WO2021131020A1 - スキャン方法、スキャン装置、及びスキャンプログラム - Google Patents

スキャン方法、スキャン装置、及びスキャンプログラム Download PDF

Info

Publication number
WO2021131020A1
WO2021131020A1 PCT/JP2019/051442 JP2019051442W WO2021131020A1 WO 2021131020 A1 WO2021131020 A1 WO 2021131020A1 JP 2019051442 W JP2019051442 W JP 2019051442W WO 2021131020 A1 WO2021131020 A1 WO 2021131020A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
spiral
scanner
eye
scanning
Prior art date
Application number
PCT/JP2019/051442
Other languages
English (en)
French (fr)
Inventor
古谷 俊輔
朋春 藤原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2021566724A priority Critical patent/JPWO2021131020A1/ja
Priority to PCT/JP2019/051442 priority patent/WO2021131020A1/ja
Publication of WO2021131020A1 publication Critical patent/WO2021131020A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • This disclosure relates to a scanning method, a scanning device, and a scanning program.
  • Patent Document 1 discloses a method of scanning an eye to be inspected and taking a tomographic image.
  • a scanning method for taking a cross-sectional image of a wide area of the eye to be inspected is desired.
  • aspects of the present disclosure is a scanning method for scanning an eye to be inspected, in which a computer determines a spiral scan parameter for spiral scanning the eye to be inspected, generates a scanner drive signal in the spiral scan parameter, and the scanner. Control the scanner based on the drive signal.
  • FIG. 1 is a diagram showing a difference between a raster scan and a spiral scan according to the scanning method according to the present embodiment when scanning a wide area from the central portion to the peripheral portion of the fundus.
  • the raster scan on the left of FIG. 1 one of the vertical axis and the horizontal axis is moved at high speed, and the other is moved at low speed.
  • the axis that moves at high speed is the high-speed axis, and the other is the low-speed axis.
  • the vertical axis is the high-speed axis and the horizontal axis is the low-speed axis.
  • the spiral scan on the right of FIG. 1 the scan position moves in a spiral shape from the center to the periphery.
  • optics such as focus are applied in accordance with the periodic operation of the high-speed axis.
  • the adjustment must be followed. This is because the fundus to be photographed is the inner surface of the eyeball, and the optical path length from the pupil to the retina differs between the central portion and the peripheral portion of the fundus. The change in the optical path length depending on the scan position becomes remarkable especially when OCT imaging is performed.
  • the change of the drive angle of the vertical axis and the horizontal axis is defined based on the sine wave, the change between the vertical axis and the horizontal axis is a raster scan. Is smaller than. Therefore, even if a wide area including the central portion and the peripheral portion of the eye to be inspected is photographed by one scan, stable and accurate imaging can be realized.
  • the focus adjustment which is one of the optical adjustments, is different between the raster scan and the spiral scan. Focus adjustment will be described with reference to FIGS. 3 and 4.
  • FIG. 3 shows a cross-sectional view of the eye to be inspected and a contour view of the retinal surface at the distance from the pupil to the retina.
  • the contour diagram is a diagram in which the contour diagram is represented by shades of color instead of lines.
  • the distance from the pupil to the retinal surface changes depending on the angle of view of the incident light beam.
  • the distance from the pupil to the retina surface can be rephrased as the distance between the center position of the retina and the position where the light beam hits the retina.
  • the distance of the incident light beam to the retinal surface becomes longer toward the posterior pole of the fundus of the eye to be inspected.
  • FIG. 4 is a schematic diagram of focus adjustment in raster scan and spiral scan.
  • the distance from the pupil to the retinal surface also changes in one cycle during one cycle of the scan on the high-speed axis side. Therefore, it is necessary to adjust the focus so as to follow the change in the distance from the pupil to the retinal surface. That is, it is necessary to perform the focus adjustment cycle at a high speed in accordance with one cycle of the scan on the high-speed axis side of the raster scan. Therefore, it is necessary for the lens drive mechanism or the like for adjusting the focus to move at high speed.
  • the distance from the pupil to the retinal surface changes only by one cycle from the start to the end of imaging (Fig. 4). Therefore, it is not necessary to perform focus adjustment at high speed. Further, in the spiral scan, the focus becomes closer toward the outside, or the focus becomes farther toward the inside. Therefore, the amount of change in focus adjustment is small and can be changed by a fixed amount. That is, the load on the lens drive mechanism for adjusting the focus can be suppressed.
  • the shooting area is narrow, such as only in the center of the fundus, the required focus adjustment amount is small (the adjustment range is small), so that the shooting image quality may not be affected even if the focus adjustment is not performed.
  • a large amount of focus adjustment is required as a whole (the adjustment range becomes large), so that the spiral scan technique of the present disclosure becomes more effective.
  • FIG. 5 is a block diagram showing the configuration of the ophthalmic system 100 according to the present embodiment.
  • the ophthalmology system 100 includes an ophthalmology device 110 that executes the scanning method of the present disclosure, an axial length measuring device 120, a network 130, and a management server device (hereinafter, referred to as “management server”) 140. And an image display device (hereinafter, referred to as “image viewer”) 150.
  • the ophthalmic apparatus 110, the axial length measuring instrument 120, the management server 140, and the image viewer 150 are connected to each other via the network 130.
  • the network 130 is an arbitrary network such as LAN, WAN, the Internet, and a wide area ether network.
  • a LAN can be adopted for the network 130.
  • the axial length measuring device 120 measures the axial length, which is the length of the eye to be inspected 12 in the axial direction, and transmits the measured axial length to the management server 140.
  • FIG. 6 is a block diagram showing a hardware configuration of the ophthalmic apparatus 110 according to the present embodiment.
  • the ophthalmic apparatus 110 includes an imaging apparatus 14 and a control apparatus 16.
  • the horizontal direction is the "X direction”
  • the direction perpendicular to the horizontal plane is the "Y direction", connecting the center of the pupil of the anterior segment of the eye 12 to the center of the eyeball.
  • the direction is "Z direction”. Therefore, the X, Y, and Z directions are perpendicular to each other.
  • the control device 16 includes a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, an input / output (I / O) 16D, and an input / display device 16E. And a computer having a communication interface (I / F) 16F. Each configuration of the control device 16 is communicably connected to each other via a bus.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read-Only memory
  • I / O input / output
  • I / display device 16E input / display device 16E.
  • a computer having a communication interface (I / F) 16F.
  • Each configuration of the control device 16 is communicably connected to each other via a bus.
  • the CPU 16A is a central arithmetic processing unit that executes various programs and controls each part. That is, the CPU 16A reads the program from the ROM 16C and executes the program using the RAM 16B as a work area. The CPU 16A controls each configuration and performs various arithmetic processes according to the program stored in the ROM 16C. In the present embodiment, the ROM 16C stores a scan program for executing the scan process.
  • the RAM 16B temporarily stores a program or data as a work area.
  • the ROM 16C stores various programs and various data.
  • the control device 16 may further include a storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive). In this case, various programs including the operating system and various data are stored in the storage.
  • the input / display device 16E is connected to the CPU 16A via the I / O port 16D.
  • the input / display device 16E has a graphical user interface (GUI) for displaying an image of the eye 12 to be inspected and receiving various instructions from the user.
  • GUI graphical user interface
  • the control device 16 includes an image processing device 17 connected to the I / O port 16D.
  • the control device 16 connects to the network 130 via the communication interface 16F.
  • the communication interface 16F is an interface for communicating with other devices, and for example, standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark) are used.
  • the image processing device 17 generates an image of the eye to be inspected 12 based on the data obtained by the photographing device 14.
  • control device 16 of the ophthalmic device 110 includes the input / display device 16E, but the technique of the present disclosure is not limited to this.
  • the control device 16 of the ophthalmic apparatus 110 may not include the input / display device 16E, but may include an input / display device that is physically independent of the ophthalmic apparatus 110.
  • the photographing device 14 captures an image of the eye 12 to be inspected.
  • the photographing device 14 operates under the control of the control device 16.
  • the photographing apparatus 14 includes a photographing optical system 19, an SLO (Scanning Laser Optics, hereinafter referred to as SLO) unit 18, and an OCT (Optical Coherence Tomography, hereinafter referred to as OCT) unit 20.
  • SLO Scnning Laser Optics
  • OCT Optical Coherence Tomography
  • the photographing optical system 19 includes an optical path synthesis element 21, a first scanner 22, a second scanner 24, and an objective optical system 26.
  • the optical path synthesizer 21 is a half mirror or a beam splitter, and the first scanner 22 and the second scanner 24 are optical scanners.
  • the light emitted from the OCT unit 20 and passing through the optical path synthesizing element 21 is scanned by the first scanner 22 in the X-axis direction.
  • the second scanner 24 scans the light emitted from the OCT unit 20 in the Y direction.
  • the first scanner 22 and the second scanner 24 may be any optical element capable of deflecting a light beam, and for example, a polygon mirror, a galvano mirror, or the like can be used. Moreover, it may be a combination thereof.
  • the first scanner 22 and the second scanner 24 may be configured as one optical scanner.
  • a raster scan or a spiral scan is performed using the first scanner 22 and the second scanner 24. Raster scan is mainly performed by B scan (scanning on a line), and spiral scan is mainly performed by C scan (scanning a wide area).
  • the objective optical system 26 is an optical system that guides the light guided by the first scanner 22 and the second scanner 24 to the eye to be inspected 12.
  • the objective optical system 26 may be a catadioptric system using a concave mirror such as an elliptical mirror, a catadioptric system using a wide-angle lens or the like, or a catadioptric system combining a concave mirror and a lens.
  • a wide-angle optical system using an elliptical mirror, a wide-angle lens, or the like it is possible to photograph the retina not only in the central part of the fundus but also in the peripheral part of the fundus.
  • the focus adjustment mechanism 28 is one of the optical adjustment mechanisms described later.
  • the OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimating lens 20E, and a second optical coupler 20F.
  • the light emitted from the light source 20A is branched by the first optical coupler 20C.
  • One of the branched lights is made into parallel light by the collimating lens 20E as measurement light, and then is incident on the photographing optical system 19.
  • the measurement light is scanned in the X and Y directions by the first scanner 22 and the second scanner 24.
  • the scanning light is applied to the fundus through the objective optical system 26 and the pupil 27.
  • the measurement light reflected by the fundus is incident on the OCT unit 20 via the objective optical system 26, the second scanner 24, and the first scanner, and is incident on the OCT unit 20 via the collimating lens 20E and the first optical coupler 20C. It is incident on the optical coupler 20F.
  • the other light emitted from the light source 20A and branched by the first optical coupler 20C is incident on the reference optical system 20D as reference light, and is incident on the second optical coupler 20F via the reference optical system 20D. To do. These lights incident on the second optical coupler 20F, that is, the measurement light reflected by the fundus and the reference light are interfered with by the second optical coupler 20F to generate interference light.
  • the interference light is received by the sensor 20B.
  • the image processing device 17 that operates under the control of the image processing unit 105 generates an OCT image such as a tomographic image or an en-face image based on the OCT data detected by the sensor 20B.
  • the SLO unit 18 includes a B (blue light) light source 40, a G light (green light) light source 42, an R light (red light) light source 44, and an IR light (infrared ray (for example, near)). Infrared light)) light source 46, and optical systems 48, 50, 52, 54, 56 that reflect or transmit light from light sources 40, 42, 44, 46 and guide them into one optical path.
  • the optical systems 48, 50 and 56 are mirrors, and the optical systems 52 and 54 are beam splitters.
  • B light is reflected by the optical system 48, is transmitted through the optical system 50, is reflected by the optical system 54, G light is reflected by the optical systems 50 and 54, and R light is transmitted through the optical systems 52 and 54.
  • IR light is reflected by the optical systems 52 and 56 and guided to one optical path, respectively.
  • the SLO unit 18 is configured to be able to switch a combination of a light source that emits laser light having a different wavelength or a light source that emits light, such as a mode that emits G light, R light, and B light, and a mode that emits infrared light.
  • a light source 40 for B light (blue light) includes four light sources: a light source 40 for B light (blue light), a light source 42 for G light, a light source 44 for R light, and a light source 46 for IR light.
  • the SLO unit 18 may further include a light source for white light and emit light in various modes such as a mode in which only white light is emitted.
  • the light incident on the photographing optical system 19 from the SLO unit 18 passes through the optical path synthesizing element 21 and is scanned in the X and Y directions by the first scanner 22 and the second scanner.
  • the scanning light is applied to the posterior eye portion (fundus) of the eye 12 to be inspected via the pupil 27.
  • the reflected light reflected by the fundus is incident on the SLO unit 18 via the photographing optical system 19, the first scanner 22, and the second scanner.
  • raster scan is mainly used.
  • the SLO unit 18 transmits G light among the light from the rear eye portion (fundus) of the eye 12 to be examined, the beam splitter 64 that reflects the B light and transmits other than the B light, and the light that has passed through the beam splitter 64.
  • a beam splitter 58 that reflects and transmits other than G light is provided.
  • the SLO unit 18 includes a beam splitter 60 that reflects R light and transmits other than R light among the light transmitted through the beam splitter 58.
  • the SLO unit 18 includes a beam splitter 62 that reflects IR light among the light transmitted through the beam splitter 60.
  • the SLO unit 18 detects the B light detection element 70 that detects the B light reflected by the beam splitter 64, the G light detection element 72 that detects the G light reflected by the beam splitter 58, and the R light reflected by the beam splitter 60.
  • the R light detection element 74 and the IR light detection element 76 that detects the IR light reflected by the beam splitter 62 are provided.
  • the light incident on the SLO unit 18 via the second scanner 24, the first scanner 22, and the optical path synthesizing element 21 is reflected by the beam splitter 64 and is B.
  • the light is received by the light detection element 70, and in the case of G light, the light is transmitted through the beam splitter 64, reflected by the beam splitter 58, and received by the G light detection element 72.
  • the incident light passes through the beam splitters 64 and 58, is reflected by the beam splitter 60, and is received by the R light detection element 74.
  • the incident light passes through the beam splitters 64, 58, and 60, is reflected by the beam splitter 62, and is received by the IR photodetector 76.
  • the image processing device 17 operating under the control of the CPU 16A generates an SLO image using the signals detected by the B photodetector 70, the G photodetector 72, the R photodetector 74, and the IR photodetector 76. ..
  • the scan program has a scan control function, a display control function, an optical adjustment function, an image processing function, a communication function, and a processing function as functional configurations.
  • the CPU 16A executes a scan program having each of these functions, the CPU 16A functions as a scanner control unit 101, a display control unit 102, a processing unit 103, an optical adjustment unit 104, and an image processing unit 105.
  • the scanner control unit 101 controls the first scanner 22 and the second scanner 24.
  • the scanner control unit 101 includes a trajectory calculation unit 111 and a scanner drive unit 112.
  • FIG. 8 is a flowchart showing the flow of the scan processing routine by the ophthalmic apparatus 110.
  • the scan processing routine is executed when the CPU 16A reads the scan program from the ROM 16C or the storage, expands it into the RAM 13, and executes it.
  • step S100 the display control unit 102 generates image data of the setting screen 1500 for setting the spiral scan parameter.
  • the image data of the setting screen 1500 is transmitted to the input / display device 16E, and the setting screen 1500 is displayed on the input / display device 16E.
  • the display control unit 102 generates image data of the setting screen 1500 including the first GUI for setting the spiral scan parameter and the second GUI for confirming the scan locus by the scanner drive signal.
  • the GUI is a Graphical User Interface.
  • the first GUI is a GUI in which spiral scan parameters can be individually input, or a GUI in which a preset or user-registered set of spiral scan parameters can be selected. That is, the first GUI accepts the input of the spiral scan parameter by individual input or selection.
  • parameter settings that are frequently used and parameter settings that the user likes are prepared in advance, and are stored in the RAM 16B as a plurality of scan modes.
  • a plurality of parameter values for defining one spiral scan are set (composed of a parameter group), and a name indicating the "plurality of parameter values" (for example, the user is high).
  • a character string (character string "user setting 1") is added to the parameter group of the spiral scan used frequently, and the parameter group and the character string are stored as a set as "user setting 1 mode".
  • the first GUI may be set so that the scan mode can be selected.
  • anterior segment scan mode in which the anterior segment of the eye to be inspected such as the cornea and crystalline lens is photographed
  • posterior segment scan in which the posterior segment of the eye to be inspected (fundus) such as the retina and vortex vein is photographed.
  • the mode may be selectable.
  • the anterior segment scan mode is a spiral scan mode in which the optimum parameter group for the spiral scan for photographing the anterior segment is preset.
  • the posterior ocular segment scan mode is a spiral scan mode in which the optimum parameter group for spiral scan for photographing a wide range of the fundus is preset. Then, the scan parameters received by the first GUI are used for the calculation of the scan by the trajectory calculation unit 111.
  • the second GUI displays a superimposed image in which the scan locus by the scanner drive signal is superimposed and displayed on the posterior eye image or the anterior eye image of the eye to be inspected.
  • the superimposed image displays the scan trajectory of the spiral scan based on the scanner drive signal calculated by the trajectory calculation unit 111 based on the spiral scan parameter currently input to or selected in the first GUI as the foreground image.
  • a pre-photographed posterior-eye image or anterior-eye image of the eye to be inspected is displayed as a background image.
  • the posterior eye image or the anterior eye image for example, an image of the patient's eye to be inspected taken in the past may be read out from the RAM 16B or the server 140 and used.
  • trajectory calculation unit 111 has a function of determining whether the spiral trajectory can be calculated correctly, when a parameter that cannot calculate the spiral trajectory is set, a text or a warning is shown to notify the user that the parameter is incorrect.
  • Image data may be generated so that the image is displayed in the screen of the second GUI.
  • the setting screen 1500 displays a patient information identification information display field 1500A for displaying patient identification information, a first GUI display field 1500B for setting spiral scan parameters, and the superimposed image. It has a second GUI display field 1500C to be displayed.
  • the superimposed image not only the SLO image obtained by photographing the fundus, but also the schematic diagram of the fundus and the stereoscopic image (3D model) of the eye to be inspected may be superimposed and displayed with the locus of the spiral scan.
  • the image on which the loci are superimposed may be an image of the eye to be inspected as a two-dimensional image or an image of the eye to be inspected as a three-dimensional image.
  • an image obtained by photographing the anterior segment of the eye to be inspected with an anterior segment camera or the like may be used as a background image.
  • the setting screen 1500 may display the predicted measurement time calculated by the trajectory calculation unit 111 based on the scan parameters, that is, the time required to execute the set spiral scan.
  • the scan parameters set in the past and the measurement time required to actually take the OCT image by the scan parameters are stored in the RAM 16B, and the measurement is performed under the same conditions as the past measurement. The time may be read from the RAM 16B and displayed.
  • the coordinate system of the spiral scan according to the present embodiment will be described with reference to FIG.
  • the coordinate system is defined by the angle of incidence on the eye to be inspected.
  • the direction that passes through the center of the pupil of the eye to be inspected and is perpendicular to the pupil surface is the Z axis (optical axis), the left-right direction is the X-axis, and the vertical direction is the Y-axis.
  • the angle formed by the incident light beam, which is a light ray emitted from the OCT unit 20 and incident on the eye to be inspected, and the optical axis is the angle of incidence ⁇ on the eye to be inspected.
  • the incident angle ⁇ is defined by an incident angle component in the X-axis direction and an incident angle component in the Y-axis direction.
  • the angle of incidence in the X-axis direction is ⁇ x
  • the angle of incidence in the Y-axis direction is ⁇ y. That is, the incident angle ⁇ x is used as the first drive signal for driving the first scanner 22. Then, ⁇ y is used as a second drive signal for driving the second scanner 24.
  • the spiral scan can be realized by changing the incident angles ⁇ x and ⁇ y for each sampling time interval.
  • the spiral scan parameter is a parameter used when the eye to be inspected is spirally scanned by the ophthalmic apparatus 110.
  • the spiral scan parameter is the incident angle of light with respect to the plane in a plane orthogonal to the axis perpendicular to the pupil plane of the eye to be inspected, and the incident angle data showing the correspondence between time and the incident angle is a plurality of types of parameters. Will be described.
  • the spiral scan parameters include at least the spiral type, scan range, spiral scan start position ⁇ x0 , ⁇ y0 ⁇ , and sampling interval L.
  • the spiral type parameter is information for defining the shape of the spiral.
  • the spiral shape parameter is composed of a code indicating the basic shape of the shape such as the above-mentioned uniform spiral, a coefficient a, a coefficient b, and the like, and is a parameter that is the basis of the trajectory calculation by the trajectory calculation unit 111.
  • the scan range parameter is a parameter that determines the imaging range of the eye to be inspected.
  • the scan range parameters include an inner diameter r min, which is the minimum value in the radial direction r, and an outer diameter r max, which is the maximum value in the radial direction r. That is, when the inner diameter r min and the outer diameter r max are determined, the range of r min ⁇ r ⁇ r max is scanned. Further, the scan range parameters can include the ellipticity c and the orientation ⁇ dx, dy ⁇ of the ellipse.
  • the incident angles ⁇ x and ⁇ y can be represented by the radial direction r and the circumferential direction ⁇ of the angles formed by the optical axis with respect to the plane in the plane orthogonal to the optical axis which is the axis perpendicular to the pupil plane of the eye to be inspected.
  • the equation of the polar coordinate system of the uniform spiral is converted into the Cartesian coordinate system, the relationship between the incident angles ⁇ x and ⁇ y and the radial direction r and the circumferential direction ⁇ is as shown in the following equation (1) in the above general spiral. become.
  • the above equation (1) is expressed as the following equation (2) by adding the ellipticity c and the direction ⁇ dx, dy ⁇ of the ellipse.
  • is an angle value that changes with each sampling interval L.
  • is defined from the start point to the end point of the spiral scan.
  • a is a parameter that defines the spiral line and the interval (number of turns) between the lines,
  • c is a parameter that specifies the ellipticity, and
  • dx and dy are parameters that define the direction of the ellipse, respectively.
  • the scan locus parameter can be determined by defining the time change of ⁇ .
  • the time derivative value of ⁇ is always positive when the scanning direction is from the inside to the outside, and is always negative when the scanning direction is from the outside to the inside.
  • Spiral scan parameters can include such scan directions. That is, it is possible to specify whether the scanning direction is from the outside to the inside of the spiral or from the inside to the outside.
  • Starting position parameters of spiral scan ⁇ x0, ⁇ y0 ⁇ is at the start time t 0 of the spiral scan, the incident angle ⁇ x and [theta] y, the end position of the spiral scan ⁇ xtf, ⁇ ytf ⁇ is the end of the spiral scan
  • the sampling interval parameter L is a parameter indicating the interval at which the eye to be scanned is scanned by the spiral scan. That is, the sampling interval parameter L is the sampling interval in the circumferential direction, and can be said to be the moving distance (the length of the spiral) at the sampling time interval.
  • the number of turns of the ellipse is determined by the value of a in the above equation (2), and the sampling interval in the radial direction (that is, the interval between lines) is determined.
  • the sampling interval in the circumferential direction is determined by determining the time change of ⁇ .
  • the sampling interval parameter L can be arbitrarily determined by the time change of ⁇ .
  • is proportional to t
  • the center is photographed finely, while the image is photographed coarser toward the outside (Fig. 11, right).
  • the sampling times be t 1 , t 2 , ....
  • the sampling interval from a certain time t 1 until the next time t 2 L (t1 ⁇ t2) can be represented by the following formula (3).
  • the time change of the incident angles ⁇ x and ⁇ y may be determined so that the value of the sampling interval L changes in a desired shape for each time.
  • the value of L may always be constant at each time interval t s ⁇ t s + 1.
  • the scan parameters can include the spiral center position (X, Y).
  • the part of the eye to be examined is not always the range centered on the center of the eye to be examined (for example, the optic nerve head).
  • the center position (X, Y) of the spiral can be expressed by the following equation (4) in which X and Y are added to the above equation (2).
  • the center of the spiral can be shifted to a predetermined position depending on the center position of the spiral (X, Y). For example, as shown in FIG. 12, the center position of the spiral is shifted by (X, Y).
  • FIG. 13 and 14 are diagrams showing an example of a scan locus.
  • the outer diameter r max is reduced, only the part near the center of the spiral can be photographed (Fig. 13, left).
  • the inner diameter r min is increased, a ring-shaped region on the outer circumference of the eye to be inspected excluding the central portion of the spiral can be photographed (in FIG. 13).
  • the region can be made elliptical (Fig. 13, right).
  • spiral scan parameters described above are merely examples, and can be set in various ways within a range that does not deviate from the gist of the present disclosure.
  • the above-mentioned scan parameters are set by the user using the first GUI 1500B of the setting screen 1500 displayed on the input / display device 16E.
  • the scan parameter is stored in the RAM 16B (step S101).
  • the trajectory calculation unit 111 reads the spiral scan parameter set by the user from the RAM 16B via the processing unit 103.
  • the trajectory calculation unit 111 calculates the scan trajectory based on the set spiral scan parameters. Then, the trajectory calculation unit 111 passes the calculated scan trajectory to the display control unit 102.
  • the trajectory calculation unit 111 may have a function of determining whether the spiral trajectory can be correctly calculated by the installed spiral scan parameters. For example, there may be a case where the number of turns is too small, such as 1 or 2, or a case where the spiral trajectory exceeds the scannable range (when the maximum angle of view of the ophthalmic apparatus 110 is exceeded). When such a spiral trajectory that cannot be substantially photographed is calculated, a message prompting the user to reset is notified, or the trajectory calculation unit 111 calculates an appropriate scan parameter and informs the user of the appropriate scan parameter. Scan parameters may be proposed.
  • step S103 the display control unit 102 generates a second GUI in which the scan locus by the scanner drive signal calculated in step S102 is superimposed on the fundus image which is the image to be inspected, and updates the above setting screen 1500. Then, the updated setting screen is displayed on the input / display device 16E.
  • the graphic data of the scan locus is superimposed on the SLO image of the fundus, which is the background image.
  • the graphic data of the scan locus is superimposed on the image of the anterior segment of the eye, which is the background image.
  • the process of enlarging / reducing the graphic data of the scan locus according to the size of the background image and the position of the background image and the graphic data of the scan locus is performed.
  • step S104 the trajectory calculation unit 111 determines the spiral scan parameter by the user on the input / display device 16E via the processing unit 103 (that is, scans the second GUI displayed in the second GUI display field 1500C of FIG. 15). It is determined whether or not the decision to perform measurement on the trajectory) has been accepted.
  • step S104 If the decision is not accepted (NO in step S104 above), the process returns to step S100. Then, when the scan parameters are set again, the scan trajectory is redisplayed using the reset scan parameters.
  • step S104 when the decision is accepted (YES in step S104 above), the scanner drive signal and the adjustment amount of the optical adjustment mechanism corresponding to the scanner drive signal are generated in step S105.
  • the scanner drive unit 112 generates a first drive signal of the first scanner 22 in the X direction and a second drive signal of the second scanner 24 in the Y direction for scanning according to the scan locus based on the determined spiral scan parameters. ..
  • the optical adjustment unit 104 calculates the adjustment amount at each sampling timing (that is, the timing of each A scan) based on the generated scanner drive signal.
  • the optical adjustment mechanism is the focus adjustment mechanism 28
  • the focus lens is driven in the optical axis direction based on the focus adjustment amount, and the focus adjustment is executed.
  • the scan locus may be divided into a plurality of sections and the adjustment amount may be set for each section.
  • the optical adjustment mechanism is not limited to the focus adjustment mechanism 28. It may be an adjustment mechanism that adjusts optical parameters that change depending on the distance from the pupil to the retina, such as an optical path length adjustment mechanism, a dispersion adjustment mechanism, and a polarization adjustment mechanism. Further, these adjusting mechanisms are not limited to one, and may have a plurality of these adjusting mechanisms.
  • the optical adjustment unit 104 makes an adjustment to increase the diopter as the focus adjustment amount.
  • the central part of the fundus is adjusted to 0 diopter (without adjustment), but gradually increases to +0.5 diopter and +1.0 diopter toward the peripheral part of the fundus.
  • the change rate of the focus adjustment amount in the central part of the fundus and the adjustment amount when going to the periphery differs depending on the eye to be examined (patient). This focus adjustment is performed both during OCT imaging and during SLO imaging.
  • the adjustment is made so as to gradually decrease to -0.5 diopter and -1.0 diopter toward the peripheral part of the fundus.
  • the amount of adjustment may be changed depending on the angle of incidence of the incident light for photographing on the pupil.
  • optical adjustments that are performed only during OCT imaging there are 1) optical path length adjustment of the reference optical path and 2) dispersion adjustment that adjusts the dispersion of the reference light and the measurement light.
  • the optical path length adjustment is to adjust the optical path length of the measurement light and the optical path length of the reference light to be the same. It is assumed that an optical path length adjusting mechanism (consisting of a driving device for driving a reference mirror for adjusting the optical path length by a motor or the like) (not shown) is in the reference optical path.
  • the optical adjustment unit 104 outputs an adjustment instruction to the optical path adjustment mechanism in order to make adjustments so that the optical path length of the reference light is shorter when scanning the peripheral part of the fundus than when scanning the central part of the fundus. To do.
  • the optical path length adjusting mechanism when the optical path length adjusting mechanism is in the optical path of the measurement light, the optical path length of the measurement light is longer when the optical adjustment unit 104 is scanning the peripheral portion of the fundus than when scanning the central portion of the fundus.
  • An adjustment instruction is output to the optical path adjustment mechanism in order to make adjustments so as to be.
  • the optical path length of the reference light and the optical path length of the measurement light become the same depending on the location of the central part of the fundus or the peripheral part of the fundus, and OCT imaging including OCT data of an appropriate depth can be performed. it can.
  • Dispersion adjustment is to adjust the dispersion of the reference optical path so that it is the same as the dispersion of the measurement optical path.
  • the dispersion differs depending on the distance that the measurement light passes through the crystalline lens of the eye to be inspected.
  • the distance through the crystalline lens differs depending on the angle of entry of the measurement light into the pupil. The distance that the measurement light passes through the crystalline lens becomes longer and the dispersion becomes larger in the scan of the central part of the fundus.
  • the distance that the measurement light passes through the crystalline lens becomes short, and the dispersion becomes small.
  • the dispersion adjustment mechanism is used so that the amount of dispersion on the reference optical path side is the same as the amount of dispersion on the measurement optical path (scanning the peripheral part of the retina compared to when scanning the central part of the retina). Control (so that the variance becomes smaller when it is).
  • the dispersion adjustment mechanism includes a mechanism capable of adjusting the degree of twist of an optical fiber or the like. Alternatively, instead of adjusting by a mechanism, it may be performed by data processing that corrects the dispersion amount for the OCT data.
  • Polarization adjustment is to adjust the amount of polarization deviation that occurs according to the distance that light passes through the crystalline lens in the eye.
  • the amount of polarized light varies depending on the distance that the measurement light passes through the crystalline lens of the eye to be inspected.
  • the distance through the crystalline lens differs depending on the angle of entry of the measurement light into the pupil.
  • the distance that the measurement light passes through the crystalline lens becomes longer in the scan of the central part of the fundus, and the amount of polarization shift becomes large.
  • the distance that the measurement light passes through the crystalline lens becomes shorter, and the polarization deviation becomes smaller.
  • the polarization adjustment mechanism is set so that the amount of polarization on the reference optical path side is the same as the amount of polarization on the measurement optical path (scanning the peripheral part of the retina compared to when scanning the central part of the retina). (So that the polarization becomes smaller when the light is on).
  • the polarization adjusting mechanism include a mechanism for adjusting polarization by rotating a polarizing plate.
  • the above-mentioned adjustment amounts are prepared by the optical adjustment mechanism mounted on the ophthalmic apparatus 110 by the following method.
  • -Method 1 Adjust at the representative position (usually the central axis of the eye to be inspected) to obtain the amount of adjustment, and calculate the distance from the pupil to the retina for each angle of incidence based on the model of the eye to be inspected. Then, the adjustment amount for each time is determined based on the calculated distance.
  • the model of the eye to be inspected may be a sphere model or a configuration using a model such as Navarro.
  • -Method 2 Make adjustments over the entire scan range before shooting and create an adjustment amount map. At the time of shooting, the adjustment amount for each time is determined based on the created adjustment amount map and the scan locus.
  • -Method 3 Before imaging, the distance from the pupil to the retina is measured over the entire scanning range, and eye shape data is created. At the time of shooting, the adjustment amount for each time is determined based on the created eyeball shape data and the scan locus.
  • step S106 the scanner drive unit 112 is moved to the initial position based on the initial values of the scan drive signals of the first scanner 22 and the second scanner 24 (the reflective surfaces of the first scanner 22 and the second scanner 24 are set to the initial angles).
  • the first scanner 22 and the second scanner 24 are driven so as to be).
  • the optical adjustment unit 104 controls the optical adjustment mechanism to move to the initial position (set so as to be the initial adjustment amount).
  • the focus adjustment mechanism 28 moves the focus lens so that it is in focus at the scan start position.
  • the scanner drive unit 112 drives the first scanner 22 based on the first scanner drive signal and the second scanner 24 based on the second scanner signal.
  • the optical adjustment unit 104 controls the focus adjustment mechanism 28 based on the adjustment amount of the focus adjustment mechanism.
  • it may be configured to have a function of measuring the movement of the eye to be inspected in real time by using an eye tracking function or the like and giving feedback so as to follow the movement of the eye to be inspected.
  • step S108 the image processing unit 105 performs a Fourier transform or the like from the detection signal acquired by the sensor 20B of the OCT unit 20 along the scan locus performed by the process of step S107, and A scan data (OCT data). To generate.
  • step S109 the image processing unit 105 performs a conversion to align the A scan data arranged in the scan locus in the sampling order in a grid pattern.
  • This is a conversion that reconstructs the A scan data so as to form a two-dimensional or three-dimensional grid pattern in order to smoothly perform image processing. That is, since the sample point positions of the data obtained by the spiral scan are arranged in a spiral shape (left figure in FIG. 16), they are converted into a grid pattern so that digital processing can be performed (right figure in FIG. 16). ).
  • the position information of the sample points may be calculated from the spiral locus and the sampling frequency data, and the position information (angle information of the reflection surface) of the first scanner 22 and the second scanner 24 at each sample point may be calculated. It may be calculated from the first drive signal and the second drive signal and used.
  • step S110 the image processing unit 105 generates an OCT image such as a tomographic image of the retina or a three-dimensional image of the retina from the converted data. Then, the image processing unit 105 outputs the generated OCT image to the display control unit 102.
  • an OCT image such as a tomographic image of the retina or a three-dimensional image of the retina from the converted data. Then, the image processing unit 105 outputs the generated OCT image to the display control unit 102.
  • step S111 the display control unit 102 displays the OCT image generated in step S110 on the input / display device 16E. Further, the processing unit 103 combines the OCT image and the patient identification information and transmits the combination to the management server 140. The management server 140 stores the OCT image in combination with the patient identification information.
  • FIG. 17 is a flowchart showing a process in which the user sets the spiral scan on the image viewer 150 and displays the image taken based on the spiral scan executed by the ophthalmic apparatus 110 on the image viewer 150.
  • step S200 the image viewer 150 displays the setting screen 1500 (FIG. 15) received from the ophthalmic apparatus 110 via the network 130.
  • the setting screen 1500 (FIG. 15) displayed on the image viewer 150 is the same screen as the setting screen 1500 displayed on the eyelid device 110.
  • step S201 the image viewer 150 receives the spiral scan parameter input by the user from the setting screen 1500.
  • step S202 the image viewer 150 transmits the input spiral scan parameter to the ophthalmic apparatus 110 via the network 130.
  • step S203 the image viewer 150 is a superposed image created based on the set spiral scan parameters (the above-mentioned superposed image in which the scan locus is superposed on the posterior eye image or the anterior eye image of the eye to be inspected). , Generated by the ophthalmic apparatus 110 and received via the network 130) to confirm whether the spiral scan is intended by the user. If the spiral scan is OK, the scan parameters are determined by the user operating the enter button on the setting screen 1500.
  • the set spiral scan parameters the above-mentioned superposed image in which the scan locus is superposed on the posterior eye image or the anterior eye image of the eye to be inspected.
  • step S204 the image viewer 150 determines whether or not the determination of the scan parameter has been input.
  • step S204 When the determination of the scan parameter is not input (NO in step S204 above), the image viewer 150 returns to step S200 after displaying a message such as resetting the scan parameter to the user. On the other hand, when the determination of the scan parameter is input (YES in step S204), in step S205, the image viewer 150 transmits the accepted determination to the ophthalmic apparatus 110 via the network 130.
  • step S206 the image viewer 150 receives the OCT image taken by the ophthalmologic apparatus 110 using the spiral scan parameters determined via the network 130.
  • step S207 the image viewer 150 displays the OCT image received in step S207.
  • scan parameters can be set from a remote location via the image viewer 150.
  • a computer determines a spiral scan parameter for spirally scanning the eye to be inspected, and the spiral scan is performed. Since the scanner drive signal in the parameter is generated and the scanner is controlled based on the scanner drive signal, stable and accurate shooting can be realized.
  • the user can confirm the photographing of the eye to be inspected requested by the user. Therefore, it is possible to realize highly accurate shooting.
  • the user requests the user. Since it is possible to confirm the imaging of the eye to be inspected, it is possible to realize accurate imaging.
  • the OCT data is A scan data arranged in a spiral shape
  • the computer realizes accurate shooting by including performing a conversion of aligning the A scan data arranged in a spiral shape in a grid pattern. Can be done.
  • the spiral scan parameter is the incident angle of light with respect to the plane in the plane orthogonal to the axis perpendicular to the pupil plane of the eye to be inspected, and includes the incident angle data showing the correspondence between time and the incident angle. Since the scan trajectory can be set, it is possible to realize shooting according to the user's request.
  • the spiral scan parameter is the incident angle of light with respect to the plane in the plane orthogonal to the axis perpendicular to the pupil plane of the eye to be examined, and the incident angle is the radial direction and the circumferential direction of the angle formed by the optical axis with respect to the plane. Since the scan locus can be easily set by being represented, it is possible to realize shooting according to the user's request.
  • the spiral scan parameter can freely change the scan locus by including at least one of the ellipticity of the spiral and the center position of the spiral, it is possible to realize shooting according to the user's request. can do.
  • the scanner includes a first scanner that scans in the first direction and a second scanner that scans in the second direction perpendicular to the first direction, and the scanner drive signal drives the first scanner.
  • the first drive signal ⁇ x and the second drive signal ⁇ y for driving the second scanner are included, and the first drive signal ⁇ x and the second drive signal ⁇ y are defined by the above equation (2).
  • the first direction is the X-axis direction and the second direction is the vertical direction. Therefore, it becomes easy to set the scan locus, and it is possible to realize shooting according to the user's request.
  • the speed difference in the change of the drive angle between the vertical axis and the horizontal axis is small, so that stable and accurate shooting can be realized.
  • the change speed of the focus adjustment is small, so that the processing load can be suppressed.
  • the setting screen 1500 and the like are displayed via communication, but the present invention is not limited to this.
  • the ophthalmic apparatus 110 and the image viewer 150 may be configured as one apparatus.
  • the setting screen is configured to be created by the CPU 16A of the control device 16 of the ophthalmic apparatus 110
  • the CPU of the management server 140 (the CPU of the management server 140 is used by using the fundus image and the axial length of the subject stored in the management server 140. It is also possible to generate a setting screen (not shown) and send it to the ophthalmic apparatus 110 or the image viewer 150.
  • the image processing device 17 of the ophthalmic device 110 may be mounted as another device.
  • the ophthalmic apparatus 110 and the image processing apparatus 17 may be configured to communicate with each other via the network 130.
  • various processors other than the CPU may execute the scan program executed by the CPU reading the software (program) in the above embodiment.
  • the processors include PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) for executing ASIC (Application Special Integrated Circuit).
  • An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for the purpose.
  • the scan program may be executed on one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs, and a combination of a CPU and an FPGA, etc. ) May be executed.
  • the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • it is a scanning method of scanning the eye to be inspected by using a scanner and an optical system that guides light to the eye to be inspected. It may be a scanning method in which the scanner drive signal in the spiral scan parameter is generated and the control unit controls the scanner based on the scanner drive signal.
  • the program is a non-temporary storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital entirely Disk Online Memory), and a USB (Universal Serial Bus) memory. It may be provided in the form. Further, the program may be downloaded from an external device via a network.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

被検眼をスキャンするスキャン方法であって、コンピュータが、前記被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータ決定し、前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、前記スキャナ駆動信号に基づいてスキャナを制御するスキャン方法。

Description

スキャン方法、スキャン装置、及びスキャンプログラム
 本開示は、スキャン方法、スキャン装置、及びスキャンプログラムに関する。
 米国特許出願公開第2017/0065169号明細書(特許文献1)には、被検眼をスキャンし、断層画像撮影を行う方法が開示されている。
 被検眼の広い領域の断面画像撮影を行うためのスキャン方法が望まれている。
 本開示の態様は、被検眼をスキャンするスキャン方法であって、コンピュータが、前記被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを決定し、前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、前記スキャナ駆動信号に基づいてスキャナを制御する。
ラスタースキャンと本実施形態に係るスキャン方法によるスパイラルスキャンとのスキャン方法の違いを表す図である。 ラスタースキャンとスパイラルスキャンとの駆動角の変化の速度差を示す図である。 被検眼の断面図と、瞳孔から網膜距離の網膜面のコンタ図である。 ラスタースキャン及びスパイラルスキャンにおけるフォーカス調整の模式図である。 本実施形態に係る眼科システムの構成を示すブロック図である。 本実施形態に係るスキャン装置のハードウェア構成を示すブロック図である。 本実施形態に係るスキャン装置の機能構成の例を示すブロック図である。 本実施形態に係るスキャン装置のスキャン処理ルーチンを示すフローチャートである。 本実施形態に係るスパイラルスキャンの座標系を示す図である。 スキャン方向の例を示す図である。 サンプリング間隔の設定例を示す図である。 スパイラルの中心位置を設定した場合の例を示す図である。 スキャン軌跡の例を示す図である。 スキャン軌跡の例を示す図である。 設定画面の例を示す図である。 画像変換処理の例を示す図である。 本実施形態に係る画像ビューワのスキャン処理ルーチンを示すフローチャートである。
 以下、開示の技術の実施形態の例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
[本開示の実施形態に係る眼科システムの概要]
 まず、本開示の実施形態の概要について説明する。
 図1は、眼底の中心部から周辺部の広域な領域をスキャンするにあたって、ラスタースキャンと本実施形態に係るスキャン方法によるスパイラルスキャンとのスキャン方法の違いを表す図である。図1左のラスタースキャンでは、垂直軸及び水平軸のうち一方を高速に移動させ、他方を低速に移動させる。高速に移動させる軸を高速軸、他方を低速軸とする。図1では、垂直軸が高速軸、水平軸が低速軸である。図1右のスパイラルスキャンは、スキャン位置が中心から周辺に向かってスパイラル状に移動する。
 図2に示すように、ラスタースキャンでは、高速軸が複数(多数)周期動作する間に低速軸が1周期動作するため、駆動角の変化が緩やかである(角速度が小さい)。このように、ラスタースキャンでは、垂直軸及び水平軸の駆動角の変化の速度差が大きく異なる。このため、被検眼を対物光学系の光軸方向に固視させた状態では、被検眼の中心部だけでなく周辺部を含む広い領域の撮影では、垂直軸及び水平軸の駆動角の変化の速度差が顕著となり、精度の良い撮影の実現が難しく、安定性に欠ける。また、被検眼を対物光学系の光軸方向に固視させた状態で被検眼の中心部と周辺部とを含む広い領域を走査するため、高速軸の周期動作に合わせて、フォーカスなどの光学調整を追随させなければならない。なぜなら、撮影される眼底は眼球の内面であり、眼底の中心部と周辺部とでは瞳孔からの網膜までの光路長が異なるためである。スキャン位置により光路長の変化は、特にOCT撮影を行う場合に顕著になる。
 これに対し、本開示のスパイラルスキャンでは、図2に示すように、正弦波に基づいて垂直軸及び水平軸の駆動角の変化が定義されるため、垂直軸と水平軸との変化がラスタースキャンに比べてが小さい。このため、被検眼の中心部と周辺部とを含む広い領域を一回のスキャンで撮影しても、安定して精度の良い撮影の実現をすることができる。
 また、ラスタースキャンとスパイラルスキャンとでは、光学調整の1つである、フォーカス調整も異なる。図3及び図4を用いて、フォーカス調整について説明する。
 図3は、被検眼の断面図と、瞳孔から網膜距離の網膜面のコンタ図を示す。コンタ図とは、等高線図を線ではなく色の濃淡で表した図である。図3に示すように、瞳孔から網膜面までの距離は、入射光線の画角に応じて変わる。なお、瞳孔から網膜面までの距離は、網膜の中心位置と、光線が網膜に当たる位置との距離と言い換えることもできる。被検眼の眼底後極部に行くほど、入射光線の網膜面までの距離が長くなる。
 図4は、ラスタースキャン及びスパイラルスキャンにおけるフォーカス調整の模式図である。図4に示すように、ラスタースキャンでは、高速軸側のスキャンの1周期の間に瞳孔から網膜面までの距離も1周期で変化する。このため、瞳孔から網膜面までの距離の変化に追随するようにフォーカス調整を行う必要がある。つまり、ラスタースキャンの高速軸側のスキャンの1周期に合わせて、フォーカス調整の周期も高速で行う必要がある。よって、フォーカス調整を行うためのレンズ駆動機構等が高速な動きを行う必要がある。
 これに対し、本開示のスパイラルスキャンでは、撮影開始から終了までの間に、瞳孔から網膜面までの距離が1周期変化するだけである(図4)。このため、フォーカス調整を高速に行う必要がない。また、スパイラルスキャンでは、外側に行くにつれてフォーカスが近くなる、又は内側に行くに連れてフォーカスが遠くなる。このため、フォーカス調整の変化量も小さく、かつ、一定量ずつ変化させることができる。すなわち、フォーカス調整を行うためのレンズ駆動機構等の負荷も抑えることができる。眼底の中心部のみのような撮影領域が狭い場合は必要なフォーカス調整量が小さい(調整のレンジが小さくなる)ため、フォーカス調整をしなくても撮影画質に影響はない場合がある。しかし、眼底周辺部や赤道部を含む撮影を行う場合では全体として大きなフォーカス調整量が必要となる(調整のレンジが大きくなる)ため、本開示のスパイラルスキャンの技術がより有効になる。
[本開示の実施形態]
 図5を参照して、本開示の実施形態に係る眼科システム100の構成について説明する。図5は、本実施形態に係る眼科システム100の構成を示すブロック図である。図5に示すように、眼科システム100は、本開示のスキャン方法を実行する眼科装置110と、眼軸長測定器120と、ネットワーク130と、管理サーバ装置(以下、「管理サーバ」という)140と、画像表示装置(以下、「画像ビューワ」という)150とを備えて構成される。
 眼科装置110、眼軸長測定器120、管理サーバ140、及び画像ビューワ150は、ネットワーク130を介して、相互に接続されている。ネットワーク130は、LAN、WAN、インターネットや広域イーサ網等の任意のネットワークである。例えば、眼科システム100が1つの病院に構築される場合には、ネットワーク130にLANを採用することができる。
 眼軸長測定器120は、被検眼12の眼軸方向の長さである眼軸長を測定し、測定された眼軸長を管理サーバ140に送信する。
 次に、図6及び図7を参照して眼科装置110の構成を説明する。図6は、本実施形態に係る眼科装置110のハードウェア構成を示すブロック図である。図6に示すように、眼科装置110は、撮影装置14及び制御装置16を含む。なお、眼科装置110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部の瞳孔の中心と眼球の中心とを結ぶ方向を「Z方向」とする。従って、X方向、Y方向、及びZ方向は互いに垂直である。
 制御装置16は、CPU(Central Processing Unit(中央処理装置))16A、RAM(Random Access Memory)16B、ROM(Read-Only memory)16C、入出力(I/O)16D、入力/表示装置16E、及び通信インターフェース(I/F)16Fを有するコンピュータを備える。制御装置16の各構成は、バスを介して相互に通信可能に接続されている。
 CPU16Aは、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU16Aは、ROM16Cからプログラムを読み出し、RAM16Bを作業領域としてプログラムを実行する。CPU16Aは、ROM16Cに記憶されているプログラムに従って、各構成の制御及び各種の演算処理を行う。本実施形態では、ROM16Cには、スキャン処理を実行するためのスキャンプログラムが記憶されている。
 RAM16Bは、作業領域として一時的にプログラム又はデータを記憶する。ROM16Cは、各種プログラム及び各種データを記憶する。なお、制御装置16は、更に、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成されるストレージを備える構成としてもよい。この場合、ストレージには、オペレーティングシステムを含む各種プログラム、及び各種データを記憶する。
 入力/表示装置16Eは、I/Oポート16Dを介してCPU16Aに接続される。入力/表示装置16Eは、被検眼12の画像を表示したり、ユーザから各種指示を受け付けたりするグラフィカルユーザインターフェース(GUI)を有する。GUIとしては、タッチパネルやディスプレイを採用することができる。また、制御装置16は、I/Oポート16Dに接続された画像処理装置17を備えている。
 制御装置16は、通信インターフェース16Fを介してネットワーク130に接続する。通信インターフェース16Fは、他の機器と通信するためのインターフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。
 画像処理装置17は、撮影装置14によって得られたデータに基づき被検眼12の画像を生成する。
 図6では、眼科装置110の制御装置16が入力/表示装置16Eを備えているが、本開示の技術はこれに限定されない。例えば、眼科装置110の制御装置16は入力/表示装置16Eを備えず、眼科装置110とは物理的に独立した別個の入力/表示装置を備えるようにしてもよい。
 撮影装置14は、被検眼12の画像を撮影する。撮影装置14は、制御装置16の制御下で作動する。撮影装置14は、撮影光学系19、SLO(Scanning Laser Ophthalmology、以下SLOと称する)ユニット18及びOCT(Optical Coherence Tomography、以下OCTと称する)ユニット20を含む。以下では、SLOユニット18により取得されたSLOデータに基づいて作成された網膜の正面視画像をSLO画像と称し、OCTユニット20により取得されたOCTデータに基づいて作成された網膜の断層画像や正面画像(en-face画像)等をOCT画像と称する。
 撮影光学系19は、光路合成素子21、第1スキャナ22、第2スキャナ24、及び対物光学系26を含む。光路合成素子21はハーフミラー又はビームスプリッタであり、第1スキャナ22及び第2スキャナ24は、光学スキャナである。
 まず、OCT画像取得について説明する。OCTユニット20から射出され、光路合成素子21を通過した光を、第1スキャナ22によりX軸方向に走査する。第2スキャナ24は、OCTユニット20から射出された光をY方向に走査する。第1スキャナ22及び第2スキャナ24は、光束を偏向できる光学素子であればよく、例えば、ポリゴンミラーや、ガルバノミラー等を用いることができる。また、それらの組み合わせであってもよい。なお、第1スキャナ22及び第2スキャナ24を1つの光学スキャナとして構成してもよい。第1スキャナ22及び第2スキャナ24を用いてラスタースキャンあるいはスパイラルスキャンが行われる。ラスタースキャンは主にBスキャン(線上をスキャン)で行われ、スパイラルスキャンは主にCスキャン(広域な面をスキャン)で行われる。
 対物光学系26は、第1スキャナ22及び第2スキャナ24により導かれた光を、被検眼12に導く光学系である。なお、対物光学系26は、楕円鏡などの凹面ミラーを用いた反射光学系、広角レンズ等を用いた屈折光学系、又は凹面ミラーやレンズを組み合わせた反射屈折光学系でもよい。楕円鏡や広角レンズなどを用いた広角光学系を用いることにより、眼底中心部だけでなく眼底周辺部の網膜を撮影することが可能となる。
 そして、OCTユニット20から測定光のフォーカス調整を行うフォーカス調整機構28を備える。フォーカス調整機構28は、後述する光学調整機構の1つである。
 OCTユニット20は、光源20A、センサ(検出素子)20B、第1の光カプラ20C、参照光学系20D、コリメートレンズ20E、及び第2の光カプラ20Fを含む。
 光源20Aから射出された光は、第1の光カプラ20Cで分岐される。分岐された一方の光は、測定光として、コリメートレンズ20Eで平行光にされた後、撮影光学系19に入射される。測定光は、第1スキャナ22及び第2スキャナ24によってX方向及びY方向に走査される。走査光は対物光学系26及び瞳孔27を経由して、眼底に照射される。眼底により反射された測定光は、対物光学系26、第2スキャナ24及び第1スキャナを経由してOCTユニット20へ入射され、コリメートレンズ20E及び第1の光カプラ20Cを介して、第2の光カプラ20Fに入射する。
 光源20Aから射出され、第1の光カプラ20Cで分岐された他方の光は、参照光として、参照光学系20Dへ入射され、参照光学系20Dを経由して、第2の光カプラ20Fに入射する。第2の光カプラ20Fに入射されたこれらの光、即ち、眼底で反射された測定光と、参照光とは、第2の光カプラ20Fで干渉されて干渉光を生成する。干渉光はセンサ20Bで受光される。画像処理部105の制御下で動作する画像処理装置17は、センサ20Bで検出されたOCTデータに基づいて断層画像やen-face画像等のOCT画像を生成する。
 次に、SLO画像の取得について説明する。まず、SLOユニット18について説明する。図6に示すように、SLOユニット18は、B(青色光)の光源40、G光(緑色光)の光源42、R光(赤色光)の光源44、及びIR光(赤外線(例えば、近赤外光))の光源46と、光源40、42、44、46からの光を、反射又は透過して1つの光路に導く光学系48、50、52、54、56とを備えている。光学系48、50、56は、ミラーであり、光学系52、54は、ビームスプリッタ―である。B光は、光学系48で反射し、光学系50を透過し、光学系54で反射し、G光は、光学系50、54で反射し、R光は、光学系52、54を透過し、IR光は、光学系52、56で反射して、それぞれ1つの光路に導かれる。
 SLOユニット18は、G光、R光、及びB光を発するモードと、赤外線を発するモードなど、波長の異なるレーザ光を発する光源あるいは発光させる光源の組合せを切り替え可能に構成されている。図2に示す例では、B光(青色光)の光源40、G光の光源42、R光の光源44、及びIR光の光源46の4つの光源を備えるが、本開示の技術は、これに限定されない。例えば、SLOユニット18は、更に、白色光の光源を更に備え、白色光のみを発するモード等の種々のモードで光を発するようにしてもよい。
 SLOユニット18から撮影光学系19に入射された光は、光路合成素子21を通過し、第1スキャナ22及び第2スキャナによってX方向及びY方向に走査される。走査光は瞳孔27を経由して、被検眼12の後眼部(眼底)に照射される。眼底により反射された反射光は、撮影光学系19、第1スキャナ22及び第2スキャナを経由してSLOユニット18へ入射される。SLO画像の撮影の場合、ラスタースキャンが主に用いられる。
 SLOユニット18は、被検眼12の後眼部(眼底)からの光の内、B光を反射し且つB光以外を透過するビームスプリッタ64、ビームスプリッタ64を透過した光の内、G光を反射し且つG光以外を透過するビームスプリッタ58を備えている。SLOユニット18は、ビームスプリッタ58を透過した光の内、R光を反射し且つR光以外を透過するビームスプリッタ60を備えている。SLOユニット18は、ビームスプリッタ60を透過した光の内、IR光を反射するビームスプリッタ62を備えている。SLOユニット18は、ビームスプリッタ64により反射したB光を検出するB光検出素子70、ビームスプリッタ58により反射したG光を検出するG光検出素子72、ビームスプリッタ60により反射したR光を検出するR光検出素子74、及びビームスプリッタ62により反射したIR光を検出するIR光検出素子76を備えている。
 第2スキャナ24、第1スキャナ22及び光路合成素子21を経由してSLOユニット18へ入射された光(眼底により反射された反射光)は、B光の場合、ビームスプリッタ64で反射してB光検出素子70により受光され、G光の場合、ビームスプリッタ64を透過し、ビームスプリッタ58で反射してG光検出素子72により受光される。上記入射された光は、R光の場合、ビームスプリッタ64、58を透過し、ビームスプリッタ60で反射してR光検出素子74により受光される。上記入射された光は、IR光の場合、ビームスプリッタ64、58、60を透過し、ビームスプリッタ62で反射してIR光検出素子76により受光される。CPU16Aの制御下で動作する画像処理装置17は、B光検出素子70、G光検出素子72、R光検出素子74、及びIR光検出素子76で検出された信号を用いてSLO画像を生成する。
 眼化装置110のCPU16Aがスキャンプログラムを実行することで実現される各種機能について説明する。図7に示すように、スキャンプログラムは、機能構成として、スキャン制御機能、表示制御機能、光学調整機能、画像処理機能、通信機能、及び処理機能を備えている。CPU16Aがこれらの各機能を有するスキャンプログラムを実行することで、CPU16Aは、スキャナ制御部101、表示制御部102、処理部103、光学調整部104、及び画像処理部105として機能する。スキャナ制御部101は、第1スキャナ22及び第2スキャナ24を制御する。具体的には、スキャナ制御部101は、軌道算出部111と、スキャナ駆動部112とを含む。
 図8は、眼科装置110によるスキャン処理ルーチンの流れを示すフローチャートである。CPU16AがROM16C又はストレージからスキャンプログラムを読み出して、RAM13に展開して実行することにより、スキャン処理ルーチンが実行される。
 ステップS100において、表示制御部102は、スパイラルスキャンパラメータを設定するための設定画面1500の画像データを生成する。設定画面1500の画像データは、入力/表示装置16Eに送信され、設定画面1500が入力/表示装置16Eに表示される。
 具体的には、表示制御部102は、スパイラルスキャンパラメータを設定するための第1GUIと、スキャナ駆動信号によるスキャン軌跡を確認するための第2GUIとを含む設定画面1500の画像データを生成する。ここで、GUIは、Graphical User Interfaceである。例えば、第1GUIは、スパイラルスキャンパラメータを個別に入力可能なGUIや、予め設定され、又はユーザにより登録されたスパイラルスキャンパラメータのセットを選択可能なGUIである。すなわち、第1GUIは、個別入力又は選択によりスパイラルスキャンパラメータの入力を受け付ける。また、高頻度で使われるパラメータ設定やユーザの好みのパラメータ設定が、予め用意されており、複数のスキャンモードとしてRAM16Bに記憶しておく。つまり、1つのスキャンモードには、1つのスパイラルスキャンを定義するための複数のパラメータ値が一組にされ(パラメータ群を構成)、当該『複数のパラメータ値』を示す名称(例えば、ユーザが高頻度で使うスパイラルスキャンのパラメータ群に対して『ユーザ設定1』という文字列)を付与し、『ユーザ設定1モード』としてパラメータ群と当該文字列とがセットで記憶される。そして、このようなスキャンモードを複数保存することが可能なように構成されている。この場合、第1GUIは、スキャンモードを選択することができるようにしておくようにしてもよい。
 さらに、スキャンモードとして、角膜や水晶体などの被検眼の前眼部を撮影する前眼部スキャンモードと、網膜や渦静脈などの被検眼の後眼部(眼底部)を撮影する後眼部スキャンモードを選択できるようにしてもよい。前眼部スキャンモードは、前眼部撮影するためのスパイラルスキャンに最適なパラメータ群があらかじめ設定されたスパイラルスキャンモードである。後眼部スキャンモードは眼底を広範囲に撮影するためのスパイラルスキャンに最適なパラメータ群があらかじめ設定されたスパイラルスキャンモードである。そして、第1GUIで受け付けられたスキャンパラメータは、軌道算出部111でのスキャンの算出に用いられる。
 第2GUIは、スキャナ駆動信号によるスキャン軌跡を、被検眼の後眼部画像又は前眼部画像に重畳表示した重畳画像を表示する。重畳画像は、前景画像として、第1GUIに現在入力され、又は選択されているスパイラルスキャンパラメータに基づいて、軌道算出部111により算出されたスキャナ駆動信号に基づくスパイラルスキャンのスキャン軌跡を表示する。また、重畳画像は、背景画像として、予め撮影されている被検眼の後眼部画像又は前眼部画像を表示する。後眼部画像又は前眼部画像は、例えば、過去に撮影した患者の被検眼の画像をRAM16Bあるいはサーバ140から読み出して用いればよい。また、軌道算出部111が螺旋軌道を正しく算出できるかの判断機能を有する場合、螺旋軌道を正しく算出できないパラメータが設定された際に、パラメータが正しくないことをユーザに告知するテキストや警告を示す画像を第2GUIの画面内に表示するように画像データを生成してもよい。
 ここで、図15を用いて設定画面1500を説明する。図15に示すように、設定画面1500は、患者の識別情報を表示する患者情報識別情報表示欄1500A、スパイラルスキャンパラメータを設定するための画面である第1GUI表示欄1500B、及び当該重畳画像が表示される第2GUI表示欄1500Cを有する。重畳画像としては、眼底を撮影したSLO画像だけでなく、眼底の模式図や被検眼の立体画像(3Dモデル)にスパイラルスキャンの軌跡を重畳表示するようにしてもよい。軌跡が重畳される画像は、2次元画像の被検眼の画像でも3次元画像の被検眼の画像でも良い。前眼部のスパイラルスキャンを行う場合は、図示せぬ前眼部カメラ等で被検眼の前眼部を撮影した画像を背景画像として用いてもよい。
 また、設定画面1500には、スキャンパラメータに基づいて軌道算出部111が算出した予測計測時間、すなわち、設定したスパイラルスキャンを実行するために必要な時間を表示してもよい。この場合、過去に設定されたスキャンパラメータと、当該スキャンパラメータにより実際にOCT画像を撮影するのに要した計測時間とをRAM16Bに記憶しておき、過去の計測と同じ条件の場合に、当該計測時間をRAM16Bから読み出して表示する構成としてもよい。
 ここで、本実施形態に係るスパイラルスキャンの座標系について、図9を用いて説明する。本実施形態に係るスパイラルスキャンでは、座標系を被検眼への入射角により定義する。被検眼の瞳孔中心を通り瞳孔面に垂直な方向をZ軸(光軸)、左右方向をX軸、上下方向をY軸とする。OCTユニット20から出射され被検眼へ入射する光線である入射光線と光軸とのなす角が、被検眼への入射角θである。図9では、入射光線が右下から瞳孔中心を通り左上へ向かう例を示している。入射角θは、X軸方向への入射角成分とY軸方向への入射角成分とにより定義される。本実施形態では、X軸方向への入射角度をθxとし、Y軸方向への入射角度をθyとする。すなわち、入射角度θxを、第1スキャナ22を駆動するための第1駆動信号とする。そして、θyを、第2スキャナ24を駆動するための第2駆動信号とする。これにより、OCTユニット20から照射された光線を、第1スキャナ22及び第2スキャナ24を駆動させ、所望の入射角θにより被検眼へ照射することが実現できる。よって、入射角度θx及びθyを、サンプリング時間間隔毎に変化させることで、スパイラルスキャンを実現することができる。
 スパイラルスキャンパラメータは、眼科装置110により被検眼をスパイラルスキャンする際に用いるパラメータである。スパイラルスキャンパラメータは、被検眼の瞳孔面に垂直な軸に直交する平面において、平面に対する光の入射角であって、時間と入射角との対応関係を示した入射角データが複数種類のパラメータで記述される。
 具体的には、スパイラルスキャンパラメータは、少なくとも、スパイラルの種別、スキャン範囲、スパイラルスキャンの開始位置{θx0,θy0}、及びサンプリング間隔Lを含む。
 スパイラルの種別のパラメータは、スパイラルの形を定義するための情報である。スパイラルの形は、極座標(スパイラルの中心からの距離rと基準位置からの角度Θ)で表すことができる。Θはサンプリング間隔ごとに変化していく角度であるから、rとΘを用いてスパイラル形状は、例えば、
・一様螺旋(アルキメデス螺旋):r=aΘ
・放物螺旋:r=a√Θ
・双曲螺旋:r=a/Θ
・リチュース:r=a/√Θ
・対数螺旋:r=ae(bΘ)
等の式で定まるスパイラス形状を採用することができる。ここで、a及びbは定数、eはオイラー定数である。スパイラル種別は、上述の各種螺旋式の何れも用いることができるが、以下では、一様螺旋が選択されている場合を例に説明する。
 スパイラル形状パラメータは、上述の一様螺旋などの形状の基本形を示すコードと係数aや係数bなどからなり、軌道算出部111での軌道算出のベースとなるパラメータである。
 スキャン範囲パラメータは、被検眼の撮影範囲を決定するパラメータである。スキャン範囲パラメータには、径方向rの最小値である内径rmin及び径方向rの最大値である外径rmaxが含まれる。すなわち、内径rmin及び外径rmaxが定まると、rmin<r<rmaxの範囲をスキャンする。また、スキャン範囲パラメータには、楕円率c及び楕円の向き{dx,dy}を含めることができる。入射角度θx及びθyは、被検眼の瞳孔面に垂直な軸である光軸に直交する平面において、当該平面に対する光軸のなす角の径方向r及び周方向θで表すことができる。上記一様螺旋の極座標系の式を、直交座標系に変換すると、入射角度θx及びθyと、径方向r及び周方向θとの関係は、前述の一般螺旋では、下記式(1)のようになる。
Figure JPOXMLDOC01-appb-M000001
 そこで、上記式(1)を、楕円率c、楕円の向き{dx,dy}を加えて、下記式(2)として表す。
Figure JPOXMLDOC01-appb-M000002
 ここで、θは、サンプリング間隔Lごとに変化していく角度値である。θは、スパイラルスキャンの始点から終点までの間で定義される。aは、スパイラルの線と線の間隔(巻き数)を定義するパラメータであり、cは、楕円率を指定するパラメータであり、dx及びdyは、それぞれ楕円の向きを規定するパラメータである。
 スキャン軌跡パラメータは、θの時間変化を定義することによって定めることができる。例えば、スキャン軌跡パラメータは、θ=αt等のように、時間を変数とした関数で表現することができる。θと時刻tとの関係が定義できれば、必ずしも数式で表現できる必要はなく、時間毎のθの値が逐一記録されたデータ群からなるパラメータであってもよい。なお、θの時間微分値は、スキャン方向が内側から外側の場合、常に正となり、スキャン方向が外側から内側の場合、常に負となる。例えば、θ=αtの場合であり、θが単調減少している場合には、θの時間微分値αは、常にα<0であるため、スキャン方向が外側から内側となる(図10右)。一方、θが単調増加している場合には、θの時間微分値αは、常にα>0であるため、スキャン方向が内側から外側となる(図10左)。スパイラルスキャンパラメータに、このようなスキャン方向を含めることができる。すなわち、スキャンの方向を螺旋の外側から内側に向かうか、内側から外側に向かうかを指定することができる。
 スパイラルスキャンの開始位置パラメータ{θx0,θy0}は、スパイラルスキャンの開始時刻tにおける、入射角度θx及びθyであり、スパイラルスキャンの終了位置{θxtf,θytf}は、スパイラルスキャンの終了時刻tにおける入射角度θx及びθyである。
 サンプリング間隔パラメータLは、スパイラルスキャンにより被検眼のスキャンを行う間隔を示すパラメータである。すなわち、サンプリング間隔パラメータLは、周方向のサンプリング間隔であり、サンプリング時間間隔での移動距離(螺旋の長さ)と言うことができる。上記式(2)のaの値により、楕円の巻き数が決まり、径方向のサンプリング間隔(つまり、線と線の間隔)が定まる。θの時間変化を定めることによって周方向のサンプリング間隔が定まる。aの値が大きい場合、螺旋の巻き数が少なくなり、全体を粗く撮影することとなり(図11左)、aの値が小さいと螺旋の巻き数が多くなり、全体を細かく撮影することとなる(図11中)。
 また、サンプリング間隔パラメータLは、θの時間変化によって任意に決めることができる。例えば、θがtに比例する場合には、中心を細かく撮影する一方で、外に行くにつれて粗く撮影する(図11右)。図11右の場合、中心部には診察・観察をしたい情報が多い場合があるため、このような場合には効果的である。サンプリング時刻をt、t、…とする。この場合、ある時刻tから次の時刻tまでのサンプリング間隔L(t1→t2)を、下記式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 上記式(3)により、サンプリング間隔Lの値が時間毎に所望の形で変化するよう入射角度θx及びθyの時間変化を決めればよい。例えば、等間隔にサンプリング間隔Lを設定する場合、各時間間隔t→ts+1において、Lの値が常に一定になるようにすればよい。
 また、スキャンパラメータに、スパイラルの中心位置(X,Y)を含めることができる。被検眼の撮影の際、診察したい被検眼の部分が被検眼の中央(例えば視神経乳頭)を中心とした範囲とは限らない。例えば、眼底の赤道部付近に存在する渦静脈を中心としてスパイラルスキャンを行うことも考えられる。
 このため、極座標で定義されたスパイラルの中心位置(X,Y)をスキャンパラメータに含めることにより、より要望に沿った精度の高い被検眼の撮影をすることができる。スパイラルの中心位置(X,Y)は、上記式(2)に、X及びYを追加した下記式(4)で表現することができる。
Figure JPOXMLDOC01-appb-M000004
 スパイラルの中心位置(X,Y)により、スパイラルの中心を所定位置にシフトさせることができる。例えば、図12のように、スパイラルの中心位置が(X,Y)分シフトすることとなる。
 ここで、スパイラルスキャンパラメータによって設定できるスキャン軌跡の例を説明する。図13及び図14は、スキャン軌跡の例を示す図である。外径rmaxを小さくした場合、スパイラルの中心部に近いところのみを撮影することができる(図13左)。一方、内径rminを大きくした場合、スパイラルの中心部を除いた被検眼の外周のリング状の領域を撮影することができる(図13中)。また、楕円率cを1以外にすることで、領域を楕円にすることができる(図13右)。楕円の向き{dx,dy}について、dx=dy=0以外の値にすることにより、楕円の軸を回転させることができる(図14左)。これらを組み合わせて、楕円かつ外側のみを撮影する(図14中)、更に向きを変える(図14右)等、様々なバリエーションを実現することができる。
 よって、被検眼について、所望の検査範囲のみを効率的に撮影することができる。また、上述したスパイラルスキャンパラメータは、あくまでも一例であり、本開示の趣旨を逸脱しない範囲内で様々に設定できる。
 上述したスキャンパラメータが、入力/表示装置16Eに表示された設定画面1500の第1GUI1500Bを用いてユーザにより設定される。ステップS100において、スキャンパラメータの設定が完了したら、スキャンパラメータはRAM16Bに記憶される(ステップS101)。
 ステップS102において、軌道算出部111は、処理部103を介して、ユーザにより設定されたスパイラルスキャンパラメータをRAM16Bから読み出す。軌道算出部111は、設定されたスパイラルスキャンパラメータに基づいて、スキャン軌跡を算出する。そして、軌道算出部111は、算出したスキャン軌跡を、表示制御部102に渡す。なお、軌道算出部111は、設置されたスパイラルスキャンパラメータで正しく螺旋軌道を算出できるかの判断機能を有してもよい。例えば、巻き数が1や2など少なすぎる螺旋軌道や、螺旋軌道がスキャン可能範囲を超えている場合(眼科装置110の最大画角を超えている場合)などが考えられる。このような実質的に撮影できない螺旋軌道が算出された場合は、再設定をユーザに促すメッセージを告知するようにする、あるいは、適切なスキャンパラメータを軌道算出部111が計算し、ユーザに当該適切なスキャンパラメータを提案するようにしてもよい。
 ステップS103において、表示制御部102は、上記ステップS102により算出されたスキャナ駆動信号によるスキャン軌跡を撮影済みの被検眼画像である眼底画像に重畳した第2GUIを生成し、上述の設定画面1500を更新し、更新した設定画面を入力/表示装置16Eに表示する。スパイラルスキャンを行う対象が眼底である場合は、背景画像である眼底のSLO画像にスキャン軌跡のグラフィックデータを重畳する。一方、スパイラルスキャンを行う対象が前眼部である場合は、背景画像である前眼部の画像にスキャン軌跡のグラフィックデータを重畳する。また、背景画像とスキャン軌跡のグラフィックデータとを重畳する際に、背景画像の大きさに合わせてスキャン軌跡のグラフィックデータを拡大縮小したりする処理や、背景画像とスキャン軌跡のグラフィックデータとの位置併せを行う処理が行われる。
 ステップS104において、軌道算出部111は、処理部103を介して、入力/表示装置16Eでユーザにより、スパイラルスキャンパラメータの決定(つまり、図15の第2GUI表示欄1500Cに表示された第2GUIのスキャン軌跡で計測を行うことの決定)を受け付けたか否かを判定する。
 決定を受け付けていない場合(上記ステップS104のNO)、ステップS100に戻る。そして、再度スキャンパラメータの設定が行われた場合は、再設定されたスキャンパラメータを用いてスキャン軌跡を再表示する。
 一方、決定を受け付けた場合(上記ステップS104のYES)、ステップS105において、スキャナ駆動信号と、当該スキャナ駆動信号に対応した光学調整機構の調整量が生成される。
 まず、スキャナ駆動部112が、決定したスパイラルスキャンパラメータに基づくスキャン軌跡によりスキャンするためのX方向の第1スキャナ22の第1駆動信号及びY方向の第2スキャナ24の第2駆動信号を生成する。
 次に、光学調整部104は、生成されたスキャナ駆動信号に基づいて、各サンプリングのタイミング(すなわち、各Aスキャンのタイミング)における調整量を算出する。光学調整機構がフォーカス調整機構28である場合、フォーカス調整量に基づいて、フォーカスレンズが光軸方向に駆動され、フォーカスの調整が実行される。
 また、Aスキャンごとに光学調整機構の調整量を設定するのではなく、スキャン軌跡を複数の区間に分割し、区間ごとに調整量を設定するようにしてもよい。
 なお、光学調整機構はフォーカス調整機構28に限らない。光路長調整機構、分散調整機構、偏光調整機構など瞳孔から網膜までの距離によって変化する光学パラメータを調整する調整機構であってもよい。さらに、これら調整機構は1つに限らず、複数有してもよい。
 ここで、スパイラルスキャン実行時に行われる光学調整機構の調整について説明する。
 眼底中心部をスキャンするときに比べ眼底周辺部をスキャンするときは瞳孔から網膜までの距離が短くなるので、フォーカス調整量としてはディオプターを増加する調整を、光学調整部104が行う。例えば、眼底中心部では0ディオプター(調整なし)だったのが、眼底周辺部に行くにつれて徐々に+0.5ディオプター、+1.0ディオプターと増加するように調整を行う。ただし、眼底中心部のフォーカス調整量及び周辺に行く際の調整量の変化割合は被検眼(患者)によって異なる。このフォーカス調整は、OCT撮影時とSLO撮影時の両方で行われる。逆に、眼底周辺部から眼底中心部へのスパイラルスキャンでは、眼底周辺部に行くにつれて徐々に-0.5ディオプター、-1.0ディオプターと減少するように調整を行う。調整量は撮影のための入射光の瞳孔への入射角によって変化させるようにしてもよい。
 また、OCT撮影時のみに行われる光学調整として、参照光路の1)光路長調整と、参照光と測定光との分散を調整する2)分散調整とがある。
 1)光路長調整とは、測定光の光路長と参照光の光路長とが同じになるように調整することである。図示しない光路長調整機構(光路長を調整するための参照ミラーをモータなどにより駆動するための駆動装置から構成されている)が参照光路中にあるとする。光学調整部104は、眼底中心部をスキャンしているときに比べ眼底周辺部をスキャンしているときに参照光の光路長が短くなるように調整を行うべく、光路調整機構に調整指示を出力する。また、光路長調整機構が測定光の光路中にある場合、光学調整部104は、眼底中心部をスキャンしているときに比べ眼底周辺部をスキャンしているときに測定光の光路長が長くなるように調整を行うべく、光路調整機構に調整指示を出力する。この光路長調整により、眼底の中心部あるいは眼底周辺部の場所によって、参照光の光路長と測定光の光路長とが同一になり、適切な深さのOCTデータを含むOCT撮影を行うことができる。
 2)分散調整とは、参照光路の分散が測定光路の分散と同じになるように調整を行うことである。被検眼の水晶体を測定光が通過する距離に応じて分散が異なる。OCT撮影時のスキャンでは、測定光の瞳孔への進入角度によって水晶体を通過する距離が異なることになる。測定光が水晶体を通過する距離は、眼底中心部のスキャンでは長くなり分散が大きくなる。一方、眼底周辺部のスキャンでは測定光が水晶体を通過する距離は短くなり、分散が小さくなる。これにあわせて分散調整機構を、参照光路側の分散量が測定光側の光路の分散量と同じになるように(網膜の中心部をスキャンしているときに比べ網膜の周辺部をスキャンしているときに分散が小さくなるように)制御する。分散調整機構は、光ファイバーのなどのねじれ度合を調整できる機構などがある。あるいは機構で調整するのではなくOCTデータに対して分散量を補正するデータ処理により行うようにしてもよい。
 さらに、偏光調整が存在する。偏光調整とは、眼の中の水晶体を光が通る距離に応じて生じる偏光のずれ量を調整することである。
 被検眼の水晶体を測定光が通過する距離に応じて偏光量が異なる。OCT撮影時のスキャンでは、測定光の瞳孔への進入角度によって水晶体を通過する距離が異なることになる。測定光が水晶体を通過する距離は、眼底中心部のスキャンでは長くなり偏光のずれ量が大きくなる。一方、眼底周辺部のスキャンでは測定光が水晶体を通過する距離は短くなり、偏光のずれが小さくなる。これにあわせて偏光調整機構を、参照光路側の偏光量が測定光側の光路の偏光量と同じになるように(網膜の中心部をスキャンしているときに比べ網膜の周辺部をスキャンしているときに偏光が小さくなるように)制御する。偏光調整機構は、偏光板を回転させることにより偏光を調整する機構が挙げられる。
 光学調整機構の調整量の決め方は、例えば、以下の方法がある。眼科装置110に搭載される光学調整機構によって、上述した調整量(フォーカス調整量、光路長調整量、分散調整量、偏光調整量など)を以下の方法で用意しておく。
・方法1:代表位置(普通は被検眼の中心軸)で調整を実施して調整量を求め、被検眼のモデルに基づいて、入射角毎の瞳孔から網膜までの距離を計算する。そして、計算した距離に基づいて、時間毎の調整量を決定する。ここで、被検眼のモデルは、球モデルでもよいし、ナバロ等のモデルを用いる構成としてもよい。
・方法2:撮影前にスキャン範囲全面にわたって調整を行い、調整量マップを作成しておく。撮影時において、作成した調整量マップとスキャン軌跡とに基づいて、時間毎の調整量を決定する。
・方法3:撮影前にスキャン範囲全面で瞳孔から網膜までの距離を計測して、眼球の形状データを作成しておく。撮影時において、作成した眼球の形状データとスキャン軌跡とに基づいて、時間毎の調整量を決定する。
 ステップS106において、スキャナ駆動部112は、第1スキャナ22及び第2スキャナ24スキャン駆動信号の初期値に基づいて初期位置に移動させる(第1スキャナ22及び第2スキャナ24の反射面が初期角度になるように第1スキャナ22及び第2スキャナ24を駆動させる)。
 そして、光学調整部104は、光学調整機構を初期位置に移動(初期の調整量になるように設定)させるように制御する。例えば、フォーカス調整機構28は、スキャンの開始位置でフォーカスが合うようにフォーカスレンズを移動させる。
 ステップS107において、スキャナ駆動部112は第1スキャナ駆動信号に基づいて第1スキャナ22を、第2スキャナ信号に基づいて第2スキャナ24を駆動させる。それとともに光学調整部104はフォーカス調整機構の調整量に基づいてフォーカス調整機構28を制御する。なお、アイトラッキング機能等を用いて被検眼の動きをリアルタイムで計測し、被検眼の動きを追従するようフィードバックをかける機能を持たせる構成としてもよい。
 ステップS108において、画像処理部105は、上記ステップS107の処理によりなされるスキャン軌跡に沿って、OCTユニット20のセンサ20Bで取得される検出信号からフーリエ変換等を行い、Aスキャンデータ(OCTデータ)を生成する。
 ステップS109において、画像処理部105は、スキャン軌跡にサンプリング順で整列しているAスキャンデータを、格子状に整列させる変換を行う。これは、画像処理を円滑に行うために、2次元又は3次元の格子状になるようにAスキャンデータを再構築する変換である。すなわち、スパイラルスキャンで得られたデータのサンプル点位置は螺旋状に並んでいるので(図16の左図)、デジタル処理をすることができるように、格子状に変換する(図16の右図)。サンプル点の位置情報は、スパイラルの軌跡と、サンプリング周波数のデータとから計算してもよいし、各サンプル点における第1スキャナ22及び第2スキャナ24の位置情報(反射面の角度情報)を、第1駆動信号と第2駆動信号とから算出し、使用してもよい。
 ステップS110において、画像処理部105は、変換したデータから網膜の断層画像や、網膜の3次元画像等のOCT画像を生成する。そして、画像処理部105は、生成したOCT画像を、表示制御部102に出力する。
 ステップS111において、表示制御部102は、上記ステップS110により生成されたOCT画像を、入力/表示装置16Eに表示する。更に、処理部103は、当該OCT画像と患者識別情報とを組み合わせて管理サーバ140に送信する。管理サーバ140は、当該OCT画像と患者識別情報とを組み合わせて記憶する。
 上述の図8では、眼科装置110をユーザが操作してスパイラルスキャンの設定を行うスキャン処理ルーチンを説明した。次に、眼化システム100の画像ビューワ150によりユーザがスパイラルスキャンの設定を行う変形例を説明する。
 図17は、画像ビューワ150にてユーザがスパイラルスキャンの設定を行い、眼科装置110で実行されたスパイラルスキャンに基づいて撮影された画像を、画像ビューワ150に表示される処理を示すフローチャートである。
 以下、図17を用いて、画像ビューワ150のCPUで実行される処理について説明する。ステップS200において、画像ビューワ150は、ネットワーク130を介して眼科装置110から受信した設定画面1500(図15)の表示を行う。画像ビューワ150に表示される設定画面1500(図15)は、眼化装置110で表示される設定画面1500と同様の画面である。
 ステップS201において、画像ビューワ150は、設定画面1500からユーザが入力したスパイラルスキャンパラメータを受け付ける。
 ステップS202において、画像ビューワ150は、入力されたスパイラルスキャンパラメータを、眼科装置110にネットワーク130を介して送信する。
 ステップS203において、画像ビューワ150は、設定したスパイラルスキャンパラメータに基づいて作成された重畳画像(前述した、スキャン軌跡を、被検眼の後眼部画像又は前眼部画像に重畳表示した重畳画像であり、眼科装置110で生成されネットワーク130を介して受信する)を閲覧することにより、ユーザが意図したスパイラルスキャンとなっているかを確認する。このスパイラルスキャンでOKの場合は、設定画面1500の決定ボタンをユーザが操作することにより、スキャンパラメータが決定されることになる。
 ステップS204において、画像ビューワ150は、スキャンパラメータの決定が入力されたか否か判定する。
 スキャンパラメータの決定が入力されていない場合(上記ステップS204のNO)、画像ビューワ150は、ユーザにスキャンパラメータの再設定を行う等のメッセージを表示した後、ステップS200に戻る。一方、スキャンパラメータの決定が入力された場合(上記ステップS204のYES)、ステップS205において、画像ビューワ150は、受け付けた決定を、ネットワーク130を介して眼科装置110に送信する。
 ステップS206において、画像ビューワ150は、ネットワーク130を介して決定されたスパイラルスキャンパラメータを用いて眼科装置110で撮影されたOCT画像を受信する。
 ステップS207において、画像ビューワ150は、上記ステップS207により受信したOCT画像を表示する。このように、図17の処理ルーチンを実行することにより、画像ビューワ150を介して遠隔地からスキャンパラメータの設定を行うことができる。
 以上説明したように、本開示の実施形態に係るスキャン方法によれば、被検眼をスキャンするスキャン方法であって、コンピュータが、被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを決定し、スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、スキャナ駆動信号に基づいてスキャナを制御するため、安定して精度の良い撮影の実現をすることができる。
 また、スパイラルスキャンパラメータを設定するための設定画面1500を表示することにより、ユーザの要望に沿った撮影の実現をすることができる。
 また、スキャナ駆動信号によるスキャン軌跡を、被検眼の後眼部画像又は前眼部画像に重畳表示した重畳画像を表示することにより、ユーザが、ユーザの要望する被検眼の撮影を確認することができるため、精度の良い撮影の実現をすることができる。
 また、スパイラルスキャンパラメータを設定するための第1GUI(Graphical User Interface)と、スキャナ駆動信号によるスキャン軌跡を確認するための第2GUIとを含む設定画面1500を表示することにより、ユーザが、ユーザの要望する被検眼の撮影を確認することができるため、精度の良い撮影の実現をすることができる。
 また、OCTデータは、スパイラル状に整列したAスキャンデータであり、コンピュータは、スパイラル状に整列したAスキャンデータを、格子状に整列させる変換を行うことを含むことにより、精度の良い撮影の実現をすることができる。
 また、スパイラルスキャンパラメータは、被検眼の瞳孔面に垂直な軸に直交する平面において、平面に対する光の入射角であって、時間と入射角との対応関係を示した入射角データを含むことにより、スキャン軌跡を設定することができるため、ユーザの要望に沿った撮影の実現をすることができる。
 また、スパイラルスキャンパラメータは、被検眼の瞳孔面に垂直な軸に直交する平面において、平面に対する光の入射角であり、入射角は、当該平面に対する光軸のなす角の径方向及び周方向で表されることにより、スキャン軌跡を容易に設定することができるため、ユーザの要望に沿った撮影の実現をすることができる。
 また、スパイラルスキャンパラメータは、更に、スパイラルの楕円率、及びスパイラルの中心位置の少なくとも1つを含むことにより、スキャン軌跡を自由に変更することができるため、ユーザの要望に沿った撮影の実現をすることができる。
 また、スキャナは、第1方向にスキャンを行う第1スキャナと、第1方向と垂直の第2方向にスキャンを行う第2スキャナと、を含み、スキャナ駆動信号は、第1スキャナを駆動するための第1駆動信号θxと、第2スキャナを駆動するための第2駆動信号θyと、を含み、第1駆動信号θx及び第2駆動信号θyは、上記式(2)で定義される。例えば、第1方向はX軸方向、第2方向は垂直方向である。このため、スキャン軌跡を設定しやすくなるため、ユーザの要望に沿った撮影の実現をすることができる。
 また、スパイラルスキャンを用いることにより、垂直軸及び水平軸の駆動角の変化の速度差が小さいため、安定して精度の良い撮影の実現をすることができる。更に、スパイラルスキャンを用いることにより、フォーカス調整の変化速度も小さいため、処理負荷も抑えることができる。
 なお、本開示は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 また、上記実施形態では、通信を介して設定画面1500等を表示する構成としたが、これに限定されるものではない。例えば、眼科装置110と画像ビューワ150とを、1つの装置として構成してもよい。
 また、設定画面は眼科装置110の制御装置16のCPU16Aで作成する構成としたが、管理サーバ140に記憶されている被検者の眼底画像や眼軸長を利用して管理サーバ140のCPU(図示せぬ)で設定画面を生成し、眼科装置110又は画像ビューワ150に送信するようにすることも可能である。
 また、眼科装置110の画像処理装置17を別の装置として実装してもよい。この場合、眼科装置110と画像処理装置17とを、ネットワーク130を介して通信するように構成してもよい。
 なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行したスキャンプログラムを、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、スキャンプログラムを、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 すなわち、スキャナと、被検眼に光を導く光学系とを用いて、前記被検眼をスキャンするスキャン方法であって、軌道算出部が、前記スキャナによるスパイラルスキャンに用いるスパイラルスキャンパラメータを設定し、前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、制御部が、前記スキャナ駆動信号に基づいて前記スキャナを制御するスキャン方法としてもよい。
 また、上記各実施形態では、スキャンプログラムがROM16C又はストレージに予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。

Claims (19)

  1.  被検眼をスキャンするスキャン方法であって、
     コンピュータが、
     前記被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを決定し、
     前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、
     前記スキャナ駆動信号に基づいてスキャナを制御する
     スキャン方法。
  2.  前記コンピュータが、
     前記スパイラルスキャンパラメータを設定するための設定画面のデータを生成する
     請求項1記載のスキャン方法。
  3.  前記設定画面は、
     前記スパイラルスキャンパラメータに基づくスキャン軌跡を、前記被検眼の画像に重畳表示した重畳画像を含む
     請求項2記載のスキャン方法。
  4.  前記スパイラルスキャンパラメータは、前記被検眼の後眼部をスキャンするための後眼部用スキャンパラメータである
     請求項1~請求項3の何れか1項記載のスキャン方法。
  5.  前記スパイラルスキャンパラメータは、前記被検眼の前眼部をスキャンするための前眼部用スキャンパラメータである
     請求項1~請求項3の何れか1項記載のスキャン方法。
  6.  前記設定画面には、スパイラルスキャンパラメータに基づくスキャンに要する時間が含まれる
     請求項2、又は請求項3記載のスキャン方法。
  7.  前記スキャナが、
     生成された前記スキャナ駆動信号に基づいて、前記被検眼を、レーザを用いてスキャンする
     請求項1~請求項6の何れか1項記載のスキャン方法。
  8.  前記コンピュータが、
     前記スキャンにより得られたOCTデータに基づいて、前記被検眼のOCT画像を生成する
     請求項7記載のスキャン方法。
  9.  前記OCTデータは、スパイラル状に整列したAスキャンデータであり、
     前記コンピュータは、前記スパイラル状に整列したAスキャンデータを、格子状に整列させる変換を行うことを含む
     請求項8記載のスキャン方法。
  10.  前記スパイラルスキャンパラメータには、少なくとも、スパイラルの種別、スキャン範囲、スパイラルスキャンの開始位置、及びサンプリング間隔が含まれる
     請求項1~請求項9の何れか1項記載のスキャン方法。
  11.  前記スパイラルスキャンパラメータは、前記被検眼の瞳孔面に垂直な軸に直交する平面において、前記平面に対する光の入射角であって、時間と入射角との対応関係を示した入射角データを含む
     請求項1記載のスキャン方法。
  12.  前記スパイラルスキャンパラメータは、前記被検眼の瞳孔面に垂直な軸に直交する平面において、前記平面に対する光の入射角であり、
     前記入射角は、前記平面に対する光軸のなす角の径方向及び周方向で表される
      請求項1記載のスキャン方法。
  13.  前記スパイラルスキャンパラメータは、更に、スパイラルの楕円率、及び前記スパイラルの中心位置の少なくとも1つを含む
     請求項11又は請求項12記載のスキャン方法。
  14.  前記スキャナは、
     第1方向にスキャンを行う第1スキャナと、
     前記第1方向と垂直の第2方向にスキャンを行う第2スキャナと、
     を含み、
     前記スキャナ駆動信号は、
     前記第1スキャナを駆動するための第1駆動信号θxと、
     前記第2スキャナを駆動するための第2駆動信号θyと、
     を含む請求項1~請求項13の何れか1項記載のスキャン方法。
  15.  スキャナと、
     前記スキャナによる被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを設定し、
     前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、
     前記スキャナ駆動信号に基づいて前記スキャナを制御する、少なくとも1つのプロセッサと、
     から構成されているスキャン装置。
  16.  被検眼をスキャンするスキャン方法で用いられるスキャンプログラムであって、
     前記被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを決定し、
     前記スパイラルスキャンパラメータにおけるスキャナ駆動信号を生成し、
     前記スキャナ駆動信号に基づいてスキャナを制御する
     ことを含む処理をコンピュータに実行させるためのスキャンプログラム。
  17.  被検眼をスキャンするためのスキャン方法であって、
     コンピュータが、
     前記被検眼をスキャナを用いてスパイラルスキャンするためのスパイラルスキャンパラメータを設定する第1GUI(Graphical User Interface)と、前記スパイラルスキャンパラメータによるスキャン軌跡を確認するための第2GUIとを含む設定画面のデータを生成し、
     前記スパイラルスキャンパラメータに基づいて、前記スキャナを駆動するためのスキャナ駆動信号を生成する
     スキャン方法。
  18.  スキャナと、
     被検眼をスパイラルスキャンするためのスパイラルスキャンパラメータを設定する第1GUI(Graphical User Interface)と、前記スパイラルスキャンパラメータによるスキャン軌跡を確認するための第2GUIとを含む設定画面のデータを生成し、
     前記スパイラルスキャンパラメータに基づいて、前記スキャナを駆動するためのスキャナ駆動信号を生成する、少なくとも1つのプロセッサと、
     から構成されているスキャン装置。
  19.  被検眼をスキャンするためのスキャン方法で用いられるスキャンプログラムであって、
     前記被検眼をスキャナを用いてスパイラルスキャンするためのスパイラルスキャンパラメータを設定する第1GUI(Graphical User Interface)と、前記スパイラルスキャンパラメータによるスキャン軌跡を確認するための第2GUIとを含む設定画面のデータを生成し、
     前記スパイラルスキャンパラメータに基づいて、前記スキャナを駆動するためのスキャナ駆動信号を生成する
     ことを含む処理をコンピュータに実行させるためのスキャンプログラム。
PCT/JP2019/051442 2019-12-27 2019-12-27 スキャン方法、スキャン装置、及びスキャンプログラム WO2021131020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566724A JPWO2021131020A1 (ja) 2019-12-27 2019-12-27
PCT/JP2019/051442 WO2021131020A1 (ja) 2019-12-27 2019-12-27 スキャン方法、スキャン装置、及びスキャンプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051442 WO2021131020A1 (ja) 2019-12-27 2019-12-27 スキャン方法、スキャン装置、及びスキャンプログラム

Publications (1)

Publication Number Publication Date
WO2021131020A1 true WO2021131020A1 (ja) 2021-07-01

Family

ID=76573801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051442 WO2021131020A1 (ja) 2019-12-27 2019-12-27 スキャン方法、スキャン装置、及びスキャンプログラム

Country Status (2)

Country Link
JP (1) JPWO2021131020A1 (ja)
WO (1) WO2021131020A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001849A1 (en) * 1999-07-02 2001-01-11 The University Of Western Australia Closed loop optical coherence topography
US20020036750A1 (en) * 2000-09-23 2002-03-28 Eberl Heinrich A. System and method for recording the retinal reflex image
JP2011004978A (ja) * 2009-06-25 2011-01-13 Canon Inc 眼底撮像装置及びその制御方法
JP2013208415A (ja) * 2012-02-28 2013-10-10 Topcon Corp 眼底観察装置
US20140128731A1 (en) * 2012-11-02 2014-05-08 Optimedica Corporation Optical surface identification for laser surgery
JP2015504740A (ja) * 2012-01-19 2015-02-16 カール ツアイス メディテック アクチエンゲゼルシャフト 角膜のoct撮像における精度向上のためのシステムおよび方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001849A1 (en) * 1999-07-02 2001-01-11 The University Of Western Australia Closed loop optical coherence topography
US20020036750A1 (en) * 2000-09-23 2002-03-28 Eberl Heinrich A. System and method for recording the retinal reflex image
JP2011004978A (ja) * 2009-06-25 2011-01-13 Canon Inc 眼底撮像装置及びその制御方法
JP2015504740A (ja) * 2012-01-19 2015-02-16 カール ツアイス メディテック アクチエンゲゼルシャフト 角膜のoct撮像における精度向上のためのシステムおよび方法
JP2013208415A (ja) * 2012-02-28 2013-10-10 Topcon Corp 眼底観察装置
US20140128731A1 (en) * 2012-11-02 2014-05-08 Optimedica Corporation Optical surface identification for laser surgery

Also Published As

Publication number Publication date
JPWO2021131020A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
KR101442519B1 (ko) 광 단층 화상 촬상방법 및 광 단층 화상 촬상장치
US8851673B2 (en) Imaging apparatus
CA2668950A1 (en) Improvements in or relating to retinal scanning
US9757029B2 (en) Fundus imaging apparatus and imaging method
US11439301B2 (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus and ophthalmologic information processing method
EP3668371B1 (en) Ophthalmic device
US20210038071A1 (en) Ophthalmic apparatus, method of controlling the same, and recording medium
US9339185B2 (en) Imaging apparatus that acquires a first image and, via an aberration correction unit, a second image of an area corresponding to a part of the first image
US9585555B2 (en) OCT apparatus and method of controlling the same
US20230277055A1 (en) Fundus observation apparatus
JP6188339B2 (ja) 光断層撮像装置およびその制御方法
US10321819B2 (en) Ophthalmic imaging apparatus
US20160213245A1 (en) Tomographic image capturing apparatus, method for capturing tomographic image, program, and storage medium
WO2021131020A1 (ja) スキャン方法、スキャン装置、及びスキャンプログラム
JP7149519B2 (ja) 眼測定装置及び方法
JP2023029537A (ja) 眼科装置
US11134836B2 (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus and ophthalmologic information processing method
JP7248467B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
JP2018015021A (ja) 眼科装置
EP4316352A1 (en) Ophthalmic device, method for controlling ophthalmic device, and program
US11141060B2 (en) Ophthalmologic apparatus and method of controlling the same
WO2023182011A1 (ja) 画像処理方法、画像処理装置、眼科装置、及びプログラム
US11896307B2 (en) Ophthalmologic apparatus and method of controlling same
US20230218167A1 (en) Ophthalmic apparatus
JP7416083B2 (ja) 画像処理方法、画像処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957432

Country of ref document: EP

Kind code of ref document: A1