WO2021130921A1 - Transportation system, information processing system, information processing method, and recording medium - Google Patents

Transportation system, information processing system, information processing method, and recording medium Download PDF

Info

Publication number
WO2021130921A1
WO2021130921A1 PCT/JP2019/050909 JP2019050909W WO2021130921A1 WO 2021130921 A1 WO2021130921 A1 WO 2021130921A1 JP 2019050909 W JP2019050909 W JP 2019050909W WO 2021130921 A1 WO2021130921 A1 WO 2021130921A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transport
transportation
transport aircraft
processing system
Prior art date
Application number
PCT/JP2019/050909
Other languages
French (fr)
Japanese (ja)
Inventor
尭 黒羽
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021566653A priority Critical patent/JPWO2021130921A5/en
Priority to PCT/JP2019/050909 priority patent/WO2021130921A1/en
Publication of WO2021130921A1 publication Critical patent/WO2021130921A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor

Definitions

  • the present invention relates to a transportation system, an information processing system, an information processing method and a recording medium.
  • Patent Document 1 describes a subway freight transportation system that runs a freight vehicle as well as a vehicle that transports personnel.
  • a cargo handling device is arranged on a subway line for transporting personnel, and a freight vehicle as well as a vehicle for transporting personnel travels.
  • An object of the present invention is to provide a transportation system, an information processing system, an information processing method, and a recording medium capable of realizing unmanned freight transportation while ensuring high safety in view of the above-mentioned problems.
  • a generator that generates transportation instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo and transmits the transportation instruction information to the transport aircraft.
  • An information processing system having a transmission unit is provided.
  • information for generating transportation instruction information instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo and transmitting the transportation instruction information to the transport aircraft is provided.
  • a computer generates transport instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo, and the transport instruction information is used for the transport aircraft.
  • a recording medium on which a program for executing transmission is recorded is provided.
  • a tunnel laid deep underground a transport aircraft that autonomously travels in the tunnel to transport cargo, and a transport aircraft installed on the ground to the transport aircraft.
  • a base where loading work or unloading work of the cargo from the transport aircraft is performed, a transport device for transporting the transport aircraft between the tunnel and the base, and instructing the transport aircraft to transport the cargo.
  • a transportation system including an information processing system that generates transportation instruction information and transmits it to the transport aircraft is provided.
  • unmanned freight transportation can be realized while ensuring high safety.
  • FIG. 1 is a diagram showing an example of an overall configuration of a transportation system according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view showing an example of the inside of a tunnel and a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 3A is a top view showing an example of a branch point of an orbit in a transportation system according to an embodiment of the present invention.
  • FIG. 3B is a top view showing an example of a confluence of orbits in a transportation system according to an embodiment of the present invention.
  • FIG. 4A is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 4B is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 4C is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 4D is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 5A is a top view showing an example of an intersection provided on an orbit in a transportation system according to an embodiment of the present invention.
  • FIG. 5B is a top view showing an example of an intersection provided on an orbit in a transportation system according to an embodiment of the present invention.
  • FIG. 6A is a top view showing an example of a loading / unloading base including an above-ground portion of a vertical transport device in a transport system according to an embodiment of the present invention.
  • FIG. 6B is a top view showing an example of an underground space including an underground portion of a vertical transport device in a transport system according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a system configuration of a transportation system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of processing in freight transportation by a transport aircraft in a transportation system according to an embodiment of the present invention.
  • FIG. 9 is a flowchart showing an example of processing of each part in the transportation system according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of an information processing system according to another embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a transportation system according to still another embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the overall configuration of the transportation system according to the present embodiment.
  • the transportation system 1 includes a tunnel network 10, a transport aircraft 20, a loading / unloading base 30, a vertical transport device 40, an edge server 50, a data center 60, and a central server. 70 and a communication network 80 are included.
  • the transportation system 1 is a system that realizes transportation of freight by an unmanned transport aircraft 20 which is a vehicle autonomously traveling in a tunnel network 10 in a specific area.
  • the specific area where the freight is transported by the transportation system 1 is not particularly limited, but for example, all or part of the territory of a specific country, all or part of the administrative division of a specific local government, etc. Is.
  • the freight transportation is unmanned by the transport aircraft 20 that autonomously travels in the tunnel network 10, so that the freight transportation network can be constructed without considering the traffic of people. Therefore, according to the present embodiment, it is possible to realize unmanned freight transportation while ensuring high safety.
  • the tunnel network 10 is laid underground.
  • the underground where the tunnel network 10 is laid is not particularly limited, but for example, the deep underground specified by the deep underground usage, specifically, a space deeper than 40 m underground or a depth of 10 m or more from the upper surface of the supporting ground.
  • a tunnel network 10 can be laid in the deep underground by, for example, a shield method.
  • the tunnel network 10 includes a track 104 on which the transport aircraft 20 travels, and a power line 106 that supplies electric power to the transport aircraft 20 as power. Further, the tunnel network 10 includes a wireless communication access point 108 for wireless communication with the transport aircraft 20.
  • the number of transport aircraft 20 is usually a plurality, but is not particularly limited, and may be one.
  • the transport aircraft 20 has a loading platform on which cargo to be transported is loaded. Since the tunnel network 10 on which the transport aircraft 20 travels is a dedicated transport route for the transport aircraft 20 in which vehicles such as automobiles and railroads do not travel in addition to the transport aircraft 20, it is unmanned while ensuring high safety. Freight transportation can be realized.
  • the loading / unloading base 30 is a base where cargo loading work on the transport aircraft 20 and cargo unloading work from the transport aircraft 20 are performed on the ground.
  • the loading / unloading bases 30 are installed at a plurality of locations on the ground.
  • the plurality of loading / unloading bases 30 do not necessarily have to be bases where both cargo loading work and cargo unloading work are performed.
  • the plurality of loading / unloading bases 30 may include at least a loading / unloading base 30 in which cargo loading work is performed, and at least a loading / unloading base 30 in which cargo unloading work is performed.
  • the vertical transport device 40 is installed at each loading / unloading base 30 so as to connect the tunnel network 10 and the loading / unloading base 30.
  • the vertical transport device 40 vertically transports the transport aircraft 20 traveling on the tunnel network 10 from the tunnel network 10 to the loading / unloading base 30. Further, the vertical transport device 40 vertically transports the transport aircraft 20 in which the cargo is loaded and unloaded at the loading / unloading base 30 from the loading / unloading base 30 to the tunnel network 10.
  • the transport direction of the transport aircraft 20 between the tunnel network 10 and the loading / unloading base 30 does not necessarily have to be the vertical direction. Instead of the vertical transport device 40, a transport device that transports the transport aircraft 20 in an inclined direction inclined with respect to the vertical direction can be installed between the tunnel network 10 and the loading / unloading base 30.
  • An edge server 50 is installed at the loading / unloading base 30.
  • a central server 70 is installed in the data center 60.
  • the edge server 50 and the central server 70 constitute a management system that manages the operation of the transport aircraft 20 in the transportation system 1.
  • the edge server 50 and the central server 70 are connected to the communication network 80 so as to be able to communicate with each other.
  • the wireless communication access point 108 is connected to the communication network 80.
  • the transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 and communicate with the edge server 50 and the like.
  • the communication network 80 is composed of a LAN (Local Area Network), a WAN (Wide Area Network), a mobile communication network, and the like.
  • the connection method in the communication network 80 is not limited to the wired method, but may be a wireless method.
  • FIG. 2 is a vertical cross-sectional view showing the inside of the tunnel 102 and an example of the transport aircraft 20.
  • the tunnel 102 constituting the tunnel network 10 is laid so as to form, for example, two oncoming lanes in which the traveling directions of the transport aircraft 20 are opposite to each other.
  • the lanes formed by the tunnel 102 are not limited to the two oncoming lanes, and may be, for example, four lanes with two lanes on each side.
  • a maintenance space 110 is provided inside the tunnel 102.
  • the maintenance space 110 is provided, for example, between two tunnels 102 constituting two opposite lanes. Further, in the ground, a manhole 112 that connects the ground and the maintenance space 110 is provided. Workers can enter the maintenance space 110 by getting off the manhole 112 from the ground. Further, in the maintenance space 110, the worker can move and perform maintenance and inspection work of the equipment installed in the tunnel 102, the transport aircraft 20, and the like. Since the maintenance space 110 is installed in the tunnel 102 and the manhole 112 that connects to the maintenance space 110 from the ground is installed, the operator can easily deal with the failure of the component inside the tunnel 102. Can be done. The operator can use the maintenance space 110 to repair, replace, or the like the components.
  • the maintenance space 110 may be secured to a minimum size within a range in which the operator can work. By reducing the maintenance space 110 and other spaces other than the space in which the transport aircraft 20 travels, the tunnel network 10 in which the transport aircraft 20 travels can be designed with a high degree of freedom.
  • a track 104 on which the transport aircraft 20 travels is laid on the traveling surface inside the tunnel 102.
  • One track 104 is composed of two rails 114 arranged in parallel.
  • the track width of the track 104 is not particularly limited, but for example, since the radius of passage through the curve is made smaller than that of the conventional passenger railway, the track width can be unified to be narrower than the track width for the passenger railway.
  • a more complicated tunnel network 10 can be constructed by setting the track 104 to a track width that realizes a smaller curve passing radius.
  • a power line 106 is laid as a third rail along the track 104.
  • the power line 106 supplies electric power to the transport aircraft 20 as power.
  • the transport aircraft 20 can autonomously travel on the track 104 by the electric power supplied from the power line 106.
  • the power line 106 can be provided inside the tunnel 102 by various methods as well as the method based on the third rail.
  • the power line 106 can be installed in the internal space of the tunnel 102 as an overhead electric wire.
  • a position information marker 116 for providing position information to the transport aircraft 20 is installed inside the tunnel 102.
  • the position information marker 116 is installed on a traveling surface inside the tunnel 102, for example.
  • the position information marker 116 may be installed at a plurality of points at regular distance intervals, or may be installed at a specific plurality of points.
  • the position information marker 116 records the position information that identifies the point where the position information marker 116 is installed in the tunnel network 10.
  • the position information marker 116 is not particularly limited, but is a medium on which information such as a two-dimensional code, a three-dimensional code, and a non-contact IC (Integrated Circuit) chip can be recorded.
  • the position information recorded on the position information marker 116 is read and acquired by the position information sensor 210 of the transport aircraft 20 passing through the installation point of the position information marker 116.
  • a wireless communication access point 108 capable of communicating with the transport aircraft 20 is installed inside the tunnel 102.
  • the wireless communication access point 108 is installed, for example, on the ceiling of the tunnel 102.
  • the location of the wireless communication access point 108 is not particularly limited, and an appropriate location can be selected according to the communication environment and the like.
  • the wireless communication access points 108 may be installed at a plurality of points at regular distance intervals, or may be installed at a specific plurality of points.
  • the transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 by the communication I / F 224 described later and communicate with the edge server 50 and the like.
  • the transport aircraft 20 is a vehicle with a loading platform that autonomously travels inside the tunnel 102 configured as described above.
  • the transport aircraft 20 has a vehicle unit 204 including wheels 202, a loading platform 206, a cargo container 208, and a position information sensor 210.
  • the transport aircraft 20 is a vehicle having a plurality of sets of wheels 202 such as a four-wheeled vehicle and a six-wheeled vehicle.
  • the vehicle unit 204 is configured to travel along the track 104 on the track 104 by the electric power supplied from the power line 106.
  • the vehicle unit 204 includes wheels 202 for traveling on the two rails 114 of the track 104, members and devices for traveling the transport aircraft 20 such as the actuator 218 described later.
  • the vehicle unit 204 can travel by driving the wheels 202 by a motor that is rotated by electric power.
  • the wheels 202 are configured to be able to travel only on the track 104.
  • the vehicle unit 204 may have various braking devices for decelerating or stopping the transport aircraft 20.
  • the vehicle unit 204 may have a battery for temporarily storing and using the power supplied from the power line 106.
  • the loading platform 206 is configured to load a cargo container 208 containing cargo.
  • the dimensions of the transport aircraft 20 and the dimensions of the loading platform 206 may be standardized so that containers for transportation such as truck transportation, rail transportation, and ship transportation can be loaded.
  • the dimensions of the transport aircraft 20 and the dimensions of the loading platform 206 may be standardized according to the loading platform dimensions of the 2-ton truck, the loading platform dimensions of the 4-ton truck, the loading platform dimensions of the 10-ton truck, or the dimensions of the container for shipping by ship.
  • the work efficiency of unloading and loading cargo can be improved.
  • the minimum value of the inner diameter of the tunnel 102 can be determined, so that the period of the tunnel network 10 laying work can be shortened and the work can be shortened. The cost can be reduced.
  • the cargo container 208 stores the cargo to be transported.
  • the freight container 208 is, for example, a transportation container itself for truck transportation, rail transportation, ship transportation, and the like. Further, the cargo container 208 may be dedicated to the transport aircraft 20.
  • the position information sensor 210 acquires the position information recorded on the position information marker 116 installed inside the tunnel 102.
  • the position information sensor 210 reads the position information marker 116 and acquires the position information from the position information marker 116.
  • the position information sensor 210 is provided at a position where the position information marker 116 can be read by the transport aircraft 20. For example, when the position information marker 116 is installed on the traveling surface of the tunnel 102, the position information sensor 210 is installed on the bottom surface of the vehicle unit 204 so as to face the position information marker 116.
  • the orbit 104 is provided with a branch point at which one orbit 104 branches from one orbit 104, and a confluence point where another orbit 104 joins one orbit 104.
  • the route on which the transport aircraft 20 travels can be designed with a high degree of freedom by the branching point and the merging point of the track 104.
  • FIG. 3A is a top view showing an example of a branch point of the track 104.
  • FIG. 3B is a top view showing an example of the confluence of the orbits 104.
  • the traveling direction of the transport aircraft 20 is indicated by an arrow, respectively.
  • FIGS. 3A and 3B show a branch point that branches to the left and a merging point that merges from the left when the transport aircraft 20 travels on the left side, respectively.
  • the junction and the junction are the left and right sides of the junction and the junction shown in FIGS. 3A and 3B, respectively.
  • the branch destination from the branch source track 104 is on the left side rail 114 side of the branch source track 104.
  • Orbit 104b is branched.
  • two branch rails 120 including the tongue rail are laid at the point where the transport aircraft 20 enters.
  • the two branching rails 120 are laid inside the rail 114 of the branch source track 104 and the rail 114b of the branch destination track 104b, respectively.
  • the two branch rails 120 are fixed in a state where the flange way of the tongue rail is opened so that the transport aircraft 20 can travel in both the straight direction and the branch direction.
  • guardrails 122 are laid on the side of the track 104 and the side of the track 104b at the crossing portion where the transport aircraft 20 is guided in either the straight direction or the branch direction.
  • the merging point 124 where the orbit 104c joins the merging destination orbit 104 from the left has a rail configuration in which the rail configuration of the branch point 118 is reversed. That is, at the merging point 124, two merging rails 126 are laid. The two merging rails 126 are installed inside the rails 114 of the track 104 and the rails 114c of the track 104c so as to correspond to the two branching rails 120 laid on the track 104c to branch from the track 104. ing. Further, at the confluence point 124, guardrails 128 corresponding to guardrails 122 at the branch point 118 are laid on the side of the track 104 and the side of the track 104c, respectively.
  • the branch point 118 and the confluence point 124 provided on the track 104 are only the branch point 118 that branches to the left and only the confluence point 124 that merges from the left direction, respectively. can do.
  • the branch point 118 and the confluence point 124 provided on the track 104 are only the branch point 118 that branches to the right and the confluence point 124 that merges from the right direction, respectively. Can only be.
  • the transport aircraft 20 When the branching direction and the merging direction of the branching point 118 and the merging point 124 are unified to either the left direction or the right direction in this way, the transport aircraft 20 only controls acceleration / deceleration and unidirectional branching control. It can run on the track 104. Therefore, in this case, simple control of the transport aircraft 20 can be realized.
  • FIGS. 4A to 4D are vertical cross-sectional views showing an example of branch control at the branch point 118 of the transport aircraft 20.
  • FIGS. 4B to 4D show the case of the branch point 118 branching to the left in the left-hand traffic
  • the configuration shown in FIGS. 4B to 4D shows the case of the branch point 118 branching to the right in the right-hand traffic. The left and right sides of are reversed.
  • FIG. 4A shows a vertical cross section of a straight track 104 that is not a branch point 118.
  • the transport aircraft 20 can rotate a plurality of sets of wheels 202 including drive wheels for traveling on the track 104, flanges 212 provided inside each wheel 202, and each wheel 202. It has an axle 214 that supports the axle.
  • the transport aircraft 20 traveling on the straight track 104 rides on the rails 114 of the track 104 with wheels 202.
  • the flange 212 prevents the wheel 202 from derailing from the rail 114.
  • the heights of the left and right rails 114 are the same, so that the axle 214 is kept horizontal.
  • FIG. 4B shows a vertical cross section of the orbit 104 at the branch point 118.
  • the branch rail 120 is fixedly installed between the rails 114 of the track 104 with the flange way open.
  • the rail 114 of the track 104 is provided with a downward slope so that the height of the rail 114 on the right side is lower than the height of the rail 114 on the left side. ..
  • FIG. 4C shows a vertical cross section of the track 104 and the wheels 202 when the transport aircraft 20 goes straight at the branch point 118.
  • the wheels 202 move to the right on the left and right rails 114 due to the downward inclination of the left and right rails 114 provided over the branch point 118.
  • the flanges 212 of the left and right wheels 202 pass on the right side of the left and right branch rails 120, respectively. In this way, the transport aircraft 20 goes straight at the branch point 118.
  • FIG. 4D shows a vertical cross section of the track 104 and the wheels 202 at the time of branch control in which the transport aircraft 20 travels to the left, which is the branch direction, at the branch point 118.
  • the transport aircraft 20 has a bearing 216 capable of contacting the outer portion of the left rail 114 and a bearing 216 on the outer portion of the left rail 114 in the right direction as a configuration for branching in the branching direction. It has an actuator 218 for pressing against.
  • the actuator 218 is included in the vehicle unit 204.
  • the bearing 216 is pivotally supported by the actuator 218 so as to be rotatable along the rail 114 as the transport aircraft 20 travels while being pressed against the rail 114.
  • the transport aircraft 20 When traveling to the left, which is the branching direction, the transport aircraft 20 presses the bearing 216 against the left side surface of the left rail 114 by the actuator 218 and applies the rail 114 to the right as shown in FIG. 4D. Due to the reaction of this force, the transport aircraft 20 and the wheels 202 move to the left on the rail 114. As a result, the actuator 218 positions the flange 212 of the left wheel 202 between the left rail 114 and the left branch rail 120, and the flange 212 of the right wheel 202 is placed inside the right branch rail 120. Position it. As a result, the flanges 212 of the left and right wheels 202 pass on the left side of the left and right branch rails 120, respectively.
  • the transport aircraft 20 travels to the left, which is the branch direction.
  • the branch control by the transport aircraft 20 itself is realized by applying the rail 114 by the bearing 216.
  • the branching rail 120 is fixed instead of controlling the branching of the transport aircraft 20 by switching the branching rail 120 as in the conventional movable turnout.
  • the transport aircraft 20 performs branch control by the bearing 216. Therefore, in the present embodiment, the maintenance and inspection of the track 104 can be easily performed as compared with the track including the movable turnout. Further, since each transport aircraft 20 performs branch control, it is possible to realize branch control of a large number of transport aircraft 20 which is difficult with a movable turnout.
  • the track 104 is appropriately provided with an intersection including a plurality of branch points 118 and a plurality of confluence points 124 described above.
  • 5A and 5B are top views showing an example of an intersection provided on the track 104. Note that FIGS. 5A and 5B show the case of two oncoming lanes with left-hand traffic. Further, in FIGS. 5A and 5B, the traveling directions of the transport aircraft 20 are indicated by arrows, respectively. Further, the intersection in the case of two oncoming lanes with right-hand traffic is the left and right sides of the intersection shown in FIGS. 5A and 5B.
  • FIG. 5A shows the crossroads intersection 130.
  • the orbits 104 intersect in a cross shape.
  • tunnels 102 including the tracks 104 that intersect each other are provided at different depths and intersect three-dimensionally.
  • Each track 104 at the intersection 130 is provided with a branch point 118 and a confluence point 124 in this order in the traveling direction of the transport aircraft 20.
  • the first branch point 118 in the orbit 104 is connected to the second confluence 124 of the orbit 104 in which the traveling direction of the transport aircraft 20 is to the left with respect to the orbit 104 via the orbit 104 of the ramp.
  • the second branch point 118 in the orbit 104 is connected to the first confluence 124 in which the traveling direction of the transport aircraft 20 is to the right with respect to the orbit 104 via the orbit 104 of the ramp. ..
  • the transport aircraft 20 traveling on each track 104 travels to the left or right by branching at the first or second branch point 118, or goes straight without branching. can do.
  • FIG. 5B shows the intersection 132 of the junction.
  • the tracks 104 intersect in a clove shape.
  • tunnels 102 including the tracks 104 that intersect each other are provided at different depths and intersect three-dimensionally.
  • a confluence point 124 and a branch point 118 are provided in order in the traveling direction of the transport aircraft 20 on the track 104 outside the horizontal bar located outside the track 104 corresponding to the horizontal bar of the clove at the intersection 132. ..
  • a branch point 118 and a confluence point 124 are provided in order on the track 104 inside the horizontal bar located inside the track 104 corresponding to the horizontal bar of the clove in the traveling direction of the transport aircraft 20.
  • a branch point 118 is provided on the track 104 on the left side of the vertical bar located on the left side of the track 104 corresponding to the vertical bar of the clove.
  • a confluence point 124 is provided on the track 104 on the right side of the vertical bar located on the right side of the track 104 corresponding to the vertical bar of the clove.
  • the branch point 118 of the track 104 on the left side of the vertical bar is connected to the track 104 inside the horizontal bar via the track 104 of the ramp.
  • the track 104 on the left side of the vertical bar is connected to the confluence point 124 of the track 104 on the outside of the horizontal bar via a ramp portion curved toward the track 104 on the outside of the horizontal bar.
  • branch point 118 of the track 104 on the outer side of the horizontal bar is connected to the track 104 on the right side of the vertical bar via the track 104 of the ramp. Further, the branch point 118 of the track 104 inside the horizontal bar is connected to the confluence point 124 of the track 104 on the right side of the vertical bar via the track 104 of the ramp.
  • the transport machine 20 traveling on the track 104 on the left side of the vertical bar travels to the left by branching at the branch point 118, or the track 104 on the outside of the horizontal bar passes through the ramp section. It is possible to proceed to the right by merging at the confluence point 124. Further, at the intersection 132, the transport aircraft 20 traveling on the track 104 outside the horizontal bar can travel to the right by branching at the branch point 118, or can go straight without branching. Further, at the intersection 132, the transport aircraft 20 traveling on the track 104 inside the horizontal bar can travel to the left by branching at the branch point 118, or can go straight without branching.
  • intersections provided on the track 104 are not limited to the intersections 130 and 132 shown in FIGS. 5A and 5B, and are, for example, three-way intersections, four-way intersections, five-way intersections, and the like. You may.
  • FIG. 6A is a top view showing an example of a loading / unloading base including the above-ground portion of the vertical transport device 40.
  • FIG. 6B is a top view showing an example of an underground space including an underground portion of the vertical transport device 40.
  • the traveling direction of the transport aircraft 20 is indicated by an arrow. Note that FIG.
  • FIG. 6B shows a case where the branch point 118 branching to the left and the merging point 124 merging from the left direction are included in the left-hand traffic, but the present invention is not limited to this.
  • the configuration shown in FIG. 6B is reversed left and right.
  • the loading / unloading base 30 in which the vertical transport device 40 is installed is a place on the ground for loading cargo into the transport aircraft 20 and unloading the cargo from the transport aircraft 20.
  • the loading / unloading base 30 is not particularly limited, but is installed in, for example, a port, a factory, a distribution center, a warehouse, a distribution center, etc., which have a large amount of freight transportation.
  • the above-ground portion 402 of the vertical transport device 40 is installed at the loading / unloading base 30.
  • the loading / unloading base 30 is provided with a unloading area 302, a waiting area 304, and a loading area 306.
  • Each part is provided between the above-ground part 402 and the unloading area 302, between the unloading area 302 and the waiting area 304, between the waiting area 304 and the loading area 306, and between the loading area 306 and the above-ground part 402.
  • a track 104 is laid so that the transport aircraft 20 can move.
  • the rail 114 laid between the parts is similar to the rail 114 laid inside the tunnel 102.
  • the underground portion 404 of the vertical transport device 40 is installed in the underground space 90.
  • the underground portion 404 is installed at a position directly below the above-ground portion 402 installed at the loading / unloading base 30.
  • An orbit 104 for the transport aircraft 20 traveling on the orbit 104 of the tunnel network 10 to enter the underground portion 404 is connected to the underground portion 404.
  • the underground portion 404 is connected to the track 104 for the transport aircraft 20 to advance from the underground portion 404 to the track 104 of the tunnel network 10.
  • the vertical transport device 40 is configured to vertically transport the transport aircraft 20 between the above-ground portion 402 installed on the ground and the underground portion 404 installed underground.
  • the vertical transport device 40 may vertically transport the floor including the rail 114 on which the transport aircraft 20 is placed, or may vertically transport the transport aircraft 20 alone.
  • the vertical transfer device 40 is not particularly limited, but is, for example, a lift conveyor, an elevator, or the like.
  • a transport aircraft 20 having the loading / unloading base 30 set as a cargo transport destination is vertically transported from the underground portion 404 of the underground space 90 to the above-ground portion 402 by the vertical transport device 40. Will arrive.
  • the arriving transport aircraft 20 is loaded with cargo loaded at another loading / unloading base 30.
  • the transport aircraft 20 loaded with cargo travels on the track 104 from the above-ground portion 402 and stops for unloading the cargo.
  • cargo can be unloaded from one or a plurality of transport aircraft 20.
  • forklifts, robots, workers, and the like perform cargo unloading work.
  • the transport aircraft 20 for which the cargo has been unloaded in the unloading area 302 travels on the track 104 from the unloading area 302 and stops for waiting.
  • the transport aircraft 20 stops and waits until the loading time of the cargo in the loading area 306.
  • one or a plurality of transport aircraft 20 can be on standby.
  • the transport aircraft 20 waiting in the standby area 304 travels on the track 104 from the standby area 304 and stops for loading cargo.
  • cargo can be loaded into one or a plurality of transport aircraft 20.
  • forklifts, robots, workers, and the like perform cargo loading operations.
  • the transport aircraft 20 for which the cargo has been loaded again in the loading area 306 travels on the track 104 from the loading area 306 and stops for vertical transportation.
  • the vertical transport device 40 vertically transports the transport aircraft 20 loaded with cargo to the underground portion 404.
  • the transport aircraft 20 since the transport aircraft 20 enters the underground portion 404 from the track 104 inside the tunnel network 10, the track 104 for entry is connected to the underground portion 404. Further, since the transport aircraft 20 advances from the underground portion 404 to the track 104 inside the tunnel network 10, the track 104 for advancement is connected to the underground portion 404. In the orbit 104 connected to the underground portion 404, the transport aircraft 20 can enter the underground portion 404 from a plurality of directions, or the transport aircraft 20 can advance from the underground portion 404 in a plurality of directions. A plurality of branch points 118 and a confluence point 124 are provided.
  • the transport aircraft 20 traveling on the track 104 inside the tunnel network 10 arrives at the underground portion 404.
  • the arriving transport aircraft 20 is loaded with cargo whose transport destination is the loading / unloading base 30 connected by the vertical transport device 40 in the underground portion 404.
  • the transport aircraft 20 that has arrived at the underground portion 404 is vertically transported to the above-ground portion 402 installed at the loading / unloading base 30 by the vertical transport device 40.
  • the transport aircraft 20 loaded with cargo at the loading / unloading base 30 is vertically transported from the above-ground portion 402 by the vertical transport device 40.
  • the transport aircraft 20 vertically transported to the underground portion 404 travels on the track 104 inside the tunnel network 10 toward the loading / unloading base 30 which is the transportation destination of the cargo.
  • FIG. 7 is a diagram showing an example of the system configuration of the transportation system 1.
  • the transport aircraft 20 in the tunnel 102 of the tunnel network 10 has an autonomous traveling system 220, a position information sensor 210, an inter-vehicle distance sensor 222, a communication I / F 224, and a traveling control device 226. doing.
  • a plurality of position information markers 116 are installed in the tunnel 102 of the tunnel network 10.
  • a plurality of wireless communication access points 108 are installed in the tunnel 102. The wireless communication access point 108 is connected to the communication network 80 via the in-tunnel communication network 802 provided in the tunnel 102.
  • the autonomous traveling system 220 is an information processing system using a computer device including a CPU (Central Processing Unit), a RAM (Random Access Memory), a storage device, and the like.
  • the autonomous traveling system 220 functions as a control system for controlling the autonomous traveling of the transport aircraft 20, and controls the autonomous traveling of the transport aircraft 20 based on the transportation instruction information, the inter-vehicle distance information, and the like.
  • the position information sensor 210 reads the position information marker 116 and acquires the position information from the position information marker 116.
  • the position information sensor 210 transmits the position information to the autonomous traveling system 220.
  • the inter-vehicle distance sensor 222 measures the inter-vehicle distance between the front and rear transport aircraft 20 and the own aircraft with respect to the own aircraft, and acquires the inter-vehicle distance information indicating the inter-vehicle distance.
  • the inter-vehicle distance sensor 222 is not particularly limited, but for example, the inter-vehicle distance can be measured by a millimeter-wave radar, a stereo camera, or the like.
  • the inter-vehicle distance sensor 222 transmits inter-vehicle distance information to the autonomous traveling system 220.
  • the communication I / F 224 is communicably connected to the communication network 80.
  • the communication I / F 224 can be connected to the wireless communication access point 108 by wireless communication in the tunnel 102 of the tunnel network 10 and can be communicably connected to the communication network 80 via the wireless communication access point 108.
  • the autonomous traveling system 220 connects to the communication network 80 via the communication I / F 224 and transmits / receives information to / from the base management system 502 of the edge server 50.
  • the autonomous traveling system 220 receives the transportation instruction information from the base management system 502 via the communication I / F 224.
  • the transportation instruction information is information for instructing the transport aircraft 20 to transport the cargo.
  • the transportation instruction information includes, for example, a transport aircraft ID (Identification), cargo information, shipper information, transportation route planning information, speed planning information, branching planning information, and the like.
  • the transport aircraft ID is identification information that uniquely identifies the transport aircraft 20.
  • the freight information is information on freight such as items and quantities of freight loaded on the transport aircraft 20.
  • Shipper information is information that identifies the shipper who sends the cargo and the shipper who receives the cargo.
  • the transportation route planning information is information indicating a route plan for specifying the route of the tunnel network 10 in which the transport aircraft 20 travels from the loading / unloading base 30 of the transport source to the loading / unloading base 30 of the transport destination.
  • the speed plan information is information indicating the speed plan of the transport aircraft 20 while traveling from the loading / unloading base 30 of the transport source to the loading / unloading base 30 of the transport destination.
  • the branch plan information is information that identifies the branch point 118 to which the transport aircraft 20 should branch in the route plan.
  • the autonomous traveling system 220 can receive transportation instruction information from the base management system 502 within the loading / unloading base 30 of the transportation source. In addition, the autonomous traveling system 220 can also receive transportation instruction information from the base management system 502 in the tunnel network 10.
  • the autonomous traveling system 220 transmits the transportation status information to the base management system 502 via the communication I / F 224.
  • the transportation status information is information indicating the transportation status of the cargo by the transport aircraft 20.
  • the transportation status information includes, for example, a transport aircraft ID, location information, and the like.
  • the position information is information for specifying the position of the transport aircraft 20, and is acquired by the position information sensor 210.
  • the travel control device 226 controls the vehicle unit 204 including the wheels 202 and the actuator 218 based on the control instruction information received from the autonomous travel system 220, controls the rotational drive of the wheels 202 for acceleration / deceleration, and also controls the rotation drive of the wheels 202 for acceleration / deceleration. , Branch control is performed at the branch point 118. As a result, the travel control device 226 controls the travel of the transport aircraft 20.
  • the autonomous travel system 220 generates control instruction information for controlling travel by the vehicle unit 204 based on the above-mentioned position information, inter-vehicle distance information, transportation instruction information, and control status information received from the travel control device 226.
  • the control instruction information includes, for example, information for controlling the rotational drive of the wheel 202, branching control at the branching point 118, and the like.
  • the autonomous travel system 220 transmits control instruction information to the travel control device 226.
  • the travel control device 226 transmits control status information to the autonomous travel system 220 while controlling the vehicle unit 204 to control the travel of the transport aircraft 20.
  • the control status information is information indicating a control status of transportation including the vehicle unit 204.
  • the control status information includes, for example, speed information, branch information, and the like.
  • the speed information is information indicating the speed of the transport aircraft 20.
  • the branch information is information indicating the branch point 118 for which branch control has been performed.
  • the wireless communication access point 108 is a wireless communication unit that connects the transport aircraft 20 traveling on the tunnel network 10 to the communication network 80 in a communicable manner.
  • the wireless communication access point 108 mediates communication between the transport aircraft 20 and the communication network 80.
  • the transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 and communicate with the edge server 50.
  • the edge server 50 installed at the loading / unloading base 30 has a base management system 502 and a base DB (Database) 504.
  • the edge server 50 is installed at each loading / unloading base 30.
  • one or a plurality of console terminals 308 are installed at the loading / unloading base 30.
  • one or a plurality of transport aircraft 20 are present for loading or unloading cargo.
  • the edge server 50 and the console terminal 308 are communicably connected to the in-base communication network 804 provided at the carry-in / out base 30.
  • the edge server 50 is communicably connected to the communication network 80 via the intra-site communication network 804.
  • the transport aircraft 20 can connect to the in-base communication network 804 by the communication I / F 224 and communicate with the edge server 50.
  • the base management system 502 is an information processing system using a computer device including a CPU, RAM, a storage device, and the like.
  • the site management system 502 functions as a control unit that controls the edge server 50.
  • the base management system 502 functions as an acquisition unit and a management unit that acquire and manage various information stored in the base DB 504.
  • the information stored in the base DB 504 is, for example, the loading / unloading base ID, the transportation status information, the transportation instruction information, the integrated operation information, and the like.
  • the carry-in / out base ID is identification information that uniquely identifies the carry-in / out base 30.
  • the transportation status information is information indicating the transportation status of the cargo by the transport aircraft 20 received from the transport aircraft 20.
  • the transportation instruction information is information generated in response to the transportation instruction input information received from the console terminal 308, and instructs the transport aircraft 20 to transport the cargo.
  • the integrated operation information is information that comprehensively indicates the operation status of a plurality of transport aircraft 20 in the transportation system 1.
  • the integrated operation information includes the operation information of each transport aircraft 20.
  • the base management system 502 functions as a generation unit that generates transportation instruction information instructing the transport aircraft 20 to transport the cargo.
  • the base management system 502 instructs the transport aircraft 20 waiting at the loading / unloading base 30 to transport the freight based on the transport instruction input information, the transport status information, and the integrated operation information received from the console terminal 308. Generate information.
  • the base management system 502 includes transportation instruction information based on transportation status information and integrated operation information indicating the transportation status and operation status of not only the transport aircraft 20 for transporting cargo but also a plurality of transport aircraft 20 including other transport aircraft 20. To generate. Therefore, the base management system 502 can generate transportation instruction information with high efficiency of freight transportation in consideration of the transportation status and the operation status of the other transport aircraft 20.
  • the base management system 502 functions as a transmission unit that transmits transportation instruction information to the transport aircraft 20 that transports cargo.
  • the base management system 502 can transmit transport instruction information to the transport aircraft 20 waiting in the standby area 304 at the carry-in / out base 30.
  • the transport aircraft 20 starts transporting the cargo in response to the transport instruction information received from the base management system 502.
  • the transport aircraft 20 that has completed the transportation of the cargo by unloading the cargo at the loading / unloading base 30 transmits the transportation completion information to the base management system 502 of the loading / unloading base 30.
  • the transportation completion information is information indicating the completion of freight transportation.
  • the base management system 502 generates operation information of the transport aircraft 20 based on the transportation status information, the transportation completion information, and the like received from the transport aircraft 20.
  • the operation information is information indicating the operation status of one or a plurality of transport aircraft 20 to which the base management system 502 transmits / receives information.
  • the operation information includes, for example, a transport aircraft ID, location information, information indicating whether or not freight transportation has been completed, and the like.
  • the base management system 502 transmits the operation information to the integrated management system 702 of the central server 70 for the integrated management of the operation information.
  • the console terminal 308 is an interface device that provides an interface between the worker and the site management system 502. That is, the console terminal 308 accepts the input of the transportation instruction input information by the operator via the input device.
  • the transportation instruction input information includes, for example, the loading / unloading base ID of the loading / unloading base 30 of the transport destination, cargo information, shipper information, and the like.
  • the console terminal 308 transmits the transportation instruction input information to the base management system 502. Further, the console terminal 308 can display various information stored in the base DB 504 on the display device so as to be viewable. The worker can make, for example, a freight transportation plan based on various information displayed by the console terminal 308.
  • the central server 70 installed in the data center 60 has an integrated management system 702 and a central DB 704.
  • the central server 70 is communicably connected to the communication network 80.
  • the integrated management system 702 is an information processing system using a computer device including a CPU, RAM, a storage device, and the like.
  • the integrated management system 702 functions as a control unit that controls the central server 70.
  • the integrated management system 702 manages various information stored in the central DB 704.
  • the information stored in the central DB 704 is, for example, a loading / unloading base ID, a transport aircraft ID, operation information, and the like.
  • the operation information is received from a plurality of base management systems 502.
  • the integrated management system 702 functions as a management unit that manages the operation of a plurality of transport aircraft 20 in the transportation system 1. That is, the integrated management system 702 integrates and manages the operation information received from the plurality of base management systems 502, and generates the integrated operation information in which each operation information is integrated. The integrated management system 702 transmits and deploys integrated operation information to all the base management systems 502 in the transportation system 1. Further, the integrated management system 702 stores and manages the integrated operation information in the central DB 704.
  • the transport aircraft 20 completes the transportation of cargo through each phase of the standby phase, the loading phase, the autonomous traveling phase, and the unloading phase in sequence.
  • the processing in each phase of freight transportation by the transport aircraft 20 will be further described with reference to FIG.
  • FIG. 8 is a flowchart showing an example of processing in freight transportation by the transport aircraft 20.
  • the transport aircraft 20 completes the transportation of cargo through the standby phase P1, the loading phase P2, the autonomous traveling phase P3, and the unloading phase P4 in that order. After that, the transport aircraft 20 shifts to the standby phase P1 again and waits for the transportation of the next cargo.
  • the standby phase P1 is a phase in which the transport aircraft 20 waits until the next cargo is started to be transported in the loading / unloading base 30 of the transport source.
  • the worker inputs a start instruction instructing the start of the freight transportation from the console terminal 308 (step S102).
  • Step S104 The start instruction is transmitted to the transport aircraft 20 waiting in the waiting area 304 in the transport source's import / export base 30 via the base management system 502 in the transport source's import / export base 30.
  • the transport aircraft 20 travels to the loading area 306 in the loading / unloading base 30 of the transport source and shifts to the loading phase P2.
  • the loading phase P2 is a phase in which cargo is loaded onto the transport aircraft 20.
  • a loading operation for loading the cargo into the transport aircraft 20 is performed in the loading area 306 (step S106).
  • the operator inputs the transportation instruction information from the console terminal 308 (step S108).
  • the transportation instruction information includes, for example, a transport aircraft ID, cargo information, shipper information, transportation route planning information, speed planning information, branching planning information, and the like.
  • the transportation instruction information is transmitted to the transport aircraft 20 for which the loading work has been completed in the loading area 306 in the loading / unloading base 30 of the transporting source via the base management system 502 in the loading / unloading base 30 of the transporting source. ..
  • the transport aircraft 20 shifts to the autonomous traveling phase P3 and starts autonomous traveling toward the loading / unloading base 30 of the transport destination.
  • the autonomous traveling phase P3 is a phase in which the transport aircraft 20 autonomously travels and transports freight based on various information received.
  • the autonomous driving phase P3 the inter-vehicle distance information acquisition process (step S110), the position information acquisition process (step S112), the communication process (step S114), the driving algorithm process (step S116), and the driving control process (step S118).
  • Each process is executed.
  • Each process is executed in parallel independently of each other. Further, each process is continuously executed until it arrives at the loading / unloading base 30 of the transportation destination and the autonomous traveling phase P3 is completed.
  • the transport aircraft 20 is vertically transported to the tunnel network 10 by the vertical transport device 40 that communicates between the transport source loading / unloading base 30 and the tunnel network 10, and then the transport destination loading / unloading base 30.
  • the tunnel network 10 autonomously travels on the track 104.
  • the inter-vehicle distance sensor 222 of the transport aircraft 20 measures the inter-vehicle distance between the front and rear transport aircraft 20 and acquires the inter-vehicle distance information.
  • the inter-vehicle distance sensor 222 transmits the inter-vehicle distance information to the autonomous travel system 220 that executes the travel algorithm processing.
  • the position information sensor 210 of the transport aircraft 20 reads the position information marker 116 installed in the tunnel 102 to acquire the position information.
  • the position information sensor 210 transmits the position information to the autonomous traveling system 220 that executes the traveling algorithm processing.
  • the autonomous traveling system 220 of the transport aircraft 20 can grasp the position of the own aircraft in the tunnel network 10 based on the received position information, and can control the own aircraft on it.
  • the autonomous traveling system 220 of the transport aircraft 20 wirelessly communicates with the wireless communication access point 108 via the communication I / F 224, and transmits / receives information to / from the base management system 502. That is, the autonomous traveling system 220 receives the transportation instruction information from the base management system 502 and transmits the transportation status information to the base management system 502.
  • the autonomous travel system 220 of the transport aircraft 20 provides control instruction information for controlling travel by the vehicle unit 204 based on position information, inter-vehicle distance information, transportation instruction information, and control status information.
  • the autonomous traveling system 220 is a control instruction for instructing to decelerate or stop the own aircraft when it is determined that the inter-vehicle distance to the transport aircraft 20 in front of the own aircraft is narrower than a certain distance based on the inter-vehicle distance information.
  • the autonomous traveling system 220 generates control instruction information for instructing acceleration / deceleration, branch control, etc. of the own machine based on position information, inter-vehicle distance information, transportation instruction information, and control status information.
  • the autonomous travel system 220 transmits control instruction information to the travel control device 226.
  • the travel control device 226 of the transport aircraft 20 controls the vehicle unit 204 based on the control instruction information to control the travel of the transport aircraft 20. While controlling the travel of the transport aircraft 20, the travel control device 226 transmits control status information, which is information indicating the control result, to the autonomous travel system 220.
  • the autonomous traveling system 220 itself of the transport aircraft 20 controls the transport aircraft 20 including acceleration / deceleration and branch control of the transport aircraft 20.
  • the communication network does not intervene in the control of the transport aircraft 20, it is possible to control the transport aircraft 20 with higher real-time performance as compared with the case where an external device such as a server controls the transport aircraft 20 via the communication network. It can be realized.
  • the autonomous traveling system 220 controls the transport aircraft 20 based on the inter-vehicle distance information, it is possible to prevent collisions between the transport aircraft 20.
  • the transport aircraft 20 autonomously travels in the tunnel network 10, it is vertically transported to the transportation destination loading / unloading base 30 by the vertical transport device 40 that communicates between the tunnel network 10 and the transport destination loading / unloading base 30.
  • the transport aircraft 20 arrives at the unloading area 302. Upon arriving at the unloading area 302, the transport aircraft 20 shifts to the unloading phase P4.
  • the unloading phase P4 is a phase in which the unloading work of the cargo from the transport aircraft 20 is performed.
  • the unloading operation of unloading the cargo from the transport aircraft 20 is performed in the unloading area 302 (step S120).
  • the operator inputs the transportation confirmation information from the console terminal 308 (step S122).
  • the transportation confirmation information is information indicating that the completion of freight transportation by the transport aircraft 20 has been confirmed.
  • the transportation confirmation information includes, for example, a transport aircraft ID, a loading / unloading base ID of the loading / unloading base 30 that has completed transportation, and the like, in addition to information indicating that the completion of freight transportation has been confirmed.
  • the transportation confirmation information is transmitted to the transport aircraft 20 for which unloading has been completed via the base management system 502 in the loading / unloading base 30 of the transportation destination.
  • the transport aircraft 20 shifts to the standby phase P1 and waits for the transportation of the cargo at the arrival loading / unloading base 30.
  • FIG. 9 is a flowchart showing an example of processing of each part in the transportation system 1.
  • FIG. 9 shows the processing for each of the transport aircraft 20, the console terminal 308, the edge server 50, and the central server 70.
  • the integrated management system 702 of the central server 70 integrates and manages the operation information received from the base management systems 502 of the plurality of edge servers 50 (step S202).
  • the integrated management system 702 generates integrated operation information that integrates each operation information.
  • the integrated management system 702 stores and manages the integrated operation information in the central DB 704.
  • the integrated management system 702 transmits integrated operation information to the base management system 502 of all the edge servers 50 in the transportation system 1 and deploys it (step S204).
  • the base management system 502 of each edge server 50 manages various information received from each unit in the transportation system 1 (steps S206a, S206b, S206c). That is, the base management system 502 manages the integrated operation information received from the integrated management system 702 of the central server 70 (step S206a). Further, the base management system 502 manages the transportation status information received from the autonomous traveling system 220 of the transport aircraft 20 (step S206b). Further, the base management system 502 manages the transportation confirmation information received from the console terminal 308 when the freight transportation is completed (step S206c). The base management system 502 stores and manages integrated operation information, transportation status information, and transportation confirmation information in the base DB 504.
  • the transport instruction input information is input by the operator in order to instruct the transport aircraft 20 to transport (step S207).
  • the console terminal 308 transmits the transportation instruction input information to the transportation source edge server 50.
  • the base management system 502 of the edge server 50 at the loading / unloading base 30 of the transport source instructs the transport aircraft 20 to transport the cargo according to the transport instruction input information received from the console terminal 308 of the loading / unloading base 30.
  • Generate transportation instruction information (step S208).
  • the base management system 502 generates transportation instruction information based on the transportation instruction input information, the transportation status information, and the integrated operation information.
  • the base management system 502 transmits the transportation instruction information to the transport aircraft 20 (step S210).
  • the transport aircraft 20 When the transport aircraft 20 receives the transport instruction information from the base management system 502, the transport aircraft 20 starts transporting the cargo according to the transport instruction information (step S212).
  • the transport aircraft 20 autonomously travels in the tunnel network 10 (step S214), transports the cargo to the loading / unloading base 30 of the transportation destination, and completes the transportation of the cargo (step S216).
  • the transport aircraft 20 completes the transportation of cargo through the standby phase P1, the loading phase P2, the autonomous traveling phase P3, and the unloading phase P4 shown in FIG.
  • the position information sensor 210 reads the position information marker 116 in the tunnel network 10 to acquire the position information (step S2142). Further, the autonomous traveling system 220 transmits the transportation status information including the position information to the edge server 50 (step S2144).
  • the transportation confirmation information is input by the worker after the unloading work is completed (step S217).
  • the console terminal 308 transmits the transportation confirmation information to the edge server 50 of the transportation destination.
  • the base management system 502 of each edge server 50 generates operation information of the transport aircraft 20 and transmits it to the central server 70 based on the transport status information received from the transport aircraft 20, the transport confirmation information received from the console terminal 308, and the like. (Steps S218a, S218b).
  • the processing related to the transportation system 1 is not executed only by the central server 70, but the processing related to the transportation system 1 is also executed by the edge server 50 of each loading / unloading base 30. That is, in the present embodiment, the integrated management system 702 included in the central server 70 and the base management system 502 included in the edge server execute the processing related to the transportation system 1. As described above, in the present embodiment, the processing related to the transportation system 1 is distributed and executed in the central server 70 and the edge server 50. Therefore, in the present embodiment, the processing efficiency of the transportation system 1 can be improved and the expandability of the entire transportation system 1 can be improved as compared with the case where the processing is executed by the central server 70 alone.
  • the edge server 50 transmits the transportation instruction information to the transport aircraft 20 that autonomously travels in the tunnel 102 to transport the cargo, so that the cargo is transported, so that high safety is ensured. At the same time, unmanned freight transportation can be realized.
  • FIG. 10 is a diagram showing a configuration of an information processing system according to another embodiment.
  • the information processing system 1000 includes a generation unit 1002 that generates transportation instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport cargo, and transports the cargo. It has a transmission unit 1004 that transmits instruction information to the transport aircraft.
  • the freight is transported by transmitting the transportation instruction information to the transport aircraft that autonomously travels in the tunnel and transports the freight, so that the freight can be transported while ensuring high safety. Unmanned operation can be realized.
  • FIG. 11 is a diagram showing a configuration of a transportation system according to still another embodiment.
  • the transportation system 2000 includes a tunnel 2002, a transport aircraft 2004, a base 2006, a transportation device 2008, and an information processing system 2010.
  • the tunnel 2002 is laid deep underground.
  • the transport aircraft 2004 autonomously travels in the tunnel 2002 to transport cargo.
  • the base 2006 is installed on the ground, and cargo loading work on the transport aircraft 2004 or cargo unloading work from the transport aircraft 2004 is performed.
  • the transport device 2008 transports the transport aircraft 2004 between the tunnel 2002 and the base 2006.
  • the information processing system 2010 generates transport instruction information instructing the transport aircraft 2004 to transport the freight and transmits the transport instruction information to the transport aircraft 2004.
  • the transportation instruction information is transmitted to the transport aircraft 2004 that autonomously travels in the tunnel 2002 to transport the cargo, so that the cargo is transported while ensuring high safety. Unmanned transportation can be realized.
  • the transport aircraft 20 autonomously traveling on the track 104 composed of the two rails 114 installed in the tunnel network 10 has been described as an example, but the present invention is not limited to this. Absent.
  • the transport aircraft 20 may be any as long as it can autonomously travel in the tunnel network 10.
  • the transport aircraft 20 may autonomously travel on a trackless road provided in the tunnel network 10.
  • the present invention is not limited to this.
  • a transportation mode according to the type of cargo to be transported and the like can be adopted.
  • edge server 50 and the central server 70 can be configured as an information processing system including one or a plurality of devices capable of realizing each function.
  • a processing method in which a program for operating the configuration of the embodiment is recorded on a recording medium so as to realize the functions of the above-described embodiments, the program recorded on the recording medium is read out as a code, and the program is executed by a computer. It is included in the category of each embodiment. That is, a computer-readable recording medium is also included in the scope of each embodiment. Further, not only the recording medium on which the above-mentioned computer program is recorded, but also the computer program itself is included in each embodiment.
  • the recording medium for example, a floppy (registered trademark) disk, a hard disk, an optical disk, an optical magnetic disk, a CD-ROM (Compact Disc-Read Only Memory), a magnetic tape, a non-volatile memory card, or a ROM can be used.
  • the program recorded on the recording medium is not limited to the one that executes the process by itself, but operates on the OS (Operating System) in cooperation with other software and the function of the expansion board to execute the process. Those are also included in the category of each embodiment.
  • Appendix 1 A generator that generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport the cargo.
  • An information processing system having a transmission unit that transmits the transportation instruction information to the transport aircraft.
  • Appendix 2 The information processing system according to Appendix 1, wherein the generation unit generates the transportation instruction information based on the operation information indicating the operation status of the transport aircraft.
  • Appendix 3 The information processing system according to Appendix 2, wherein the generation unit generates the transportation instruction information for one of the transport aircraft based on the operation information of the plurality of the transport aircraft.
  • Appendix 4 The information processing system according to Appendix 2 or 3, which has an acquisition unit for acquiring the operation information.
  • Appendix 5 The information processing system according to Appendix 4, wherein the acquisition unit acquires the operation information from another information processing system via a communication network.
  • Appendix 6 The other information processing system is the information processing system according to Appendix 5, which manages the operation of the transport aircraft.
  • Appendix 9 The information processing system according to Appendix 8, wherein the transportation status information includes position information read by the transport aircraft from a marker installed in the tunnel.
  • Appendix 10 The information processing system according to Appendix 8 or 9, wherein the management unit acquires pre-transportation status information via a wireless communication unit installed in the tunnel.
  • Appendix 11 The information processing system according to any one of Appendix 8 to 10, wherein the management unit transmits information based on the transportation status information of the transport aircraft to another information processing system.
  • Appendix 13 The information processing system according to Appendix 12, wherein the transmission unit transmits the transportation instruction information to the transport aircraft waiting at the base.
  • Appendix 16 The information processing according to Appendix 15, wherein the transport aircraft is transported by a transport device between the ground and the tunnel where the cargo is loaded onto the transport aircraft or the cargo is unloaded from the transport aircraft. system.
  • (Appendix 18) Generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport cargo to transport the cargo. An information processing method for transmitting the transportation instruction information to the transport aircraft.
  • (Appendix 20) A tunnel laid deep underground and A transport aircraft that autonomously travels in the tunnel to transport cargo, A base installed on the ground where the cargo is loaded onto the transport aircraft or the cargo is unloaded from the transport aircraft.
  • a transport device that transports the transport aircraft between the tunnel and the base,
  • a transportation system including an information processing system that generates transportation instruction information instructing the transportation aircraft to transport the freight and transmits the transportation instruction information to the transportation aircraft.
  • Appendix 21 The transportation system according to Appendix 20, which has another information processing system that manages the operation of the transportation aircraft.
  • Appendix 22 The transportation system according to Appendix 20 or 21, which is laid in the tunnel and has a track on which the transport aircraft travels.
  • Appendix 23 The transportation system according to any one of Appendix 20 to 22, which is laid in the tunnel and has a power line for supplying electric power to the transport aircraft as power.
  • Appendix 24 Having a marker installed in the tunnel The transport system according to any one of Appendix 20 to 23, wherein the transport aircraft reads the marker and acquires position information.
  • a transport aircraft traveling on a first track including a first rail and a second rail.
  • a first wheel and a second wheel for traveling on the first rail and the second rail, respectively.
  • a first flange and a second flange provided inside the first wheel and the second wheel, respectively.
  • It has an actuator that presses a bearing on the outer side of the first rail.
  • the first branch rail and the second branch rail for guiding the transport machine to the second track of the branch destination are inside the first rail and inside the second rail, respectively. It is a laid branch point, the height of the second rail is lower than the height of the first rail, and the second rail branches from the first rail on the side of the first rail.
  • the bearing When the transport machine is guided to the second track at the branching point, the bearing is pressed against the outer portion of the first rail and is applied to the first rail and the first branch.
  • Transport system 10 ... Tunnel network 20 .
  • Transport aircraft 30 ... Carry-in / out base 40 .
  • Vertical transport device 50 ...
  • Edge server 60 ...
  • Data center 70 ...
  • Central server 80 ... Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided are an information processing system, an information processing method, a recording medium, and a transportation system capable of realizing the automation of cargo transportation while ensuring a high level of safety. The information processing system includes: a generation unit that generates transportation instruction information for providing instruction, about the transportation of cargo, to a transportation apparatus which autonomously travels in a tunnel and transports the cargo; and a transmission unit that transmits the transportation instruction information to the transportation apparatus.

Description

輸送システム、情報処理システム、情報処理方法及び記録媒体Transportation system, information processing system, information processing method and recording medium
 本発明は、輸送システム、情報処理システム、情報処理方法及び記録媒体に関する。 The present invention relates to a transportation system, an information processing system, an information processing method and a recording medium.
 特許文献1には、人員を輸送する車両のほか貨物用車両を走行させる地下鉄貨物輸送システムが記載されている。特許文献1に記載のシステムでは、人員を輸送する地下鉄路線に荷役装置が配設され、人員を輸送する車両のほか貨物用車両が走行する。 Patent Document 1 describes a subway freight transportation system that runs a freight vehicle as well as a vehicle that transports personnel. In the system described in Patent Document 1, a cargo handling device is arranged on a subway line for transporting personnel, and a freight vehicle as well as a vehicle for transporting personnel travels.
特開2002-337685公報JP-A-2002-337685 特開平6-165313号公報Japanese Unexamined Patent Publication No. 6-165313
 しかしながら、特許文献1に記載のシステムは、貨物輸送に地下鉄が利用されるため、貨物輸送の無人化を実現することは困難である。一方、貨物輸送の無人化のために自動運転を採用した場合、高い安全性を確保することが要求される。 However, in the system described in Patent Document 1, it is difficult to realize unmanned freight transportation because the subway is used for freight transportation. On the other hand, when automatic driving is adopted for unmanned freight transportation, it is required to ensure high safety.
 本発明の目的は、上述した課題を鑑み、高い安全性を確保しつつ貨物輸送の無人化を実現することができる輸送システム、情報処理システム、情報処理方法及び記録媒体を提供することにある。 An object of the present invention is to provide a transportation system, an information processing system, an information processing method, and a recording medium capable of realizing unmanned freight transportation while ensuring high safety in view of the above-mentioned problems.
 本発明の一観点によれば、トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成する生成部と、前記輸送指示情報を前記輸送機に送信する送信部とを有する情報処理システムが提供される。 According to one aspect of the present invention, a generator that generates transportation instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo and transmits the transportation instruction information to the transport aircraft. An information processing system having a transmission unit is provided.
 本発明の他の観点によれば、トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、前記輸送指示情報を前記輸送機に送信する情報処理方法が提供される。 According to another aspect of the present invention, information for generating transportation instruction information instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo and transmitting the transportation instruction information to the transport aircraft. A processing method is provided.
 本発明のさらに他の観点によれば、コンピュータに、トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、前記輸送指示情報を前記輸送機に送信することを実行させるプログラムが記録された記録媒体が提供される。 According to still another aspect of the present invention, a computer generates transport instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport the cargo, and the transport instruction information is used for the transport aircraft. A recording medium on which a program for executing transmission is recorded is provided.
 本発明のさらに他の観点によれば、大深度地下に敷設されたトンネルと、前記トンネル内を自律走行して貨物を輸送する輸送機と、地上に設置され、前記輸送機への前記貨物の積込作業又は前記輸送機からの前記貨物の荷卸作業が行われる拠点と、前記トンネルと前記拠点との間で前記輸送機を搬送する搬送装置と、前記輸送機に前記貨物の輸送を指示する輸送指示情報を生成して前記輸送機に送信する情報処理システムとを有する輸送システムが提供される。 According to still another aspect of the present invention, a tunnel laid deep underground, a transport aircraft that autonomously travels in the tunnel to transport cargo, and a transport aircraft installed on the ground to the transport aircraft. A base where loading work or unloading work of the cargo from the transport aircraft is performed, a transport device for transporting the transport aircraft between the tunnel and the base, and instructing the transport aircraft to transport the cargo. A transportation system including an information processing system that generates transportation instruction information and transmits it to the transport aircraft is provided.
 本発明によれば、高い安全性を確保しつつ貨物輸送の無人化を実現することができる。 According to the present invention, unmanned freight transportation can be realized while ensuring high safety.
図1は、本発明の一実施形態による輸送システムの全体構成の例を示す図である。FIG. 1 is a diagram showing an example of an overall configuration of a transportation system according to an embodiment of the present invention. 図2は、本発明の一実施形態による輸送システムにおけるトンネルの内部及び輸送機の例を示す垂直断面図である。FIG. 2 is a vertical cross-sectional view showing an example of the inside of a tunnel and a transport aircraft in a transportation system according to an embodiment of the present invention. 図3Aは、本発明の一実施形態による輸送システムにおける軌道の分岐点の例を示す上面図である。FIG. 3A is a top view showing an example of a branch point of an orbit in a transportation system according to an embodiment of the present invention. 図3Bは、本発明の一実施形態による輸送システムにおける軌道の合流点の例を示す上面図である。FIG. 3B is a top view showing an example of a confluence of orbits in a transportation system according to an embodiment of the present invention. 図4Aは、本発明の一実施形態による輸送システムにおける輸送機の分岐点での分岐制御の例を示す垂直断面図である。FIG. 4A is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention. 図4Bは、本発明の一実施形態による輸送システムにおける輸送機の分岐点での分岐制御の例を示す垂直断面図である。FIG. 4B is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention. 図4Cは、本発明の一実施形態による輸送システムにおける輸送機の分岐点での分岐制御の例を示す垂直断面図である。FIG. 4C is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention. 図4Dは、本発明の一実施形態による輸送システムにおける輸送機の分岐点での分岐制御の例を示す垂直断面図である。FIG. 4D is a vertical cross-sectional view showing an example of branch control at a branch point of a transport aircraft in a transportation system according to an embodiment of the present invention. 図5Aは、本発明の一実施形態による輸送システムにおける軌道に設けられた交差点の例を示す上面図である。FIG. 5A is a top view showing an example of an intersection provided on an orbit in a transportation system according to an embodiment of the present invention. 図5Bは、本発明の一実施形態による輸送システムにおける軌道に設けられた交差点の例を示す上面図である。FIG. 5B is a top view showing an example of an intersection provided on an orbit in a transportation system according to an embodiment of the present invention. 図6Aは、本発明の一実施形態による輸送システムにおける垂直搬送装置の地上部を含む搬入出拠点の例を示す上面図である。FIG. 6A is a top view showing an example of a loading / unloading base including an above-ground portion of a vertical transport device in a transport system according to an embodiment of the present invention. 図6Bは、本発明の一実施形態による輸送システムにおける垂直搬送装置の地下部を含む地下空間の例を示す上面図である。FIG. 6B is a top view showing an example of an underground space including an underground portion of a vertical transport device in a transport system according to an embodiment of the present invention. 図7は、本発明の一実施形態による輸送システムのシステム構成の例を示す図である。FIG. 7 is a diagram showing an example of a system configuration of a transportation system according to an embodiment of the present invention. 図8は、本発明の一実施形態による輸送システムにおける輸送機による貨物輸送における処理の例を示すフローチャートである。FIG. 8 is a flowchart showing an example of processing in freight transportation by a transport aircraft in a transportation system according to an embodiment of the present invention. 図9は、本発明の一実施形態による輸送システムにおける各部の処理の例を示すフローチャートである。FIG. 9 is a flowchart showing an example of processing of each part in the transportation system according to the embodiment of the present invention. 図10は、本発明の他の実施形態による情報処理システムの構成を示す図である。FIG. 10 is a diagram showing a configuration of an information processing system according to another embodiment of the present invention. 図11は、本発明のさらに他の実施形態による輸送システムの構成を示す図である。FIG. 11 is a diagram showing a configuration of a transportation system according to still another embodiment of the present invention.
 [一実施形態]
 本発明の一実施形態による輸送システムについて図1乃至図9を用いて説明する。
[One Embodiment]
A transportation system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 9.
 まず、本実施形態による輸送システムの全体構成について図1を用いて説明する。図1は、本実施形態による輸送システムの全体構成の例を示す図である。 First, the overall configuration of the transportation system according to this embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the overall configuration of the transportation system according to the present embodiment.
 図1に示すように、本実施形態による輸送システム1は、トンネル網10と、輸送機20と、搬入出拠点30と、垂直搬送装置40と、エッジサーバー50と、データセンター60と、中央サーバー70と、通信網80とを含んでいる。輸送システム1は、特定の領域においてトンネル網10を自律走行する車両である無人の輸送機20による貨物の輸送を実現するシステムである。輸送システム1により貨物の輸送が行われる特定の領域は、特に限定されるものではないが、例えば、特定の国の領土の全部又は一部、特定の地方自治体の行政区画の全部又は一部等である。 As shown in FIG. 1, the transportation system 1 according to the present embodiment includes a tunnel network 10, a transport aircraft 20, a loading / unloading base 30, a vertical transport device 40, an edge server 50, a data center 60, and a central server. 70 and a communication network 80 are included. The transportation system 1 is a system that realizes transportation of freight by an unmanned transport aircraft 20 which is a vehicle autonomously traveling in a tunnel network 10 in a specific area. The specific area where the freight is transported by the transportation system 1 is not particularly limited, but for example, all or part of the territory of a specific country, all or part of the administrative division of a specific local government, etc. Is.
 生産年齢人口の減少等に伴って人手不足が深刻化する物流業界においては、貨物輸送の無人化が求められている。従来からの貨物輸送の無人化に対する主要な取り組みとしては、自動車の自動運転が知られている。しかしながら、自動運転は、人が往来する道路を自動車が走行するため、安全性の観点からその法整備の見通しが立っていない。このため、安全な無人の貨物輸送技術の確立が課題となっている。 In the logistics industry, where labor shortages are becoming more serious as the working-age population declines, unmanned freight transportation is required. Autonomous driving of automobiles is known as a major approach to unmanned freight transportation. However, in autonomous driving, since automobiles travel on roads where people come and go, there is no prospect of legislation from the viewpoint of safety. Therefore, the establishment of safe unmanned freight transportation technology has become an issue.
 これに対して、本実施形態では、トンネル網10を自律走行する輸送機20により貨物輸送を無人化するため、人の往来に配慮することなく、貨物の輸送網を構築することができる。したがって、本実施形態によれば、高い安全性を確保しつつ貨物輸送の無人化を実現することができる。 On the other hand, in the present embodiment, the freight transportation is unmanned by the transport aircraft 20 that autonomously travels in the tunnel network 10, so that the freight transportation network can be constructed without considering the traffic of people. Therefore, according to the present embodiment, it is possible to realize unmanned freight transportation while ensuring high safety.
 トンネル網10は、地下に敷設されている。トンネル網10が敷設される地下は、特に限定されるものではないが、例えば、大深度地下使用法により規定される大深度地下、具体的には地下40m以深の空間又は支持地盤上面から10m以深の地下である。大深度地下には、例えばシールド工法によりトンネル網10を敷設することができる。トンネル網10が大深度地下に敷設されることにより、地下利用の混雑が進む大都市における地下空間の開発余地を確保するとともに、トンネル網10によるルートを柔軟に設計することができる。 The tunnel network 10 is laid underground. The underground where the tunnel network 10 is laid is not particularly limited, but for example, the deep underground specified by the deep underground usage, specifically, a space deeper than 40 m underground or a depth of 10 m or more from the upper surface of the supporting ground. Underground. A tunnel network 10 can be laid in the deep underground by, for example, a shield method. By laying the tunnel network 10 deep underground, it is possible to secure room for development of an underground space in a large city where underground use is congested, and to flexibly design a route by the tunnel network 10.
 トンネル網10は、輸送機20が走行する軌道104と、輸送機20に動力として電力を供給する電力線106とを含んでいる。また、トンネル網10は、輸送機20との間で無線通信が行われる無線通信アクセスポイント108を含んでいる。 The tunnel network 10 includes a track 104 on which the transport aircraft 20 travels, and a power line 106 that supplies electric power to the transport aircraft 20 as power. Further, the tunnel network 10 includes a wireless communication access point 108 for wireless communication with the transport aircraft 20.
 トンネル網10では、電力線106から動力を受ける複数機の輸送機20が軌道104に沿って軌道104上を無人で自律走行する。なお、輸送機20の台数は、通常、複数機であるが、特に限定されるものではなく、1機であってもよい。輸送機20は、輸送すべき貨物が積載される荷台を有している。輸送機20が走行するトンネル網10は、輸送機20以外に自動車、鉄道等の車両が走行することのない輸送機20に専用の輸送路になっているため、高い安全性を確保しつつ無人の貨物輸送を実現することができる。 In the tunnel network 10, a plurality of transport aircraft 20 that receive power from the power line 106 autonomously travel on the track 104 along the track 104. The number of transport aircraft 20 is usually a plurality, but is not particularly limited, and may be one. The transport aircraft 20 has a loading platform on which cargo to be transported is loaded. Since the tunnel network 10 on which the transport aircraft 20 travels is a dedicated transport route for the transport aircraft 20 in which vehicles such as automobiles and railroads do not travel in addition to the transport aircraft 20, it is unmanned while ensuring high safety. Freight transportation can be realized.
 搬入出拠点30は、地上において輸送機20への貨物の積込作業及び輸送機20からの貨物の荷卸作業が行われる拠点である。搬入出拠点30は、地上において複数箇所に設置されている。なお、複数の搬入出拠点30は、貨積込作業及び貨物の荷卸作業の両者が行われる拠点である必要は必ずしもない。複数の搬入出拠点30は、少なくとも貨物の積載作業が行われる搬入出拠点30と、少なくとも貨物の荷卸作業が行われる搬入出拠点30とを含んでいればよい。 The loading / unloading base 30 is a base where cargo loading work on the transport aircraft 20 and cargo unloading work from the transport aircraft 20 are performed on the ground. The loading / unloading bases 30 are installed at a plurality of locations on the ground. The plurality of loading / unloading bases 30 do not necessarily have to be bases where both cargo loading work and cargo unloading work are performed. The plurality of loading / unloading bases 30 may include at least a loading / unloading base 30 in which cargo loading work is performed, and at least a loading / unloading base 30 in which cargo unloading work is performed.
 垂直搬送装置40は、トンネル網10と搬入出拠点30とを連絡するように搬入出拠点30ごとに設置されている。垂直搬送装置40は、トンネル網10を走行した輸送機20をトンネル網10から搬入出拠点30に垂直方向に搬送する。また、垂直搬送装置40は、搬入出拠点30において貨物の積載、貨物の荷卸等が行われた輸送機20を搬入出拠点30からトンネル網10に垂直方向に搬送する。なお、トンネル網10と搬入出拠点30との間の輸送機20の搬送方向は、必ずしも垂直方向でなくてよい。垂直搬送装置40に代えて、トンネル網10と搬入出拠点30との間で輸送機20を垂直方向に対して傾斜した傾斜方向に搬送する搬送装置を設置することもできる。 The vertical transport device 40 is installed at each loading / unloading base 30 so as to connect the tunnel network 10 and the loading / unloading base 30. The vertical transport device 40 vertically transports the transport aircraft 20 traveling on the tunnel network 10 from the tunnel network 10 to the loading / unloading base 30. Further, the vertical transport device 40 vertically transports the transport aircraft 20 in which the cargo is loaded and unloaded at the loading / unloading base 30 from the loading / unloading base 30 to the tunnel network 10. The transport direction of the transport aircraft 20 between the tunnel network 10 and the loading / unloading base 30 does not necessarily have to be the vertical direction. Instead of the vertical transport device 40, a transport device that transports the transport aircraft 20 in an inclined direction inclined with respect to the vertical direction can be installed between the tunnel network 10 and the loading / unloading base 30.
 搬入出拠点30には、エッジサーバー50が設置されている。また、データセンター60には、中央サーバー70が設置されている。エッジサーバー50及び中央サーバー70は、輸送システム1における輸送機20の運行等を管理する管理システムを構成している。 An edge server 50 is installed at the loading / unloading base 30. A central server 70 is installed in the data center 60. The edge server 50 and the central server 70 constitute a management system that manages the operation of the transport aircraft 20 in the transportation system 1.
 エッジサーバー50及び中央サーバー70は、通信網80に互いに通信可能に接続されている。また、無線通信アクセスポイント108は、通信網80に接続されている。輸送機20は、無線通信アクセスポイント108を介して通信網80に接続してエッジサーバー50等と通信することができる。通信網80は、LAN(Local Area Network)、WAN(Wide Area Network)、移動体通信網等により構成されている。通信網80における接続方式は、有線方式に限らず、無線方式でもよい。 The edge server 50 and the central server 70 are connected to the communication network 80 so as to be able to communicate with each other. Further, the wireless communication access point 108 is connected to the communication network 80. The transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 and communicate with the edge server 50 and the like. The communication network 80 is composed of a LAN (Local Area Network), a WAN (Wide Area Network), a mobile communication network, and the like. The connection method in the communication network 80 is not limited to the wired method, but may be a wireless method.
 次に、トンネル網10を構成するトンネル102の構造について、輸送機20の構造とともにさらに図2を用いて説明する。図2は、トンネル102の内部及び輸送機20の例を示す垂直断面図である。 Next, the structure of the tunnel 102 constituting the tunnel network 10 will be further described with reference to FIG. 2 together with the structure of the transport aircraft 20. FIG. 2 is a vertical cross-sectional view showing the inside of the tunnel 102 and an example of the transport aircraft 20.
 図2に示すように、トンネル網10を構成するトンネル102は、例えば、輸送機20の走行方向が互いに反対となる対向2車線を構成するように敷設されている。なお、トンネル102が構成する車線は、対向2車線に限定されるものではなく、例えば、片側2車線の4車線であってもよい。 As shown in FIG. 2, the tunnel 102 constituting the tunnel network 10 is laid so as to form, for example, two oncoming lanes in which the traveling directions of the transport aircraft 20 are opposite to each other. The lanes formed by the tunnel 102 are not limited to the two oncoming lanes, and may be, for example, four lanes with two lanes on each side.
 トンネル102の内部には、メンテナンス用スペース110が設けられている。メンテナンス用スペース110は、例えば、対向2車線を構成する2本のトンネル102の間に設けられている。また、地中には、地上とメンテナンス用スペース110とを連絡するマンホール112が設けられている。メンテナンス用スペース110には、地上からマンホール112を降りて作業者が立ち入ることができる。また、メンテナンス用スペース110において、作業者は、移動したり、トンネル102に設置された設備、輸送機20等の保守点検の作業を行ったりすることができる。トンネル102にメンテナンス用スペース110が設置され、さらに地上からメンテナンス用スペース110に連絡するマンホール112が設置されていることにより、トンネル102の内部における構成要素の故障時に、作業者により容易に対処することができる。作業者は、メンテナンス用スペース110を使って、構成要素の修理、交換等を行うことができる。なお、メンテナンス用スペース110は、作業者が作業可能な範囲内で最小限の広さが確保されていればよい。輸送機20が走行するスペース以外のメンテナンス用スペース110等の他のスペースを小さくすることにより、輸送機20が走行するトンネル網10を高い自由度で設計することができる。 A maintenance space 110 is provided inside the tunnel 102. The maintenance space 110 is provided, for example, between two tunnels 102 constituting two opposite lanes. Further, in the ground, a manhole 112 that connects the ground and the maintenance space 110 is provided. Workers can enter the maintenance space 110 by getting off the manhole 112 from the ground. Further, in the maintenance space 110, the worker can move and perform maintenance and inspection work of the equipment installed in the tunnel 102, the transport aircraft 20, and the like. Since the maintenance space 110 is installed in the tunnel 102 and the manhole 112 that connects to the maintenance space 110 from the ground is installed, the operator can easily deal with the failure of the component inside the tunnel 102. Can be done. The operator can use the maintenance space 110 to repair, replace, or the like the components. The maintenance space 110 may be secured to a minimum size within a range in which the operator can work. By reducing the maintenance space 110 and other spaces other than the space in which the transport aircraft 20 travels, the tunnel network 10 in which the transport aircraft 20 travels can be designed with a high degree of freedom.
 トンネル102の内部の走行面には、輸送機20が走行する軌道104が敷設されている。1本の軌道104は、平行に並べられた2本のレール114から構成されている。軌道104の軌道幅は、特に限定されるものではないが、例えば、曲線通過半径を従来の旅客鉄道よりも小さくするため、旅客鉄道向けの軌道幅よりも狭く統一することができる。より小さな曲線通過半径を実現する軌道幅に軌道104を設定することにより、より複雑なトンネル網10を構築することができる。 A track 104 on which the transport aircraft 20 travels is laid on the traveling surface inside the tunnel 102. One track 104 is composed of two rails 114 arranged in parallel. The track width of the track 104 is not particularly limited, but for example, since the radius of passage through the curve is made smaller than that of the conventional passenger railway, the track width can be unified to be narrower than the track width for the passenger railway. A more complicated tunnel network 10 can be constructed by setting the track 104 to a track width that realizes a smaller curve passing radius.
 また、トンネル102の内部の走行面には、軌道104に沿って、第三軌条として電力線106が敷設されている。電力線106は、輸送機20に動力として電力を供給する。輸送機20は、電力線106から供給される電力により軌道104を自律走行することができる。電力線106を第三軌条として敷設することにより、トンネル102の半径をより小さくすることができ、地下空間をより有効的に活用することができる。なお、電力線106は、第三軌条による方式のみならず、種々の方式でトンネル102の内部に設けることができる。例えば、電力線106は、架空電線としてトンネル102の内部空間に架設することができる。 Further, on the traveling surface inside the tunnel 102, a power line 106 is laid as a third rail along the track 104. The power line 106 supplies electric power to the transport aircraft 20 as power. The transport aircraft 20 can autonomously travel on the track 104 by the electric power supplied from the power line 106. By laying the power line 106 as the third rail, the radius of the tunnel 102 can be made smaller, and the underground space can be used more effectively. The power line 106 can be provided inside the tunnel 102 by various methods as well as the method based on the third rail. For example, the power line 106 can be installed in the internal space of the tunnel 102 as an overhead electric wire.
 また、トンネル102の内部には、輸送機20に位置情報を提供するための位置情報マーカー116が設置されている。位置情報マーカー116は、例えば、トンネル102の内部の走行面に設置されている。位置情報マーカー116は、例えば、一定の距離間隔で複数地点に設置されていてもよいし、特定の複数地点に設置されていてもよい。位置情報マーカー116には、トンネル網10におけるその位置情報マーカー116が設置された地点を特定する位置情報が記録されている。位置情報マーカー116は、特に限定されるものではないが、例えば、二次元コード、三次元コード、非接触型IC(Integrated Circuit)チップ等の情報が記録されうる媒体である。位置情報マーカー116に記録された位置情報は、その位置情報マーカー116の設置地点を通過する輸送機20の位置情報センサー210により読み取られて取得される。 Further, inside the tunnel 102, a position information marker 116 for providing position information to the transport aircraft 20 is installed. The position information marker 116 is installed on a traveling surface inside the tunnel 102, for example. The position information marker 116 may be installed at a plurality of points at regular distance intervals, or may be installed at a specific plurality of points. The position information marker 116 records the position information that identifies the point where the position information marker 116 is installed in the tunnel network 10. The position information marker 116 is not particularly limited, but is a medium on which information such as a two-dimensional code, a three-dimensional code, and a non-contact IC (Integrated Circuit) chip can be recorded. The position information recorded on the position information marker 116 is read and acquired by the position information sensor 210 of the transport aircraft 20 passing through the installation point of the position information marker 116.
 また、トンネル102の内部には、輸送機20と通信可能な無線通信アクセスポイント108が設置されている。無線通信アクセスポイント108は、例えば、トンネル102の天井部に設置されている。なお、無線通信アクセスポイント108の設置場所は、特に限定されるものではなく、通信環境等に応じて適宜の場所を選択することができる。無線通信アクセスポイント108は、例えば、一定の距離間隔で複数地点に設置されていてもよいし、特定の複数地点に設置されていてもよい。輸送機20は、後述の通信I/F224により無線通信アクセスポイント108を介して通信網80に接続して、エッジサーバー50等と通信することができる。 Further, inside the tunnel 102, a wireless communication access point 108 capable of communicating with the transport aircraft 20 is installed. The wireless communication access point 108 is installed, for example, on the ceiling of the tunnel 102. The location of the wireless communication access point 108 is not particularly limited, and an appropriate location can be selected according to the communication environment and the like. The wireless communication access points 108 may be installed at a plurality of points at regular distance intervals, or may be installed at a specific plurality of points. The transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 by the communication I / F 224 described later and communicate with the edge server 50 and the like.
 輸送機20は、上述のように構成されるトンネル102の内部を自律走行する荷台付きの車両である。輸送機20は、車輪202を含む車両部204と、荷台206と、貨物コンテナ208と、位置情報センサー210とを有している。輸送機20は、四輪車、六輪車等の複数組の車輪202を有する車両である。 The transport aircraft 20 is a vehicle with a loading platform that autonomously travels inside the tunnel 102 configured as described above. The transport aircraft 20 has a vehicle unit 204 including wheels 202, a loading platform 206, a cargo container 208, and a position information sensor 210. The transport aircraft 20 is a vehicle having a plurality of sets of wheels 202 such as a four-wheeled vehicle and a six-wheeled vehicle.
 車両部204は、電力線106から供給される電力により軌道104上を軌道104に沿って走行するように構成されている。車両部204は、軌道104の2本のレール114上をそれぞれ走行するための車輪202、後述のアクチュエータ218等の輸送機20の走行を担う部材、装置等を含んでいる。車両部204は、電力により回転するモーターにより車輪202を駆動して走行することができる。車輪202は、軌道104上のみを走行可能に構成されている。また、車両部204は、輸送機20を減速又は停止する各種の制動装置を有することができる。なお、車両部204は、電力線106から供給された動力を一時的に蓄積してから使用するためのバッテリーを有していてもよい。 The vehicle unit 204 is configured to travel along the track 104 on the track 104 by the electric power supplied from the power line 106. The vehicle unit 204 includes wheels 202 for traveling on the two rails 114 of the track 104, members and devices for traveling the transport aircraft 20 such as the actuator 218 described later. The vehicle unit 204 can travel by driving the wheels 202 by a motor that is rotated by electric power. The wheels 202 are configured to be able to travel only on the track 104. Further, the vehicle unit 204 may have various braking devices for decelerating or stopping the transport aircraft 20. The vehicle unit 204 may have a battery for temporarily storing and using the power supplied from the power line 106.
 荷台206は、貨物が収納された貨物コンテナ208を積載するように構成されている。輸送機20の寸法及び荷台206の寸法は、トラック輸送、鉄道輸送、船舶輸送等の輸送用のコンテナを積載することができるように標準化されていてもよい。例えば、輸送機20の寸法及び荷台206の寸法は、2トントラックの荷台寸法、4トントラックの荷台寸法、10トントラックの荷台寸法又は船舶輸送用のコンテナの寸法に合わせて標準化されていてもよい。荷台206の寸法が輸送用コンテナを積載することができるように標準化されることにより、貨物の荷卸及び積込の作業効率を向上することができる。また、輸送機20の寸法が標準化されて最大寸法が定まることにより、トンネル102の内径の最小値を定めることができるため、トンネル網10の敷設工事の期間を短縮することができるとともに、その工事費用を縮小することができる。 The loading platform 206 is configured to load a cargo container 208 containing cargo. The dimensions of the transport aircraft 20 and the dimensions of the loading platform 206 may be standardized so that containers for transportation such as truck transportation, rail transportation, and ship transportation can be loaded. For example, the dimensions of the transport aircraft 20 and the dimensions of the loading platform 206 may be standardized according to the loading platform dimensions of the 2-ton truck, the loading platform dimensions of the 4-ton truck, the loading platform dimensions of the 10-ton truck, or the dimensions of the container for shipping by ship. By standardizing the dimensions of the loading platform 206 so that a shipping container can be loaded, the work efficiency of unloading and loading cargo can be improved. Further, since the dimensions of the transport aircraft 20 are standardized and the maximum dimensions are determined, the minimum value of the inner diameter of the tunnel 102 can be determined, so that the period of the tunnel network 10 laying work can be shortened and the work can be shortened. The cost can be reduced.
 貨物コンテナ208には、輸送すべき貨物が収納される。貨物コンテナ208は、例えば、トラック輸送、鉄道輸送、船舶輸送等の輸送用コンテナ自体である。また、貨物コンテナ208は、輸送機20に専用のものであってもよい。 The cargo container 208 stores the cargo to be transported. The freight container 208 is, for example, a transportation container itself for truck transportation, rail transportation, ship transportation, and the like. Further, the cargo container 208 may be dedicated to the transport aircraft 20.
 位置情報センサー210は、トンネル102の内部に設置された位置情報マーカー116に記録された位置情報を取得する。位置情報センサー210は、輸送機20が位置情報マーカー116の設置地点を通過する際に、位置情報マーカー116を読み取って位置情報マーカー116から位置情報を取得する。位置情報センサー210は、輸送機20において位置情報マーカー116を読み取り可能な位置に設けられている。例えば、トンネル102の走行面に位置情報マーカー116が設置されている場合、位置情報センサー210は、位置情報マーカー116に対向可能なように車両部204の底面に設置されている。 The position information sensor 210 acquires the position information recorded on the position information marker 116 installed inside the tunnel 102. When the transport machine 20 passes the installation point of the position information marker 116, the position information sensor 210 reads the position information marker 116 and acquires the position information from the position information marker 116. The position information sensor 210 is provided at a position where the position information marker 116 can be read by the transport aircraft 20. For example, when the position information marker 116 is installed on the traveling surface of the tunnel 102, the position information sensor 210 is installed on the bottom surface of the vehicle unit 204 so as to face the position information marker 116.
 軌道104には、1本の軌道104から別の1本の軌道104が分岐する分岐点、及び1本の軌道104に別の1本の軌道104が合流する合流点が設けられている。軌道104の分岐点及び合流点により、輸送機20が走行する経路を高い自由度で設計することができる。 The orbit 104 is provided with a branch point at which one orbit 104 branches from one orbit 104, and a confluence point where another orbit 104 joins one orbit 104. The route on which the transport aircraft 20 travels can be designed with a high degree of freedom by the branching point and the merging point of the track 104.
 以下、軌道104に設けられた分岐点及び合流点についてさらに図3A及び図3Bを用いて説明する。図3Aは、軌道104の分岐点の例を示す上面図である。図3Bは、軌道104の合流点の例を示す上面図である。なお、図3A及び図3Bでは、それぞれ輸送機20の進行方向を矢印で示している。また、図3A及び図3Bは、それぞれ、輸送機20が左側通行で走行する場合において左方向へ分岐する分岐点及び左方向から合流する合流点を示している。輸送機20が右側通行で走行する場合の分岐点及び合流点は、それぞれ図3A及び図3Bに示す合流点及び分岐点の左右を反転したものとなる。 Hereinafter, the branching point and the merging point provided in the track 104 will be further described with reference to FIGS. 3A and 3B. FIG. 3A is a top view showing an example of a branch point of the track 104. FIG. 3B is a top view showing an example of the confluence of the orbits 104. In addition, in FIG. 3A and FIG. 3B, the traveling direction of the transport aircraft 20 is indicated by an arrow, respectively. Further, FIGS. 3A and 3B show a branch point that branches to the left and a merging point that merges from the left when the transport aircraft 20 travels on the left side, respectively. When the transport aircraft 20 travels on the right side, the junction and the junction are the left and right sides of the junction and the junction shown in FIGS. 3A and 3B, respectively.
 図3Aに示すように、分岐元の軌道104から左方向に分岐先の軌道104bが分岐する分岐点118では、分岐元の軌道104の左側のレール114の側に分岐元の軌道104から分岐先の軌道104bが分岐している。分岐点118においては、輸送機20が進入するポイント部に、トングレールを含む2本の分岐用レール120が敷設されている。2本の分岐用レール120は、分岐元の軌道104のレール114及び分岐先の軌道104bのレール114bの内側にそれぞれ敷設されている。また、2本の分岐用レール120は、輸送機20が直進方向及び分岐方向のいずれの方向にも進行可能なようにトングレールのフランジウェイが開いた状態で固定されている。また、分岐点118において、輸送機20が直進方向及び分岐方向のいずれかの方向に導かれるクロッシング部には、軌道104の側及び軌道104bの側にそれぞれガードレール122が敷設されている。 As shown in FIG. 3A, at the branch point 118 where the branch destination track 104b branches to the left from the branch source track 104, the branch destination from the branch source track 104 is on the left side rail 114 side of the branch source track 104. Orbit 104b is branched. At the branch point 118, two branch rails 120 including the tongue rail are laid at the point where the transport aircraft 20 enters. The two branching rails 120 are laid inside the rail 114 of the branch source track 104 and the rail 114b of the branch destination track 104b, respectively. Further, the two branch rails 120 are fixed in a state where the flange way of the tongue rail is opened so that the transport aircraft 20 can travel in both the straight direction and the branch direction. Further, at the branch point 118, guardrails 122 are laid on the side of the track 104 and the side of the track 104b at the crossing portion where the transport aircraft 20 is guided in either the straight direction or the branch direction.
 また、図3Bに示すように、合流先の軌道104に左方向から軌道104cが合流する合流点124は、分岐点118のレール構成を逆向きしたレール構成を有している。すなわち、合流点124においては、2本の合流用レール126が敷設されている。2本の合流用レール126は、軌道104cに軌道104から分岐させるために敷設される2本の分岐用レール120に相当するように軌道104のレール114及び軌道104cのレール114cの内側に設置されている。また、合流点124において、分岐点118におけるガードレール122に相当するガードレール128が軌道104の側及び軌道104cの側にそれぞれ敷設されている。 Further, as shown in FIG. 3B, the merging point 124 where the orbit 104c joins the merging destination orbit 104 from the left has a rail configuration in which the rail configuration of the branch point 118 is reversed. That is, at the merging point 124, two merging rails 126 are laid. The two merging rails 126 are installed inside the rails 114 of the track 104 and the rails 114c of the track 104c so as to correspond to the two branching rails 120 laid on the track 104c to branch from the track 104. ing. Further, at the confluence point 124, guardrails 128 corresponding to guardrails 122 at the branch point 118 are laid on the side of the track 104 and the side of the track 104c, respectively.
 トンネル102が左側通行の対向2車線を構成する場合、軌道104に設けられた分岐点118及び合流点124は、それぞれ左方向へ分岐する分岐点118のみ及び左方向から合流する合流点124のみとすることができる。また、トンネル102が右側通行の対向2車線を構成する場合、軌道104に設けられた分岐点118及び合流点124は、それぞれ右方向へ分岐する分岐点118のみ及び右方向から合流する合流点124のみとすることができる。このように分岐点118及び合流点124の分岐方向及び合流方向が左方向又は右方向のいずれかに統一されている場合、輸送機20は、加減速の制御及び片方向への分岐制御のみで軌道104上を走行させることができる。したがって、この場合、輸送機20の簡易な制御を実現することができる。 When the tunnel 102 constitutes two opposite lanes for left-hand traffic, the branch point 118 and the confluence point 124 provided on the track 104 are only the branch point 118 that branches to the left and only the confluence point 124 that merges from the left direction, respectively. can do. Further, when the tunnel 102 constitutes two opposite lanes for right-hand traffic, the branch point 118 and the confluence point 124 provided on the track 104 are only the branch point 118 that branches to the right and the confluence point 124 that merges from the right direction, respectively. Can only be. When the branching direction and the merging direction of the branching point 118 and the merging point 124 are unified to either the left direction or the right direction in this way, the transport aircraft 20 only controls acceleration / deceleration and unidirectional branching control. It can run on the track 104. Therefore, in this case, simple control of the transport aircraft 20 can be realized.
 ここで、上記分岐点118における輸送機20の分岐制御についてさらに図4A乃至図4Dを用いて説明する。図4A乃至図4Dは、輸送機20の分岐点118での分岐制御の例を示す垂直断面図である。なお、図4B乃至図4Dでは左側通行において左方向に分岐する分岐点118の場合を示しているが、右側通行において右方向に分岐する分岐点118の場合は、図4B乃至図4Dに示す構成の左右を反転した構成となる。 Here, the branch control of the transport aircraft 20 at the branch point 118 will be further described with reference to FIGS. 4A to 4D. 4A to 4D are vertical cross-sectional views showing an example of branch control at the branch point 118 of the transport aircraft 20. Although FIGS. 4B to 4D show the case of the branch point 118 branching to the left in the left-hand traffic, the configuration shown in FIGS. 4B to 4D shows the case of the branch point 118 branching to the right in the right-hand traffic. The left and right sides of are reversed.
 図4Aは、分岐点118ではない直進の軌道104の垂直断面を示している。図4Aに示すように、輸送機20は、軌道104上を走行するための駆動輪を含む複数組の車輪202と、各車輪202の内側に設けられたフランジ212と、各車輪202を回転可能に軸支する車軸214とを有している。直進の軌道104上を走行する輸送機20は、軌道104のレール114の上に車輪202で乗って走行する。この間、フランジ212により、車輪202がレール114上から脱落する脱線が防止されている。また、直進の軌道104では、左右のレール114の高さが同じになっているため、車軸214が水平に保たれる。 FIG. 4A shows a vertical cross section of a straight track 104 that is not a branch point 118. As shown in FIG. 4A, the transport aircraft 20 can rotate a plurality of sets of wheels 202 including drive wheels for traveling on the track 104, flanges 212 provided inside each wheel 202, and each wheel 202. It has an axle 214 that supports the axle. The transport aircraft 20 traveling on the straight track 104 rides on the rails 114 of the track 104 with wheels 202. During this time, the flange 212 prevents the wheel 202 from derailing from the rail 114. Further, on the straight track 104, the heights of the left and right rails 114 are the same, so that the axle 214 is kept horizontal.
 図4Bは、分岐点118における軌道104の垂直断面を示している。図4Bに示すように、分岐点118では、軌道104のレール114の間に、フランジウェイを開いた状態で分岐用レール120が固定されて設置されている。また、分岐点118の手前から分岐点118にかけて、軌道104のレール114には、左側のレール114の高さよりも右側のレール114の高さが低くなるように右下がりの傾斜が設けられている。 FIG. 4B shows a vertical cross section of the orbit 104 at the branch point 118. As shown in FIG. 4B, at the branch point 118, the branch rail 120 is fixedly installed between the rails 114 of the track 104 with the flange way open. Further, from the front of the branch point 118 to the branch point 118, the rail 114 of the track 104 is provided with a downward slope so that the height of the rail 114 on the right side is lower than the height of the rail 114 on the left side. ..
 図4Cは、分岐点118において輸送機20が直進する場合の軌道104及び車輪202の垂直断面を示している。図4Cに示すように、分岐点118にかけて設けられた左右のレール114の右下がりの傾斜により左右のレール114上で車輪202が右側に寄る。この結果、左右の車輪202のフランジ212がそれぞれ左右の分岐用レール120の右側を通過する。こうして、分岐点118において輸送機20が直進する。 FIG. 4C shows a vertical cross section of the track 104 and the wheels 202 when the transport aircraft 20 goes straight at the branch point 118. As shown in FIG. 4C, the wheels 202 move to the right on the left and right rails 114 due to the downward inclination of the left and right rails 114 provided over the branch point 118. As a result, the flanges 212 of the left and right wheels 202 pass on the right side of the left and right branch rails 120, respectively. In this way, the transport aircraft 20 goes straight at the branch point 118.
 図4Dは、分岐点118において輸送機20が分岐方向である左方向に進行する分岐制御時の軌道104及び車輪202の垂直断面を示している。図4Dに示すように、輸送機20は、分岐方向に分岐するための構成として、左側のレール114の外側部に接触可能なベアリング216と、左側のレール114の外側部にベアリング216を右方向に押し付けるためのアクチュエータ218とを有している。アクチュエータ218は、車両部204に含まれている。ベアリング216は、レール114に押し付けられた状態で輸送機20の走行に伴ってレール114に沿って回転可能にアクチュエータ218に軸支されている。 FIG. 4D shows a vertical cross section of the track 104 and the wheels 202 at the time of branch control in which the transport aircraft 20 travels to the left, which is the branch direction, at the branch point 118. As shown in FIG. 4D, the transport aircraft 20 has a bearing 216 capable of contacting the outer portion of the left rail 114 and a bearing 216 on the outer portion of the left rail 114 in the right direction as a configuration for branching in the branching direction. It has an actuator 218 for pressing against. The actuator 218 is included in the vehicle unit 204. The bearing 216 is pivotally supported by the actuator 218 so as to be rotatable along the rail 114 as the transport aircraft 20 travels while being pressed against the rail 114.
 輸送機20は、分岐方向である左方向に進行するに際して、図4Dに示すように、アクチュエータ218によりベアリング216を左側のレール114の左側面に押し付けて右方向にレール114を加力する。この加力の反作用により、輸送機20及び車輪202がレール114上で左側に寄る。これにより、アクチュエータ218は、左側のレール114と左側の分岐用レール120との間に左側の車輪202のフランジ212を位置させ、右側の分岐用レール120の内側に右側の車輪202のフランジ212を位置させる。この結果、左右の車輪202のフランジ212がそれぞれ左右の分岐用レール120の左側を通過する。こうして、分岐点118において輸送機20が分岐方向である左方向に進行する。本実施形態では、従来の可動式の分岐器の切り替えによる分岐制御とは異なり、ベアリング216によりレール114を加力することにより、輸送機20自体による分岐制御が実現されている。 When traveling to the left, which is the branching direction, the transport aircraft 20 presses the bearing 216 against the left side surface of the left rail 114 by the actuator 218 and applies the rail 114 to the right as shown in FIG. 4D. Due to the reaction of this force, the transport aircraft 20 and the wheels 202 move to the left on the rail 114. As a result, the actuator 218 positions the flange 212 of the left wheel 202 between the left rail 114 and the left branch rail 120, and the flange 212 of the right wheel 202 is placed inside the right branch rail 120. Position it. As a result, the flanges 212 of the left and right wheels 202 pass on the left side of the left and right branch rails 120, respectively. In this way, at the branch point 118, the transport aircraft 20 travels to the left, which is the branch direction. In the present embodiment, unlike the conventional branch control by switching the movable turnout, the branch control by the transport aircraft 20 itself is realized by applying the rail 114 by the bearing 216.
 上述のように、本実施形態では、従来の可動式の分岐器のように分岐用レール120の切り替えにより輸送機20の分岐制御が行われるのではなく、分岐用レール120が固定されており、輸送機20がベアリング216による分岐制御を行う。このため、本実施形態では、可動式の分岐器を含む軌道と比較して軌道104の保守点検を容易に行うことができる。また、個々の輸送機20が分岐制御を行うため、可動式の分岐器では困難な大量の輸送機20の分岐制御を実現することができる。 As described above, in the present embodiment, the branching rail 120 is fixed instead of controlling the branching of the transport aircraft 20 by switching the branching rail 120 as in the conventional movable turnout. The transport aircraft 20 performs branch control by the bearing 216. Therefore, in the present embodiment, the maintenance and inspection of the track 104 can be easily performed as compared with the track including the movable turnout. Further, since each transport aircraft 20 performs branch control, it is possible to realize branch control of a large number of transport aircraft 20 which is difficult with a movable turnout.
 また、本実施形態では、図4Dに示すベアリング216による分岐制御が行われないかぎり、輸送機20は、図4Cに示すように直進することになる。このため、本実施形態では、輸送機20が誤って分岐方向に進行することを回避するフェールセーフを確保することができる。 Further, in the present embodiment, unless the branch control by the bearing 216 shown in FIG. 4D is performed, the transport aircraft 20 goes straight as shown in FIG. 4C. Therefore, in the present embodiment, it is possible to secure a fail-safe that prevents the transport aircraft 20 from accidentally traveling in the branching direction.
 軌道104には、上述した分岐点118及び合流点124をそれぞれ複数含む交差点が適宜設けられている。図5A及び図5Bは、軌道104に設けられた交差点の例を示す上面図である。なお、図5A及び図5Bは、左側通行の対向2車線の場合を示している。また、図5A及び図5Bでは、それぞれ輸送機20の進行方向を矢印で示している。また、右側通行の対向2車線の場合の交差点は、図5A及び図5Bに示す交差点の左右を反転したものとなる。 The track 104 is appropriately provided with an intersection including a plurality of branch points 118 and a plurality of confluence points 124 described above. 5A and 5B are top views showing an example of an intersection provided on the track 104. Note that FIGS. 5A and 5B show the case of two oncoming lanes with left-hand traffic. Further, in FIGS. 5A and 5B, the traveling directions of the transport aircraft 20 are indicated by arrows, respectively. Further, the intersection in the case of two oncoming lanes with right-hand traffic is the left and right sides of the intersection shown in FIGS. 5A and 5B.
 図5Aは、十字路の交差点130を示している。図5Aに示すように、交差点130では、十字状に軌道104が交差している。軌道104の交差場所では、互いに交差する軌道104を含むトンネル102が異なる深度に設けられて立体的に交差している。交差点130における各軌道104には、輸送機20の進行方向に向かって順に分岐点118及び合流点124が設けられている。軌道104における1番目の分岐点118は、その軌道104に対して輸送機20の進行方向が左方向の軌道104の2番目の合流点124にランプの軌道104を介して接続されている。また、軌道104における2番目の分岐点118は、その軌道に対して104に対して輸送機20の進行方向が右方向の1番目の合流点124にランプの軌道104を介して接続されている。 FIG. 5A shows the crossroads intersection 130. As shown in FIG. 5A, at the intersection 130, the orbits 104 intersect in a cross shape. At the intersection of the tracks 104, tunnels 102 including the tracks 104 that intersect each other are provided at different depths and intersect three-dimensionally. Each track 104 at the intersection 130 is provided with a branch point 118 and a confluence point 124 in this order in the traveling direction of the transport aircraft 20. The first branch point 118 in the orbit 104 is connected to the second confluence 124 of the orbit 104 in which the traveling direction of the transport aircraft 20 is to the left with respect to the orbit 104 via the orbit 104 of the ramp. Further, the second branch point 118 in the orbit 104 is connected to the first confluence 124 in which the traveling direction of the transport aircraft 20 is to the right with respect to the orbit 104 via the orbit 104 of the ramp. ..
 図5Aに示す十字路の交差点130では、各軌道104を走行する輸送機20が、1番目又は2番目の分岐点118で分岐することにより左方向若しくは右方向に進行し、又は分岐することなく直進することができる。 At the crossroads intersection 130 shown in FIG. 5A, the transport aircraft 20 traveling on each track 104 travels to the left or right by branching at the first or second branch point 118, or goes straight without branching. can do.
 また、図5Bは、丁字路の交差点132を示している。図5Bに示すように、交差点132では、丁字状に軌道104が交差している。軌道104の交差場所では、互いに交差する軌道104を含むトンネル102が異なる深度に設けられて立体的に交差している。交差点132における丁字の横棒に相当する軌道104のうちの外側に位置する横棒外側の軌道104には、輸送機20の進行方向に向かって順に合流点124及び分岐点118が設けられている。丁字の横棒に相当する軌道104のうちの内側に位置する横棒内側の軌道104には、輸送機20の進行方向に向かって順に分岐点118及び合流点124が設けられている。丁字の縦棒に相当する軌道104のうちの左側に位置する縦棒左側の軌道104には、分岐点118が設けられている。丁字の縦棒に相当する軌道104のうちの右側に位置する縦棒右側の軌道104には、合流点124が設けられている。縦棒左側の軌道104の分岐点118は、ランプの軌道104を介して横棒内側の軌道104に接続されている。また、縦棒左側の軌道104は、横棒外側の軌道104に向けてカーブしたランプ部を介して横棒外側の軌道104の合流点124に接続されている。また、横棒外側の軌道104の分岐点118は、ランプの軌道104を介して縦棒右側の軌道104に接続されている。また、横棒内側の軌道104の分岐点118は、ランプの軌道104を介して縦棒右側の軌道104の合流点124に接続されている。 In addition, FIG. 5B shows the intersection 132 of the junction. As shown in FIG. 5B, at the intersection 132, the tracks 104 intersect in a clove shape. At the intersection of the tracks 104, tunnels 102 including the tracks 104 that intersect each other are provided at different depths and intersect three-dimensionally. A confluence point 124 and a branch point 118 are provided in order in the traveling direction of the transport aircraft 20 on the track 104 outside the horizontal bar located outside the track 104 corresponding to the horizontal bar of the clove at the intersection 132. .. A branch point 118 and a confluence point 124 are provided in order on the track 104 inside the horizontal bar located inside the track 104 corresponding to the horizontal bar of the clove in the traveling direction of the transport aircraft 20. A branch point 118 is provided on the track 104 on the left side of the vertical bar located on the left side of the track 104 corresponding to the vertical bar of the clove. A confluence point 124 is provided on the track 104 on the right side of the vertical bar located on the right side of the track 104 corresponding to the vertical bar of the clove. The branch point 118 of the track 104 on the left side of the vertical bar is connected to the track 104 inside the horizontal bar via the track 104 of the ramp. Further, the track 104 on the left side of the vertical bar is connected to the confluence point 124 of the track 104 on the outside of the horizontal bar via a ramp portion curved toward the track 104 on the outside of the horizontal bar. Further, the branch point 118 of the track 104 on the outer side of the horizontal bar is connected to the track 104 on the right side of the vertical bar via the track 104 of the ramp. Further, the branch point 118 of the track 104 inside the horizontal bar is connected to the confluence point 124 of the track 104 on the right side of the vertical bar via the track 104 of the ramp.
 図5Bに示す丁字路の交差点132では、縦棒左側の軌道104を走行する輸送機20が、分岐点118で分岐することにより左方向に進行し、又はランプ部を経て横棒外側の軌道104にその合流点124で合流することにより右方向に進行することができる。また、交差点132では、横棒外側の軌道104を走行する輸送機20が、分岐点118で分岐することにより右方向に進行し、又は分岐することなく直進することができる。また、交差点132では、横棒内側の軌道104を走行する輸送機20が、分岐点118で分岐することにより左方向に進行し、又は分岐することなく直進することができる。 At the intersection 132 of the junction shown in FIG. 5B, the transport machine 20 traveling on the track 104 on the left side of the vertical bar travels to the left by branching at the branch point 118, or the track 104 on the outside of the horizontal bar passes through the ramp section. It is possible to proceed to the right by merging at the confluence point 124. Further, at the intersection 132, the transport aircraft 20 traveling on the track 104 outside the horizontal bar can travel to the right by branching at the branch point 118, or can go straight without branching. Further, at the intersection 132, the transport aircraft 20 traveling on the track 104 inside the horizontal bar can travel to the left by branching at the branch point 118, or can go straight without branching.
 なお、軌道104に設けられた交差点は、図5A及び図5Bに示す交差点130、132に構成に限定されるものではなく、例えば、三叉路、四叉路、五叉路等の構成のものであってもよい。 The intersections provided on the track 104 are not limited to the intersections 130 and 132 shown in FIGS. 5A and 5B, and are, for example, three-way intersections, four-way intersections, five-way intersections, and the like. You may.
 上述のようにして軌道104が敷設されたトンネル網10は、垂直搬送装置40を介して搬入出拠点30と連絡されている。以下、垂直搬送装置40についてさらに図6A及び図6Bを用いて説明する。図6Aは、垂直搬送装置40の地上部を含む搬入出拠点の例を示す上面図である。図6Bは、垂直搬送装置40の地下部を含む地下空間の例を示す上面図である。図6A及び図6Bでは、輸送機20の進行方向を矢印で示している。なお、図6Bでは、左側通行において左方向に分岐する分岐点118及び左方向から合流する合流点124を含む場合を示しているが、これに限定されるものではない。右側通行において右方向に分岐する分岐点118及び右方向から合流する合流点124を含む場合は、図6Bに示す構成の左右を反転した構成になる。 The tunnel network 10 in which the track 104 is laid as described above is in contact with the loading / unloading base 30 via the vertical transport device 40. Hereinafter, the vertical transfer device 40 will be further described with reference to FIGS. 6A and 6B. FIG. 6A is a top view showing an example of a loading / unloading base including the above-ground portion of the vertical transport device 40. FIG. 6B is a top view showing an example of an underground space including an underground portion of the vertical transport device 40. In FIGS. 6A and 6B, the traveling direction of the transport aircraft 20 is indicated by an arrow. Note that FIG. 6B shows a case where the branch point 118 branching to the left and the merging point 124 merging from the left direction are included in the left-hand traffic, but the present invention is not limited to this. In the case of including a branch point 118 branching to the right and a merging point 124 merging from the right direction in the right-hand traffic, the configuration shown in FIG. 6B is reversed left and right.
 垂直搬送装置40が設置された搬入出拠点30は、地上において輸送機20への貨物の積込及び輸送機20からの貨物の荷卸するための場所である。搬入出拠点30は、特に限定されるものではないが、例えば、貨物輸送量の多い港湾、工場、物流センター、倉庫、配送センター等に設置されている。 The loading / unloading base 30 in which the vertical transport device 40 is installed is a place on the ground for loading cargo into the transport aircraft 20 and unloading the cargo from the transport aircraft 20. The loading / unloading base 30 is not particularly limited, but is installed in, for example, a port, a factory, a distribution center, a warehouse, a distribution center, etc., which have a large amount of freight transportation.
 図6Aに示すように、搬入出拠点30には、垂直搬送装置40の地上部402が設置されている。搬入出拠点30には、荷卸エリア302と、待機エリア304と、積込エリア306とが設けられている。地上部402と荷卸エリア302との間、荷卸エリア302と待機エリア304との間、待機エリア304と積込エリア306との間及び積込エリア306と地上部402との間には、各部を輸送機20が移動可能なように軌道104が敷設されている。各部の間に敷設されたレール114は、トンネル102の内部に敷設されたレール114と同様のものである。 As shown in FIG. 6A, the above-ground portion 402 of the vertical transport device 40 is installed at the loading / unloading base 30. The loading / unloading base 30 is provided with a unloading area 302, a waiting area 304, and a loading area 306. Each part is provided between the above-ground part 402 and the unloading area 302, between the unloading area 302 and the waiting area 304, between the waiting area 304 and the loading area 306, and between the loading area 306 and the above-ground part 402. A track 104 is laid so that the transport aircraft 20 can move. The rail 114 laid between the parts is similar to the rail 114 laid inside the tunnel 102.
 また、図6Bに示すように、地下空間90には、垂直搬送装置40の地下部404が設置されている。地下部404は、搬入出拠点30に設置された地上部402の直下の位置に設置されている。地下部404には、トンネル網10の軌道104を走行する輸送機20が地下部404に進入するための軌道104が接続されている。また、地下部404には、地下部404からトンネル網10の軌道104に輸送機20が進出するための軌道104が接続されている。 Further, as shown in FIG. 6B, the underground portion 404 of the vertical transport device 40 is installed in the underground space 90. The underground portion 404 is installed at a position directly below the above-ground portion 402 installed at the loading / unloading base 30. An orbit 104 for the transport aircraft 20 traveling on the orbit 104 of the tunnel network 10 to enter the underground portion 404 is connected to the underground portion 404. Further, the underground portion 404 is connected to the track 104 for the transport aircraft 20 to advance from the underground portion 404 to the track 104 of the tunnel network 10.
 垂直搬送装置40は、地上に設置された地上部402と地下に設置された地下部404との間で輸送機20の垂直搬送するように構成されている。垂直搬送装置40は、輸送機20が乗ったレール114を含む床部を垂直搬送するものであってもよいし、輸送機20を単独で垂直搬送するものであってもよい。垂直搬送装置40は、特に限定されるものではないが、例えば、リフトコンベア、昇降機等である。 The vertical transport device 40 is configured to vertically transport the transport aircraft 20 between the above-ground portion 402 installed on the ground and the underground portion 404 installed underground. The vertical transport device 40 may vertically transport the floor including the rail 114 on which the transport aircraft 20 is placed, or may vertically transport the transport aircraft 20 alone. The vertical transfer device 40 is not particularly limited, but is, for example, a lift conveyor, an elevator, or the like.
 図6Aに示す搬入出拠点30において、地上部402には、その搬入出拠点30を貨物の輸送先として設定された輸送機20が、垂直搬送装置40により地下空間90の地下部404から垂直搬送されて到着する。到着した輸送機20には、別の搬入出拠点30において積み込まれた貨物が積載されている。 In the loading / unloading base 30 shown in FIG. 6A, a transport aircraft 20 having the loading / unloading base 30 set as a cargo transport destination is vertically transported from the underground portion 404 of the underground space 90 to the above-ground portion 402 by the vertical transport device 40. Will arrive. The arriving transport aircraft 20 is loaded with cargo loaded at another loading / unloading base 30.
 荷卸エリア302には、貨物が積載された輸送機20が、地上部402から軌道104上を走行して貨物の荷卸のために停止する。荷卸エリア302では、1機又は複数機の輸送機20からの貨物の荷卸が可能になっている。荷卸エリア302では、例えば、フォークリフト、ロボット、作業者等により貨物の荷卸作業が行われる。 In the unloading area 302, the transport aircraft 20 loaded with cargo travels on the track 104 from the above-ground portion 402 and stops for unloading the cargo. In the unloading area 302, cargo can be unloaded from one or a plurality of transport aircraft 20. In the unloading area 302, forklifts, robots, workers, and the like perform cargo unloading work.
 待機エリア304には、荷卸エリア302にて貨物の荷卸が完了した輸送機20が、荷卸エリア302から軌道104上を走行して待機のために停止する。待機エリア304では、輸送機20が、積込エリア306での貨物の積込の時間まで停止して待機する。待機エリア304では、1機又は複数機の輸送機20の待機が可能になっている。 In the waiting area 304, the transport aircraft 20 for which the cargo has been unloaded in the unloading area 302 travels on the track 104 from the unloading area 302 and stops for waiting. In the waiting area 304, the transport aircraft 20 stops and waits until the loading time of the cargo in the loading area 306. In the standby area 304, one or a plurality of transport aircraft 20 can be on standby.
 積込エリア306には、待機エリア304にて待機した輸送機20が、待機エリア304から軌道104上を走行して貨物の積込のために停止する。積込エリア306では、1機又は複数機の輸送機20への貨物の積込が可能になっている。積込エリア306では、例えば、フォークリフト、ロボット、作業者等により貨物の積込作業が行われる。 In the loading area 306, the transport aircraft 20 waiting in the standby area 304 travels on the track 104 from the standby area 304 and stops for loading cargo. In the loading area 306, cargo can be loaded into one or a plurality of transport aircraft 20. In the loading area 306, forklifts, robots, workers, and the like perform cargo loading operations.
 また、地上部402には、積込エリア306にて再び貨物の積込が完了した輸送機20が、積込エリア306から軌道104上を走行して垂直搬送のために停止する。地上部402では、垂直搬送装置40により、再び貨物が積載された輸送機20を地下部404に垂直搬送される。 Further, in the above-ground portion 402, the transport aircraft 20 for which the cargo has been loaded again in the loading area 306 travels on the track 104 from the loading area 306 and stops for vertical transportation. At the above-ground portion 402, the vertical transport device 40 vertically transports the transport aircraft 20 loaded with cargo to the underground portion 404.
 図6Bに示す搬入出拠点30において、トンネル網10の内部の軌道104から地下部404に輸送機20が進入するため、地下部404には、進入用の軌道104が接続されている。また、地下部404からトンネル網10の内部の軌道104に輸送機20が進出するため、地下部404には、進出用の軌道104が接続されている。地下部404に接続された軌道104には、複数の方向から輸送機20が地下部404に進入することができ又は複数の方向に輸送機20が地下部404から進出することができるように、複数の分岐点118及び合流点124が設けられている。 At the loading / unloading base 30 shown in FIG. 6B, since the transport aircraft 20 enters the underground portion 404 from the track 104 inside the tunnel network 10, the track 104 for entry is connected to the underground portion 404. Further, since the transport aircraft 20 advances from the underground portion 404 to the track 104 inside the tunnel network 10, the track 104 for advancement is connected to the underground portion 404. In the orbit 104 connected to the underground portion 404, the transport aircraft 20 can enter the underground portion 404 from a plurality of directions, or the transport aircraft 20 can advance from the underground portion 404 in a plurality of directions. A plurality of branch points 118 and a confluence point 124 are provided.
 地下部404には、トンネル網10の内部の軌道104上を走行した輸送機20が到着する。到着する輸送機20は、その地下部404の垂直搬送装置40により連絡された搬入出拠点30を輸送先とする貨物が積載されている。地下部404に到着した輸送機20は、垂直搬送装置40により搬入出拠点30に設置された地上部402に垂直搬送される。 The transport aircraft 20 traveling on the track 104 inside the tunnel network 10 arrives at the underground portion 404. The arriving transport aircraft 20 is loaded with cargo whose transport destination is the loading / unloading base 30 connected by the vertical transport device 40 in the underground portion 404. The transport aircraft 20 that has arrived at the underground portion 404 is vertically transported to the above-ground portion 402 installed at the loading / unloading base 30 by the vertical transport device 40.
 また、地下部404には、搬入出拠点30にて貨物が積載された輸送機20が、垂直搬送装置40により地上部402から垂直搬送される。地下部404に垂直搬送された輸送機20は、貨物の輸送先である搬入出拠点30に向けてトンネル網10の内部の軌道104上を走行する。 Further, in the underground portion 404, the transport aircraft 20 loaded with cargo at the loading / unloading base 30 is vertically transported from the above-ground portion 402 by the vertical transport device 40. The transport aircraft 20 vertically transported to the underground portion 404 travels on the track 104 inside the tunnel network 10 toward the loading / unloading base 30 which is the transportation destination of the cargo.
 次に、本実施形態による輸送システム1のシステム構成についてさらに図7を用いて説明する。図7は、輸送システム1のシステム構成の例を示す図である。 Next, the system configuration of the transportation system 1 according to the present embodiment will be further described with reference to FIG. FIG. 7 is a diagram showing an example of the system configuration of the transportation system 1.
 図7に示すように、トンネル網10のトンネル102中の輸送機20は、自律走行システム220と、位置情報センサー210と、車間センサー222と、通信I/F224と、走行制御装置226とを有している。トンネル網10のトンネル102中には、複数の位置情報マーカー116が設置されている。また、トンネル102には、複数の無線通信アクセスポイント108が設置されている。無線通信アクセスポイント108は、トンネル102に設けられたトンネル内通信網802を介して通信網80に接続されている。 As shown in FIG. 7, the transport aircraft 20 in the tunnel 102 of the tunnel network 10 has an autonomous traveling system 220, a position information sensor 210, an inter-vehicle distance sensor 222, a communication I / F 224, and a traveling control device 226. doing. A plurality of position information markers 116 are installed in the tunnel 102 of the tunnel network 10. Further, a plurality of wireless communication access points 108 are installed in the tunnel 102. The wireless communication access point 108 is connected to the communication network 80 via the in-tunnel communication network 802 provided in the tunnel 102.
 自律走行システム220は、CPU(Central Processing Unit)、RAM(Random Access Memory)、記憶装置等を含むコンピュータ装置による情報処理システムである。自律走行システム220は、輸送機20の自律走行を制御する制御システムとして機能し、輸送指示情報、車間距離情報等に基づき輸送機20の自律走行を制御する。 The autonomous traveling system 220 is an information processing system using a computer device including a CPU (Central Processing Unit), a RAM (Random Access Memory), a storage device, and the like. The autonomous traveling system 220 functions as a control system for controlling the autonomous traveling of the transport aircraft 20, and controls the autonomous traveling of the transport aircraft 20 based on the transportation instruction information, the inter-vehicle distance information, and the like.
 位置情報センサー210は、上述のように、位置情報マーカー116を読み取って位置情報マーカー116から位置情報を取得する。位置情報センサー210は、自律走行システム220に位置情報を送信する。 As described above, the position information sensor 210 reads the position information marker 116 and acquires the position information from the position information marker 116. The position information sensor 210 transmits the position information to the autonomous traveling system 220.
 車間センサー222は、自機に対して前後の輸送機20と自機との間の車間距離を計測して車間距離を示す車間距離情報を取得する。車間センサー222は、特に限定されるものではないが、例えば、ミリ波レーダー、ステレオカメラ等により車間距離を計測することができる。車間センサー222は、自律走行システム220に車間距離情報を送信する。 The inter-vehicle distance sensor 222 measures the inter-vehicle distance between the front and rear transport aircraft 20 and the own aircraft with respect to the own aircraft, and acquires the inter-vehicle distance information indicating the inter-vehicle distance. The inter-vehicle distance sensor 222 is not particularly limited, but for example, the inter-vehicle distance can be measured by a millimeter-wave radar, a stereo camera, or the like. The inter-vehicle distance sensor 222 transmits inter-vehicle distance information to the autonomous traveling system 220.
 通信I/F224は、通信網80に通信可能に接続する。通信I/F224は、トンネル網10のトンネル102内では、無線通信アクセスポイント108に無線通信で接続し、無線通信アクセスポイント108を介して通信網80に通信可能に接続することができる。自律走行システム220は、通信I/F224を介して通信網80に接続してエッジサーバー50の拠点管理システム502と情報の送受信を行う。 The communication I / F 224 is communicably connected to the communication network 80. The communication I / F 224 can be connected to the wireless communication access point 108 by wireless communication in the tunnel 102 of the tunnel network 10 and can be communicably connected to the communication network 80 via the wireless communication access point 108. The autonomous traveling system 220 connects to the communication network 80 via the communication I / F 224 and transmits / receives information to / from the base management system 502 of the edge server 50.
 具体的には、自律走行システム220は、通信I/F224を介して、拠点管理システム502から輸送指示情報を受信する。輸送指示情報は、輸送機20に対して貨物の輸送を指示する情報である。輸送指示情報は、例えば、輸送機ID(Identification)、貨物情報、荷主情報、輸送経路計画情報、速度計画情報、分岐計画情報等を含んでいる。輸送機IDは、輸送機20を一意に識別する識別情報である。貨物情報は、輸送機20に積み込まれる貨物の品目、数量等の貨物に関する情報である。荷主情報は、貨物を発送する発荷主及び貨物を受け取る着荷主を特定する情報である。輸送経路計画情報は、輸送元の搬入出拠点30から輸送先の搬入出拠点30まで輸送機20が走行するトンネル網10の経路を特定する経路計画を示す情報である。速度計画情報は、輸送元の搬入出拠点30から輸送先の搬入出拠点30まで走行する間の輸送機20の速度計画を示す情報である。分岐計画情報は、経路計画において輸送機20が分岐すべき分岐点118を特定する情報である。 Specifically, the autonomous traveling system 220 receives the transportation instruction information from the base management system 502 via the communication I / F 224. The transportation instruction information is information for instructing the transport aircraft 20 to transport the cargo. The transportation instruction information includes, for example, a transport aircraft ID (Identification), cargo information, shipper information, transportation route planning information, speed planning information, branching planning information, and the like. The transport aircraft ID is identification information that uniquely identifies the transport aircraft 20. The freight information is information on freight such as items and quantities of freight loaded on the transport aircraft 20. Shipper information is information that identifies the shipper who sends the cargo and the shipper who receives the cargo. The transportation route planning information is information indicating a route plan for specifying the route of the tunnel network 10 in which the transport aircraft 20 travels from the loading / unloading base 30 of the transport source to the loading / unloading base 30 of the transport destination. The speed plan information is information indicating the speed plan of the transport aircraft 20 while traveling from the loading / unloading base 30 of the transport source to the loading / unloading base 30 of the transport destination. The branch plan information is information that identifies the branch point 118 to which the transport aircraft 20 should branch in the route plan.
 自律走行システム220は、輸送元の搬入出拠点30内においてその拠点管理システム502から輸送指示情報を受信することができる。また、自律走行システム220は、トンネル網10内において、拠点管理システム502から輸送指示情報を受信することもできる。 The autonomous traveling system 220 can receive transportation instruction information from the base management system 502 within the loading / unloading base 30 of the transportation source. In addition, the autonomous traveling system 220 can also receive transportation instruction information from the base management system 502 in the tunnel network 10.
 また、自律走行システム220は、通信I/F224を介して、拠点管理システム502に輸送状況情報を送信する。輸送状況情報は、輸送機20による貨物の輸送状況を示す情報である。輸送状況情報は、例えば、輸送機ID、位置情報等を含んでいる。位置情報は、輸送機20の位置を特定する情報であり、位置情報センサー210により取得されたものである。 Further, the autonomous traveling system 220 transmits the transportation status information to the base management system 502 via the communication I / F 224. The transportation status information is information indicating the transportation status of the cargo by the transport aircraft 20. The transportation status information includes, for example, a transport aircraft ID, location information, and the like. The position information is information for specifying the position of the transport aircraft 20, and is acquired by the position information sensor 210.
 走行制御装置226は、自律走行システム220から受信する制御指示情報に基づき、車輪202及びアクチュエータ218を含む車両部204を制御して、加減速のための車輪202の回転駆動の制御を行い、また、分岐点118での分岐制御を行う。これにより、走行制御装置226は、輸送機20の走行を制御する。 The travel control device 226 controls the vehicle unit 204 including the wheels 202 and the actuator 218 based on the control instruction information received from the autonomous travel system 220, controls the rotational drive of the wheels 202 for acceleration / deceleration, and also controls the rotation drive of the wheels 202 for acceleration / deceleration. , Branch control is performed at the branch point 118. As a result, the travel control device 226 controls the travel of the transport aircraft 20.
 自律走行システム220は、上述した位置情報、車間距離情報及び輸送指示情報、並びに走行制御装置226から受信する制御状況情報に基づき、車両部204による走行を制御するための制御指示情報を生成する。制御指示情報は、例えば、車輪202の回転駆動の制御、分岐点118での分岐制御等のための情報を含んでいる。自律走行システム220は、走行制御装置226に制御指示情報を送信する。 The autonomous travel system 220 generates control instruction information for controlling travel by the vehicle unit 204 based on the above-mentioned position information, inter-vehicle distance information, transportation instruction information, and control status information received from the travel control device 226. The control instruction information includes, for example, information for controlling the rotational drive of the wheel 202, branching control at the branching point 118, and the like. The autonomous travel system 220 transmits control instruction information to the travel control device 226.
 走行制御装置226は、車両部204を制御して輸送機20の走行を制御する間、自律走行システム220に制御状況情報を送信する。制御状況情報は、車両部204を含む輸送の制御状況を示す情報である。制御状況情報は、例えば、速度情報、分岐情報等を含んでいる。速度情報は、輸送機20の速度を示す情報である。分岐情報は、分岐制御を行った分岐点118を示す情報である。 The travel control device 226 transmits control status information to the autonomous travel system 220 while controlling the vehicle unit 204 to control the travel of the transport aircraft 20. The control status information is information indicating a control status of transportation including the vehicle unit 204. The control status information includes, for example, speed information, branch information, and the like. The speed information is information indicating the speed of the transport aircraft 20. The branch information is information indicating the branch point 118 for which branch control has been performed.
 無線通信アクセスポイント108は、トンネル網10を走行する輸送機20を通信網80に通信可能に接続する無線通信部である。無線通信アクセスポイント108は、輸送機20と通信網80との間の通信を介在する。輸送機20は、無線通信アクセスポイント108を介して通信網80に接続して、エッジサーバー50と通信することができる。 The wireless communication access point 108 is a wireless communication unit that connects the transport aircraft 20 traveling on the tunnel network 10 to the communication network 80 in a communicable manner. The wireless communication access point 108 mediates communication between the transport aircraft 20 and the communication network 80. The transport aircraft 20 can connect to the communication network 80 via the wireless communication access point 108 and communicate with the edge server 50.
 搬入出拠点30に設置されたエッジサーバー50は、拠点管理システム502と、拠点DB(Database)504とを有している。エッジサーバー50は、搬入出拠点30ごとに設置されている。また、搬入出拠点30には、1台又は複数台のコンソール端末308が設置されている。また、搬入出拠点30には、貨物の積込又は荷卸を行うために1機又は複数機の輸送機20が存在している。エッジサーバー50及びコンソール端末308は、搬入出拠点30に設けられた拠点内通信網804に互いに通信可能に接続されている。エッジサーバー50は、拠点内通信網804を介して通信網80に通信可能に接続されている。また、輸送機20は、通信I/F224により拠点内通信網804に接続して、エッジサーバー50と通信することができる。 The edge server 50 installed at the loading / unloading base 30 has a base management system 502 and a base DB (Database) 504. The edge server 50 is installed at each loading / unloading base 30. Further, one or a plurality of console terminals 308 are installed at the loading / unloading base 30. Further, at the loading / unloading base 30, one or a plurality of transport aircraft 20 are present for loading or unloading cargo. The edge server 50 and the console terminal 308 are communicably connected to the in-base communication network 804 provided at the carry-in / out base 30. The edge server 50 is communicably connected to the communication network 80 via the intra-site communication network 804. Further, the transport aircraft 20 can connect to the in-base communication network 804 by the communication I / F 224 and communicate with the edge server 50.
 拠点管理システム502は、CPU、RAM、記憶装置等を含むコンピュータ装置による情報処理システムである。拠点管理システム502は、エッジサーバー50を制御する制御部として機能する。 The base management system 502 is an information processing system using a computer device including a CPU, RAM, a storage device, and the like. The site management system 502 functions as a control unit that controls the edge server 50.
 また、拠点管理システム502は、拠点DB504に格納される各種情報を取得して管理する取得部及び管理部として機能する。拠点DB504に格納される情報は、例えば、搬入出拠点ID、輸送状況情報、輸送指示情報、統合運行情報等である。搬入出拠点IDは、搬入出拠点30を一意に識別する識別情報である。輸送状況情報は、輸送機20から受信する輸送機20による貨物の輸送状況を示す情報である。輸送指示情報は、コンソール端末308から受信する輸送指示入力情報に応じて生成された情報であり、輸送機20に対して貨物の輸送を指示するものである。統合運行情報は、輸送システム1における複数機の輸送機20の運行状況を統合的に示す情報である。統合運行情報は、各輸送機20の運行情報を含んでいる。 Further, the base management system 502 functions as an acquisition unit and a management unit that acquire and manage various information stored in the base DB 504. The information stored in the base DB 504 is, for example, the loading / unloading base ID, the transportation status information, the transportation instruction information, the integrated operation information, and the like. The carry-in / out base ID is identification information that uniquely identifies the carry-in / out base 30. The transportation status information is information indicating the transportation status of the cargo by the transport aircraft 20 received from the transport aircraft 20. The transportation instruction information is information generated in response to the transportation instruction input information received from the console terminal 308, and instructs the transport aircraft 20 to transport the cargo. The integrated operation information is information that comprehensively indicates the operation status of a plurality of transport aircraft 20 in the transportation system 1. The integrated operation information includes the operation information of each transport aircraft 20.
 また、拠点管理システム502は、輸送機20に貨物の輸送を指示する輸送指示情報を生成する生成部として機能する。拠点管理システム502は、コンソール端末308から受信した輸送指示入力情報、輸送状況情報及び統合運行情報に基づき、その搬入出拠点30において待機する輸送機20のいずれかに貨物の輸送を指示する輸送指示情報を生成する。 Further, the base management system 502 functions as a generation unit that generates transportation instruction information instructing the transport aircraft 20 to transport the cargo. The base management system 502 instructs the transport aircraft 20 waiting at the loading / unloading base 30 to transport the freight based on the transport instruction input information, the transport status information, and the integrated operation information received from the console terminal 308. Generate information.
 拠点管理システム502は、貨物を輸送させる輸送機20のみならず、他の輸送機20を含む複数の輸送機20の輸送状況及び運行状況をそれぞれ示す輸送状況情報及び統合運行情報に基づき輸送指示情報を生成する。このため、拠点管理システム502は、他の輸送機20の輸送状況及び運行状況を考慮して、貨物輸送の効率が高い輸送指示情報を生成することができる。 The base management system 502 includes transportation instruction information based on transportation status information and integrated operation information indicating the transportation status and operation status of not only the transport aircraft 20 for transporting cargo but also a plurality of transport aircraft 20 including other transport aircraft 20. To generate. Therefore, the base management system 502 can generate transportation instruction information with high efficiency of freight transportation in consideration of the transportation status and the operation status of the other transport aircraft 20.
 また、拠点管理システム502は、貨物を輸送させる輸送機20に輸送指示情報を送信する送信部として機能する。拠点管理システム502は、搬入出拠点30において、待機エリア304にて待機する輸送機20に輸送指示情報を送信することができる。輸送機20は、拠点管理システム502から受信した輸送指示情報を受けて貨物の輸送を開始する。 Further, the base management system 502 functions as a transmission unit that transmits transportation instruction information to the transport aircraft 20 that transports cargo. The base management system 502 can transmit transport instruction information to the transport aircraft 20 waiting in the standby area 304 at the carry-in / out base 30. The transport aircraft 20 starts transporting the cargo in response to the transport instruction information received from the base management system 502.
 また、搬入出拠点30において貨物の荷卸が行われて貨物の輸送を完了した輸送機20は、その搬入出拠点30の拠点管理システム502に輸送完了情報を送信する。輸送完了情報は、貨物輸送の完了を示す情報である。 Further, the transport aircraft 20 that has completed the transportation of the cargo by unloading the cargo at the loading / unloading base 30 transmits the transportation completion information to the base management system 502 of the loading / unloading base 30. The transportation completion information is information indicating the completion of freight transportation.
 また、拠点管理システム502は、輸送機20から受信した輸送状況情報、輸送完了情報等に基づき、輸送機20の運行情報を生成する。運行情報は、その拠点管理システム502が情報の送受信を行った1機又は複数機の輸送機20の運行状況を示す情報である。運行情報は、例えば、輸送機ID、位置情報、貨物輸送の完了の有無を示す情報等を含んでいる。拠点管理システム502は、運行情報の統合管理のため、中央サーバー70の統合管理システム702に運行情報を送信する。 Further, the base management system 502 generates operation information of the transport aircraft 20 based on the transportation status information, the transportation completion information, and the like received from the transport aircraft 20. The operation information is information indicating the operation status of one or a plurality of transport aircraft 20 to which the base management system 502 transmits / receives information. The operation information includes, for example, a transport aircraft ID, location information, information indicating whether or not freight transportation has been completed, and the like. The base management system 502 transmits the operation information to the integrated management system 702 of the central server 70 for the integrated management of the operation information.
 コンソール端末308は、作業者と拠点管理システム502との間のインターフェースを提供するインターフェース装置である。すなわち、コンソール端末308は、その入力装置を介して、作業者による輸送指示入力情報の入力を受け付ける。輸送指示入力情報は、例えば、輸送先の搬入出拠点30の搬入出拠点ID、貨物情報、荷主情報等を含む。コンソール端末308は、拠点管理システム502に輸送指示入力情報を送信する。また、コンソール端末308は、拠点DB504に格納された各種情報をその表示装置に閲覧可能に表示することができる。作業者は、コンソール端末308により表示された各種情報に基づき、例えば、貨物の輸送計画を立てることができる。 The console terminal 308 is an interface device that provides an interface between the worker and the site management system 502. That is, the console terminal 308 accepts the input of the transportation instruction input information by the operator via the input device. The transportation instruction input information includes, for example, the loading / unloading base ID of the loading / unloading base 30 of the transport destination, cargo information, shipper information, and the like. The console terminal 308 transmits the transportation instruction input information to the base management system 502. Further, the console terminal 308 can display various information stored in the base DB 504 on the display device so as to be viewable. The worker can make, for example, a freight transportation plan based on various information displayed by the console terminal 308.
 データセンター60に設置された中央サーバー70は、統合管理システム702と、中央DB704とを有している。中央サーバー70は、通信網80に通信可能に接続されている。 The central server 70 installed in the data center 60 has an integrated management system 702 and a central DB 704. The central server 70 is communicably connected to the communication network 80.
 統合管理システム702は、CPU、RAM、記憶装置等を含むコンピュータ装置による情報処理システムである。統合管理システム702は、中央サーバー70を制御する制御部として機能する。 The integrated management system 702 is an information processing system using a computer device including a CPU, RAM, a storage device, and the like. The integrated management system 702 functions as a control unit that controls the central server 70.
 統合管理システム702は、中央DB704に格納される各種情報を管理する。中央DB704に格納される情報は、例えば、搬入出拠点ID、輸送機ID、運行情報等である。運行情報は、複数の拠点管理システム502から受信するものである。 The integrated management system 702 manages various information stored in the central DB 704. The information stored in the central DB 704 is, for example, a loading / unloading base ID, a transport aircraft ID, operation information, and the like. The operation information is received from a plurality of base management systems 502.
 また、統合管理システム702は、輸送システム1における複数の輸送機20の運行を管理する管理部として機能する。すなわち、統合管理システム702は、複数の拠点管理システム502から受信した運行情報を統合して管理して各運行情報を統合した統合運行情報を生成する。統合管理システム702は、輸送システム1におけるすべての拠点管理システム502に統合運行情報を送信して展開する。また、統合管理システム702は、統合運行情報を中央DB704に格納して管理する。 Further, the integrated management system 702 functions as a management unit that manages the operation of a plurality of transport aircraft 20 in the transportation system 1. That is, the integrated management system 702 integrates and manages the operation information received from the plurality of base management systems 502, and generates the integrated operation information in which each operation information is integrated. The integrated management system 702 transmits and deploys integrated operation information to all the base management systems 502 in the transportation system 1. Further, the integrated management system 702 stores and manages the integrated operation information in the central DB 704.
 上述のようにして構成される本実施形態による輸送システム1において、輸送機20は、待機フェーズ、積込フェーズ、自律走行フェーズ及び荷卸フェーズの各フェーズを順次経て貨物の輸送を完了する。輸送機20による貨物輸送における各フェーズでの処理についてさらに図8を用いて説明する。図8は、輸送機20による貨物輸送における処理の例を示すフローチャートである。 In the transportation system 1 according to the present embodiment configured as described above, the transport aircraft 20 completes the transportation of cargo through each phase of the standby phase, the loading phase, the autonomous traveling phase, and the unloading phase in sequence. The processing in each phase of freight transportation by the transport aircraft 20 will be further described with reference to FIG. FIG. 8 is a flowchart showing an example of processing in freight transportation by the transport aircraft 20.
 図8に示すように、輸送機20は、待機フェーズP1、積込フェーズP2、自律走行フェーズP3及び荷卸フェーズP4を順次経て貨物の輸送を完了する。その後、輸送機20は、再び待機フェーズP1に移行して次の貨物の輸送のために待機する。 As shown in FIG. 8, the transport aircraft 20 completes the transportation of cargo through the standby phase P1, the loading phase P2, the autonomous traveling phase P3, and the unloading phase P4 in that order. After that, the transport aircraft 20 shifts to the standby phase P1 again and waits for the transportation of the next cargo.
 待機フェーズP1は、輸送元の搬入出拠点30内において輸送機20が次の貨物の輸送が開始されるまで待機するフェーズである。待機フェーズP1において、輸送元の搬入出拠点30内の作業者が貨物輸送を開始すると判断すると(ステップS102)、作業者によりコンソール端末308から貨物輸送の開始を指示する開始指示が入力される(ステップS104)。開始指示は、輸送元の搬入出拠点30内の拠点管理システム502を介して、輸送元の搬入出拠点30内の待機エリア304にて待機する輸送機20に送信される。輸送機20は、開始指示を受信すると、輸送元の搬入出拠点30内の積込エリア306まで走行して積込フェーズP2に移行する。 The standby phase P1 is a phase in which the transport aircraft 20 waits until the next cargo is started to be transported in the loading / unloading base 30 of the transport source. In the standby phase P1, when it is determined that the worker in the loading / unloading base 30 of the transportation source starts the freight transportation (step S102), the worker inputs a start instruction instructing the start of the freight transportation from the console terminal 308 (step S102). Step S104). The start instruction is transmitted to the transport aircraft 20 waiting in the waiting area 304 in the transport source's import / export base 30 via the base management system 502 in the transport source's import / export base 30. Upon receiving the start instruction, the transport aircraft 20 travels to the loading area 306 in the loading / unloading base 30 of the transport source and shifts to the loading phase P2.
 積込フェーズP2は、輸送機20への貨物の積込作業が行われるフェーズである。積込フェーズP2では、積込エリア306において輸送機20への貨物の積込を行う積込作業が行われる(ステップS106)。積込作業の完了後、作業者によりコンソール端末308から輸送指示情報が入力される(ステップS108)。輸送指示情報は、上述のように、例えば、輸送機ID、貨物情報、荷主情報、輸送経路計画情報、速度計画情報、分岐計画情報等を含んでいる。輸送指示情報は、輸送元の搬入出拠点30内の拠点管理システム502を介して、輸送元の搬入出拠点30内の積込エリア306にて積込作業が完了した輸送機20に送信される。輸送機20は、輸送指示情報を受信すると、自律走行フェーズP3に移行して輸送先の搬入出拠点30に向けて自律走行を開始する。 The loading phase P2 is a phase in which cargo is loaded onto the transport aircraft 20. In the loading phase P2, a loading operation for loading the cargo into the transport aircraft 20 is performed in the loading area 306 (step S106). After the loading work is completed, the operator inputs the transportation instruction information from the console terminal 308 (step S108). As described above, the transportation instruction information includes, for example, a transport aircraft ID, cargo information, shipper information, transportation route planning information, speed planning information, branching planning information, and the like. The transportation instruction information is transmitted to the transport aircraft 20 for which the loading work has been completed in the loading area 306 in the loading / unloading base 30 of the transporting source via the base management system 502 in the loading / unloading base 30 of the transporting source. .. Upon receiving the transportation instruction information, the transport aircraft 20 shifts to the autonomous traveling phase P3 and starts autonomous traveling toward the loading / unloading base 30 of the transport destination.
 自律走行フェーズP3は、輸送機20が受信する各種情報に基づき自律的に走行して貨物輸送を行うフェーズである。自律走行フェーズP3では、車間距離情報の取得処理(ステップS110)、位置情報の取得処理(ステップS112)、通信処理(ステップS114)、走行アルゴリズム処理(ステップS116)及び走行制御処理(ステップS118)の各処理が実行される。各処理は、互いに独立して並列的に実行される。また、各処理は、輸送先の搬入出拠点30に到着して自律走行フェーズP3が終了するまで連続的に実行され続ける。 The autonomous traveling phase P3 is a phase in which the transport aircraft 20 autonomously travels and transports freight based on various information received. In the autonomous driving phase P3, the inter-vehicle distance information acquisition process (step S110), the position information acquisition process (step S112), the communication process (step S114), the driving algorithm process (step S116), and the driving control process (step S118). Each process is executed. Each process is executed in parallel independently of each other. Further, each process is continuously executed until it arrives at the loading / unloading base 30 of the transportation destination and the autonomous traveling phase P3 is completed.
 自律走行フェーズP3において、輸送機20は、輸送元の搬入出拠点30とトンネル網10との間を連絡する垂直搬送装置40によりトンネル網10に垂直搬送された後、輸送先の搬入出拠点30までトンネル網10において軌道104上を自律走行する。 In the autonomous traveling phase P3, the transport aircraft 20 is vertically transported to the tunnel network 10 by the vertical transport device 40 that communicates between the transport source loading / unloading base 30 and the tunnel network 10, and then the transport destination loading / unloading base 30. The tunnel network 10 autonomously travels on the track 104.
 車間距離情報の取得処理(ステップS110)では、輸送機20の車間センサー222が、前後の輸送機20との車間距離を計測して車間距離情報を取得する。車間センサー222は、車間距離情報を取得すると、走行アルゴリズム処理を実行する自律走行システム220に車間距離情報を送信する。 In the inter-vehicle distance information acquisition process (step S110), the inter-vehicle distance sensor 222 of the transport aircraft 20 measures the inter-vehicle distance between the front and rear transport aircraft 20 and acquires the inter-vehicle distance information. When the inter-vehicle distance sensor 222 acquires the inter-vehicle distance information, the inter-vehicle distance sensor 222 transmits the inter-vehicle distance information to the autonomous travel system 220 that executes the travel algorithm processing.
 位置情報の取得処理(ステップS112)では、輸送機20の位置情報センサー210が、トンネル102に設置された位置情報マーカー116を読み取って位置情報を取得する。位置情報センサー210は、位置情報を取得すると、走行アルゴリズム処理を実行する自律走行システム220に位置情報を送信する。輸送機20の自律走行システム220は、受信する位置情報に基づきトンネル網10における自機の位置を把握することができ、その上で自機を制御することができる。 In the position information acquisition process (step S112), the position information sensor 210 of the transport aircraft 20 reads the position information marker 116 installed in the tunnel 102 to acquire the position information. When the position information sensor 210 acquires the position information, the position information sensor 210 transmits the position information to the autonomous traveling system 220 that executes the traveling algorithm processing. The autonomous traveling system 220 of the transport aircraft 20 can grasp the position of the own aircraft in the tunnel network 10 based on the received position information, and can control the own aircraft on it.
 通信処理(ステップS114)では、輸送機20の自律走行システム220が、通信I/F224を介して無線通信アクセスポイント108と無線通信して、拠点管理システム502との間で情報の送受信を行う。すなわち、自律走行システム220は、拠点管理システム502から輸送指示情報を受信し、拠点管理システム502へ輸送状況情報を送信する。 In the communication process (step S114), the autonomous traveling system 220 of the transport aircraft 20 wirelessly communicates with the wireless communication access point 108 via the communication I / F 224, and transmits / receives information to / from the base management system 502. That is, the autonomous traveling system 220 receives the transportation instruction information from the base management system 502 and transmits the transportation status information to the base management system 502.
 走行アルゴリズム処理(ステップS116)では、輸送機20の自律走行システム220が、位置情報、車間距離情報、輸送指示情報及び制御状況情報に基づき、車両部204による走行を制御するための制御指示情報を生成する。自律走行システム220は、車間距離情報に基づき自機の前方の輸送機20との間の車間距離が一定距離よりも狭くなったと判定した場合に自機を減速又は停止することを指示する制御指示を生成する。また、自律走行システム220は、それ以外の場合、位置情報、車間距離情報、輸送指示情報及び制御状況情報に基づき、自機の加減速、分岐制御等を指示する制御指示情報を生成する。自律走行システム220は、走行制御装置226に制御指示情報を送信する。 In the travel algorithm process (step S116), the autonomous travel system 220 of the transport aircraft 20 provides control instruction information for controlling travel by the vehicle unit 204 based on position information, inter-vehicle distance information, transportation instruction information, and control status information. Generate. The autonomous traveling system 220 is a control instruction for instructing to decelerate or stop the own aircraft when it is determined that the inter-vehicle distance to the transport aircraft 20 in front of the own aircraft is narrower than a certain distance based on the inter-vehicle distance information. To generate. In other cases, the autonomous traveling system 220 generates control instruction information for instructing acceleration / deceleration, branch control, etc. of the own machine based on position information, inter-vehicle distance information, transportation instruction information, and control status information. The autonomous travel system 220 transmits control instruction information to the travel control device 226.
 走行制御処理(ステップS118)では、輸送機20の走行制御装置226が、制御指示情報に基づき車両部204を制御して、輸送機20の走行を制御する。走行制御装置226は、輸送機20の走行を制御する間、その制御結果を示す情報である制御状況情報を自律走行システム220に送信する。 In the travel control process (step S118), the travel control device 226 of the transport aircraft 20 controls the vehicle unit 204 based on the control instruction information to control the travel of the transport aircraft 20. While controlling the travel of the transport aircraft 20, the travel control device 226 transmits control status information, which is information indicating the control result, to the autonomous travel system 220.
 本実施形態では、輸送機20の自律走行システム220自体が、輸送機20の加減速及び分岐制御を含む輸送機20の制御を行う。本実施形態では、輸送機20の制御に通信網が介在しないため、サーバー等の外部装置が通信網を介して輸送機20を制御する場合と比較してリアルタイム性の高い輸送機20の制御を実現することができる。 In the present embodiment, the autonomous traveling system 220 itself of the transport aircraft 20 controls the transport aircraft 20 including acceleration / deceleration and branch control of the transport aircraft 20. In the present embodiment, since the communication network does not intervene in the control of the transport aircraft 20, it is possible to control the transport aircraft 20 with higher real-time performance as compared with the case where an external device such as a server controls the transport aircraft 20 via the communication network. It can be realized.
 また、本実施形態では、自律走行システム220が車間距離情報にも基づいて輸送機20を制御するため、輸送機20同士の衝突を予防することができる。 Further, in the present embodiment, since the autonomous traveling system 220 controls the transport aircraft 20 based on the inter-vehicle distance information, it is possible to prevent collisions between the transport aircraft 20.
 こうして輸送機20はトンネル網10内を自律走行した後、トンネル網10と輸送先の搬入出拠点30との間を連絡する垂直搬送装置40により輸送先の搬入出拠点30に垂直搬送される。輸送先の搬入出拠点30において、輸送機20は、荷卸エリア302に到着する。荷卸エリア302に到着すると、輸送機20は荷卸フェーズP4に移行する。 In this way, after the transport aircraft 20 autonomously travels in the tunnel network 10, it is vertically transported to the transportation destination loading / unloading base 30 by the vertical transport device 40 that communicates between the tunnel network 10 and the transport destination loading / unloading base 30. At the loading / unloading base 30 of the transport destination, the transport aircraft 20 arrives at the unloading area 302. Upon arriving at the unloading area 302, the transport aircraft 20 shifts to the unloading phase P4.
 荷卸フェーズP4は、輸送機20からの貨物の荷卸作業が行われるフェーズである。荷卸フェーズP4において、荷卸フェーズP4では、荷卸エリア302において輸送機20からの貨物の荷卸を行う荷卸作業が行われる(ステップS120)。荷卸作業の完了後、作業者によりコンソール端末308から輸送確認情報が入力される(ステップS122)。輸送確認情報は、輸送機20による貨物輸送の完了を確認したことを示す情報である。輸送確認情報は、貨物輸送の完了を確認したことを示す情報のほか、例えば、輸送機ID、輸送を完了した搬入出拠点30の搬入出拠点ID等を含んでいる。輸送確認情報は、輸送先の搬入出拠点30内の拠点管理システム502を介して、荷卸が完了した輸送機20に送信される。輸送機20は、輸送確認情報を受信すると待機フェーズP1に移行して、到着した搬入出拠点30において貨物の輸送を待機する。 The unloading phase P4 is a phase in which the unloading work of the cargo from the transport aircraft 20 is performed. In the unloading phase P4, in the unloading phase P4, the unloading operation of unloading the cargo from the transport aircraft 20 is performed in the unloading area 302 (step S120). After the unloading work is completed, the operator inputs the transportation confirmation information from the console terminal 308 (step S122). The transportation confirmation information is information indicating that the completion of freight transportation by the transport aircraft 20 has been confirmed. The transportation confirmation information includes, for example, a transport aircraft ID, a loading / unloading base ID of the loading / unloading base 30 that has completed transportation, and the like, in addition to information indicating that the completion of freight transportation has been confirmed. The transportation confirmation information is transmitted to the transport aircraft 20 for which unloading has been completed via the base management system 502 in the loading / unloading base 30 of the transportation destination. Upon receiving the transportation confirmation information, the transport aircraft 20 shifts to the standby phase P1 and waits for the transportation of the cargo at the arrival loading / unloading base 30.
 上述した輸送機20による貨物の輸送を実現するための輸送システム1における各部の処理についてさらに図9を用いて説明する。図9は、輸送システム1における各部の処理の例を示すフローチャートである。図9には、輸送機20、コンソール端末308、エッジサーバー50及び中央サーバー70ごとの処理を示している。 The processing of each part in the transportation system 1 for realizing the transportation of freight by the above-mentioned transport aircraft 20 will be further described with reference to FIG. FIG. 9 is a flowchart showing an example of processing of each part in the transportation system 1. FIG. 9 shows the processing for each of the transport aircraft 20, the console terminal 308, the edge server 50, and the central server 70.
 図9に示すように、中央サーバー70の統合管理システム702は、複数のエッジサーバー50の拠点管理システム502から受信した運行情報を統合して管理する(ステップS202)。統合管理システム702は、各運行情報を統合した統合運行情報を生成する。統合管理システム702は、統合運行情報を中央DB704に格納して管理する。 As shown in FIG. 9, the integrated management system 702 of the central server 70 integrates and manages the operation information received from the base management systems 502 of the plurality of edge servers 50 (step S202). The integrated management system 702 generates integrated operation information that integrates each operation information. The integrated management system 702 stores and manages the integrated operation information in the central DB 704.
 さらに、統合管理システム702は、輸送システム1におけるすべてのエッジサーバー50の拠点管理システム502に統合運行情報を送信して展開する(ステップS204)。 Further, the integrated management system 702 transmits integrated operation information to the base management system 502 of all the edge servers 50 in the transportation system 1 and deploys it (step S204).
 各エッジサーバー50の拠点管理システム502は、輸送システム1における各部から受信する各種情報を管理する(ステップS206a、S206b、S206c)。すなわち、拠点管理システム502は、中央サーバー70の統合管理システム702から受信する統合運行情報を管理する(ステップS206a)。また、拠点管理システム502は、輸送機20の自律走行システム220から受信する輸送状況情報を管理する(ステップS206b)。また、拠点管理システム502は、貨物輸送が完了した際にコンソール端末308から受信する輸送確認情報を管理する(ステップS206c)。拠点管理システム502は、統合運行情報、輸送状況情報及び輸送確認情報を拠点DB504に格納して管理する。 The base management system 502 of each edge server 50 manages various information received from each unit in the transportation system 1 (steps S206a, S206b, S206c). That is, the base management system 502 manages the integrated operation information received from the integrated management system 702 of the central server 70 (step S206a). Further, the base management system 502 manages the transportation status information received from the autonomous traveling system 220 of the transport aircraft 20 (step S206b). Further, the base management system 502 manages the transportation confirmation information received from the console terminal 308 when the freight transportation is completed (step S206c). The base management system 502 stores and manages integrated operation information, transportation status information, and transportation confirmation information in the base DB 504.
 輸送元のコンソール端末308では、輸送機20に輸送を指示するため、作業者により輸送指示入力情報が入力される(ステップS207)。コンソール端末308は、輸送元のエッジサーバー50に輸送指示入力情報を送信する。 At the transport source console terminal 308, the transport instruction input information is input by the operator in order to instruct the transport aircraft 20 to transport (step S207). The console terminal 308 transmits the transportation instruction input information to the transportation source edge server 50.
 また、輸送元の搬入出拠点30におけるエッジサーバー50の拠点管理システム502は、その搬入出拠点30のコンソール端末308から受信する輸送指示入力情報に応じて、輸送機20に貨物の輸送を指示する輸送指示情報を生成する(ステップS208)。拠点管理システム502は、輸送指示入力情報、輸送状況情報及び統合運行情報に基づき、輸送指示情報を生成する。 Further, the base management system 502 of the edge server 50 at the loading / unloading base 30 of the transport source instructs the transport aircraft 20 to transport the cargo according to the transport instruction input information received from the console terminal 308 of the loading / unloading base 30. Generate transportation instruction information (step S208). The base management system 502 generates transportation instruction information based on the transportation instruction input information, the transportation status information, and the integrated operation information.
 さらに、拠点管理システム502は、輸送機20に輸送指示情報を送信する(ステップS210)。 Further, the base management system 502 transmits the transportation instruction information to the transport aircraft 20 (step S210).
 輸送機20は、拠点管理システム502から輸送指示情報を受信すると、輸送指示情報に従って貨物の輸送を開始する(ステップS212)。輸送機20は、トンネル網10内を自律走行し(ステップS214)、輸送先の搬入出拠点30まで貨物を輸送して貨物の輸送を完了する(ステップS216)。輸送機20は、図8に示す待機フェーズP1、積込フェーズP2、自律走行フェーズP3及び荷卸フェーズP4を順次経て貨物の輸送を完了する。 When the transport aircraft 20 receives the transport instruction information from the base management system 502, the transport aircraft 20 starts transporting the cargo according to the transport instruction information (step S212). The transport aircraft 20 autonomously travels in the tunnel network 10 (step S214), transports the cargo to the loading / unloading base 30 of the transportation destination, and completes the transportation of the cargo (step S216). The transport aircraft 20 completes the transportation of cargo through the standby phase P1, the loading phase P2, the autonomous traveling phase P3, and the unloading phase P4 shown in FIG.
 輸送機20の自律走行の間、位置情報センサー210は、トンネル網10内の位置情報マーカー116を読み取って位置情報を取得する(ステップS2142)。また、自律走行システム220は、位置情報を含む輸送状況情報をエッジサーバー50に送信する(ステップS2144)。 While the transport aircraft 20 is autonomously traveling, the position information sensor 210 reads the position information marker 116 in the tunnel network 10 to acquire the position information (step S2142). Further, the autonomous traveling system 220 transmits the transportation status information including the position information to the edge server 50 (step S2144).
 輸送先のコンソール端末308では、荷卸作業の完了後、作業者により輸送確認情報が入力される(ステップS217)。コンソール端末308は、輸送先のエッジサーバー50に輸送確認情報を送信する。 At the console terminal 308 of the transportation destination, the transportation confirmation information is input by the worker after the unloading work is completed (step S217). The console terminal 308 transmits the transportation confirmation information to the edge server 50 of the transportation destination.
 各エッジサーバー50の拠点管理システム502は、輸送機20から受信する輸送状況情報、コンソール端末308から受信する輸送確認情報等に基づき、輸送機20の運行情報を生成して中央サーバー70に送信する(ステップS218a、S218b)。 The base management system 502 of each edge server 50 generates operation information of the transport aircraft 20 and transmits it to the central server 70 based on the transport status information received from the transport aircraft 20, the transport confirmation information received from the console terminal 308, and the like. (Steps S218a, S218b).
 本実施形態では、中央サーバー70のみで輸送システム1に関連する処理が実行されるのではなく、各搬入出拠点30のエッジサーバー50でも輸送システム1に関連する処理が実行される。すなわち、本実施形態では、中央サーバー70に含まれる統合管理システム702及びエッジサーバーに含まれる拠点管理システム502が、輸送システム1に関連する処理を実行する。このように、本実施形態では、輸送システム1に関連する処理が中央サーバー70とエッジサーバー50とに分散されて実行される。したがって、本実施形態では、中央サーバー70単独で処理が実行される場合と比較して、輸送システム1の処理効率を向上するとともに、輸送システム1全体の拡張性を向上することができる。 In the present embodiment, the processing related to the transportation system 1 is not executed only by the central server 70, but the processing related to the transportation system 1 is also executed by the edge server 50 of each loading / unloading base 30. That is, in the present embodiment, the integrated management system 702 included in the central server 70 and the base management system 502 included in the edge server execute the processing related to the transportation system 1. As described above, in the present embodiment, the processing related to the transportation system 1 is distributed and executed in the central server 70 and the edge server 50. Therefore, in the present embodiment, the processing efficiency of the transportation system 1 can be improved and the expandability of the entire transportation system 1 can be improved as compared with the case where the processing is executed by the central server 70 alone.
 このように、本実施形態によれば、トンネル102内を自律走行して貨物を輸送する輸送機20に輸送指示情報をエッジサーバー50により送信して貨物を輸送するので、高い安全性を確保しつつ貨物輸送の無人化を実現することができる。 As described above, according to the present embodiment, the edge server 50 transmits the transportation instruction information to the transport aircraft 20 that autonomously travels in the tunnel 102 to transport the cargo, so that the cargo is transported, so that high safety is ensured. At the same time, unmanned freight transportation can be realized.
 [他の実施形態]
 上記実施形態において説明した情報処理システムは、他の実施形態によれば、図10に示すように構成することもできる。図10は、他の実施形態による情報処理システムの構成を示す図である。
[Other Embodiments]
According to another embodiment, the information processing system described in the above embodiment can also be configured as shown in FIG. FIG. 10 is a diagram showing a configuration of an information processing system according to another embodiment.
 図10に示すように、他の実施形態による情報処理システム1000は、トンネル内を自律走行して貨物を輸送する輸送機に貨物の輸送を指示する輸送指示情報を生成する生成部1002と、輸送指示情報を輸送機に送信する送信部1004とを有する。 As shown in FIG. 10, the information processing system 1000 according to another embodiment includes a generation unit 1002 that generates transportation instruction information for instructing a transport aircraft that autonomously travels in a tunnel to transport cargo, and transports the cargo. It has a transmission unit 1004 that transmits instruction information to the transport aircraft.
 他の実施形態による情報処理システム1000によれば、トンネル内を自律走行して貨物を輸送する輸送機に輸送指示情報を送信して貨物を輸送するので、高い安全性を確保しつつ貨物輸送の無人化を実現することができる。 According to the information processing system 1000 according to another embodiment, the freight is transported by transmitting the transportation instruction information to the transport aircraft that autonomously travels in the tunnel and transports the freight, so that the freight can be transported while ensuring high safety. Unmanned operation can be realized.
 また、上記実施形態において説明した輸送システムは、さらに他の実施形態によれば、図11に示すように構成することもできる。図11は、さらに他の実施形態による輸送システムの構成を示す図である。 Further, the transportation system described in the above embodiment can be configured as shown in FIG. 11 according to still another embodiment. FIG. 11 is a diagram showing a configuration of a transportation system according to still another embodiment.
 図11に示すように、さらに他の実施形態による輸送システム2000は、トンネル2002と、輸送機2004と、拠点2006と、搬送装置2008と、情報処理システム2010とを有している。トンネル2002は、大深度地下に敷設されている。輸送機2004は、トンネル2002内を自律走行して貨物を輸送する。拠点2006は、地上に設置され、輸送機2004への貨物の積込作業又は輸送機2004からの貨物の荷卸作業が行われる。搬送装置2008は、トンネル2002と拠点2006との間で輸送機2004を搬送する。情報処理システム2010は、輸送機2004に貨物の輸送を指示する輸送指示情報を生成して輸送機2004に送信する。 As shown in FIG. 11, the transportation system 2000 according to still another embodiment includes a tunnel 2002, a transport aircraft 2004, a base 2006, a transportation device 2008, and an information processing system 2010. The tunnel 2002 is laid deep underground. The transport aircraft 2004 autonomously travels in the tunnel 2002 to transport cargo. The base 2006 is installed on the ground, and cargo loading work on the transport aircraft 2004 or cargo unloading work from the transport aircraft 2004 is performed. The transport device 2008 transports the transport aircraft 2004 between the tunnel 2002 and the base 2006. The information processing system 2010 generates transport instruction information instructing the transport aircraft 2004 to transport the freight and transmits the transport instruction information to the transport aircraft 2004.
 さらに他の実施形態による輸送システム2000によれば、トンネル2002内を自律走行して貨物を輸送する輸送機2004に輸送指示情報を送信して貨物を輸送するので、高い安全性を確保しつつ貨物輸送の無人化を実現することができる。 According to the transportation system 2000 according to still another embodiment, the transportation instruction information is transmitted to the transport aircraft 2004 that autonomously travels in the tunnel 2002 to transport the cargo, so that the cargo is transported while ensuring high safety. Unmanned transportation can be realized.
 [変形実施形態]
 本発明は、上記実施形態に限らず、種々の変形が可能である。
[Modification Embodiment]
The present invention is not limited to the above embodiment, and various modifications are possible.
 例えば、上記実施形態では、トンネル網10内に設置された2本のレール114により構成された軌道104上を自律走行する輸送機20の場合を例に説明したが、これに限定されるものではない。輸送機20は、トンネル網10内を自律走行することができるものであればよい。例えば、輸送機20は、トンネル網10内に設けられた無軌道の道路を自律走行するものであってもよい。 For example, in the above embodiment, the case of the transport aircraft 20 autonomously traveling on the track 104 composed of the two rails 114 installed in the tunnel network 10 has been described as an example, but the present invention is not limited to this. Absent. The transport aircraft 20 may be any as long as it can autonomously travel in the tunnel network 10. For example, the transport aircraft 20 may autonomously travel on a trackless road provided in the tunnel network 10.
 また、上記実施形態では、輸送機20の貨物コンテナ208に収納された状態で貨物が輸送される場合を例に説明したが、これに限定されるものではない。貨物コンテナ208を用いた輸送態様のほか、輸送すべき貨物の種別等に応じた輸送態様を採用することができる。 Further, in the above embodiment, the case where the cargo is transported in the state of being stored in the cargo container 208 of the transport aircraft 20 has been described as an example, but the present invention is not limited to this. In addition to the transportation mode using the cargo container 208, a transportation mode according to the type of cargo to be transported and the like can be adopted.
 また、上記実施形態によるエッジサーバー50及び中央サーバー70は、それぞれの機能を実現可能な一又は複数の装置からなる情報処理システムとして構成することができる。 Further, the edge server 50 and the central server 70 according to the above embodiment can be configured as an information processing system including one or a plurality of devices capable of realizing each function.
 また、上記の各実施形態の機能を実現するように該実施形態の構成を動作させるプログラムを記録媒体に記録させ、該記録媒体に記録されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も各実施形態の範疇に含まれる。すなわち、コンピュータ読取可能な記録媒体も各実施形態の範囲に含まれる。また、上述のコンピュータプログラムが記録された記録媒体はもちろん、そのコンピュータプログラム自体も各実施形態に含まれる。 Further, there is also a processing method in which a program for operating the configuration of the embodiment is recorded on a recording medium so as to realize the functions of the above-described embodiments, the program recorded on the recording medium is read out as a code, and the program is executed by a computer. It is included in the category of each embodiment. That is, a computer-readable recording medium is also included in the scope of each embodiment. Further, not only the recording medium on which the above-mentioned computer program is recorded, but also the computer program itself is included in each embodiment.
 該記録媒体としては、例えばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM(Compact Disc-Read Only Memory)、磁気テープ、不揮発性メモリカード、ROMを用いることができる。また、該記録媒体に記録されたプログラム単体で処理を実行しているものに限らず、他のソフトウェア、拡張ボードの機能と共同して、OS(Operating System)上で動作して処理を実行するものも各実施形態の範疇に含まれる。 As the recording medium, for example, a floppy (registered trademark) disk, a hard disk, an optical disk, an optical magnetic disk, a CD-ROM (Compact Disc-Read Only Memory), a magnetic tape, a non-volatile memory card, or a ROM can be used. In addition, the program recorded on the recording medium is not limited to the one that executes the process by itself, but operates on the OS (Operating System) in cooperation with other software and the function of the expansion board to execute the process. Those are also included in the category of each embodiment.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Part or all of the above embodiments may be described as in the following appendix, but are not limited to the following.
 (付記1)
 トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成する生成部と、
 前記輸送指示情報を前記輸送機に送信する送信部と
 を有する情報処理システム。
(Appendix 1)
A generator that generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport the cargo.
An information processing system having a transmission unit that transmits the transportation instruction information to the transport aircraft.
 (付記2)
 前記生成部は、前記輸送機の運行状況を示す運行情報に基づき、前記輸送指示情報を生成する付記1記載の情報処理システム。
(Appendix 2)
The information processing system according to Appendix 1, wherein the generation unit generates the transportation instruction information based on the operation information indicating the operation status of the transport aircraft.
 (付記3)
 前記生成部は、複数の前記輸送機の前記運行情報に基づき、一の前記輸送機について前記輸送指示情報を生成する付記2記載の情報処理システム。
(Appendix 3)
The information processing system according to Appendix 2, wherein the generation unit generates the transportation instruction information for one of the transport aircraft based on the operation information of the plurality of the transport aircraft.
 (付記4)
 前記運行情報を取得する取得部を有する付記2又は3に記載の情報処理システム。
(Appendix 4)
The information processing system according to Appendix 2 or 3, which has an acquisition unit for acquiring the operation information.
 (付記5)
 前記取得部は、他の情報処理システムから通信網を介して前記運行情報を取得する付記4記載の情報処理システム。
(Appendix 5)
The information processing system according to Appendix 4, wherein the acquisition unit acquires the operation information from another information processing system via a communication network.
 (付記6)
 前記他の情報処理システムは、前記輸送機の運行を管理する付記5記載の情報処理システム。
(Appendix 6)
The other information processing system is the information processing system according to Appendix 5, which manages the operation of the transport aircraft.
 (付記7)
 前記運行情報は、複数の前記輸送機の前記運行情報を含む付記4乃至6のいずれかに記載の情報処理システム。
(Appendix 7)
The information processing system according to any one of Supplementary note 4 to 6, wherein the operation information includes the operation information of a plurality of the transport aircraft.
 (付記8)
 前記輸送機による前記貨物の輸送状況を示す輸送状況情報を前記輸送機から取得して管理する管理部を有する付記1乃至7のいずれかに記載の情報処理システム。
(Appendix 8)
The information processing system according to any one of Supplementary note 1 to 7, which has a management unit that acquires and manages transportation status information indicating the transportation status of the freight by the transport aircraft.
 (付記9)
 前記輸送状況情報は、前記トンネル内に設置されたマーカーから前記輸送機により読み取られた位置情報を含む付記8記載の情報処理システム。
(Appendix 9)
The information processing system according to Appendix 8, wherein the transportation status information includes position information read by the transport aircraft from a marker installed in the tunnel.
 (付記10)
 前記管理部は、前記トンネル内に設置された無線通信部を介して前輸送状況情報を取得する付記8又は9に記載の情報処理システム。
(Appendix 10)
The information processing system according to Appendix 8 or 9, wherein the management unit acquires pre-transportation status information via a wireless communication unit installed in the tunnel.
 (付記11)
 前記管理部は、前記輸送機の前記輸送状況情報に基づく情報を他の情報処理システムに送信する付記8乃至10のいずれかに記載の情報処理システム。
(Appendix 11)
The information processing system according to any one of Appendix 8 to 10, wherein the management unit transmits information based on the transportation status information of the transport aircraft to another information processing system.
 (付記12)
 前記情報処理システムは、前記輸送機への前記貨物の積込作業が行われる拠点に設置されたサーバーに含まれる付記1乃至11のいずれかに記載の情報処理システム。
(Appendix 12)
The information processing system according to any one of Supplementary note 1 to 11 included in a server installed at a base where the cargo loading operation into the transport machine is performed.
 (付記13)
 前記送信部は、前記拠点において待機する前記輸送機に前記輸送指示情報を送信する付記12記載の情報処理システム。
(Appendix 13)
The information processing system according to Appendix 12, wherein the transmission unit transmits the transportation instruction information to the transport aircraft waiting at the base.
 (付記14)
 前記生成部は、作業者によるコンソール端末からの入力に応じて前記輸送指示情報を生成する付記1乃至13のいずれかに記載の情報処理システム。
(Appendix 14)
The information processing system according to any one of Supplementary note 1 to 13, wherein the generation unit generates the transportation instruction information in response to an input from a console terminal by an operator.
 (付記15)
 前記輸送機は、前記トンネル内に敷設された軌道上を走行するものである付記1乃至14のいずれかに記載の情報処理システム。
(Appendix 15)
The information processing system according to any one of Supplementary note 1 to 14, wherein the transport aircraft travels on an orbit laid in the tunnel.
 (付記16)
 前記輸送機は、前記輸送機への前記貨物の積込作業又は前記輸送機からの前記貨物の荷卸作業が行われる地上と前記トンネルとの間を搬送装置により搬送される付記15記載の情報処理システム。
(Appendix 16)
The information processing according to Appendix 15, wherein the transport aircraft is transported by a transport device between the ground and the tunnel where the cargo is loaded onto the transport aircraft or the cargo is unloaded from the transport aircraft. system.
 (付記17)
 前記トンネルは、大深度地下に敷設されている付記1乃至16のいずれかに記載の情報処理システム。
(Appendix 17)
The information processing system according to any one of Supplementary note 1 to 16, wherein the tunnel is laid underground in a deep underground.
 (付記18)
 トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、
 前記輸送指示情報を前記輸送機に送信する情報処理方法。
(Appendix 18)
Generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport cargo to transport the cargo.
An information processing method for transmitting the transportation instruction information to the transport aircraft.
 (付記19)
 コンピュータに、
 トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、
 前記輸送指示情報を前記輸送機に送信する
 ことを実行させるプログラムが記録された記録媒体。
(Appendix 19)
On the computer
Generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport cargo to transport the cargo.
A recording medium in which a program for executing transmission of the transportation instruction information to the transport aircraft is recorded.
 (付記20)
 大深度地下に敷設されたトンネルと、
 前記トンネル内を自律走行して貨物を輸送する輸送機と、
 地上に設置され、前記輸送機への前記貨物の積込作業又は前記輸送機からの前記貨物の荷卸作業が行われる拠点と、
 前記トンネルと前記拠点との間で前記輸送機を搬送する搬送装置と、
 前記輸送機に前記貨物の輸送を指示する輸送指示情報を生成して前記輸送機に送信する情報処理システムと
 を有する輸送システム。
(Appendix 20)
A tunnel laid deep underground and
A transport aircraft that autonomously travels in the tunnel to transport cargo,
A base installed on the ground where the cargo is loaded onto the transport aircraft or the cargo is unloaded from the transport aircraft.
A transport device that transports the transport aircraft between the tunnel and the base,
A transportation system including an information processing system that generates transportation instruction information instructing the transportation aircraft to transport the freight and transmits the transportation instruction information to the transportation aircraft.
 (付記21)
 前記輸送機の運行を管理する他の情報処理システムを有する付記20記載の輸送システム。
(Appendix 21)
The transportation system according to Appendix 20, which has another information processing system that manages the operation of the transportation aircraft.
 (付記22)
 前記トンネル内に敷設され、前記輸送機が走行する軌道を有する付記20又は21に記載の輸送システム。
(Appendix 22)
The transportation system according to Appendix 20 or 21, which is laid in the tunnel and has a track on which the transport aircraft travels.
 (付記23)
 前記トンネル内に敷設され、前記輸送機に動力として電力を供給する電力線を有する付記20乃至22のいずれかに記載の輸送システム。
(Appendix 23)
The transportation system according to any one of Appendix 20 to 22, which is laid in the tunnel and has a power line for supplying electric power to the transport aircraft as power.
 (付記24)
 前記トンネル内に設置されたマーカーを有し、
 前記輸送機は、前記マーカーを読み取って位置情報を取得する付記20乃至23のいずれかに記載の輸送システム。
(Appendix 24)
Having a marker installed in the tunnel
The transport system according to any one of Appendix 20 to 23, wherein the transport aircraft reads the marker and acquires position information.
 (付記25)
 第1のレール及び第2のレールを含む第1の軌道上を走行する輸送機であって、
 前記第1のレール及び前記第2のレール上をそれぞれ走行するための第1の車輪及び第2の車輪と、
 前記第1の車輪及び前記第2の車輪のそれぞれの内側に設けられた第1のフランジ及び第2のフランジと、
 前記第1のレールの外側部にベアリングを押し付けるアクチュエータと
 を有し、
 前記アクチュエータは、前記輸送機を分岐先の第2の軌道に導くための第1の分岐用レール及び第2の分岐用レールが前記第1のレールの内側及び前記第2のレールの内側にそれぞれ敷設された分岐点であって、前記第1のレールの高さよりも前記第2のレールの高さが低く、前記第1のレールの側に前記第1の軌道から前記第2の軌道が分岐する分岐点において、前記輸送機を前記第2の軌道に導く場合、前記第1のレールの前記外側部に前記ベアリングを押し付けて加力することにより、前記第1のレールと前記第1の分岐用レールとの間に前記第1のフランジを位置させ、前記第2の分岐用レールの内側に前記第2のフランジを位置させる輸送機。
(Appendix 25)
A transport aircraft traveling on a first track including a first rail and a second rail.
A first wheel and a second wheel for traveling on the first rail and the second rail, respectively.
A first flange and a second flange provided inside the first wheel and the second wheel, respectively.
It has an actuator that presses a bearing on the outer side of the first rail.
In the actuator, the first branch rail and the second branch rail for guiding the transport machine to the second track of the branch destination are inside the first rail and inside the second rail, respectively. It is a laid branch point, the height of the second rail is lower than the height of the first rail, and the second rail branches from the first rail on the side of the first rail. When the transport machine is guided to the second track at the branching point, the bearing is pressed against the outer portion of the first rail and is applied to the first rail and the first branch. A transport machine in which the first flange is positioned between the rail and the second flange, and the second flange is positioned inside the second branching rail.
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
1…輸送システム
10…トンネル網
20…輸送機
30…搬入出拠点
40…垂直搬送装置
50…エッジサーバー
60…データセンター
70…中央サーバー
80…通信網
1 ... Transport system 10 ... Tunnel network 20 ... Transport aircraft 30 ... Carry-in / out base 40 ... Vertical transport device 50 ... Edge server 60 ... Data center 70 ... Central server 80 ... Communication network

Claims (20)

  1.  トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成する生成部と、
     前記輸送指示情報を前記輸送機に送信する送信部と
     を有する情報処理システム。
    A generator that generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport the cargo.
    An information processing system having a transmission unit that transmits the transportation instruction information to the transport aircraft.
  2.  前記生成部は、前記輸送機の運行状況を示す運行情報に基づき、前記輸送指示情報を生成する請求項1記載の情報処理システム。 The information processing system according to claim 1, wherein the generation unit generates the transportation instruction information based on the operation information indicating the operation status of the transport aircraft.
  3.  前記生成部は、複数の前記輸送機の前記運行情報に基づき、一の前記輸送機について前記輸送指示情報を生成する請求項2記載の情報処理システム。 The information processing system according to claim 2, wherein the generation unit generates the transportation instruction information for one of the transport aircraft based on the operation information of the plurality of the transport aircraft.
  4.  前記運行情報を取得する取得部を有する請求項2又は3に記載の情報処理システム。 The information processing system according to claim 2 or 3, which has an acquisition unit for acquiring the operation information.
  5.  前記取得部は、他の情報処理システムから通信網を介して前記運行情報を取得する請求項4記載の情報処理システム。 The information processing system according to claim 4, wherein the acquisition unit acquires the operation information from another information processing system via a communication network.
  6.  前記他の情報処理システムは、前記輸送機の運行を管理する請求項5記載の情報処理システム。 The other information processing system is the information processing system according to claim 5, which manages the operation of the transport aircraft.
  7.  前記運行情報は、複数の前記輸送機の前記運行情報を含む請求項4乃至6のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 4 to 6, wherein the operation information includes the operation information of a plurality of the transport aircraft.
  8.  前記輸送機による前記貨物の輸送状況を示す輸送状況情報を前記輸送機から取得して管理する管理部を有する請求項1乃至7のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 1 to 7, which has a management unit that acquires and manages transportation status information indicating the transportation status of the freight by the transport aircraft.
  9.  前記輸送状況情報は、前記トンネル内に設置されたマーカーから前記輸送機により読み取られた位置情報を含む請求項8記載の情報処理システム。 The information processing system according to claim 8, wherein the transportation status information includes position information read by the transport aircraft from a marker installed in the tunnel.
  10.  前記管理部は、前記トンネル内に設置された無線通信部を介して前輸送状況情報を取得する請求項8又は9に記載の情報処理システム。 The information processing system according to claim 8 or 9, wherein the management unit acquires pre-transportation status information via a wireless communication unit installed in the tunnel.
  11.  前記管理部は、前記輸送機の前記輸送状況情報に基づく情報を他の情報処理システムに送信する請求項8乃至10のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 8 to 10, wherein the management unit transmits information based on the transportation status information of the transport aircraft to another information processing system.
  12.  前記情報処理システムは、前記輸送機への前記貨物の積込作業が行われる拠点に設置されたサーバーに含まれる請求項1乃至11のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 1 to 11, which is included in a server installed at a base where the cargo loading operation into the transport machine is performed.
  13.  前記送信部は、前記拠点において待機する前記輸送機に前記輸送指示情報を送信する請求項12記載の情報処理システム。 The information processing system according to claim 12, wherein the transmission unit transmits the transportation instruction information to the transport aircraft waiting at the base.
  14.  前記生成部は、作業者によるコンソール端末からの入力に応じて前記輸送指示情報を生成する請求項1乃至13のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 1 to 13, wherein the generation unit generates the transportation instruction information in response to an input from a console terminal by an operator.
  15.  前記輸送機は、前記トンネル内に敷設された軌道上を走行するものである請求項1乃至14のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 1 to 14, wherein the transport aircraft travels on an orbit laid in the tunnel.
  16.  前記輸送機は、前記輸送機への前記貨物の積込作業又は前記輸送機からの前記貨物の荷卸作業が行われる地上と前記トンネルとの間を搬送装置により搬送される請求項15記載の情報処理システム。 The information according to claim 15, wherein the transport aircraft is transported by a transport device between the ground and the tunnel where the cargo loading operation into the transport aircraft or the cargo unloading operation from the transport aircraft is performed. Processing system.
  17.  前記トンネルは、大深度地下に敷設されている請求項1乃至16のいずれか1項に記載の情報処理システム。 The information processing system according to any one of claims 1 to 16, wherein the tunnel is laid underground in a deep underground.
  18.  トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、
     前記輸送指示情報を前記輸送機に送信する情報処理方法。
    Generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport cargo to transport the cargo.
    An information processing method for transmitting the transportation instruction information to the transport aircraft.
  19.  コンピュータに、
     トンネル内を自律走行して貨物を輸送する輸送機に前記貨物の輸送を指示する輸送指示情報を生成し、
     前記輸送指示情報を前記輸送機に送信する
     ことを実行させるプログラムが記録された記録媒体。
    On the computer
    Generates transportation instruction information that instructs a transport aircraft that autonomously travels in a tunnel to transport cargo to transport the cargo.
    A recording medium in which a program for executing transmission of the transportation instruction information to the transport aircraft is recorded.
  20.  大深度地下に敷設されたトンネルと、
     前記トンネル内を自律走行して貨物を輸送する輸送機と、
     地上に設置され、前記輸送機への前記貨物の積込作業又は前記輸送機からの前記貨物の荷卸作業が行われる拠点と、
     前記トンネルと前記拠点との間で前記輸送機を搬送する搬送装置と、
     前記輸送機に前記貨物の輸送を指示する輸送指示情報を生成して前記輸送機に送信する情報処理システムと
     を有する輸送システム。
    A tunnel laid deep underground and
    A transport aircraft that autonomously travels in the tunnel to transport cargo,
    A base installed on the ground where the cargo is loaded onto the transport aircraft or the cargo is unloaded from the transport aircraft.
    A transport device that transports the transport aircraft between the tunnel and the base,
    A transportation system including an information processing system that generates transportation instruction information instructing the transportation aircraft to transport the freight and transmits the transportation instruction information to the transportation aircraft.
PCT/JP2019/050909 2019-12-25 2019-12-25 Transportation system, information processing system, information processing method, and recording medium WO2021130921A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566653A JPWO2021130921A5 (en) 2019-12-25 Transportation system, information processing system, information processing method and program
PCT/JP2019/050909 WO2021130921A1 (en) 2019-12-25 2019-12-25 Transportation system, information processing system, information processing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050909 WO2021130921A1 (en) 2019-12-25 2019-12-25 Transportation system, information processing system, information processing method, and recording medium

Publications (1)

Publication Number Publication Date
WO2021130921A1 true WO2021130921A1 (en) 2021-07-01

Family

ID=76573784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050909 WO2021130921A1 (en) 2019-12-25 2019-12-25 Transportation system, information processing system, information processing method, and recording medium

Country Status (1)

Country Link
WO (1) WO2021130921A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290599A (en) * 1990-01-25 1991-12-20 Shimizu Corp Automatic conveying method for shield material and automatic conveyor thereof
JPH06149368A (en) * 1992-11-10 1994-05-27 Sato Kogyo Co Ltd Vehicle movement central monitor control system and device
JP2004263493A (en) * 2003-03-04 2004-09-24 Koken Boring Mach Co Ltd Vertical transportation system for underground expressway

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290599A (en) * 1990-01-25 1991-12-20 Shimizu Corp Automatic conveying method for shield material and automatic conveyor thereof
JPH06149368A (en) * 1992-11-10 1994-05-27 Sato Kogyo Co Ltd Vehicle movement central monitor control system and device
JP2004263493A (en) * 2003-03-04 2004-09-24 Koken Boring Mach Co Ltd Vertical transportation system for underground expressway

Also Published As

Publication number Publication date
JPWO2021130921A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6337894B2 (en) Railway transportation system with automatic arrangement of vehicles
US9546054B1 (en) Automated marine container terminal and system
ES2902485T3 (en) Container transport system using automatic and manual driving heavy goods vehicles
CA2718630C (en) Ecological goods logistics system
JP2920879B2 (en) Logistics / transportation system
KR102366916B1 (en) Containers using heavy-duty transport vehicles, especially ISO container transport systems
CN111094159A (en) Method for controlling the travel of a transport vehicle in a container terminal within the transit area of a container, control system therefor and terminal comprising such a control system
CN114648434A (en) Transportation control method, system, device, electronic apparatus, transportation vehicle, and medium
US11656622B2 (en) Autonomous vehicle transportation systems and methods
JP5103714B2 (en) Transport equipment
JPH11323804A (en) Traffic lane and using method thereof
WO2021130921A1 (en) Transportation system, information processing system, information processing method, and recording medium
CN112631234B (en) Automatic wharf inspection system based on air rail scheduling
JP3355347B2 (en) Transport system
JP6970237B2 (en) Management system, management program and management method
JPH06149368A (en) Vehicle movement central monitor control system and device
Shahooei Planning, Design, and Operational Analysis of Underground Freight Transportation Systems with Individual Autonomous Vehicles
KR20240094202A (en) Urban logistics method using underground urban space
DE102019002460A1 (en) Sub-terrestrial transport system for goods, goods or materials of all kinds on driverless trucks
JPS6283992A (en) Carrying system of self-propelling type crane robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957622

Country of ref document: EP

Kind code of ref document: A1