WO2021131001A1 - Optical communication device, optical communication system, and optical communication method - Google Patents

Optical communication device, optical communication system, and optical communication method Download PDF

Info

Publication number
WO2021131001A1
WO2021131001A1 PCT/JP2019/051305 JP2019051305W WO2021131001A1 WO 2021131001 A1 WO2021131001 A1 WO 2021131001A1 JP 2019051305 W JP2019051305 W JP 2019051305W WO 2021131001 A1 WO2021131001 A1 WO 2021131001A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
optical signal
transmission line
control unit
Prior art date
Application number
PCT/JP2019/051305
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 金井
淳一 可児
鈴木 裕生
慎 金子
一暁 本田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/051305 priority Critical patent/WO2021131001A1/en
Priority to PCT/JP2020/005782 priority patent/WO2021131083A1/en
Priority to PCT/JP2020/033760 priority patent/WO2021131170A1/en
Priority to CN202080089058.1A priority patent/CN114830563A/en
Priority to PCT/JP2020/036878 priority patent/WO2021131202A1/en
Priority to EP20906403.9A priority patent/EP4084362A4/en
Priority to US17/788,537 priority patent/US20230030158A1/en
Priority to JP2021566825A priority patent/JP7525795B2/en
Publication of WO2021131001A1 publication Critical patent/WO2021131001A1/en
Priority to JP2024049776A priority patent/JP2024075750A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • the present invention relates to an optical communication device, an optical communication system, and an optical communication method.
  • Non-Patent Document 1 An access network that accommodates a plurality of services in one device has been proposed (see, for example, Non-Patent Document 1).
  • PON Passive Optical Network
  • WDM-PON Widelength Division Multiplexing PON
  • TDM-PON Time Division Multiplexing PON
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • the communication between the subscriber's device and the station building is connected to the higher-level core network.
  • the device on the subscriber side is, for example, an ONU (Optical Network Unit).
  • the connection to the core network is made via the termination device in the device on the station building side.
  • the terminal device is, for example, an OLT (Optical Line Terminal).
  • OLT Optical Line Terminal
  • an optical signal is once converted into an electric signal, and user information, destination information is added to or deleted from the electric signal, routing processing, and the like are performed. Therefore, some delay occurs in communication.
  • the OLT may store a signal in the buffer and perform priority control and the like. This further increases the delay. As the delay increases, the quality of optical service drops significantly. Therefore, it is important to reduce the delay as much as possible.
  • Delay can be greatly reduced by using an optical switch or the like that can perform processing such as routing without converting an optical signal into an electric signal.
  • an object of the present invention is to provide an optical communication device, an optical communication system, and an optical communication method capable of relaying an optical signal according to a destination while reducing delay.
  • One aspect of the present invention is an optical switch that is connected to a plurality of transmission lines and outputs an optical signal input from one of the transmission lines to the other transmission line, and a subscriber device having a wavelength corresponding to the communication destination.
  • a communication destination specified by a combination of a dynamically assigned wavelength management control unit, an optical signal input from the transmission line, the subscriber device that transmitted the input optical signal, and the wavelength of the input optical signal.
  • It is an optical communication device including an optical switch control unit that controls the optical switch so as to output to the corresponding transmission line.
  • One aspect of the present invention is an optical communication system including a plurality of subscriber devices and the above-mentioned optical communication device, and the subscriber device transmits an optical signal having a wavelength assigned by the optical communication device. It is an optical communication system including an optical transmitter.
  • a transfer step in which an optical switch connected to a plurality of transmission lines outputs an optical signal input from one of the transmission lines to the other transmission line and a wavelength management control unit are added.
  • the assignment step of dynamically assigning a wavelength according to the communication destination to the user device and the subscriber who transmitted the input optical signal to the optical switch control unit in the transfer step. It is an optical communication method including an optical switch control step for controlling the optical switch so as to output to the transmission line according to a communication destination specified by a combination of the device and the wavelength of the input optical signal.
  • the optical switch uses the wavelength of each optical signal as destination information to perform routing without converting the optical signal into an electric signal.
  • the wavelength controller, the optical switch controller, and the management database that manages the connection information of all subscribers are linked. Assign each individual wavelength used by the subscriber device.
  • the device for controlling the subscriber device is used to transmit setting information such as the wavelength to be used to each subscriber device.
  • Communication is performed between the control device and the subscriber device using, for example, a control signal that is slower than the main signal, which is an optical signal between the subscriber devices, and can be superimposed on the main signal. This makes it possible to change settings and monitor without affecting the main signal. According to this embodiment, it is possible to reduce the delay caused by the termination device performing electrical processing.
  • FIG. 1 is a diagram showing a configuration example of the optical communication system 1 of the present embodiment.
  • the optical communication system 1 has a plurality of optical SWs (switches) 10. Although only two optical SW10s are shown in the figure, the number of optical SW10s is arbitrary.
  • the optical SW 10 is connected to the control unit 20.
  • the optical SW10 communicates with another optical SW10 via the optical communication network 30.
  • a WDM (Wavelength Division Multiplexing) network including various topologies can be used.
  • One or more subscriber devices 40 are connected to the optical SW10.
  • the subscriber device 40 is connected to the optical SW10 by, for example, an optical access network such as PON (Passive Optical Network).
  • the subscriber device 40 has an optical transceiver 41.
  • the optical transceiver 41 is an example of the configuration of an optical transmitter and an optical receiver in the subscriber device.
  • the optical transceiver 41 has an optical transmitter (Tx) 42 and an optical receiver (Rx) 43.
  • the optical transceiver 41 is a tunable optical transceiver.
  • a conventional optical transceiver with an AMCC (Auxiliary Management and Control Channel) function can be used as the optical transceiver 41.
  • the control unit 20 has an optical transceiver 21.
  • the optical transceiver 21 is an example of the configuration of the optical transmission unit and the optical reception unit in the control unit 20.
  • the optical transceiver 21 has an optical transmitter (Tx) 22 and an optical receiver (Rx) 23.
  • the optical transceiver 21 is a tunable wavelength optical transceiver.
  • the control unit 20 stores the wavelength management table.
  • the wavelength management table is data indicating the wavelength assigned to each subscriber device 40.
  • the control unit 20 uses the AMCC function to assign a wavelength used by the subscriber device 40 for communication.
  • the optical transceiver 41 of the subscriber device 40 and the optical transceiver 21 of the control unit 20 communicate with each other using AMCC.
  • the control unit 20 refers to the wavelength table and selects a wavelength to be assigned to the subscriber device 40 from among the available wavelengths according to the destination.
  • the control unit 20 sets the selected wavelength in the subscriber device 40 by the control signal using AMCC.
  • the control unit 20 switches the optical SW 10 so as to perform routing according to the destination indicated by the wavelength of the optical signal transmitted from the subscriber device 40. As a result, the subscriber devices 40 facing each other are connected.
  • the optical SW10 is provided in, for example, an optical gateway (GW).
  • GW optical gateway
  • An example of the optical SW10 provided in the optical GW will be described with reference to FIGS. 2 to 11.
  • FIG. 2 is a diagram showing a configuration example of the optical SW10a.
  • the optical SW10a is connected to a plurality of transmission lines 50, and outputs an optical signal input from one of the transmission lines 50 to another transmission line 50.
  • the transmission line 50 is, for example, an optical fiber.
  • the optical SW10a has ports 11-1-1 to 11-1-P (P is an integer of 2 or more) and ports 11-2-1 to 11-2-Q (Q is an integer of 2 or more). If any of ports 11-1-1 to 11-1-P is not specified, or generically, it is described as port 11-1, and any of ports 11-2-1 to 11-2-Q is referred to. When not specified, or collectively, it is described as port 11-2.
  • the transmission line 50 connected to the port 11-1 is referred to as a transmission line 50-1
  • the transmission line 50 connected to the port 11-2 is referred to as a transmission line 50-2.
  • Each port 11-1 is connected to the subscriber device 40 via the transmission line 50-1.
  • Each port 11-2 is connected to the subscriber device 40 via a transmission line 50-2.
  • the subscriber device 40 is, for example, an ONU.
  • the transmission line 50-2 may be connected to the optical communication network 30 which is an upper network. In this case, the direction of the subscriber device 40 connected via the transmission line 50-1 is the downward direction, and the direction of the upper network connected via the transmission line 50-2 is the upward direction. Further, the transmission line 50-2 may be provided with another optical communication device such as an optical SW10.
  • Ports 11-1-1, 11-1-2, 11-1-3, ... Are the subscriber devices 40 of the ground A via the transmission line 50-1, 40a-1, 40a-2, 40a-, respectively. 3, ... is connected.
  • One of the ports 11-2 (port 11-2-1 in the figure) is connected to the wavelength management control unit 25 described later.
  • Some ports 11-2-i, 11-2- (i + 1), 11-2- (i + 2), ... Are 40b-1 subscriber devices 40 to ground B via transmission lines 50-2, respectively. , 40b-2, 40b-3, ... (I is an integer of 2 or more).
  • the optical SW10a outputs the optical signal input from the port 11-1 to the port 11-2, and outputs the optical signal input from the port 11-2 to the port 11-1.
  • the optical SW10a is connected to the control unit 20.
  • the control unit 20 includes a wavelength control control unit 25 and an optical SW control unit 26.
  • the wavelength management control unit 25 receives a wavelength allocation request from the subscriber device 40 by an optical signal, dynamically assigns a wavelength according to the communication destination to the subscriber device 40 that has transmitted the request, and sets the assigned wavelength to light.
  • a wavelength allocation process for notifying the subscriber device 40 by a signal is performed.
  • a management control signal superimposition method that does not depend on the communication protocol of the optical signal (main signal) between the subscriber devices 40 is used.
  • a protocol-free AMCC is used as an optical signal transmitted and received between the wavelength management control unit 25 and the subscriber device 40.
  • the optical SW control unit 26 controls the optical SW 10a so as to transmit and receive an optical signal between the subscriber device 40 and the wavelength management control unit 25 while the wavelength allocation process is being executed. After the wavelength allocation process, the optical SW control unit 26 uses the optical signal input from the transmission line 50 as a communication destination specified by a combination of the subscriber device 40 that transmitted the input optical signal and the wavelength of the input optical signal. The optical SW10a is controlled so as to output to the transmission line 50-2 according to the above.
  • Each transmission line 50-2 is provided with a monitoring circuit 60.
  • the monitoring circuit 60 is an example of a monitoring unit.
  • the monitoring circuit 60 has a power splitter 61.
  • the power splitter 61 branches the optical signal transmitted through the transmission line 50-2.
  • the monitoring circuit 60 monitors the optical signal branched by the power splitter 61.
  • the monitoring circuit 60 generates monitoring information based on the monitoring result and outputs the generated monitoring information.
  • the monitoring information is information indicating the result of monitoring or information obtained from the result of monitoring.
  • the control unit 20 can be mentioned.
  • the power splitter 61 branches the control signal transmitted by the subscriber device 40, or superimposes the control signal on the signal between the subscriber devices 40 and transmits the signal. Can be done.
  • the wavelength management control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength. For example, the wavelength management control unit 25 identifies the subscriber device 40 to be changed in wavelength based on the monitoring information output from the monitoring circuit 60, and performs wavelength change processing on the specified subscriber device 40.
  • the optical SW control unit 26 controls the optical SW 10a so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength management control unit 25 during the wavelength change process.
  • the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, the optical SW control unit 26 outputs the input optical signal to the transmission line 50-2 according to the communication destination. Controls the optical SW10a.
  • the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, and uses the input optical signal as the source subscriber device 40 and the wavelength before the change.
  • the optical SW10a is controlled so as to output to the transmission line 50-2 according to the communication destination in which the combination of the above is used.
  • the optical SW control unit 26 controls the optical SW10a so as to output an optical signal transmitted from the source subscriber device 40 using the changed wavelength to a transmission line 50-2 different from that before the wavelength change. You may.
  • the subscriber device 40 of the communication destination is different before and after the wavelength change processing.
  • the wavelength management control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40.
  • wavelength change processing both the wavelength used for transmission and the wavelength used for reception by the subscriber device 40 may be changed, or either of them may be changed.
  • FIG. 3 is a diagram showing a configuration example of an optical SW10b having a folding circuit.
  • the optical SW10b is connected to the return transmission line 51.
  • the return transmission line 51 is an optical fiber that inputs an optical signal output from port 11-2 to another port 11-2. As a result, the optical SW10b enables return communication.
  • FIG. 4 is a diagram showing a configuration example of an optical SW10c that performs uplink multicast.
  • the optical SW10c has a distribution unit 58 that distributes the optical signal output from the port 11-2 to a plurality of components, distributes the optical signals, and inputs the plurality of optical signals to different ports 11-1.
  • the distribution unit 58 is an example of the first distribution unit. In FIG. 4, the optical SW10c inputs the optical signal output from the port 11-2 to the other port 11-2 via the return transmission line.
  • the optical SW10c outputs this input optical signal to the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
  • the optical signal output from port 11-1 is distributed by the power splitter 71 and input to a plurality of other ports 11-1.
  • the optical SW10c outputs the optical signals input from the plurality of ports 11-1 to different ports 11-2, respectively. Two-way communication is also possible.
  • the down light signal is routed in the opposite direction of the up direction.
  • FIG. 5 is a diagram showing a configuration example of an optical SW10d that performs downlink multicast.
  • the optical SW10d has a distribution unit 59 that distributes the optical signals output from the port 11-1 to a plurality of components, distributes the optical signals, and inputs the plurality of optical signals to different ports 11-2.
  • the distribution unit 59 is an example of the second distribution unit. In FIG. 5, the optical SW10d inputs the optical signal output from the port 11-1 to the other port 11-1 via the return transmission line.
  • the optical SW10d outputs this input optical signal to the port 11-2 to which the 1 ⁇ N power splitter 72 is connected.
  • the optical signal output from port 11-2 is distributed by the power splitter 72 and input to a plurality of other ports 11-2.
  • the optical SW10d outputs the optical signals input from the plurality of ports 11-2 to different ports 11-1.
  • FIG. 6 is a diagram showing a configuration example of an optical SW10e that performs WDM transmission.
  • the optical SW10e is connected to one or more WDM devices 80.
  • the WDM device 80 is an example of a demultiplexing device.
  • the WDM device 80 combines optical signals of different wavelengths output from each of the plurality of ports 11-2 and outputs them to the multiplexing communication transmission line 90. Further, the WDM device 80 demultiplexes the optical signal received via the multiplex communication transmission line 90 according to the wavelength, and inputs the demultiplexed optical signal to each of the plurality of ports 11-2.
  • the WDM device 80 combines the wave-binding device that combines optical signals of different wavelengths output from the plurality of ports 11-2 of the optical SW10e and outputs them to the multiplex communication transmission line 90, and the multiplex communication transmission line 90. It has a function as a demultiplexer that demultiplexes the optical signal received via the wavelength according to the wavelength and inputs each of the demultiplexed optical signals to a plurality of ports 11-2 having different optical SW10e.
  • the optical SW10e that performs WDM transmission may connect the return transmission line 51 shown in FIG. 3 to the port 11-2 that is not connected to the WDM device 80.
  • the multiplex communication transmission line 90 is provided with a monitoring circuit 65.
  • the monitoring circuit 65 includes a power splitter 66 and WDM devices 67 and 68.
  • the power splitter 66 branches an optical signal transmitted through the multiplex communication transmission line 90.
  • the WDM device 67 demultiplexes the upstream optical signal branched by the power splitter 66.
  • the WDM device 68 demultiplexes the downlink optical signal branched by the power splitter 66.
  • the monitoring circuit 65 monitors the optical signal demultiplexed by the WDM device 67 and the WDM device 68.
  • the monitoring circuit 65 generates monitoring information based on the monitoring result and outputs the generated monitoring information.
  • the monitoring information is information indicating the result of monitoring or information obtained from the result of monitoring.
  • the monitoring circuit 65 detects an abnormality in the communication status between the subscriber devices 40 by monitoring the optical signal, it identifies that the abnormality in the communication status has occurred and the subscriber device 40 in which the abnormality in the communication status has occurred. Outputs monitoring information with information to be set. As the output destination of the monitoring information, for example, the control unit 20 can be mentioned.
  • the wavelength management control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength. For example, the wavelength management control unit 25 identifies the subscriber device 40 to be changed in wavelength based on the monitoring information output from the monitoring circuit 65, and performs wavelength change processing on the specified subscriber device 40.
  • the optical SW control unit 26 controls the optical SW 10e so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength management control unit 25 during the wavelength change process.
  • the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, the optical SW control unit 26 illuminates so that the input optical signal is output from the port 11-2 according to the communication destination. Control SW10e.
  • the wavelength management control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40.
  • FIG. 7 is a diagram showing an example of routing in the optical SW10e before changing the wavelength.
  • the optical SW10e is connected to 40a-1, 40a-2, 40a-3, ..., Which are the subscriber devices 40 of the ground A.
  • the WDM device 80 connected to the ground B is referred to as a WDM device 80b
  • the WDM device 80 connected to the ground C is referred to as a WDM device 80c.
  • the WDM device 80b transmits and receives optical signals having wavelengths ⁇ 1 to ⁇ 10 to and from the optical SW 10e
  • the WDM device 80c transmits and receives optical signals having wavelengths ⁇ 11 to ⁇ 20 to and from the optical SW 10e.
  • the optical SW10e has different ports 11 for the optical signal of wavelength ⁇ 1 input from the subscriber device 40a-1 and the optical signal of wavelength ⁇ 2 input from the subscriber device 40a-2. -2 outputs to the WDM device 80b.
  • the subscriber device 40a-2 transmits a wavelength change request to the wavelength management control unit 25 by a control signal during or after the communication is completed.
  • the wavelength management control unit 25 Upon receiving the wavelength change request from the subscriber device 40a-2, the wavelength management control unit 25 performs a wavelength change process instructing the subscriber device 40a-2 to change to the wavelength ⁇ 10.
  • Light SW control unit 26 controls the light SW10e to output the optical signal of the wavelength lambda 10 received from the subscriber unit 40a-2, from port 11-2 corresponding to the wavelength lambda 10 to the WDM device 80b.
  • the wavelength management control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
  • the optical SW control unit 26 illuminates the optical SW control unit 26 so as to output the optical signal transmitted from the transmitting subscriber device 40 using the changed wavelength to the WDM device 80 different from that before the wavelength change after the wavelength change processing.
  • SW10e may be controlled.
  • FIG. 8 is a diagram showing an example of routing after the wavelength change in the optical SW10e when the output destination WDM device 80 is changed.
  • the subscriber device 40a-1 communicates using the wavelength ⁇ 1
  • the subscriber device 40a-2 communicates using the wavelength ⁇ 2 or the wavelength ⁇ 10.
  • the subscriber device 40a-2 transmits a wavelength change request to the wavelength management control unit 25 by a control signal during or after the communication is completed.
  • the wavelength management control unit 25 When the wavelength management control unit 25 receives the wavelength change request from the subscriber device 40a-2, the wavelength management control unit 25 instructs the subscriber device 40a-2 to change to the wavelength ⁇ 11 in order to communicate with the subscriber device 40 of the ground C. Perform processing.
  • Light SW control unit 26 controls the light SW10e to output the optical signal of the wavelength lambda 11 received from the subscriber unit 40a-2, from port 11-2 corresponding to the wavelength lambda 11 to the WDM device 80c.
  • the wavelength management control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
  • the wavelength change process performed when the subscriber device 40 requests the wavelength change has been described, but the same applies to the wavelength change process performed based on the monitoring information.
  • FIG. 9 is a diagram showing a configuration example of an optical SW10f that performs WDM transmission and multicast in the uplink direction.
  • the optical SW10f performs uplink multicast by a single wavelength.
  • the optical SW10f has a distribution unit 58 similar to that in FIG. In FIG. 9, multicast is performed to ground B and ground C.
  • the optical SW10f outputs an optical signal input from the port 11-1 connected to the subscriber device 40-1 from the port 11-2 to which the return transmission line is connected, and outputs an optical signal transmitted through the return transmission line. Input from another port 11-2.
  • the optical SW10f outputs this input optical signal from the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
  • the optical SW10f inputs the optical signal distributed by the 1 ⁇ N power splitter 71 from a plurality of ports 11-1, and one of the input optical signals is input to the port 11-2 connected to the ground B, and the other 1 Two optical signals are output to port 11-2 connected to ground C.
  • FIG. 10 is a diagram showing a case where the optical SW10f performs upbound multicast to a plurality of grounds by a plurality of wavelengths.
  • a plurality of subscriber devices 40 can be connected to the transmission line 50-1 connected to one port 11-1. ..
  • subscriber devices 40a-1-1, 40a-1-2, ... Are connected to one transmission line 50-1 as a plurality of subscriber devices 40a-1.
  • the subscriber devices 40a-1-1, 40a-1-2, ... Use different wavelengths.
  • the subscriber device 40a-1-1 transmits an optical signal of wavelength ⁇ 1
  • the subscriber device 40a-1-2 transmits an optical signal of wavelength ⁇ 2.
  • the optical SW10f is a port 11 that transmits an optical signal obtained by combining an optical signal having a wavelength ⁇ 1 transmitted by the subscriber device 40a-1-1 and an optical signal having a wavelength ⁇ 2 transmitted by the subscriber device 40a-1-2. Enter from -1.
  • the optical SW10f outputs the input optical signal from the port 11-2 to which the return transmission line is connected, and inputs the optical signal transmitted through the return transmission line from the other port 11-2.
  • the optical SW10f outputs this input optical signal from the port 11-1 to which the 1 ⁇ N power splitter 71 is connected.
  • the optical SW10f inputs the optical signal distributed by the 1 ⁇ N power splitter 71 from the plurality of ports 11-1.
  • the optical SW10f transmits the optical signal distributed by the power splitter 71 to the port 11-2 corresponding to the wavelength ⁇ 1 and the port 11-2 corresponding to the wavelength ⁇ 2 among the ports 11-2 connected to the WDM device 80b. Output to. Further, the optical SW10f transmits the optical signal distributed by the power splitter 71 to the port 11-2 corresponding to the wavelength ⁇ 1 and the port 11 corresponding to the wavelength ⁇ 2 among the ports 11-2 connected to the WDM device 80c. Output to -2.
  • WDM device 80b outputs to the multiplex communication transmission path 90 by passing the optical signal of the wavelength lambda 1 to filter an input optical signal from the port corresponding to the wavelength lambda 1, input from the port corresponding to the wavelength lambda 2
  • the optical signal is filtered to pass an optical signal having a wavelength of ⁇ 2 and output to the multiplexing communication transmission line 90.
  • WDM device 80c is the output to the multiplex communication transmission line 90 is passed through the optical signal of the wavelength lambda 1 to filter an input optical signal from the port corresponding to the wavelength lambda 1, corresponding to the wavelength lambda 2
  • the optical signal input from is filtered , passed through an optical signal having a wavelength of ⁇ 2 , and output to the multiplexing communication transmission line 90.
  • FIG. 11 is a diagram showing a configuration example of an optical SW 10 g that performs WDM transmission and downlink multicast.
  • the optical SW 10g has a distribution unit 59 similar to that in FIG. Further, the optical SW10f shown in FIGS. 9 and 10 and the optical SW10g shown in FIG. 11 may have the same monitoring circuit 65 as in FIG.
  • the wavelength management control unit 25 can perform wavelength change processing on the subscriber device 40 for which the monitoring circuit 65 has detected an abnormality in the communication status in the same manner as described above.
  • FIG. 12 is a diagram showing a configuration example of the optical access system 100.
  • the optical access system 100 includes an optical gateway (GW) 200 and an operating system (OPS) 400.
  • the subscriber device 40 is communicably connected to an upper network such as the optical communication network 30 shown in FIG. 1 by the optical access system 100.
  • the subscriber device 40 is a device on the optical subscriber side.
  • the subscriber device 40 is connected to the optical GW 200 via a transmission line 501.
  • the transmission line 501 is, for example, an optical fiber.
  • the optical GW 200 is a device in the communication station building.
  • the subscriber device 40 represented by the reference numeral N1 and the optical GW 200 are connected via, for example, a transmission line 501 or a power splitter 502.
  • the network configuration for connecting the subscriber device 40 to the optical GW 200 may be various network topologies such as PtoP (point-to-point), PON configuration, and bus type.
  • the transmission line 501 may have a power splitter 502 or the like, and a plurality of subscriber devices 40 may be connected to one transmission line 501.
  • the optical GW 200 is connected to another station building, a core network, or the like via a transmission line 511 and a transmission line 512.
  • the transmission line 511 and the transmission line 512 are, for example, optical fibers.
  • the transmission line 511 transmits an uplink signal, and the transmission line 512 transmits a downlink signal.
  • the transmission line 511 and the transmission line 512 are examples of multiplex communication transmission lines for transmitting wavelength-multiplexed optical signals.
  • the connection from the optical GW 200 indicated by the reference numeral N2 to another station building or the core network is connected by, for example, an optical fiber transmission line 511 or a transmission line 512, so that the connection between the ground and the ground becomes a full mesh. ing.
  • the optical GW 200 is installed in the station building of the ground A, and is installed in the optical communication device set in the station building of the ground B and the station building of the ground C via the optical communication network 30 or the like.
  • the case where the optical communication device is connected to the optical communication device will be described as an example.
  • the optical communication device of the ground B and the ground C to which the optical GW 200 is connected may be the optical GW 200.
  • the subscriber device 40 is connected to the optical GW 200 via the transmission line 501.
  • the subscriber device 40 has an optical transceiver 41.
  • the optical transceiver 41 is a tunable optical transceiver.
  • the optical transceiver 41 is, for example, an optical transceiver that mutually converts an optical signal and an electric signal.
  • the subscriber device 40 can select its own wavelength and set it in the optical transceiver 41 according to the transmission / reception destination.
  • the subscriber device 40 sets the wavelength to be used in the optical transceiver 41 according to the instruction received from the optical GW 200.
  • the M subscriber devices (M is an integer of 1 or more) connected to the optical GW 200 are referred to as subscriber devices 40-1 to 40-M.
  • the optical GW 200 includes an optical SW210, a wavelength duplexer 220, a control device 230, a duplexer 241 and a duplexer 242, a branch portion 250, and a monitoring device 260.
  • the branch portion 250 and the monitoring device 260 are examples of the monitoring unit.
  • the optical SW210 has a plurality of input / output ports (hereinafter, referred to as "ports"), and connects two or more ports.
  • the optical SW210 can freely switch the optical path between the ports.
  • a port that inputs / outputs an uplink signal is referred to as an uplink port
  • a port that inputs / outputs a downlink signal is referred to as a downlink port.
  • Each port of the optical SW210 is connected to a transmission line.
  • the wavelength combiner / demultiplexer 220 performs upper and lower multiplex separation that separates an uplink signal and a downlink signal according to wavelength.
  • the wavelength combiner / demultiplexer 220 inputs the upstream optical signal transmitted by the subscriber device 40 from the transmission line 501 and outputs the upstream optical signal to the optical SW210 via the transmission line 521. Further, the wavelength combiner / demultiplexer 220 inputs the downlink optical signal output by the optical SW210 from the transmission line 522 and outputs the downlink optical signal to the subscriber device 40 via the transmission line 501.
  • the control device 230 is connected to the uplink port and the downlink port to which the subscriber device 40 is not connected among the ports of the optical SW210.
  • the uplink port of the optical SW210 is connected to the transmission side port of the control device 230 by the transmission line 531.
  • the downlink port of the optical SW210 is connected to the port on the transmitting side of the control device 230 by the transmission line 533.
  • the control device 230 includes a wavelength demultiplexer 231 and an optical receiver (Rx) 232 for each wavelength channel, and a tunable transmitter 233.
  • the wavelength duplexer 231 is, for example, an AWG (Arrayed Waveguide Gratings).
  • the wavelength demultiplexer 231 demultiplexes the light input to the receiving port via the transmission line 540 for each wavelength.
  • the wavelength demultiplexer 231 outputs the demultiplexed light to the optical receiver 232 that receives the optical signal of the wavelength of the light.
  • the tunable transmitter 233 has a tunable laser diode (LD) that generates light of a variable wavelength.
  • the tunable transmitter 233 uses the light generated by the tunable laser diode to transmit an optical signal having a variable wavelength.
  • the tunable transmitter 233 outputs an optical signal using the generated light from the port on the transmitting side to the transmission line 533.
  • LD tunable laser diode
  • the combiner 241 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW210 and outputs them to the transmission line 511 connected to the other ground.
  • the demultiplexer 242 inputs an optical signal transmitted from any other ground to the transmission line 512, and demultiplexes the input downlink optical signal according to the wavelength.
  • the demultiplexer 242 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 542 connected to the uplink port corresponding to the wavelength of the optical signal.
  • the branch portion 250 is provided in the transmission line 511 and the transmission line 512.
  • the branch 250 has power splitters 251 and 252.
  • the power splitter 251 branches the upstream optical signal transmitted through the transmission line 511 and inputs the upstream optical signal to the optical SW210 via the transmission line 551.
  • the power splitter 252 branches the downlink optical signal transmitted through the transmission line 512 and inputs the downlink optical signal to the optical SW210 via the transmission line 552.
  • the monitoring device 260 has a wavelength demultiplexer 261 and an optical receiver (Rx) 262 for each wavelength.
  • the wavelength demultiplexer 261 is connected to the optical SW210 via a transmission line 560.
  • the optical SW210 outputs an optical signal input from a port connected to the transmission line 541 or the transmission line 542 to the port connected to the transmission line 560.
  • the wavelength demultiplexer 261 receives the optical signal branched by the branch portion 250.
  • the wavelength demultiplexer 261 demultiplexes the input optical signal for each wavelength.
  • the wavelength demultiplexer 261 outputs each demultiplexed light to an optical receiver 262 that receives an optical signal of the wavelength of the light.
  • the monitoring device 260 monitors the state of communication transmitted and received by the subscriber device 40 by the optical signal received by the optical receiver 262.
  • the OPS 300 has an optical GW control unit 301 and a management DB 350.
  • the optical GW control unit 301 is connected to the optical GW 200.
  • the optical GW control unit 301 includes a wavelength control unit 310 and an optical SW control unit 320.
  • the wavelength control unit 310 stores information indicating the wavelength of light used by each user (or each service).
  • the wavelength control unit 310 dynamically assigns the wavelength used by each user with reference to this information.
  • the wavelength control unit 310 may be installed in a building different from the optical GW 200 and may be connected to the optical SW 210 or the optical SW control unit 320 via a network. By sharing each connection information, the wavelength control unit 310 manages and controls information on which user is connected to which port of the optical SW210 and which wavelength is used in real time.
  • the optical GW control unit 301 is connected to the management database (DB) 350.
  • the optical GW control unit 301 exchanges information on the user and the wavelength used with the management DB 350.
  • the management DB 350 stores the wavelength used and the destination information of each user.
  • the destination is represented by, for example, ground A, ground B, or the like.
  • the management DB 350 manages information of all users connected to the optical access system 100.
  • FIG. 13 is a diagram showing an example of a SW connection table.
  • the SW connection table shows the connection destination of each port of the optical SW210. That is, the port to which the optical signal is input / output can be used as information for identifying the subscriber device 40, the control device 230, the branch portion 250, the monitoring device 260, the ground, etc. of the source or destination of the optical signal. Is.
  • the wavelength table includes a user wavelength table and an inter-station wavelength table.
  • FIG. 14 is a diagram showing an example of a user wavelength table.
  • the user wavelength table shows the wavelengths used by each user for transmission, the wavelengths used for reception, the empty wavelengths not used for transmission / reception, and the wavelengths that cannot be used due to a failure.
  • FIG. 15 is a diagram showing an example of an inter-station wavelength table.
  • the inter-station wavelength table one ground has a wavelength used for communication with each other ground, an empty wavelength not used for communication with each other ground, and a failure in communication with each other ground. Indicates a wavelength that cannot be used because it is medium.
  • FIG. 16 is a configuration diagram of a two-core type subscriber device 401.
  • Subscriber device 401 has an optical transceiver 411.
  • the optical transceiver 411 includes a tunable light source 451, a tunable filter 452, and a receiver 453.
  • the tunable light source 451 is an example of an optical transmitter, and the tunable filter 452 and the receiver 453 are an example of an optical receiver.
  • the tunable light source 451 outputs light having a set wavelength. The wavelength set in the tunable light source 451 is variable.
  • the tunable filter 452 inputs an optical signal from the transmission line 501 and passes light of a set wavelength through the receiver 453.
  • the wavelength set in the tunable filter 452 is variable.
  • the receiver 453 receives the optical signal passed through the tunable filter 452.
  • the tunable light source 451 can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by, for example, a direct modulation method.
  • the tunable light source 451 further has an external modulator, and the external modulator can be used to output a main signal (or a signal obtained by superimposing a control signal on the main signal).
  • the subscriber device 401 on the receiving side may be configured not to use the tunable filter 452 depending on the configuration of the optical GW, the multiplexing method, and the like.
  • FIG. 17 is a configuration diagram of a single-core type subscriber device 402.
  • the subscriber device 402 has an optical transceiver 412.
  • the optical transceiver 412 shown in FIG. 17 differs from the optical transceiver 411 shown in FIG. 16 in that it further includes a WDM filter 454.
  • the WDM filter 454 separates the uplink signal and the downlink signal according to the wavelength.
  • the WDM filter 454 outputs the light generated by the tunable light source 451 to the transmission line 501, and outputs the optical signal input from the transmission line 501 to the tunable filter 452.
  • the tunable light source 451 can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by, for example, a direct modulation method.
  • the subscriber device 402 may further have an external modulator and output a main signal (or a signal obtained by superimposing a control signal on the main signal) using the external modulator. it can.
  • the subscriber device 402 on the receiving side may be configured not to use the tunable filter 452 depending on the configuration of the optical GW, the multiplexing method, and the like.
  • FIG. 18 is a flowchart showing an initial setting process of the optical access system 100 when a new subscriber device is connected.
  • the operation of the optical access system 100 when the subscriber device 40-1 is newly connected to the optical GW 200 will be described with reference to FIGS. 12 and 18. It is assumed that the control device 230 has confirmed in advance which port of the optical SW210 each port of the wavelength demultiplexer 261 (AWG) of the control device 230 is connected to.
  • AVG wavelength demultiplexer 261
  • a user application is made before connecting the new subscriber device 40-1. For example, by applying for a user, it is possible to perform communication between the ground A and the ground B.
  • the business operator registers user information, initial destination information, and the like in the management DB 350 of the OPS 300 (step S1).
  • the user information is, for example, information that can obtain a wavelength that can be used by the optical transceiver 41.
  • the OPS300 refers to the SW connection table and assigns the port of the optical SW210 to which the subscriber device 40-1 is connected from among the empty ports of the optical SW210. Here, an uplink port and a downlink port are assigned.
  • the OPS300 registers information indicating that the assigned port is connected to the subscriber device 40-1 in the SW connection table (step S2).
  • the optical SW control unit 320 of the OPS300 controls the optical SW210 so as to transmit and receive an optical signal between the port assigned to the subscriber device 40-1 and the port to which the control device 230 is connected.
  • the subscriber device 40-1 When a new subscriber device 40-1 is connected, the subscriber device 40-1 performs initialization processing and transmits a connection request (register request) by an optical signal (step S3).
  • the subscriber device 40-1 automatically performs the initialization process before or immediately after the connection.
  • the wavelength combiner / demultiplexer 220 inputs a connection request from the transmission line 501 and outputs the connection request to the optical SW210 via the transmission line 521.
  • the optical SW210 transmits the connection request input from the port connected to the subscriber device 40-1 to the output port to which the control device 230 is connected.
  • the control device 230 inputs a connection request from the reception port via the transmission line 531.
  • the control device 230 analyzes the input optical signal and confirms whether there is a problem with the initial set wavelength and the optical power (step S4).
  • the control device 230 transmits a restart or initialization instruction to the subscriber device 40-1 when there is a problem with the wavelength or the optical power. After restarting or initial setting, the process returns to step S3, and the subscriber device 40-1 transmits the connection request again.
  • the control device 230 analyzes the optical signal received from the subscriber device 40-1, and when it is confirmed that there is no problem, outputs a connection request to the optical GW control unit 301.
  • the optical GW control unit 301 registers the information of the subscriber device 40-1 in the management DB 350.
  • the connection request includes information on the connection source, information on the connection destination, the type of signal to be transmitted, and the like.
  • the connection source information for example, address information such as a MAC (Medium Access Control) address is used.
  • the information of the connection destination for example, the address information of the destination is used.
  • the type of signal to be transmitted for example, a service, a modulation method, or the like is used.
  • the wavelength control unit 310 registers the connection source information in the management DB 350 based on the information.
  • the user wavelength table is set to identify the user who uses the subscriber device 40-1 and to indicate that the wavelength that can be used by the subscriber device 40-1 is free.
  • the wavelength control unit 310 calculates the optimum route between the subscriber device 40-1 and the communication destination, such as between the ground A and the ground B, by comparing with the connection information stored in the management DB 350.
  • the wavelength control unit 310 searches for a vacancy indicated by the inter-station wavelength table according to the calculated path.
  • the wavelength control unit 310 selects a wavelength to be used by the subscriber device 40-1 from the available wavelengths, and transmits information on the selected wavelength to the control device 230 (step S5).
  • the other subscriber device 40 which is the communication destination of the subscriber device 40-1, is described as the communication destination subscriber device 40.
  • the wavelength control unit 310 has a transmission wavelength which is a wavelength used by the subscriber device 40-1 to transmit an optical signal to the communication destination subscriber device 40, and the subscriber device 40-1 is a communication destination subscriber.
  • a reception wavelength which is a wavelength used for receiving an optical signal from the device 40, is selected.
  • the wavelength control unit 310 transmits the selected transmission wavelength and reception wavelength to the control device 230 as the wavelength used by the subscriber device 40-1.
  • the wavelength control unit 310 does not have to select the reception wavelength. Further, when the subscriber device 40-1 only receives from the communication destination subscriber device 40, the wavelength control unit 310 does not have to select the transmission wavelength.
  • the control device 230 transmits wavelength information as follows.
  • the tunable transmitter 233 of the control device 230 transmits a wavelength instruction set with information on the wavelength selected by the wavelength control unit 310 by an optical signal having a wavelength representing the subscriber device 40-1.
  • the optical SW210 outputs an optical signal input from a port connected to the tunable transmitter 233 to a transmission line 522 connected to the subscriber device 40-1.
  • the wavelength combiner / demultiplexer 220 incidents an optical signal input from the optical SW 210 via the transmission line 522 into the transmission line 501.
  • the subscriber device 40-1 receives the optical signal transmitted through the transmission line 501.
  • the subscriber device 40-1 sets the oscillation wavelength of the optical transceiver 41 according to the wavelength instruction indicated by the received optical signal (step S6).
  • the subscriber device 40-1 sets the oscillation wavelength of the optical transceiver 41 (tunable wavelength light source 451) so that the optical signal is transmitted by the transmission wavelength set in the wavelength indication.
  • the subscriber device 40-1 sets the optical transceiver 41 (tunable filter 452) so as to receive the wavelength signal of the reception wavelength.
  • the optical transceiver 41 of the subscriber device 40-1 transmits a notification signal notifying that the wavelength has been set by the optical signal of the instructed wavelength.
  • the notification signal is transmitted to the control device 230 in the same manner as the request signal.
  • the control device 230 confirms whether the specified wavelength is set correctly, whether the output power is sufficient, and the like (step S7). If it is determined that there is no problem as a result of the confirmation, the control device 230 transmits a permission notification indicating permission to start communication to the subscriber device 40-1 by an optical signal.
  • the permission notification is transmitted to the subscriber device 40-1 as well as the wavelength indication.
  • the optical SW control unit 320 transmits the connection information of the optimum port in the optical SW 210 to the optical SW 210 according to the transmission destination of the subscriber device 40-1. Based on the connection information, the optical SW 210 sets the uplink port and the downlink port of the subscriber device 40-1 according to the instruction from the optical SW control unit 320 (step S8).
  • the optical access system 100 controls the timing so that the route switching in the optical SW210 is performed after the permission for starting communication is transmitted from the control device 230 to the subscriber device 40-1.
  • the control device 230 actually communicates after the subscriber device 40-1 receives the permission to start communication for the time required to actually switch the route after the optical SW 210 receives the route switching instruction. Wait until the start of communication, and then instruct the start of communication.
  • the monitoring device 260 of the GW 200 confirms the confirmation of the communication status between the opposite subscriber devices (step S9). The monitoring device 260 notifies the OPS 300 of the confirmation result. If the confirmation is NG, the OPS 300 performs a cause isolation procedure.
  • connection request transmitted by the subscriber device 40-1 and the control signal transmitted by the control device 230 to the subscriber device 40-1 are optical signals slower than the main signal.
  • control signal for example, a protocol-free control signal (control method) represented by AMCC can be used.
  • the OPS 400 communicates to the communication destination subscriber device 40 the transmission wavelength of the subscriber device 40-1 as the reception wavelength of the communication destination subscriber device 40 and the reception wavelength of the subscriber device 40-1. It is instructed to use it as a transmission wavelength of the first subscriber device 40.
  • the wavelength control unit 310 sets the wavelength for reception and the wavelength for transmission of the communication destination subscriber device 40. Instruct the control device 230 to transmit.
  • the communication destination subscriber device 40 receives a wavelength instruction from the control device 230 by a control signal, and sets a reception wavelength and a transmission wavelength in the optical transceiver 41 according to the received wavelength instruction.
  • the communication destination subscriber device 40 sets the oscillation wavelength of the optical transceiver 41 (wavelength variable light source 451) so as to transmit the optical signal according to the transmission wavelength. ..
  • the communication destination subscriber device 40 sets the optical transceiver 41 (tunable filter 452) so as to receive the wavelength signal of the reception wavelength.
  • the optical access system 100 does not perform the user application in step S1 and transmits / receives information to be registered in the management DB 350 by the user application between the new subscriber device 40-1 and the optical GW control unit 301. Good.
  • the subscriber device 40-1 can communicate with another subscriber device 40 without making a user application.
  • Information is transmitted / received between the subscriber device 40-1 and the optical GW control unit 301 via the control device 230, for example, using AMCC.
  • the uplink optical signal output by the subscriber device 40-2 which describes the uplink communication, is sent to the optical GW 200 via the transmission line 501.
  • the wavelength combiner / demultiplexer 220 of the optical GW 200 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
  • the upstream optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the optical SW210 via the transmission line 521.
  • the optical SW210 connects the port into which the upstream optical signal is input from the wavelength duplexer 220 to another port corresponding to the destination specified by the wavelength assigned to the subscriber device 40-2, and transmits the optical signal. Output.
  • the uplink signal output from the optical SW210 is combined with an optical signal of a different wavelength transmitted by another subscriber device 40 in the combiner 241 and is combined with another station building via one transmission line 511. It is transmitted to (for example, ground B).
  • the combiner 241 combines wavelength channels for each station building such as ground B and ground C, respectively. By separating the transmission line 511 between the ground B and the transmission line 511 between the ground C, it is possible to use the same wavelength between the ground B and the ground C.
  • the downlink is communication from the grounds B and C in the direction of the subscriber device 40.
  • the downlink optical signal is sent to the optical GW 200 via one transmission line 512.
  • the demultiplexer 242 of the optical GW 200 demultiplexes the downlink optical signal transmitted through the transmission line 512 according to the wavelength.
  • the demultiplexer 242 inputs the demultiplexed light to the downlink port corresponding to the wavelength of the demultiplexed light via the transmission line 542, respectively.
  • the optical SW210 outputs an optical signal by connecting a port to which a downlink optical signal is input from the demultiplexer 242 to another port according to the wavelength.
  • the wavelength combiner / demultiplexer 220 separates an optical signal input from the optical SW210 via a transmission line 522 into an upstream optical signal and a downstream optical signal according to the wavelength.
  • the downlink optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the subscriber device 40-2 via the transmission line 501.
  • the wavelength channels transmitted from the optical GW 200 to each station building are assumed to be the same wavelength band, but different wavelength bands may be used for each station building.
  • the monitoring device 260 of the optical GW 200 receives the light branched by the branch portion 250.
  • the light branched by the branch portion 250 is an optical signal transmitted and received by each subscriber device 40.
  • the monitoring device 260 monitors the signals transmitted and received by each subscriber device 40 by monitoring the received optical signal.
  • the monitoring device 260 detects an abnormality such as a wavelength shift, a decrease in output, or a communication abnormality by monitoring, the monitoring device 260 transmits an abnormality detection signal to the optical GW control unit 301.
  • the optical SW control unit 320 of the optical GW control unit 301 controls the optical SW 210 so as to reconnect the target subscriber device 40 to the control device 230.
  • the optical GW control unit 301 performs a new wavelength allocation process different from the wavelength used when the abnormality is detected, as in the case of newly connecting the subscriber device 40.
  • the optical SW210 inputs the optical signal of the changed wavelength from the subscriber device 40
  • the optical SW210 connects the input optical signal to the port specified by the subscriber device 40 by the wavelength before the change.
  • FIG. 19 is a diagram showing a configuration example of the optical access system 101.
  • the optical access system 101 shown in FIG. 19 differs from the optical access system 100 shown in FIG. 12 in that the GW 201 is provided instead of the GW 200.
  • the difference between the GW 201 and the GW 200 is that the GW 201 includes a wavelength duplexer 243 and a branch 250a instead of the duplexer 241 and the demultiplexer 242 and the branch 250a.
  • the GW 201 is connected to a communication device of another station building on the ground by a transmission line 503.
  • One transmission line 503 transmits an uplink signal and a downlink signal to any of the grounds.
  • the wavelength combiner / demultiplexer 243 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
  • the wavelength combiner / demultiplexer 243 separates the upstream optical signal input from the optical SW210 via the transmission line 543-1 and transmits it to another ground or higher network via the transmission line 503. Further, the wavelength combiner / demultiplexer 243 separates the downlink optical signal input from another ground via the transmission line 503 and outputs it to the optical SW210 via the transmission line 543-2.
  • the branch portion 250a is provided in the transmission line 503.
  • the branch portion 250a has a power splitter 251a.
  • the power splitter 251a branches the upstream and downstream optical signals transmitted through the transmission line 503.
  • the power splitter 251a inputs the branched upstream signal to the port of the optical SW210 via the transmission line 551a, and inputs the branched downstream signal to the port of the optical SW210 via the transmission line 551b.
  • the optical SW210 outputs an optical signal input from the port connected to the transmission line 551a and an optical signal input from the port connected to the transmission line 551b from the port connected to the transmission line 560.
  • the wavelength demultiplexer 261 of the monitoring device 260 receives the optical signal branched by the branch portion 250a.
  • FIG. 20 is a diagram showing a configuration example of the optical access system 102.
  • the optical access system 102 shown in FIG. 20 differs from the optical access system 101 shown in FIG. 19 in that it includes an optical GW 202 instead of the optical GW 201.
  • the difference between the optical GW 202 and the optical GW 201 is that the optical GW 202 is provided with a wavelength duplexer 244, a wavelength duplexer 245, and a branching portion 250b instead of the wavelength duplexer 243 and the branching portion 250a.
  • the wavelength combiner / demultiplexer 244 separates an upstream optical signal and a downstream optical signal according to the wavelength.
  • the wavelength combiner / demultiplexer 244 inputs the upstream optical signal input from the optical SW210 via the transmission line 544 to the wavelength combiner / demultiplexer 245 via the transmission line 545.
  • the wavelength combiner / demultiplexer 244 inputs the downlink optical signal input from the wavelength combiner / demultiplexer 245 via the transmission line 546 to the optical SW210 via the transmission line 544.
  • the wavelength combiner / demultiplexer 245 separates an upstream optical signal and a downstream optical signal according to the wavelength.
  • the wavelength combiner demultiplexer 245 transmits an upstream optical signal input from the wavelength combiner demultiplexer 245 via the transmission line 545 to another ground or an upper network via the transmission line 503. Further, the wavelength combiner / demultiplexer 245 inputs the downlink optical signal received via the transmission line 503 to the wavelength combiner / demultiplexer 244 via the transmission line 546.
  • the branch portion 250b has a power splitter 251b and a power splitter 252b.
  • the power splitter 251b branches the upstream optical signal transmitted through the transmission line 545.
  • the power splitter 251b inputs the branched upstream signal to the port of the optical SW210 via the transmission line 551b.
  • the power splitter 252b branches the downlink optical signal transmitted through the transmission line 546.
  • the power splitter 252b inputs the branched downlink signal to the port of the optical SW210 via the transmission line 552b.
  • the optical SW210 outputs an optical signal input from the port connected to the transmission line 551b and an optical signal input from the port connected to the transmission line 552b from the port connected to the transmission line 560.
  • the wavelength demultiplexer 261 of the monitoring device 260 receives the optical signal branched by the branch portion 250b.
  • the monitoring device 260 described above has a receiver configuration including a wavelength demultiplexer 261 and an optical receiver 262 for each wavelength.
  • the monitoring device may have a tunable optical receiver instead of this receiver configuration.
  • the transmitter / receiver of the control device may have a transmitter whose wavelength is not tunable, or may have a receiver configuration which does not have a wavelength demultiplexer. An example of such a configuration will be described with reference to FIG.
  • FIG. 21 is a diagram showing a configuration example of the optical access system 103.
  • the optical access system 103 shown in FIG. 21 differs from the optical access system 100 shown in FIG. 12 in that it includes an optical GW 203 instead of the optical GW 200.
  • the difference between the optical GW 203 and the optical GW 200 is that the optical GW 203 is provided with the control device 235 and the monitoring device 265 instead of the control device 230 and the monitoring device 260.
  • the control device 235 has an optical receiver 236 and an optical transmitter 237 that is not tunable.
  • the monitoring device 265 includes a tunable optical receiver 266.
  • FIG. 22 is a diagram showing a configuration example of the optical access system 104.
  • the optical access system 104 shown in FIG. 22 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 204 instead of the optical GW 203.
  • the difference between the optical GW 204 and the optical GW 203 is that the optical SW 211 is further provided and the monitoring device 265 is connected to the optical SW 211.
  • the upstream optical signal separated from the transmission line 511 by the power splitter 251 of the branch portion 250 is input to the optical SW211 via the transmission line 555, and the downstream optical signal separated from the transmission line 512 by the power splitter 252 is transmitted through the transmission line 555. It is input to the optical SW211 via 555.
  • the optical SW211 is, for example, a small optical SW.
  • the number of ports of the optical SW211 is 1 on the monitoring device 260 side and 2M on the side where the monitored optical signal is input. 2M is twice the number M of the subscriber device 40 connected to the optical GW 204.
  • monitoring devices may be prepared for the number of connected grounds to monitor all signals transmitted to and received from the grounds for each ground.
  • FIG. 23 is a diagram showing a configuration example of the optical access system 105.
  • the optical access system 105 shown in FIG. 23 differs from the optical access system 103 shown in FIG. 21 in that the optical GW 205 is provided instead of the optical GW 203.
  • the difference between the optical GW 205 and the optical GW 203 is that the optical GW 205 is further provided with a combiner 247 and a demultiplexer 248 corresponding to the ground A on which the optical GW 205 is installed.
  • the combiner 247 and the demultiplexer 248 are connected by a transmission line 547.
  • the transmission line 547 is a folded transmission line.
  • the combiner 247 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW210 and outputs them to the transmission line 547.
  • the demultiplexer 248 demultiplexes the downlink optical signal input from the transmission line 547 according to the wavelength.
  • the demultiplexer 248 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 542 connected to the downlink port corresponding to the wavelength of the optical signal.
  • the transmission line 547 is provided with a branch portion 250.
  • the subscriber device connected to the ground A is connected to the port for connecting to the ground B and the ground C via the optical SW.
  • another set that is the same as the combination of the combiner 241 and the demultiplexer 242 connected to the ground B or the ground C is added.
  • This added set is a combiner 247 and a demultiplexer 248.
  • the output port of the added duplexer 247 and the input port of the added demultiplexer 248 are connected by a transmission line 547. With this configuration, the signal output by the subscriber device 40 can be input to the optical SW210 again.
  • the optical GW 205 folds back the optical signal output by a certain subscriber device 40 and re-enters the optical SW210 as a downlink signal.
  • this folded signal By connecting this folded signal to another subscriber device 40 in the optical SW 210, it is possible to perform loopback communication, that is, communication between the subscriber devices 40 connected to the same optical GW 205.
  • Each of the K (K is an integer of 2 or more) uplink ports corresponding to the ground A of the optical SW210 is connected to the combiner 247 by a transmission line 541, and each of the K downlink ports corresponding to the ground A of the optical SW210 It is assumed that the transmission line 542 is connected to the demultiplexer 248. Then, it is assumed that the kth (k is an integer of 1 or more and K or less) of the K downlink ports and uplink ports corresponding to the ground A corresponds to the wavelength ⁇ k .
  • the upstream optical signal of wavelength ⁇ 1 output from the subscriber device 40-2 is connected to the first uplink port corresponding to the ground A.
  • the input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the first downlink port corresponding to the ground A.
  • the optical SW control unit 320 sets a path in the optical SW 210 so that the signal is transmitted to the subscriber device 40-M according to the wavelength.
  • the upstream optical signal of wavelength ⁇ k output from the subscriber device 40-M is connected to the k-th uplink port corresponding to the ground A.
  • the input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the k-th downlink port corresponding to the ground A.
  • the optical SW control unit 320 sets a path in the optical SW 210 so that the signal is transmitted to the subscriber device 40-2 according to the wavelength. As a result, communication is performed between the subscriber device 40-2 and the subscriber device 40-M.
  • FIG. 24 is a diagram showing a configuration example of the optical access system 106.
  • the optical access system 106 shown in FIG. 24 differs from the optical access system 105 shown in FIG. 23 in that it includes an optical GW 206 instead of the optical GW 205.
  • the difference between the optical GW 206 and the optical GW 205 is that the optical GW 206 is not provided with a duplexer 247 and a demultiplexer 248, and the optical SW210 is directly connected between the upstream port and the downstream port for ground A by a transmission line 548 without wavelength division multiplexing. As a result, the signal is folded back.
  • FIG. 25 is a diagram showing a configuration example of the optical access system 107.
  • the difference between the optical access system 107 shown in FIG. 25 and the optical access system 105 shown in FIG. 23 is that the optical GW 207 is provided instead of the optical GW 205.
  • the optical GW 207 differs from the optical GW 205 in that it includes a power splitter 270 instead of the duplexer 248.
  • the power splitter 270 branches the downlink optical signal input from the combiner 247 via the transmission line 547 into a plurality of branches, and inputs the downlink optical signal to the optical SW210 via the plurality of transmission lines 542.
  • a power splitter may be provided after the demultiplexer 248 of the optical GW 205 in FIG. 23.
  • the power splitter splits the optical signal demultiplexed by the demultiplexer 248 into a plurality of light signals and inputs them to different ports of the optical SW210. By doing so, multicast communication of return communication becomes possible.
  • the optical access system of this embodiment performs multicast communication.
  • the differences from the first and second embodiments will be mainly described.
  • FIG. 26 is a diagram showing a configuration example of the optical access system 108.
  • the optical access system 108 shown in FIG. 26 differs from the optical access system 107 shown in FIG. 25 in that it includes an optical GW 208 instead of the optical GW 207.
  • the optical GW 208 differs from the optical GW 207 in that it further includes a transmission line 549 connecting the return port of the optical SW210.
  • the optical SW control unit 320 controls the port for inputting the downlink optical signal from the ground C so as to be connected to the return port to which the transmission line 549 is connected according to the wavelength.
  • the downlink optical signal from the ground C is transmitted through the transmission line 549 and is input to the optical SW210 again as the uplink signal of the ground A.
  • the optical SW control unit 320 controls to connect the downlink optical signal input from the return port to the uplink signal port of the ground A as in the second embodiment.
  • the optical signal input to the optical SW210 after turning back the transmission line 549 is output to the port connected to the combiner 247.
  • the combiner 247 combines the optical signals output from the optical SW210 by each of the plurality of transmission lines 541 and outputs the optical signals to the transmission line 547.
  • the optical signal output to the transmission line 547 is branched into a plurality of signals in the power splitter 270.
  • the power splitter 270 inputs a plurality of branched optical signals to the optical SW210 as a downlink signal of the ground A via the plurality of transmission lines 542.
  • the optical SW 210 outputs an optical signal input from each transmission line 542 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
  • FIG. 27 is a diagram showing a configuration example of the optical access system 109.
  • the optical access system 109 shown in FIG. 27 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 209 instead of the optical GW 203.
  • the optical GW 209 differs from the optical GW 203 in that it further includes a transmission line 570 that connects a return port to the optical SW210 and a power splitter 271 for multicast.
  • the power splitter 271 is connected to the optical SW210 via a transmission line 572 and a plurality of transmission lines 573.
  • the optical SW control unit 320 controls the port for inputting the upstream optical signal from the ground A so as to be connected to the return port to which the transmission line 570 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is transmitted through the transmission line 570 and is input to the optical SW210 again. Further, the optical SW control unit 320 controls to output the optical signal input from the return port to the port connected to the power splitter 271. As a result, the optical signal input to the optical SW210 by folding back the transmission line 570 is output to the transmission line 572. The optical signal output to the transmission line 572 is branched into a plurality of signals in the power splitter 271.
  • the power splitter 271 inputs a plurality of branched optical signals to the optical SW210 as an uplink signal via the plurality of transmission lines 573.
  • the optical SW210 outputs an optical signal input from each transmission line 573 to a port connected to ground B or ground C, depending on the wavelength. This enables multicasting of uplink signals.
  • FIG. 28 is a diagram showing a configuration example of the optical access system 110.
  • the optical access system 110 shown in FIG. 28 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 2010 instead of the optical GW 203.
  • the optical GW 2010 differs from the optical GW 203 in that it further includes a transmission line 574, 575 that connects a return port to the optical SW210, and a power splitter 272, 273.
  • the power splitter 272 is connected to the optical SW210 via a transmission line 581 and a plurality of transmission lines 582.
  • the power splitter 273 is connected to the optical SW210 via the plurality of transmission lines 583 and the transmission line 584.
  • the optical SW control unit 320 controls the port for inputting the downlink optical signal from the ground C so as to be connected to the return port to which the transmission line 574 is connected according to the wavelength.
  • the downlink optical signal from the ground C is transmitted through the transmission line 574 and is input to the optical SW210 again as the uplink signal of the ground A.
  • the optical SW control unit 320 controls to output the downlink optical signal input from the return port to the port to which the power splitter 272 is connected.
  • the optical signal input to the optical SW210 by folding back the transmission line 574 is output to the transmission line 581.
  • the optical signal output to the transmission line 581 is branched into a plurality of signals in the power splitter 272.
  • the power splitter 272 inputs a plurality of branched optical signals to the optical SW210 as a downlink signal via the plurality of transmission lines 582.
  • the optical SW 210 outputs an optical signal input from each transmission line 582 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
  • the optical SW control unit 320 controls the port for inputting the upstream optical signal from the ground A so as to be connected to the port to which the power splitter 273 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is output to the transmission line 583.
  • the optical signals output to each of the plurality of transmission lines 583 are combined in the power splitter 273.
  • the power splitter 273 inputs the combined optical signal to the optical SW210 via the transmission line 584.
  • the optical SW210 controls to connect the optical signal input from the transmission line 584 to the return port to which the transmission line 575 is connected. As a result, the optical signal is transmitted through the transmission line 575 and is input to the optical SW210 again.
  • the optical SW210 outputs the optical signal input from the transmission line 575 to the combiner 241 connected to the ground C according to the wavelength.
  • FIG. 29 is a diagram showing a configuration example of the optical access system 111.
  • the difference between the optical access system 111 shown in FIG. 29 and the optical access system 105 shown in FIG. 23 is that the optical GW 2011 is provided instead of the optical GW 205.
  • the difference between the optical GW 2011 and the optical GW 205 is that it does not have a wavelength duplexer 220, and instead of the combiner 241 and the duplexer 242 and the branch 250, the wavelength duplexer 249 and the branch 253 And a point further provided with a wavelength combiner / demultiplexer 238.
  • the wavelength combiner / demultiplexer 249 is connected to the optical SW210 by a plurality of transmission lines 585.
  • the wavelength combiner / demultiplexer 249 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 585 by the optical SW210 and outputs them to the transmission line 504 connected to any other ground. Further, the wavelength combiner / demultiplexer 249 demultiplexes the downlink optical signal input from another ground via the transmission line 504 according to the wavelength.
  • the wavelength combiner demultiplexer 249 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 585 connected to the uplink port corresponding to the wavelength of the optical signal.
  • the branch portion 253 has a power splitter 254.
  • the power splitter 254 branches an upstream optical signal and a downstream optical signal transmitted through the transmission line 504.
  • the power splitter 254 inputs the branched upstream optical signal to the port of the optical SW210 via the transmission line 586, and inputs the branched downstream optical signal to the port of the optical SW210 via the transmission line 587.
  • the optical SW210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
  • the wavelength combiner / demultiplexer 238 is connected to the optical SW210 by a transmission line 534, and is connected to the control device 235 by a transmission line 531 and a transmission line 533.
  • the wavelength combiner / demultiplexer 238 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength.
  • the wavelength combiner / demultiplexer 238 outputs an upstream optical signal input from the optical SW 210 via the transmission line 534 to the control device 235 via the transmission line 531.
  • the wavelength combiner / demultiplexer 238 outputs a downlink optical signal input from the control device 235 via the transmission line 533 to the optical SW210 via the transmission line 534.
  • the optical GW211 does not have a wavelength duplexer between the optical SW210 and the subscriber device 40, and has a configuration that does not separate the uplink signal and the downlink signal.
  • the number of ports used for the optical SW210 can be greatly reduced, and the amount of information to be managed can be greatly reduced.
  • the portion that separates the signal to the monitoring device 265 may be configured as shown in FIG.
  • FIG. 30 is a diagram showing a configuration example of the optical access system 112 of the present embodiment.
  • the optical GW 2012 of the optical access system 112 shown in FIG. 30 includes a branch portion 255 instead of the branch portion 253 included in the optical GW 2011 shown in FIG. 29.
  • the branch portion 255 includes a wavelength combiner / demultiplexer 256, a wavelength combiner / demultiplexer 257, a power splitter 258, and a power splitter 259.
  • the wavelength combiner / demultiplexer 256 separates the input optical signal into an upstream optical signal and a downstream optical signal depending on the wavelength.
  • the wavelength combiner / demultiplexer 256 outputs the upstream optical signal input from the wavelength combiner / demultiplexer 249 to the wavelength combiner / demultiplexer 257 via the transmission line 588.
  • the wavelength combiner / demultiplexer 256 outputs a downlink optical signal input from the wavelength combiner / demultiplexer 257 via a transmission line 589 to the wavelength combiner / demultiplexer 249.
  • the wavelength combiner / demultiplexer 257 separates an upstream optical signal and a downstream optical signal according to the wavelength.
  • the wavelength combiner / demultiplexer 257 outputs an upstream optical signal input from the wavelength combiner / demultiplexer 256 via the transmission line 588 to the transmission line 504.
  • the wavelength combiner / demultiplexer 257 inputs a downlink optical signal received from another ground via the transmission line 504 to the wavelength combiner / demultiplexer 256 via the transmission line 589.
  • the power splitter 258 branches the upstream optical signal transmitted through the transmission line 588 and inputs it to the port of the optical SW210 via the transmission line 586.
  • the power splitter 259 branches the downlink optical signal transmitted through the transmission line 589 and inputs it to the port of the optical SW210 via the transmission line 587.
  • the optical SW210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
  • the optical GW 2011 shown in FIG. 29 performs wavelength division multiplexing, but as shown in FIG. 31, a configuration in which signals to be transmitted to each station building (ground B or ground C) are transmitted through individual transmission lines without wavelength division multiplexing. May be.
  • FIG. 31 is a diagram showing a configuration example of the optical access system 113.
  • the optical access system 113 shown in FIG. 31 differs from the optical access system 101 shown in FIG. 19 in that it includes an optical GW 2013 instead of the optical GW 201.
  • the difference between the optical GW 2013 and the optical GW 201 is that it does not have the wavelength duplexer 220 and the wavelength duplexer 243, and instead of the control device 230 and the monitoring device 260, the control device 235 shown in FIG. 29. , A wavelength combiner / demultiplexer 238 and a monitoring device 265 are provided.
  • the port of the optical SW210 connected to the transmission line 503 outputs an upstream optical signal and inputs a downlink optical signal.
  • FIG. 32 is a diagram showing a configuration example of the optical access system 114.
  • the optical GW 2014 of the optical access system 114 shown in FIG. 32 has the same configuration as the branch portion 255 shown in FIG. 30 instead of the branch portion 250a included in the optical GW 2013 shown in FIG. 31.
  • FIG. 33 is a diagram showing a configuration example of the optical access system 115.
  • the optical access system 115 shown in FIG. 33 differs from the optical access system 104 shown in FIG. 22 in that it includes an optical GW 2015 instead of the optical GW 204.
  • the difference between the optical GW 2015 and the optical GW 204 is that the monitoring control device 267 is connected to the optical SW211 instead of the monitoring device 265.
  • the monitoring control device 267 includes a tunable receiver 268 and a tunable transmitter 269.
  • the monitoring control device 267 can receive an optical signal of an arbitrary wavelength by the tunable wavelength receiver 268, and can transmit an optical signal of an arbitrary wavelength by the tunable wavelength transmitter 269.
  • the optical GW 2015 includes a control device 235. As described in the first embodiment, when the subscriber device 40 is connected, the optical GW 2015 performs connection processing (registration, wavelength allocation, etc.) of the subscriber device 40 by using the control device 235, and is usually performed. Start communication.
  • the subscriber device 40-1 is connected to the ground B. Since the subscriber device 40-1 is in a state of performing normal communication, it cannot communicate with the control device 235. Therefore, by providing the monitoring control device 267 connected to the optical SW211 which is a small optical SW, not only the communication status of the subscriber device 40-1 can be monitored, but also various setting instructions of the subscriber device 40-1 can be instructed. It will be possible. That is, the optical signal separated by the power splitter 251 is output to the optical SW211 via the transmission line 555. The optical SW211 outputs the received optical signal to the monitoring control device 267.
  • the monitoring control device 267 monitors the wavelength tunable receiver 268 with the optical signal received from the optical SW211 and further receives the control signal superimposed on the received optical signal.
  • the tunable transmitter 269 of the monitoring control device 267 transmits a control signal to the subscriber device 40 as an optical signal.
  • the optical SW211 outputs a signal received from the tunable transmitter 269 to a port corresponding to the wavelength.
  • the power splitter 251 combines the control signal received from the optical SW 211 via the transmission line 556 with the optical signal transmitted through the transmission line 512. With this configuration, even when the subscriber device 40-1 is performing normal communication, the subscriber device 40-1 receives a request for changing the connection destination, etc., and transmits a control signal to the subscriber device 40-1. It is possible to switch wavelengths and the like.
  • a control signal which is slower than the optical main signal between the subscriber devices and can be superimposed on the main signal is used.
  • techniques such as AMCC can be used.
  • FIG. 34 is a diagram showing a configuration example of the optical access system 116.
  • the optical access system 116 shown in FIG. 34 differs from the optical access system 105 shown in FIG. 23 in that it includes an optical GW 2016 instead of the optical GW 202.
  • the difference between the optical GW 2016 and the optical GW 202 is that the processing function unit 600 is connected.
  • the processing function unit 600 converts an optical signal into an electric signal, performs electrical processing, and then converts it into an optical signal again and outputs it.
  • a signal processing function by electricity and a function such as OLT are implemented.
  • the signal processing function is, for example, code error correction such as FEC (forward error correction).
  • the subscriber device 40-M When the optical access system 116 is a PON (Passive Optical Network), the subscriber device 40-M is connected to the optical GW 2016 via a transmission line 501 such as an optical fiber and a power splitter 507.
  • the upstream optical signal of the subscriber device 40-M is connected to the processing function unit 600 via the optical SW210.
  • the OLT function is implemented in the processing function unit 600.
  • the processing function unit 600 processes the electric stage.
  • a plurality of subscriber devices 40 are connected to the OLT.
  • the processing function unit 600 which is equipped with the OLT function, collectively manages the subscriber devices 40.
  • the processing function unit 600 collects the signals transmitted from each subscriber device 40 into one and outputs the signals to the optical SW210.
  • the processing function unit 600 has a tunable wavelength transmitter / receiver.
  • the processing function unit 600 sets the wavelength to be transmitted and received according to the instruction from the control device 230.
  • the power splitter 507 between the subscriber device 40 and the optical GW 2016 may be a wavelength duplexer.
  • a wavelength demultiplexer is used between the subscriber device 40 and the optical GW 2016.
  • the superimposition of the AMCC signal on the main signal will be explained.
  • the main signal is a signal such as CPRI (Common Public Radio Interface) such as an OK (On-off keying) signal of 10 Gb / s (Gigabit per second).
  • the AMCC signal is transmitted, for example, by superimposing a 1 MHz carrier wave on the main signal, and conveys information by intensity modulation. Such a low-speed AMCC signal is superimposed on the main signal, and the AMCC signal thus superimposed is separable from the main signal.
  • the AMCC signal has a narrower band than the main signal.
  • a power combiner synthesizes a 10 GHz electric main signal and a 1 MHz electric AMCC signal, and a transmitter converts this combined signal into an optical signal to generate a main signal on which the AMCC signal is superimposed.
  • the carrier frequency may be another frequency such as 500 kHz that does not overlap with the main signal of electricity, and another modulation method such as phase modulation may be used as the modulation method.
  • the control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 described above include a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus. In addition, some or all of the above-mentioned functions may be realized by executing the program. Note that some or all of the functions of the control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 are ASIC (Application Specific Integrated Circuit) or PLD (Programmable). It may be realized by using hardware such as Logic Device) or FPGA (Field Programmable Gate Array).
  • the programs of the control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a storage device such as a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a hard disk built in a computer system.
  • the program may be transmitted over a telecommunication line.
  • the wavelength control unit 310 and the optical SW control unit 320 may be mounted by using one information processing device, or may be mounted by using a plurality of information processing devices that are communicably connected via a network. You may.
  • Optical communication system 10, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 210, 211 ...
  • Optical switch 11-1, 11-1-1 to 11-1-P, 11-2, 11-2-1 to 11-2-Q ... Port, 20 ...
  • Control unit 21, 41, 411, 412 ...
  • Optical transceiver 22, 42, 237 ...
  • Optical transmitter 23, 43, 232, 236 ...
  • Optical receiver 25 ... Wavelength control control unit, 26, 320 ... Optical SW control unit, 30 ... Optical communication network, 40, 40-1-40-M ...
  • Subscriber device 50, 50-1, 50-2, 51, 501, 503, 504, 511, 512, 521, 522, 531, 533, 534, 540, 541, 542, 543-1, 543-2, 544, 545, 546, 547, 548, 549, 551, 551a, 552, 552b, 555, 560, 561, 562, 563, 570, 571, 571, 573, 574, 575, 581, 582, 583, 584, 585, 586, 587, 588, 589 ... Transmission line, 58, 59 ... Distribution section, 60, 65 ...
  • Monitoring circuit 55, 61, 66, 71, 72, 251, 251a, 251b, 252, 252b, 254, 258, 259, 270, 271, 272, 273, 502, 507 ...
  • Power Splitter 67, 68, 80, 80a, 80b ... WDM device, 90 ... Multiplex communication transmission line, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 ...
  • Optical access system 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 2010, 2011, 2012, 2013, 2014, 2015, 2016 ...
  • Optical gateway 220, 238, 243, 244, 245, 249, 256, 257 ... Wavelength duplexer, 230 ... Control device, 231 and 261 ... Wavelength demultiplexer, 233, 269 ... Tunable transmitter, 235 ... Control device, 241 and 247 ... Combiner, 242, 248 ... Demultiplexer, 250, 250a, 250b, 253, 255 ... Branch, 260, 265 ... Monitoring device, 262 ... Optical receiver, 262 ... Optical receiver, 266 ... Tunable optical receiver, 267 ... Monitoring and control device, 268 ... Tunable wavelength receiver, 300 ... Operation system, 301 ... Optical GW control unit, 310 ... Wavelength control unit, 350 ... Management database, 452 ... Tunable wavelength filter, 453 ... Receiver, 454 ... WDM filter, 600 ... Processing function unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

An optical communication device according to the present invention is provided with an optical switch, a wavelength management control unit, and an optical switch control unit. The optical switch is connected with a plurality of transmission paths, and outputs an optical signal input from any of the transmission paths to another transmission path. The wavelength management control unit dynamically allocates, to a subscriber device, a wavelength according to a communication destination. The optical switch control unit controls the optical switch so as to output an optical signal input from a transmission path to a transmission path according to the communication destination specified through a combination of the subscriber device that transmitted the input optical signal and the wavelength of the input optical signal.

Description

光通信装置、光通信システム及び光通信方法Optical communication device, optical communication system and optical communication method
 本発明は、光通信装置、光通信システム及び光通信方法に関する。 The present invention relates to an optical communication device, an optical communication system, and an optical communication method.
 FTTH(Fiber To The Home)やモバイルサービスによる高速インターネットを利用するユーザの数は増大し続けている。高速インターネットは、人々の生活に欠かすことのできないものとなっている。一方で、FTTHやモバイルサービスを提供するバックボーンネットワークでは、それぞれのサービスごとにネットワークが独立して構築されている。そのため、運用面においては、非効率である。そこで、1つの装置で複数のサービスを収容するアクセスネットワークが提案されている(例えば、非特許文献1参照)。さらに、マルチサービスの収容が可能なアクセスネットワークを実現するために、複数の波長を利用するWDM-PON(Wavelength Division Multiplexing PON)やTDM-PON(Time Division Multiplexing PON)等のPON(Passive Optical Network:受動光ネットワーク)がITU-T(International Telecommunication Union Telecommunication Standardization Sector)によって標準化されている(例えば、非特許文献2参照)。 The number of users who use high-speed Internet through FTTH (Fiber To The Home) and mobile services continues to increase. The high-speed Internet has become an indispensable part of people's lives. On the other hand, in the backbone network that provides FTTH and mobile services, the network is independently constructed for each service. Therefore, it is inefficient in terms of operation. Therefore, an access network that accommodates a plurality of services in one device has been proposed (see, for example, Non-Patent Document 1). Furthermore, in order to realize an access network capable of accommodating multi-services, PON (Passive Optical Network) such as WDM-PON (Wavelength Division Multiplexing PON) and TDM-PON (Time Division Multiplexing PON) that use multiple wavelengths: Passive optical network) is standardized by ITU-T (International Telecommunication Union Telecommunication Standardization Sector) (see, for example, Non-Patent Document 2).
 一方で、現有の光アクセスシステムでは、加入者側の装置と局舎の間の通信は、更に上位であるコアネットワークに接続されている。加入者側の装置は、例えば、ONU(Optical Network Unit)である。また、コアネットワークへの接続は、局舎側の装置内にある終端装置を介して行われる。終端装置は、例えば、OLT(Optical Line Terminal)である。このOLTでは、光信号を一度電気信号に変換し、電気信号に対してユーザ情報や、宛先情報を付与又は削除する処理、ルーティング処理などを行っている。そのため、通信にある程度の遅延が発生する。さらに、データ量が多くなると、OLTは、バッファに信号を溜め、優先度制御などを行うこともある。これにより、遅延がさらに大きくなる。遅延が大きくなると、光サービスの品質が大きく下がる。従って、可能な限り遅延を小さくすることが重要である。 On the other hand, in the existing optical access system, the communication between the subscriber's device and the station building is connected to the higher-level core network. The device on the subscriber side is, for example, an ONU (Optical Network Unit). In addition, the connection to the core network is made via the termination device in the device on the station building side. The terminal device is, for example, an OLT (Optical Line Terminal). In this OLT, an optical signal is once converted into an electric signal, and user information, destination information is added to or deleted from the electric signal, routing processing, and the like are performed. Therefore, some delay occurs in communication. Further, when the amount of data increases, the OLT may store a signal in the buffer and perform priority control and the like. This further increases the delay. As the delay increases, the quality of optical service drops significantly. Therefore, it is important to reduce the delay as much as possible.
 光サービスの品質を向上させ、様々なサービスを光アクセスネットワークで提供するためには、OLTにおいて発生する遅延を削減する必要がある。光信号を電気信号に変換することなくルーティングなどの処理を行える光スイッチなどを用いることにより、遅延を大きく削減することができる。 In order to improve the quality of optical services and provide various services via optical access networks, it is necessary to reduce the delay that occurs in OLT. Delay can be greatly reduced by using an optical switch or the like that can perform processing such as routing without converting an optical signal into an electric signal.
 しかしながら、光スイッチを用いたルーティングを光アクセスに適用する場合、ユーザから送られてくるデータの宛先やタイミングなどの詳細な情報が必要となる。それらの情報を入手するには、加入者装置から送られてくる光信号を電気信号に変換し、情報を抽出し、抽出した情報に合わせた光信号の光路を設定し、さらには加入者装置の送受信器の設定(波長や変調方式など)を行う必要がある。 However, when applying routing using an optical switch to optical access, detailed information such as the destination and timing of data sent from the user is required. To obtain such information, convert the optical signal sent from the subscriber device into an electric signal, extract the information, set the optical path of the optical signal according to the extracted information, and further, the subscriber device. It is necessary to set the transmitter / receiver (wavelength, modulation method, etc.).
 上記事情に鑑み、本発明は、遅延を低減しながら光信号を宛先に応じて中継することができる光通信装置、光通信システム及び光通信方法を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide an optical communication device, an optical communication system, and an optical communication method capable of relaying an optical signal according to a destination while reducing delay.
 本発明の一態様は、複数の伝送路と接続され、いずれかの前記伝送路から入力した光信号を他の前記伝送路へ出力する光スイッチと、加入者装置に通信先に応じた波長を動的に割り当てる波長管理制御部と、前記伝送路から入力した光信号を、入力した前記光信号を送信した前記加入者装置と入力した前記光信号の波長との組み合わせにより特定される通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する光スイッチ制御部と、を備える光通信装置である。 One aspect of the present invention is an optical switch that is connected to a plurality of transmission lines and outputs an optical signal input from one of the transmission lines to the other transmission line, and a subscriber device having a wavelength corresponding to the communication destination. A communication destination specified by a combination of a dynamically assigned wavelength management control unit, an optical signal input from the transmission line, the subscriber device that transmitted the input optical signal, and the wavelength of the input optical signal. It is an optical communication device including an optical switch control unit that controls the optical switch so as to output to the corresponding transmission line.
 本発明の一態様は、複数の加入者装置と、上述した光通信装置とを有する光通信システムであって、前記加入者装置は、前記光通信装置により割り当てられた波長の光信号を送信する光送信部を備える、光通信システムである。 One aspect of the present invention is an optical communication system including a plurality of subscriber devices and the above-mentioned optical communication device, and the subscriber device transmits an optical signal having a wavelength assigned by the optical communication device. It is an optical communication system including an optical transmitter.
 本発明の一態様は、複数の伝送路と接続される光スイッチが、いずれかの前記伝送路から入力した光信号を他の前記伝送路へ出力する転送ステップと、波長管理制御部が、加入者装置に通信先に応じた波長を動的に割り当てる割当ステップと、光スイッチ制御部が、前記転送ステップにおいて、前記伝送路から入力した光信号を、入力した前記光信号を送信した前記加入者装置と入力した前記光信号の波長との組み合わせにより特定される通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する光スイッチ制御ステップと、を有する光通信方法である。 In one aspect of the present invention, a transfer step in which an optical switch connected to a plurality of transmission lines outputs an optical signal input from one of the transmission lines to the other transmission line and a wavelength management control unit are added. In the assignment step of dynamically assigning a wavelength according to the communication destination to the user device and the subscriber who transmitted the input optical signal to the optical switch control unit in the transfer step. It is an optical communication method including an optical switch control step for controlling the optical switch so as to output to the transmission line according to a communication destination specified by a combination of the device and the wavelength of the input optical signal.
 本発明により、遅延を低減しながら光信号を宛先に応じて中継することが可能となる。 According to the present invention, it is possible to relay an optical signal according to a destination while reducing delay.
本発明の実施形態による光通信システムの構成例を示す図である。It is a figure which shows the structural example of the optical communication system by embodiment of this invention. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWにおける波長変更前のルーティングの例を示す図である。It is a figure which shows the example of the routing before the wavelength change in the optical SW by an embodiment. 実施形態による光SWにおける波長変更後のルーティングの例を示す図である。It is a figure which shows the example of the routing after the wavelength change in the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 実施形態による光SWの例を示す図である。It is a figure which shows the example of the optical SW by an embodiment. 第1の実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by 1st Embodiment. 同実施形態によるSW接続テーブルの例を示す図である。It is a figure which shows the example of the SW connection table by the same embodiment. 同実施形態によるユーザ波長テーブルの例を示す図である。It is a figure which shows the example of the user wavelength table by the same embodiment. 同実施形態による局舎間波長テーブルの例を示す図である。It is a figure which shows the example of the wavelength table between stations by the same embodiment. 同実施形態による加入者装置の構成例を示す図である。It is a figure which shows the configuration example of the subscriber apparatus by the same embodiment. 同実施形態による加入者装置の構成例を示す図である。It is a figure which shows the configuration example of the subscriber apparatus by the same embodiment. 同実施形態による光アクセスシステムの初期設定処理を示すフローチャートである。It is a flowchart which shows the initial setting process of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 第2の実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by 2nd Embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 第3の実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by 3rd Embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 第4の同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the 4th Embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 同実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by the same embodiment. 第5の実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by 5th Embodiment. 第6の実施形態による光アクセスシステムの構成例を示す図である。It is a figure which shows the configuration example of the optical access system by 6th Embodiment.
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。なお、複数の図面において同一の部分には同一の符号を付し、その説明を省略する。本実施形態では、光スイッチは、各光信号の波長を宛先情報として用いることにより、光信号を電気信号に変換することなく、ルーティングを行う。本実施形態では、各加入者装置からの接続要求(宛先情報などを含む)に応じて、波長コントローラ及び光スイッチコントローラ、さらには全加入者の接続情報を管理している管理データベースと連携し、加入者装置が使用する個別の波長をそれぞれ割り当てる。このとき、加入者装置制御用の装置を用いて、使用する波長などの設定情報を各加入者装置に送信する。この制御用の装置と加入者装置との間は、例えば、加入者装置間の光信号である主信号より低速であり、主信号に重畳可能な制御信号を用いて通信を行う。これにより、主信号に影響を与えることなく、設定変更や監視を行うことが可能となる。本実施形態により、終端装置が電気処理を行うことにより発生していた遅延を削減することが可能となる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the plurality of drawings, the same parts are designated by the same reference numerals, and the description thereof will be omitted. In the present embodiment, the optical switch uses the wavelength of each optical signal as destination information to perform routing without converting the optical signal into an electric signal. In this embodiment, in response to a connection request (including destination information) from each subscriber device, the wavelength controller, the optical switch controller, and the management database that manages the connection information of all subscribers are linked. Assign each individual wavelength used by the subscriber device. At this time, the device for controlling the subscriber device is used to transmit setting information such as the wavelength to be used to each subscriber device. Communication is performed between the control device and the subscriber device using, for example, a control signal that is slower than the main signal, which is an optical signal between the subscriber devices, and can be superimposed on the main signal. This makes it possible to change settings and monitor without affecting the main signal. According to this embodiment, it is possible to reduce the delay caused by the termination device performing electrical processing.
 図1は、本実施形態の光通信システム1の構成例を示す図である。光通信システム1は、複数の光SW(スイッチ)10を有する。同図では光SW10を2台のみ示しているが、光SW10の台数は任意である。光SW10は、制御部20と接続される。光SW10は、他の光SW10と、光通信ネットワーク30を介して通信する。光通信ネットワーク30には、例えば、様々なトポロジーを含むWDM(Wavelength Division Multiplexing)ネットワーク等を用いることができる。光SW10には、1台以上の加入者装置40が接続される。加入者装置40は、例えば、PON(Passive Optical Network;受動光ネットワーク)などの光アクセスネットワークにより光SW10に接続される。加入者装置40は、光トランシーバ41を有する。光トランシーバ41は、加入者装置における光送信部及び光受信部構成の一例である。光トランシーバ41は、光送信器(Tx)42及び光受信器(Rx)43を有する。光トランシーバ41は、波長可変光送受信器である。光トランシーバ41として、例えば、従来のAMCC(Auxiliary Management and Control Channel)機能付き光トランシーバを用いることができる。 FIG. 1 is a diagram showing a configuration example of the optical communication system 1 of the present embodiment. The optical communication system 1 has a plurality of optical SWs (switches) 10. Although only two optical SW10s are shown in the figure, the number of optical SW10s is arbitrary. The optical SW 10 is connected to the control unit 20. The optical SW10 communicates with another optical SW10 via the optical communication network 30. For the optical communication network 30, for example, a WDM (Wavelength Division Multiplexing) network including various topologies can be used. One or more subscriber devices 40 are connected to the optical SW10. The subscriber device 40 is connected to the optical SW10 by, for example, an optical access network such as PON (Passive Optical Network). The subscriber device 40 has an optical transceiver 41. The optical transceiver 41 is an example of the configuration of an optical transmitter and an optical receiver in the subscriber device. The optical transceiver 41 has an optical transmitter (Tx) 42 and an optical receiver (Rx) 43. The optical transceiver 41 is a tunable optical transceiver. As the optical transceiver 41, for example, a conventional optical transceiver with an AMCC (Auxiliary Management and Control Channel) function can be used.
 制御部20は、光トランシーバ21を有する。光トランシーバ21は、制御部20における光送信部及び光受信部構成の一例である。光トランシーバ21は、光送信器(Tx)22及び光受信器(Rx)23を有する。光トランシーバ21は、可変波長光送受信器である。制御部20は、波長管理テーブルを記憶している。波長管理テーブルは、各加入者装置40に割り当てられた波長を示すデータである。制御部20は、AMCC機能を用いて、加入者装置40が通信に用いる波長を割り当てる。 The control unit 20 has an optical transceiver 21. The optical transceiver 21 is an example of the configuration of the optical transmission unit and the optical reception unit in the control unit 20. The optical transceiver 21 has an optical transmitter (Tx) 22 and an optical receiver (Rx) 23. The optical transceiver 21 is a tunable wavelength optical transceiver. The control unit 20 stores the wavelength management table. The wavelength management table is data indicating the wavelength assigned to each subscriber device 40. The control unit 20 uses the AMCC function to assign a wavelength used by the subscriber device 40 for communication.
 加入者装置40に宛先に応じた波長を割り当てるため、まず、加入者装置40の光トランシーバ41と制御部20の光トランシーバ21とがAMCCを用いて通信を行う。制御部20は、波長テーブルを参照して、空きの波長の中から宛先に応じて加入者装置40に割り当てる波長を選択する。制御部20は、AMCCを用いた制御信号により、加入者装置40に選択した波長を設定する。その後、制御部20は、加入者装置40から送信された光信号の波長が示す宛先に応じたルーティングを行うよう光SW10を切替える。これにより、対向する加入者装置40間を接続する。 In order to assign a wavelength according to the destination to the subscriber device 40, first, the optical transceiver 41 of the subscriber device 40 and the optical transceiver 21 of the control unit 20 communicate with each other using AMCC. The control unit 20 refers to the wavelength table and selects a wavelength to be assigned to the subscriber device 40 from among the available wavelengths according to the destination. The control unit 20 sets the selected wavelength in the subscriber device 40 by the control signal using AMCC. After that, the control unit 20 switches the optical SW 10 so as to perform routing according to the destination indicated by the wavelength of the optical signal transmitted from the subscriber device 40. As a result, the subscriber devices 40 facing each other are connected.
 光SW10は、例えば、光ゲートウェイ(GW)に備えられる。図2~図11を用いて、光GWに備えられる光SW10の例を説明する。 The optical SW10 is provided in, for example, an optical gateway (GW). An example of the optical SW10 provided in the optical GW will be described with reference to FIGS. 2 to 11.
 図2は、光SW10aの構成例を示す図である。光SW10aは、複数の伝送路50と接続され、いずれかの伝送路50から入力した光信号を他の伝送路50へ出力する。伝送路50は、例えば、光ファイバである。光SW10aは、ポート11-1-1~11-1-P(Pは2以上の整数)と、ポート11-2-1~11-2-Q(Qは2以上の整数)とを有する。ポート11-1-1~11-1-Pのいずれかを特定しない場合、又は、総称して、ポート11-1と記載し、ポート11-2-1~11-2-Qのいずれかを特定しない場合、又は、総称して、ポート11-2と記載する。ポート11-1と接続される伝送路50を伝送路50-1と記載し、ポート11-2と接続される伝送路50を伝送路50-2と記載する。 FIG. 2 is a diagram showing a configuration example of the optical SW10a. The optical SW10a is connected to a plurality of transmission lines 50, and outputs an optical signal input from one of the transmission lines 50 to another transmission line 50. The transmission line 50 is, for example, an optical fiber. The optical SW10a has ports 11-1-1 to 11-1-P (P is an integer of 2 or more) and ports 11-2-1 to 11-2-Q (Q is an integer of 2 or more). If any of ports 11-1-1 to 11-1-P is not specified, or generically, it is described as port 11-1, and any of ports 11-2-1 to 11-2-Q is referred to. When not specified, or collectively, it is described as port 11-2. The transmission line 50 connected to the port 11-1 is referred to as a transmission line 50-1, and the transmission line 50 connected to the port 11-2 is referred to as a transmission line 50-2.
 各ポート11-1は、伝送路50-1を介して加入者装置40と接続される。各ポート11-2は、伝送路50-2を介して加入者装置40と接続される。加入者装置40は、例えば、ONUである。伝送路50-2は、上位ネットワークである光通信ネットワーク30に接続されてもよい。この場合、伝送路50-1を介して接続される加入者装置40の方向は下り方向であり、伝送路50-2を介して接続される上位ネットワークの方向は上り方向である。また、伝送路50-2には、他の光SW10などの光通信装置が備えられることがある。 Each port 11-1 is connected to the subscriber device 40 via the transmission line 50-1. Each port 11-2 is connected to the subscriber device 40 via a transmission line 50-2. The subscriber device 40 is, for example, an ONU. The transmission line 50-2 may be connected to the optical communication network 30 which is an upper network. In this case, the direction of the subscriber device 40 connected via the transmission line 50-1 is the downward direction, and the direction of the upper network connected via the transmission line 50-2 is the upward direction. Further, the transmission line 50-2 may be provided with another optical communication device such as an optical SW10.
 ポート11-1-1、11-1-2、11-1-3、…はそれぞれ伝送路50-1を介して、対地Aの加入者装置40である40a-1、40a-2、40a-3、…と接続される。いずれかのポート11-2(同図では、ポート11-2-1)は、後述する波長管理制御部25と接続される。一部のポート11-2-i、11-2-(i+1)、11-2-(i+2)、…はそれぞれ伝送路50-2を介して、対地Bの加入者装置40である40b-1、40b-2、40b-3、…と接続される(iは2以上の整数)。対地Bの加入者装置40と接続されるポート11-2とは異なる一部のポート11-2-j、11-2-(j+1)、11-2-(j+2)、…はそれぞれ伝送路50-2を介して、対地Cの加入者装置40である40c-1、40c-2、40c-3、…と接続される(jは2以上の整数)。光SW10aは、ポート11-1から入力した光信号をポート11-2に出力し、ポート11-2から入力した光信号をポート11-1に出力する。 Ports 11-1-1, 11-1-2, 11-1-3, ... Are the subscriber devices 40 of the ground A via the transmission line 50-1, 40a-1, 40a-2, 40a-, respectively. 3, ... is connected. One of the ports 11-2 (port 11-2-1 in the figure) is connected to the wavelength management control unit 25 described later. Some ports 11-2-i, 11-2- (i + 1), 11-2- (i + 2), ... Are 40b-1 subscriber devices 40 to ground B via transmission lines 50-2, respectively. , 40b-2, 40b-3, ... (I is an integer of 2 or more). Some ports 11-2-j, 11-2- (j + 1), 11-2- (j + 2), ... Different from the port 11-2 connected to the subscriber device 40 of the ground B are transmission lines 50, respectively. It is connected to 40c-1, 40c-2, 40c-3, ..., Which are the subscriber devices 40 of the ground C, via -2 (j is an integer of 2 or more). The optical SW10a outputs the optical signal input from the port 11-1 to the port 11-2, and outputs the optical signal input from the port 11-2 to the port 11-1.
 光SW10aは、制御部20と接続される。制御部20は、波長管理制御部25と、光SW制御部26とを有する。波長管理制御部25は、光信号により加入者装置40から波長の割り当ての要求を受信し、要求を送信した加入者装置40に通信先に応じた波長を動的に割り当て、割り当てた波長を光信号により加入者装置40に通知する波長割当処理を行う。波長管理制御部25と加入者装置40との間で送受信される光信号には、加入者装置40間の光信号(主信号)の通信プロトコルに依存しない管理制御信号の重畳方式が用いられる。波長管理制御部25と加入者装置40との間で送受信される光信号には、例えば、プロトコルフリーのAMCCが用いられる。 The optical SW10a is connected to the control unit 20. The control unit 20 includes a wavelength control control unit 25 and an optical SW control unit 26. The wavelength management control unit 25 receives a wavelength allocation request from the subscriber device 40 by an optical signal, dynamically assigns a wavelength according to the communication destination to the subscriber device 40 that has transmitted the request, and sets the assigned wavelength to light. A wavelength allocation process for notifying the subscriber device 40 by a signal is performed. For the optical signal transmitted and received between the wavelength management control unit 25 and the subscriber device 40, a management control signal superimposition method that does not depend on the communication protocol of the optical signal (main signal) between the subscriber devices 40 is used. For example, a protocol-free AMCC is used as an optical signal transmitted and received between the wavelength management control unit 25 and the subscriber device 40.
 光SW制御部26は、波長割当処理が実行されている間、加入者装置40と波長管理制御部25との間で光信号を送受信するよう光SW10aを制御する。光SW制御部26は、波長割当処理の後、伝送路50から入力した光信号を、入力した光信号を送信した加入者装置40と入力した光信号の波長との組み合わせにより特定される通信先に応じた伝送路50-2に出力するよう光SW10aを制御する。 The optical SW control unit 26 controls the optical SW 10a so as to transmit and receive an optical signal between the subscriber device 40 and the wavelength management control unit 25 while the wavelength allocation process is being executed. After the wavelength allocation process, the optical SW control unit 26 uses the optical signal input from the transmission line 50 as a communication destination specified by a combination of the subscriber device 40 that transmitted the input optical signal and the wavelength of the input optical signal. The optical SW10a is controlled so as to output to the transmission line 50-2 according to the above.
 各伝送路50-2には、監視回路60が備えられる。同図では、監視回路60を1つだけ示している。監視回路60は、監視部の一例である。監視回路60は、パワースプリッタ61を有する。パワースプリッタ61は、伝送路50-2を伝送する光信号を分岐する。監視回路60は、パワースプリッタ61が分岐した光信号を監視する。監視回路60は、監視の結果に基づく監視情報を生成し、生成した監視情報を出力する。監視情報は、監視の結果を示す情報、又は、監視の結果から得られた情報である。監視情報の出力先としては、例えば、制御部20が挙げられる。また、他の加入者装置40との通信中に、パワースプリッタ61により、加入者装置40が送信した制御信号を分岐したり、加入者装置40間の信号に、制御信号を重畳して送信したりすることができる。 Each transmission line 50-2 is provided with a monitoring circuit 60. In the figure, only one monitoring circuit 60 is shown. The monitoring circuit 60 is an example of a monitoring unit. The monitoring circuit 60 has a power splitter 61. The power splitter 61 branches the optical signal transmitted through the transmission line 50-2. The monitoring circuit 60 monitors the optical signal branched by the power splitter 61. The monitoring circuit 60 generates monitoring information based on the monitoring result and outputs the generated monitoring information. The monitoring information is information indicating the result of monitoring or information obtained from the result of monitoring. As the output destination of the monitoring information, for example, the control unit 20 can be mentioned. Further, during communication with another subscriber device 40, the power splitter 61 branches the control signal transmitted by the subscriber device 40, or superimposes the control signal on the signal between the subscriber devices 40 and transmits the signal. Can be done.
 波長管理制御部25は、波長割当処理を行った加入者装置40に対して波長の変更を指示する波長変更処理を行ってもよい。例えば、波長管理制御部25は、監視回路60から出力された監視情報に基づいて波長変更対象の加入者装置40を特定し、特定した加入者装置40に対して波長変更処理を行う。光SW制御部26は、波長変更処理の間、加入者装置40と波長管理制御部25との間で光信号が送受信されるよう光SW10aを制御する。光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長の光信号を入力した場合、入力した光信号を、通信先に応じた伝送路50-2に出力するよう光SW10aを制御する。例えば、光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長の光信号を入力し、入力した光信号を、送信元の加入者装置40と変更前の波長との組み合わせが用いられていた通信先に応じた伝送路50-2に出力するよう光SW10aを制御する。あるいは、光SW制御部26は、送信元の加入者装置40から変更後の波長を用いて送信された光信号を、波長変更前とは異なる伝送路50-2に出力するよう光SW10aを制御してもよい。この場合、波長変更処理の前後で通信先の加入者装置40は異なる。また、波長管理制御部25は、通信中又は通信終了後の加入者装置40からの波長変更の要求を受け、要求元の加入者装置40に対して波長変更処理を行ってもよい。波長変更処理によって、加入者装置40が送信に用いる波長と受信に用いる波長の両方を変更してもよく、いずれかを変更してもよい。 The wavelength management control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength. For example, the wavelength management control unit 25 identifies the subscriber device 40 to be changed in wavelength based on the monitoring information output from the monitoring circuit 60, and performs wavelength change processing on the specified subscriber device 40. The optical SW control unit 26 controls the optical SW 10a so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength management control unit 25 during the wavelength change process. When the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, the optical SW control unit 26 outputs the input optical signal to the transmission line 50-2 according to the communication destination. Controls the optical SW10a. For example, the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, and uses the input optical signal as the source subscriber device 40 and the wavelength before the change. The optical SW10a is controlled so as to output to the transmission line 50-2 according to the communication destination in which the combination of the above is used. Alternatively, the optical SW control unit 26 controls the optical SW10a so as to output an optical signal transmitted from the source subscriber device 40 using the changed wavelength to a transmission line 50-2 different from that before the wavelength change. You may. In this case, the subscriber device 40 of the communication destination is different before and after the wavelength change processing. Further, the wavelength management control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40. By the wavelength change processing, both the wavelength used for transmission and the wavelength used for reception by the subscriber device 40 may be changed, or either of them may be changed.
 図3は、折り返し回路を有する光SW10bの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。また、図3では、制御部20の記載を省略している。光SW10bは、折り返し伝送路51と接続される。折り返し伝送路51は、ポート11-2が出力した光信号を他のポート11-2に入力する光ファイバである。これにより、光SW10bは、折り返し通信を可能とする。 FIG. 3 is a diagram showing a configuration example of an optical SW10b having a folding circuit. In the figure, the same parts as those of the optical SW10a shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 3, the description of the control unit 20 is omitted. The optical SW10b is connected to the return transmission line 51. The return transmission line 51 is an optical fiber that inputs an optical signal output from port 11-2 to another port 11-2. As a result, the optical SW10b enables return communication.
 図4は、上り方向マルチキャストを行う光SW10cの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。また、図4では、制御部20の記載を省略している。光SW10cは、ポート11-2が出力した光信号を複数に分配し、分配され複数の光信号をそれぞれ異なるポート11-1に入力する分配部58を有する。分配部58は、第一分配部の一例である。図4では、光SW10cは、ポート11-2が出力した光信号を、折り返し伝送路を介して他のポート11-2に入力する。光SW10cは、この入力された光信号を、1×Nのパワースプリッタ71が接続されているポート11-1に出力する。ポート11-1から出力された光信号は、パワースプリッタ71により分配されて複数の他のポート11-1に入力される。光SW10cは、これら複数のポート11-1から入力した光信号をそれぞれ、異なるポート11-2に出力する。なお、双方向通信も可能である。下り方向の光信号は、上り方向と逆にルーティングされる。 FIG. 4 is a diagram showing a configuration example of an optical SW10c that performs uplink multicast. In the figure, the same parts as those of the optical SW10a shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 4, the description of the control unit 20 is omitted. The optical SW10c has a distribution unit 58 that distributes the optical signal output from the port 11-2 to a plurality of components, distributes the optical signals, and inputs the plurality of optical signals to different ports 11-1. The distribution unit 58 is an example of the first distribution unit. In FIG. 4, the optical SW10c inputs the optical signal output from the port 11-2 to the other port 11-2 via the return transmission line. The optical SW10c outputs this input optical signal to the port 11-1 to which the 1 × N power splitter 71 is connected. The optical signal output from port 11-1 is distributed by the power splitter 71 and input to a plurality of other ports 11-1. The optical SW10c outputs the optical signals input from the plurality of ports 11-1 to different ports 11-2, respectively. Two-way communication is also possible. The down light signal is routed in the opposite direction of the up direction.
 図5は、下り方向マルチキャストを行う光SW10dの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。また、図5では、制御部20の記載を省略している。光SW10dは、ポート11-1が出力した光信号を複数に分配し、分配され複数の光信号をそれぞれ異なるポート11-2に入力する分配部59を有する。分配部59は、第二分配部の一例である。図5では、光SW10dは、ポート11-1が出力した光信号を、折り返し伝送路を介して他のポート11-1に入力する。光SW10dは、この入力された光信号を、1×Nのパワースプリッタ72が接続されているポート11-2に出力する。ポート11-2から出力された光信号は、パワースプリッタ72により分配されて複数の他のポート11-2に入力される。光SW10dは、これら複数のポート11-2から入力した光信号をそれぞれ、異なるポート11-1に出力する。 FIG. 5 is a diagram showing a configuration example of an optical SW10d that performs downlink multicast. In the figure, the same parts as those of the optical SW10a shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIG. 5, the description of the control unit 20 is omitted. The optical SW10d has a distribution unit 59 that distributes the optical signals output from the port 11-1 to a plurality of components, distributes the optical signals, and inputs the plurality of optical signals to different ports 11-2. The distribution unit 59 is an example of the second distribution unit. In FIG. 5, the optical SW10d inputs the optical signal output from the port 11-1 to the other port 11-1 via the return transmission line. The optical SW10d outputs this input optical signal to the port 11-2 to which the 1 × N power splitter 72 is connected. The optical signal output from port 11-2 is distributed by the power splitter 72 and input to a plurality of other ports 11-2. The optical SW10d outputs the optical signals input from the plurality of ports 11-2 to different ports 11-1.
 図6は、WDM伝送を行う光SW10eの構成例を示す図である。同図において、図2に示す光SW10aと同一の部分には同一の符号を付し、その説明を省略する。光SW10eは、1台以上のWDM装置80と接続される。WDM装置80は、合分波装置の一例である。WDM装置80は、複数のポート11-2のそれぞれから出力された異なる波長の光信号を合波して多重通信伝送路90に出力する。また、WDM装置80は、多重通信伝送路90を介して受信した光信号を波長により分波し、分波した光信号をそれぞれ複数のポート11-2に入力する。このようにWDM装置80は、光SW10eの複数のポート11-2から出力された異なる波長の光信号を合波して多重通信伝送路90に出力する合波装置と、多重通信伝送路90を介して受信した光信号を波長により分波し、分波した光信号それぞれを光SW10eの異なる複数のポート11-2に入力する分波装置との機能を有する。WDM伝送を行う光SW10eは、WDM装置80と接続されていないポート11-2に、図3に示す折り返し伝送路51を接続してもよい。 FIG. 6 is a diagram showing a configuration example of an optical SW10e that performs WDM transmission. In the figure, the same parts as those of the optical SW10a shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. The optical SW10e is connected to one or more WDM devices 80. The WDM device 80 is an example of a demultiplexing device. The WDM device 80 combines optical signals of different wavelengths output from each of the plurality of ports 11-2 and outputs them to the multiplexing communication transmission line 90. Further, the WDM device 80 demultiplexes the optical signal received via the multiplex communication transmission line 90 according to the wavelength, and inputs the demultiplexed optical signal to each of the plurality of ports 11-2. In this way, the WDM device 80 combines the wave-binding device that combines optical signals of different wavelengths output from the plurality of ports 11-2 of the optical SW10e and outputs them to the multiplex communication transmission line 90, and the multiplex communication transmission line 90. It has a function as a demultiplexer that demultiplexes the optical signal received via the wavelength according to the wavelength and inputs each of the demultiplexed optical signals to a plurality of ports 11-2 having different optical SW10e. The optical SW10e that performs WDM transmission may connect the return transmission line 51 shown in FIG. 3 to the port 11-2 that is not connected to the WDM device 80.
 多重通信伝送路90には、監視回路65が備えられる。監視回路65は、パワースプリッタ66及びWDM装置67、68を有する。パワースプリッタ66は、多重通信伝送路90を伝送する光信号を分岐する。WDM装置67は、パワースプリッタ66が分岐した上りの光信号を分波する。WDM装置68は、パワースプリッタ66が分岐した下りの光信号を分波する。監視回路65は、WDM装置67及びWDM装置68が分波した光信号を監視する。監視回路65は、監視の結果に基づく監視情報を生成し、生成した監視情報を出力する。監視情報は、監視の結果を示す情報、又は、監視の結果から得られた情報である。例えば、監視回路65は、光信号の監視により、加入者装置40間の通信状況の異常を検出すると、通信状況の異常が生じた旨と、通信状況の異常が生じた加入者装置40を特定する情報とを設定した監視情報を出力する。監視情報の出力先としては、例えば、制御部20が挙げられる。 The multiplex communication transmission line 90 is provided with a monitoring circuit 65. The monitoring circuit 65 includes a power splitter 66 and WDM devices 67 and 68. The power splitter 66 branches an optical signal transmitted through the multiplex communication transmission line 90. The WDM device 67 demultiplexes the upstream optical signal branched by the power splitter 66. The WDM device 68 demultiplexes the downlink optical signal branched by the power splitter 66. The monitoring circuit 65 monitors the optical signal demultiplexed by the WDM device 67 and the WDM device 68. The monitoring circuit 65 generates monitoring information based on the monitoring result and outputs the generated monitoring information. The monitoring information is information indicating the result of monitoring or information obtained from the result of monitoring. For example, when the monitoring circuit 65 detects an abnormality in the communication status between the subscriber devices 40 by monitoring the optical signal, it identifies that the abnormality in the communication status has occurred and the subscriber device 40 in which the abnormality in the communication status has occurred. Outputs monitoring information with information to be set. As the output destination of the monitoring information, for example, the control unit 20 can be mentioned.
 波長管理制御部25は、波長割当処理を行った加入者装置40に対して波長の変更を指示する波長変更処理を行ってもよい。例えば、波長管理制御部25は、監視回路65から出力された監視情報に基づいて波長変更対象の加入者装置40を特定し、特定した加入者装置40に対して波長変更処理を行う。光SW制御部26は、波長変更処理の間、加入者装置40と波長管理制御部25との間で光信号が送受信されるよう光SW10eを制御する。光SW制御部26は、波長変更処理の後、加入者装置40から変更後の波長の光信号を入力した場合、入力した光信号を、通信先に応じたポート11-2から出力するよう光SW10eを制御する。また、波長管理制御部25は、通信中又は通信終了後の加入者装置40からの波長変更の要求を受け、要求元の加入者装置40に対して波長変更処理を行ってもよい。 The wavelength management control unit 25 may perform a wavelength change process for instructing the subscriber device 40 that has performed the wavelength allocation process to change the wavelength. For example, the wavelength management control unit 25 identifies the subscriber device 40 to be changed in wavelength based on the monitoring information output from the monitoring circuit 65, and performs wavelength change processing on the specified subscriber device 40. The optical SW control unit 26 controls the optical SW 10e so that an optical signal is transmitted and received between the subscriber device 40 and the wavelength management control unit 25 during the wavelength change process. When the optical SW control unit 26 inputs an optical signal of the changed wavelength from the subscriber device 40 after the wavelength change processing, the optical SW control unit 26 illuminates so that the input optical signal is output from the port 11-2 according to the communication destination. Control SW10e. Further, the wavelength management control unit 25 may receive a wavelength change request from the subscriber device 40 during communication or after communication is completed, and may perform wavelength change processing on the requesting subscriber device 40.
 図7及び図8を用いて、光SW10eにおける波長変更の例を説明する。図7は、光SW10eにおける波長変更前のルーティングの例を示す図である。光SW10eは、対地Aの加入者装置40である40a-1、40a-2、40a-3、…と接続される。対地Bと接続されるWDM装置80をWDM装置80bと記載し、対地Cと接続されるWDM装置80をWDM装置80cと記載する。WDM装置80bは、光SW10eとの間で波長λ~λ10の光信号を送受信し、WDM装置80cは、光SW10eとの間で波長λ11~λ20の光信号を送受信する。 An example of wavelength change in the optical SW10e will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram showing an example of routing in the optical SW10e before changing the wavelength. The optical SW10e is connected to 40a-1, 40a-2, 40a-3, ..., Which are the subscriber devices 40 of the ground A. The WDM device 80 connected to the ground B is referred to as a WDM device 80b, and the WDM device 80 connected to the ground C is referred to as a WDM device 80c. The WDM device 80b transmits and receives optical signals having wavelengths λ 1 to λ 10 to and from the optical SW 10e, and the WDM device 80c transmits and receives optical signals having wavelengths λ 11 to λ 20 to and from the optical SW 10e.
 図7において、波長変更前、光SW10eは、加入者装置40a-1から入力した波長λの光信号と、加入者装置40a-2から入力した波長λの光信号とをそれぞれ異なるポート11-2からWDM装置80bへ出力している。加入者装置40a-2は、通信中又は通信終了後に、波長管理制御部25に制御信号により波長変更の要求を送信する。波長管理制御部25は、加入者装置40a-2から波長変更の要求を受信すると、加入者装置40a-2に波長λ10への変更を指示する波長変更処理を行う。光SW制御部26は、加入者装置40a-2から受信した波長λ10の光信号を、波長λ10に対応したポート11-2からWDM装置80bへ出力するよう光SW10eを制御する。なお、波長管理制御部25は、加入者装置40a-2が受信に用いる波長をさらに変更してもよい。 In FIG. 7, before the wavelength is changed, the optical SW10e has different ports 11 for the optical signal of wavelength λ 1 input from the subscriber device 40a-1 and the optical signal of wavelength λ 2 input from the subscriber device 40a-2. -2 outputs to the WDM device 80b. The subscriber device 40a-2 transmits a wavelength change request to the wavelength management control unit 25 by a control signal during or after the communication is completed. Upon receiving the wavelength change request from the subscriber device 40a-2, the wavelength management control unit 25 performs a wavelength change process instructing the subscriber device 40a-2 to change to the wavelength λ 10. Light SW control unit 26 controls the light SW10e to output the optical signal of the wavelength lambda 10 received from the subscriber unit 40a-2, from port 11-2 corresponding to the wavelength lambda 10 to the WDM device 80b. The wavelength management control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
 また、光SW制御部26は、波長変更処理後、送信元の加入者装置40から変更後の波長を用いて送信された光信号を、波長変更前とは異なるWDM装置80に出力するよう光SW10eを制御してもよい。図8は、出力先のWDM装置80が変更になる場合の光SW10eにおける波長変更後のルーティングの例を示す図である。波長変更前、図7に示すように、加入者装置40a-1は波長λを用いて、加入者装置40a-2は、波長λ又は波長λ10を用いて通信している。加入者装置40a-2は、通信中又は通信終了後に、波長管理制御部25に制御信号により波長変更の要求を送信する。波長管理制御部25は、加入者装置40a-2から波長変更要求を受信すると、加入者装置40a-2に対地Cの加入者装置40と通信するため波長λ11への変更を指示する波長変更処理を行う。光SW制御部26は、加入者装置40a-2から受信した波長λ11の光信号を、波長λ11に対応したポート11-2からWDM装置80cへ出力するよう光SW10eを制御する。なお、波長管理制御部25は、加入者装置40a-2が受信に用いる波長をさらに変更してもよい。 Further, the optical SW control unit 26 illuminates the optical SW control unit 26 so as to output the optical signal transmitted from the transmitting subscriber device 40 using the changed wavelength to the WDM device 80 different from that before the wavelength change after the wavelength change processing. SW10e may be controlled. FIG. 8 is a diagram showing an example of routing after the wavelength change in the optical SW10e when the output destination WDM device 80 is changed. Before changing the wavelength, as shown in FIG. 7, the subscriber device 40a-1 communicates using the wavelength λ 1 , and the subscriber device 40a-2 communicates using the wavelength λ 2 or the wavelength λ 10. The subscriber device 40a-2 transmits a wavelength change request to the wavelength management control unit 25 by a control signal during or after the communication is completed. When the wavelength management control unit 25 receives the wavelength change request from the subscriber device 40a-2, the wavelength management control unit 25 instructs the subscriber device 40a-2 to change to the wavelength λ 11 in order to communicate with the subscriber device 40 of the ground C. Perform processing. Light SW control unit 26 controls the light SW10e to output the optical signal of the wavelength lambda 11 received from the subscriber unit 40a-2, from port 11-2 corresponding to the wavelength lambda 11 to the WDM device 80c. The wavelength management control unit 25 may further change the wavelength used for reception by the subscriber device 40a-2.
 上記では、加入者装置40が波長変更を要求することによって行われる波長変更処理を説明したが、監視情報に基づいて行われる波長変更処理も同様である。 In the above, the wavelength change process performed when the subscriber device 40 requests the wavelength change has been described, but the same applies to the wavelength change process performed based on the monitoring information.
 図9~図11を用いて、WDM伝送及びマルチキャストを行う光SWを説明する。図9は、WDM伝送及び上り方向のマルチキャストを行う光SW10fの構成例を示す図である。図9において、光SW10fは、単一波長によって上り方向のマルチキャストを行う。図9に示すように、光SW10fは、図4と同様の分配部58を有する。図9では、対地B及び対地Cにマルチキャストを行っている。光SW10fは、加入者装置40-1と接続されるポート11-1から入力した光信号を、折り返し伝送路が接続されているポート11-2から出力し、折り返し伝送路を伝送した光信号を他のポート11-2から入力する。光SW10fは、この入力された光信号を、1×Nのパワースプリッタ71が接続されているポート11-1から出力する。光SW10fは、1×Nのパワースプリッタ71が分配した光信号を複数のポート11-1から入力し、入力したうち1つの光信号を対地Bと接続されるポート11-2に、他の1つの光信号を対地Cと接続されるポート11-2に出力する。 An optical SW that performs WDM transmission and multicast will be described with reference to FIGS. 9 to 11. FIG. 9 is a diagram showing a configuration example of an optical SW10f that performs WDM transmission and multicast in the uplink direction. In FIG. 9, the optical SW10f performs uplink multicast by a single wavelength. As shown in FIG. 9, the optical SW10f has a distribution unit 58 similar to that in FIG. In FIG. 9, multicast is performed to ground B and ground C. The optical SW10f outputs an optical signal input from the port 11-1 connected to the subscriber device 40-1 from the port 11-2 to which the return transmission line is connected, and outputs an optical signal transmitted through the return transmission line. Input from another port 11-2. The optical SW10f outputs this input optical signal from the port 11-1 to which the 1 × N power splitter 71 is connected. The optical SW10f inputs the optical signal distributed by the 1 × N power splitter 71 from a plurality of ports 11-1, and one of the input optical signals is input to the port 11-2 connected to the ground B, and the other 1 Two optical signals are output to port 11-2 connected to ground C.
 図10は、複数波長によって光SW10fが複数の対地へ上り方向のマルチキャストを行う場合を示す図である。伝送路50-1に1台以上の1×Mのパワースプリッタ55を備えることにより、一つのポート11-1と接続される伝送路50-1に複数の加入者装置40を接続することができる。図10では、1つの伝送路50-1に、複数の加入者装置40a-1として、加入者装置40a-1-1、40a-1-2、…が接続されている。加入者装置40a-1-1、40a-1-2、…はそれぞれ異なる波長を用いる。ここでは、加入者装置40a-1-1は、波長λの光信号を送信し、加入者装置40a-1-2は、波長λの光信号を送信する。光SW10fは、加入者装置40a-1-1が送信した波長λの光信号と加入者装置40a-1-2が送信した波長λの光信号とが合波された光信号をポート11-1から入力する。光SW10fは、この入力した光信号を、折り返し伝送路が接続されているポート11-2から出力し、折り返し伝送路を伝送した光信号を他のポート11-2から入力する。光SW10fは、この入力した光信号を、1×Nのパワースプリッタ71が接続されているポート11-1から出力する。光SW10fは、1×Nのパワースプリッタ71が分配した光信号を複数のポート11-1から入力する。 FIG. 10 is a diagram showing a case where the optical SW10f performs upbound multicast to a plurality of grounds by a plurality of wavelengths. By providing one or more 1 × M power splitters 55 in the transmission line 50-1, a plurality of subscriber devices 40 can be connected to the transmission line 50-1 connected to one port 11-1. .. In FIG. 10, subscriber devices 40a-1-1, 40a-1-2, ... Are connected to one transmission line 50-1 as a plurality of subscriber devices 40a-1. The subscriber devices 40a-1-1, 40a-1-2, ... Use different wavelengths. Here, the subscriber device 40a-1-1 transmits an optical signal of wavelength λ 1 , and the subscriber device 40a-1-2 transmits an optical signal of wavelength λ 2. The optical SW10f is a port 11 that transmits an optical signal obtained by combining an optical signal having a wavelength λ 1 transmitted by the subscriber device 40a-1-1 and an optical signal having a wavelength λ 2 transmitted by the subscriber device 40a-1-2. Enter from -1. The optical SW10f outputs the input optical signal from the port 11-2 to which the return transmission line is connected, and inputs the optical signal transmitted through the return transmission line from the other port 11-2. The optical SW10f outputs this input optical signal from the port 11-1 to which the 1 × N power splitter 71 is connected. The optical SW10f inputs the optical signal distributed by the 1 × N power splitter 71 from the plurality of ports 11-1.
 光SW10fは、パワースプリッタ71により分配された光信号を、WDM装置80bに接続されるポート11-2のうち、波長λに対応するポート11-2及び波長λに対応するポート11-2に出力する。さらに、光SW10fは、パワースプリッタ71により分配された光信号を、WDM装置80cに接続されるポート11-2のうち、波長λに対応するポート11-2及び波長λに対応するポート11-2に出力する。WDM装置80bは、波長λに対応するポートから入力した光信号をフィルタリングして波長λの光信号を通過させて多重通信伝送路90に出力し、波長λに対応するポートから入力した光信号をフィルタリングして波長λの光信号を通過させて多重通信伝送路90に出力する。同様に、WDM装置80cは、波長λに対応するポートから入力した光信号をフィルタリングして波長λの光信号を通過させて多重通信伝送路90に出力し、波長λに対応するポートから入力した光信号をフィルタリングして波長λの光信号を通過させて多重通信伝送路90に出力する。 The optical SW10f transmits the optical signal distributed by the power splitter 71 to the port 11-2 corresponding to the wavelength λ 1 and the port 11-2 corresponding to the wavelength λ 2 among the ports 11-2 connected to the WDM device 80b. Output to. Further, the optical SW10f transmits the optical signal distributed by the power splitter 71 to the port 11-2 corresponding to the wavelength λ 1 and the port 11 corresponding to the wavelength λ 2 among the ports 11-2 connected to the WDM device 80c. Output to -2. WDM device 80b outputs to the multiplex communication transmission path 90 by passing the optical signal of the wavelength lambda 1 to filter an input optical signal from the port corresponding to the wavelength lambda 1, input from the port corresponding to the wavelength lambda 2 The optical signal is filtered to pass an optical signal having a wavelength of λ 2 and output to the multiplexing communication transmission line 90. Port Similarly, WDM device 80c is the output to the multiplex communication transmission line 90 is passed through the optical signal of the wavelength lambda 1 to filter an input optical signal from the port corresponding to the wavelength lambda 1, corresponding to the wavelength lambda 2 The optical signal input from is filtered , passed through an optical signal having a wavelength of λ 2 , and output to the multiplexing communication transmission line 90.
 図11は、WDM伝送及び下り方向マルチキャストを行う光SW10gの構成例を示す図である。光SW10gは、図5と同様の分配部59を有する。また、図9及び図10に示す光SW10fと、図11に示す光SW10gとは、図6と同様の監視回路65を有してもよい。波長管理制御部25は、監視回路65が通信状況の異常を検出した加入者装置40に対して上記と同様に波長変更処理を行うことができる。 FIG. 11 is a diagram showing a configuration example of an optical SW 10 g that performs WDM transmission and downlink multicast. The optical SW 10g has a distribution unit 59 similar to that in FIG. Further, the optical SW10f shown in FIGS. 9 and 10 and the optical SW10g shown in FIG. 11 may have the same monitoring circuit 65 as in FIG. The wavelength management control unit 25 can perform wavelength change processing on the subscriber device 40 for which the monitoring circuit 65 has detected an abnormality in the communication status in the same manner as described above.
 以下に示す各実施形態では、上述した機能を有する光SWを利用した光アクセスシステムの例を説明する。 In each of the embodiments shown below, an example of an optical access system using an optical SW having the above-mentioned functions will be described.
(第1の実施形態)
 図12は、光アクセスシステム100の構成例を示す図である。光アクセスシステム100は、光ゲートウェイ(GW)200と、オペレーションシステム(OPS)400とを有する。加入者装置40は、光アクセスシステム100によって、図1に示す光通信ネットワーク30などの上位ネットワークと通信可能に接続する。
(First Embodiment)
FIG. 12 is a diagram showing a configuration example of the optical access system 100. The optical access system 100 includes an optical gateway (GW) 200 and an operating system (OPS) 400. The subscriber device 40 is communicably connected to an upper network such as the optical communication network 30 shown in FIG. 1 by the optical access system 100.
 加入者装置40は、光加入者側の装置である。加入者装置40は、伝送路501を介して光GW200と接続される。伝送路501は、例えば、光ファイバである。光GW200は、通信局舎内にある装置である。符号N1で示される加入者装置40と光GW200の間は、例えば、伝送路501やパワースプリッタ502を介して接続される。加入者装置40から光GW200へ接続するネットワークの構成は、PtoP(ポイント・ツー・ポイント)やPON構成、バス型など、様々なネットワークトポロジーであってもよい。例えば、伝送路501にパワースプリッタ502などを有し、1本の伝送路501に複数の加入者装置40が接続される構成とすることができる。光GW200は、伝送路511及び伝送路512を介して、他の局舎又はコアネットワークなどに接続されている。伝送路511及び伝送路512は、例えば、光ファイバである。伝送路511は上り信号を伝送し、伝送路512は下り信号を伝送する。伝送路511及び伝送路512は、波長多重された光信号を伝送する多重通信伝送路の一例である。符号N2に示される光GW200から他の局舎又はコアネットワーク方面への接続は、例えば、光ファイバの伝送路511や伝送路512により接続され、対地間の接続がフルメッシュとなるように接続されている。本実施形態では、光GW200が対地Aの局舎に設置されており、かつ、光通信ネットワーク30等を介して対地Bの局舎に設定されている光通信装置及び対地Cの局舎に設置されている光通信装置と接続されている場合を例に説明する。光GW200が接続される対地B及び対地Cの光通信装置は、光GW200であってもよい。 The subscriber device 40 is a device on the optical subscriber side. The subscriber device 40 is connected to the optical GW 200 via a transmission line 501. The transmission line 501 is, for example, an optical fiber. The optical GW 200 is a device in the communication station building. The subscriber device 40 represented by the reference numeral N1 and the optical GW 200 are connected via, for example, a transmission line 501 or a power splitter 502. The network configuration for connecting the subscriber device 40 to the optical GW 200 may be various network topologies such as PtoP (point-to-point), PON configuration, and bus type. For example, the transmission line 501 may have a power splitter 502 or the like, and a plurality of subscriber devices 40 may be connected to one transmission line 501. The optical GW 200 is connected to another station building, a core network, or the like via a transmission line 511 and a transmission line 512. The transmission line 511 and the transmission line 512 are, for example, optical fibers. The transmission line 511 transmits an uplink signal, and the transmission line 512 transmits a downlink signal. The transmission line 511 and the transmission line 512 are examples of multiplex communication transmission lines for transmitting wavelength-multiplexed optical signals. The connection from the optical GW 200 indicated by the reference numeral N2 to another station building or the core network is connected by, for example, an optical fiber transmission line 511 or a transmission line 512, so that the connection between the ground and the ground becomes a full mesh. ing. In the present embodiment, the optical GW 200 is installed in the station building of the ground A, and is installed in the optical communication device set in the station building of the ground B and the station building of the ground C via the optical communication network 30 or the like. The case where the optical communication device is connected to the optical communication device will be described as an example. The optical communication device of the ground B and the ground C to which the optical GW 200 is connected may be the optical GW 200.
 加入者装置40は、伝送路501を介して光GW200と接続される。加入者装置40は、光トランシーバ41を有している。光トランシーバ41は、波長可変光送受信器である。光トランシーバ41は、例えば、光信号と電気信号を相互に変換する光トランシーバである。加入者装置40は、送受信先に応じて、それぞれ独自の波長を選択して光トランシーバ41に設定できる。加入者装置40は、光GW200から受信した指示に従って、使用する波長を光トランシーバ41に設定する。光GW200に接続されるM台(Mは1以上の整数)の加入者装置を、加入者装置40-1~40-Mと記載する。 The subscriber device 40 is connected to the optical GW 200 via the transmission line 501. The subscriber device 40 has an optical transceiver 41. The optical transceiver 41 is a tunable optical transceiver. The optical transceiver 41 is, for example, an optical transceiver that mutually converts an optical signal and an electric signal. The subscriber device 40 can select its own wavelength and set it in the optical transceiver 41 according to the transmission / reception destination. The subscriber device 40 sets the wavelength to be used in the optical transceiver 41 according to the instruction received from the optical GW 200. The M subscriber devices (M is an integer of 1 or more) connected to the optical GW 200 are referred to as subscriber devices 40-1 to 40-M.
 光GW200は、光SW210と、波長合分波器220と、制御装置230と、合波器241と、分波器242と、分岐部250と、監視装置260とを備える。分岐部250及び監視装置260は、監視部の一例である。 The optical GW 200 includes an optical SW210, a wavelength duplexer 220, a control device 230, a duplexer 241 and a duplexer 242, a branch portion 250, and a monitoring device 260. The branch portion 250 and the monitoring device 260 are examples of the monitoring unit.
 光SW210は、複数の入出力ポート(以下、「ポート」と記載する。)を有しており、2以上のポート間を接続する。光SW210は、自由にポート間の光経路を切り変え可能である。上り信号を入出力するポートを上りポート、下り信号を入出力するポートを下りポートと記載する。光SW210の各ポートは、伝送路に接続される。 The optical SW210 has a plurality of input / output ports (hereinafter, referred to as "ports"), and connects two or more ports. The optical SW210 can freely switch the optical path between the ports. A port that inputs / outputs an uplink signal is referred to as an uplink port, and a port that inputs / outputs a downlink signal is referred to as a downlink port. Each port of the optical SW210 is connected to a transmission line.
 波長合分波器220は、上り信号と下り信号を波長により分離する上下多重分離を行う。波長合分波器220は、加入者装置40が送信した上りの光信号を伝送路501から入力し、伝送路521を介して光SW210に出力する。また、波長合分波器220は、光SW210が出力した下りの光信号を伝送路522から入力し、伝送路501を介して加入者装置40に出力する。 The wavelength combiner / demultiplexer 220 performs upper and lower multiplex separation that separates an uplink signal and a downlink signal according to wavelength. The wavelength combiner / demultiplexer 220 inputs the upstream optical signal transmitted by the subscriber device 40 from the transmission line 501 and outputs the upstream optical signal to the optical SW210 via the transmission line 521. Further, the wavelength combiner / demultiplexer 220 inputs the downlink optical signal output by the optical SW210 from the transmission line 522 and outputs the downlink optical signal to the subscriber device 40 via the transmission line 501.
 制御装置230は、光SW210のポートのうち、加入者装置40が接続されていない上りポート及び下りポートに接続されている。光SW210の上りポートは伝送路531により、制御装置230の送信側のポートに接続される。光SW210の下りポートは伝送路533により、制御装置230の送信側のポートに接続される。制御装置230は、波長分波器231と、波長チャネルごとの光受信器(Rx)232と、波長可変送信器233とを有する。波長分波器231は、例えば、AWG(アレイ導波路回折格子、Arrayed waveguide gratings)である。波長分波器231は、伝送路540を介して受信側のポートに入力された光を波長ごとに分波する。波長分波器231は、分波した光をそれぞれ、その光の波長の光信号を受信する光受信器232に出力する。波長可変送信器233は、可変の波長の光を発生する波長可変レーザダイオード(LD)を有している。波長可変送信器233は、波長可変レーザダイオードが発生する光を用いて、可変の波長の光信号を送信する。波長可変送信器233は、発生した光を用いた光信号を、送信側のポートから伝送路533に出力する。 The control device 230 is connected to the uplink port and the downlink port to which the subscriber device 40 is not connected among the ports of the optical SW210. The uplink port of the optical SW210 is connected to the transmission side port of the control device 230 by the transmission line 531. The downlink port of the optical SW210 is connected to the port on the transmitting side of the control device 230 by the transmission line 533. The control device 230 includes a wavelength demultiplexer 231 and an optical receiver (Rx) 232 for each wavelength channel, and a tunable transmitter 233. The wavelength duplexer 231 is, for example, an AWG (Arrayed Waveguide Gratings). The wavelength demultiplexer 231 demultiplexes the light input to the receiving port via the transmission line 540 for each wavelength. The wavelength demultiplexer 231 outputs the demultiplexed light to the optical receiver 232 that receives the optical signal of the wavelength of the light. The tunable transmitter 233 has a tunable laser diode (LD) that generates light of a variable wavelength. The tunable transmitter 233 uses the light generated by the tunable laser diode to transmit an optical signal having a variable wavelength. The tunable transmitter 233 outputs an optical signal using the generated light from the port on the transmitting side to the transmission line 533.
 合波器241は、光SW210が複数の伝送路541のそれぞれから出力した異なる波長の上りの光信号を合波して、他の対地と接続される伝送路511に出力する。分波器242は、いずれかの他の対地から送信された光信号を伝送路512から入力し、入力した下りの光信号を波長により分波する。分波器242は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた上りポートと接続される複数の伝送路542を介して光SW210に入力する。 The combiner 241 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW210 and outputs them to the transmission line 511 connected to the other ground. The demultiplexer 242 inputs an optical signal transmitted from any other ground to the transmission line 512, and demultiplexes the input downlink optical signal according to the wavelength. The demultiplexer 242 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 542 connected to the uplink port corresponding to the wavelength of the optical signal.
 分岐部250は、伝送路511及び伝送路512に備えられる。分岐部250は、パワースプリッタ251及び252を有する。パワースプリッタ251は、伝送路511を伝送する上りの光信号を分岐し、伝送路551を介して光SW210に入力する。パワースプリッタ252は、伝送路512を伝送する下りの光信号を分岐し、伝送路552を介して光SW210に入力する。 The branch portion 250 is provided in the transmission line 511 and the transmission line 512. The branch 250 has power splitters 251 and 252. The power splitter 251 branches the upstream optical signal transmitted through the transmission line 511 and inputs the upstream optical signal to the optical SW210 via the transmission line 551. The power splitter 252 branches the downlink optical signal transmitted through the transmission line 512 and inputs the downlink optical signal to the optical SW210 via the transmission line 552.
 監視装置260は、波長分波器261と、波長ごとの光受信器(Rx)262とを有する。波長分波器261は、光SW210と、伝送路560を介して接続される。光SW210は、伝送路541又は伝送路542と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。これにより、波長分波器261は、分岐部250が分岐した光信号を受信する。波長分波器261は、入力した光信号を波長ごとに分波する。波長分波器261は、分波した光をそれぞれ、その光の波長の光信号を受信する光受信器262に出力する。監視装置260は、光受信器262が受信した光信号により、加入者装置40が送受信する通信の状態を監視する。 The monitoring device 260 has a wavelength demultiplexer 261 and an optical receiver (Rx) 262 for each wavelength. The wavelength demultiplexer 261 is connected to the optical SW210 via a transmission line 560. The optical SW210 outputs an optical signal input from a port connected to the transmission line 541 or the transmission line 542 to the port connected to the transmission line 560. As a result, the wavelength demultiplexer 261 receives the optical signal branched by the branch portion 250. The wavelength demultiplexer 261 demultiplexes the input optical signal for each wavelength. The wavelength demultiplexer 261 outputs each demultiplexed light to an optical receiver 262 that receives an optical signal of the wavelength of the light. The monitoring device 260 monitors the state of communication transmitted and received by the subscriber device 40 by the optical signal received by the optical receiver 262.
 OPS300は、光GW制御部301と、管理DB350とを有する。光GW制御部301は、光GW200と接続される。光GW制御部301は、波長制御部310と、光SW制御部320を有する。波長制御部310は、各ユーザ(又は、各サービス)が使用している光の波長を示す情報を記憶している。波長制御部310は、この情報を参照して、各ユーザが使用する波長を動的に割り当てる。波長制御部310は、光GW200と異なる建物に設置され、ネットワークを介して光SW210や光SW制御部320と接続されてもよい。波長制御部310は、各接続情報を共有することによって、どのユーザが、光SW210のどのポートに接続され、どの波長を使用しているかの情報をリアルタイムで管理及び制御する。 The OPS 300 has an optical GW control unit 301 and a management DB 350. The optical GW control unit 301 is connected to the optical GW 200. The optical GW control unit 301 includes a wavelength control unit 310 and an optical SW control unit 320. The wavelength control unit 310 stores information indicating the wavelength of light used by each user (or each service). The wavelength control unit 310 dynamically assigns the wavelength used by each user with reference to this information. The wavelength control unit 310 may be installed in a building different from the optical GW 200 and may be connected to the optical SW 210 or the optical SW control unit 320 via a network. By sharing each connection information, the wavelength control unit 310 manages and controls information on which user is connected to which port of the optical SW210 and which wavelength is used in real time.
 また、光GW制御部301は、管理データベース(DB)350と接続されている。光GW制御部301は、ユーザや使用波長に関する情報を管理DB350と相互に交換している。管理DB350は、各ユーザの使用波長及び宛先情報を記憶している。宛先は、例えば、対地A、対地Bなどで表される。管理DB350は、光アクセスシステム100に接続されている全ユーザの情報を管理している。 Further, the optical GW control unit 301 is connected to the management database (DB) 350. The optical GW control unit 301 exchanges information on the user and the wavelength used with the management DB 350. The management DB 350 stores the wavelength used and the destination information of each user. The destination is represented by, for example, ground A, ground B, or the like. The management DB 350 manages information of all users connected to the optical access system 100.
 図13は、SW接続テーブルの例を示す図である。SW接続テーブルは、光SW210の各ポートの接続先を示している。つまり、光信号が入出力されるポートを、その光信号の送信元又は送信先の加入者装置40、制御装置230、分岐部250、監視装置260、対地などを識別する情報として用いることが可能である。 FIG. 13 is a diagram showing an example of a SW connection table. The SW connection table shows the connection destination of each port of the optical SW210. That is, the port to which the optical signal is input / output can be used as information for identifying the subscriber device 40, the control device 230, the branch portion 250, the monitoring device 260, the ground, etc. of the source or destination of the optical signal. Is.
 波長テーブルには、ユーザ波長テーブルと、局舎間波長テーブルとがある。
 図14は、ユーザ波長テーブルの例を示す図である。ユーザ波長テーブルは、各ユーザが送信に使用している波長、受信に使用している波長、送受信に使用していない空きの波長、故障中のため使用できない波長を示している。
The wavelength table includes a user wavelength table and an inter-station wavelength table.
FIG. 14 is a diagram showing an example of a user wavelength table. The user wavelength table shows the wavelengths used by each user for transmission, the wavelengths used for reception, the empty wavelengths not used for transmission / reception, and the wavelengths that cannot be used due to a failure.
 図15は、局舎間波長テーブルの例を示す図である。局舎間波長テーブルは、ある対地が、他の各対地との通信に使用している波長、他の各対地との通信に使用していない空きの波長、他の各対地との通信に故障中のため使用できない波長を示している。 FIG. 15 is a diagram showing an example of an inter-station wavelength table. In the inter-station wavelength table, one ground has a wavelength used for communication with each other ground, an empty wavelength not used for communication with each other ground, and a failure in communication with each other ground. Indicates a wavelength that cannot be used because it is medium.
 続いて、図16及び図17を用いて、加入者装置40の構成例を説明する。図16は、二心型の加入者装置401の構成図である。加入者装置401は、光トランシーバ411を有する。光トランシーバ411は、波長可変光源451と、波長可変フィルタ452と、受信器453とを備える。波長可変光源451は、光送信部の一例であり、波長可変フィルタ452及び受信器453は、光受信部の一例である。波長可変光源451は、設定された波長の光を出力する。波長可変光源451に設定される波長は可変である。波長可変フィルタ452は、伝送路501から光信号を入力し、設定された波長の光を受信器453に通過させる。波長可変フィルタ452に設定される波長は可変である。受信器453は、波長可変フィルタ452が通過させた光信号を受信する。波長可変光源451は、例えば、直接変調方式により、主信号(または主信号に制御信号を重畳した信号)を出力することができる。または、波長可変光源451は、さらに、外部変調器を有し、外部変調器を用いて主信号(または主信号に制御信号を重畳した信号)を出力することができる。受信側の加入者装置401は、光GWの構成や多重化方式等によっては、波長可変フィルタ452を用いない構成としてもよい。 Subsequently, a configuration example of the subscriber device 40 will be described with reference to FIGS. 16 and 17. FIG. 16 is a configuration diagram of a two-core type subscriber device 401. Subscriber device 401 has an optical transceiver 411. The optical transceiver 411 includes a tunable light source 451, a tunable filter 452, and a receiver 453. The tunable light source 451 is an example of an optical transmitter, and the tunable filter 452 and the receiver 453 are an example of an optical receiver. The tunable light source 451 outputs light having a set wavelength. The wavelength set in the tunable light source 451 is variable. The tunable filter 452 inputs an optical signal from the transmission line 501 and passes light of a set wavelength through the receiver 453. The wavelength set in the tunable filter 452 is variable. The receiver 453 receives the optical signal passed through the tunable filter 452. The tunable light source 451 can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by, for example, a direct modulation method. Alternatively, the tunable light source 451 further has an external modulator, and the external modulator can be used to output a main signal (or a signal obtained by superimposing a control signal on the main signal). The subscriber device 401 on the receiving side may be configured not to use the tunable filter 452 depending on the configuration of the optical GW, the multiplexing method, and the like.
 図17は、一心型の加入者装置402の構成図である。加入者装置402は、光トランシーバ412を有する。図17に示す光トランシーバ412が、図16に示す光トランシーバ411と異なる点は、WDMフィルタ454をさらに備える点である。WDMフィルタ454は、上り信号と下り信号を波長により分離する。WDMフィルタ454は、波長可変光源451が発生した光を伝送路501に出力し、伝送路501から入力した光信号を波長可変フィルタ452に出力する。波長可変光源451は、例えば、直接変調方式により、主信号(または主信号に制御信号を重畳した信号)を出力することができる。または、加入者装置402は、加入者装置401と同様に、さらに、外部変調器を有し、外部変調器を用いて主信号(または主信号に制御信号を重畳した信号)を出力することができる。受信側の加入者装置402は、光GWの構成や多重化方式等によっては、波長可変フィルタ452を用いない構成としてもよい。 FIG. 17 is a configuration diagram of a single-core type subscriber device 402. The subscriber device 402 has an optical transceiver 412. The optical transceiver 412 shown in FIG. 17 differs from the optical transceiver 411 shown in FIG. 16 in that it further includes a WDM filter 454. The WDM filter 454 separates the uplink signal and the downlink signal according to the wavelength. The WDM filter 454 outputs the light generated by the tunable light source 451 to the transmission line 501, and outputs the optical signal input from the transmission line 501 to the tunable filter 452. The tunable light source 451 can output a main signal (or a signal obtained by superimposing a control signal on the main signal) by, for example, a direct modulation method. Alternatively, the subscriber device 402, like the subscriber device 401, may further have an external modulator and output a main signal (or a signal obtained by superimposing a control signal on the main signal) using the external modulator. it can. The subscriber device 402 on the receiving side may be configured not to use the tunable filter 452 depending on the configuration of the optical GW, the multiplexing method, and the like.
 ここで、新たに加入者装置40を接続した際の動作について説明する。図18は、新規加入者装置接続時の光アクセスシステム100の初期設定処理を示すフローチャートである。図12及び図18を用いて、新たに加入者装置40-1を光GW200に接続する際の光アクセスシステム100の動作について説明する。なお、制御装置230の波長分波器261(AWG)の各ポートが光SW210のいずれのポートに接続されているかは、事前に制御装置230により確認されているものとする。 Here, the operation when the subscriber device 40 is newly connected will be described. FIG. 18 is a flowchart showing an initial setting process of the optical access system 100 when a new subscriber device is connected. The operation of the optical access system 100 when the subscriber device 40-1 is newly connected to the optical GW 200 will be described with reference to FIGS. 12 and 18. It is assumed that the control device 230 has confirmed in advance which port of the optical SW210 each port of the wavelength demultiplexer 261 (AWG) of the control device 230 is connected to.
 まず、新たな加入者装置40-1を接続する前に、ユーザ申請が行われる。例えば、ユーザ申請により、対地Aと対地Bとの間の通信を行うことが得られる。事業者は、ユーザ申請に基づいて、ユーザ情報や、初期の宛先の情報などをOPS300の管理DB350に登録する(ステップS1)。ユーザ情報は、例えば、光トランシーバ41が使用可能な波長などを得ることができる情報である。OPS300は、SW接続テーブルを参照し、光SW210の空きのポートの中から加入者装置40-1を接続する光SW210のポートを割り当てる。ここでは、上りポート及び下りポートが割り当てられる。OPS300は、割り当てたポートが加入者装置40-1に接続されていることを示す情報をSW接続テーブルに登録する(ステップS2)。OPS300の光SW制御部320は、加入者装置40-1に割り当てたポートと、制御装置230が接続されるポートとの間で、光信号を送受信するよう光SW210を制御する。 First, a user application is made before connecting the new subscriber device 40-1. For example, by applying for a user, it is possible to perform communication between the ground A and the ground B. Based on the user application, the business operator registers user information, initial destination information, and the like in the management DB 350 of the OPS 300 (step S1). The user information is, for example, information that can obtain a wavelength that can be used by the optical transceiver 41. The OPS300 refers to the SW connection table and assigns the port of the optical SW210 to which the subscriber device 40-1 is connected from among the empty ports of the optical SW210. Here, an uplink port and a downlink port are assigned. The OPS300 registers information indicating that the assigned port is connected to the subscriber device 40-1 in the SW connection table (step S2). The optical SW control unit 320 of the OPS300 controls the optical SW210 so as to transmit and receive an optical signal between the port assigned to the subscriber device 40-1 and the port to which the control device 230 is connected.
 新たな加入者装置40-1が接続されると、加入者装置40-1は、初期化処理を行い、光信号により接続要求(レジスタリクエスト)を送信する(ステップS3)。加入者装置40-1は、初期化処理を、接続前、又は、接続直後に、自動で実施する。波長合分波器220は、伝送路501から接続要求を入力し、伝送路521を介して光SW210に出力する。光SW210は、加入者装置40-1と接続されるポートから入力した接続要求を、制御装置230が接続されている出力ポートに送信する。制御装置230は、伝送路531を介して受信用ポートから接続要求入力する。制御装置230は、入力した光信号を解析し、初期設定波長や、光パワーに問題がないかなど確認する(ステップS4)。 When a new subscriber device 40-1 is connected, the subscriber device 40-1 performs initialization processing and transmits a connection request (register request) by an optical signal (step S3). The subscriber device 40-1 automatically performs the initialization process before or immediately after the connection. The wavelength combiner / demultiplexer 220 inputs a connection request from the transmission line 501 and outputs the connection request to the optical SW210 via the transmission line 521. The optical SW210 transmits the connection request input from the port connected to the subscriber device 40-1 to the output port to which the control device 230 is connected. The control device 230 inputs a connection request from the reception port via the transmission line 531. The control device 230 analyzes the input optical signal and confirms whether there is a problem with the initial set wavelength and the optical power (step S4).
 制御装置230は、波長や光パワーに問題があった場合、再起動又は初期化の指示を加入者装置40-1に送信する。再起動又は初期設定後、ステップS3に戻り、加入者装置40-1は、再び、接続要求を送信する。 The control device 230 transmits a restart or initialization instruction to the subscriber device 40-1 when there is a problem with the wavelength or the optical power. After restarting or initial setting, the process returns to step S3, and the subscriber device 40-1 transmits the connection request again.
 制御装置230は、加入者装置40-1から受信した光信号を解析し、問題がないことを確認した場合、接続要求を光GW制御部301に出力する。光GW制御部301は、管理DB350に加入者装置40-1の情報を登録する。接続要求には、接続元の情報、接続先の情報、送信する信号の種類などが含まれている。接続元の情報は、例えば、MAC(Medium Access Control)アドレスなどのアドレス情報などが用いられる。接続先の情報には、例えば、宛先のアドレス情報などが用いられる。送信する信号の種類は、例えば、サービスや、変調方式などが用いられる。波長制御部310は、これらの情報に基づいて、管理DB350に接続元の情報を登録する。これにより、ユーザ波長テーブルに、加入者装置40-1を利用するユーザの識別と、加入者装置40-1が使用可能な波長が空きである旨が設定される。さらに、波長制御部310は、管理DB350に記憶される接続情報と照らし合わせて、対地Aと対地B間など加入者装置40-1と通信先との最適な経路を算出する。波長制御部310は、算出した経路に応じて、局舎間波長テーブルが示す空きを探索する。波長制御部310は、空きの波長の中から、加入者装置40-1が使用する波長を選択し、選択した波長の情報を制御装置230に送信する(ステップS5)。 The control device 230 analyzes the optical signal received from the subscriber device 40-1, and when it is confirmed that there is no problem, outputs a connection request to the optical GW control unit 301. The optical GW control unit 301 registers the information of the subscriber device 40-1 in the management DB 350. The connection request includes information on the connection source, information on the connection destination, the type of signal to be transmitted, and the like. As the connection source information, for example, address information such as a MAC (Medium Access Control) address is used. For the information of the connection destination, for example, the address information of the destination is used. As the type of signal to be transmitted, for example, a service, a modulation method, or the like is used. The wavelength control unit 310 registers the connection source information in the management DB 350 based on the information. As a result, the user wavelength table is set to identify the user who uses the subscriber device 40-1 and to indicate that the wavelength that can be used by the subscriber device 40-1 is free. Further, the wavelength control unit 310 calculates the optimum route between the subscriber device 40-1 and the communication destination, such as between the ground A and the ground B, by comparing with the connection information stored in the management DB 350. The wavelength control unit 310 searches for a vacancy indicated by the inter-station wavelength table according to the calculated path. The wavelength control unit 310 selects a wavelength to be used by the subscriber device 40-1 from the available wavelengths, and transmits information on the selected wavelength to the control device 230 (step S5).
 加入者装置40-1の通信先である他の加入者装置40を通信先加入者装置40と記載する。この場合、波長制御部310は、加入者装置40-1が通信先加入者装置40への光信号の送信に使用する波長である送信用波長と、加入者装置40-1が通信先加入者装置40からの光信号の受信に使用する波長である受信用波長とを選択する。波長制御部310は、選択した送信用波長及び受信用波長を、加入者装置40-1が使用する波長として制御装置230に送信する。なお、加入者装置40-1が通信先加入者装置40へ送信のみを行う場合、波長制御部310は、受信用波長を選択しなくてもよい。また、加入者装置40-1が通信先加入者装置40からの受信のみを行う場合、波長制御部310は、送信用波長を選択しなくてもよい。 The other subscriber device 40, which is the communication destination of the subscriber device 40-1, is described as the communication destination subscriber device 40. In this case, the wavelength control unit 310 has a transmission wavelength which is a wavelength used by the subscriber device 40-1 to transmit an optical signal to the communication destination subscriber device 40, and the subscriber device 40-1 is a communication destination subscriber. A reception wavelength, which is a wavelength used for receiving an optical signal from the device 40, is selected. The wavelength control unit 310 transmits the selected transmission wavelength and reception wavelength to the control device 230 as the wavelength used by the subscriber device 40-1. When the subscriber device 40-1 only transmits to the communication destination subscriber device 40, the wavelength control unit 310 does not have to select the reception wavelength. Further, when the subscriber device 40-1 only receives from the communication destination subscriber device 40, the wavelength control unit 310 does not have to select the transmission wavelength.
 制御装置230は、波長の情報を以下のように送信する。制御装置230の波長可変送信器233は、波長制御部310が選択した波長の情報を設定した波長指示を、加入者装置40-1宛てを表す波長の光信号により送信する。光SW210は、波長可変送信器233と接続されるポートから入力した光信号を、加入者装置40-1と接続されている伝送路522に出力する。波長合分波器220は、伝送路522を介して光SW210から入力した光信号を、伝送路501に入射する。加入者装置40-1は、伝送路501を伝送した光信号を受信する。加入者装置40-1は、受信した光信号が示す波長指示に従って、光トランシーバ41の発振波長を設定する(ステップS6)。すなわち、加入者装置40-1は、波長指示に設定されている送信用波長により光信号を送信するように、光トランシーバ41(波長可変光源451)の発振波長を設定する。波長指示に受信用波長が設定されている場合、加入者装置40-1は、受信用波長の波長信号を受信するように光トランシーバ41(波長可変フィルタ452)を設定する。 The control device 230 transmits wavelength information as follows. The tunable transmitter 233 of the control device 230 transmits a wavelength instruction set with information on the wavelength selected by the wavelength control unit 310 by an optical signal having a wavelength representing the subscriber device 40-1. The optical SW210 outputs an optical signal input from a port connected to the tunable transmitter 233 to a transmission line 522 connected to the subscriber device 40-1. The wavelength combiner / demultiplexer 220 incidents an optical signal input from the optical SW 210 via the transmission line 522 into the transmission line 501. The subscriber device 40-1 receives the optical signal transmitted through the transmission line 501. The subscriber device 40-1 sets the oscillation wavelength of the optical transceiver 41 according to the wavelength instruction indicated by the received optical signal (step S6). That is, the subscriber device 40-1 sets the oscillation wavelength of the optical transceiver 41 (tunable wavelength light source 451) so that the optical signal is transmitted by the transmission wavelength set in the wavelength indication. When the reception wavelength is set in the wavelength instruction, the subscriber device 40-1 sets the optical transceiver 41 (tunable filter 452) so as to receive the wavelength signal of the reception wavelength.
 加入者装置40-1の光トランシーバ41は、指示された波長の光信号により、波長を設定した旨を通知する通知信号を送信する。通知信号は、要求信号と同様に、制御装置230に送信される。制御装置230は、受信した通知信号に基づいて、指定した波長が正しく設定されているか、出力パワーは十分かなどを確認する(ステップS7)。制御装置230は、確認の結果、問題がないと判定した場合、加入者装置40-1に通信開始の許可を示す許可通知を光信号により送信する。許可通知は、波長指示と同様に、加入者装置40-1に送信される。 The optical transceiver 41 of the subscriber device 40-1 transmits a notification signal notifying that the wavelength has been set by the optical signal of the instructed wavelength. The notification signal is transmitted to the control device 230 in the same manner as the request signal. Based on the received notification signal, the control device 230 confirms whether the specified wavelength is set correctly, whether the output power is sufficient, and the like (step S7). If it is determined that there is no problem as a result of the confirmation, the control device 230 transmits a permission notification indicating permission to start communication to the subscriber device 40-1 by an optical signal. The permission notification is transmitted to the subscriber device 40-1 as well as the wavelength indication.
 なお、光SW制御部320は、光SW210に、加入者装置40-1の送信先に合わせて光SW210内の最適なポートの接続情報を送信する。光SW210は、その接続情報をもとに、加入者装置40-1の上りポート及び下りポートを、光SW制御部320からの指示に従って設定する(ステップS8)。 The optical SW control unit 320 transmits the connection information of the optimum port in the optical SW 210 to the optical SW 210 according to the transmission destination of the subscriber device 40-1. Based on the connection information, the optical SW 210 sets the uplink port and the downlink port of the subscriber device 40-1 according to the instruction from the optical SW control unit 320 (step S8).
 また、光アクセスシステム100は、光SW210内の経路切り替えを、制御装置230から加入者装置40-1に通信開始の許可を送信した後に行うようにタイミングを制御する。例えば、光SW210の経路切り替えに要する時間が予め分かっているとする。この場合、制御装置230は、光SW210が経路切り替えの指示を受信してから実際に経路を切り替えるのに要する時間だけ、加入者装置40-1が通信開始の許可を受信してから実際に通信を開始するまで待ち、その後に通信の開始を指示する。通信の開始後、GW200の監視装置260は、対向の加入者装置間の通信状況確認を確認する(ステップS9)。監視装置260は、確認結果をOPS300へ通知する。確認がNGである場合、OPS300は、原因の切り分け手順を行う。 Further, the optical access system 100 controls the timing so that the route switching in the optical SW210 is performed after the permission for starting communication is transmitted from the control device 230 to the subscriber device 40-1. For example, it is assumed that the time required for switching the route of the optical SW210 is known in advance. In this case, the control device 230 actually communicates after the subscriber device 40-1 receives the permission to start communication for the time required to actually switch the route after the optical SW 210 receives the route switching instruction. Wait until the start of communication, and then instruct the start of communication. After the start of communication, the monitoring device 260 of the GW 200 confirms the confirmation of the communication status between the opposite subscriber devices (step S9). The monitoring device 260 notifies the OPS 300 of the confirmation result. If the confirmation is NG, the OPS 300 performs a cause isolation procedure.
 また、加入者装置40-1が送信する接続要求、制御装置230が加入者装置40-1に送信する制御信号は、主信号よりも低速の光信号である。制御信号には、例えば、AMCCに代表されるようなプロトコルフリーの制御信号(制御手法)用いることができる。 Further, the connection request transmitted by the subscriber device 40-1 and the control signal transmitted by the control device 230 to the subscriber device 40-1 are optical signals slower than the main signal. As the control signal, for example, a protocol-free control signal (control method) represented by AMCC can be used.
 また、OPS400は、通信先加入者装置40に、加入者装置40-1の送信用波長を通信先加入者装置40の受信用波長として、また、加入者装置40-1の受信用波長を通信先加入者装置40の送信用波長として用いるように指示する。例えば、通信先加入者装置40が収容される光GW200を制御する光GW制御部301において、波長制御部310は、通信先加入者装置40の受信用波長及び送信用波長を設定した波長指示の送信を制御装置230に指示する。通信先加入者装置40は、制御装置230から制御信号により波長指示を受信し、受信した波長指示に従って光トランシーバ41に受信用波長及び送信用波長を設定する。すなわち、波長指示に送信用波長が設定されている場合、通信先加入者装置40は、送信用波長により光信号を送信するように、光トランシーバ41(波長可変光源451)の発振波長を設定する。波長指示に受信用波長が設定されている場合、通信先加入者装置40は、受信用波長の波長信号を受信するように光トランシーバ41(波長可変フィルタ452)を設定する。 Further, the OPS 400 communicates to the communication destination subscriber device 40 the transmission wavelength of the subscriber device 40-1 as the reception wavelength of the communication destination subscriber device 40 and the reception wavelength of the subscriber device 40-1. It is instructed to use it as a transmission wavelength of the first subscriber device 40. For example, in the optical GW control unit 301 that controls the optical GW 200 in which the communication destination subscriber device 40 is housed, the wavelength control unit 310 sets the wavelength for reception and the wavelength for transmission of the communication destination subscriber device 40. Instruct the control device 230 to transmit. The communication destination subscriber device 40 receives a wavelength instruction from the control device 230 by a control signal, and sets a reception wavelength and a transmission wavelength in the optical transceiver 41 according to the received wavelength instruction. That is, when the transmission wavelength is set in the wavelength instruction, the communication destination subscriber device 40 sets the oscillation wavelength of the optical transceiver 41 (wavelength variable light source 451) so as to transmit the optical signal according to the transmission wavelength. .. When the reception wavelength is set in the wavelength instruction, the communication destination subscriber device 40 sets the optical transceiver 41 (tunable filter 452) so as to receive the wavelength signal of the reception wavelength.
 なお、光アクセスシステム100は、ステップS1のユーザ申請を行わず、ユーザ申請により管理DB350に登録する情報を、新たな加入者装置40-1と光GW制御部301との間で送受信してもよい。これにより、加入者装置40-1は、ユーザ申請を行うことなく、他の加入者装置40との通信が可能となる。加入者装置40-1と光GW制御部301との間の情報の送受信は、制御装置230を介して、例えば、AMCCを用いて行う。 Even if the optical access system 100 does not perform the user application in step S1 and transmits / receives information to be registered in the management DB 350 by the user application between the new subscriber device 40-1 and the optical GW control unit 301. Good. As a result, the subscriber device 40-1 can communicate with another subscriber device 40 without making a user application. Information is transmitted / received between the subscriber device 40-1 and the optical GW control unit 301 via the control device 230, for example, using AMCC.
 上記では,新規加入者装置が接続された際の動作について説明した。次に、新規加入者装置が接続された後の通常の通信動作を、図12の加入者装置40-2が通信を行う場合を例に説明する。 In the above, the operation when a new subscriber device is connected has been explained. Next, a normal communication operation after the new subscriber device is connected will be described by taking the case where the subscriber device 40-2 of FIG. 12 communicates as an example.
 まず、上り方向通信について説明する加入者装置40-2が出力した上りの光信号は、伝送路501を介して光GW200に送られる。光GW200の波長合分波器220は、入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器220が分波した上りの光信号は、伝送路521を介して光SW210に入力される。光SW210は、波長合分波器220から上りの光信号を入力したポートを、加入者装置40-2に割り当てた波長により特定される宛先に応じた別のポートに接続して、光信号を出力する。光SW210から出力された上り信号は、合波器241にておいて他の加入者装置40が送信した異なる波長の光信号と合波され、一本の伝送路511を介して別の局舎(例えば、対地B)へ伝送される。合波器241はそれぞれ、対地B、対地Cなど局舎ごとに波長チャネルを合波する。なお、対地Bとの間の伝送路511と、対地Cとの間の伝送路511を分けることによって、対地Bと対地Cとで同じ波長を使うことも可能である。 First, the uplink optical signal output by the subscriber device 40-2, which describes the uplink communication, is sent to the optical GW 200 via the transmission line 501. The wavelength combiner / demultiplexer 220 of the optical GW 200 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength. The upstream optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the optical SW210 via the transmission line 521. The optical SW210 connects the port into which the upstream optical signal is input from the wavelength duplexer 220 to another port corresponding to the destination specified by the wavelength assigned to the subscriber device 40-2, and transmits the optical signal. Output. The uplink signal output from the optical SW210 is combined with an optical signal of a different wavelength transmitted by another subscriber device 40 in the combiner 241 and is combined with another station building via one transmission line 511. It is transmitted to (for example, ground B). The combiner 241 combines wavelength channels for each station building such as ground B and ground C, respectively. By separating the transmission line 511 between the ground B and the transmission line 511 between the ground C, it is possible to use the same wavelength between the ground B and the ground C.
 次に下り方向通信について説明する。下りは、対地B、Cから加入者装置40の方向への通信である。下りの光信号は、一本の伝送路512を介して光GW200に送られる。光GW200の分波器242は、伝送路512を伝送した下りの光信号を波長により分波する。分波器242は、分波された光をそれぞれ、伝送路542を介して、分波された光の波長に応じた下りポートに入力する。光SW210は、分波器242から下りの光信号を入力したポートを、波長に応じた別のポートに接続して、光信号を出力する。波長合分波器220は、伝送路522を介して光SW210から入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器220が分波した下りの光信号は、伝送路501を介して加入者装置40-2に入力される。なお、光GW200から各局舎(対地B、Cなど)に送信される波長チャネルは、同じ波長帯であることが想定されるが、局舎ごとに異なる波長帯を用いてもよい。 Next, the downlink communication will be explained. The downlink is communication from the grounds B and C in the direction of the subscriber device 40. The downlink optical signal is sent to the optical GW 200 via one transmission line 512. The demultiplexer 242 of the optical GW 200 demultiplexes the downlink optical signal transmitted through the transmission line 512 according to the wavelength. The demultiplexer 242 inputs the demultiplexed light to the downlink port corresponding to the wavelength of the demultiplexed light via the transmission line 542, respectively. The optical SW210 outputs an optical signal by connecting a port to which a downlink optical signal is input from the demultiplexer 242 to another port according to the wavelength. The wavelength combiner / demultiplexer 220 separates an optical signal input from the optical SW210 via a transmission line 522 into an upstream optical signal and a downstream optical signal according to the wavelength. The downlink optical signal demultiplexed by the wavelength combiner / demultiplexer 220 is input to the subscriber device 40-2 via the transmission line 501. The wavelength channels transmitted from the optical GW 200 to each station building (ground B, C, etc.) are assumed to be the same wavelength band, but different wavelength bands may be used for each station building.
 光GW200の監視装置260は、分岐部250が分岐した光を受信する。分岐部250が分岐した光は、各加入者装置40が送受信している光信号である。監視装置260は、この受信した光信号を監視することにより、各加入者装置40が送受信している信号を監視する。監視装置260は、監視により、波長のずれ、出力の低下、通信異常などの異常を検出した場合は、光GW制御部301に異常検出の信号を送信する。光GW制御部301の光SW制御部320は、対象の加入者装置40を制御装置230に再度接続するように、光SW210を制御する。そして、光GW制御部301は、新たに加入者装置40を接続したときと同様に、異常が検出されたときに用いていた波長とは異なる新たな波長の割当処理を行う。これにより、光SW210は、加入者装置40から変更後の波長の光信号を入力した場合、入力した光信号を、その加入者装置40が変更前の波長により特定されていたポートに接続する。 The monitoring device 260 of the optical GW 200 receives the light branched by the branch portion 250. The light branched by the branch portion 250 is an optical signal transmitted and received by each subscriber device 40. The monitoring device 260 monitors the signals transmitted and received by each subscriber device 40 by monitoring the received optical signal. When the monitoring device 260 detects an abnormality such as a wavelength shift, a decrease in output, or a communication abnormality by monitoring, the monitoring device 260 transmits an abnormality detection signal to the optical GW control unit 301. The optical SW control unit 320 of the optical GW control unit 301 controls the optical SW 210 so as to reconnect the target subscriber device 40 to the control device 230. Then, the optical GW control unit 301 performs a new wavelength allocation process different from the wavelength used when the abnormality is detected, as in the case of newly connecting the subscriber device 40. As a result, when the optical SW210 inputs the optical signal of the changed wavelength from the subscriber device 40, the optical SW210 connects the input optical signal to the port specified by the subscriber device 40 by the wavelength before the change.
 図12に示す光GW200は、波長多重を行っているが、図19及び図20に示すように、波長多重を行わなくてもよい。図19は、光アクセスシステム101の構成例を示す図である。図19に示す光アクセスシステム101が、図12に示す光アクセスシステム100と異なる点は、GW200に代えて、GW201を備える点である。GW201が、GW200と異なる点は、合波器241、分波器242及び分岐部250に代えて、波長合分波器243及び分岐部250aを備える点である。GW201は、伝送路503により他の対地の局舎の通信装置と接続される。一本の伝送路503は、いずれかの対地との間で上り信号及び下り信号を伝送する。 Although the optical GW 200 shown in FIG. 12 performs wavelength division multiplexing, it is not necessary to perform wavelength division multiplexing as shown in FIGS. 19 and 20. FIG. 19 is a diagram showing a configuration example of the optical access system 101. The optical access system 101 shown in FIG. 19 differs from the optical access system 100 shown in FIG. 12 in that the GW 201 is provided instead of the GW 200. The difference between the GW 201 and the GW 200 is that the GW 201 includes a wavelength duplexer 243 and a branch 250a instead of the duplexer 241 and the demultiplexer 242 and the branch 250a. The GW 201 is connected to a communication device of another station building on the ground by a transmission line 503. One transmission line 503 transmits an uplink signal and a downlink signal to any of the grounds.
 波長合分波器243は、入力した光信号を波長により、上りの光信号と下りの光信号に分離する。波長合分波器243は、伝送路543-1を介して光SW210から入力した上りの光信号を分離し、伝送路503を介して他の対地又は上位ネットワークに送信する。また、波長合分波器243は、伝送路503を介して他の対地から入力した下りの光信号を分離し、伝送路543-2を介して光SW210に出力する。 The wavelength combiner / demultiplexer 243 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength. The wavelength combiner / demultiplexer 243 separates the upstream optical signal input from the optical SW210 via the transmission line 543-1 and transmits it to another ground or higher network via the transmission line 503. Further, the wavelength combiner / demultiplexer 243 separates the downlink optical signal input from another ground via the transmission line 503 and outputs it to the optical SW210 via the transmission line 543-2.
 分岐部250aは、伝送路503に備えられる。分岐部250aは、パワースプリッタ251aを有する。パワースプリッタ251aは、伝送路503を伝送する上り及び下りの光信号を分岐する。パワースプリッタ251aは、分岐した上りの信号を、伝送路551aを介して光SW210のポートに入力し、分岐した下りの信号を、伝送路551bを介して光SW210のポートに入力する。光SW210は、伝送路551aと接続されるポートから入力した光信号及び伝送路551bと接続されるポートから入力した光信号を、伝送路560と接続されるポートから出力する。これにより、監視装置260の波長分波器261は、分岐部250aが分岐した光信号を受信する。 The branch portion 250a is provided in the transmission line 503. The branch portion 250a has a power splitter 251a. The power splitter 251a branches the upstream and downstream optical signals transmitted through the transmission line 503. The power splitter 251a inputs the branched upstream signal to the port of the optical SW210 via the transmission line 551a, and inputs the branched downstream signal to the port of the optical SW210 via the transmission line 551b. The optical SW210 outputs an optical signal input from the port connected to the transmission line 551a and an optical signal input from the port connected to the transmission line 551b from the port connected to the transmission line 560. As a result, the wavelength demultiplexer 261 of the monitoring device 260 receives the optical signal branched by the branch portion 250a.
 図20は、光アクセスシステム102の構成例を示す図である。図20に示す光アクセスシステム102が、図19に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW202を備える点である。光GW202が、光GW201と異なる点は、波長合分波器243及び分岐部250aに代えて、波長合分波器244、波長合分波器245及び分岐部250bを備える点である。 FIG. 20 is a diagram showing a configuration example of the optical access system 102. The optical access system 102 shown in FIG. 20 differs from the optical access system 101 shown in FIG. 19 in that it includes an optical GW 202 instead of the optical GW 201. The difference between the optical GW 202 and the optical GW 201 is that the optical GW 202 is provided with a wavelength duplexer 244, a wavelength duplexer 245, and a branching portion 250b instead of the wavelength duplexer 243 and the branching portion 250a.
 波長合分波器244は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器244は、伝送路544を介して光SW210から入力した上りの光信号を、伝送路545を介して波長合分波器245に入力する。波長合分波器244は、伝送路546を介して波長合分波器245から入力した下りの光信号を、伝送路544を介して光SW210に入力する。 The wavelength combiner / demultiplexer 244 separates an upstream optical signal and a downstream optical signal according to the wavelength. The wavelength combiner / demultiplexer 244 inputs the upstream optical signal input from the optical SW210 via the transmission line 544 to the wavelength combiner / demultiplexer 245 via the transmission line 545. The wavelength combiner / demultiplexer 244 inputs the downlink optical signal input from the wavelength combiner / demultiplexer 245 via the transmission line 546 to the optical SW210 via the transmission line 544.
 波長合分波器245は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器245は、伝送路545を介して波長合分波器245から入力した上りの光信号を、伝送路503を介して他の対地又は上位ネットワークに送信する。また、波長合分波器245は、伝送路503を介して受信した下りの光信号を、伝送路546を介して波長合分波器244に入力する。 The wavelength combiner / demultiplexer 245 separates an upstream optical signal and a downstream optical signal according to the wavelength. The wavelength combiner demultiplexer 245 transmits an upstream optical signal input from the wavelength combiner demultiplexer 245 via the transmission line 545 to another ground or an upper network via the transmission line 503. Further, the wavelength combiner / demultiplexer 245 inputs the downlink optical signal received via the transmission line 503 to the wavelength combiner / demultiplexer 244 via the transmission line 546.
 分岐部250bは、パワースプリッタ251b及びパワースプリッタ252bを有する。パワースプリッタ251bは、伝送路545を伝送する上りの光信号を分岐する。パワースプリッタ251bは、分岐した上りの信号を、伝送路551bを介して光SW210のポートに入力する。パワースプリッタ252bは、伝送路546を伝送する下りの光信号を分岐する。パワースプリッタ252bは、分岐した下りの信号を、伝送路552bを介して光SW210のポートに入力する。光SW210は、伝送路551bと接続されるポートから入力した光信号及び伝送路552bと接続されるポートから入力した光信号を、伝送路560と接続されるポートから出力する。これにより、監視装置260の波長分波器261は、分岐部250bが分岐した光信号を受信する。 The branch portion 250b has a power splitter 251b and a power splitter 252b. The power splitter 251b branches the upstream optical signal transmitted through the transmission line 545. The power splitter 251b inputs the branched upstream signal to the port of the optical SW210 via the transmission line 551b. The power splitter 252b branches the downlink optical signal transmitted through the transmission line 546. The power splitter 252b inputs the branched downlink signal to the port of the optical SW210 via the transmission line 552b. The optical SW210 outputs an optical signal input from the port connected to the transmission line 551b and an optical signal input from the port connected to the transmission line 552b from the port connected to the transmission line 560. As a result, the wavelength demultiplexer 261 of the monitoring device 260 receives the optical signal branched by the branch portion 250b.
 上述した監視装置260は、波長分波器261と波長ごとの光受信器262とを有する受信器構成を有する。監視装置は、この受信器構成に代えて、波長可変光受信器を有してもよい。また、制御装置の送受信器が、波長可変ではない送信器を有してもよく、波長分波器を有さない受信器構成であってもよい。図21を用いて、このような構成の例を説明する。 The monitoring device 260 described above has a receiver configuration including a wavelength demultiplexer 261 and an optical receiver 262 for each wavelength. The monitoring device may have a tunable optical receiver instead of this receiver configuration. Further, the transmitter / receiver of the control device may have a transmitter whose wavelength is not tunable, or may have a receiver configuration which does not have a wavelength demultiplexer. An example of such a configuration will be described with reference to FIG.
 図21は、光アクセスシステム103の構成例を示す図である。図21に示す光アクセスシステム103が、図12に示す光アクセスシステム100と異なる点は、光GW200に代えて、光GW203を備える点である。光GW203が、光GW200と異なる点は、制御装置230及び監視装置260に代えて、制御装置235及び監視装置265を備える点である。制御装置235は、光受信器236と、波長可変ではない光送信器237とを有する。監視装置265は、波長可変光受信器266を有する。 FIG. 21 is a diagram showing a configuration example of the optical access system 103. The optical access system 103 shown in FIG. 21 differs from the optical access system 100 shown in FIG. 12 in that it includes an optical GW 203 instead of the optical GW 200. The difference between the optical GW 203 and the optical GW 200 is that the optical GW 203 is provided with the control device 235 and the monitoring device 265 instead of the control device 230 and the monitoring device 260. The control device 235 has an optical receiver 236 and an optical transmitter 237 that is not tunable. The monitoring device 265 includes a tunable optical receiver 266.
 また、監視装置は上記の光SWとは別の光SWを介して接続されていてもよい。図22を用いて、このような構成の例を説明する。図22は、光アクセスシステム104の構成例を示す図である。図22に示す光アクセスシステム104が、図21に示す光アクセスシステム103と異なる点は、光GW203に代えて光GW204を備える点である。光GW204が光GW203と異なる点は、光SW211をさらに備える点、監視装置265が光SW211に接続されている点である。 Further, the monitoring device may be connected via an optical SW different from the above optical SW. An example of such a configuration will be described with reference to FIG. FIG. 22 is a diagram showing a configuration example of the optical access system 104. The optical access system 104 shown in FIG. 22 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 204 instead of the optical GW 203. The difference between the optical GW 204 and the optical GW 203 is that the optical SW 211 is further provided and the monitoring device 265 is connected to the optical SW 211.
 分岐部250のパワースプリッタ251が伝送路511から分離した上りの光信号は、伝送路555を介して光SW211に入力され、パワースプリッタ252が伝送路512から分離した下りの光信号は、伝送路555を介いて光SW211に入力される。光SW211は、例えば、小型光SWなどである。光SW211のポート数は、監視装置260側に1ポート、被監視光信号が入力される側に2Mポートである。2Mは、光GW204に接続されている加入者装置40の数Mの2倍である。なお、小型光SWを使用せず、接続されている対地の数だけ監視装置を用意して、全ての対地と送受信している信号を対地ごとに監視してもよい。 The upstream optical signal separated from the transmission line 511 by the power splitter 251 of the branch portion 250 is input to the optical SW211 via the transmission line 555, and the downstream optical signal separated from the transmission line 512 by the power splitter 252 is transmitted through the transmission line 555. It is input to the optical SW211 via 555. The optical SW211 is, for example, a small optical SW. The number of ports of the optical SW211 is 1 on the monitoring device 260 side and 2M on the side where the monitored optical signal is input. 2M is twice the number M of the subscriber device 40 connected to the optical GW 204. Instead of using the small optical SW, monitoring devices may be prepared for the number of connected grounds to monitor all signals transmitted to and received from the grounds for each ground.
(第2の実施形態)
 本実施形態は、折り返し伝送路を用いて、同一の光GWに接続されている複数の加入者装置間で通信を行う。以下では、第1の実施形態との差分を中心に説明する。
(Second embodiment)
In this embodiment, communication is performed between a plurality of subscriber devices connected to the same optical GW by using a return transmission line. Hereinafter, the differences from the first embodiment will be mainly described.
 図23は、光アクセスシステム105の構成例を示す図である。図23に示す光アクセスシステム105が、図21に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW205を備える点である。光GW205が、光GW203と異なる点は、光GW205が設置されている対地Aに対応した合波器247及び分波器248をさらに備える点である。合波器247と分波器248とは、伝送路547により接続される。伝送路547は、折り返し伝送路である。 FIG. 23 is a diagram showing a configuration example of the optical access system 105. The optical access system 105 shown in FIG. 23 differs from the optical access system 103 shown in FIG. 21 in that the optical GW 205 is provided instead of the optical GW 203. The difference between the optical GW 205 and the optical GW 203 is that the optical GW 205 is further provided with a combiner 247 and a demultiplexer 248 corresponding to the ground A on which the optical GW 205 is installed. The combiner 247 and the demultiplexer 248 are connected by a transmission line 547. The transmission line 547 is a folded transmission line.
 合波器247は、合波器241と同様に、光SW210が複数の伝送路541のそれぞれから出力した異なる波長の上りの光信号を合波して、伝送路547に出力する。分波器248は、分波器242と同様に、伝送路547から入力した下りの光信号を波長により分波する。分波器248は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた下りポートと接続される複数の伝送路542を介して光SW210に入力する。また、伝送路547には、分岐部250が備えられる。 Similar to the combiner 241, the combiner 247 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 541 by the optical SW210 and outputs them to the transmission line 547. Similar to the demultiplexer 242, the demultiplexer 248 demultiplexes the downlink optical signal input from the transmission line 547 according to the wavelength. The demultiplexer 248 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 542 connected to the downlink port corresponding to the wavelength of the optical signal. Further, the transmission line 547 is provided with a branch portion 250.
 第1の実施形態においては、対地Aに接続されている加入者装置は光SWを経由して、対地Bや対地Cと接続するためのポートに接続されている。本実施形態では、対地B又は対地Cへ接続されている合波器241及び分波器242の組み合わせと同じものをもう一組追加する。この追加した組は、合波器247及び分波器248である。そして、追加した合波器247の出力ポートと、追加した分波器248の入力ポートとを伝送路547により接続する。この構成により、加入者装置40が出力した信号を、光SW210に再度入力することが可能となる。これにより、光GW205は、ある加入者装置40が出力した光信号を折り返し、下り信号として、光SW210に再び入射する。この折り返された信号を光SW210内で他の加入者装置40と接続することで、折り返し通信、つまり同一の光GW205に接続されている加入者装置40間の通信が可能となる。 In the first embodiment, the subscriber device connected to the ground A is connected to the port for connecting to the ground B and the ground C via the optical SW. In the present embodiment, another set that is the same as the combination of the combiner 241 and the demultiplexer 242 connected to the ground B or the ground C is added. This added set is a combiner 247 and a demultiplexer 248. Then, the output port of the added duplexer 247 and the input port of the added demultiplexer 248 are connected by a transmission line 547. With this configuration, the signal output by the subscriber device 40 can be input to the optical SW210 again. As a result, the optical GW 205 folds back the optical signal output by a certain subscriber device 40 and re-enters the optical SW210 as a downlink signal. By connecting this folded signal to another subscriber device 40 in the optical SW 210, it is possible to perform loopback communication, that is, communication between the subscriber devices 40 connected to the same optical GW 205.
 例えば、加入者装置40-2と加入者装置40-Mが通信している状態を説明する。光SW210の対地Aに対応したK個(Kは2以上の整数)の上りポートそれぞれが伝送路541により合波器247と接続され、光SW210の対地Aに対応したK個の下りポートそれぞれが伝送路542により分波器248と接続されているとする。そして、対地Aに対応したK個の下りポート及び上りポートのうちk番目(kは1以上K以下の整数)の上りポート及び下りポートが波長λに対応するものとする。加入者装置40-2から出力された波長λの上りの光信号は、対地Aに対応した1番目の上りポートに接続される。入力された光信号は、伝送路547により折り返されて対地Aに対応した1番目の下りポートから下りの光信号として、光SW210に再び入力される。光SW制御部320は、その信号を、波長に応じて加入者装置40-Mに送信されるように光SW210内の経路を設定する。同様に、加入者装置40-Mから出力された波長λの上りの光信号は、対地Aに対応したk番目の上りポートに接続される。入力された光信号は、伝送路547により折り返されて対地Aに対応したk番目の下りポートから下りの光信号として、光SW210に再び入力される。光SW制御部320は、その信号を、波長に応じて加入者装置40-2に送信されるように光SW210内の経路を設定する。これにより、加入者装置40-2と加入者装置40-Mとの間で通信が行われる。 For example, a state in which the subscriber device 40-2 and the subscriber device 40-M are communicating with each other will be described. Each of the K (K is an integer of 2 or more) uplink ports corresponding to the ground A of the optical SW210 is connected to the combiner 247 by a transmission line 541, and each of the K downlink ports corresponding to the ground A of the optical SW210 It is assumed that the transmission line 542 is connected to the demultiplexer 248. Then, it is assumed that the kth (k is an integer of 1 or more and K or less) of the K downlink ports and uplink ports corresponding to the ground A corresponds to the wavelength λ k . The upstream optical signal of wavelength λ 1 output from the subscriber device 40-2 is connected to the first uplink port corresponding to the ground A. The input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the first downlink port corresponding to the ground A. The optical SW control unit 320 sets a path in the optical SW 210 so that the signal is transmitted to the subscriber device 40-M according to the wavelength. Similarly, the upstream optical signal of wavelength λ k output from the subscriber device 40-M is connected to the k-th uplink port corresponding to the ground A. The input optical signal is folded back by the transmission line 547 and is input again to the optical SW210 as a downlink optical signal from the k-th downlink port corresponding to the ground A. The optical SW control unit 320 sets a path in the optical SW 210 so that the signal is transmitted to the subscriber device 40-2 according to the wavelength. As a result, communication is performed between the subscriber device 40-2 and the subscriber device 40-M.
 本実施形態の他の構成について、図24及び図25を用いて説明する。図24は、光アクセスシステム106の構成例を示す図である。図24に示す光アクセスシステム106が、図23に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW206を備える点である。光GW206が、光GW205と異なる点は、合波器247及び分波器248を備えず、波長多重せずに光SW210の対地A用の上りポート及び下りポート間を伝送路548により直接接続することにより、信号を折り返す構成としている点である。 Other configurations of this embodiment will be described with reference to FIGS. 24 and 25. FIG. 24 is a diagram showing a configuration example of the optical access system 106. The optical access system 106 shown in FIG. 24 differs from the optical access system 105 shown in FIG. 23 in that it includes an optical GW 206 instead of the optical GW 205. The difference between the optical GW 206 and the optical GW 205 is that the optical GW 206 is not provided with a duplexer 247 and a demultiplexer 248, and the optical SW210 is directly connected between the upstream port and the downstream port for ground A by a transmission line 548 without wavelength division multiplexing. As a result, the signal is folded back.
 図25は、光アクセスシステム107の構成例を示す図である。図25に示す光アクセスシステム107が、図23に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW207を備える点である。光GW207が、光GW205と異なる点は、分波器248に代えてパワースプリッタ270を備える点である。パワースプリッタ270は、伝送路547を介して合波器247から入力した下りの光信号を複数に分岐し、複数の伝送路542を介して、光SW210に入力する。 FIG. 25 is a diagram showing a configuration example of the optical access system 107. The difference between the optical access system 107 shown in FIG. 25 and the optical access system 105 shown in FIG. 23 is that the optical GW 207 is provided instead of the optical GW 205. The optical GW 207 differs from the optical GW 205 in that it includes a power splitter 270 instead of the duplexer 248. The power splitter 270 branches the downlink optical signal input from the combiner 247 via the transmission line 547 into a plurality of branches, and inputs the downlink optical signal to the optical SW210 via the plurality of transmission lines 542.
 なお、図23の光GW205の分波器248の後段にパワースプリッタを設けてもよい。パワースプリッタは、分波器248が分波した光信号を複数に分岐し、光SW210の異なるポートに入力する。このようにすることで、折り返し通信のマルチキャスト通信が可能となる。 A power splitter may be provided after the demultiplexer 248 of the optical GW 205 in FIG. 23. The power splitter splits the optical signal demultiplexed by the demultiplexer 248 into a plurality of light signals and inputs them to different ports of the optical SW210. By doing so, multicast communication of return communication becomes possible.
 上記では、光アクセスシステム103との差分を説明したが、光アクセスシステム100、101、102にその差分を適用することも可能である。 Although the difference from the optical access system 103 has been described above, it is also possible to apply the difference to the optical access systems 100, 101, and 102.
(第3の実施形態)
 本実施形態の光アクセスシステムは、マルチキャスト通信を行う。本実施形態では、第1及び第2の実施形態との差分を中心に説明する。
(Third Embodiment)
The optical access system of this embodiment performs multicast communication. In this embodiment, the differences from the first and second embodiments will be mainly described.
 まず、図26を用いて下り通信のマルチキャストについて説明する。図26は、光アクセスシステム108の構成例を示す図である。図26に示す光アクセスシステム108が、図25に示す光アクセスシステム107と異なる点は、光GW207に代えて、光GW208を備える点である。光GW208が、光GW207と異なる点は、光SW210の折り返しポートを接続する伝送路549をさらに備える点である。 First, multicast for downlink communication will be described with reference to FIG. FIG. 26 is a diagram showing a configuration example of the optical access system 108. The optical access system 108 shown in FIG. 26 differs from the optical access system 107 shown in FIG. 25 in that it includes an optical GW 208 instead of the optical GW 207. The optical GW 208 differs from the optical GW 207 in that it further includes a transmission line 549 connecting the return port of the optical SW210.
 対地Cから送信された下りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Cからの下りの光信号を入力するポートを、波長に応じて、伝送路549が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Cからの下りの光信号は、伝送路549を伝送し、対地Aの上り信号として光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した下りの光信号を第2の実施形態と同様に、対地Aの上り信号用のポートに接続するよう制御する。これにより、伝送路549を折り返して光SW210に入力された光信号は、合波器247と接続されるポートに出力される。合波器247は、複数の伝送路541のそれぞれにより光SW210から出力された光信号を合波して伝送路547に出力する。伝送路547に出力された光信号は、パワースプリッタ270において複数の信号に分岐される。パワースプリッタ270は、分岐した複数の光信号を、複数の伝送路542を介して、対地Aの下り信号として光SW210に入力する。光SW210は、各伝送路542から入力した光信号を、波長に応じて、加入者装置40と接続されるポートに出力する。これにより、下り信号のマルチキャストが可能となる。 The case of multicasting the downlink optical signal transmitted from the ground C will be described. The optical SW control unit 320 controls the port for inputting the downlink optical signal from the ground C so as to be connected to the return port to which the transmission line 549 is connected according to the wavelength. As a result, the downlink optical signal from the ground C is transmitted through the transmission line 549 and is input to the optical SW210 again as the uplink signal of the ground A. Further, the optical SW control unit 320 controls to connect the downlink optical signal input from the return port to the uplink signal port of the ground A as in the second embodiment. As a result, the optical signal input to the optical SW210 after turning back the transmission line 549 is output to the port connected to the combiner 247. The combiner 247 combines the optical signals output from the optical SW210 by each of the plurality of transmission lines 541 and outputs the optical signals to the transmission line 547. The optical signal output to the transmission line 547 is branched into a plurality of signals in the power splitter 270. The power splitter 270 inputs a plurality of branched optical signals to the optical SW210 as a downlink signal of the ground A via the plurality of transmission lines 542. The optical SW 210 outputs an optical signal input from each transmission line 542 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
 続いて、図27を用いて上り通信のマルチキャストについて説明する。図27は、光アクセスシステム109の構成例を示す図である。図27に示す光アクセスシステム109が、図21に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW209を備える点である。光GW209が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路570と、マルチキャスト用のパワースプリッタ271とをさらに備える点である。パワースプリッタ271は、伝送路572と、複数の伝送路573とを介して光SW210と接続される。 Subsequently, the multicast of uplink communication will be described with reference to FIG. 27. FIG. 27 is a diagram showing a configuration example of the optical access system 109. The optical access system 109 shown in FIG. 27 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 209 instead of the optical GW 203. The optical GW 209 differs from the optical GW 203 in that it further includes a transmission line 570 that connects a return port to the optical SW210 and a power splitter 271 for multicast. The power splitter 271 is connected to the optical SW210 via a transmission line 572 and a plurality of transmission lines 573.
 対地Aから送信された上りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Aからの上りの光信号を入力するポートを、波長に応じて、伝送路570が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Aからの上りの光信号は、伝送路570を伝送し、光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した光信号を、パワースプリッタ271と接続されているポートに出力するよう制御する。これにより、伝送路570を折り返して光SW210に入力された光信号は、伝送路572に出力される。伝送路572に出力された光信号は、パワースプリッタ271において複数の信号に分岐される。パワースプリッタ271は、分岐した複数の光信号を、複数の伝送路573を介して、上り信号として光SW210に入力する。光SW210は、各伝送路573から入力した光信号を、波長に応じて、対地B又は対地Cと接続されるポートに出力する。これにより、上り信号のマルチキャストが可能となる。 The case of multicasting the upstream optical signal transmitted from the ground A will be described. The optical SW control unit 320 controls the port for inputting the upstream optical signal from the ground A so as to be connected to the return port to which the transmission line 570 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is transmitted through the transmission line 570 and is input to the optical SW210 again. Further, the optical SW control unit 320 controls to output the optical signal input from the return port to the port connected to the power splitter 271. As a result, the optical signal input to the optical SW210 by folding back the transmission line 570 is output to the transmission line 572. The optical signal output to the transmission line 572 is branched into a plurality of signals in the power splitter 271. The power splitter 271 inputs a plurality of branched optical signals to the optical SW210 as an uplink signal via the plurality of transmission lines 573. The optical SW210 outputs an optical signal input from each transmission line 573 to a port connected to ground B or ground C, depending on the wavelength. This enables multicasting of uplink signals.
 続いて、図28を用いて、下り通信のマルチキャストを行いながら、上り通信を含めてpoint to multipoint通信を行う構成について説明する。図28は、光アクセスシステム110の構成例を示す図である。図28に示す光アクセスシステム110が、図21に示す光アクセスシステム103と異なる点は、光GW203に代えて、光GW2010を備える点である。光GW2010が、光GW203と異なる点は、光SW210に折り返しポートを接続する伝送路574、575と、パワースプリッタ272、273とをさらに備える点である。パワースプリッタ272は、伝送路581と、複数の伝送路582とを介して光SW210と接続される。パワースプリッタ273は、複数の伝送路583と、伝送路584とを介して光SW210と接続される。 Subsequently, with reference to FIG. 28, a configuration in which point-to-multipoint communication including uplink communication is performed while performing downlink communication multicast will be described. FIG. 28 is a diagram showing a configuration example of the optical access system 110. The optical access system 110 shown in FIG. 28 differs from the optical access system 103 shown in FIG. 21 in that it includes an optical GW 2010 instead of the optical GW 203. The optical GW 2010 differs from the optical GW 203 in that it further includes a transmission line 574, 575 that connects a return port to the optical SW210, and a power splitter 272, 273. The power splitter 272 is connected to the optical SW210 via a transmission line 581 and a plurality of transmission lines 582. The power splitter 273 is connected to the optical SW210 via the plurality of transmission lines 583 and the transmission line 584.
 対地Cから送信された下りの光信号をマルチキャストする場合について説明する。光SW制御部320は、対地Cからの下りの光信号を入力するポートを、波長に応じて、伝送路574が接続されている折り返し用のポートに接続するよう制御する。これにより、対地Cからの下りの光信号は、伝送路574を伝送し、対地Aの上り信号として光SW210に再度入力される。また、光SW制御部320は、折り返し用ポートから入力した下りの光信号を、パワースプリッタ272が接続されているポートに出力するよう制御する。これにより、伝送路574を折り返して光SW210に入力された光信号は、伝送路581に出力される。伝送路581に出力された光信号は、パワースプリッタ272において複数の信号に分岐される。パワースプリッタ272は、分岐した複数の光信号を、複数の伝送路582を介して、下り信号として光SW210に入力する。光SW210は、各伝送路582から入力した光信号を、波長に応じて加入者装置40と接続されるポートに出力する。これにより、下り信号のマルチキャストが可能となる。 The case of multicasting the downlink optical signal transmitted from the ground C will be described. The optical SW control unit 320 controls the port for inputting the downlink optical signal from the ground C so as to be connected to the return port to which the transmission line 574 is connected according to the wavelength. As a result, the downlink optical signal from the ground C is transmitted through the transmission line 574 and is input to the optical SW210 again as the uplink signal of the ground A. Further, the optical SW control unit 320 controls to output the downlink optical signal input from the return port to the port to which the power splitter 272 is connected. As a result, the optical signal input to the optical SW210 by folding back the transmission line 574 is output to the transmission line 581. The optical signal output to the transmission line 581 is branched into a plurality of signals in the power splitter 272. The power splitter 272 inputs a plurality of branched optical signals to the optical SW210 as a downlink signal via the plurality of transmission lines 582. The optical SW 210 outputs an optical signal input from each transmission line 582 to a port connected to the subscriber device 40 according to the wavelength. This enables multicasting of downlink signals.
 対地Aから送信された上りの光信号を対地Cに送信する場合について説明する。光SW制御部320は、対地Aからの上りの光信号を入力するポートを、波長に応じて、パワースプリッタ273が接続されているポートに接続するよう制御する。これにより、対地Aからの上りの光信号は、伝送路583に出力される。複数の伝送路583それぞれに出力された光信号は、パワースプリッタ273において合波される。パワースプリッタ273は、合波した光信号を、伝送路584を介して光SW210に入力する。光SW210は、伝送路584から入力した光信号を、伝送路575が接続されている折り返し用のポートに接続するよう制御する。これにより、光信号は、伝送路575を伝送し、光SW210に再度入力される。光SW210は、伝送路575から入力した光信号を、波長に応じて、対地Cと接続される合波器241に出力する。 The case where the upstream optical signal transmitted from the ground A is transmitted to the ground C will be described. The optical SW control unit 320 controls the port for inputting the upstream optical signal from the ground A so as to be connected to the port to which the power splitter 273 is connected according to the wavelength. As a result, the upstream optical signal from the ground A is output to the transmission line 583. The optical signals output to each of the plurality of transmission lines 583 are combined in the power splitter 273. The power splitter 273 inputs the combined optical signal to the optical SW210 via the transmission line 584. The optical SW210 controls to connect the optical signal input from the transmission line 584 to the return port to which the transmission line 575 is connected. As a result, the optical signal is transmitted through the transmission line 575 and is input to the optical SW210 again. The optical SW210 outputs the optical signal input from the transmission line 575 to the combiner 241 connected to the ground C according to the wavelength.
 上記のように、マルチキャスト用のパワースプリッタを用いた構成を2組備えることにより、下りのマルチキャスト通信だけでなく、上り通信も含めたpoint to multipoint通信が可能となる。 As described above, by providing two sets of configurations using a power splitter for multicast, not only downlink multicast communication but also point-to-multipoint communication including uplink communication becomes possible.
(第4の実施形態)
 本実施形態では、上り信号と下り信号を分離せずに通信を行う。以下では、上述した実施形態との差分を中心に説明する。
(Fourth Embodiment)
In the present embodiment, communication is performed without separating the uplink signal and the downlink signal. Hereinafter, the differences from the above-described embodiments will be mainly described.
 図29は、光アクセスシステム111の構成例を示す図である。図29に示す光アクセスシステム111が、図23に示す光アクセスシステム105と異なる点は、光GW205に代えて、光GW2011を備える点である。光GW2011が、光GW205と異なる点は、波長合分波器220を有していない点、合波器241、分波器242及び分岐部250に代えて波長合分波器249及び分岐部253を備える点、及び、波長合分波器238をさらに備える点である。 FIG. 29 is a diagram showing a configuration example of the optical access system 111. The difference between the optical access system 111 shown in FIG. 29 and the optical access system 105 shown in FIG. 23 is that the optical GW 2011 is provided instead of the optical GW 205. The difference between the optical GW 2011 and the optical GW 205 is that it does not have a wavelength duplexer 220, and instead of the combiner 241 and the duplexer 242 and the branch 250, the wavelength duplexer 249 and the branch 253 And a point further provided with a wavelength combiner / demultiplexer 238.
 波長合分波器249は、複数の伝送路585により光SW210と接続される。波長合分波器249は、光SW210が複数の伝送路585それぞれから出力した異なる波長の上りの光信号を合波して、いずれかの他の対地と接続される伝送路504に出力する。また、波長合分波器249は、他の対地から伝送路504を介して入力した下りの光信号を波長により分波する。波長合分波器249は、分波された下りの光信号をそれぞれ、その光信号の波長に応じた上りポートと接続される複数の伝送路585を介して、光SW210に入力する。 The wavelength combiner / demultiplexer 249 is connected to the optical SW210 by a plurality of transmission lines 585. The wavelength combiner / demultiplexer 249 combines the upstream optical signals of different wavelengths output from each of the plurality of transmission lines 585 by the optical SW210 and outputs them to the transmission line 504 connected to any other ground. Further, the wavelength combiner / demultiplexer 249 demultiplexes the downlink optical signal input from another ground via the transmission line 504 according to the wavelength. The wavelength combiner demultiplexer 249 inputs the demultiplexed downlink optical signal to the optical SW210 via a plurality of transmission lines 585 connected to the uplink port corresponding to the wavelength of the optical signal.
 分岐部253は、パワースプリッタ254を有する。パワースプリッタ254は、伝送路504を伝送する上りの光信号と、下りの光信号を分岐する。パワースプリッタ254は、分岐した上りの光信号を、伝送路586を介して光SW210のポートに入力し、分岐した下りの光信号を、伝送路587を介して光SW210のポートに入力する。光SW210は、伝送路586又は伝送路587と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。 The branch portion 253 has a power splitter 254. The power splitter 254 branches an upstream optical signal and a downstream optical signal transmitted through the transmission line 504. The power splitter 254 inputs the branched upstream optical signal to the port of the optical SW210 via the transmission line 586, and inputs the branched downstream optical signal to the port of the optical SW210 via the transmission line 587. The optical SW210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
 波長合分波器238は、光SW210と伝送路534により接続され、制御装置235と伝送路531及び伝送路533により接続される。波長合分波器238は、入力した光信号を波長により上りの光信号と下りの光信号に分離する。波長合分波器238は、光SW210から伝送路534を介して入力した上りの光信号を、伝送路531を介して制御装置235に出力する。波長合分波器238は、制御装置235から伝送路533を介して入力した下りの光信号を、伝送路534を介して光SW210に出力する。 The wavelength combiner / demultiplexer 238 is connected to the optical SW210 by a transmission line 534, and is connected to the control device 235 by a transmission line 531 and a transmission line 533. The wavelength combiner / demultiplexer 238 separates the input optical signal into an upstream optical signal and a downstream optical signal according to the wavelength. The wavelength combiner / demultiplexer 238 outputs an upstream optical signal input from the optical SW 210 via the transmission line 534 to the control device 235 via the transmission line 531. The wavelength combiner / demultiplexer 238 outputs a downlink optical signal input from the control device 235 via the transmission line 533 to the optical SW210 via the transmission line 534.
 上記のように、光GW211は、光SW210と加入者装置40と間の波長合分波器がなく、上り信号と下り信号を分離しない構成である。これにより、光SW210に使用するポート数を大きく削減し、管理する情報量を大きく削減することが可能となる。また、図30に示すように、監視装置265への信号を分離する部分を、図20に示す構成としてもよい。 As described above, the optical GW211 does not have a wavelength duplexer between the optical SW210 and the subscriber device 40, and has a configuration that does not separate the uplink signal and the downlink signal. As a result, the number of ports used for the optical SW210 can be greatly reduced, and the amount of information to be managed can be greatly reduced. Further, as shown in FIG. 30, the portion that separates the signal to the monitoring device 265 may be configured as shown in FIG.
 図30は、本実施形態の光アクセスシステム112の構成例を示す図である。図30に示す光アクセスシステム112の光GW2012は、図29に示す光GW2011が備える分岐部253に代えて分岐部255を備える。分岐部255は、波長合分波器256、波長合分波器257、パワースプリッタ258及びパワースプリッタ259を備える。 FIG. 30 is a diagram showing a configuration example of the optical access system 112 of the present embodiment. The optical GW 2012 of the optical access system 112 shown in FIG. 30 includes a branch portion 255 instead of the branch portion 253 included in the optical GW 2011 shown in FIG. 29. The branch portion 255 includes a wavelength combiner / demultiplexer 256, a wavelength combiner / demultiplexer 257, a power splitter 258, and a power splitter 259.
 波長合分波器256は、入力した光信号を、波長により上りの光信号と下りの光信号に分離する。波長合分波器256は、波長合分波器249から入力した上りの光信号を、伝送路588を介して波長合分波器257に出力する。波長合分波器256は、伝送路589を介して波長合分波器257から入力した下りの光信号を、波長合分波器249に出力する。 The wavelength combiner / demultiplexer 256 separates the input optical signal into an upstream optical signal and a downstream optical signal depending on the wavelength. The wavelength combiner / demultiplexer 256 outputs the upstream optical signal input from the wavelength combiner / demultiplexer 249 to the wavelength combiner / demultiplexer 257 via the transmission line 588. The wavelength combiner / demultiplexer 256 outputs a downlink optical signal input from the wavelength combiner / demultiplexer 257 via a transmission line 589 to the wavelength combiner / demultiplexer 249.
 波長合分波器257は、波長により、上りの光信号と下りの光信号に分離する。波長合分波器257は、波長合分波器256から伝送路588を介して入力した上りの光信号を、伝送路504に出力する。波長合分波器257は、伝送路504を介して他の対地から受信した下りの光信号を、伝送路589を介して波長合分波器256に入力する。 The wavelength combiner / demultiplexer 257 separates an upstream optical signal and a downstream optical signal according to the wavelength. The wavelength combiner / demultiplexer 257 outputs an upstream optical signal input from the wavelength combiner / demultiplexer 256 via the transmission line 588 to the transmission line 504. The wavelength combiner / demultiplexer 257 inputs a downlink optical signal received from another ground via the transmission line 504 to the wavelength combiner / demultiplexer 256 via the transmission line 589.
 パワースプリッタ258は、伝送路588を伝送する上りの光信号を分岐し、伝送路586を介して光SW210のポートに入力する。パワースプリッタ259は、伝送路589を伝送する下りの光信号を分岐し、伝送路587を介して光SW210のポートに入力する。光SW210は、伝送路586又は伝送路587と接続されるポートから入力した光信号を、伝送路560と接続されるポートに出力する。 The power splitter 258 branches the upstream optical signal transmitted through the transmission line 588 and inputs it to the port of the optical SW210 via the transmission line 586. The power splitter 259 branches the downlink optical signal transmitted through the transmission line 589 and inputs it to the port of the optical SW210 via the transmission line 587. The optical SW210 outputs an optical signal input from a port connected to the transmission line 586 or the transmission line 587 to the port connected to the transmission line 560.
 図29に示す光GW2011は波長多重を行っているが、図31に示すように、各局舎(対地Bや対地C)へ送信する信号を波長多重せずに、個別の伝送路を伝送させる構成としてもよい。 The optical GW 2011 shown in FIG. 29 performs wavelength division multiplexing, but as shown in FIG. 31, a configuration in which signals to be transmitted to each station building (ground B or ground C) are transmitted through individual transmission lines without wavelength division multiplexing. May be.
 図31は、光アクセスシステム113の構成例を示す図である。図31に示す光アクセスシステム113が、図19に示す光アクセスシステム101と異なる点は、光GW201に代えて、光GW2013を備える点である。光GW2013が、光GW201と異なる点は、波長合分波器220及び波長合分波器243を有していない点と、制御装置230及び監視装置260に代えて、図29に示す制御装置235、波長合分波器238及び監視装置265を備える点である。伝送路503と接続される光SW210のポートは、上りの光信号を出力し、下りの光信号を入力する。 FIG. 31 is a diagram showing a configuration example of the optical access system 113. The optical access system 113 shown in FIG. 31 differs from the optical access system 101 shown in FIG. 19 in that it includes an optical GW 2013 instead of the optical GW 201. The difference between the optical GW 2013 and the optical GW 201 is that it does not have the wavelength duplexer 220 and the wavelength duplexer 243, and instead of the control device 230 and the monitoring device 260, the control device 235 shown in FIG. 29. , A wavelength combiner / demultiplexer 238 and a monitoring device 265 are provided. The port of the optical SW210 connected to the transmission line 503 outputs an upstream optical signal and inputs a downlink optical signal.
 また、光GW2013において分岐部250aを、図32に示す構成としてもよい。図32は、光アクセスシステム114の構成例を示す図である。図32に示す光アクセスシステム114の光GW2014は、図31に示す光GW2013が備える分岐部250aに代えて、図30に示す分岐部255と同様の構成を備える。 Further, in the optical GW 2013, the branch portion 250a may be configured as shown in FIG. 32. FIG. 32 is a diagram showing a configuration example of the optical access system 114. The optical GW 2014 of the optical access system 114 shown in FIG. 32 has the same configuration as the branch portion 255 shown in FIG. 30 instead of the branch portion 250a included in the optical GW 2013 shown in FIG. 31.
(第5の実施形態)
 本実施形態は、通信中の加入者装置に対する制御を可能とする。以下では、上述した実施形態との差分を中心に説明する。
(Fifth Embodiment)
This embodiment enables control over a subscriber device during communication. Hereinafter, the differences from the above-described embodiments will be mainly described.
 図33は、光アクセスシステム115の構成例を示す図である。図33に示す光アクセスシステム115が、図22に示す光アクセスシステム104と異なる点は、光GW204に代えて光GW2015を備える点である。光GW2015が光GW204と異なる点は、監視装置265に代えて、監視制御装置267が光SW211に接続されている点である。 FIG. 33 is a diagram showing a configuration example of the optical access system 115. The optical access system 115 shown in FIG. 33 differs from the optical access system 104 shown in FIG. 22 in that it includes an optical GW 2015 instead of the optical GW 204. The difference between the optical GW 2015 and the optical GW 204 is that the monitoring control device 267 is connected to the optical SW211 instead of the monitoring device 265.
 監視制御装置267は、波長可変受信器268及び波長可変送信器269を備える。監視制御装置267は、波長可変受信器268により任意の波長の光信号を受信可能であり、波長可変送信器269により任意の波長の光信号を送信可能である。また、光GW2015は、制御装置235を備えている。第1の実施形態に記載の通り、光GW2015は、加入者装置40を接続した際には、制御装置235を用いて、加入者装置40の接続処理(登録や波長割当など)を行い、通常の通信を開始する。 The monitoring control device 267 includes a tunable receiver 268 and a tunable transmitter 269. The monitoring control device 267 can receive an optical signal of an arbitrary wavelength by the tunable wavelength receiver 268, and can transmit an optical signal of an arbitrary wavelength by the tunable wavelength transmitter 269. Further, the optical GW 2015 includes a control device 235. As described in the first embodiment, when the subscriber device 40 is connected, the optical GW 2015 performs connection processing (registration, wavelength allocation, etc.) of the subscriber device 40 by using the control device 235, and is usually performed. Start communication.
 ここで、加入者装置40-1が対地Bと接続されている状態を考える。加入者装置40-1は、通常の通信を行っている状態のため、制御装置235とは通信できない。そこで、小型光SWである光SW211に接続された監視制御装置267を設けることで、加入者装置40-1の通信状態の監視だけでなく、加入者装置40-1の各種設定の指示などが可能となる。すなわち、パワースプリッタ251が分離した光信号は、伝送路555を介して光SW211に出力される。光SW211は、受信した光信号を監視制御装置267に出力する。監視制御装置267は、波長可変受信器268が光SW211から受信した光信号により監視を行い、さらに、受信した光信号に重畳されている制御信号を受信する。監視制御装置267の波長可変送信器269は、加入者装置40に対する制御信号を光信号により送信する。光SW211は、波長可変送信器269から受信した信号を、波長に応じたポートに出力する。パワースプリッタ251は、光SW211から伝送路556を介して受信した制御信号を、伝送路512を伝送する光信号と合波する。この構成により、加入者装置40-1が通常の通信を行っている状態でも、加入者装置40-1から接続先の変更要求などを受信し、制御信号を送信して加入者装置40-1に波長切り替えなどを実施することが可能となる。 Here, consider a state in which the subscriber device 40-1 is connected to the ground B. Since the subscriber device 40-1 is in a state of performing normal communication, it cannot communicate with the control device 235. Therefore, by providing the monitoring control device 267 connected to the optical SW211 which is a small optical SW, not only the communication status of the subscriber device 40-1 can be monitored, but also various setting instructions of the subscriber device 40-1 can be instructed. It will be possible. That is, the optical signal separated by the power splitter 251 is output to the optical SW211 via the transmission line 555. The optical SW211 outputs the received optical signal to the monitoring control device 267. The monitoring control device 267 monitors the wavelength tunable receiver 268 with the optical signal received from the optical SW211 and further receives the control signal superimposed on the received optical signal. The tunable transmitter 269 of the monitoring control device 267 transmits a control signal to the subscriber device 40 as an optical signal. The optical SW211 outputs a signal received from the tunable transmitter 269 to a port corresponding to the wavelength. The power splitter 251 combines the control signal received from the optical SW 211 via the transmission line 556 with the optical signal transmitted through the transmission line 512. With this configuration, even when the subscriber device 40-1 is performing normal communication, the subscriber device 40-1 receives a request for changing the connection destination, etc., and transmits a control signal to the subscriber device 40-1. It is possible to switch wavelengths and the like.
 なお、監視制御装置267と各加入者装置40との間の制御信号の通信には、加入者装置間の光主信号よりも低速であり、主信号に重畳可能な制御信号を用いる。例えば、AMCCのような技術を用いることができる。 For the communication of the control signal between the monitoring control device 267 and each subscriber device 40, a control signal which is slower than the optical main signal between the subscriber devices and can be superimposed on the main signal is used. For example, techniques such as AMCC can be used.
(第6の実施形態)
 本実施形態は、光SWから抜き出した光信号に対して、電気処理を行う。以下では、上述した実施形態との差分を中心に説明する。
(Sixth Embodiment)
In this embodiment, the optical signal extracted from the optical SW is subjected to electrical processing. Hereinafter, the differences from the above-described embodiments will be mainly described.
 図34は、光アクセスシステム116の構成例を示す図である。図34に示す光アクセスシステム116が、図23に示す光アクセスシステム105と異なる点は、光GW202に代えて光GW2016を備える点である。光GW2016が光GW202と異なる点は、処理機能部600が接続されている点である。 FIG. 34 is a diagram showing a configuration example of the optical access system 116. The optical access system 116 shown in FIG. 34 differs from the optical access system 105 shown in FIG. 23 in that it includes an optical GW 2016 instead of the optical GW 202. The difference between the optical GW 2016 and the optical GW 202 is that the processing function unit 600 is connected.
 処理機能部600は、光信号を電気信号に変換して電気処理を行った後、再び光信号に変換して出力する。この電気処理には、電気による信号処理機能や、OLTなどの機能が実装される。信号処理機能は、例えば、FEC(forward error correction:前方誤り訂正)などの符号誤り訂正である。 The processing function unit 600 converts an optical signal into an electric signal, performs electrical processing, and then converts it into an optical signal again and outputs it. In this electric processing, a signal processing function by electricity and a function such as OLT are implemented. The signal processing function is, for example, code error correction such as FEC (forward error correction).
 光アクセスシステム116がPON(Passive Optical Network;受動光ネットワーク)である場合、加入者装置40-Mは、光ファイバなどの伝送路501及びパワースプリッタ507を介して光GW2016と接続される。加入者装置40-Mの上りの光信号は、光SW210を介して、処理機能部600に接続される。処理機能部600には、OLT機能が実装されている。処理機能部600は、電気段の処理を行う。OLTには、複数台の加入者装置40が接続される。OLT機能が実装された処理機能部600は、それら加入者装置40を一括管理している。処理機能部600は、各加入者装置40から送信された信号を一つにまとめ、光SW210に出力する。処理機能部600は、波長可変送受信器を有している。処理機能部600は、制御装置230からの指示に従って、送受信する波長を設定する。 When the optical access system 116 is a PON (Passive Optical Network), the subscriber device 40-M is connected to the optical GW 2016 via a transmission line 501 such as an optical fiber and a power splitter 507. The upstream optical signal of the subscriber device 40-M is connected to the processing function unit 600 via the optical SW210. The OLT function is implemented in the processing function unit 600. The processing function unit 600 processes the electric stage. A plurality of subscriber devices 40 are connected to the OLT. The processing function unit 600, which is equipped with the OLT function, collectively manages the subscriber devices 40. The processing function unit 600 collects the signals transmitted from each subscriber device 40 into one and outputs the signals to the optical SW210. The processing function unit 600 has a tunable wavelength transmitter / receiver. The processing function unit 600 sets the wavelength to be transmitted and received according to the instruction from the control device 230.
 加入者装置40と光GW2016間のパワースプリッタ507は、波長合分波器でもよい。例えば、光アクセスシステム116がWDM-PONの場合に、加入者装置40と光GW2016間に波長分波器を利用する。 The power splitter 507 between the subscriber device 40 and the optical GW 2016 may be a wavelength duplexer. For example, when the optical access system 116 is WDM-PON, a wavelength demultiplexer is used between the subscriber device 40 and the optical GW 2016.
 主信号へのAMCC信号の重畳について説明する。光領域においてAMCC信号と主信号とは、同一波長を用いる。主信号は、例えば、10Gb/s(ギガビット毎秒)のOOK(On-off keying)信号のような、CPRI(Common Public Radio Interface)などの信号である。AMCC信号は、例えば、主信号に1MHzの搬送波を重畳することによって伝送され、強度変調により情報を伝える。このように低速のAMCC信号は主信号に重畳され、またこのように重畳されたAMCC信号は主信号から分離可能である。 The superimposition of the AMCC signal on the main signal will be explained. In the optical region, the same wavelength is used for the AMCC signal and the main signal. The main signal is a signal such as CPRI (Common Public Radio Interface) such as an OK (On-off keying) signal of 10 Gb / s (Gigabit per second). The AMCC signal is transmitted, for example, by superimposing a 1 MHz carrier wave on the main signal, and conveys information by intensity modulation. Such a low-speed AMCC signal is superimposed on the main signal, and the AMCC signal thus superimposed is separable from the main signal.
 なお、電気領域においては、AMCC信号と主信号とは、異なる周波数を用いる。AMCC信号は、主信号よりも狭帯域である。例えば、パワーコンバイナが10GHzの電気の主信号と1MHzの電気のAMCC信号とを合成し、送信器がこの合成信号を光信号に変換することによって、AMCC信号が重畳された主信号が生成される。なお、搬送波周波数は500kHzのように電気の主信号と重ならない他の周波数を用いてもよく、変調方式についても位相変調などの他の変調方式を用いても良い。 In the electrical domain, different frequencies are used for the AMCC signal and the main signal. The AMCC signal has a narrower band than the main signal. For example, a power combiner synthesizes a 10 GHz electric main signal and a 1 MHz electric AMCC signal, and a transmitter converts this combined signal into an optical signal to generate a main signal on which the AMCC signal is superimposed. .. The carrier frequency may be another frequency such as 500 kHz that does not overlap with the main signal of electricity, and another modulation method such as phase modulation may be used as the modulation method.
 上述した制御装置230、235、監視装置260、265、監視制御装置267、波長制御部310及び光SW制御部320は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行することによって上述した機能の一部又は全てを実現してもよい。なお、制御装置230、235、監視装置260、265、監視制御装置267、波長制御部310及び光SW制御部320の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。制御装置230、235、監視装置260、265、監視制御装置267、波長制御部310及び光SW制御部320のプログラムは、コンピュータ読み取り可能な記録媒体に記録されても良い。コンピュータ読み取り可能な記録媒体とは、例えば光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されても良い。 The control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 described above include a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus. In addition, some or all of the above-mentioned functions may be realized by executing the program. Note that some or all of the functions of the control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 are ASIC (Application Specific Integrated Circuit) or PLD (Programmable). It may be realized by using hardware such as Logic Device) or FPGA (Field Programmable Gate Array). The programs of the control device 230, 235, the monitoring device 260, 265, the monitoring control device 267, the wavelength control unit 310, and the optical SW control unit 320 may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a storage device such as a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a hard disk built in a computer system. The program may be transmitted over a telecommunication line.
 また、波長制御部310及び光SW制御部320は、1台の情報処理装置を用いて実装されてもよく、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。 Further, the wavelength control unit 310 and the optical SW control unit 320 may be mounted by using one information processing device, or may be mounted by using a plurality of information processing devices that are communicably connected via a network. You may.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれら実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs and the like within a range that does not deviate from the gist of the present invention.
1…光通信システム、
10、10a、10b、10c、10d、10e、10f、10g、210、211…光スイッチ、
11-1、11-1-1~11-1-P、11-2、11-2-1~11-2-Q…ポート、
20…制御部、
21、41、411、412…光トランシーバ、
22、42、237…光送信器、
23、43、232、236…光受信器、
25…波長管理制御部、
26、320…光SW制御部、
30…光通信ネットワーク、
40、40-1~40-M…加入者装置、
50、50-1、50-2、51、501、503、504、511、512、521、522、531、533、534、540、541、542、543-1、543-2、544、545、546、547、548、549、551、551a、552、552b、555、560、561、562、563、570、571、572、573、574、575、581、582、583、584、585、586、587、588、589…伝送路、
58、59…分配部、
60、65…監視回路、
55、61、66、71、72、251、251a、251b、252、252b、254、258、259、270、271、272、273、502、507…パワースプリッタ、
67、68、80、80a、80b…WDM装置、
90…多重通信伝送路、
100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116…光アクセスシステム、
200、201、202、203、204、205、206、207、208、209、2010、2011、2012、2013、2014、2015、2016…光ゲートウェイ、
220、238、243、244、245、249、256、257…波長合分波器、
230…制御装置、
231、261…波長分波器、
233、269…波長可変送信器、
235…制御装置、
241、247…合波器、
242、248…分波器、
250、250a、250b、253、255…分岐部、
260、265…監視装置、
262…光受信器、
262…光受信器、
266…波長可変光受信器、
267…監視制御装置、
268…波長可変受信器、
300…オペレーションシステム、
301…光GW制御部、
310…波長制御部、
350…管理データベース、
452…波長可変フィルタ、
453…受信器、
454…WDMフィルタ、
600…処理機能部
1 ... Optical communication system,
10, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 210, 211 ... Optical switch,
11-1, 11-1-1 to 11-1-P, 11-2, 11-2-1 to 11-2-Q ... Port,
20 ... Control unit,
21, 41, 411, 412 ... Optical transceiver,
22, 42, 237 ... Optical transmitter,
23, 43, 232, 236 ... Optical receiver,
25 ... Wavelength control control unit,
26, 320 ... Optical SW control unit,
30 ... Optical communication network,
40, 40-1-40-M ... Subscriber device,
50, 50-1, 50-2, 51, 501, 503, 504, 511, 512, 521, 522, 531, 533, 534, 540, 541, 542, 543-1, 543-2, 544, 545, 546, 547, 548, 549, 551, 551a, 552, 552b, 555, 560, 561, 562, 563, 570, 571, 571, 573, 574, 575, 581, 582, 583, 584, 585, 586, 587, 588, 589 ... Transmission line,
58, 59 ... Distribution section,
60, 65 ... Monitoring circuit,
55, 61, 66, 71, 72, 251, 251a, 251b, 252, 252b, 254, 258, 259, 270, 271, 272, 273, 502, 507 ... Power Splitter,
67, 68, 80, 80a, 80b ... WDM device,
90 ... Multiplex communication transmission line,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 ... Optical access system,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 2010, 2011, 2012, 2013, 2014, 2015, 2016 ... Optical gateway,
220, 238, 243, 244, 245, 249, 256, 257 ... Wavelength duplexer,
230 ... Control device,
231 and 261 ... Wavelength demultiplexer,
233, 269 ... Tunable transmitter,
235 ... Control device,
241 and 247 ... Combiner,
242, 248 ... Demultiplexer,
250, 250a, 250b, 253, 255 ... Branch,
260, 265 ... Monitoring device,
262 ... Optical receiver,
262 ... Optical receiver,
266 ... Tunable optical receiver,
267 ... Monitoring and control device,
268 ... Tunable wavelength receiver,
300 ... Operation system,
301 ... Optical GW control unit,
310 ... Wavelength control unit,
350 ... Management database,
452 ... Tunable wavelength filter,
453 ... Receiver,
454 ... WDM filter,
600 ... Processing function unit

Claims (17)

  1.  複数の伝送路と接続され、いずれかの前記伝送路から入力した光信号を他の前記伝送路へ出力する光スイッチと、
     加入者装置に通信先に応じた波長を動的に割り当てる波長管理制御部と、
     前記伝送路から入力した光信号を、入力した前記光信号を送信した前記加入者装置と入力した前記光信号の波長との組み合わせにより特定される通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する光スイッチ制御部と、
     を備える光通信装置。
    An optical switch that is connected to a plurality of transmission lines and outputs an optical signal input from one of the transmission lines to the other transmission line.
    A wavelength management control unit that dynamically assigns wavelengths to subscriber devices according to the communication destination,
    The optical signal input from the transmission line is output to the transmission line according to the communication destination specified by the combination of the subscriber device that transmitted the input optical signal and the wavelength of the input optical signal. An optical switch control unit that controls an optical switch,
    An optical communication device equipped with.
  2.  前記波長管理制御部は、光信号により波長の割り当ての要求を受信し、前記要求を送信した加入者装置に通信先に応じた波長を動的に割り当て、割り当てた前記波長を光信号により前記加入者装置に通知する波長割当処理を行い、
     前記光スイッチ制御部は、前記波長割当処理が実行されている間、前記加入者装置と前記波長管理制御部との間で光信号を送受信するよう前記光スイッチを制御する、
     請求項1に記載の光通信装置。
    The wavelength management control unit receives a request for wavelength allocation by an optical signal, dynamically assigns a wavelength according to a communication destination to a subscriber device that has transmitted the request, and subscribes the assigned wavelength by an optical signal. Performs wavelength allocation processing to notify the device
    The optical switch control unit controls the optical switch so as to transmit and receive an optical signal between the subscriber device and the wavelength management control unit while the wavelength allocation process is being executed.
    The optical communication device according to claim 1.
  3.  前記波長管理制御部と前記加入者装置との間で送受信される前記光信号は、加入者装置間の光信号である主信号より低速である、
     請求項2に記載の光通信装置。
    The optical signal transmitted and received between the wavelength management control unit and the subscriber device is slower than the main signal which is an optical signal between the subscriber devices.
    The optical communication device according to claim 2.
  4.  前記光スイッチは、それぞれ異なる前記伝送路と接続される複数の第一ポート及び複数の第二ポートを有し、かつ、前記第一ポートから入力した光信号を前記第二ポートへ出力し、前記第二ポートから入力した光信号を前記第一ポートへ出力する、
     請求項1から請求項3のいずれか一項に記載の光通信装置。
    The optical switch has a plurality of first ports and a plurality of second ports connected to different transmission lines, and outputs an optical signal input from the first port to the second port. The optical signal input from the second port is output to the first port.
    The optical communication device according to any one of claims 1 to 3.
  5.  前記光スイッチは、前記第二ポートが出力した光信号を他の前記第二ポートに入力する伝送路と接続される、
     請求項4に記載の光通信装置。
    The optical switch is connected to a transmission line that inputs an optical signal output from the second port to another second port.
    The optical communication device according to claim 4.
  6.  前記光スイッチは、前記第二ポートが出力した光信号を複数に分配し、分配された複数の前記光信号をそれぞれ異なる前記第一ポートに入力する第一分配部と、前記第一ポートが出力した光信号を複数に分配し、分配された複数の前記光信号をそれぞれ異なる前記第二ポートに入力する第二分配部との一方又は両方と接続される、
     請求項4に記載の光通信装置。
    The optical switch has a first distribution unit that distributes an optical signal output by the second port into a plurality of parts and inputs the plurality of distributed optical signals to different first ports, and an output from the first port. It is connected to one or both of a second distribution unit that distributes the divided optical signals into a plurality of the distributed optical signals and inputs the distributed optical signals to different second ports.
    The optical communication device according to claim 4.
  7.  前記伝送路を伝送する光信号を監視する監視部をさらに備える、
     請求項1から請求項6のいずれか一項に記載の光通信装置。
    A monitoring unit for monitoring an optical signal transmitted through the transmission line is further provided.
    The optical communication device according to any one of claims 1 to 6.
  8.  前記波長管理制御部は、前記加入者装置に波長の変更を指示する波長変更処理を行い、
     前記光スイッチ制御部は、前記波長変更処理の間、前記加入者装置と前記波長管理制御部との間で光信号が送受信されるよう前記光スイッチを制御し、前記波長変更処理の後、前記加入者装置から変更後の波長の光信号を入力した場合、入力した前記光信号を、通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する、
     請求項1から請求項6のいずれか一項に記載の光通信装置。
    The wavelength management control unit performs a wavelength change process for instructing the subscriber device to change the wavelength.
    The optical switch control unit controls the optical switch so that an optical signal is transmitted and received between the subscriber device and the wavelength management control unit during the wavelength change process, and after the wavelength change process, the optical switch control unit controls the optical switch. When an optical signal having a changed wavelength is input from the subscriber device, the optical switch is controlled so that the input optical signal is output to the transmission line according to the communication destination.
    The optical communication device according to any one of claims 1 to 6.
  9.  前記伝送路を伝送する光信号を監視する監視部をさらに備え、
     前記波長管理制御部は、前記監視部おける監視によって生成された情報に基づき、前記加入者装置に対して前記波長変更処理を行う、
     請求項8に記載の光通信装置。
    A monitoring unit for monitoring an optical signal transmitted through the transmission line is further provided.
    The wavelength management control unit performs the wavelength change processing on the subscriber device based on the information generated by the monitoring in the monitoring unit.
    The optical communication device according to claim 8.
  10.  前記波長管理制御部は、前記加入者装置から波長変更の要求を受けて前記波長変更処理を行う、
     請求項8又は請求項9に記載の光通信装置。
    The wavelength management control unit performs the wavelength change processing in response to a wavelength change request from the subscriber device.
    The optical communication device according to claim 8 or 9.
  11.  前記光スイッチは、一以上の合波装置及び一以上の分波装置と接続され、
     前記合波装置は、複数の前記第二ポートから出力された異なる波長の前記光信号を合波して多重通信伝送路に出力し、
     前記分波装置は、前記多重通信伝送路を介して受信した光信号を波長により分波し、分波した光信号をそれぞれ複数の前記第二ポートに入力する、
     請求項4から請求項6のいずれか一項に記載の光通信装置。
    The optical switch is connected to one or more combiners and one or more demultiplexers.
    The combiner combines the optical signals of different wavelengths output from the plurality of second ports and outputs the optical signals to the multiplex communication transmission line.
    The demultiplexing device demultiplexes an optical signal received via the multiplex communication transmission line according to a wavelength, and inputs the demultiplexed optical signal to each of the plurality of the second ports.
    The optical communication device according to any one of claims 4 to 6.
  12.  前記多重通信伝送路を伝送する光信号を監視する監視部をさらに備える、
     請求項11に記載の光通信装置。
    A monitoring unit that monitors an optical signal transmitted through the multiplex communication transmission line is further provided.
    The optical communication device according to claim 11.
  13.  前記波長管理制御部は、前記加入者装置に波長の変更を指示する波長変更処理を行い、
     前記光スイッチ制御部は、前記波長変更処理の間、前記加入者装置と前記波長管理制御部との間で光信号が送受信されるよう前記光スイッチを制御し、前記波長変更処理の後、前記加入者装置から変更後の波長の光信号を入力した場合、入力した前記光信号を、通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する、
     請求項11に記載の光通信装置。
    The wavelength management control unit performs a wavelength change process for instructing the subscriber device to change the wavelength.
    The optical switch control unit controls the optical switch so that an optical signal is transmitted and received between the subscriber device and the wavelength management control unit during the wavelength change process, and after the wavelength change process, the optical switch control unit controls the optical switch. When an optical signal having a changed wavelength is input from the subscriber device, the optical switch is controlled so that the input optical signal is output to the transmission line according to the communication destination.
    The optical communication device according to claim 11.
  14.  前記多重通信伝送路を伝送する光信号を監視する監視部をさらに備え、
     前記波長管理制御部は、前記監視部における監視により生成された情報に基づき前記加入者装置に対して前記波長変更処理を行う、
     請求項13に記載の光通信装置。
    A monitoring unit for monitoring an optical signal transmitted through the multiplex communication transmission line is further provided.
    The wavelength management control unit performs the wavelength change processing on the subscriber device based on the information generated by the monitoring in the monitoring unit.
    The optical communication device according to claim 13.
  15.  前記波長管理制御部は、前記加入者装置から波長変更の要求を受けて前記波長変更処理を行う、
     請求項13又は請求項14に記載の光通信装置。
    The wavelength management control unit performs the wavelength change processing in response to a wavelength change request from the subscriber device.
    The optical communication device according to claim 13 or 14.
  16.  複数の加入者装置と、請求項1から請求項15のいずれか一項に記載の光通信装置とを有する光通信システムであって、
     前記加入者装置は、
     前記光通信装置により割り当てられた波長の光信号を送信する光送信部と、
     前記光通信装置により割り当てられた波長の光信号を受信する光受信部とのいずれか一方又は両方を備える、
     光通信システム。
    An optical communication system including a plurality of subscriber devices and the optical communication device according to any one of claims 1 to 15.
    The subscriber device
    An optical transmitter that transmits an optical signal of the wavelength assigned by the optical communication device, and
    It includes one or both of an optical receiving unit that receives an optical signal having a wavelength assigned by the optical communication device.
    Optical communication system.
  17.  複数の伝送路と接続される光スイッチが、いずれかの前記伝送路から入力した光信号を他の前記伝送路へ出力する転送ステップと、
     波長管理制御部が、加入者装置に通信先に応じた波長を動的に割り当てる割当ステップと、
     光スイッチ制御部が、前記転送ステップにおいて、前記伝送路から入力した光信号を、入力した前記光信号を送信した前記加入者装置と入力した前記光信号の波長との組み合わせにより特定される通信先に応じた前記伝送路に出力するよう前記光スイッチを制御する光スイッチ制御ステップと、
     を有する光通信方法。
    A transfer step in which an optical switch connected to a plurality of transmission lines outputs an optical signal input from one of the transmission lines to the other transmission line.
    The wavelength management control unit dynamically assigns the wavelength according to the communication destination to the subscriber device, and the allocation step.
    In the transfer step, the optical switch control unit uses the optical signal input from the transmission line as a communication destination specified by a combination of the subscriber device that transmitted the input optical signal and the wavelength of the input optical signal. An optical switch control step that controls the optical switch so as to output to the transmission line according to
    Optical communication method having.
PCT/JP2019/051305 2019-12-26 2019-12-26 Optical communication device, optical communication system, and optical communication method WO2021131001A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2019/051305 WO2021131001A1 (en) 2019-12-26 2019-12-26 Optical communication device, optical communication system, and optical communication method
PCT/JP2020/005782 WO2021131083A1 (en) 2019-12-26 2020-02-14 Optical communication device, optical communication system and optical communication method
PCT/JP2020/033760 WO2021131170A1 (en) 2019-12-26 2020-09-07 Optical communication device, optical communication system, and optical communication method
CN202080089058.1A CN114830563A (en) 2019-12-26 2020-09-29 Optical communication device, optical communication system, and optical communication method
PCT/JP2020/036878 WO2021131202A1 (en) 2019-12-26 2020-09-29 Optical communication device, optical communication system and optical communication method
EP20906403.9A EP4084362A4 (en) 2019-12-26 2020-09-29 Optical communication device, optical communication system and optical communication method
US17/788,537 US20230030158A1 (en) 2019-12-26 2020-09-29 Optical communication apparatus, optical communication system and optical communication method
JP2021566825A JP7525795B2 (en) 2019-12-26 2020-09-29 OPTICAL SWITCHING SYSTEM, OPTICAL COMMUNICATION SYSTEM, AND OPTICAL COMMUNICATION METHOD
JP2024049776A JP2024075750A (en) 2019-12-26 2024-03-26 Optical switching system, optical communication system and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051305 WO2021131001A1 (en) 2019-12-26 2019-12-26 Optical communication device, optical communication system, and optical communication method

Publications (1)

Publication Number Publication Date
WO2021131001A1 true WO2021131001A1 (en) 2021-07-01

Family

ID=76573007

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2019/051305 WO2021131001A1 (en) 2019-12-26 2019-12-26 Optical communication device, optical communication system, and optical communication method
PCT/JP2020/005782 WO2021131083A1 (en) 2019-12-26 2020-02-14 Optical communication device, optical communication system and optical communication method
PCT/JP2020/033760 WO2021131170A1 (en) 2019-12-26 2020-09-07 Optical communication device, optical communication system, and optical communication method

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/005782 WO2021131083A1 (en) 2019-12-26 2020-02-14 Optical communication device, optical communication system and optical communication method
PCT/JP2020/033760 WO2021131170A1 (en) 2019-12-26 2020-09-07 Optical communication device, optical communication system, and optical communication method

Country Status (1)

Country Link
WO (3) WO2021131001A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089755A1 (en) * 2021-11-19 2023-05-25 日本電信電話株式会社 Optical transmission device
WO2023100320A1 (en) * 2021-12-02 2023-06-08 日本電信電話株式会社 Optical node device, optical communication system, and transfer method
WO2023105729A1 (en) * 2021-12-09 2023-06-15 日本電信電話株式会社 Optical path switching system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140830A (en) * 2004-11-12 2006-06-01 Nec Commun Syst Ltd Optical access network method, optical access network and optical switch for optical access network
JP2010041102A (en) * 2008-07-31 2010-02-18 Keio Gijuku Circuit control method in optical network, and optical network
JP2013207713A (en) * 2012-03-29 2013-10-07 Oki Electric Ind Co Ltd Station side device
JP2016025540A (en) * 2014-07-23 2016-02-08 日本電信電話株式会社 Wdm/tdm-pon system and dynamic wavelength band allocation method thereof
JP2017073702A (en) * 2015-10-08 2017-04-13 日本電信電話株式会社 Station side optical termination device and method for making equalization processing common

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532447B2 (en) * 1999-04-05 2004-05-31 日本電信電話株式会社 Communication network system
JP5588543B1 (en) * 2013-06-11 2014-09-10 日本電信電話株式会社 Discovery method and optical transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140830A (en) * 2004-11-12 2006-06-01 Nec Commun Syst Ltd Optical access network method, optical access network and optical switch for optical access network
JP2010041102A (en) * 2008-07-31 2010-02-18 Keio Gijuku Circuit control method in optical network, and optical network
JP2013207713A (en) * 2012-03-29 2013-10-07 Oki Electric Ind Co Ltd Station side device
JP2016025540A (en) * 2014-07-23 2016-02-08 日本電信電話株式会社 Wdm/tdm-pon system and dynamic wavelength band allocation method thereof
JP2017073702A (en) * 2015-10-08 2017-04-13 日本電信電話株式会社 Station side optical termination device and method for making equalization processing common

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089755A1 (en) * 2021-11-19 2023-05-25 日本電信電話株式会社 Optical transmission device
WO2023100320A1 (en) * 2021-12-02 2023-06-08 日本電信電話株式会社 Optical node device, optical communication system, and transfer method
WO2023105729A1 (en) * 2021-12-09 2023-06-15 日本電信電話株式会社 Optical path switching system

Also Published As

Publication number Publication date
WO2021131083A1 (en) 2021-07-01
WO2021131170A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US7949256B2 (en) Method and system for increasing downstream bandwidth in an optical network
CN102106103B (en) Optical network
US7499651B2 (en) Upgradeable passive optical network
US7546036B2 (en) Hybrid passive optical network using shared wavelengths
US5880865A (en) Wavelength-division-multiplexed network having broadcast capability
US7684705B2 (en) Distribution node for a wavelength-sharing network
US7366415B2 (en) Wavelength division multiplexing-passive optical network capable of integrating broadcast and communication services
CN101755410B (en) Passive optical network system for the delivery of bi-directional RF services
JP4833921B2 (en) System and method for transmitting traffic over multiple passive optical networks
JP7525795B2 (en) OPTICAL SWITCHING SYSTEM, OPTICAL COMMUNICATION SYSTEM, AND OPTICAL COMMUNICATION METHOD
WO2021131001A1 (en) Optical communication device, optical communication system, and optical communication method
JP2007325279A (en) Node and method for distributing traffic in optical network
US8824890B2 (en) Open optical access network system
CN101098206A (en) Passive optical network system and light path processing method
WO2010009533A1 (en) Wdm pon rf/video broadcast overlay
KR20050002467A (en) Ethernet Passive Optical Network for Convergence of Broadcasting and Telecommunication
US8666250B2 (en) Optical access network and nodes
JP2009290594A (en) Optical line terminal device
CN106160840B (en) Wave division multiplexing passive optical network optical fiber link distributed protection device and its guard method
WO2022224298A1 (en) Optical access system and control signal superimposition method
WO2020189320A1 (en) Optical communication system and optical communication method
JP2003234721A (en) Optical communication system
US20230396335A1 (en) Subscriber apparatus, optical communication system and optical signal monitoring method
US20230421933A1 (en) Optical communication apparatus, optical communication system and optical communication method
WO2022091387A1 (en) Optical communication device, optical communication system, and optical communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP