WO2021130940A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021130940A1
WO2021130940A1 PCT/JP2019/051014 JP2019051014W WO2021130940A1 WO 2021130940 A1 WO2021130940 A1 WO 2021130940A1 JP 2019051014 W JP2019051014 W JP 2019051014W WO 2021130940 A1 WO2021130940 A1 WO 2021130940A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
primary cell
scheduling
transmitted
shared channel
Prior art date
Application number
PCT/JP2019/051014
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021566668A priority Critical patent/JP7371123B2/en
Priority to PCT/JP2019/051014 priority patent/WO2021130940A1/en
Publication of WO2021130940A1 publication Critical patent/WO2021130940A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • the user terminal In the existing LTE system (for example, 3GPP Rel.8-14), the user terminal (UE: User Equipment) is based on the downlink control information (DCI: Downlink Control Information, DL assignment, etc.) from the base station. , Controls the reception of downlink shared channels (for example, PDSCH: Physical Downlink Shared Channel). Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • DCI Downlink Control Information
  • DL assignment Downlink assignment
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • cross-carrier scheduling is performed for a UE in which a plurality of cells (or CCs) are set by scheduling other secondary cells using the downlink control channel of the primary cell (or secondary cell). Is supported.
  • the primary cell when cross-carrier scheduling is applied, the primary cell is configured to function only as the cell that schedules the secondary cell.
  • a cell that schedules another cell is called a scheduling cell, and a cell that is scheduled from another cell may be called a scheduled cell or an unscheduled cell.
  • the secondary cell schedules the physical shared channel of the primary cell, that is, the downlink control channel (or downlink control information) that schedules the physical shared channel of the primary cell is transmitted in the secondary cell.
  • cross-carrier scheduling also called cross-selling scheduling
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling communication even when the primary cell is scheduled from another cell.
  • a terminal is at least one of a receiver that receives information about a scheduling type applied to a primary cell and a frequency range in which information about the scheduling type and the physical shared channel of the primary cell are transmitted. Based on the above, it is characterized by having a control unit for determining a cell to which a downlink control channel for scheduling a physically shared channel of the primary cell is transmitted.
  • communication can be appropriately controlled even when the primary cell is scheduled from another cell.
  • FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system.
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system.
  • FIG. 3 is a diagram showing an example of cross-carrier scheduling according to the first aspect.
  • FIG. 4 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 5 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 6 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 7 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 8 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system.
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system.
  • FIG. 3 is a diagram showing an example of cross-car
  • FIG. 9 is a diagram showing an example of cross-carrier scheduling according to the second aspect.
  • FIG. 10 is a diagram showing another example of cross-carrier scheduling according to the second aspect.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • ⁇ Cross-carrier scheduling> In the existing LTE system, cross-carrier scheduling that schedules the physical shared channel of the secondary cell using the downlink control channel (for example, PDCCH) of the primary cell for the UE in which multiple cells (or CCs) are set. (CCS) is supported.
  • the physical shared channel may be, for example, at least one of a downlink shared channel (for example, PDSCH) and an uplink shared channel (for example, PUSCH).
  • the secondary cell may schedule another secondary cell.
  • the network for example, a base station
  • the network sets cross-carrier scheduling in the UE
  • CIF Carrier Indicator Field
  • the UE controls the transmission or reception of the physically shared channel scheduled by the DCI based on the CIF contained in the received DCI (or PDCCH) (or determines the cell by which the physical shared channel is scheduled by the DCI). To do.
  • FIG. 1 is a diagram showing an example in the case of applying cross-carrier scheduling.
  • the downlink control information (DCI # 1) instructing the allocation of at least one of PDSCH and PUSCH (hereinafter, also referred to as PDSCH / PUSCH) transmitted in CC # 1 (for example, a secondary cell) is different. It is transmitted by PDCCH of CC # 0 (for example, primary cell).
  • CC # 0 for example, primary cell
  • the carrier identifier (DCI # 1) A DCI configuration with CI: Carrier Indicator) is applied.
  • a field (CIF) for a 3-bit carrier identifier is set in the DCI, and the CC (or cell) scheduled in the DCI is notified to the UE.
  • the UE performs a PDSCH reception process or a PUSCH transmission process in a predetermined CC based on the CIF included in the DCI.
  • the UE may be notified of information that cross-carrier scheduling is set or applied to the cell and information about from which cell the scheduling is performed.
  • information regarding whether or not cross-carrier scheduling is applied and information regarding a scheduling cell are used as higher layer signaling (for example, RRC signaling) of the scheduled cell (for example, scheduled cell).
  • the base station may notify the UE.
  • the cell that controls the allocation of PDSCH / PUSCH of another cell (CC) (or transmits DCI including CIF) may be called a scheduling cell (Scheduling Cell) or a scheduling cell.
  • a cell in which cross-carrier scheduling is set (for example, a cell scheduled based on CIF) may be referred to as a scheduled cell (Scheduled Cell) or a scheduled cell.
  • the UE determines the scheduled cell based on the index (for example, ServeCellIndex) corresponding to the 3-bit CIF value included in the PDCCH (or DCI) transmitted in the scheduling cell.
  • the index for example, ServeCellIndex
  • the correspondence between the CIF value and the ServeCellIndex value may be set by higher layer signaling or the like.
  • CIF is set in the PDCCH (or DCI) of the scheduling cell, and information on the correspondence relationship of the index (for example, ServeCellIndex) of the scheduled cell (CC) corresponding to each CIF value is transmitted by upper layer signaling. You may.
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information.
  • the names of IE shown in FIG. 2 are merely examples, and are not limited to those shown in the drawings.
  • the cross-carrier scheduling setting information (CrossCarrierSchedulingConfig) may include either information regarding scheduling of the own cell (own) or information regarding scheduling by another cell (cross-carrier scheduling) (other). Good.
  • the information (own) regarding the scheduling of the own cell may include information (cif-Presence) indicating the presence or absence of CIF.
  • cif-Presence When cif-Presence is true, the CIF value of the cell (scheduling cell) may be set to 0. If the CIF value of DCI transmitted in the scheduling cell is 0, the UE may determine that it is self-carrier scheduling.
  • the information (other) related to scheduling by other cells may include a cell identifier (cell index, scheduling cell ID, schedulingCellId) that signals DCI.
  • schedulingCellId tells the UE which cell signals DL allocation and UL grant.
  • the CIF value (cif-InSchedulingCell) of the cell (scheduled cell) used in the scheduling cell may be included in other.
  • the UE may perform the decoding on the assumption that there is no CIF. That is, when the CIF is set, the UE decodes the control channel in which the CIF is set in the UE specific search space (USS: UE specific Search Space), and decodes the control channel in which the CIF is not set in the common search space.
  • USS UE specific Search Space
  • cross-carrier scheduling is not set for the primary cell. That is, the primary cell is always a scheduling cell and is scheduled by the PDCCH (or DCI) transmitted in the own cell (for example, self-carrier scheduling is applied).
  • the physical sharing channel of the primary cell is scheduled by using the downlink control channel (or DCI) of the secondary cell. Is being considered. In other words, support is being considered for PDCCH in the secondary cell that schedules the physical shared channel in the primary cell.
  • DCI downlink control channel
  • the primary cell becomes a scheduled cell
  • how to control cross-carrier scheduling becomes a problem. For example, when scheduling the physical shared channel of the primary cell using the downlink control channel (or DCI) transmitted in the secondary cell, how to control the scheduling type set in the primary cell is a problem. Become. Alternatively, how to control the monitor of the PDCCH that schedules the physical shared channel of the primary cell becomes a problem.
  • the present inventors focused on a case where cross-carrier scheduling in which a secondary cell schedules a primary cell is supported or permitted, examined a control method for the cross-carrier scheduling, and conceived the present invention.
  • the primary cell may be read as at least one of PCell and PSCell (primary secondary cell).
  • the physical shared channel may be read as at least one of PDSCH and PUSCH.
  • cross-carrier scheduling may be read as cross-selling scheduling.
  • self-carrier scheduling may be read as self-scheduling.
  • the physical shared channel of the primary cell may be read as the physical shared channel transmitted by the primary cell.
  • the UE applies cross-carrier scheduling in two cells (or 2CC) of a primary cell and a secondary cell is shown, but the number of applicable cells is not limited to two but is three or more. You may.
  • the network for example, a base station
  • the network may set at least one of the following operations 1-1 to 1-3 in the UE.
  • the UE that supports cross-carrier scheduling for the primary cell may be read as the UE that supports the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell.
  • the base station does not have to set the first scheduling type scheduled from other cells for the primary cell and the second scheduling type for scheduling in its own cell.
  • the first scheduling type may be cross-carrier scheduling and the second scheduling type may be self-carrier scheduling.
  • the base station may notify the UE of information about the scheduling type set or applied to the primary cell.
  • the base station may set only cross-carrier scheduling for the primary cell.
  • the base station may transmit information about one or more other cells to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted as the information regarding the scheduling type.
  • the information regarding the scheduling type may include at least one of the information regarding the index of the scheduling cell that schedules the primary cell and the information regarding the index when the primary cell is specified in the predetermined field of DCI.
  • Information about the scheduling type may be notified or set from the base station to the UE using at least one of higher layer signaling and DCI.
  • the UE may determine the scheduling cell (eg, secondary cell) to schedule the primary cell based on the information about the scheduling type. As a result, the UE can determine the cell to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted, and can appropriately receive the PDCCH (see FIG. 3).
  • the scheduling cell eg, secondary cell
  • the UE can determine the cell to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted, and can appropriately receive the PDCCH (see FIG. 3).
  • FIG. 3 is a diagram showing an example of cross-carrier scheduling when the scheduling cell for scheduling the primary cell (CC # 0) is CC # 1.
  • the scheduling cell for scheduling the primary cell (CC # 0) is CC # 1.
  • the PDSCH (or DCI) transmitted by CC # 1 is used to schedule the PDSCH and PUSCH of CC # 0 is shown.
  • the physically shared channel of CC # 1 may be self-carrier scheduled.
  • the cell that schedules the PDSCH of the primary cell (or the cell to which the PDCCH (or DCI) that schedules the PDCCH is transmitted) and the cell that schedules the PUSCH of the primary cell may be the same cell (FIG. 3). reference).
  • the PDSCH of the primary cell and the cell for scheduling the PUSCH are shared, the number of cells for which the UE monitors the PDCCH for the primary cell can be reduced.
  • the cell that schedules the PDSCH of the primary cell and the cell that schedules the PUSCH of the primary cell may be set independently (for example, in different cells) (see FIG. 4).
  • a first secondary cell eg, CC # 1 that schedules the PDSCH of the primary cell
  • a second secondary cell eg, CC # 2 that schedules the PUSCH of the primary cell It may be set.
  • the UE transmits a PDCCH (for example, DCI format 1-11) that schedules the PDSCH of the primary cell in the first secondary cell, and schedules a PUSCH of the primary cell in the second secondary cell (for example, DCI format).
  • a PDCCH for example, DCI format 1-11
  • the reception process may be controlled on the assumption that 0-1) is transmitted.
  • the primary cell When the primary cell is set as a scheduled cell, the primary cell may not be set as a scheduling cell for scheduling the physical shared channel of another secondary cell. Alternatively, if the primary cell is configured as a scheduled cell, it may be allowed to be configured as a scheduling cell that schedules the physical shared channels of other secondary cells.
  • the secondary cell which is the scheduling cell for scheduling the primary cell, may be configured not to be scheduled (or not to be a scheduled cell) from other cells. That is, the scheduling cell that schedules the primary cell may have a configuration in which the physical shared channel of the own cell is scheduled by the PDCCH of the own cell (self-carrier scheduling is applied).
  • the base station does not set the first scheduling type (for example, cross-carrier scheduling) scheduled from other cells for the primary cell, but schedules in its own cell for the second scheduling type (for example, self-carrier scheduling). ) May be set.
  • the first scheduling type for example, cross-carrier scheduling
  • the second scheduling type for example, self-carrier scheduling
  • the base station may notify the UE of information about the scheduling type set or applied to the primary cell.
  • the base station may set only self-carrier scheduling for the primary cell.
  • the base station may transmit information regarding the scheduling type indicating that the physical shared channel of the primary cell is scheduled by the PDCCH of the primary cell (for example, self-carrier scheduling is performed).
  • the UE may assume that the primary cell is not scheduled (or self-scheduled) in the secondary cell based on the information about the scheduling type (see Figure 5).
  • FIG. 5 shows a case where the physical shared channel of the primary cell (CC # 0) is scheduled by the PDCCH (or DCI) transmitted in the CC # 0.
  • the UE may determine that the PDCCH (or DCI) that schedules the primary cell is transmitted in the primary cell (CC # 0) and control the reception processing of the PDCCH (or DCI). ..
  • the primary cell may be set as a scheduling cell for scheduling the physical shared channel of another secondary cell.
  • the base station has both a first scheduling type (for example, cross-carrier scheduling) scheduled from another cell for the primary cell and a second scheduling type (for example, self-carrier scheduling) for scheduling in its own cell. May be set (or enabled, activated).
  • a first scheduling type for example, cross-carrier scheduling
  • a second scheduling type for example, self-carrier scheduling
  • the base station may notify the UE of information about the scheduling type set or applied to the primary cell.
  • the base station may transmit information about one or more other cells to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted.
  • the information regarding the scheduling type may include at least one of the information regarding the index of the scheduling cell that schedules the primary cell and the information regarding the index when the primary cell is specified in the predetermined field of DCI.
  • Information on the scheduling type may be notified or set from the base station to the UE by using higher layer signaling or the like.
  • cross-carrier scheduling scheduled from the secondary cell may be additionally set or performed for the primary cell.
  • the UE assumes that self-carrier scheduling is applied to the primary cell as the default (or initial scheduling type), and that cross-carrier scheduling is applied when cross-carrier scheduling is configured. You may.
  • Cross-carrier scheduling may be set from the base station to the UE by using at least one of higher layer signaling and downlink control information.
  • the UE may control the reception of the PDCCH that schedules the primary cell in the primary cell, assuming that the self-carrier scheduling is applied when the cross-carrier scheduling is not set.
  • the UE may apply at least one of cross-carrier scheduling and self-carrier scheduling. If both self-carrier scheduling and cross-carrier scheduling are configured (or if cross-carrier scheduling is additionally configured), the UE may apply at least one of Option 1 and Option 2 below. Good.
  • Self-carrier scheduling and cross-carrier scheduling for the primary cell may be supported (or applied) at the same time.
  • a first scheduling type (eg, cross-carrier scheduling) may be applied to the PDSCH of the primary cell and a second scheduling type (eg, self-carrier scheduling) may be applied to the PUSCH of the primary cell. .. Even if the UE assumes that the PDCCH (or DCI) that schedules the PDSCH of the primary cell is transmitted in another cell and the PDCCH (or DCI) that schedules the PUSCH of the primary cell is transmitted in the primary cell. Good (see Figure 6).
  • FIG. 6 shows a case where the PDSCH of the primary cell (CC # 0) is scheduled by the PDCCH of the secondary cell (CC # 1), and the PUSCH of CC # 0 is scheduled by the PDCCH of the CC # 0.
  • self-causing may be applied to the PDSCH of the primary cell
  • cross-carrier scheduling may be applied to the PUSCH of the primary cell.
  • the UE may assume that the PDCCH (or DCI) that schedules the PDSCH of the primary cell is transmitted in the primary cell, and the PDCCH that schedules the PUSCH of the primary cell is transmitted in another cell.
  • both self-carrier scheduling and cross-carrier scheduling may be supported for PDSCH and PUSCH for one or more transmission / reception points.
  • self-carrier scheduling and cross-carrier scheduling may be applied to PDSCH transmitted from a certain transmission / reception point.
  • a configuration (eg, dynamic switching) that dynamically switches between self-carrier scheduling and cross-carrier scheduling for the primary cell may be supported or applied.
  • Switching between self-carrier scheduling and cross-carrier scheduling may be controlled based on the scheduling related to the configuration of the secondary cell (for example, configuration).
  • the UE may determine the switch based on at least one of the DCI format, search space, and control resource set configurations (eg, CORESET configurations).
  • the UE may determine that, at least in the secondary cell (CC # 1), when a predetermined DCI is received, the scheduling type applied to the primary cell is switched or changed (see FIG. 7).
  • FIG. 7 shows a case where the scheduling type applied to the primary cell is switched from self-carrier scheduling to cross-carrier scheduling.
  • a timer may be applied in the scheduling type switching operation. For example, the timer may be started when the first scheduling type is switched to the second scheduling type, and the first scheduling type may be applied again when the timer expires.
  • the DCI format of the secondary cell (CC # 1) is the predetermined DCI format and the search space is the common search space (CSS), self-carrier scheduling is applied, otherwise cross-carrier scheduling is applied. You may.
  • the predetermined DCI format may be a DCI format for fallback (eg DCI format 0_0 or 1_0). As a result, even if the secondary cell (CC # 1) is deactivated, the scheduling of the physical shared channel of the primary cell can be continued.
  • the default scheduling type of the primary cell (CC # 0), self-carrier scheduling can be switched to cross-carrier scheduling based on the DCI of at least one of the primary cell (CC # 0) and the secondary cell (CC # 1). You may.
  • switching between self-carrier scheduling and cross-carrier scheduling may be controlled based on the bandwidth portion (BWP) set in the secondary cell or the primary cell.
  • BWP bandwidth portion
  • switching may be controlled based on the BWP (active BWP) activated in the secondary cell.
  • the secondary cell (CC # 1) has or is set to have two BWPs (for example, BWP # 0 and BWP # 1).
  • the UE may determine that cross-carrier scheduling is applied to the primary cell when BWP # 0 is activated (or PDCCH is transmitted at BWP # 0). In this case, the UE may control the reception assuming that the PDCCH scheduling CC # 0 is transmitted in CC # 1 (see FIG. 8).
  • the UE may determine that self-carrier scheduling is applied to the primary cell when BWP # 1 is activated (or PDCCH is transmitted by BWP # 1). In this case, the UE may control the reception assuming that the PDCCH scheduling CC # 0 is transmitted in CC # 0.
  • self-carrier scheduling and cross-carrier scheduling are set or supported for the primary cell, self-carrier scheduling may be applied only in certain conditions or cases.
  • the UE may apply cross-carrier scheduling in the first case below and self-carrier scheduling in the second case.
  • the second case may be at least one of the following cases 1 to 4.
  • self-carrier scheduling may be applied to the primary cell.
  • the UE may assume that self-carrier scheduling is applied to the primary cell when communication is not possible in the scheduling cell (eg, PDCCH transmission is restricted) in the fallback conditions.
  • the UE schedules a PDCCH that schedules message 2 (for example, PDSCH) transmitted in the primary cell, and a PDCCH that schedules message 4 (for example, PDSCH) transmitted in the primary cell. It may be assumed that it is transmitted in a cell.
  • the UE schedules a PDCCH order sent in the primary cell, a PDCCH scheduling message 2 (eg PDSCH), and a message 4 sent in the primary cell (eg PDSCH) in a non-collision random access procedure.
  • PDCCH may be assumed to be transmitted in the primary cell.
  • Self-carrier scheduling may be applied to a given DCI format transmitted in the common search space in the primary cell.
  • the predetermined DCI format may be, for example, DCI format 0_0 or 1_0. Also, the predetermined DCI format may be scrambled with at least one of C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • the UE may control the reception of the PDCCH on the assumption that the PDCCH (or DCI) transmitted in the common search space is transmitted in the primary cell.
  • cross-carrier scheduling for the primary cell may be controlled for each frequency range.
  • cross-carrier scheduling for the primary cell may be set separately for the first frequency range (eg, FR1) and the second frequency range (eg, FR2).
  • the frequency range may be set in band units, CC units, or BWP units.
  • the frequency range may be read as the frequency domain.
  • the base station may notify the UE of whether or not cross-carrier scheduling is set for the primary cell for each frequency band by using upper layer signaling or the like.
  • the UE may determine whether or not cross-carrier scheduling is applied in each frequency band based on the information notified from the base station (for example, information on the scheduling type).
  • cross-carrier scheduling for the primary cell may be configured to be supported only in a predetermined frequency range.
  • cross-carrier scheduling settings for the primary cell are supported for the first frequency range (eg FR1) and cross-carrier scheduling settings for the primary cell are supported for the second frequency range (eg FR2).
  • the configuration may not be performed.
  • the UE applies self-carrier scheduling to the primary cell (the PDCCH that schedules the physical shared channel of the primary cell is the primary cell. It may be determined that it will be transmitted).
  • the UE may receive information about one or more cells to which the PDCCH scheduling the physical shared channel of the primary cell is transmitted and determine whether cross-carrier scheduling is set or applied to the primary cell.
  • the UE may determine at least one of the cell that monitors the PDCCH and the search space type that monitors the PDCCH, based on the cell (or cell type) to which the PDCCH is transmitted.
  • the UE When cross-carrier scheduling is set for the primary cell (or when the PDCCH that schedules the primary cell is transmitted in at least the secondary cell), the UE has at least one of the following operations 2-1 to 2-2. May be done.
  • the UE may not be required to monitor the PDCCH in the UE-specific search space (eg, USS) of the primary cell (CC # 0) (see FIG. 9).
  • the UE monitors the PDCCH in the UE-specific search space set in the scheduling cell (CC # 1) that schedules the primary cell (CC # 0).
  • the UE may control not to monitor the PDCCH in the UE-specific search space of CC # 0.
  • the PDCCH can be selectively monitored in the scheduling cell to which the PDCCH is transmitted.
  • the UE may be controlled to monitor PDCCH in the common search space set in CC # 0 even when cross-carrier scheduling is applied to the primary cell (CC # 0). As a result, it is possible to appropriately detect the PDCCH used for purposes other than scheduling the physical shared channel of the primary cell.
  • the UE may monitor the PDCCH in the UE-specific search space set in the primary cell (CC # 0) and the scheduling cell (CC # 1) that schedules the primary cell (CC # 0), respectively (FIG. 10). For example, when both cross-carrier scheduling and self-carrier scheduling are set for the primary cell, the UE monitors the PDCCH in the primary cell (CC # 0) and the secondary cell (CC # 1) that becomes the scheduling cell. May be done.
  • the PDCCH that schedules the physical shared channel of the primary cell may be transmitted in the UE-specific search space of the primary cell and the scheduling cell, respectively.
  • a plurality of PDCCHs transmitted in at least one UE-specific search space of the primary cell and the scheduling cell may be controlled so as not to be transmitted in a predetermined range or a predetermined area.
  • transmission may be controlled so that the plurality of PDCCHs do not overlap in the time domain.
  • transmission may be controlled so that a plurality of PDCCHs are not transmitted in the same slot.
  • the UE may control the reception of PDCCH on the assumption that a plurality of PDCCHs are not detected in a predetermined range or a predetermined area.
  • the UE detects a plurality of PDCCHs transmitted in at least one UE-specific search space of the primary cell and the scheduling cell, and a plurality of physical shared channels scheduled in each PDCCH are scheduled in a predetermined range or a predetermined area. In some cases, it is done. For example, there may be cases where the plurality of physically shared channels overlap in the time domain. Alternatively, there may be cases where the plurality of physically shared channels are scheduled in the same slot.
  • the UE if the UE has the ability to receive a plurality of physical shared channels (eg, PDSCH) or transmit a plurality of physical shared channels (eg, PUSCH), the UE transmits or receives a plurality of physical shared channels. May be done.
  • a plurality of physical shared channels eg, PDSCH
  • a plurality of physical shared channels eg, PUSCH
  • the UE receives or transmits a specific physical shared channel (for example, one physical shared channel) among a plurality of physical shared channels based on predetermined conditions. It may be controlled to do so.
  • the predetermined condition may be at least one of the traffic priority corresponding to the physical shared channel and the processing timeline constraints.
  • the priority of a physical shared channel (for example, URLLC) that requires low delay and high reliability may be set higher than the priority of another physical shared channel (for example, eMBB).
  • the priority set in the physical shared channel may be defined in advance in the specifications, or may be set from the base station to the UE by higher layer signaling or the like.
  • the first physical sharing channel scheduled for a period equal to or longer than a predetermined period after receiving the PDCCH and the second physical sharing channel scheduled for a period shorter than the predetermined period overlap the first physical sharing It may be controlled so that the channel is transmitted and the second physically shared channel is not transmitted (for example, dropped).
  • the predetermined condition may be a scheduling type.
  • one of the physically shared channel scheduled by cross-carrier scheduling and the physically shared channel scheduled by self-carrier scheduling may be controlled to be preferentially transmitted.
  • At least one of the following conditions (or restrictions or support) 1 to 4 may be set.
  • the secondary cell serving as the scheduling cell, and the scheduled cell and the primary cell may have at least one of the following conditions 1-1 to 1-4.
  • the secondary cell and the primary cell may be required to belong to the same cell group (for example, at least one of the MCG, SCG, and PUCCH cell groups). As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
  • the secondary cell and the primary cell may be required to belong to the same Timing Advance Group (TAG). As a result, it is possible to suppress a large difference in delay between cells that perform cross-carrier scheduling (for example, a primary cell and a secondary cell).
  • TAG Timing Advance Group
  • the secondary cell and the primary cell may be required to apply at least one of the same numerology (eg, subcarrier spacing) and cyclic prefix (CP). As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
  • numerology eg, subcarrier spacing
  • CP cyclic prefix
  • the secondary cell and the primary cell may be required to use the same frequency range or be set to the same frequency range. As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
  • the physical shared channel to which the predetermined RNTI is applied may be cross-carrier scheduled from the secondary cell.
  • the physical shared channel to which the predetermined RNTI is applied may be a physical shared channel scheduled by PDCCH (or DCI) which is CRC scrambled by the predetermined RNTI, or a physical shared channel which is scrambled by the predetermined RNTI. ..
  • the predetermined RNTI may be at least one of C-RNTI, MCS-C-RNTI, CS-RNTI, and SP-CSI-RNTI.
  • the UE may control the activation / deactivation of semi-persistent scheduling based on the DCI transmitted from the secondary cell that is the scheduling cell.
  • the setting grant-based PUSCH transmission (for example, type 2) activation and deactivation (or release) in the primary cell is instructed from the secondary cell that becomes the scheduling cell (cross carrier activation / deactivation (Release)). May be supported.
  • the UE may control the activation / deactivation of configuration grant-based PUSCH transmissions based on the DCI transmitted from the secondary cell that is the scheduling cell.
  • the UE may control the activation / deactivation of CSI reporting based on the DCI transmitted from the secondary cell that is the scheduling cell.
  • the PDCCH (or DCI) transmitted in the secondary cell is used to instruct activation / deactivation of a predetermined operation. May be good.
  • activation / deactivation of a predetermined operation can also be instructed using PDCCH that performs cross-carrier scheduling.
  • a fourth aspect describes UE capability (eg, UE capability) for setting cross-carrier scheduling for the primary cell.
  • the UE capability may be read as the UE capability for the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell.
  • a predetermined UE capability for the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell may be defined.
  • the UE may report to the network (for example, a base station) whether or not to support the predetermined UE capability.
  • the predetermined UE capability may be defined for each different physical shared channel of the primary cell.
  • the UE capability for supporting the PDCCH of the secondary cell that schedules the PDSCH of the primary cell eg, the UE capability for PDSCH
  • the PDCCH of the secondary cell that schedules the PUSCH of the primary cell eg, the UE capability for PDSCH
  • UE capabilities with respect to eg, UE capabilities for PUSCH
  • the UE may separately report the UE capability information for PDSCH and the UE capability information for PUSCH to the base station. In this case, only the supported UE capability information may be reported.
  • the predetermined UE capability may be set for each frequency range (or also referred to as a frequency domain).
  • the UE may report UE capability information for the first frequency range (eg, FR1) and UE capability information for the second frequency range (eg, FR2), respectively.
  • the setting of cross-carrier scheduling for the primary cell may be supported only in a specific frequency range. If the primary cell is set to a particular frequency range, the UE may control to report predetermined UE capability information.
  • the UE When the primary cell is set outside the specific frequency range, the UE does not have to report the predetermined UE capability information. The UE also determines that self-carrier scheduling is applied to the primary cell when the primary cell is set outside the specific frequency range (PDCCH scheduling the physical shared channel of the primary cell is transmitted in the primary cell). You may.
  • PDCCH scheduling the physical shared channel of the primary cell is transmitted in the primary cell.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit information regarding the scheduling type applied to the primary cell. For example, the transmitter / receiver 120 may transmit information about one or more cells to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted.
  • the control unit 110 controls the cell that transmits the downlink control channel that schedules the physical shared channel of the primary cell based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted. May be good.
  • the control unit 110 may control at least one of the cell to which the downlink control channel (or PDCCH candidate) is transmitted and the search space type based on the cell to which the downlink control channel is transmitted.
  • FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmitter / receiver 220 receives information about the scheduling type applied to the primary cell. For example, the transmitter / receiver 220 may receive information about one or more cells to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted.
  • the control unit 210 determines the cell to which the downlink control channel for scheduling the physical shared channel of the primary cell is transmitted, based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted. You may.
  • the cell that schedules the upstream shared channel of the primary cell and the cell that schedules the downstream shared channel of the primary cell may be set separately.
  • the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell, the first scheduling type and the second scheduling type are applied at the same time. May be done.
  • the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell
  • the first scheduling type and the second scheduling type are set. It may be switched and applied.
  • the primary cell and the other cell are at least one in the same cell group, the same timing advance group, the same numerology, and the same frequency range. May be applied.
  • the control unit 210 may determine at least one of the cell for monitoring the downlink control channel and the search space type based on the cell to which the downlink control channel is transmitted.
  • control unit 210 may not be required to monitor the downlink control channel in the UE-specific search space of the primary cell (or the downlink control channel in the UE-specific search space) when the downlink control channel is transmitted in the secondary cell. You may control not to monitor). In this case, the control unit 210 may monitor the downlink control channel in the common search space of the primary cell.
  • control unit 210 may control to monitor the downlink control channel in the primary cell and the secondary cell when the downlink control channel is transmitted in at least the secondary cell. Further, the control unit 210 may determine or assume that a plurality of downlink control channels will not be detected in at least one of the same downlink control channel monitoring occasion, the same slot, and the overlapping time domain. Alternatively, the control unit 210 detects a plurality of downlink control channels that schedule the physical shared channels of the primary cell, and when the physical shared channels scheduled for each downlink control channel are included in the predetermined range, the terminal capability and each physical unit. The physical shared channel to be transmitted may be determined based on at least one of the shared channel priorities.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier Component Carrier (CC)
  • CC Component Carrier
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a reception unit that receives information related to the scheduling type applied to a primary cell; and a control unit that, on the basis of at least one of the information related to the scheduling type and a frequency range in which a physical shared channel of the primary cell is transmitted, determines a cell in which a downlink control channel that schedules the physical shared channel of the primary cell is transmitted.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。 In the existing LTE system (for example, 3GPP Rel.8-14), the user terminal (UE: User Equipment) is based on the downlink control information (DCI: Downlink Control Information, DL assignment, etc.) from the base station. , Controls the reception of downlink shared channels (for example, PDSCH: Physical Downlink Shared Channel). Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
 また、既存のLTEシステムでは、複数のセル(又は、CC)が設定されたUEに対して、プライマリセル(又はセカンダリセル)の下り制御チャネルを用いて他のセカンダリセルのスケジュールを行うクロスキャリアスケジューリングがサポートされている。 Further, in the existing LTE system, cross-carrier scheduling is performed for a UE in which a plurality of cells (or CCs) are set by scheduling other secondary cells using the downlink control channel of the primary cell (or secondary cell). Is supported.
 既存システムでは、クロスキャリアスケジューリングを適用する場合、プライマリセルはセカンダリセルをスケジュールするセルとしてのみ機能する構成となっている。他セルをスケジュールするセルは、スケジューリングセルと呼ばれ、他セルからスケジュールされるセルは、スケジュールドセル又は非スケジュールセルと呼ばれてもよい。 In the existing system, when cross-carrier scheduling is applied, the primary cell is configured to function only as the cell that schedules the secondary cell. A cell that schedules another cell is called a scheduling cell, and a cell that is scheduled from another cell may be called a scheduled cell or an unscheduled cell.
 将来の無線通信システム(例えば、Rel.17以降)では、プライマリセルがスケジュールドセルとなる構成もサポート又は許容されることが検討されている。例えば、プライマリセルの物理共有チャネルのスケジューリングをセカンダリセルが行う、つまり、プライマリセルの物理共有チャネルをスケジュールする下り制御チャネル(又は、下り制御情報)がセカンダリセルで送信されることが想定される。 In future wireless communication systems (for example, Rel.17 or later), it is being considered that a configuration in which the primary cell is a scheduled cell is also supported or allowed. For example, it is assumed that the secondary cell schedules the physical shared channel of the primary cell, that is, the downlink control channel (or downlink control information) that schedules the physical shared channel of the primary cell is transmitted in the secondary cell.
 しかし、プライマリセルがスケジュールドセルとなる場合に、クロスキャリアスケジューリング(クロスセルスケジューリングとも呼ぶ)をどのように制御するかについては、まだ十分に検討されていない。 However, how to control cross-carrier scheduling (also called cross-selling scheduling) when the primary cell becomes a scheduled cell has not yet been sufficiently examined.
 そこで、本開示は、プライマリセルが他セルからスケジュールされる場合であっても通信を適切に制御できる端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling communication even when the primary cell is scheduled from another cell.
 本開示の一態様に係る端末は、プライマリセルに適用されるスケジューリングタイプに関する情報を受信する受信部と、前記スケジューリングタイプに関する情報及び前記プライマリセルの物理共有チャネルが送信される周波数範囲の少なくとも一つに基づいて、前記プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信されるセルを判断する制御部と、を有することを特徴とする。 A terminal according to one aspect of the present disclosure is at least one of a receiver that receives information about a scheduling type applied to a primary cell and a frequency range in which information about the scheduling type and the physical shared channel of the primary cell are transmitted. Based on the above, it is characterized by having a control unit for determining a cell to which a downlink control channel for scheduling a physically shared channel of the primary cell is transmitted.
 本開示の一態様によれば、プライマリセルが他セルからスケジュールされる場合であっても通信を適切に制御することができる。 According to one aspect of the present disclosure, communication can be appropriately controlled even when the primary cell is scheduled from another cell.
図1は、既存システムにおけるクロスキャリアスケジューリングの一例を示す図である。FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system. 図2は、既存システムにおけるクロスキャリアスケジューリング設定情報の一例を示す図である。FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system. 図3は、第1の態様に係るクロスキャリアスケジューリングの一例を示す図である。FIG. 3 is a diagram showing an example of cross-carrier scheduling according to the first aspect. 図4は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 4 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図5は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 5 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図6は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 6 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図7は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 7 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図8は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 8 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図9は、第2の態様に係るクロスキャリアスケジューリングの一例を示す図である。FIG. 9 is a diagram showing an example of cross-carrier scheduling according to the second aspect. 図10は、第2の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 10 is a diagram showing another example of cross-carrier scheduling according to the second aspect. 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図12は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment. 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
<クロスキャリアスケジューリング>
 既存のLTEシステムでは、複数のセル(又は、CC)が設定されたUEに対して、プライマリセルの下り制御チャネル(例えば、PDCCH)を用いてセカンダリセルの物理共有チャネルのスケジュールを行うクロスキャリアスケジューリング(CCS)がサポートされている。物理共有チャネルは、例えば、下り共有チャネル(例えば、PDSCH)及び上り共有チャネル(例えば、PUSCH)の少なくとも一つであってもよい。また、セカンダリセルが他のセカンダリセルをスケジュールしてもよい。
<Cross-carrier scheduling>
In the existing LTE system, cross-carrier scheduling that schedules the physical shared channel of the secondary cell using the downlink control channel (for example, PDCCH) of the primary cell for the UE in which multiple cells (or CCs) are set. (CCS) is supported. The physical shared channel may be, for example, at least one of a downlink shared channel (for example, PDSCH) and an uplink shared channel (for example, PUSCH). Also, the secondary cell may schedule another secondary cell.
 ネットワーク(例えば、基地局)は、クロスキャリアスケジューリングをUEに設定する場合、下り制御情報(例えば、DCI)に含まれる3ビットのCIF(Carrier Indicator Field)を用いて、当該DCIでスケジュールされるセルを指定してもよい。UEは、受信したDCI(又は、PDCCH)に含まれるCIFに基づいて、当該DCIでスケジュールされる物理共有チャネルの送信又は受信を制御(又は、DCIにより物理共有チャネルがスケジュールされるセルを判断)する。 When the network (for example, a base station) sets cross-carrier scheduling in the UE, the cell scheduled in the DCI using the 3-bit CIF (Carrier Indicator Field) included in the downlink control information (for example, DCI). May be specified. The UE controls the transmission or reception of the physically shared channel scheduled by the DCI based on the CIF contained in the received DCI (or PDCCH) (or determines the cell by which the physical shared channel is scheduled by the DCI). To do.
 図1は、クロスキャリアスケジューリングを適用する場合の一例を示す図である。図1では、CC#1(例えば、セカンダリセル)で送信されるPDSCH及びPUSCHの少なくとも一つ(以下、PDSCH/PUSCHとも記す)の割当てを指示する下り制御情報(DCI#1)を、別のCC#0(例えば、プライマリセル)のPDCCHで送信する。この際、CC#1のPDCCHで送信される下り制御情報(DCI#1)がどのCC(CC0又はCC1)のPDSCH/PUSCHの割当てを指示する情報であるかを識別するために、キャリア識別子(CI:Carrier Indicator)を付加したDCI構成が適用される。 FIG. 1 is a diagram showing an example in the case of applying cross-carrier scheduling. In FIG. 1, the downlink control information (DCI # 1) instructing the allocation of at least one of PDSCH and PUSCH (hereinafter, also referred to as PDSCH / PUSCH) transmitted in CC # 1 (for example, a secondary cell) is different. It is transmitted by PDCCH of CC # 0 (for example, primary cell). At this time, in order to identify which CC (CC0 or CC1) PDSCH / PUSCH allocation is indicated by the downlink control information (DCI # 1) transmitted by the PDCCH of CC # 1, the carrier identifier (DCI # 1) A DCI configuration with CI: Carrier Indicator) is applied.
 既存システムでは、クロスキャリアスケジューリングが適用される場合、DCIに3ビットのキャリア識別子用のフィールド(CIF)が設定され、当該DCIでスケジュールされるCC(又は、セル)をUEに通知する。UEは、DCIに含まれるCIFに基づいて、所定CCにおけるPDSCHの受信処理又はPUSCHの送信処理を行う。 In the existing system, when cross-carrier scheduling is applied, a field (CIF) for a 3-bit carrier identifier is set in the DCI, and the CC (or cell) scheduled in the DCI is notified to the UE. The UE performs a PDSCH reception process or a PUSCH transmission process in a predetermined CC based on the CIF included in the DCI.
 あるセル(又は、CC)に対してクロスキャリアスケジューリングが設定又は適用される場合を想定する。かかる場合、当該セルにクロスキャリアスケジューリングが設定又は適用される旨の情報と、どのセルからスケジューリングされるかに関する情報がUEに通知されてもよい。このような、クロスキャリアスケジューリングの適用有無に関する情報と、スケジューリングセル(例えば、CIFを送信する)セルに関する情報は、スケジューリングされるセル(例えば、スケジュールドセル)の上位レイヤシグナリング(例えば、RRCシグナリング)として、基地局からUEに通知されてもよい。 Assume that cross-carrier scheduling is set or applied to a certain cell (or CC). In such a case, the UE may be notified of information that cross-carrier scheduling is set or applied to the cell and information about from which cell the scheduling is performed. Such information regarding whether or not cross-carrier scheduling is applied and information regarding a scheduling cell (for example, a cell that transmits a CIF) are used as higher layer signaling (for example, RRC signaling) of the scheduled cell (for example, scheduled cell). , The base station may notify the UE.
 ここで、他セル(CC)のPDSCH/PUSCHの割当てを制御(又は、CIFを含むDCIを送信)するセルは、スケジューリングセル(Scheduling Cell)又はスケジューリングするセルと呼ばれてもよい。また、クロスキャリアスケジューリングが設定されるセル(例えば、CIFに基づいてスケジューリングされるセル)は、スケジュールドセル(Scheduled Cell)又はスケジューリングされるセルと呼ばれてもよい。 Here, the cell that controls the allocation of PDSCH / PUSCH of another cell (CC) (or transmits DCI including CIF) may be called a scheduling cell (Scheduling Cell) or a scheduling cell. Further, a cell in which cross-carrier scheduling is set (for example, a cell scheduled based on CIF) may be referred to as a scheduled cell (Scheduled Cell) or a scheduled cell.
 図1に示すクロスキャリアスケジューリングでは、スケジューリングセルがCell#0(CC#0)に相当し、スケジュールドセルがCell#1(CIF=1に相当)に相当する場合を示している。 The cross-carrier scheduling shown in FIG. 1 shows a case where the scheduling cell corresponds to Cell # 0 (CC # 0) and the scheduled cell corresponds to Cell # 1 (corresponding to CIF = 1).
 UEは、スケジューリングセルで送信されるPDCCH(又は、DCI)に含まれる3ビットのCIF値に対応するインデックス(例えば、ServeCellIndex)に基づいてスケジュールドセルを判断する。スケジューリングセルのPDSCH/PUSCHの割当て(セルフスケジュール)を行う場合、特定のビット値のCIF(例えば、CIF=0)を含むDCIが送信されてもよい。 The UE determines the scheduled cell based on the index (for example, ServeCellIndex) corresponding to the 3-bit CIF value included in the PDCCH (or DCI) transmitted in the scheduling cell. When allocating PDSCH / PUSCH of the scheduling cell (self-schedule), a DCI including a CIF of a specific bit value (for example, CIF = 0) may be transmitted.
 CIFの値とServeCellIndexの値との対応関係は、上位レイヤシグナリング等によって設定されてもよい。この場合、スケジューリングセルのPDCCH(又は、DCI)にCIFが設定されると共に、各CIF値が対応するスケジュールドセル(CC)のインデックス(例えば、ServeCellIndex)の対応関係に関する情報が上位レイヤシグナリングで送信されてもよい。 The correspondence between the CIF value and the ServeCellIndex value may be set by higher layer signaling or the like. In this case, CIF is set in the PDCCH (or DCI) of the scheduling cell, and information on the correspondence relationship of the index (for example, ServeCellIndex) of the scheduled cell (CC) corresponding to each CIF value is transmitted by upper layer signaling. You may.
 図2は、クロスキャリアスケジューリング設定情報の一例を示す図である。なお、図2に示すIEの名称は例示にすぎず、図示するものに限られない。図2に示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)には、自セルのスケジューリングに関する情報(own)又は他セルによるスケジューリング(クロスキャリアスケジューリング)に関する情報(other)のいずれかが含まれてもよい。 FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information. The names of IE shown in FIG. 2 are merely examples, and are not limited to those shown in the drawings. As shown in FIG. 2, the cross-carrier scheduling setting information (CrossCarrierSchedulingConfig) may include either information regarding scheduling of the own cell (own) or information regarding scheduling by another cell (cross-carrier scheduling) (other). Good.
 自セルのスケジューリングに関する情報(own)としては、CIFの存在有無を示す情報(cif-Presence)が含まれていてもよい。cif-Presenceがtrueの場合、当該セル(スケジューリングセル)のCIF値は0に設定されてもよい。スケジューリングセルで送信されるDCIのCIF値が0の場合、UEは、セルフキャリアスケジューリングであると判断してもよい。 The information (own) regarding the scheduling of the own cell may include information (cif-Presence) indicating the presence or absence of CIF. When cif-Presence is true, the CIF value of the cell (scheduling cell) may be set to 0. If the CIF value of DCI transmitted in the scheduling cell is 0, the UE may determine that it is self-carrier scheduling.
 他セルによるスケジューリングに関する情報(other)としては、DCIをシグナリングするセルの識別子(セルインデックス、スケジューリングセルID、schedulingCellId)が含まれてもよい。例えば、schedulingCellIdにより、どのセルがDL割当て及びULグラントをシグナルするかをUEに指示する。また、スケジューリングセルにおいて使用される当該セル(スケジュールドセル)のCIF値の値(cif-InSchedulingCell)がotherに含まれていてもよい。 The information (other) related to scheduling by other cells may include a cell identifier (cell index, scheduling cell ID, schedulingCellId) that signals DCI. For example, schedulingCellId tells the UE which cell signals DL allocation and UL grant. Further, the CIF value (cif-InSchedulingCell) of the cell (scheduled cell) used in the scheduling cell may be included in other.
 UEは、共通サーチスペース(CSS:Common Search Space)のPDCCH(又は、DCI)を復号する際には、CIFがないものと仮定して復号を行ってもよい。つまり、UEは、CIFが設定される場合、UE固有サーチスペース(USS:UE specific Search Space)においてCIFが設定される制御チャネルを復号し、共通サーチスペースにおいてCIFが設定されない制御チャネルを復号する。 When decoding the PDCCH (or DCI) of the common search space (CSS: Common Search Space), the UE may perform the decoding on the assumption that there is no CIF. That is, when the CIF is set, the UE decodes the control channel in which the CIF is set in the UE specific search space (USS: UE specific Search Space), and decodes the control channel in which the CIF is not set in the common search space.
 将来の無線通信システム(例えば、Rel.16、Rel.17又はRel.18以降)においてもクロスキャリアスケジューリングがサポートされることが想定される。既存システムでは、プライマリセルに対してクロスキャリアスケジューリングは設定されない構成となっている。つまり、プライマリセルは常にスケジューリングセルとなり、自セルで送信されるPDCCH(又は、DCI)でスケジュールされる(例えば、セルフキャリアスケジューリングが適用される)。 It is expected that future wireless communication systems (for example, Rel.16, Rel.17 or Rel.18 or later) will also support cross-carrier scheduling. In the existing system, cross-carrier scheduling is not set for the primary cell. That is, the primary cell is always a scheduling cell and is scheduled by the PDCCH (or DCI) transmitted in the own cell (for example, self-carrier scheduling is applied).
 一方で、将来の無線通信システムでは、ダイナミックスペクトル共有(Dynamic Spectrum Shareing(DSS))を実現するために、セカンダリセルの下り制御チャネル(又は、DCI)を利用してプライマリセルの物理共有チャネルをスケジューリングすることが検討されている。言い換えると、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCHがサポートされることが検討されている。 On the other hand, in future wireless communication systems, in order to realize dynamic spectrum sharing (DSS), the physical sharing channel of the primary cell is scheduled by using the downlink control channel (or DCI) of the secondary cell. Is being considered. In other words, support is being considered for PDCCH in the secondary cell that schedules the physical shared channel in the primary cell.
 しかし、プライマリセルがスケジュールドセルとなる場合に、クロスキャリアスケジューリングをどのように制御するかが問題となる。例えば、セカンダリセルで送信される下り制御チャネル(又は、DCI)を用いてプライマリセルの物理共有チャネルのスケジューリングを行う場合、プライマリセルに設定されるスケジューリングタイプ等をどのように制御するかが問題となる。あるいは、プライマリセルの物理共有チャネルのスケジューリングを行うPDCCHのモニタ等をどのように制御するかが問題となる。 However, when the primary cell becomes a scheduled cell, how to control cross-carrier scheduling becomes a problem. For example, when scheduling the physical shared channel of the primary cell using the downlink control channel (or DCI) transmitted in the secondary cell, how to control the scheduling type set in the primary cell is a problem. Become. Alternatively, how to control the monitor of the PDCCH that schedules the physical shared channel of the primary cell becomes a problem.
 本発明者らは、セカンダリセルがプライマリセルをスケジュールするクロスキャリアスケジューリングがサポート又は許容されるケースに着目し、当該クロスキャリアスケジューリングの制御方法を検討し、本願発明を着想した。 The present inventors focused on a case where cross-carrier scheduling in which a secondary cell schedules a primary cell is supported or permitted, examined a control method for the cross-carrier scheduling, and conceived the present invention.
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施の態様に係る構成は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The configurations according to each embodiment may be applied individually or in combination.
 本実施の形態において、プライマリセルは、PCell、及びPSCell(プライマリセカンダリセル)の少なくとも一つに読み替えられてもよい。また、物理共有チャネルは、PDSCH及びPUSCHの少なくとも一つと読み替えられてもよい。また、クロスキャリアスケジューリングは、クロスセルスケジューリングと読み替えられてもよい。また、セルフキャリアスケジューリングは、セルフスケジューリングと読み替えられてもよい。 In the present embodiment, the primary cell may be read as at least one of PCell and PSCell (primary secondary cell). Further, the physical shared channel may be read as at least one of PDSCH and PUSCH. Further, cross-carrier scheduling may be read as cross-selling scheduling. Further, self-carrier scheduling may be read as self-scheduling.
 また、本実施の形態において、プライマリセルの物理共有チャネルは、プライマリセルで送信される物理共有チャネルと読み替えられてもよい。また、以下の説明では、UEがプライマリセルとセカンダリセルの2セル(又は、2CC)でクロスキャリアスケジューリングを適用する場合を示すが、適用可能なセル数は2個に限られず3個以上であってもよい。 Further, in the present embodiment, the physical shared channel of the primary cell may be read as the physical shared channel transmitted by the primary cell. Further, in the following description, a case where the UE applies cross-carrier scheduling in two cells (or 2CC) of a primary cell and a secondary cell is shown, but the number of applicable cells is not limited to two but is three or more. You may.
(第1の態様)
 第1の態様では、プライマリセルに適用されるスケジューリングタイプに基づいて、プライマリセルの物理共有チャネルをスケジュールするセルを制御する場合の一例について説明する。
(First aspect)
In the first aspect, an example of controlling a cell that schedules a physical shared channel of the primary cell based on a scheduling type applied to the primary cell will be described.
 プライマリセルに対するクロスキャリアスケジューリングをサポートするUEに対して、ネットワーク(例えば、基地局)は、以下の動作1-1~動作1-3の少なくとも一つをUEに設定してもよい。なお、プライマリセルに対するクロスキャリアスケジューリングをサポートするUEは、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCHをサポートするUEと読み替えられてもよい。 For a UE that supports cross-carrier scheduling for the primary cell, the network (for example, a base station) may set at least one of the following operations 1-1 to 1-3 in the UE. The UE that supports cross-carrier scheduling for the primary cell may be read as the UE that supports the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell.
<動作1-1>
 基地局は、プライマリセルに対して、他セルからスケジューリングされる第1のスケジューリングタイプを設定し、自セルでスケジュールを行う第2のスケジューリングタイプを設定しなくてもよい。第1のスケジューリングタイプは、クロスキャリアスケジューリングであり、第2のスケジューリングタイプは、セルフキャリアスケジューリングであってもよい。
<Operation 1-1>
The base station does not have to set the first scheduling type scheduled from other cells for the primary cell and the second scheduling type for scheduling in its own cell. The first scheduling type may be cross-carrier scheduling and the second scheduling type may be self-carrier scheduling.
 基地局は、プライマリセルに対して設定又は適用されるスケジューリングタイプに関する情報をUEに通知してもよい。動作1-1において、基地局は、プライマリセルに対して、クロスキャリアスケジューリングのみを設定してもよい。この場合、基地局は、スケジューリングタイプに関する情報として、プライマリセルの物理共有チャネルをスケジュールするPDCCHが送信される1以上の他セルに関する情報を送信してもよい。 The base station may notify the UE of information about the scheduling type set or applied to the primary cell. In operation 1-1, the base station may set only cross-carrier scheduling for the primary cell. In this case, the base station may transmit information about one or more other cells to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted as the information regarding the scheduling type.
 また、スケジューリングタイプに関する情報は、プライマリセルをスケジュールするスケジューリングセルのインデックスに関する情報、及びDCIの所定フィールドでプライマリセルを指定する際のインデックスに関する情報の少なくとも一つが含まれていてもよい。スケジューリングタイプに関する情報は、上位レイヤシグナリング及びDCIの少なくとも一つを利用して基地局からUEに通知又は設定されてもよい。 Further, the information regarding the scheduling type may include at least one of the information regarding the index of the scheduling cell that schedules the primary cell and the information regarding the index when the primary cell is specified in the predetermined field of DCI. Information about the scheduling type may be notified or set from the base station to the UE using at least one of higher layer signaling and DCI.
 UEは、スケジューリングタイプに関する情報に基づいて、プライマリセルをスケジュールするスケジューリングセル(例えば、セカンダリセル)を判断してもよい。これにより、UEは、プライマリセルの物理共有チャネルをスケジュールするPDCCHが送信されるセルを判断し、当該PDCCHの受信を適切に行うことができる(図3参照)。 The UE may determine the scheduling cell (eg, secondary cell) to schedule the primary cell based on the information about the scheduling type. As a result, the UE can determine the cell to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted, and can appropriately receive the PDCCH (see FIG. 3).
 図3は、プライマリセル(CC#0)をスケジュールするスケジューリングセルがCC#1となる場合のクロスキャリアスケジューリングの一例を示す図である。ここでは、CC#1で送信されるPDCCH(又は、DCI)を利用してCC#0のPDSCHとPUSCHをスケジュールする場合を示している。また、CC#1の物理共有チャネルは、セルフキャリアスケジューリングされてもよい。 FIG. 3 is a diagram showing an example of cross-carrier scheduling when the scheduling cell for scheduling the primary cell (CC # 0) is CC # 1. Here, the case where the PDSCH (or DCI) transmitted by CC # 1 is used to schedule the PDSCH and PUSCH of CC # 0 is shown. Further, the physically shared channel of CC # 1 may be self-carrier scheduled.
 プライマリセルのPDSCHをスケジュールするセル(又は、当該PDCCHをスケジュールするPDCCH(又は、DCI)が送信されるセル)と、プライマリセルのPUSCHをスケジュールするセルは、同じセルであってもよい(図3参照)。プライマリセルのPDSCHとPUSCHをスケジュールするセルを共通とする場合、UEがプライマリセル用にPDCCHのモニタを行うセルを少なくすることができる。 The cell that schedules the PDSCH of the primary cell (or the cell to which the PDCCH (or DCI) that schedules the PDCCH is transmitted) and the cell that schedules the PUSCH of the primary cell may be the same cell (FIG. 3). reference). When the PDSCH of the primary cell and the cell for scheduling the PUSCH are shared, the number of cells for which the UE monitors the PDCCH for the primary cell can be reduced.
 あるいは、プライマリセルのPDSCHをスケジュールするセルと、プライマリセルのPUSCHをスケジュールするセルは、独立して(例えば、異なるセルに)設定されてもよい(図4参照)。例えば、図4に示すように、プライマリセルのPDSCHをスケジュールする第1のセカンダリセル(例えば、CC#1)と、プライマリセルのPUSCHをスケジュールする第2のセカンダリセル(例えば、CC#2)が設定されてもよい。 Alternatively, the cell that schedules the PDSCH of the primary cell and the cell that schedules the PUSCH of the primary cell may be set independently (for example, in different cells) (see FIG. 4). For example, as shown in FIG. 4, a first secondary cell (eg, CC # 1) that schedules the PDSCH of the primary cell and a second secondary cell (eg, CC # 2) that schedules the PUSCH of the primary cell It may be set.
 かかる場合、UEは、第1のセカンダリセルにおいてプライマリセルのPDSCHをスケジュールするPDCCH(例えば、DCIフォーマット1_1)が送信され、第2のセカンダリセルにおいてプライマリセルのPUSCHをスケジュールするPDCCH(例えば、DCIフォーマット0_1)が送信されると想定して受信処理を制御してもよい。 In such a case, the UE transmits a PDCCH (for example, DCI format 1-11) that schedules the PDSCH of the primary cell in the first secondary cell, and schedules a PUSCH of the primary cell in the second secondary cell (for example, DCI format). The reception process may be controlled on the assumption that 0-1) is transmitted.
 プライマリセルのPDSCHとPUSCHをスケジュールするセルを別々に設定することを許容することにより、プライマリセルのPDCCHとPUSCHのスケジューリングを行うセルを柔軟に制御することができる。 By allowing the PDSCH and PUSCH cells of the primary cell to be set separately, it is possible to flexibly control the cells that schedule the PDCCH and PUSCH of the primary cell.
 なお、プライマリセルがスケジュールドセルとして設定される場合、当該プライマリセルは、他のセカンダリセルの物理共有チャネルをスケジュールするスケジューリングセルとして設定されない構成としてもよい。あるいは、プライマリセルがスケジュールドセルとして設定される場合、当該プライマリセルは、他のセカンダリセルの物理共有チャネルをスケジュールするスケジューリングセルとして設定されることが許容されてもよい。 When the primary cell is set as a scheduled cell, the primary cell may not be set as a scheduling cell for scheduling the physical shared channel of another secondary cell. Alternatively, if the primary cell is configured as a scheduled cell, it may be allowed to be configured as a scheduling cell that schedules the physical shared channels of other secondary cells.
 また、プライマリセルをスケジュールするスケジューリングセルとなるセカンダリセルは、他セルからスケジューリングされない(又は、スケジュールドセルとならない)構成としてもよい。つまり、プライマリセルをスケジュールするスケジューリングセルは、自セルの物理共有チャネルを自セルのPDCCHでスケジュールする(セルフキャリアスケジューリングを適用する)構成としてもよい。 Further, the secondary cell, which is the scheduling cell for scheduling the primary cell, may be configured not to be scheduled (or not to be a scheduled cell) from other cells. That is, the scheduling cell that schedules the primary cell may have a configuration in which the physical shared channel of the own cell is scheduled by the PDCCH of the own cell (self-carrier scheduling is applied).
<動作1-2>
 基地局は、プライマリセルに対して、他セルからスケジューリングされる第1のスケジューリングタイプ(例えば、クロスキャリアスケジューリング)は設定せず、自セルでスケジュールを行う第2のスケジューリングタイプ(例えば、セルフキャリアスケジューリング)を設定してもよい。
<Operation 1-2>
The base station does not set the first scheduling type (for example, cross-carrier scheduling) scheduled from other cells for the primary cell, but schedules in its own cell for the second scheduling type (for example, self-carrier scheduling). ) May be set.
 基地局は、プライマリセルに対して設定又は適用されるスケジューリングタイプに関する情報をUEに通知してもよい。動作1-2において、基地局は、プライマリセルに対して、セルフキャリアスケジューリングのみを設定してもよい。この場合、基地局は、スケジューリングタイプに関する情報として、プライマリセルの物理共有チャネルが当該プライマリセルのPDCCHでスケジューリングされる(例えば、セルフキャリアスケジューリングを行う)ことを示す情報を送信してもよい。 The base station may notify the UE of information about the scheduling type set or applied to the primary cell. In operation 1-2, the base station may set only self-carrier scheduling for the primary cell. In this case, the base station may transmit information regarding the scheduling type indicating that the physical shared channel of the primary cell is scheduled by the PDCCH of the primary cell (for example, self-carrier scheduling is performed).
 UEは、スケジューリングタイプに関する情報に基づいて、プライマリセルがセカンダリセルでスケジュールされない(又は、セルフスケジュールされる)と想定してもよい(図5参照)。図5では、プライマリセル(CC#0)の物理共有チャネルを当該CC#0で送信されるPDCCH(又は、DCI)でスケジュールされる場合を示している。 The UE may assume that the primary cell is not scheduled (or self-scheduled) in the secondary cell based on the information about the scheduling type (see Figure 5). FIG. 5 shows a case where the physical shared channel of the primary cell (CC # 0) is scheduled by the PDCCH (or DCI) transmitted in the CC # 0.
 この場合、UEは、プライマリセルをスケジュールするPDCCH(又は、DCI)が当該プライマリセル(CC#0)で送信されると判断して、PDCCH(又は、DCI)の受信処理を制御してもよい。 In this case, the UE may determine that the PDCCH (or DCI) that schedules the primary cell is transmitted in the primary cell (CC # 0) and control the reception processing of the PDCCH (or DCI). ..
 なお、プライマリセルは、他のセカンダリセルの物理共有チャネルをスケジュールするスケジューリングセルとして設定されてもよい。 The primary cell may be set as a scheduling cell for scheduling the physical shared channel of another secondary cell.
<動作1-3>
 基地局は、プライマリセルに対して、他セルからスケジューリングされる第1のスケジューリングタイプ(例えば、クロスキャリアスケジューリング)と、自セルでスケジュールを行う第2のスケジューリングタイプ(例えば、セルフキャリアスケジューリング)の両方を設定(又は、enabled、アクティベーション)してもよい。
<Operation 1-3>
The base station has both a first scheduling type (for example, cross-carrier scheduling) scheduled from another cell for the primary cell and a second scheduling type (for example, self-carrier scheduling) for scheduling in its own cell. May be set (or enabled, activated).
 基地局は、プライマリセルに対して設定又は適用されるスケジューリングタイプに関する情報をUEに通知してもよい。基地局は、スケジューリングタイプに関する情報として、プライマリセルの物理共有チャネルをスケジュールするPDCCHが送信される1以上の他セルに関する情報を送信してもよい。 The base station may notify the UE of information about the scheduling type set or applied to the primary cell. As information about the scheduling type, the base station may transmit information about one or more other cells to which the PDCCH that schedules the physical shared channel of the primary cell is transmitted.
 スケジューリングタイプに関する情報は、プライマリセルをスケジュールするスケジューリングセルのインデックスに関する情報、及びDCIの所定フィールドでプライマリセルを指定する際のインデックスに関する情報の少なくとも一つが含まれていてもよい。スケジューリングタイプに関する情報は、上位レイヤシグナリング等を利用して基地局からUEに通知又は設定されてもよい。 The information regarding the scheduling type may include at least one of the information regarding the index of the scheduling cell that schedules the primary cell and the information regarding the index when the primary cell is specified in the predetermined field of DCI. Information on the scheduling type may be notified or set from the base station to the UE by using higher layer signaling or the like.
 あるいは、プライマリセルに対して、セルフキャリアスケジューリング(初期設定)に加えて、セカンダリセルからスケジュールされるクロスキャリアスケジューリングが追加的に設定又は行われてもよい。例えば、UEは、プライマリセルに対してデフォルト(又は、初期のスケジューリングタイプ)としてセルフキャリアスケジューリングが適用されると想定し、クロスキャリアスケジューリングが設定された場合にクロスキャリアスケジューリングが適用されると想定してもよい。 Alternatively, in addition to self-carrier scheduling (initial setting), cross-carrier scheduling scheduled from the secondary cell may be additionally set or performed for the primary cell. For example, the UE assumes that self-carrier scheduling is applied to the primary cell as the default (or initial scheduling type), and that cross-carrier scheduling is applied when cross-carrier scheduling is configured. You may.
 クロスキャリアスケジューリングは、上位レイヤシグナリング及び下り制御情報の少なくとも一つを利用して基地局からUEに設定されてもよい。UEは、クロスキャリアスケジューリングが設定されない場合には、セルフキャリアスケジューリングが適用されると想定して、プライマリセルにおいて当該プライマリセルをスケジュールするPDCCHの受信を制御してもよい。 Cross-carrier scheduling may be set from the base station to the UE by using at least one of higher layer signaling and downlink control information. The UE may control the reception of the PDCCH that schedules the primary cell in the primary cell, assuming that the self-carrier scheduling is applied when the cross-carrier scheduling is not set.
 クロスキャリアスケジューリングが設定された場合、UEは、クロスキャリアスケジューリングとセルフキャリアスケジューリングの少なくとも一方を適用してもよい。セルフキャリアスケジューリングとクロスキャリアスケジューリングの両方が設定される場合、(又は、クロスキャリアスケジューリングが追加的に設定される場合)、UEは、以下のオプション1及びオプション2の少なくとも一つを適用してもよい。 When cross-carrier scheduling is set, the UE may apply at least one of cross-carrier scheduling and self-carrier scheduling. If both self-carrier scheduling and cross-carrier scheduling are configured (or if cross-carrier scheduling is additionally configured), the UE may apply at least one of Option 1 and Option 2 below. Good.
 なお、以下のオプションは、セルフキャリアスケジューリングとクロスキャリアスケジューリングがそれぞれ別々に設定される構成において、2つのスケジューリングタイプが設定(又は、enabled、アクティベーション)された場合に適用してもよい。 Note that the following options may be applied when two scheduling types are set (or enabled, activated) in a configuration in which self-carrier scheduling and cross-carrier scheduling are set separately.
<オプション1>
 プライマリセルに対するセルフキャリアスケジューリングとクロスキャリアスケジューリングが同時にサポート(又は、適用)されてもよい。
<Option 1>
Self-carrier scheduling and cross-carrier scheduling for the primary cell may be supported (or applied) at the same time.
 例えば、プライマリセルのPDSCHに対して第1のスケジューリングタイプ(例えば、クロスキャリアスケジューリング)が適用され、プライマリセルのPUSCHに対して第2のスケジューリングタイプ(例えば、セルフキャリアスケジューリング)が適用されてもよい。UEは、プライマリセルのPDSCHをスケジュールするPDCCH(又は、DCI)が他のセルで送信され、プライマリセルのPUSCHをスケジュールするPDCCH(又は、DCI)が当該プライマリセルで送信されると想定してもよい(図6参照)。 For example, a first scheduling type (eg, cross-carrier scheduling) may be applied to the PDSCH of the primary cell and a second scheduling type (eg, self-carrier scheduling) may be applied to the PUSCH of the primary cell. .. Even if the UE assumes that the PDCCH (or DCI) that schedules the PDSCH of the primary cell is transmitted in another cell and the PDCCH (or DCI) that schedules the PUSCH of the primary cell is transmitted in the primary cell. Good (see Figure 6).
 図6では、プライマリセル(CC#0)のPDSCHがセカンダリセル(CC#1)のPDCCHでスケジュールされ、CC#0のPUSCHが当該CC#0のPDCCHでスケジュールされる場合を示している。 FIG. 6 shows a case where the PDSCH of the primary cell (CC # 0) is scheduled by the PDCCH of the secondary cell (CC # 1), and the PUSCH of CC # 0 is scheduled by the PDCCH of the CC # 0.
 あるいは、プライマリセルのPDSCHに対してセルフケジューリングが適用され、プライマリセルのPUSCHに対してクロスキャリアケジューリングが適用されてもよい。UEは、プライマリセルのPDSCHをスケジュールするPDCCH(又は、DCI)が当該プライマリセルで送信され、プライマリセルのPUSCHをスケジュールするPDCCHが他セルで送信されると想定してもよい。 Alternatively, self-causing may be applied to the PDSCH of the primary cell, and cross-carrier scheduling may be applied to the PUSCH of the primary cell. The UE may assume that the PDCCH (or DCI) that schedules the PDSCH of the primary cell is transmitted in the primary cell, and the PDCCH that schedules the PUSCH of the primary cell is transmitted in another cell.
 このように、物理共有チャネルのタイプに基づいてセルフキャリアスケジューリングとクロスキャリアスケジューリングの両方を適用することを許容することにより、プライマリセルをスケジュールするセルを柔軟に制御することができる。 In this way, by allowing both self-carrier scheduling and cross-carrier scheduling to be applied based on the type of physical shared channel, it is possible to flexibly control the cell that schedules the primary cell.
 あるいは、1又は複数の送受信ポイントに対するPDSCHとPUSCHに対してセルフキャリアスケジューリングとクロスキャリアスケジューリングの両方がサポートされてもよい。例えば、ある送受信ポイントから送信されるPDSCHにセルフキャリアスケジューリングとクロスキャリアスケジューリングが適用されてもよい。 Alternatively, both self-carrier scheduling and cross-carrier scheduling may be supported for PDSCH and PUSCH for one or more transmission / reception points. For example, self-carrier scheduling and cross-carrier scheduling may be applied to PDSCH transmitted from a certain transmission / reception point.
 このように、セルフキャリアスケジューリングとクロスキャリアスケジューリングの両方を同時に適用することを許容することにより、物理共有チャネルのスケジューリングを柔軟に制御することができる。 In this way, by allowing both self-carrier scheduling and cross-carrier scheduling to be applied at the same time, it is possible to flexibly control the scheduling of the physical shared channel.
<オプション2>
 プライマリセルに対するセルフキャリアスケジューリングとクロスキャリアスケジューリングが動的に切り替えられる構成(例えば、dynamic switching)がサポート又は適用されてもよい。
<Option 2>
A configuration (eg, dynamic switching) that dynamically switches between self-carrier scheduling and cross-carrier scheduling for the primary cell may be supported or applied.
 セルフキャリアスケジューリングとクロスキャリアスケジューリングの切り替えは、セカンダリセルの構成(例えば、configuration)に関連するスケジューリングに基づいて制御されてもよい。例えば、UEは、DCIフォーマット、サーチスペース、及び制御リソースセットの構成(例えば、CORESET configurations)の少なくとも一つに基づいて切り替えを判断してもよい。 Switching between self-carrier scheduling and cross-carrier scheduling may be controlled based on the scheduling related to the configuration of the secondary cell (for example, configuration). For example, the UE may determine the switch based on at least one of the DCI format, search space, and control resource set configurations (eg, CORESET configurations).
 例えば、UEは、少なくともセカンダリセル(CC#1)において、所定のDCIを受信した場合に、プライマリセルに対して適用されるスケジューリングタイプが切り替わる又は変更すると判断してもよい(図7参照)。図7では、プライマリセルに適用するスケジューリングタイプがセルフキャリアスケジューリングからクロスキャリアスケジューリングに切り替わる場合を示している。 For example, the UE may determine that, at least in the secondary cell (CC # 1), when a predetermined DCI is received, the scheduling type applied to the primary cell is switched or changed (see FIG. 7). FIG. 7 shows a case where the scheduling type applied to the primary cell is switched from self-carrier scheduling to cross-carrier scheduling.
 ここでは、セルフキャリアスケジューリングからクロスキャリアスケジューリングに切り替わる場合を示しているが、クロスキャリアスケジューリングからセルフキャリアスケジューリングに切り替えられてもよい。また、スケジューリングタイプの切り替え動作において、タイマーが適用されてもよい。例えば、第1のスケジューリングタイプから第2のスケジューリングタイプに切り替えられた際にタイマーを起動し、タイマーの満了に応じて再度第1のスケジューリングタイプを適用する構成としてもよい。 Here, the case of switching from self-carrier scheduling to cross-carrier scheduling is shown, but cross-carrier scheduling may be switched to self-carrier scheduling. Further, a timer may be applied in the scheduling type switching operation. For example, the timer may be started when the first scheduling type is switched to the second scheduling type, and the first scheduling type may be applied again when the timer expires.
 例えば、セカンダリセル(CC#1)のDCIフォーマットが所定のDCIフォーマットであり、サーチスペースがコモンサーチスペース(CSS)の場合、セルフキャリアスケジューリングが適用され、それ以外の場合にクロスキャリアスケジューリングが適用されてもよい。所定のDCIフォーマットは、フォールバック用のDCIフォーマット(例えば、DCIフォーマット0_0又は1_0)であってもよい。これにより、セカンダリセル(CC#1)がディアクティブ化される場合でも、プライマリセルの物理共有チャネルのスケジューリングを継続することができる。 For example, if the DCI format of the secondary cell (CC # 1) is the predetermined DCI format and the search space is the common search space (CSS), self-carrier scheduling is applied, otherwise cross-carrier scheduling is applied. You may. The predetermined DCI format may be a DCI format for fallback (eg DCI format 0_0 or 1_0). As a result, even if the secondary cell (CC # 1) is deactivated, the scheduling of the physical shared channel of the primary cell can be continued.
 あるいは、プライマリセル(CC#0)及びセカンダリセル(CC#1)の少なくとも一方のDCIに基づいて、プライマリセル(CC#0)のデフォルトのスケジューリングタイプであるセルフキャリアスケジューリングからクロスキャリアスケジューリングに切り替えられてもよい。 Alternatively, the default scheduling type of the primary cell (CC # 0), self-carrier scheduling, can be switched to cross-carrier scheduling based on the DCI of at least one of the primary cell (CC # 0) and the secondary cell (CC # 1). You may.
 あるいは、セルフキャリアスケジューリングとクロスキャリアスケジューリングの切り替えは、セカンダリセル又はプライマリセルに設定される帯域幅部分(BWP)に基づいて制御されてもよい。例えば、セカンダリセルにおいてアクティブ化しているBWP(active BWP)に基づいて、切り替えが制御されてもよい。 Alternatively, switching between self-carrier scheduling and cross-carrier scheduling may be controlled based on the bandwidth portion (BWP) set in the secondary cell or the primary cell. For example, switching may be controlled based on the BWP (active BWP) activated in the secondary cell.
 セカンダリセル(CC#1)が2つのBWP(例えば、BWP#0とBWP#1)を有する、又は設定される場合を想定する。UEは、BWP#0がアクティブ化される(又は、BWP#0でPDCCHが送信される)場合、プライマリセルにクロスキャリアスケジューリングが適用されると判断してもよい。この場合、UEは、CC#0をスケジュールするPDCCHがCC#1において送信されると想定して受信を制御してもよい(図8参照)。 It is assumed that the secondary cell (CC # 1) has or is set to have two BWPs (for example, BWP # 0 and BWP # 1). The UE may determine that cross-carrier scheduling is applied to the primary cell when BWP # 0 is activated (or PDCCH is transmitted at BWP # 0). In this case, the UE may control the reception assuming that the PDCCH scheduling CC # 0 is transmitted in CC # 1 (see FIG. 8).
 一方で、UEは、BWP#1がアクティブ化される(又は、BWP#1でPDCCHが送信される)場合、プライマリセルにセルフキャリアスケジューリングが適用されると判断してもよい。この場合、UEは、CC#0をスケジュールするPDCCHがCC#0において送信されると想定して受信を制御してもよい。 On the other hand, the UE may determine that self-carrier scheduling is applied to the primary cell when BWP # 1 is activated (or PDCCH is transmitted by BWP # 1). In this case, the UE may control the reception assuming that the PDCCH scheduling CC # 0 is transmitted in CC # 0.
 あるいは、プライマリセルに対して、セルフキャリアスケジューリングとクロスキャリアスケジューリングが設定又はサポートされる場合、特定の状況(condition)又はケースにおいてのみセルフキャリアスケジューリングが適用されてもよい。例えば、UEは、以下の第1のケースにおいてクロスキャリアスケジューリングを適用し、第2のケースにおいてセルフキャリアスケジューリングを適用してもよい。第2のケースは、以下のケース1~ケース4の少なくとも一つであってもよい。 Alternatively, if self-carrier scheduling and cross-carrier scheduling are set or supported for the primary cell, self-carrier scheduling may be applied only in certain conditions or cases. For example, the UE may apply cross-carrier scheduling in the first case below and self-carrier scheduling in the second case. The second case may be at least one of the following cases 1 to 4.
[ケース1]
 スケジューリングセルとなるセカンダリセルが、休眠状態(dormancy status)又はディアクティベート状態(deactivated status)の場合、プライマリセルに対してセルフキャリアスケジューリングが適用されてもよい。UEは、フォールバック状態(fallback conditions)において、スケジューリングセルにおいて通信ができない(例えば、PDCCHの送信が制限される)場合、プライマリセルに対してセルフキャリアスケジューリングが適用されると想定してもよい。
[Case 1]
When the secondary cell to be the scheduling cell is in the dormancy status or the deactivated status, self-carrier scheduling may be applied to the primary cell. The UE may assume that self-carrier scheduling is applied to the primary cell when communication is not possible in the scheduling cell (eg, PDCCH transmission is restricted) in the fallback conditions.
 これにより、セカンダリセル(CC#1)がディアクティブ化される場合でも、プライマリセルの物理共有チャネルのスケジューリングを継続することができる。 As a result, even if the secondary cell (CC # 1) is deactivated, the scheduling of the physical shared channel of the primary cell can be continued.
[ケース2]
 衝突型のランダムアクセス手順(contention based RACH procedure)において、プライマリセルで送信されるメッセージ2及びメッセージ4の少なくとも一つについて、セルフキャリアスケジューリングが適用されてもよい。メッセージ2は、RA-RNTIでスクランブルされ、メッセージ4は、TC-RNTI又はC-RNTIでスクランブルされてもよい。
[Case 2]
In a contention based RACH procedure, self-carrier scheduling may be applied to at least one of message 2 and message 4 transmitted in the primary cell. Message 2 may be scrambled with RA-RNTI and message 4 may be scrambled with TC-RNTI or C-RNTI.
 UEは、衝突型のランダムアクセス手順において、プライマリセルで送信されるメッセージ2(例えば、PDSCH)をスケジュールするPDCCH、及びプライマリセルで送信されるメッセージ4(例えば、PDSCH)をスケジュールするPDCCHは当該プライマリセルで送信されると想定してもよい。 In a collision-type random access procedure, the UE schedules a PDCCH that schedules message 2 (for example, PDSCH) transmitted in the primary cell, and a PDCCH that schedules message 4 (for example, PDSCH) transmitted in the primary cell. It may be assumed that it is transmitted in a cell.
[ケース3]
 非衝突型のランダムアクセス手順(contention free RACH procedure)において、プライマリセルで送信されるPDCCHオーダー、メッセージ2及びメッセージ4の少なくとも一つについて、セルフキャリアスケジューリングが適用されてもよい。メッセージ2は、RA-RNTIでスクランブルされ、メッセージ4は、C-RNTIでスクランブルされてもよい。
[Case 3]
In a non-collision random access procedure (contention free RACH procedure), self-carrier scheduling may be applied to at least one of the PDCCH orders, message 2 and message 4 transmitted in the primary cell. Message 2 may be scrambled with RA-RNTI and message 4 may be scrambled with C-RNTI.
 UEは、非衝突型のランダムアクセス手順において、プライマリセルで送信されるPDCCHオーダー、メッセージ2(例えば、PDSCH)をスケジュールするPDCCH、及びプライマリセルで送信されるメッセージ4(例えば、PDSCH)をスケジュールするPDCCHは当該プライマリセルで送信されると想定してもよい。 The UE schedules a PDCCH order sent in the primary cell, a PDCCH scheduling message 2 (eg PDSCH), and a message 4 sent in the primary cell (eg PDSCH) in a non-collision random access procedure. PDCCH may be assumed to be transmitted in the primary cell.
[ケース4]
 プライマリセルにおけるコモンサーチスペースで送信される所定DCIフォーマットについて、セルフキャリアスケジューリングが適用されてもよい。所定DCIフォーマットは、例えば、DCIフォーマット0_0又は1_0であってもよい。また、所定DCIフォーマットは、C-RNTI、CS-RNTI、及びMCS-C-RNTIの少なくとも一つでスクランブルされてもよい。
[Case 4]
Self-carrier scheduling may be applied to a given DCI format transmitted in the common search space in the primary cell. The predetermined DCI format may be, for example, DCI format 0_0 or 1_0. Also, the predetermined DCI format may be scrambled with at least one of C-RNTI, CS-RNTI, and MCS-C-RNTI.
 UEは、コモンサーチスペースで送信されるPDCCH(又は、DCI)は、プライマリセルで送信されると想定して当該PDCCHの受信を制御してもよい。 The UE may control the reception of the PDCCH on the assumption that the PDCCH (or DCI) transmitted in the common search space is transmitted in the primary cell.
 なお、プライマリセルに対するクロスキャリアスケジューリング(又は、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCH)は、周波数範囲毎に設定有無が制御されてもよい。例えば、第1の周波数範囲(例えば、FR1)と、第2の周波数範囲(例えば、FR2)に対して、プライマリセルに対するクロスキャリアスケジューリングが別々に設定されてもよい。なお、周波数範囲は、バンド単位、CC単位、又はBWP単位で設定されてもよい。周波数範囲は、周波数領域と読み替えられてもよい。 Note that the cross-carrier scheduling for the primary cell (or the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell) may be controlled for each frequency range. For example, cross-carrier scheduling for the primary cell may be set separately for the first frequency range (eg, FR1) and the second frequency range (eg, FR2). The frequency range may be set in band units, CC units, or BWP units. The frequency range may be read as the frequency domain.
 この場合、基地局は、周波数帯域毎にプライマリセルに対するクロスキャリアスケジューリングの設定有無を上位レイヤシグナリング等を利用してUEに通知してもよい。UEは、基地局から通知された情報(例えば、スケジューリングタイプに関する情報等)に基づいて各周波数帯域におけるクロスキャリアスケジューリングの適用有無を判断してもよい。 In this case, the base station may notify the UE of whether or not cross-carrier scheduling is set for the primary cell for each frequency band by using upper layer signaling or the like. The UE may determine whether or not cross-carrier scheduling is applied in each frequency band based on the information notified from the base station (for example, information on the scheduling type).
 あるいは、プライマリセルに対するクロスキャリアスケジューリングは、所定の周波数範囲でのみサポートされる構成としてもよい。例えば、第1の周波数範囲(例えば、FR1)に対してプライマリセルに対するクロスキャリアスケジューリングの設定がサポートされ、第2の周波数範囲(例えば、FR2)に対してプライマリセルに対するクロスキャリアスケジューリングの設定がサポートされない構成としてもよい。 Alternatively, cross-carrier scheduling for the primary cell may be configured to be supported only in a predetermined frequency range. For example, cross-carrier scheduling settings for the primary cell are supported for the first frequency range (eg FR1) and cross-carrier scheduling settings for the primary cell are supported for the second frequency range (eg FR2). The configuration may not be performed.
 プライマリセルに対するクロスキャリアスケジューリングの設定がサポートされない周波数領域にプライマリセルが設定される場合、UEは、プライマリセルにセルフキャリアスケジューリングが適用される(プライマリセルの物理共有チャネルをスケジュールするPDCCHがプライマリセルで送信される)と判断してもよい。 If the primary cell is configured in a frequency domain where the configuration of cross-carrier scheduling for the primary cell is not supported, the UE applies self-carrier scheduling to the primary cell (the PDCCH that schedules the physical shared channel of the primary cell is the primary cell. It may be determined that it will be transmitted).
(第2の態様)
 第2の態様では、プライマリセルに対してクロスキャリアスケジューリングが設定される場合におけるUE動作(例えば、PDCCHのモニタ等)の一例について説明する。なお、プライマリセルに対してクロスキャリアスケジューリングが設定される場合は、第1の態様の動作1-1及び動作1-3の少なくとも一方が想定されてもよい。以下の説明において、PDCCHは、PDCCH候補と読み替えられてもよい。
(Second aspect)
In the second aspect, an example of UE operation (for example, monitoring of PDCCH) when cross-carrier scheduling is set for the primary cell will be described. When cross-carrier scheduling is set for the primary cell, at least one of operations 1-1 and operations 1-3 of the first aspect may be assumed. In the following description, PDCCH may be read as a PDCCH candidate.
 UEは、プライマリセルの物理共有チャネルをスケジュールするPDCCHが送信される1以上のセルに関する情報を受信し、プライマリセルにクロスキャリアスケジューリングが設定又は適用されるか否かを判断してもよい。UEは、PDCCHが送信されるセル(又は、セルの種別)に基づいて、PDCCHのモニタを行うセル及びPDCCHのモニタを行うサーチスペースタイプの少なくとも一つを決定してもよい。 The UE may receive information about one or more cells to which the PDCCH scheduling the physical shared channel of the primary cell is transmitted and determine whether cross-carrier scheduling is set or applied to the primary cell. The UE may determine at least one of the cell that monitors the PDCCH and the search space type that monitors the PDCCH, based on the cell (or cell type) to which the PDCCH is transmitted.
 プライマリセルに対してクロスキャリアスケジューリングが設定された場合(又は、プライマリセルをスケジュールするPDCCHが少なくともセカンダリセルで送信される場合)、UEは以下の動作2-1~動作2-2の少なくとも一つを行ってもよい。 When cross-carrier scheduling is set for the primary cell (or when the PDCCH that schedules the primary cell is transmitted in at least the secondary cell), the UE has at least one of the following operations 2-1 to 2-2. May be done.
<動作2-1>
 UEは、プライマリセル(CC#0)のUE固有サーチスペース(例えば、USS)におけるPDCCHのモニタは要求されなくてもよい(図9参照)。この場合、UEは、プライマリセル(CC#0)をスケジュールするスケジューリングセル(CC#1)に設定されるUE固有サーチスペースにおいてPDCCHのモニタを行う。また、UEは、CC#0のUE固有サーチスペースにおけるPDCCHのモニタは行わないように制御してもよい。これにより、PDCCHが送信されるスケジューリングセルにおいて当該PDCCHのモニタを選択的に行うことができる。
<Operation 2-1>
The UE may not be required to monitor the PDCCH in the UE-specific search space (eg, USS) of the primary cell (CC # 0) (see FIG. 9). In this case, the UE monitors the PDCCH in the UE-specific search space set in the scheduling cell (CC # 1) that schedules the primary cell (CC # 0). Further, the UE may control not to monitor the PDCCH in the UE-specific search space of CC # 0. As a result, the PDCCH can be selectively monitored in the scheduling cell to which the PDCCH is transmitted.
 なお、UEは、プライマリセル(CC#0)にクロスキャリアスケジューリングが適用される場合であっても、CC#0に設定されるコモンサーチスペースにおいてPDCCHのモニタを行うように制御してもよい。これにより、プライマリセルの物理共有チャネルのスケジューリング以外に利用されるPDCCHの検出を適切に行うことができる。 Note that the UE may be controlled to monitor PDCCH in the common search space set in CC # 0 even when cross-carrier scheduling is applied to the primary cell (CC # 0). As a result, it is possible to appropriately detect the PDCCH used for purposes other than scheduling the physical shared channel of the primary cell.
<動作2-2>
 UEは、プライマリセル(CC#0)と、当該プライマリセル(CC#0)をスケジュールするスケジューリングセル(CC#1)にそれぞれ設定されるUE固有サーチスペースにおいてPDCCHのモニタを行ってもよい(図10参照)。例えば、プライマリセルに対して、クロスキャリアスケジューリングとセルフキャリアスケジューリングの両方が設定される場合、UEは、プライマリセル(CC#0)と、スケジューリングセルとなるセカンダリセル(CC#1)においてPDCCHのモニタを行ってもよい。
<Operation 2-2>
The UE may monitor the PDCCH in the UE-specific search space set in the primary cell (CC # 0) and the scheduling cell (CC # 1) that schedules the primary cell (CC # 0), respectively (FIG. 10). For example, when both cross-carrier scheduling and self-carrier scheduling are set for the primary cell, the UE monitors the PDCCH in the primary cell (CC # 0) and the secondary cell (CC # 1) that becomes the scheduling cell. May be done.
 プライマリセルとスケジューリングセルの両方をモニタする場合、プライマリセルの物理共有チャネルをスケジューリングするPDCCHは、プライマリセルとスケジューリングセルのUE固有サーチスペース内でそれぞれ送信されてもよい。この場合、プライマリセル及びスケジューリングセルの少なくとも一つのUE固有サーチスペース内で送信される複数のPDCCHが、所定範囲又は所定領域で送信されないように制御されてもよい。 When monitoring both the primary cell and the scheduling cell, the PDCCH that schedules the physical shared channel of the primary cell may be transmitted in the UE-specific search space of the primary cell and the scheduling cell, respectively. In this case, a plurality of PDCCHs transmitted in at least one UE-specific search space of the primary cell and the scheduling cell may be controlled so as not to be transmitted in a predetermined range or a predetermined area.
 例えば、複数のPDCCHが同一のPDCCHモニタリングオケージョンで送信されないように制御されてもよい。あるいは、複数のPDCCHが時間領域でオーバーラップしないように送信が制御されてもよい。あるいは、複数のPDCCHが同一のスロットで送信されないように制御されてもよい。 For example, it may be controlled so that a plurality of PDCCHs are not transmitted in the same PDCCH monitoring occasion. Alternatively, transmission may be controlled so that the plurality of PDCCHs do not overlap in the time domain. Alternatively, it may be controlled so that a plurality of PDCCHs are not transmitted in the same slot.
 UEは、所定範囲又は所定領域において複数のPDCCHを検出しないと想定してPDCCHの受信を制御してもよい。 The UE may control the reception of PDCCH on the assumption that a plurality of PDCCHs are not detected in a predetermined range or a predetermined area.
 また、UEは、プライマリセル及びスケジューリングセルの少なくとも一つのUE固有サーチスペース内で送信される複数のPDCCHを検出し、各PDCCHでそれぞれスケジュールされる複数の物理共有チャネルが所定範囲又は所定領域にスケジュールされるケースも生じる。例えば、当該複数の物理共有チャネルが、時間領域でオーバーラップするケースが生じる。あるいは、当該複数の物理共有チャネルが、同じスロットにスケジューリングされるケースが生じる。 In addition, the UE detects a plurality of PDCCHs transmitted in at least one UE-specific search space of the primary cell and the scheduling cell, and a plurality of physical shared channels scheduled in each PDCCH are scheduled in a predetermined range or a predetermined area. In some cases, it is done. For example, there may be cases where the plurality of physically shared channels overlap in the time domain. Alternatively, there may be cases where the plurality of physically shared channels are scheduled in the same slot.
 かかる場合、UEは、複数の物理共有チャネル(例えば、PDSCH)を受信する能力、又は複数の物理共有チャネル(例えば、PUSCH)を送信する能力を具備する場合、複数の物理共有チャネルの送信又は受信を行ってもよい。 In such a case, if the UE has the ability to receive a plurality of physical shared channels (eg, PDSCH) or transmit a plurality of physical shared channels (eg, PUSCH), the UE transmits or receives a plurality of physical shared channels. May be done.
 それ以外の場合(例えば、所定のUE能力を具備しない場合)、UEは、所定条件に基づいて複数の物理共有チャネルのうち特定の物理共有チャネル(例えば、1つの物理共有チャネル)を受信又は送信するように制御してもよい。所定条件は、物理共有チャネルに対応するトラフィック優先度(traffic priority)、及びプロセスタイムラインの制約(processing timeline constricts)の少なくとも一つであってもよい。 Otherwise (for example, if it does not have a predetermined UE capability), the UE receives or transmits a specific physical shared channel (for example, one physical shared channel) among a plurality of physical shared channels based on predetermined conditions. It may be controlled to do so. The predetermined condition may be at least one of the traffic priority corresponding to the physical shared channel and the processing timeline constraints.
 例えば、低遅延及び高信頼性が要求される物理共有チャネル(例えば、URLLC)の優先度を他の物理共有チャネル(例えば、eMBB)の優先度より高く設定してもよい。物理共有チャネルに設定される優先度は、あらかじめ仕様で定義されてもよいし、基地局からUEに上位レイヤシグナリング等で設定されてもよい。また、PDCCHを受信してから所定期間以上の期間でスケジューリングされる第1の物理共有チャネルと、所定期間より短い期間でスケジュールされる第2の物理共有チャネルが重複する場合、第1の物理共有チャネルの送信を行い、第2の物理共有チャネルの送信を行わない(例えば、ドロップする)ように制御してもよい。 For example, the priority of a physical shared channel (for example, URLLC) that requires low delay and high reliability may be set higher than the priority of another physical shared channel (for example, eMBB). The priority set in the physical shared channel may be defined in advance in the specifications, or may be set from the base station to the UE by higher layer signaling or the like. Further, when the first physical sharing channel scheduled for a period equal to or longer than a predetermined period after receiving the PDCCH and the second physical sharing channel scheduled for a period shorter than the predetermined period overlap, the first physical sharing It may be controlled so that the channel is transmitted and the second physically shared channel is not transmitted (for example, dropped).
 あるいは、所定条件は、スケジューリングタイプであってもよい。例えば、クロスキャリアスケジューリングでスケジュールされた物理共有チャネルと、セルフキャリアスケジューリングでスケジュールされた物理共有チャネルの一方を優先して送信するように制御してもよい。 Alternatively, the predetermined condition may be a scheduling type. For example, one of the physically shared channel scheduled by cross-carrier scheduling and the physically shared channel scheduled by self-carrier scheduling may be controlled to be preferentially transmitted.
 このように、プライマリセルにクロスキャリアスケジューリングが適用される場合にPDCCHに対するUEのモニタを上記のように制御することにより、当該PDCCHのモニタを適切に行うことができる。 In this way, when cross-carrier scheduling is applied to the primary cell, by controlling the UE monitor for the PDCCH as described above, the PDCCH can be appropriately monitored.
(第3の態様)
 第3の態様では、セカンダリセルがプライマリセルをスケジュールする(プライマリセルに対してクロスキャリアスケジューリングが設定される)場合において、プライマリセルとスケジューリングセルとなるセカンダリセルとの関係について説明する。
(Third aspect)
In the third aspect, when the secondary cell schedules the primary cell (cross-carrier scheduling is set for the primary cell), the relationship between the primary cell and the secondary cell serving as the scheduling cell will be described.
 セカンダリセルが、プライマリセルの物理共有チャネルのスケジューリングを行う場合、少なくとも以下の条件(又は、制限又はサポート)1~条件4の少なくとも一つが設定されてもよい。 When the secondary cell schedules the physical shared channel of the primary cell, at least one of the following conditions (or restrictions or support) 1 to 4 may be set.
<条件1>
 スケジューリングセルとなるセカンダリセルと、スケジュールドセルとプライマリセルは、少なくとも以下の条件1-1~条件1-4の少なくとも一つを有していてもよい。
<Condition 1>
The secondary cell serving as the scheduling cell, and the scheduled cell and the primary cell may have at least one of the following conditions 1-1 to 1-4.
[条件1-1]
 セカンダリセルとプライマリセルは、同じセルグループ(例えば、MCG,SCG,PUCCHセルグループの少なくとも一つ)に属することが要求されてもよい。これにより、クロスキャリアスケジューリングの動作が複雑になることを抑制することができる。
[Condition 1-1]
The secondary cell and the primary cell may be required to belong to the same cell group (for example, at least one of the MCG, SCG, and PUCCH cell groups). As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
[条件1-2]
 セカンダリセルとプライマリセルは、同じタイミングアドバンスグループ(TAG)に属することが要求されてもよい。これにより、クロスキャリアスケジューリングを行うセル(例えば、プライマリセルとセカンダリセル)間の遅延の差が大きくなることを抑制することができる。
[Condition 1-2]
The secondary cell and the primary cell may be required to belong to the same Timing Advance Group (TAG). As a result, it is possible to suppress a large difference in delay between cells that perform cross-carrier scheduling (for example, a primary cell and a secondary cell).
[条件1-3]
 セカンダリセルとプライマリセルは、同じニューメロロジー(例えば、サブキャリア間隔)及びサイクリックプレフィックス(CP)の少なくとも一つを適用することが要求されてもよい。これにより、クロスキャリアスケジューリングの動作が複雑になることを抑制することができる。
[Condition 1-3]
The secondary cell and the primary cell may be required to apply at least one of the same numerology (eg, subcarrier spacing) and cyclic prefix (CP). As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
[条件1-4]
 セカンダリセルとプライマリセルは、同じ周波数範囲を利用又は同じ周波数範囲に設定されることが要求されてもよい。これにより、クロスキャリアスケジューリングの動作が複雑になることを抑制することができる。
[Condition 1-4]
The secondary cell and the primary cell may be required to use the same frequency range or be set to the same frequency range. As a result, it is possible to prevent the cross-carrier scheduling operation from becoming complicated.
<条件2>
 プライマリセルで送信される物理共有チャネル(PDSCH及びPUSCHの少なくとも一つ)のうち、所定のRNTIが適用される物理共有チャネルに対して、セカンダリセルからクロスキャリアスケジュールされてもよい。所定のRNTIが適用される物理共有チャネルは、所定のRNTIでCRCスクランブルされるPDCCH(又は、DCI)でスケジュールされる物理共有チャネル、又は所定のRNTIでスクランブルされる物理共有チャネルであってもよい。
<Condition 2>
Of the physical shared channels (at least one of PDSCH and PUSCH) transmitted in the primary cell, the physical shared channel to which the predetermined RNTI is applied may be cross-carrier scheduled from the secondary cell. The physical shared channel to which the predetermined RNTI is applied may be a physical shared channel scheduled by PDCCH (or DCI) which is CRC scrambled by the predetermined RNTI, or a physical shared channel which is scrambled by the predetermined RNTI. ..
 所定のRNTIは、C-RNTI,MCS-C-RNTI,CS-RNTI,及びSP-CSI-RNTIの少なくとも一つであってもよい。 The predetermined RNTI may be at least one of C-RNTI, MCS-C-RNTI, CS-RNTI, and SP-CSI-RNTI.
<条件3>
 プライマリセルにおけるセミパーシステントスケジュール(SPS)のアクティベーション及びディアクティベーション(又は、リリース)の少なくとも一つを、スケジューリングセルとなるセカンダリセルから指示すること(cross carrier activation/deactivation(Release))がサポートされてもよい。例えば、UEは、スケジューリングセルとなるセカンダリセルから送信されるDCIに基づいて、セミパーシステントスケジューリングのアクティベーション/ディアクティベーションを制御してもよい。
<Condition 3>
Support for instructing at least one of the activation and deactivation (or release) of the semi-persistent schedule (SPS) in the primary cell from the secondary cell that will be the scheduling cell (cross carrier activation / deactivation (Release)). May be done. For example, the UE may control the activation / deactivation of semi-persistent scheduling based on the DCI transmitted from the secondary cell that is the scheduling cell.
 あるいは、プライマリセルにおける設定グラントベースのPUSCH送信(例えば、タイプ2)アクティベーション及びディアクティベーション(又は、リリース)を、スケジューリングセルとなるセカンダリセルから指示すること(cross carrier activation/deactivation(Release))がサポートされてもよい。例えば、UEは、スケジューリングセルとなるセカンダリセルから送信されるDCIに基づいて、設定グラントベースのPUSCH送信のアクティベーション/ディアクティベーションを制御してもよい。 Alternatively, the setting grant-based PUSCH transmission (for example, type 2) activation and deactivation (or release) in the primary cell is instructed from the secondary cell that becomes the scheduling cell (cross carrier activation / deactivation (Release)). May be supported. For example, the UE may control the activation / deactivation of configuration grant-based PUSCH transmissions based on the DCI transmitted from the secondary cell that is the scheduling cell.
<条件4>
 プライマリセルにおけるチャネル状態情報の報告(例えば、セミパーシステントCSI報告(SPS-CSI報告))のアクティベーション及びディアクティベーション(又は、リリース)の少なくとも一つを、スケジューリングセルとなるセカンダリセルから指示すること(cross carrier activation/deactivation(Release))がサポートされてもよい。例えば、UEは、スケジューリングセルとなるセカンダリセルから送信されるDCIに基づいて、CSI報告のアクティベーション/ディアクティベーションを制御してもよい。
<Condition 4>
At least one of activation and deactivation (or release) of channel state information reporting in the primary cell (eg, semi-persistent CSI reporting (SPS-CSI reporting)) is instructed from the secondary cell that is the scheduling cell. That (cross carrier activation / deactivation (Release)) may be supported. For example, the UE may control the activation / deactivation of CSI reporting based on the DCI transmitted from the secondary cell that is the scheduling cell.
 このように、プライマリセルの物理共有チャネルのスケジュールをセカンダリセルから行う場合、当該セカンダリセルで送信されるPDCCH(又は、DCI)を利用して、所定動作のアクティベーション/ディアクティベーションを指示してもよい。これにより、クロスキャリアスケジューリングを行うPDCCHを利用して所定動作のアクティベーション/ディアクティベーションも指示することができる。 In this way, when scheduling the physical shared channel of the primary cell from the secondary cell, the PDCCH (or DCI) transmitted in the secondary cell is used to instruct activation / deactivation of a predetermined operation. May be good. As a result, activation / deactivation of a predetermined operation can also be instructed using PDCCH that performs cross-carrier scheduling.
(第4の態様)
 第4の態様では、プライマリセルに対するクロスキャリアスケジューリングの設定に対するUE能力(例えば、UE capability)について説明する。なお、当該UE能力は、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCHに対するUE能力と読み替えられてもよい。
(Fourth aspect)
A fourth aspect describes UE capability (eg, UE capability) for setting cross-carrier scheduling for the primary cell. The UE capability may be read as the UE capability for the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell.
 プライマリセルと、1以上のセカンダリセルと、を含むセルグループのために、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCHに対する所定UE能力が定義されてもよい。UEは、プライマリセルと1以上のセカンダリセルを含む所定セルグループが設定された場合、当該所定UE能力をサポートするか否かをネットワーク(例えば、基地局)に報告してもよい。 For a cell group that includes a primary cell and one or more secondary cells, a predetermined UE capability for the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell may be defined. When a predetermined cell group including a primary cell and one or more secondary cells is set, the UE may report to the network (for example, a base station) whether or not to support the predetermined UE capability.
 所定UE能力は、プライマリセルの異なる物理共有チャネル毎に定義されてもよい。例えば、プライマリセルのPDSCHをスケジュールするセカンダリセルのPDCCHをサポートするか否かに関するUE能力(例えば、PDSCH用のUE能力)と、プライマリセルのPUSCHをスケジュールするセカンダリセルのPDCCHをサポートするか否かに関するUE能力(例えば、PUSCH用のUE能力)が別々に定義されてもよい。 The predetermined UE capability may be defined for each different physical shared channel of the primary cell. For example, the UE capability for supporting the PDCCH of the secondary cell that schedules the PDSCH of the primary cell (eg, the UE capability for PDSCH) and the PDCCH of the secondary cell that schedules the PUSCH of the primary cell. UE capabilities with respect to (eg, UE capabilities for PUSCH) may be defined separately.
 UEは、PDSCH用のUE能力情報と、PUSCH用のUE能力情報を別々に基地局に報告してもよい。この場合、サポートするUE能力情報のみを報告してもよい。 The UE may separately report the UE capability information for PDSCH and the UE capability information for PUSCH to the base station. In this case, only the supported UE capability information may be reported.
 また、所定UE能力は、周波数範囲(又は周波数領域とも呼ぶ)毎に設定されてもよい。UEは、第1の周波数範囲(例えば、FR1)に対するUE能力情報と、第2の周波数範囲(例えば、FR2)に対するUE能力情報をそれぞれ報告してもよい。 Further, the predetermined UE capability may be set for each frequency range (or also referred to as a frequency domain). The UE may report UE capability information for the first frequency range (eg, FR1) and UE capability information for the second frequency range (eg, FR2), respectively.
 プライマリセルに対するクロスキャリアスケジューリングの設定(又は、プライマリセルの物理共有チャネルをスケジュールするセカンダリセルのPDCCH)は、特定の周波数範囲でのみサポートされてもよい。プライマリセルが特定の周波数範囲に設定される場合、UEは、所定UE能力情報を報告するように制御してもよい。 The setting of cross-carrier scheduling for the primary cell (or the PDCCH of the secondary cell that schedules the physical shared channel of the primary cell) may be supported only in a specific frequency range. If the primary cell is set to a particular frequency range, the UE may control to report predetermined UE capability information.
 プライマリセルが特定の周波数範囲以外に設定される場合、UEは、所定UE能力情報を報告しなくてもよい。また、UEは、プライマリセルが特定の周波数範囲以外に設定される場合、プライマリセルにセルフキャリアスケジューリングが適用される(プライマリセルの物理共有チャネルをスケジュールするPDCCHがプライマリセルで送信される)と判断してもよい。 When the primary cell is set outside the specific frequency range, the UE does not have to report the predetermined UE capability information. The UE also determines that self-carrier scheduling is applied to the primary cell when the primary cell is set outside the specific frequency range (PDCCH scheduling the physical shared channel of the primary cell is transmitted in the primary cell). You may.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the base station (gNB) of NR is MN, and the base station (eNB) of LTE (E-UTRA) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. Further, the Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request (for example). Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble to establish a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 12 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 送受信部120は、プライマリセルに適用されるスケジューリングタイプに関する情報を送信してもよい。例えば、送受信部120は、プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信される1以上のセルに関する情報を送信してもよい。 The transmission / reception unit 120 may transmit information regarding the scheduling type applied to the primary cell. For example, the transmitter / receiver 120 may transmit information about one or more cells to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted.
 制御部110は、スケジューリングタイプに関する情報及びプライマリセルの物理共有チャネルが送信される周波数範囲の少なくとも一つに基づいて、プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルを送信するセルを制御してもよい。 The control unit 110 controls the cell that transmits the downlink control channel that schedules the physical shared channel of the primary cell based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted. May be good.
 制御部110は、下り制御チャネルが送信されるセルに基づいて、下り制御チャネル(又は、PDCCH候補)が送信されるセル及びサーチスペースタイプの少なくとも一つを制御してもよい。 The control unit 110 may control at least one of the cell to which the downlink control channel (or PDCCH candidate) is transmitted and the search space type based on the cell to which the downlink control channel is transmitted.
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 13 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. When the transform precoding is enabled for a channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 送受信部220は、プライマリセルに適用されるスケジューリングタイプに関する情報を受信する。例えば、送受信部220は、プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信される1以上のセルに関する情報を受信してもよい。 The transmitter / receiver 220 receives information about the scheduling type applied to the primary cell. For example, the transmitter / receiver 220 may receive information about one or more cells to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted.
 制御部210は、スケジューリングタイプに関する情報及びプライマリセルの物理共有チャネルが送信される周波数範囲の少なくとも一つに基づいて、プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信されるセルを判断してもよい。 The control unit 210 determines the cell to which the downlink control channel for scheduling the physical shared channel of the primary cell is transmitted, based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted. You may.
 プライマリセルの上り共有チャネルをスケジュールするセルと、プライマリセルの下り共有チャネルをスケジュールするセルとが別々に設定されてもよい。 The cell that schedules the upstream shared channel of the primary cell and the cell that schedules the downstream shared channel of the primary cell may be set separately.
 プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプと自セルでスケジュールを行う第2のスケジューリングタイプとが設定される場合、第1のスケジューリングタイプと第2のスケジューリングタイプが同時に適用されてもよい。 When the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell, the first scheduling type and the second scheduling type are applied at the same time. May be done.
 あるいは、プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプと自セルでスケジュールを行う第2のスケジューリングタイプとが設定される場合、第1のスケジューリングタイプと第2のスケジューリングタイプが切り替えて適用されてもよい。 Alternatively, when the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell, the first scheduling type and the second scheduling type are set. It may be switched and applied.
 プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプが設定される場合、プライマリセルと他セルは、同じセルグループ、同じタイミングアドバンスグループ、同じニューメロロジー及び同じ周波数範囲の少なくとも一つが適用されてもよい。 When a first scheduling type scheduled from another cell is set for the primary cell, the primary cell and the other cell are at least one in the same cell group, the same timing advance group, the same numerology, and the same frequency range. May be applied.
 制御部210は、下り制御チャネルが送信されるセルに基づいて、下り制御チャネルのモニタを行うセル及びサーチスペースタイプの少なくとも一つを決定してもよい。 The control unit 210 may determine at least one of the cell for monitoring the downlink control channel and the search space type based on the cell to which the downlink control channel is transmitted.
 例えば、制御部210は、下り制御チャネルがセカンダリセルで送信される場合、プライマリセルのUE固有サーチスペースにおける下り制御チャネルのモニタは要求されなくてもよい(又は、UE固有サーチスペースにおける下り制御チャネルのモニタを行わないように制御してもよい)。この場合、制御部210は、プライマリセルのコモンサーチスペースにおいて下り制御チャネルのモニタを行ってもよい。 For example, the control unit 210 may not be required to monitor the downlink control channel in the UE-specific search space of the primary cell (or the downlink control channel in the UE-specific search space) when the downlink control channel is transmitted in the secondary cell. You may control not to monitor). In this case, the control unit 210 may monitor the downlink control channel in the common search space of the primary cell.
 あるいは、制御部210は、下り制御チャネルが少なくともセカンダリセルで送信される場合、プライマリセルとセカンダリセルにおいて下り制御チャネルのモニタを行うように制御してもよい。また、制御部210は、同じ下り制御チャネルモニタリングオケージョン、同じスロット、及び重複する時間領域の少なくとも一つにおいて、複数の下り制御チャネルを検出しないと判断又は想定してもよい。あるいは、制御部210は、プライマリセルの物理共有チャネルをスケジュールする複数の下り制御チャネルを検出し、各下り制御チャネルでそれぞれスケジュールされる物理共有チャネルが所定範囲に含まれる場合、端末能力及び各物理共有チャネルの優先度の少なくとも一つに基づいて送信する物理共有チャネルを決定してもよい。 Alternatively, the control unit 210 may control to monitor the downlink control channel in the primary cell and the secondary cell when the downlink control channel is transmitted in at least the secondary cell. Further, the control unit 210 may determine or assume that a plurality of downlink control channels will not be detected in at least one of the same downlink control channel monitoring occasion, the same slot, and the overlapping time domain. Alternatively, the control unit 210 detects a plurality of downlink control channels that schedule the physical shared channels of the primary cell, and when the physical shared channels scheduled for each downlink control channel are included in the predetermined range, the terminal capability and each physical unit. The physical shared channel to be transmitted may be determined based on at least one of the shared channel priorities.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. The "network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "judgment (decision)" such as "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。また、「想定する(assuming)」は、「適用する(applying)」と読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like. Further, "assuming" may be read as "applying".
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as an amended or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  プライマリセルに適用されるスケジューリングタイプに関する情報を受信する受信部と、
     前記スケジューリングタイプに関する情報及び前記プライマリセルの物理共有チャネルが送信される周波数範囲の少なくとも一つに基づいて、前記プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信されるセルを判断する制御部と、を有することを特徴とする端末。
    A receiver that receives information about the scheduling type applied to the primary cell, and
    A control unit that determines the cell to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted. And, a terminal characterized by having.
  2.  前記プライマリセルの上り共有チャネルをスケジュールするセルと、前記プライマリセルの下り共有チャネルをスケジュールするセルとが別々に設定されることを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the cell that schedules the uplink shared channel of the primary cell and the cell that schedules the downlink shared channel of the primary cell are set separately.
  3.  前記プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプと自セルでスケジュールを行う第2のスケジューリングタイプとが設定される場合、前記第1のスケジューリングタイプと前記第2のスケジューリングタイプが同時に適用されることを特徴とする請求項1又は請求項2に記載の端末。 When the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell, the first scheduling type and the second scheduling type The terminal according to claim 1 or 2, wherein is applied at the same time.
  4.  前記プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプと自セルでスケジュールを行う第2のスケジューリングタイプとが設定される場合、前記第1のスケジューリングタイプと前記第2のスケジューリングタイプが切り替えて適用されることを特徴とする請求項1又は請求項2に記載の端末。 When the first scheduling type scheduled from another cell and the second scheduling type scheduled in the own cell are set for the primary cell, the first scheduling type and the second scheduling type The terminal according to claim 1 or 2, wherein the terminal is switched and applied.
  5.  前記プライマリセルに対して、他セルからスケジュールされる第1のスケジューリングタイプが設定される場合、前記プライマリセルと前記他セルは、同じセルグループ、同じタイミングアドバンスグループ、同じニューメロロジー及び同じ周波数範囲の少なくとも一つが適用されることを特徴とする請求項1から請求項4のいずれかに記載の端末。 When a first scheduling type scheduled from another cell is set for the primary cell, the primary cell and the other cell have the same cell group, the same timing advance group, the same numerology, and the same frequency range. The terminal according to any one of claims 1 to 4, wherein at least one of the above is applied.
  6.  プライマリセルに適用されるスケジューリングタイプに関する情報を受信する工程と、
     前記スケジューリングタイプに関する情報及び前記プライマリセルの物理共有チャネルが送信される周波数範囲の少なくとも一つに基づいて、前記プライマリセルの物理共有チャネルをスケジュールする下り制御チャネルが送信されるセルを判断する工程と、を有することを特徴とする無線通信方法。
    The process of receiving information about the scheduling type applied to the primary cell, and
    Based on the information about the scheduling type and at least one of the frequency ranges in which the physical shared channel of the primary cell is transmitted, the step of determining the cell to which the downlink control channel that schedules the physical shared channel of the primary cell is transmitted. , A wireless communication method characterized by having.
PCT/JP2019/051014 2019-12-25 2019-12-25 Terminal and wireless communication method WO2021130940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566668A JP7371123B2 (en) 2019-12-25 2019-12-25 Terminal and wireless communication method
PCT/JP2019/051014 WO2021130940A1 (en) 2019-12-25 2019-12-25 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051014 WO2021130940A1 (en) 2019-12-25 2019-12-25 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021130940A1 true WO2021130940A1 (en) 2021-07-01

Family

ID=76573760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051014 WO2021130940A1 (en) 2019-12-25 2019-12-25 Terminal and wireless communication method

Country Status (2)

Country Link
JP (1) JP7371123B2 (en)
WO (1) WO2021130940A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079008A1 (en) * 2011-05-02 2014-03-20 Pantech Co., Ltd. Method and apparatus for allocating resource of response control information in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079008A1 (en) * 2011-05-02 2014-03-20 Pantech Co., Ltd. Method and apparatus for allocating resource of response control information in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK: "TDM ICIC and Carrier Aggregation", 3GPP DRAFT; R2-110194 TDM ICIC AND CA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Dublin, Ireland; 20110117, 11 January 2011 (2011-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050492924 *
PANASONIC: "Cross carrier scheduling from SCC to PCC", 3GPP DRAFT; R1-103750, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Dresden, Germany; 20100628, 22 June 2010 (2010-06-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050449180 *

Also Published As

Publication number Publication date
JP7371123B2 (en) 2023-10-30
JPWO2021130940A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2020090059A1 (en) User terminal and wireless communications method
JPWO2020170449A1 (en) Terminals, wireless communication methods, base stations and systems
WO2020261510A1 (en) Terminal and wireless communication method
WO2020217408A1 (en) User terminal and wireless communication method
WO2022024378A1 (en) Terminal, wireless communication method, and base station
WO2020100787A1 (en) Terminal and wireless communication method
WO2020261389A1 (en) Terminal and wireless communication method
WO2020144869A1 (en) User terminal and wireless communication method
WO2022102605A1 (en) Terminal, wireless communication method, and base station
WO2020217514A1 (en) User terminal and wireless communication method
WO2020188821A1 (en) User terminal and wireless communication method
WO2020194741A1 (en) User terminal and wireless communication method
WO2020188644A1 (en) User terminal and wireless communication method
WO2020105180A1 (en) User terminal and wireless communication method
JPWO2020170450A1 (en) User terminal and wireless communication method
WO2022024377A1 (en) Terminal, radio communication method, and base station
WO2021152674A1 (en) Terminal, wireless communication method, and base station
WO2021130941A1 (en) Terminal and wireless communication method
WO2021090409A1 (en) Terminal and wireless communication method
WO2020222273A1 (en) User terminal and wireless communication method
WO2020202448A1 (en) User terminal and wireless communication method
WO2020188666A1 (en) User terminal and wireless communication method
WO2020183723A1 (en) User terminal and wireless communication method
WO2022074802A1 (en) Terminal, wireless communication method, and base station
WO2021176725A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957464

Country of ref document: EP

Kind code of ref document: A1