. For example, the output layer is composed of n nodes from the first node to the nth node, the probability that the height of the load exceeds the upper limit from the first node, and the height of the load from the second node. Probability of reaching the upper limit, probability that the height of the load is 90% of the upper limit from the 3rd node, probability that the height of the load is 80% of the upper limit from the 4th node, and so on. , The probability regarding the height of the load may be output from each node constituting the output layer. The number of nodes constituting the output layer and the contents output from each node are not limited to the above, and can be appropriately designed.
 推定装置100は、撮像装置86により撮像された画像データと、画像データを撮像したときの積載物の高さのデータ(例えば実測値)とを多数収集し、収集した画像データと高さのデータとを訓練データに用いて学習することにより、図20に示すような学習モデルLM2を生成することができる。また、推定装置100にて学習モデルLM2を生成する構成に代えて、外部サーバにて学習モデルLM2を生成し、学習済みの学習モデルLM2を外部サーバから取得する構成としてもよい。推定装置100は、自装置にて生成した学習モデルLM2又は外部サーバから取得した学習モデルLM2を記憶部102に記憶させる。 The estimation device 100 collects a large amount of image data captured by the image pickup device 86 and a large amount of load height data (for example, actually measured values) when the image data is captured, and the collected image data and height data. By learning using and as training data, a learning model LM2 as shown in FIG. 20 can be generated. Further, instead of the configuration in which the learning model LM2 is generated by the estimation device 100, the learning model LM2 may be generated by the external server and the learned learning model LM2 may be acquired from the external server. The estimation device 100 stores the learning model LM2 generated by its own device or the learning model LM2 acquired from an external server in the storage unit 102.
 推定装置100の制御部101は、図18に示すフローチャートのステップS604において撮像装置86から出力される画像データを取得した場合、取得した画像データを学習モデルLM2に入力し、学習モデルLM2を用いた演算を実行する。制御部101は、学習モデルLM2による演算結果を参照し、積載状態(この例では積載物の高さ)を判定する。このとき、制御部101は、出力層の各ノードから出力される確率のうち、最も確率が高い状態を選択することにより、荷箱4における積載状態を判定することができる。 When the control unit 101 of the estimation device 100 acquires the image data output from the image pickup device 86 in step S604 of the flowchart shown in FIG. 18, the control unit 101 inputs the acquired image data to the learning model LM2 and uses the learning model LM2. Perform the operation. The control unit 101 refers to the calculation result by the learning model LM2 and determines the load state (in this example, the height of the load). At this time, the control unit 101 can determine the loading state in the packing box 4 by selecting the state having the highest probability among the probabilities output from each node of the output layer.
 制御部101は、ステップS605において判定した荷箱4の積載状態を報知する(ステップS606)。図21は荷箱4の積載状態の報知例を示す模式図である。制御部101は、積載物の高さを示す文字情報を出力部105より表示装置120へ出力することにより、積載状態を報知することができる。図21の例は積載物の高さが上限値を超えている旨の文字情報を表示装置120に表示させた状態を示している。 The control unit 101 notifies the loading state of the packing box 4 determined in step S605 (step S606). FIG. 21 is a schematic view showing an example of notifying the loading state of the packing box 4. The control unit 101 can notify the load state by outputting character information indicating the height of the load from the output unit 105 to the display device 120. The example of FIG. 21 shows a state in which the display device 120 displays character information indicating that the height of the load exceeds the upper limit value.
 以上のように、本実施の形態では、特装車1の状態を検知し、検知した特装車1の状態を乗員に報知することができる。 As described above, in the present embodiment, the state of the specially equipped vehicle 1 can be detected and the detected state of the specially equipped vehicle 1 can be notified to the occupants.
 なお、図18に示すフローチャートでは、荷箱4の状態の判定及び報知を実行した後に、積載状態の判定及び報知を実行する手順としたが、これらの実行順序は任意に設定してもよい。また、荷箱4の状態の判定及び報知、および、積載状態の判定及び報知の何れか一方のみを実行してもよい。 In the flowchart shown in FIG. 18, the procedure is to execute the determination and notification of the loading state after the determination and notification of the state of the packing box 4 are executed, but the execution order of these may be arbitrarily set. Further, only one of the determination and notification of the state of the packing box 4 and the determination and notification of the loading state may be executed.
 また、本実施の形態では、特装車1の状態として、荷箱4の状態及び荷箱4における積載物の状態を検知し、検知結果を報知する構成について説明したが、傾斜計82により計測される特装車1の傾斜(ロール及びピッチ)及び傾斜に対する上限値を報知してもよい。 Further, in the present embodiment, as the state of the specially equipped vehicle 1, the configuration of detecting the state of the packing box 4 and the state of the load in the packing box 4 and notifying the detection result has been described, but it is measured by the inclinometer 82. The inclination (roll and pitch) of the specially equipped vehicle 1 and the upper limit value for the inclination may be notified.
 また、本実施の形態では、特装車1の状態を表示装置120に表示させる構成としたが、外部の管理サーバへ通知してもよい。このとき、特装車1を識別する識別子、及びGPS受信機87により測位される特装車1の位置情報を付加し、特装車1毎に位置情報及び特装車1の状態を管理サーバに管理させてもよい。また、表示装置120は、荷箱4の視認可能な部位に設けるものに限らず、作業者が所持しているスマートフォン等の携帯端末であってもよい。 Further, in the present embodiment, the state of the specially equipped vehicle 1 is displayed on the display device 120, but it may be notified to an external management server. At this time, an identifier that identifies the specially equipped vehicle 1 and the position information of the specially equipped vehicle 1 that is positioned by the GPS receiver 87 may be added, and the management server may manage the position information and the state of the specially equipped vehicle 1 for each specially equipped vehicle 1. Further, the display device 120 is not limited to the one provided in the visible portion of the packing box 4, and may be a mobile terminal such as a smartphone owned by the operator.
 また、本実施の形態では、学習モデルLM2を用いて積載物の高さを推定する構成としたが、撮像装置86より得られる画像を解析し、画像内で積載物の高さ位置を特定することによって積載物の高さを推定する構成としてもよい。 Further, in the present embodiment, the height of the load is estimated using the learning model LM2, but the image obtained from the image pickup apparatus 86 is analyzed to specify the height position of the load in the image. This may be a configuration for estimating the height of the load.
 また、本実施の形態では、特装車1として、積載重量を推定する推定装置100と、推定装置100が推定した積載重量に関する情報を報知する表示装置120と、ダンプ装置3とを備えるダンプトラックを例に挙げて説明したが、本発明はダンプトラックに限らず、種々の特装車に適用可能である。例えば、塵芥車、ミキサ車、タンクローリ、吸引車、コンテナ脱着車等の特装車に適用できる。 Further, in the present embodiment, as the specially equipped vehicle 1, a dump truck including an estimation device 100 for estimating the load weight, a display device 120 for notifying information on the load weight estimated by the estimation device 100, and a dump device 3 is an example. As described above, the present invention is applicable not only to dump trucks but also to various specially equipped vehicles. For example, it can be applied to specially equipped vehicles such as dust trucks, mixer trucks, tank trucks, suction trucks, and container desorption vehicles.
 今回開示された実施形態は、全ての点において例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the meaning described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 例えば、上記実施形態では、歪センサ81は、歪ゲージからなるものであったが、本発明はこれに限らず、歪センサ81を、歪ゲージ式のロードセルとすることもできる。その場合、ロードセルの形状は、バー型とピン型のどちらであってもよい。 For example, in the above embodiment, the strain sensor 81 is composed of a strain gauge, but the present invention is not limited to this, and the strain sensor 81 can be a strain gauge type load cell. In that case, the shape of the load cell may be either a bar type or a pin type.
 また、上記実施形態では、歪センサ81は、車軸23F,23Rまたはサブフレーム30に取り付けられていたが、本発明はこれに限らず、歪センサ81を他の場所に取り付けてもよい。例えば、歪センサを、ダンプ装置3における荷箱4に取り付けたり、荷箱4とサブフレーム30とを連結するヒンジ軸31に取り付けたりしてもよい。また、歪センサ81を、シャシフレーム21や懸架装置(不図示)に取り付けてもよい。例えば、懸架装置に取り付ける際には、歪センサ81の取付部位が他の部位と比較してどの程度沈み込むかを計測することも有用である。そのため、こうした場合には取付部位の歪量を計測するのではなく他の部位に対する沈み込み量を計測する変位センサ(レーザー距離センサなど)を用いても良い。なお、沈み込み量などの変位量を計測する場合には、特装車1における前輪22Fもしくは後輪22Rの空気圧の影響も受けやすいことから、タイヤプレッシャモニタなどを用いてこれらの計測データも計測値テーブルTB1に加えるとさらに好ましい。 Further, in the above embodiment, the strain sensor 81 is attached to the axles 23F, 23R or the subframe 30, but the present invention is not limited to this, and the strain sensor 81 may be attached to another place. For example, the strain sensor may be attached to the packing box 4 in the dump device 3, or may be attached to the hinge shaft 31 connecting the packing box 4 and the subframe 30. Further, the strain sensor 81 may be attached to the chassis frame 21 or a suspension device (not shown). For example, when mounting the strain sensor 81 on a suspension device, it is also useful to measure how much the mounting portion of the strain sensor 81 sinks as compared with other portions. Therefore, in such a case, a displacement sensor (laser distance sensor or the like) that measures the amount of subduction with respect to another part may be used instead of measuring the amount of distortion of the mounting part. When measuring the amount of displacement such as the amount of subduction, it is easily affected by the air pressure of the front wheels 22F or the rear wheels 22R of the specially equipped vehicle 1, so these measurement data are also measured using a tire pressure monitor or the like. It is more preferable to add it to TB1.
 また、上記実施形態では、推定装置100は、特装車1のシャシフレーム21やキャブ20の内部に設けられていたが、本発明はこれに限らず、推定装置100を、管理センタ等の特装車1とは別の離れた場所に設けるようにしてもよい。その場合、特装車1には、歪センサ81、傾斜計82、温度計83、圧力計84等の各種センサと通信装置と表示装置とを設け、これらの各種センサからのデータを当該通信装置により推定装置100に送信するようにすればよい。推定装置100では、受信した各種センサからデータを処理して、結果を特装車1の通信装置へ送信し、これにより、特装車1の表示装置に積載重量の推定結果を表示させるようにしてもよい。 Further, in the above embodiment, the estimation device 100 is provided inside the chassis frame 21 and the cab 20 of the specially equipped vehicle 1, but the present invention is not limited to this, and the estimation device 100 is referred to as a specially equipped vehicle 1 such as a management center. May be provided at another remote location. In that case, the specially equipped vehicle 1 is provided with various sensors such as a strain sensor 81, an inclinometer 82, a thermometer 83, and a pressure gauge 84, a communication device, and a display device, and data from these various sensors is estimated by the communication device. It may be transmitted to the device 100. The estimation device 100 may process data from various received sensors and transmit the result to the communication device of the specially equipped vehicle 1, whereby the display device of the specially equipped vehicle 1 may display the estimated result of the loaded weight.
 さらに、上記実施形態では、複数の歪センサ81から歪量に係る計測データに基づいて積載重量を推定するものとしているが、複数の油圧センサからの油圧変化量に係る計測データに基づいて積載重量を推定するものなど、他の指標に基づくものであっても構わない。例えばホイスト機構5内の油圧シリンダ52のシリンダ圧を計測する圧力計84とともに、ヒンジ軸31付近に油圧式のロードセルを設けた構成とすると良い。この場合、わずかに油圧シリンダ52を伸長させて荷箱4をわずかに傾斜させた状態とし、圧力計84及び上記ロードセルにおける油圧の計測データに基づいて積載重量を推定する。こうした計測データは、上述した歪、油圧などに限定されず、他の変位量も適宜計測対象とすることができる。 Further, in the above embodiment, the load weight is estimated from the plurality of strain sensors 81 based on the measurement data related to the amount of strain, but the load weight is estimated based on the measurement data related to the amount of change in oil pressure from the plurality of oil pressure sensors. It may be based on other indicators such as those that estimate. For example, it is preferable to provide a hydraulic load cell near the hinge shaft 31 together with a pressure gauge 84 that measures the cylinder pressure of the hydraulic cylinder 52 in the hoist mechanism 5. In this case, the hydraulic cylinder 52 is slightly extended so that the packing box 4 is slightly tilted, and the load weight is estimated based on the measurement data of the oil pressure in the pressure gauge 84 and the load cell. Such measurement data is not limited to the strain, oil pressure, etc. described above, and other displacement amounts can be appropriately measured.
 1 特装車
 2 トラックシャシ
 3 ダンプ装置
 4 荷箱
 5 ホイスト機構
 20 キャブ
 21 シャシフレーム
 22F 前輪
 22R 後輪
 23F,23R 車軸
 30 サブフレーム
 81 歪センサ
 82 傾斜計
 83 温度計
 84 圧力計
 100 推定装置
 101 制御部
 102 記憶部
 103 操作部
 104 入力部
 105 出力部
 106 通信部
 PG1 学習プログラム
 PG2 推定プログラム
 TB1 計測値テーブル
 LM1,LM2 学習モデル
1 Specially equipped vehicle 2 Truck chassis 3 Dump truck 4 Packing box 5 Hoist mechanism 20 Cab 21 Chassis frame 22F Front wheel 22R Rear wheel 23F, 23R Axle 30 Subframe 81 Strain sensor 82 Tilt meter 83 Thermometer 84 Pressure gauge 100 Estimator 101 Control unit 102 Storage unit 103 Operation unit 104 Input unit 105 Output unit 106 Communication unit PG1 Learning program PG2 Estimate program TB1 Measurement value table LM1, LM2 Learning model

Claims (24)

  1.  コンピュータに、
     特装車における複数の部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得し、
     前記変位量に係る計測データと前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データを入力することにより、前記学習モデルを用いた演算を実行し、
     前記演算の実行結果に基づき、前記特装車の積載重量を推定する
     処理を実行させるためのコンピュータプログラム。
    On the computer
    Measurement data related to the displacement amount is acquired from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts in the specially equipped vehicle, respectively.
    By inputting the measurement data acquired from the plurality of displacement sensors into the learning model in which the relationship between the measurement data related to the displacement amount and the load weight of the specially equipped vehicle is learned, the calculation using the learning model is executed. And
    A computer program for executing a process of estimating the load weight of the specially equipped vehicle based on the execution result of the calculation.
  2.  前記変位センサは、前記特装車の前後方向又は左右方向に離隔して、前記特装車のシャシフレームに固定される構造物の複数箇所に取り付けてある
     請求項1に記載のコンピュータプログラム。
    The computer program according to claim 1, wherein the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the specially equipped vehicle, and are attached to a plurality of positions of a structure fixed to the chassis frame of the specially equipped vehicle.
  3.  前記変位センサは、前記特装車の前後方向又は左右方向に離隔して、前記特装車が備える車軸の複数箇所に取り付けてある
     請求項1又は請求項2に記載のコンピュータプログラム。
    The computer program according to claim 1 or 2, wherein the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the specially equipped vehicle and are attached to a plurality of positions on an axle included in the specially equipped vehicle.
  4.  前記コンピュータに、
     前記特装車の傾斜を計測する傾斜計から、前記傾斜に係る計測データを取得し、
     前記変位量及び前記傾斜に係る計測データと、前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データと前記傾斜計から取得した計測データとを入力することにより、前記学習モデルを用いた演算を実行し、
     前記演算の実行結果に基づき、前記特装車の積載重量を推定する
     処理を実行させるための請求項1から請求項3の何れか1つに記載のコンピュータプログラム。
    On the computer
    From the inclinometer that measures the inclination of the specially equipped vehicle, the measurement data related to the inclination is acquired, and the measurement data is acquired.
    In a learning model in which the relationship between the displacement amount and the measurement data related to the inclination and the load weight of the specially equipped vehicle is learned, the measurement data acquired from the plurality of displacement sensors and the measurement data acquired from the inclination meter are added to the learning model. By inputting, the calculation using the learning model is executed, and
    The computer program according to any one of claims 1 to 3, for executing a process of estimating the load weight of the specially equipped vehicle based on the execution result of the calculation.
  5.  前記コンピュータに、
     前記特装車が備える荷台を傾斜させるための油圧シリンダのシリンダ圧を計測する圧力計から、前記シリンダ圧に係る計測データを取得し、
     前記変位量及び前記シリンダ圧に係る計測データと、前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データと前記圧力計から取得した計測データとを入力することにより、前記学習モデルを用いた演算を実行し、
     前記演算の実行結果に基づき、前記特装車の積載重量を推定する
     処理を実行させるための請求項1から請求項3の何れか1つに記載のコンピュータプログラム。
    On the computer
    Measurement data related to the cylinder pressure is acquired from a pressure gauge that measures the cylinder pressure of the hydraulic cylinder for tilting the loading platform of the specially equipped vehicle.
    The measurement data related to the displacement amount and the cylinder pressure and the measurement data acquired from the plurality of displacement sensors and the measurement data acquired from the pressure gauge are added to the learning model in which the relationship between the load weight of the specially equipped vehicle is learned. By inputting, the calculation using the learning model is executed, and
    The computer program according to any one of claims 1 to 3, for executing a process of estimating the load weight of the specially equipped vehicle based on the execution result of the calculation.
  6.  前記コンピュータに、
     推定した前記特装車の積載重量を報知する
     処理を実行させるため請求項1から請求項5の何れか1つに記載のコンピュータプログラム。
    On the computer
    The computer program according to any one of claims 1 to 5, in order to execute a process of notifying the estimated load weight of the specially equipped vehicle.
  7.  前記コンピュータに、
     トラックスケールにより計測された前記特装車の積載重量を取得し、
     取得した積載重量と、前記演算の実行結果から推定された積載重量との乖離度を判定し、
     判定した乖離度に係る情報を出力する
     処理を実行させるための請求項1から請求項6の何れか1つに記載のコンピュータプログラム。
    On the computer
    Obtain the load weight of the specially equipped vehicle measured by the truck scale,
    The degree of deviation between the acquired loaded weight and the loaded weight estimated from the execution result of the above calculation is determined.
    The computer program according to any one of claims 1 to 6, for executing a process of outputting information related to the determined degree of deviation.
  8.  特装車における複数の部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得する取得部と、
     前記変位量に係る計測データと前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データを入力することにより、前記学習モデルを用いた演算を実行し、前記演算の実行結果に基づき、前記特装車の積載重量を推定する推定部と
     を備える推定装置。
    An acquisition unit that acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amounts of a plurality of parts of the specially equipped vehicle, respectively.
    By inputting the measurement data acquired from the plurality of displacement sensors into the learning model in which the relationship between the measurement data related to the displacement amount and the load weight of the specially equipped vehicle is learned, the calculation using the learning model is executed. An estimation device including an estimation unit that estimates the load weight of the specially equipped vehicle based on the execution result of the calculation.
  9.  前記取得部は、前記特装車の傾斜を計測する傾斜計から、前記傾斜に係る計測データを取得し、
     前記推定部は、前記変位量及び前記傾斜に係る計測データと、前記特装車の積載重量との関係を学習してある学習モデルに、前記複数の変位センサから取得した計測データと前記傾斜計から取得した計測データとを入力することにより、前記学習モデルを用いた演算を実行し、前記演算の実行結果に基づき、前記特装車の積載重量を推定する
     請求項8に記載の推定装置。
    The acquisition unit acquires measurement data related to the inclination from an inclinometer that measures the inclination of the specially equipped vehicle.
    The estimation unit acquires measurement data acquired from the plurality of displacement sensors and the inclinometer in a learning model in which the relationship between the displacement amount and the measurement data related to the inclination and the load weight of the specially equipped vehicle is learned. The estimation device according to claim 8, wherein the calculation using the learning model is executed by inputting the measured measurement data, and the load weight of the specially equipped vehicle is estimated based on the execution result of the calculation.
  10.  コンピュータを用いて、
     特装車の複数の部位について計測された変位量に係る計測データと、前記特装車について計測された積載重量の値とを取得し、
     取得した計測データと積載重量の値とを訓練データに用いて、変位量に係る計測データの入力に応じて、前記特装車の積載重量についての演算結果を出力するよう構成される学習モデルを生成する
     学習モデルの生成方法。
    Using a computer
    The measurement data related to the displacement amount measured for a plurality of parts of the specially equipped vehicle and the value of the loaded weight measured for the specially equipped vehicle are acquired.
    Using the acquired measurement data and the load weight value as training data, a learning model configured to output the calculation result for the load weight of the specially equipped vehicle is generated in response to the input of the measurement data related to the displacement amount. How to generate a training model.
  11.  前記コンピュータは、
     前記特装車におけるシャシフレームに固定される構造物に前記特装車の前後方向又は左右方向に離隔して取り付けてある複数の変位センサから、前記変位量に係る計測データを取得し、
     取得した計測データを前記訓練データに用いて、前記学習モデルを生成する
     請求項10に記載の学習モデルの生成方法。
    The computer
    Measurement data related to the displacement amount is acquired from a plurality of displacement sensors attached to the structure fixed to the chassis frame of the specially equipped vehicle at a distance in the front-rear direction or the left-right direction of the specially equipped vehicle.
    The method for generating a learning model according to claim 10, wherein the acquired measurement data is used as the training data to generate the learning model.
  12.  前記コンピュータは、
     前記特装車が備える車軸に前記特装車の前後方向又は左右方向に離隔して取り付けてある複数の変位センサから、前記変位量に係る計測データを取得し、
     取得した計測データを前記訓練データに用いて、前記学習モデルを生成する
     請求項10又は請求項11に記載の学習モデルの生成方法。
    The computer
    Measurement data related to the displacement amount is acquired from a plurality of displacement sensors attached to the axle of the specially equipped vehicle at a distance in the front-rear direction or the left-right direction of the specially equipped vehicle.
    The method for generating a learning model according to claim 10 or 11, wherein the acquired measurement data is used as the training data to generate the learning model.
  13.  前記コンピュータは、
     前記特装車の傾斜を計測する傾斜計から、前記傾斜に係る計測データを取得し、
     前記傾斜に係る計測データを更に含む訓練データを用いて、変位量及び傾斜に係る計測データの入力に応じて、前記特装車の積載重量についての演算結果を出力する学習モデルを生成する
     請求項10から請求項12の何れか1つに記載の学習モデルの生成方法。
    The computer
    From the inclinometer that measures the inclination of the specially equipped vehicle, the measurement data related to the inclination is acquired, and the measurement data is acquired.
    From claim 10, the training data including the measurement data related to the inclination is used to generate a learning model that outputs the calculation result of the load weight of the specially equipped vehicle in response to the input of the measurement data related to the displacement amount and the inclination. The method for generating a learning model according to any one of claims 12.
  14.  前記コンピュータは、
     前記特装車が備える荷台を傾斜させるための油圧シリンダのシリンダ圧を計測する圧力計から、前記シリンダ圧に係る計測データを取得し、
     前記シリンダ圧に係る計測データを更に含む訓練データを用いて、変位量及びシリンダ圧に係る計測データの入力に応じて、前記特装車の積載重量についての演算結果を出力する学習モデルを生成する
     請求項10から請求項12の何れか1つに記載の学習モデルの生成方法。
    The computer
    Measurement data related to the cylinder pressure is acquired from a pressure gauge that measures the cylinder pressure of the hydraulic cylinder for tilting the loading platform of the specially equipped vehicle.
    Claim to generate a learning model that outputs a calculation result about the load weight of the specially equipped vehicle in response to input of the displacement amount and the measurement data related to the cylinder pressure by using the training data further including the measurement data related to the cylinder pressure. The method for generating a learning model according to any one of claims 10 to 12.
  15.  前記コンピュータは、
     トラックスケールにより計測された前記特装車の積載重量の値を取得し、
     取得した前記積載重量の値と前記計測データとを訓練データに用いて前記学習モデルを再学習する
     請求項10から請求項14の何れか1つに記載の学習モデルの生成方法。
    The computer
    Obtain the value of the load weight of the specially equipped vehicle measured by the truck scale,
    The method for generating a learning model according to any one of claims 10 to 14, wherein the acquired value of the loaded weight and the measured data are used as training data to retrain the learning model.
  16.  前記コンピュータは、
     端末装置に入力された前記特装車の積載重量の値を、前記端末装置から取得し、
     取得した前記積載重量の値と前記計測データとを訓練データに用いて前記学習モデルを再学習する
     請求項10から請求項14の何れか1つに記載の学習モデルの生成方法。
    The computer
    The value of the load weight of the specially equipped vehicle input to the terminal device is acquired from the terminal device, and the value is obtained from the terminal device.
    The method for generating a learning model according to any one of claims 10 to 14, wherein the acquired value of the loaded weight and the measured data are used as training data to retrain the learning model.
  17.  積載物による荷重が作用する特装車の複数部位の変位量を夫々計測する複数の変位センサから、前記変位量に係る計測データを取得する取得部と、
     前記変位量に係る計測データの入力に応じて、積載重量についての演算結果を出力するように構成される学習モデルに、前記取得部にて取得した計測データを入力することにより、積載重量を推定する推定部と、
     該推定部が推定した積載重量に関する情報を報知する報知部と
     を備える特装車の積載重量推定システム。 
    An acquisition unit that acquires measurement data related to the displacement amount from a plurality of displacement sensors that measure the displacement amount of each of a plurality of parts of the specially equipped vehicle on which the load due to the load acts.
    The load weight is estimated by inputting the measurement data acquired by the acquisition unit into the learning model configured to output the calculation result of the load weight in response to the input of the measurement data related to the displacement amount. And the estimation part
    A load weight estimation system for a specially equipped vehicle including a notification unit that notifies information on the load weight estimated by the estimation unit.
  18.  前記取得部は、自車両の傾斜を計測する傾斜計から、前記傾斜に係る計測データを取得し、
     前記推定部は、前記変位量及び前記傾斜に係る計測データの入力に応じて、積載重量についての演算結果を出力するように構成される学習モデルに、前記取得部にて取得した前記変位量及び前記傾斜の計測データを入力することにより、積載重量を推定する
     請求項17に記載の特装車の積載重量推定システム。
    The acquisition unit acquires measurement data related to the inclination from an inclinometer that measures the inclination of the own vehicle.
    The estimation unit includes the displacement amount and the displacement amount acquired by the acquisition unit in a learning model configured to output a calculation result of the loaded weight in response to input of measurement data related to the displacement amount and the inclination. The load weight estimation system for a specially equipped vehicle according to claim 17, wherein the load weight is estimated by inputting the inclination measurement data.
  19.  前記推定部により推定された積載重量に応じて、前記積載物の積載状態を判定する判定部
     を備え、
     前記報知部は、前記判定部の判定結果に応じた態様にて前記積載状態を報知する
     請求項17又は請求項18に記載の特装車の積載重量推定システム。
    A determination unit for determining the load state of the load according to the load weight estimated by the estimation unit is provided.
    The load weight estimation system for a specially equipped vehicle according to claim 17 or 18, wherein the notification unit notifies the loading state in an manner corresponding to a determination result of the determination unit.
  20.  前記報知部は、前記積載物が積載される荷箱の視認可能な部位に設けられる表示装置を含み、前記判定結果に応じた表示態様にて前記積載状態を前記表示装置に表示する
     請求項19に記載の特装車の積載重量推定システム。
    19. The notification unit includes a display device provided at a visible portion of a packing box on which the load is loaded, and displays the load state on the display device in a display mode according to the determination result. The load weight estimation system for specially equipped vehicles described in.
  21.  自車両の状態を検知する状態検知部
     を備え、
     前記報知部は、前記状態検知部が検知した状態に関する情報を報知する
     請求項17から請求項20の何れか1つに記載の特装車の積載重量推定システム。
    Equipped with a state detection unit that detects the state of the own vehicle
    The load weight estimation system for a specially equipped vehicle according to any one of claims 17 to 20, wherein the notification unit notifies information about a state detected by the state detection unit.
  22.  前記状態検知部が検知する状態は、前記積載物が積載される荷箱の状態、及び前記積載物の積載状態の少なくとも1つを含む
     請求項21に記載の特装車の積載重量推定システム。
    The load weight estimation system for a specially equipped vehicle according to claim 21, wherein the state detected by the state detection unit includes at least one of a state of a packing box on which the load is loaded and a state of the load.
  23.  前記変位センサは、自車両の前後方向又は左右方向に離隔して、シャシフレームに固定される構造物の複数箇所に取り付けてある
     請求項17から請求項22の何れか1つに記載の特装車の積載重量推定システム。
    The specially equipped vehicle according to any one of claims 17 to 22, wherein the displacement sensors are separated from each other in the front-rear direction or the left-right direction of the own vehicle and are attached to a plurality of positions of a structure fixed to the chassis frame. Load weight estimation system.
  24.  前記変位センサは、自車両の前後方向又は左右方向に離隔して、車軸の複数箇所に取り付けてある
     請求項17から請求項22の何れか1つに記載の特装車の積載重量推定システム。
     
    The load weight estimation system for a specially equipped vehicle according to any one of claims 17 to 22, wherein the displacement sensor is separated from the vehicle in the front-rear direction or the left-right direction and attached to a plurality of positions on the axle.
PCT/JP2020/012591 2019-12-25 2020-03-23 Computer program, estimation device, method for generating training model, and system for estimating load weight of specially-equipped vehicle WO2021131091A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019234977A JP7208888B2 (en) 2019-12-25 2019-12-25 Computer program, estimation device, and learning model generation method
JP2019-234977 2019-12-25
JP2019-234978 2019-12-25
JP2019234978 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131091A1 true WO2021131091A1 (en) 2021-07-01

Family

ID=76572975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012591 WO2021131091A1 (en) 2019-12-25 2020-03-23 Computer program, estimation device, method for generating training model, and system for estimating load weight of specially-equipped vehicle

Country Status (1)

Country Link
WO (1) WO2021131091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865682A (en) * 2021-09-29 2021-12-31 深圳市汉德网络科技有限公司 Truck tire load determining method and device and storage medium
CN116481626A (en) * 2023-06-28 2023-07-25 深圳市汉德网络科技有限公司 Vehicle-mounted weighing self-adaptive high-precision calibration method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257553A (en) * 1996-03-22 1997-10-03 Yazaki Corp Dead weight measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257553A (en) * 1996-03-22 1997-10-03 Yazaki Corp Dead weight measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865682A (en) * 2021-09-29 2021-12-31 深圳市汉德网络科技有限公司 Truck tire load determining method and device and storage medium
CN113865682B (en) * 2021-09-29 2023-11-21 深圳市汉德网络科技有限公司 Truck tire load determining method, truck tire load determining device and storage medium
CN116481626A (en) * 2023-06-28 2023-07-25 深圳市汉德网络科技有限公司 Vehicle-mounted weighing self-adaptive high-precision calibration method and system
CN116481626B (en) * 2023-06-28 2023-08-29 深圳市汉德网络科技有限公司 Vehicle-mounted weighing self-adaptive high-precision calibration method and system

Similar Documents

Publication Publication Date Title
WO2021131091A1 (en) Computer program, estimation device, method for generating training model, and system for estimating load weight of specially-equipped vehicle
JP4517107B2 (en) Center of gravity detection device, rollover limit speed prediction device, cargo weight prediction device and calculation program
RU2567499C2 (en) Method to evaluate dynamic load maintained by pneumatic car tyre
JP2686843B2 (en) Vehicle loading weight measurement device
KR20170053909A (en) Load weighing method and system for wheel loader
CN103026186A (en) Device for displaying load quantity of dump truck
CN113104455B (en) Garbage weighing method and device based on bucket-hanging type garbage truck, electronic equipment and storage medium
CN105593094A (en) Evaluation program, recording medium, evaluation method, evaluation device, and vehicle
JP2021103166A (en) Loading weight estimation system of specially-equipped vehicle
JP2020164127A (en) Arithmetic model generation system, wear amount estimation system, and arithmetic model generation method
CN110962521B (en) Digital automobile vibration reduction system
WO2020100721A1 (en) In-vehicle transmission device and mobile terminal, and loadage information display system including same
KR20130125108A (en) Device for monitoring tire safety index and method thereof
JP2017044706A (en) Vehicle driving support device
JP7208888B2 (en) Computer program, estimation device, and learning model generation method
JP5626781B2 (en) Center of gravity measurement device
JP6022830B2 (en) Center of gravity position estimation apparatus, vehicle, center of gravity position estimation method, and program
TWI621545B (en) Suspension control module, suspension system, vehicle, and suspension control method
JP5988720B2 (en) Center of gravity position estimation apparatus, vehicle, center of gravity position estimation method, and program
JPH08210905A (en) Loading weight measuring device for motor truck
US20230281552A1 (en) Vehicle load weight determination and distribution guidance
JP2023148986A (en) System and method for estimating weight of load in specially-equipped vehicle and computer program
JP5550404B2 (en) Center of gravity position display device, center of gravity position display method, and vehicle
JP2023148987A (en) System and method for estimating weight of load in specially-equipped vehicle and computer program
CN108357499A (en) The axle load of multiple-axle vehicle determines that method, axle load determine system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904764

Country of ref document: EP

Kind code of ref document: A1