WO2021130847A1 - Plasma apparatus - Google Patents

Plasma apparatus Download PDF

Info

Publication number
WO2021130847A1
WO2021130847A1 PCT/JP2019/050550 JP2019050550W WO2021130847A1 WO 2021130847 A1 WO2021130847 A1 WO 2021130847A1 JP 2019050550 W JP2019050550 W JP 2019050550W WO 2021130847 A1 WO2021130847 A1 WO 2021130847A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
plasma
gas
controller
state information
Prior art date
Application number
PCT/JP2019/050550
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 瀧川
卓也 岩田
航 日下
一輝 柳原
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2021566423A priority Critical patent/JP7248821B2/en
Priority to CN201980103093.1A priority patent/CN114830834A/en
Priority to PCT/JP2019/050550 priority patent/WO2021130847A1/en
Publication of WO2021130847A1 publication Critical patent/WO2021130847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma

Definitions

  • the present disclosure relates to a plasma device that generates plasma.
  • Patent Document 1 a processing gas is supplied to a reaction chamber in which a pair of electrodes are arranged, and a discharge is generated between the pair of electrodes to turn the processing gas into plasma.
  • This plasma device stores the state of the device in a storage device.
  • information related to the state of the device is stored in a storage device as a history at regular intervals.
  • the plasma device detects an abnormality in the device, it stores the history from the time when the abnormality is detected to a predetermined time before in association with the generated abnormality.
  • this storage process since only the history at regular time intervals is stored, it is difficult to determine the state of the plasma apparatus when an abnormality occurs from the history.
  • the present disclosure has been proposed in view of the above problems, and an object of the present disclosure is to provide a plasma device capable of more accurately determining the state of the device at the time of occurrence of an abnormality.
  • the abnormality detection device for detecting an abnormality and the state information related to the state of the plasma device are stored at predetermined time intervals, and the abnormality related to the state of the plasma device when the abnormality is detected by the abnormality detection device.
  • a plasma device including a control device for storing state information is disclosed.
  • the plasma device of the present disclosure it is possible to store the state information related to the state of the device at predetermined time intervals and the abnormal state information of the device when an abnormality is detected. As a result, the state at the time of abnormality can be grasped from the abnormal state information, and the state before and after the abnormality can be grasped from the state information. Therefore, it is possible to more accurately determine the state of the device when an abnormality occurs.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • It is a block diagram which shows the structure of a plasma apparatus. It is a block diagram which shows the connection structure of a current sensor, a pressure sensor and the like. It is a figure for demonstrating the process of storing state information, abnormal state information, setting information, and operating time information. It is a figure for demonstrating the process of storing the state information, the abnormal state information, the setting information, and the operation time information of another example. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part. It is a figure which shows the display screen of the operation part.
  • the plasma device 10 of the present embodiment includes a plasma head 11, a robot 13, and a control box 15.
  • the plasma head 11 is detachably attached to the tip of the robot 13.
  • the robot 13 is, for example, a serial link type robot (also called an articulated robot).
  • the plasma head 11 can irradiate plasma gas while being attached to the tip of the robot 13.
  • the plasma head 11 can be moved three-dimensionally by being moved according to the drive of the robot 13 and being able to change its direction.
  • the control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner.
  • the control box 15 has a power supply unit 15A that supplies electric power to the plasma head 11 and a gas supply unit 15B that supplies processing gas to the plasma head 11.
  • the power supply unit 15A is connected to the plasma head 11 via a power cable 16 and a control cable 18.
  • the power supply unit 15A controls the voltage applied to the electrode 33 (see FIG. 3) of the plasma head 11 and controls the temperature of the heater 43 (see FIG. 4), which will be described later, based on the control of the control box 15.
  • the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas supply tubes 19.
  • the gas supply unit 15B supplies a reaction gas (an example of a processing gas), a carrier gas (an example of a processing gas), and a heat gas (an example of a processing gas), which will be described later, to the plasma head 11 based on the control of the control box 15.
  • the control box 15 controls the gas supply unit 15B, and controls the amount and the flow velocity of the processing gas supplied from the gas supply unit 15B to the plasma head 11.
  • the plasma device 10 operates the robot 13 under the control of the control box 15 to irradiate the object W placed on the table 17 with plasma gas from the plasma head 11.
  • control box 15 includes an operation unit 15C having a touch panel and various switches.
  • the control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
  • the plasma head 11 is detachably provided with respect to the mounting plate 13A provided at the tip of the robot 13. As a result, the plasma head 11 can be replaced with a different type of plasma head 11.
  • the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, a nozzle 35, and the like.
  • the plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma. Further, the plasma head 11 heats the processing gas supplied from the gas supply unit 15B by the heater 43 (see FIG. 4) provided inside to generate heat gas.
  • the temperature of the heat gas is, for example, 600 ° C to 800 ° C.
  • the plasma head 11 of the present embodiment ejects the plasma gas generated in the plasma generation unit 21 together with the heated heat gas to the object W to be processed shown in FIG.
  • the processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG.
  • the plasma head 11 may not be provided with a heater 43 for heating the heat gas. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
  • a mounting portion 11B for attaching the power cable 16 is provided in a substantially central portion. Further, at one end of the connection surface 11A, a mounting portion 11C for mounting the control cable 18 is provided. Further, a mounting portion 11D for mounting the gas supply tube 19 is provided on the side opposite to the mounting portion 11C with the mounting portion 11B sandwiched between them.
  • the mounting portion 11D is connected to, for example, a mounting member 25 provided at the tip of the gas supply tube 19.
  • the mounting portion 11D and the mounting member 25 are, for example, so-called one-touch joints, and the gas supply tube 19 is detachably mounted on the plasma head 11.
  • the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a nozzle 35, and the like.
  • 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • the head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31.
  • Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37.
  • the pair of electrodes 33 may be simply referred to as electrodes 33. Further, the direction in which the pair of electrodes 33 are arranged is referred to as the X direction, the axial direction of the cylindrical electrodes 33 is referred to as the Z direction, and the directions orthogonal to the X direction and the Z direction are referred to as the Y direction.
  • the heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like.
  • the gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG.
  • the gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas supply tube 19 (see FIG. 1).
  • Heating gas for example, air
  • the heater 43 is attached in the middle of the gas pipe 41.
  • the heater 43 heats the heating gas flowing through the gas pipe 41 to generate heat gas.
  • the heater 43 is provided with a thermocouple 92 (see FIG. 5) for detecting the heating temperature of the heater 43.
  • the connecting portion 45 connects the gas pipe 41 to the nozzle 35.
  • the connecting portion 45 is connected at one end to the gas pipe 41 and the other end to the heat gas passage 51 formed in the nozzle 35. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
  • an electrode cover 53 made of an insulator such as ceramics.
  • the electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction.
  • the gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55.
  • the opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37.
  • the lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
  • a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31.
  • the reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31, is connected to the gas supply portion 15B via the gas supply tube 19 (see FIG. 1), and supplies the reaction gas supplied from the gas supply portion 15B. It flows into the reaction chamber 37.
  • the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via each of the pair of gas supply tubes 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B.
  • the carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55.
  • the four gas supply tubes 19 shown in FIGS. 1 and 2 include, for example, two gas supply tubes 19 that supply carrier gas to each of the pair of carrier gas flow paths 63, and one gas supply tube 19 that supplies reaction gas.
  • Oxygen (O2) can be used as the reaction gas (seed gas).
  • the gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61.
  • this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas.
  • Nitrogen can be used as the carrier gas.
  • the gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
  • AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15.
  • a voltage for example, as shown in FIG. 3
  • a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37.
  • the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
  • a plurality of (six in this embodiment) main body side plasma passages 71 are formed.
  • the upstream end of the plurality of main body side plasma passages 71 is open to the reaction chamber 37, and the downstream end of the plurality of main body side plasma passages 71 is open to the lower end surface of the head main body 31.
  • the nozzle 35 is molded of, for example, a ceramic having high heat resistance.
  • the nozzle 35 is fixed to the lower surface of the head main body 31 by bolts 80. Therefore, the nozzle 35 is detachable from the head main body 31, and can be changed to a different type of nozzle.
  • the nozzle 35 is formed with a pair of grooves 81 that open on the upper end surface. Each of the pair of grooves 81 communicates with, for example, three main body-side plasma passages 71 that open on the lower end surface of the head main body 31. Further, the nozzle 35 is formed with a plurality of nozzle-side plasma passages 82 (10 in this embodiment) penetrating in the Z direction. Grooves 81 (for example, five grooves each) are connected to the upper end of the nozzle-side plasma passage 82.
  • the shape and structure of the nozzle 35 shown in FIGS. 3 and 4 is an example.
  • the nozzle 35 is formed with a heat gas passage 95 so as to surround the nozzle-side plasma passage 82.
  • the upper portion of the heat gas passage 95 is connected to the connecting portion 45 of the heat gas supply portion 23 via the heat gas passage 51.
  • the lower end of the heat gas passage 95 is open on the lower surface of the nozzle 35.
  • the plasma gas generated in the reaction chamber 37 is ejected together with the carrier gas into the groove 81 via the plasma passage 71 on the main body side. Then, the plasma gas diffuses inside the groove 81 and is ejected from the opening 82A at the lower end of the nozzle-side plasma passage 82 via each of the plurality of nozzle-side plasma passages 82. Further, the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas passage 95. This heat gas functions as a shield gas that protects the plasma gas. The heat gas flows through the heat gas passage 95 and is ejected from the opening 95A at the lower end of the heat gas passage 95 along the plasma gas ejection direction.
  • the heat gas is ejected so as to surround the plasma gas ejected from the opening 82A of the nozzle-side plasma passage 82.
  • the efficacy (wetting property, etc.) of the plasma gas can be enhanced.
  • the controller 100 in addition to the power supply unit 15A, the gas supply unit 15B, and the operation unit 15C described above, the controller 100, the drive circuit 105, the control circuit 106, the communication unit 107, the leakage detection device 110, and the like. It includes a current sensor 111, a storage device 116, and the like.
  • the controller 100 is mainly composed of a computer including a CPU, ROM, RAM, etc. (not shown).
  • the controller 100 controls the plasma head 11, the heat gas supply unit 23, and the like by executing a program on the CPU and controlling the power supply unit 15A, the drive circuit 105, the gas supply unit 15B, and the like.
  • the controller 100 that executes the program on the CPU may be simply described by the device name. For example, the description "the controller 100 is” may mean "the controller 100 that executes the program on the CPU".
  • the controller 100 is connected to the operation unit 15C via the control circuit 106.
  • the controller 100 changes the display on the touch panel of the operation unit 15C via the control circuit 106.
  • the controller 100 receives an operation input to the operation unit 15C via the control circuit 106.
  • the storage device 116 is configured by combining, for example, a hard disk drive, RAM, ROM, and the like.
  • the controller 100 stores, for example, the state information 118 related to the state of the plasma device 10 and the abnormal state information 119 related to the state of the plasma device 10 when an abnormality is detected in the storage device 116.
  • the controller 100 stores the setting information 120 and the operating time information 121 related to the setting of the plasma device 10 in the storage device 116. Details of the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 will be described later.
  • the communication unit 107 communicates with a communication device connected to a network (not shown).
  • the form of communication is not particularly limited, and examples thereof include LAN and serial communication.
  • the controller 100 does not store the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 in the storage device 116 in the control box 15, but the server device or the like on the network via the communication unit 107. You may memorize it.
  • the leakage detection device 110 is a device that detects the leakage current of the power cable 16 that connects the power supply unit 15A and the plasma head 11 (electrode 33).
  • the configuration of the earth leakage detection device 110 is not particularly limited.
  • the leakage detection device 110 includes a conductive shield member that shields the power cable 16 and a ground cable that causes a ground fault of the shield member, and detects a leakage current flowing through the ground cable.
  • the earth leakage detection device 110 outputs the current value of the detected earth leakage current to the controller 100.
  • the power supply unit 15A generates high-frequency AC power to be supplied from a commercial power source to the electrode 33, and supplies the generated AC power to the electrode 33.
  • the current sensor 111 detects the current flowing through the power cable 16 for supplying power from the power supply unit 15A to the electrode 33.
  • the current sensor 111 includes, for example, a current transformer, AD-converts the detection voltage according to the current value flowing through the power cable 16 detected by the current transformer, and outputs the digital value corresponding to the current value to the controller 100.
  • the digital value corresponding to the current value may be simply described as the current value.
  • the gas supply unit 15B includes a gas generator 109, a plurality of mass flow controllers 112 (F1 to F5 in FIG. 6), a plurality of pressure sensors 113 (white squares in the figure), and the like.
  • the gas generator 109 is a supply source device that supplies each of the reaction gas, the carrier gas, and the heating gas.
  • the gas generator 109 supplies, for example, nitrogen (N2), oxygen (O2), and air (Air, dry air, etc.).
  • the gas generator 109 includes a compressor as an air supply source, a dryer for removing the moisture of the air supplied from the compressor, a separation device for separating nitrogen and oxygen from the dry air, and the like.
  • the gas generator 109 may use oxygen-containing air or dry air as the oxygen of the seed gas of the reaction gas.
  • the gas generator 109 supplies each of the reaction gas (oxygen, nitrogen), the carrier gas (nitrogen), and the heating gas (air) as the processing gas.
  • the plurality of mass flow controllers 112 are provided, for example, corresponding to each of the processing gases, and control the flow rate of each processing gas based on the control of the controller 100.
  • Each mass flow controller 112 outputs a value (measured value) of the flow rate actually supplied after adjustment to the controller 100.
  • the plurality of pressure sensors 113 detect the pressure value of the processing gas whose flow rate is adjusted by each mass flow controller 112. Further, the pressure sensor 113 detects the pressure value of the mixed gas in which the reaction gas (oxygen, nitrogen) is mixed by the mixer 115. Therefore, the pressure sensor 113 detects the pressures of oxygen (O2), which is a reaction gas (seed gas), nitrogen (N2) to be mixed with oxygen, and the mixed gas (dry air) after mixing. Further, the pressure sensor 113 individually detects the pressure of the carrier gas flowing through the gas supply tubes 19 connected to each of the pair of carrier gas flow paths 63. Further, the pressure sensor 113 detects the pressure value of the heating gas (air before heating) supplied to the gas pipe 41. Each pressure sensor 113 outputs the detected pressure value to the controller 100.
  • O2 oxygen
  • N2 nitrogen
  • the pressure sensor 113 individually detects the pressure of the carrier gas flowing through the gas supply tubes 19 connected to each of the pair of carrier gas flow paths 63.
  • the pressure sensor 113 detects the pressure value
  • the heater 43 and the thermocouple 92 attached near the heater 43 are electrically connected to the drive circuit 105.
  • the drive circuit 105 outputs a temperature corresponding to the output value of the thermocouple 92 to the controller 100.
  • the drive circuit 105 controls the heating temperature of the heater 43 based on the output value of the thermocouple 92 so as to reach the target temperature instructed by the controller 100.
  • the temperature sensor 114 is provided in, for example, the plasma head 11.
  • the temperature sensor 114 has, for example, a thermocouple, detects the temperature of the plasma gas, and outputs the detected temperature to the controller 100.
  • the controller 100 When the controller 100 receives an instruction to start plasma processing via the touch panel of the operation unit 15C, for example, the controller 100 starts plasma generation control.
  • the controller 100 starts the power supply unit 15A to supply a predetermined electric power to the electrode 33, and causes the gas supply unit 15B to start supplying the processing gas (carrier gas, reaction gas, heating gas). ..
  • the gas supply unit 15B starts supplying the processing gas at a predetermined gas flow rate and gas pressure based on the setting information 120 and the like.
  • the controller 100 controls the drive circuit 105 to control the heating temperature of the heater 43 so as to reach a predetermined temperature.
  • the state information 118 related to the state of the plasma device 10 is stored in the storage device 116 at predetermined time intervals.
  • FIG. 7 shows a time series of processes for storing the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121.
  • the controller 100 starts the plasma generation control, for example, the controller 100 stores the state information 118 every 1S (seconds). For example, the controller 100 outputs the current value of the leakage current detected by the leakage detection device 110, the current value output from the current sensor 111, the flow rate value output from the gas supply unit 15B, and the pressure sensor 113 as the state information 118.
  • the pressure value to be generated, the temperature output from the drive circuit 105 and the temperature sensor 114, and the like are stored in the storage device 116 in association with the time every second. For example, when the controller 100 stores the state information 118 every second and stores the state information 118 for the period T1 for 10 seconds (10 times), the oldest state information 118 is overwritten with the new state information 118. As a result, the controller 100 can record the latest state information 118 for 10 seconds (period T1) as a history.
  • the predetermined time (1 second) for storing the state information 118 and the period T1 (10 seconds) for storing the state information 118 are examples.
  • the controller 100 when the controller 100 detects some abnormality in the plasma device 10, the state information of the plasma device 10 at the time of detecting the abnormality is stored as the abnormal state information 119. Further, the controller 100 stores the setting information 120 when the abnormality is detected and the operating time (operating time information 121) up to the time when the abnormality is detected. Then, when the controller 100 detects an abnormality, the state information 118 for 10 times (or immediately before) from the time when the abnormality is detected, that is, the latest state information 118, is subjected to the abnormality state information 119, the setting information 120, and the operating time. It is stored in the storage device 116 in association with the information 121.
  • the controller 100 of the present embodiment stores the state information 118 and the abnormal state information 119 in association with each other based on the detection of the abnormality by the detection value of the leakage detection device 110 or the like.
  • the controller 100 stores the state information 118 included in the period from the time when the abnormality is detected to a certain time before (the period including the period T1 of 10 seconds).
  • the controller 100 when the controller 100 detects an abnormality, it stores the abnormal state information 119 at the time of the abnormality in association with the state information 118. As the state information 118, the controller 100 stores the state information 118 from the time when the abnormality is detected to a certain time before. As a result, it is possible to memorize what kind of state the device was in before the abnormality occurred, and it is possible to more accurately grasp the state of the device at the time of the occurrence of the abnormality.
  • the state information 118 stored by the controller 100 in association with the abnormal state information 119 is not limited to the information before the occurrence of the abnormality.
  • the controller 100 may store the state information 118 for 10 seconds sandwiching the time when the abnormality is detected in association with the abnormal state information 119.
  • the controller 100 may store the state information 118 for 10 seconds (10 times) after the abnormality occurs in association with the abnormal state information 119.
  • the controller 100 stores the setting information 120 related to the setting of the plasma device 10 and the setting information 120 when an abnormality is detected in association with the abnormality state information 119.
  • the settings used by the operator such as the threshold value for determining the plasma gas generation state and the flow rate of the processing gas, are important information for determining the cause of the abnormality. ..
  • Such setting information that can be changed on the user side and setting information 120 (see FIG. 11) at the time of occurrence of an abnormality is stored in association with the abnormality state information 119. This makes it possible to more accurately grasp the state of the device when an abnormality occurs.
  • the controller 100 When the controller 100 detects, for example, an abnormality in the device, it stops the power supply to the electrode 33, stops the supply of the processing gas, stops the operation of the heat gas supply unit 23, and ends the plasma generation control. As a result, the plasma generation of the plasma device 10 is stopped.
  • the controller 100 detects the abnormality and ends the plasma generation control, the controller 100 displays the detected abnormality information on the screen of the operation unit 15C.
  • FIG. 9 shows an example of the display screen of the operation unit 15C displaying the abnormality information.
  • the controller 100 displays the item column 143, the status display column 145, the representative abnormality list 147, the back button 149, and the scroll button 151 on the display screen 141 (touch panel) of the operation unit 15C.
  • the item column 143 indicates the title of the screen displayed on the display screen 141.
  • the controller 100 displays the characters "alarm details" as the title of the screen for displaying the representative abnormality list 147.
  • the controller 100 displays the current state of the plasma device 10 in the state display column 145.
  • the states displayed in the state display column 145 are various states such as, for example, starting, initializing, waiting, and plasma processing.
  • the back button 149 is a button for returning to the previous display state.
  • the representative abnormality list 147 is a display column for displaying the detected abnormalities in chronological order.
  • the controller 100 is, for example, a detection value of at least one of various sensors (leakage detection device 110, current sensor 111, mass flow controller 112, pressure sensor 113, temperature sensor 114, thermocouple 92, etc.) included in the plasma device 10.
  • the abnormality is detected, it is determined that the abnormality has occurred in the plasma device 10.
  • the controller 100 for example, at least one of the reaction gas, the carrier gas, the flow rate of the heating gas supplied from the gas supply unit 15B, the voltage value applied from the power supply unit 15A to the electrode 33, and the current value flowing through the electrode 33 is abnormal.
  • the value indicates, it is judged that an abnormality has occurred. As shown in FIG.
  • the controller 100 detects, for example, a plasma leakage abnormality, a gas pressure rise abnormality, a gas pressure sensor abnormality, a low current abnormality, a MAIN (GAS1) flow rate abnormality, and the like as abnormalities.
  • the type of abnormality detected by the plasma device 10 is not particularly limited. For example, when the current value of the leakage current detected by the leakage detection device 110 exceeds the threshold value of the setting information 120, the controller 100 determines that the plasma leakage is abnormal. Further, for example, when the pressure value of the processing gas detected by the pressure sensor 113 or the like exceeds the threshold value of the setting information 120, the controller 100 determines that the gas pressure sensor is abnormal.
  • the controller 100 displays in the representative abnormality list 147 so that the date and time when the abnormality occurs is in chronological order. For example, the controller 100 displays the display name of the latest abnormality at the top of the representative abnormality list 147, and displays the display name of the oldest abnormality in order from the top to the bottom of the representative abnormality list 147. The controller 100 displays numbers 1, 2, ... In order from the new abnormality to the left of each display name. The controller 100 displays an abnormality display name or the like that cannot be displayed in the representative abnormality list 147 based on the operation input for the scroll button 151.
  • the controller 100 detects a plurality of types of abnormalities at the same time, the controller 100 selects one type of abnormality as the representative abnormality from the plurality of types of abnormalities and displays it in the representative abnormality list 147. Specifically, the controller 100 determines the detection values of various sensors in, for example, a monitoring cycle shorter than the one-second cycle in which the state information 118 is stored. When the controller 100 detects a plurality of abnormalities from a plurality of detected values detected in the same monitoring cycle, the controller 100 processes those abnormalities as abnormalities that have occurred at the same time. The controller 100 selects a representative abnormality from a plurality of abnormalities that have occurred (detected) at the same time, and displays the selected representative abnormality in the representative abnormality list 147.
  • the controller 100 collectively displays a plurality of simultaneously occurring abnormalities including a representative abnormality on the display screen 167 of FIG. 12, which will be described later.
  • the controller 100 displays the display names of the representative abnormalities that occurred at different times in the representative abnormality list 147 in chronological order. According to this, when a plurality of types of abnormalities occur at the same time, a representative abnormality can be selected from the plurality of types of abnormalities and displayed in the representative abnormality list 147.
  • the abnormalities detected at the same time in the present disclosure are not limited to those in which two or more abnormalities are detected at the same time (same timing) as described above, but are continuous for a short time such as 1 second. Anomalies detected in the same way may be treated as anomalies detected at the same time.
  • the method of selecting a representative abnormality from a plurality of types of abnormalities is not particularly limited.
  • the plasma device 10 may be set in advance so that the vendor side of the plasma device 10 collects statistics on the frequency of occurrence of abnormalities and displays the abnormalities having a higher frequency of occurrence as representative abnormalities.
  • the controller 100 collects statistics on the types of abnormalities that have occurred in the usage environment since the actual use of the plasma device 10 is started on the production line or the like, and the abnormalities that occur more frequently or the abnormalities that occur less frequently occur. May be selected as the representative abnormality.
  • the controller 100 may, for example, classify the types of abnormalities such as current abnormality, gas, and heat from among a plurality of types of abnormalities, and select a representative abnormality from the types with a large number of occurrences.
  • the controller 100 displays the representative abnormality list 147 on the display screen 141, and when any one of the representative abnormalities displayed on the representative abnormality list 147 is touch-operated, FIG.
  • the display screen 153 shown in the above is displayed on the operation unit 15C.
  • the controller 100 displays the number of the representative abnormality selected on the display screen 141 of FIG. 9 as the item field 143 of the display screen 153.
  • Item column 143 in FIG. 10 shows, as an example, the case where the first (plasma leakage abnormality) of the representative abnormality list 147 is selected (when alarm 1 is selected).
  • the controller 100 collectively lists the abnormality state information 119 and the state information 118 when the representative abnormality selected in FIG. 9 (in this case, the plasma leakage abnormality of the alarm 1) is detected on the display screen 153. Displayed in unit 155. As shown in FIG. 10, the abnormality list unit 155 displays the abnormality state information 119 and the state information 118 by dividing them into a plurality of matrices.
  • the item names that explain each column are displayed.
  • the top of the abnormality list unit 155 for example, Time, MG1 (FR), MG2 (FR), S1 (FR), S2 (FR), H (FR), ... Is displayed.
  • 17 item names are set in the abnormality list unit 155.
  • out of the 17 item names only 6 item names are displayed in the abnormality list unit 155.
  • the controller 100 displays the item name on the right side that is not displayed based on the operation of the scroll button 157 on the right side of the abnormality list unit 155.
  • the abnormal state information 119 is displayed at the top, and the information of the state information 118 is displayed below it.
  • the state information 118 displays the latest 10-second information at the time when the abnormality occurs.
  • the state information 118 displays the latest information (Time 1), then the new information (Time 2), and so on, in order from the top, that is, the old information is displayed every 1s as it goes down. There is.
  • out of the 10 state information 118s only 4 state information 118s are displayed in the abnormality list unit 155.
  • the controller 100 displays the undisplayed state information 118 (before 5S) based on the operation of the scroll button 159 below the abnormality list unit 155.
  • MG1 (FR) is a value obtained by detecting the flow rate of nitrogen (N2) mixed with oxygen (O2) of the reaction gas (seed gas) by the mass flow controller 112 of the gas supply unit 15B.
  • MG2 (FR) is a value obtained by detecting the flow rate of oxygen (O2) of the reaction gas (seed gas) with the mass flow controller 112.
  • S1 (FR) is a value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)) supplied to one of the pair of carrier gas flow paths 63 (gas supply tube 19), and S2 (FR) is the value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)). It is a value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)) supplied to the other side of the gas flow path 63.
  • H (FR) is a value obtained by detecting the flow rate of the heating gas (air) used as the heat gas.
  • the controller 100 stores, for example, the heating temperature of the heater 43 detected by the thermocouple 92 as abnormal state information 119 and state information 118. Similarly, the controller 100 stores the temperature of the plasma gas detected by the temperature sensor 114. Further, the controller 100 stores the number of times the pseudo arc A that generates the plasma gas is turned off (cut off). In the controller 100, for example, the current value (current value detected by the current sensor 111) flowing from the power supply unit 15A to the electrode 33 becomes equal to or more than a predetermined value, and after the pseudo arc A is generated, the current value becomes equal to or less than the predetermined determination value. Then, it is determined that the pseudo arc A is turned off, and the number of times of current loss is increased by one.
  • the controller 100 each time the plasma gas generation control is started, the controller 100 resets the number of times of current shortage, newly measures the number of times of current shortage, and stores it as state information 118 or abnormal state information 119.
  • the controller 100 may accumulate and measure the number of times of lack of current for each plasma generation control without resetting.
  • the controller 100 stores the pressure of the reaction gas (nitrogen + oxygen) after mixing, the pressure of the carrier gas (for each gas supply tube 19), and the pressure of the heating gas as state information 118 and abnormal state information 119. ..
  • the controller 100 can detect these pressures by the pressure sensor 113.
  • the controller 100 stores the current value of the leakage current detected by the leakage detection device 110.
  • the leakage current flowing from the shield member of the power cable 16 to the ground flows due to electromagnetic induction during power supply for generating plasma, that is, it is constant in a normal power supply in which the power cable 16 is not broken. Current value flows. Therefore, the controller 100 may store a reference value as a reference at the time of normal power supply, and an upper limit value and a lower limit value having a certain range from the reference value.
  • the upper limit value and the lower limit value are for determining an electric leakage abnormality.
  • the 17 item names from Time and MG1 (FR) to the upper limit value and the lower limit value are examples, and can be appropriately changed according to the configuration of the plasma apparatus 10.
  • the controller 100 of the present embodiment has abnormal state information 119 and state information when a representative abnormality is detected based on an operation input to the operation unit 15C (touch operation of the representative abnormality list 147). 118 are grouped in a matrix and displayed on the operation unit 15C. According to this, the user can display and confirm the abnormal state information 119 and the state information 118 of the representative abnormality together by operating the operation unit 15C. It is possible to easily confirm the state, such as comparing the abnormal state information 119 and the state information 118 at the time of abnormality in chronological order to see if there is an abnormal value.
  • the controller 100 touches the display screen 163 shown in FIG. Is displayed on the operation unit 15C.
  • the controller 100 displays the time information of the representative abnormality selected on the display screen 141 of FIG. 9 as the item field 143 of the display screen 163.
  • the controller 100 displays the setting information 120 and the operating time information 121 on the display screen 163.
  • the controller 100 sets, for example, a version (Control ver.) Of a program (control program used for plasma generation control) executed by the CPU of the controller 100, and an operating version (System ver.). It is stored as information 120 and displayed on the display screen 163.
  • the controller 100 depends on the gas pressure (kPa), the target pressure of the plasma gas (plasma pressure), and the heater 43, which are thresholds for determining the change in the gas pressure (pressure of the reaction gas, etc.) due to the attachment / detachment of the nozzle 35.
  • the warm-up completion pressure for determining the completion of warm-up is stored and displayed as the setting information 120.
  • the controller 100 stores the threshold value and the like at the time of abnormality as the setting information 120 and displays it on the display screen 163.
  • the controller 100 stores, for example, the operating time of the plasma head 11, the electrode 33, the nozzle 35, and the control box 15 as the operating time information 121, and displays the operating time on the display screen 163. Therefore, the operating time information 121 can be adopted as information for storing various operating times related to the plasma device 10, such as the operating time of the plasma device 10 itself and the operating time of each device included in the plasma device 10.
  • the controller 100 continuously measures the operating time of each device, and when an abnormality is detected, stores the operating time up to that point in the storage device 116 as operating time information 121.
  • the controller 100 stores the operating time information 121 in association with the abnormal state information 119 and the like, and then displays it on the display screen 163. As shown in FIG. 11, the controller 100 may display the remaining time of the notification time for notifying the periodic cleaning of the plasma head 11 as the operating time information 121.
  • the setting information 120 and the operating time information 121 shown in FIG. 11 are examples.
  • the controller 100 may store and display, for example, information indicating the type of the nozzle 35, a set flow rate of the carrier gas or the like, a set value of the heating temperature of the heater 43, and the like.
  • the controller 100 displays the setting information 120 and the operating time information 121 that could not be displayed on the display screen 163 each time the OK button 165 displayed at the lower part of the display screen 163 is touched.
  • the controller 100 of the present embodiment stores the setting information 120 related to the setting of the plasma device 10, the setting information 120 when the representative abnormality is detected, and the operating time information 121 when the representative abnormality is detected.
  • the controller 100 displays the setting information 120 and the operating time information 121 on the operation unit 15C based on the touch operation of the device information button 161 on the operation unit 15C. According to this, the user can confirm the setting information 120 and the operating time information 121 when the representative abnormality is detected by operating the operation unit 15C.
  • the state of the device at the time of abnormality can be easily checked collectively.
  • the controller 100 displays the display screen 167 shown in FIG. 12 as the final screen in which the OK button 165 is switched each time the touch operation is performed.
  • the controller 100 increases the number on the display screen to 1/3, 2/3, 3/3 in order each time the OK button 165 is touched, for example.
  • the display screen 167 is displayed on 3/3.
  • the controller 100 displays the abnormality list 169 on the display screen 167.
  • the controller 100 displays the representative abnormality selected in the representative abnormality list 147 of FIG. 9 at the top of the abnormality list 169 (below the item of the occurrence alarm), and detects the representative abnormality at the same time under the representative abnormality.
  • the types of other abnormalities that have been detected are displayed in order (low current abnormality in FIG. 12, MAIN (GS1) flow rate abnormality, etc.). If the controller 100 cannot display all the types of abnormalities detected at the same time in the abnormality list 169, the controller 100 displays other types of abnormalities that cannot be displayed in response to a touch operation on the scroll button 171 displayed on the right side of the abnormality list 169. .. When the OK button 165 of the display screen 167 is touch-operated, the controller 100 displays, for example, the display screen 141 shown in FIG.
  • the controller 100 of the present embodiment collectively displays a plurality of types of abnormalities that have occurred simultaneously on the operation unit 15C based on the touch operation of the OK button 165 on the operation unit 15C. According to this, by operating the operation unit 15C, the user can confirm what kind of abnormality has occurred at the same time in addition to the representative abnormality with one display content. When multiple abnormalities occur at the same time, all types of abnormalities can be easily confirmed on the screen display. Further, as shown in FIGS. 9 to 12, the user can confirm the information related to the representative abnormality selected by himself / herself in order by operating the operation unit 15C, and can confirm all the information related to the abnormality by a simple operation. it can. In other words, the plasma device 10 of the present embodiment can centrally manage and display various information related to the abnormality.
  • the controller 100 may display the values of the abnormal state information 119 and the state information 118 shown in FIG. 10 in a graph with the time axis horizontal.
  • the operation unit 15C is an example of a display device and a reception device.
  • the controller 100 is an example of a control device and an abnormality detection device.
  • the power supply unit 15A, the gas supply unit 15B, the leakage detection device 110, the current sensor 111, the mass flow controller 112, the pressure sensor 113, the temperature sensor 114, and the thermocouple 92 are examples of the abnormality detection device.
  • the controller 100 stores the state information 118 related to the state of the plasma device 10 at predetermined time intervals, and stores the abnormal state information 119 when an abnormality is detected separately from the state information 118. To do. According to this, in addition to the state information 118 related to the state of the device stored at predetermined time intervals, the abnormal state information 119 of the device when an abnormality is detected can be stored. As a result, the state at the time of abnormality can be grasped by the abnormality state information 119, and the state before the abnormality can be grasped by the state information 118. Therefore, it is possible to more accurately determine the state of the device when an abnormality occurs. As shown in FIG. 8, the controller 100 may store the state information 118 before and after the abnormality and the state information 118 after the abnormality.
  • the controller 100 may store the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 without associating them with each other.
  • the user can operate the operation unit 15C to individually check the different information stored in the storage device 116.
  • the operation unit 15C is provided with a touch panel having both functions of the display device and the reception device, the display device and the reception device may be separately provided.
  • the type of processing gas supplied by the gas supply tube 19 in the above embodiment is an example.
  • a gas other than oxygen and nitrogen may be used as the processing gas.
  • Plasma device 15A power supply unit (abnormality detection device), 15B gas supply unit (abnormality detection device), 15C operation unit (display device, reception device), 100 controller (control device, abnormality detection device), 110 leakage detection device ( Abnormality detection device), 111 current sensor (abnormality detection device), 112 mass flow controller (abnormality detection device), 113 pressure sensor (abnormality detection device), 114 temperature sensor (abnormality detection device).

Abstract

The present invention aims to provide a plasma apparatus capable of making more accurate determinations about the state of the apparatus when an error has occurred. This plasma apparatus comprises: an error detection device that detects errors; and a control device that stores, for each prescribed time period, state information pertaining to the state of the plasma apparatus and stores error state information pertaining to the state of the plasma apparatus when the error detection device has detected an error.

Description

プラズマ装置Plasma device
 本開示は、プラズマを発生させるプラズマ装置に関するものである。 The present disclosure relates to a plasma device that generates plasma.
 従来、プラズマを発生させるプラズマ装置が種々提案されている。例えば、下記特許文献1のプラズマ装置は、一対の電極を配置した反応室に処理ガスを供給し、一対の電極間に放電を発生させ処理ガスをプラズマ化している。このプラズマ装置は、装置の状態を記憶装置に記憶している。 Conventionally, various plasma devices for generating plasma have been proposed. For example, in the plasma apparatus of Patent Document 1 below, a processing gas is supplied to a reaction chamber in which a pair of electrodes are arranged, and a discharge is generated between the pair of electrodes to turn the processing gas into plasma. This plasma device stores the state of the device in a storage device.
国際公開第WO2019/145990号International Publication No. WO2019 / 145990
 この種のプラズマ装置では、例えば、装置の状態に係わる情報を、一定時間ごとに履歴として記憶装置へ記憶する。プラズマ装置は、装置の異常を検出すると、異常を検出した時間から所定時間前までの履歴を、発生した異常に関連付けて記憶する。しかしながら、この記憶処理では、一定時間ごとの履歴しか記憶されないため、異常が発生した際のプラズマ装置の状態が、履歴から判断することが困難であった。 In this type of plasma device, for example, information related to the state of the device is stored in a storage device as a history at regular intervals. When the plasma device detects an abnormality in the device, it stores the history from the time when the abnormality is detected to a predetermined time before in association with the generated abnormality. However, in this storage process, since only the history at regular time intervals is stored, it is difficult to determine the state of the plasma apparatus when an abnormality occurs from the history.
 本開示は上記の課題に鑑み提案されたものであって、異常発生時の装置の状態をより正確に判断できるプラズマ装置を提供することを目的とする。 The present disclosure has been proposed in view of the above problems, and an object of the present disclosure is to provide a plasma device capable of more accurately determining the state of the device at the time of occurrence of an abnormality.
 本明細書は、異常を検出する異常検出装置と、プラズマ装置の状態に係わる状態情報を、所定時間ごとに記憶し、前記異常検出装置により異常を検出した際の前記プラズマ装置の状態に係わる異常状態情報を記憶する制御装置と、を備えるプラズマ装置を開示する。 In the present specification, the abnormality detection device for detecting an abnormality and the state information related to the state of the plasma device are stored at predetermined time intervals, and the abnormality related to the state of the plasma device when the abnormality is detected by the abnormality detection device. A plasma device including a control device for storing state information is disclosed.
 本開示のプラズマ装置によれば、装置の状態に係わる状態情報を所定時間ごとに記憶した情報に加え、異常を検出した際の装置の異常状態情報を記憶することができる。これにより、異常時の状態を異常状態情報により把握でき、異常の前後における状態を状態情報により把握できる。従って、異常発生時の装置の状態をより正確に判断できる。 According to the plasma device of the present disclosure, it is possible to store the state information related to the state of the device at predetermined time intervals and the abnormal state information of the device when an abnormality is detected. As a result, the state at the time of abnormality can be grasped from the abnormal state information, and the state before and after the abnormality can be grasped from the state information. Therefore, it is possible to more accurately determine the state of the device when an abnormality occurs.
プラズマ装置を示す図である。It is a figure which shows the plasma apparatus. プラズマヘッドの斜視図である。It is a perspective view of a plasma head. 電極及び本体側プラズマ通路の位置においてX方向及びZ方向にプラズマヘッドを切断した断面図である。It is sectional drawing which cut the plasma head in the X direction and Z direction at the position of the electrode and the plasma passage on the main body side. 図3のA-A線における断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. プラズマ装置の構成を示すブロック図である。It is a block diagram which shows the structure of a plasma apparatus. 電流センサ、圧力センサ等の接続構成を示すブロック図である。It is a block diagram which shows the connection structure of a current sensor, a pressure sensor and the like. 状態情報、異常状態情報、設定情報、稼動時間情報を記憶する処理を説明するための図である。It is a figure for demonstrating the process of storing state information, abnormal state information, setting information, and operating time information. 別例の状態情報、異常状態情報、設定情報、稼動時間情報を記憶する処理を説明するための図である。It is a figure for demonstrating the process of storing the state information, the abnormal state information, the setting information, and the operation time information of another example. 操作部の表示画面を示す図である。It is a figure which shows the display screen of the operation part. 操作部の表示画面を示す図である。It is a figure which shows the display screen of the operation part. 操作部の表示画面を示す図である。It is a figure which shows the display screen of the operation part. 操作部の表示画面を示す図である。It is a figure which shows the display screen of the operation part.
 以下、本開示を実施するための一形態について、図を参照しつつ詳しく説明する。図1に示すように、本実施形態のプラズマ装置10は、プラズマヘッド11、ロボット13、制御ボックス15を備えている。プラズマヘッド11は、ロボット13の先端部に着脱可能に取り付けられている。ロボット13は、例えば、シリアルリンク型ロボット(多関節型ロボットと呼ぶこともできる)である。プラズマヘッド11は、ロボット13の先端に取り付けられた状態でプラズマガスを照射可能となっている。プラズマヘッド11は、ロボット13の駆動に応じて移動させられ、向きを変更させられる等し、3次元的に移動可能となっている。 Hereinafter, one form for implementing the present disclosure will be described in detail with reference to the figures. As shown in FIG. 1, the plasma device 10 of the present embodiment includes a plasma head 11, a robot 13, and a control box 15. The plasma head 11 is detachably attached to the tip of the robot 13. The robot 13 is, for example, a serial link type robot (also called an articulated robot). The plasma head 11 can irradiate plasma gas while being attached to the tip of the robot 13. The plasma head 11 can be moved three-dimensionally by being moved according to the drive of the robot 13 and being able to change its direction.
 制御ボックス15は、コンピュータを主体として構成され、プラズマ装置10を統括的に制御する。制御ボックス15は、プラズマヘッド11に電力を供給する電源部15A及びプラズマヘッド11に処理ガスを供給するガス供給部15Bを有している。電源部15Aは、電力ケーブル16や制御ケーブル18を介してプラズマヘッド11と接続されている。電源部15Aは、制御ボックス15の制御に基づいて、プラズマヘッド11の電極33(図3参照)に印加する電圧を変更する制御や、後述するヒータ43(図4参照)の温度を制御する。 The control box 15 is mainly composed of a computer and controls the plasma device 10 in an integrated manner. The control box 15 has a power supply unit 15A that supplies electric power to the plasma head 11 and a gas supply unit 15B that supplies processing gas to the plasma head 11. The power supply unit 15A is connected to the plasma head 11 via a power cable 16 and a control cable 18. The power supply unit 15A controls the voltage applied to the electrode 33 (see FIG. 3) of the plasma head 11 and controls the temperature of the heater 43 (see FIG. 4), which will be described later, based on the control of the control box 15.
 また、ガス供給部15Bは、複数(本実施形態では4本)のガス供給チューブ19を介してプラズマヘッド11と接続されている。ガス供給部15Bは、制御ボックス15の制御に基づいて、後述する反応ガス(処理ガスの一例)、キャリアガス(処理ガスの一例)、ヒートガス(処理ガスの一例)をプラズマヘッド11へ供給する。制御ボックス15は、ガス供給部15Bを制御し、ガス供給部15Bからプラズマヘッド11へ供給する処理ガスの量や流速などを制御する。そして、プラズマ装置10は、制御ボックス15の制御に基づいてロボット13を動作させ、テーブル17の上に載置された被処理物Wに対してプラズマヘッド11からプラズマガスを照射する。 Further, the gas supply unit 15B is connected to the plasma head 11 via a plurality of (four in this embodiment) gas supply tubes 19. The gas supply unit 15B supplies a reaction gas (an example of a processing gas), a carrier gas (an example of a processing gas), and a heat gas (an example of a processing gas), which will be described later, to the plasma head 11 based on the control of the control box 15. The control box 15 controls the gas supply unit 15B, and controls the amount and the flow velocity of the processing gas supplied from the gas supply unit 15B to the plasma head 11. Then, the plasma device 10 operates the robot 13 under the control of the control box 15 to irradiate the object W placed on the table 17 with plasma gas from the plasma head 11.
 また、制御ボックス15は、タッチパネルや各種スイッチを有する操作部15Cを備えている。制御ボックス15は、各種の設定画面や動作状態(例えば、ガス供給状態など)等を操作部15Cのタッチパネルに表示する。また、制御ボックス15は、操作部15Cに対する操作入力により各種の情報を受け付ける。 Further, the control box 15 includes an operation unit 15C having a touch panel and various switches. The control box 15 displays various setting screens, operating states (for example, gas supply state, etc.) and the like on the touch panel of the operation unit 15C. Further, the control box 15 receives various information by inputting an operation to the operation unit 15C.
 プラズマヘッド11は、ロボット13の先端に設けられた取付板13Aに対して着脱可能に設けられている。これにより、プラズマヘッド11は、種類の異なるプラズマヘッド11に交換可能となっている。図2に示すように、プラズマヘッド11は、プラズマ生成部21、ヒートガス供給部23、ノズル35等を備えている。プラズマ生成部21は、制御ボックス15のガス供給部15B(図1参照)から供給された処理ガスをプラズマ化して、プラズマガスを生成する。また、プラズマヘッド11は、内部に設けられたヒータ43(図4参照)によってガス供給部15Bから供給された処理ガスを加熱してヒートガスを生成する。ヒートガスの温度は、例えば、600℃から800℃である。本実施形態のプラズマヘッド11は、プラズマ生成部21において生成したプラズマガスを、加熱したヒートガスとともに、図1に示す被処理物Wへ噴出する。プラズマヘッド11には、図2に示す矢印の方向に上流側から下流側へと処理ガスが供給される。なお、プラズマヘッド11は、ヒートガスを加熱するヒータ43を備えない構成でも良い。即ち、本開示のプラズマ装置は、ヒートガスを用いない構成でも良い。 The plasma head 11 is detachably provided with respect to the mounting plate 13A provided at the tip of the robot 13. As a result, the plasma head 11 can be replaced with a different type of plasma head 11. As shown in FIG. 2, the plasma head 11 includes a plasma generation unit 21, a heat gas supply unit 23, a nozzle 35, and the like. The plasma generation unit 21 generates plasma gas by converting the processing gas supplied from the gas supply unit 15B (see FIG. 1) of the control box 15 into plasma. Further, the plasma head 11 heats the processing gas supplied from the gas supply unit 15B by the heater 43 (see FIG. 4) provided inside to generate heat gas. The temperature of the heat gas is, for example, 600 ° C to 800 ° C. The plasma head 11 of the present embodiment ejects the plasma gas generated in the plasma generation unit 21 together with the heated heat gas to the object W to be processed shown in FIG. The processing gas is supplied to the plasma head 11 from the upstream side to the downstream side in the direction of the arrow shown in FIG. The plasma head 11 may not be provided with a heater 43 for heating the heat gas. That is, the plasma apparatus of the present disclosure may have a configuration that does not use heat gas.
 図2に示すように、プラズマヘッド11の接続面11Aには、電力ケーブル16を取り付ける取付部11Bが略中央部に設けられている。また、接続面11Aの一端には、制御ケーブル18を取り付ける取付部11Cが設けられている。また、取付部11Bを間に挟んで取付部11Cとは反対側には、ガス供給チューブ19を取り付ける取付部11Dが設けられている。取付部11Dは、例えば、ガス供給チューブ19の先端に設けられた取付部材25を接続される。取付部11D及び取付部材25は、例えば、所謂ワンタッチ継手であり、ガス供給チューブ19をプラズマヘッド11に対して着脱可能に装着する。 As shown in FIG. 2, on the connection surface 11A of the plasma head 11, a mounting portion 11B for attaching the power cable 16 is provided in a substantially central portion. Further, at one end of the connection surface 11A, a mounting portion 11C for mounting the control cable 18 is provided. Further, a mounting portion 11D for mounting the gas supply tube 19 is provided on the side opposite to the mounting portion 11C with the mounting portion 11B sandwiched between them. The mounting portion 11D is connected to, for example, a mounting member 25 provided at the tip of the gas supply tube 19. The mounting portion 11D and the mounting member 25 are, for example, so-called one-touch joints, and the gas supply tube 19 is detachably mounted on the plasma head 11.
 図3及び図4に示すように、プラズマ生成部21は、ヘッド本体部31、一対の電極33、ノズル35等を含む。尚、図3は、一対の電極33及び後述する複数の本体側プラズマ通路71の位置に合わせて切断した断面図であり、図4は、図3のA-A線における断面図である。ヘッド本体部31は、耐熱性の高いセラミックにより成形されており、そのヘッド本体部31の内部には、プラズマガスを発生させる反応室37が形成されている。一対の電極33の各々は、例えば、円柱形状をなしており、その先端部を反応室37に突出させた状態で固定されている。以下の説明では、一対の電極33を、単に電極33と称する場合がある。また、一対の電極33が並ぶ方向をX方向、円柱形状の電極33の軸方向をZ方向、X方向及びZ方向に直交する方向をY方向と称して説明する。 As shown in FIGS. 3 and 4, the plasma generation unit 21 includes a head body unit 31, a pair of electrodes 33, a nozzle 35, and the like. 3 is a cross-sectional view taken along the positions of the pair of electrodes 33 and a plurality of plasma passages 71 on the main body side, which will be described later, and FIG. 4 is a cross-sectional view taken along the line AA of FIG. The head main body 31 is formed of a ceramic having high heat resistance, and a reaction chamber 37 for generating plasma gas is formed inside the head main body 31. Each of the pair of electrodes 33 has, for example, a cylindrical shape, and is fixed in a state where its tip is projected into the reaction chamber 37. In the following description, the pair of electrodes 33 may be simply referred to as electrodes 33. Further, the direction in which the pair of electrodes 33 are arranged is referred to as the X direction, the axial direction of the cylindrical electrodes 33 is referred to as the Z direction, and the directions orthogonal to the X direction and the Z direction are referred to as the Y direction.
 ヒートガス供給部23は、ガス管41、ヒータ43、連結部45等を備えている。ガス管41及びヒータ43は、ヘッド本体部31の外周面に取り付けられ、図4に示すカバー47によって覆われている。ガス管41は、ガス供給チューブ19(図1参照)を介して、制御ボックス15のガス供給部15Bに接続されている。ガス管41には、ガス供給部15Bから加熱用ガス(例えば、空気)が供給される。ヒータ43は、ガス管41の途中に取り付けられている。ヒータ43は、ガス管41を流れる加熱用ガスを温めてヒートガスを生成する。また、ヒータ43には、ヒータ43の加熱温度を検出するための熱電対92(図5参照)が設けられている。 The heat gas supply unit 23 includes a gas pipe 41, a heater 43, a connecting unit 45, and the like. The gas pipe 41 and the heater 43 are attached to the outer peripheral surface of the head main body 31 and are covered with the cover 47 shown in FIG. The gas pipe 41 is connected to the gas supply unit 15B of the control box 15 via the gas supply tube 19 (see FIG. 1). Heating gas (for example, air) is supplied to the gas pipe 41 from the gas supply unit 15B. The heater 43 is attached in the middle of the gas pipe 41. The heater 43 heats the heating gas flowing through the gas pipe 41 to generate heat gas. Further, the heater 43 is provided with a thermocouple 92 (see FIG. 5) for detecting the heating temperature of the heater 43.
 図4に示すように、連結部45は、ガス管41をノズル35に連結するものである。ノズル35がヘッド本体部31に取り付けられた状態では、連結部45は、一端部をガス管41に接続され、他端部をノズル35に形成されたヒートガス通路51に接続される。ヒートガス通路51には、ガス管41を介してヒートガスが供給される。 As shown in FIG. 4, the connecting portion 45 connects the gas pipe 41 to the nozzle 35. When the nozzle 35 is attached to the head main body 31, the connecting portion 45 is connected at one end to the gas pipe 41 and the other end to the heat gas passage 51 formed in the nozzle 35. Heat gas is supplied to the heat gas passage 51 via the gas pipe 41.
 図3及び図4に示すように、電極33の一部の外周部は、セラミックス等の絶縁体で製造された電極カバー53によって覆われている。電極カバー53は、略中空筒状をなし、長手方向の両端部に開口が形成されている。電極カバー53の内周面と電極33の外周面との間の隙間は、ガス通路55として機能する。電極カバー53の下流側の開口は、反応室37に接続されている。電極33の下端は、電極カバー53の下流側の開口から突出している。 As shown in FIGS. 3 and 4, a part of the outer peripheral portion of the electrode 33 is covered with an electrode cover 53 made of an insulator such as ceramics. The electrode cover 53 has a substantially hollow tubular shape, and openings are formed at both ends in the longitudinal direction. The gap between the inner peripheral surface of the electrode cover 53 and the outer peripheral surface of the electrode 33 functions as a gas passage 55. The opening on the downstream side of the electrode cover 53 is connected to the reaction chamber 37. The lower end of the electrode 33 projects from the opening on the downstream side of the electrode cover 53.
 また、ヘッド本体部31の内部には、反応ガス流路61と、一対のキャリアガス流路63とが形成されている。反応ガス流路61は、ヘッド本体部31の略中央部に設けられ、ガス供給チューブ19(図1参照)を介してガス供給部15Bと接続され、ガス供給部15Bから供給される反応ガスを反応室37へ流入させる。また、一対のキャリアガス流路63は、X方向において反応ガス流路61を間に挟んだ位置に配置されている。一対のキャリアガス流路63の各々は、一対のガス供給チューブ19(図1参照)の各々を介してガス供給部15Bと接続され、ガス供給部15Bからキャリアガスが供給される。キャリアガス流路63は、ガス通路55を介してキャリアガスを反応室37へ流入させる。図1及び図2に示す4本のガス供給チューブ19は、例えば、一対のキャリアガス流路63のそれぞれにキャリアガスを供給する2本のガス供給チューブ19と、反応ガスを供給する1本のガス供給チューブ19と、ヒートガス(加熱する前の加熱用ガス)を供給するガス供給チューブ19である。 Further, a reaction gas flow path 61 and a pair of carrier gas flow paths 63 are formed inside the head main body 31. The reaction gas flow path 61 is provided in a substantially central portion of the head main body portion 31, is connected to the gas supply portion 15B via the gas supply tube 19 (see FIG. 1), and supplies the reaction gas supplied from the gas supply portion 15B. It flows into the reaction chamber 37. Further, the pair of carrier gas flow paths 63 are arranged at positions sandwiching the reaction gas flow path 61 in the X direction. Each of the pair of carrier gas flow paths 63 is connected to the gas supply unit 15B via each of the pair of gas supply tubes 19 (see FIG. 1), and the carrier gas is supplied from the gas supply unit 15B. The carrier gas flow path 63 allows the carrier gas to flow into the reaction chamber 37 through the gas passage 55. The four gas supply tubes 19 shown in FIGS. 1 and 2 include, for example, two gas supply tubes 19 that supply carrier gas to each of the pair of carrier gas flow paths 63, and one gas supply tube 19 that supplies reaction gas. A gas supply tube 19 and a gas supply tube 19 for supplying heat gas (heating gas before heating).
 反応ガス(種ガス)としては、酸素(O2)を採用できる。ガス供給部15Bは、例えば、反応ガス流路61を介して、酸素と窒素(N2)との混合気体(例えば、乾燥空気(Air))を、反応室37の電極33の間に流入させる。以下、この混合気体を、便宜的に反応ガスと呼び、酸素を種ガスと呼ぶ場合がある。キャリアガスとしては、窒素を採用できる。ガス供給部15Bは、ガス通路55の各々から、一対の電極33の各々を取り巻くようにキャリアガスを流入させる。 Oxygen (O2) can be used as the reaction gas (seed gas). The gas supply unit 15B allows, for example, a mixed gas of oxygen and nitrogen (N2) (for example, dry air (Air)) to flow between the electrodes 33 of the reaction chamber 37 via the reaction gas flow path 61. Hereinafter, this mixed gas may be referred to as a reaction gas for convenience, and oxygen may be referred to as a seed gas. Nitrogen can be used as the carrier gas. The gas supply unit 15B allows carrier gas to flow in from each of the gas passages 55 so as to surround each of the pair of electrodes 33.
 一対の電極33には、制御ボックス15の電源部15Aから交流の電圧が印加される。電圧を印加することによって、例えば、図3に示すように、反応室37内において、一対の電極33の下端の間に、擬似アークAが発生する。この擬似アークAを反応ガスが通過する際に、反応ガスは、プラズマ化される。従って、一対の電極33は、擬似アークAの放電を発生させ、反応ガスをプラズマ化し、プラズマガスを発生させる。 AC voltage is applied to the pair of electrodes 33 from the power supply unit 15A of the control box 15. By applying a voltage, for example, as shown in FIG. 3, a pseudo arc A is generated between the lower ends of the pair of electrodes 33 in the reaction chamber 37. When the reaction gas passes through the pseudo arc A, the reaction gas is turned into plasma. Therefore, the pair of electrodes 33 generate the discharge of the pseudo arc A, turn the reaction gas into plasma, and generate the plasma gas.
 また、ヘッド本体部31における反応室37の下流側の部分には、複数(本実施例においては、6本)の本体側プラズマ通路71が形成されている。複数の本体側プラズマ通路71の上流側の端部は、反応室37に開口しており、複数の本体側プラズマ通路71の下流側の端部は、ヘッド本体部31の下端面に開口している。 Further, in the portion of the head main body 31 on the downstream side of the reaction chamber 37, a plurality of (six in this embodiment) main body side plasma passages 71 are formed. The upstream end of the plurality of main body side plasma passages 71 is open to the reaction chamber 37, and the downstream end of the plurality of main body side plasma passages 71 is open to the lower end surface of the head main body 31. There is.
 ノズル35は、例えば、耐熱性の高いセラミックにより成形されている。ノズル35は、ボルト80により、ヘッド本体部31の下面に固定されている。このため、ノズル35は、ヘッド本体部31に着脱可能とされており、種類の異なるノズルに変更することができる。ノズル35には、上端面に開口する一対の溝81が形成されている。一対の溝81の各々は、例えば、ヘッド本体部31の下端面に開口する3本の本体側プラズマ通路71が連通している。また、ノズル35には、Z方向に貫通する複数(本実施例においては、10本)のノズル側プラズマ通路82が形成されている。ノズル側プラズマ通路82の上端には、溝81(例えば、5本ずつ)が接続されている。尚、図3及び図4に示すノズル35の形状・構造は、一例である。 The nozzle 35 is molded of, for example, a ceramic having high heat resistance. The nozzle 35 is fixed to the lower surface of the head main body 31 by bolts 80. Therefore, the nozzle 35 is detachable from the head main body 31, and can be changed to a different type of nozzle. The nozzle 35 is formed with a pair of grooves 81 that open on the upper end surface. Each of the pair of grooves 81 communicates with, for example, three main body-side plasma passages 71 that open on the lower end surface of the head main body 31. Further, the nozzle 35 is formed with a plurality of nozzle-side plasma passages 82 (10 in this embodiment) penetrating in the Z direction. Grooves 81 (for example, five grooves each) are connected to the upper end of the nozzle-side plasma passage 82. The shape and structure of the nozzle 35 shown in FIGS. 3 and 4 is an example.
 また、ノズル35には、ノズル側プラズマ通路82を取り囲むように、ヒートガス用通路95が形成されている。ヒートガス用通路95の上部は、ヒートガス通路51を介して、ヒートガス供給部23の連結部45に連結されている。ヒートガス用通路95の下端は、ノズル35の下面において開口している。 Further, the nozzle 35 is formed with a heat gas passage 95 so as to surround the nozzle-side plasma passage 82. The upper portion of the heat gas passage 95 is connected to the connecting portion 45 of the heat gas supply portion 23 via the heat gas passage 51. The lower end of the heat gas passage 95 is open on the lower surface of the nozzle 35.
 このような構造により、反応室37で発生したプラズマガスは、キャリアガスとともに、本体側プラズマ通路71を経由して溝81の内部に噴出される。そして、プラズマガスは、溝81の内部において拡散し、複数のノズル側プラズマ通路82の各々を経由して、ノズル側プラズマ通路82の下端の開口82Aから噴出される。また、ガス管41からヒートガス通路51へ供給されたヒートガスは、ヒートガス用通路95を流れる。このヒートガスは、プラズマガスを保護するシールドガスとして機能するものである。ヒートガスは、ヒートガス用通路95を流れ、ヒートガス用通路95の下端の開口95Aからプラズマガスの噴出方向に沿って噴出される。この際、ヒートガスは、ノズル側プラズマ通路82の開口82Aから噴出されるプラズマガスの周囲を取り巻くように噴出される。このように、加熱したヒートガスをプラズマガスの周囲に噴出することで、プラズマガスの効能(濡れ性など)を高めることができる。 With such a structure, the plasma gas generated in the reaction chamber 37 is ejected together with the carrier gas into the groove 81 via the plasma passage 71 on the main body side. Then, the plasma gas diffuses inside the groove 81 and is ejected from the opening 82A at the lower end of the nozzle-side plasma passage 82 via each of the plurality of nozzle-side plasma passages 82. Further, the heat gas supplied from the gas pipe 41 to the heat gas passage 51 flows through the heat gas passage 95. This heat gas functions as a shield gas that protects the plasma gas. The heat gas flows through the heat gas passage 95 and is ejected from the opening 95A at the lower end of the heat gas passage 95 along the plasma gas ejection direction. At this time, the heat gas is ejected so as to surround the plasma gas ejected from the opening 82A of the nozzle-side plasma passage 82. By ejecting the heated heat gas around the plasma gas in this way, the efficacy (wetting property, etc.) of the plasma gas can be enhanced.
 次に、制御ボックス15の詳細な構成について説明する。図5に示すように、制御ボックス15は、上記した電源部15A、ガス供給部15B、操作部15Cの他に、コントローラ100、駆動回路105、制御回路106、通信部107、漏電検出装置110、電流センサ111、記憶装置116などを備えている。コントローラ100は、不図示のCPU,ROM,RAM等を備えるコンピュータを主体として構成されている。コントローラ100は、CPUでプログラムを実行し、電源部15A、駆動回路105、ガス供給部15Bなどを制御することにより、プラズマヘッド11、ヒートガス供給部23などを制御する。尚、プログラムをCPUで実行するコントローラ100のことを、単に装置名で記載する場合がある。例えば、「コントローラ100が」という記載は、「プログラムをCPUで実行するコントローラ100が」ということを意味する場合がある。 Next, the detailed configuration of the control box 15 will be described. As shown in FIG. 5, in the control box 15, in addition to the power supply unit 15A, the gas supply unit 15B, and the operation unit 15C described above, the controller 100, the drive circuit 105, the control circuit 106, the communication unit 107, the leakage detection device 110, and the like. It includes a current sensor 111, a storage device 116, and the like. The controller 100 is mainly composed of a computer including a CPU, ROM, RAM, etc. (not shown). The controller 100 controls the plasma head 11, the heat gas supply unit 23, and the like by executing a program on the CPU and controlling the power supply unit 15A, the drive circuit 105, the gas supply unit 15B, and the like. The controller 100 that executes the program on the CPU may be simply described by the device name. For example, the description "the controller 100 is" may mean "the controller 100 that executes the program on the CPU".
 また、コントローラ100は、制御回路106を介して、操作部15Cに接続されている。コントローラ100は、制御回路106を介して操作部15Cのタッチパネルの表示を変更する。また、コントローラ100は、制御回路106を介して操作部15Cに対する操作入力を受け付ける。また、記憶装置116は、例えば、ハードディスクドライブ、RAM、ROM等を組み合わせて構成されている。コントローラ100は、例えば、プラズマ装置10の状態に係わる状態情報118や、異常を検出した際のプラズマ装置10の状態に係わる異常状態情報119を記憶装置116に記憶する。また、コントローラ100は、プラズマ装置10の設定に係わる設定情報120、稼動時間情報121を記憶装置116に記憶する。状態情報118、異常状態情報119、設定情報120、稼動時間情報121の詳細については、後述する。 Further, the controller 100 is connected to the operation unit 15C via the control circuit 106. The controller 100 changes the display on the touch panel of the operation unit 15C via the control circuit 106. Further, the controller 100 receives an operation input to the operation unit 15C via the control circuit 106. Further, the storage device 116 is configured by combining, for example, a hard disk drive, RAM, ROM, and the like. The controller 100 stores, for example, the state information 118 related to the state of the plasma device 10 and the abnormal state information 119 related to the state of the plasma device 10 when an abnormality is detected in the storage device 116. Further, the controller 100 stores the setting information 120 and the operating time information 121 related to the setting of the plasma device 10 in the storage device 116. Details of the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 will be described later.
 また、通信部107は、不図示のネットワークに接続する通信機器と通信を行う。通信の形態は特に限定されず、例えば、LAN、シリアル通信などである。尚、コントローラ100は、状態情報118、異常状態情報119、設定情報120、稼動時間情報121を制御ボックス15内の記憶装置116に記憶せずに、通信部107を介してネットワーク上のサーバ装置等へ記憶しても良い。 Further, the communication unit 107 communicates with a communication device connected to a network (not shown). The form of communication is not particularly limited, and examples thereof include LAN and serial communication. The controller 100 does not store the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 in the storage device 116 in the control box 15, but the server device or the like on the network via the communication unit 107. You may memorize it.
 漏電検出装置110は、電源部15Aとプラズマヘッド11(電極33)を接続する電力ケーブル16の漏電電流を検出する装置である。漏電検出装置110の構成は、特に限定されない。例えば、漏電検出装置110は、電力ケーブル16をシールドする導電性のシールド部材と、シールド部材を地絡させるアースケーブルとを備え、アースケーブルに流れる漏電電流を検出する。漏電検出装置110は、検出した漏電電流の電流値をコントローラ100へ出力する。 The leakage detection device 110 is a device that detects the leakage current of the power cable 16 that connects the power supply unit 15A and the plasma head 11 (electrode 33). The configuration of the earth leakage detection device 110 is not particularly limited. For example, the leakage detection device 110 includes a conductive shield member that shields the power cable 16 and a ground cable that causes a ground fault of the shield member, and detects a leakage current flowing through the ground cable. The earth leakage detection device 110 outputs the current value of the detected earth leakage current to the controller 100.
 図6に示すように、電源部15Aは、商用電源から電極33へ給電する高周波の交流電力を生成し、生成した交流電力を電極33へ給電する。電流センサ111は、電源部15Aから電極33へ電力を供給するための電力ケーブル16に流れる電流を検出する。詳しくは、電流センサ111は例えばカレントトランスを備え、カレントトランスにより検出された電力ケーブル16に流れる電流値に応じた検出電圧をAD変換し、電流値に応じたデジタル値をコントローラ100へ出力する。以下、電流値に応じたデジタル値を単に電流値と記載する場合がある。 As shown in FIG. 6, the power supply unit 15A generates high-frequency AC power to be supplied from a commercial power source to the electrode 33, and supplies the generated AC power to the electrode 33. The current sensor 111 detects the current flowing through the power cable 16 for supplying power from the power supply unit 15A to the electrode 33. Specifically, the current sensor 111 includes, for example, a current transformer, AD-converts the detection voltage according to the current value flowing through the power cable 16 detected by the current transformer, and outputs the digital value corresponding to the current value to the controller 100. Hereinafter, the digital value corresponding to the current value may be simply described as the current value.
 また、ガス供給部15Bは、ガス発生装置109、複数のマスフローコントローラ112(図6中のF1~F5)、複数の圧力センサ113(図中の白色の四角)などを備えている。ガス発生装置109は、反応ガス、キャリアガス、加熱用ガスの各々を供給する供給源の装置である。ガス発生装置109は、例えば、窒素(N2)、酸素(O2)、空気(Air、乾燥空気など)を供給する。ガス発生装置109は、空気の供給源となるコンプレッサ、コンプレッサから供給される空気の湿気を取り除くためのドライヤ、乾燥空気から窒素や酸素を分離する分離装置等を備えている。尚、ガス発生装置109は、反応ガスの種ガスの酸素として、酸素を含む空気や乾燥空気を用いても良い。 Further, the gas supply unit 15B includes a gas generator 109, a plurality of mass flow controllers 112 (F1 to F5 in FIG. 6), a plurality of pressure sensors 113 (white squares in the figure), and the like. The gas generator 109 is a supply source device that supplies each of the reaction gas, the carrier gas, and the heating gas. The gas generator 109 supplies, for example, nitrogen (N2), oxygen (O2), and air (Air, dry air, etc.). The gas generator 109 includes a compressor as an air supply source, a dryer for removing the moisture of the air supplied from the compressor, a separation device for separating nitrogen and oxygen from the dry air, and the like. The gas generator 109 may use oxygen-containing air or dry air as the oxygen of the seed gas of the reaction gas.
 ガス発生装置109は、反応ガス(酸素、窒素)、キャリアガス(窒素)、加熱用ガス(空気)のそれぞれを処理ガスとして供給する。複数のマスフローコントローラ112は、例えば、各処理ガスの各々に対応して設けられ、各処理ガスの流量を、コントローラ100の制御に基づいて制御する。各マスフローコントローラ112は、調整した後の実際に供給する流量の値(測定値)をコントローラ100に出力する。 The gas generator 109 supplies each of the reaction gas (oxygen, nitrogen), the carrier gas (nitrogen), and the heating gas (air) as the processing gas. The plurality of mass flow controllers 112 are provided, for example, corresponding to each of the processing gases, and control the flow rate of each processing gas based on the control of the controller 100. Each mass flow controller 112 outputs a value (measured value) of the flow rate actually supplied after adjustment to the controller 100.
 また、複数の圧力センサ113は、各マスフローコントローラ112によって流量を調整された処理ガスの圧力値を検出する。また、圧力センサ113は、反応ガス(酸素、窒素)を混合器115で混合した混合気体の圧力値を検出する。従って、圧力センサ113は、反応ガス(種ガス)である酸素(O2)、酸素に混合する窒素(N2)、混合した後の混合気体(乾燥空気)のそれぞれの圧力を検出する。また、圧力センサ113は、一対のキャリアガス流路63の各々に接続されたガス供給チューブ19を流れるキャリアガスの圧力を、個別に検出する。また、圧力センサ113は、ガス管41へ供給する加熱用ガス(加熱する前の空気)の圧力値を検出する。各圧力センサ113は、検出した圧力値をコントローラ100に出力する。 Further, the plurality of pressure sensors 113 detect the pressure value of the processing gas whose flow rate is adjusted by each mass flow controller 112. Further, the pressure sensor 113 detects the pressure value of the mixed gas in which the reaction gas (oxygen, nitrogen) is mixed by the mixer 115. Therefore, the pressure sensor 113 detects the pressures of oxygen (O2), which is a reaction gas (seed gas), nitrogen (N2) to be mixed with oxygen, and the mixed gas (dry air) after mixing. Further, the pressure sensor 113 individually detects the pressure of the carrier gas flowing through the gas supply tubes 19 connected to each of the pair of carrier gas flow paths 63. Further, the pressure sensor 113 detects the pressure value of the heating gas (air before heating) supplied to the gas pipe 41. Each pressure sensor 113 outputs the detected pressure value to the controller 100.
 また、図5に示すように、駆動回路105には、ヒータ43、及びヒータ43付近に取り付けられた熱電対92が電気的に接続されている。駆動回路105は、熱電対92の出力値に応じた温度をコントローラ100へ出力する。駆動回路105は、コントローラ100に指示された目標温度となるように、熱電対92の出力値に基づき、ヒータ43の加熱温度を制御する。温度センサ114は、例えば、プラズマヘッド11内に設けられている。温度センサ114は、例えば熱電対を有し、プラズマガスの温度を検出し、検出した温度をコントローラ100へ出力する。 Further, as shown in FIG. 5, the heater 43 and the thermocouple 92 attached near the heater 43 are electrically connected to the drive circuit 105. The drive circuit 105 outputs a temperature corresponding to the output value of the thermocouple 92 to the controller 100. The drive circuit 105 controls the heating temperature of the heater 43 based on the output value of the thermocouple 92 so as to reach the target temperature instructed by the controller 100. The temperature sensor 114 is provided in, for example, the plasma head 11. The temperature sensor 114 has, for example, a thermocouple, detects the temperature of the plasma gas, and outputs the detected temperature to the controller 100.
 次に、本実施形態のコントローラ100が実行する記憶処理について説明する。コントローラ100は、例えば、操作部15Cのタッチパネルを介してプラズマ処理の開始の指示を受け付けると、プラズマ発生制御を開始する。プラズマ発生制御において、コントローラ100は、電源部15Aに所定の電力を電極33に給電する制御を開始させ、ガス供給部15Bに処理ガス(キャリアガス、反応ガス、加熱用ガス)の供給を開始させる。ガス供給部15Bは、設定情報120等に基づいて、所定のガス流量及びガス圧で、処理ガスの供給を開始する。また、コントローラ100は、駆動回路105を制御して、所定の温度になるようにヒータ43の加熱温度を制御する。 Next, the storage process executed by the controller 100 of the present embodiment will be described. When the controller 100 receives an instruction to start plasma processing via the touch panel of the operation unit 15C, for example, the controller 100 starts plasma generation control. In the plasma generation control, the controller 100 starts the power supply unit 15A to supply a predetermined electric power to the electrode 33, and causes the gas supply unit 15B to start supplying the processing gas (carrier gas, reaction gas, heating gas). .. The gas supply unit 15B starts supplying the processing gas at a predetermined gas flow rate and gas pressure based on the setting information 120 and the like. Further, the controller 100 controls the drive circuit 105 to control the heating temperature of the heater 43 so as to reach a predetermined temperature.
 また、コントローラ100は、プラズマ発生制御を開始すると、所定時間毎に、プラズマ装置10の状態に係わる状態情報118を記憶装置116に記憶する。図7は、状態情報118、異常状態情報119、設定情報120、稼動時間情報121を記憶する処理の時系列を示している。コントローラ100は、例えば、プラズマ発生制御を開始すると、1S(秒)ごとに状態情報118を記憶する。コントローラ100は、例えば、状態情報118として、漏電検出装置110で検出した漏電電流の電流値、電流センサ111から出力される電流値、ガス供給部15Bから出力される流量値、圧力センサ113から出力される圧力値、駆動回路105及び温度センサ114から出力される温度等を、1秒ごとの時刻に対応付けて記憶装置116に記憶する。コントローラ100は、例えば、1秒ごとに状態情報118を記憶し、10秒(10回)の期間T1だけ状態情報118を記憶すると、最も古い状態情報118を新たな状態情報118で上書きする。これにより、コントローラ100は、最新の10秒(期間T1)の状態情報118を履歴として残すことができる。尚、上記した状態情報118を記憶する所定時間(1秒)や、状態情報118を記憶する期間T1(10秒)は、一例である。 Further, when the controller 100 starts the plasma generation control, the state information 118 related to the state of the plasma device 10 is stored in the storage device 116 at predetermined time intervals. FIG. 7 shows a time series of processes for storing the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121. When the controller 100 starts the plasma generation control, for example, the controller 100 stores the state information 118 every 1S (seconds). For example, the controller 100 outputs the current value of the leakage current detected by the leakage detection device 110, the current value output from the current sensor 111, the flow rate value output from the gas supply unit 15B, and the pressure sensor 113 as the state information 118. The pressure value to be generated, the temperature output from the drive circuit 105 and the temperature sensor 114, and the like are stored in the storage device 116 in association with the time every second. For example, when the controller 100 stores the state information 118 every second and stores the state information 118 for the period T1 for 10 seconds (10 times), the oldest state information 118 is overwritten with the new state information 118. As a result, the controller 100 can record the latest state information 118 for 10 seconds (period T1) as a history. The predetermined time (1 second) for storing the state information 118 and the period T1 (10 seconds) for storing the state information 118 are examples.
 また、図7に示すように、コントローラ100は、プラズマ装置10に何らかの異状を検出すると、その異状を検出した際のプラズマ装置10の状態情報を異常状態情報119として記憶する。また、コントローラ100は、異常を検出した際の設定情報120や、異常を検出する時点までの稼動時間(稼動時間情報121)を記憶する。そして、コントローラ100は、異常を検出すると、異常を検出する時点から(又は直前の)10回分の状態情報118、即ち、最新の状態情報118を、異常状態情報119、設定情報120、及び稼動時間情報121に関連付けて記憶装置116に記憶する。 Further, as shown in FIG. 7, when the controller 100 detects some abnormality in the plasma device 10, the state information of the plasma device 10 at the time of detecting the abnormality is stored as the abnormal state information 119. Further, the controller 100 stores the setting information 120 when the abnormality is detected and the operating time (operating time information 121) up to the time when the abnormality is detected. Then, when the controller 100 detects an abnormality, the state information 118 for 10 times (or immediately before) from the time when the abnormality is detected, that is, the latest state information 118, is subjected to the abnormality state information 119, the setting information 120, and the operating time. It is stored in the storage device 116 in association with the information 121.
 従って、本実施形態のコントローラ100は、漏電検出装置110等の検出値により異常を検出したことに基づいて、状態情報118と異常状態情報119とを関連付けて記憶する。コントローラ100は、異常を検出した時点から一定時間だけ前までの期間(10秒の期間T1を含む期間)に含まれる状態情報118を記憶する。 Therefore, the controller 100 of the present embodiment stores the state information 118 and the abnormal state information 119 in association with each other based on the detection of the abnormality by the detection value of the leakage detection device 110 or the like. The controller 100 stores the state information 118 included in the period from the time when the abnormality is detected to a certain time before (the period including the period T1 of 10 seconds).
 これによれば、コントローラ100は、異常を検出すると、異常時の異常状態情報119に状態情報118を関連付けて記憶する。コントローラ100は、その状態情報118として、異常を検出した時点から一定時間前までの状態情報118を記憶する。これにより、異常が発生する前に装置がどのような状態であったのかを記憶でき、異常発生時の装置の状態をより正確に把握することができる。 According to this, when the controller 100 detects an abnormality, it stores the abnormal state information 119 at the time of the abnormality in association with the state information 118. As the state information 118, the controller 100 stores the state information 118 from the time when the abnormality is detected to a certain time before. As a result, it is possible to memorize what kind of state the device was in before the abnormality occurred, and it is possible to more accurately grasp the state of the device at the time of the occurrence of the abnormality.
 尚、コントローラ100が異常状態情報119と関連付けて記憶する状態情報118は、異常発生前の情報に限らない。例えば、図8に示すように、コントローラ100は、異常を検出した時点を挟む10秒間の状態情報118を、異常状態情報119に関連付けて記憶しても良い。あるいは、コントローラ100は、異常が発生した後の10秒(10回分)の状態情報118を異常状態情報119に関連付けて記憶しても良い。 Note that the state information 118 stored by the controller 100 in association with the abnormal state information 119 is not limited to the information before the occurrence of the abnormality. For example, as shown in FIG. 8, the controller 100 may store the state information 118 for 10 seconds sandwiching the time when the abnormality is detected in association with the abnormal state information 119. Alternatively, the controller 100 may store the state information 118 for 10 seconds (10 times) after the abnormality occurs in association with the abnormal state information 119.
 また、コントローラ100は、プラズマ装置10の設定に係わる設定情報120で、且つ異常を検出した際の設定情報120を、異常状態情報119に関連付けて記憶する。プラズマガスの発生状態を判定するための閾値や処理ガスの流量など、作業者がどのような設定でプラズマ装置10を使用していたのかは、異常の原因を判断する上で重要な情報となる。このような、ユーザ側で変更可能な設定情報で、且つ異常発生時の設定情報120(図11参照)を、異常状態情報119と関連付けて記憶する。これにより、異常発生時の装置の状態をより正確に把握することができる。 Further, the controller 100 stores the setting information 120 related to the setting of the plasma device 10 and the setting information 120 when an abnormality is detected in association with the abnormality state information 119. The settings used by the operator, such as the threshold value for determining the plasma gas generation state and the flow rate of the processing gas, are important information for determining the cause of the abnormality. .. Such setting information that can be changed on the user side and setting information 120 (see FIG. 11) at the time of occurrence of an abnormality is stored in association with the abnormality state information 119. This makes it possible to more accurately grasp the state of the device when an abnormality occurs.
 コントローラ100は、例えば、装置の異常を検出すると、電極33への給電を停止し、処理ガスの供給を停止し、ヒートガス供給部23の動作を停止させ、プラズマ発生制御を終了する。これにより、プラズマ装置10のプラズマ発生は停止される。コントローラ100は、異常を検出しプラズマ発生制御を終了すると、操作部15Cの画面に検出した異常の情報を表示させる。 When the controller 100 detects, for example, an abnormality in the device, it stops the power supply to the electrode 33, stops the supply of the processing gas, stops the operation of the heat gas supply unit 23, and ends the plasma generation control. As a result, the plasma generation of the plasma device 10 is stopped. When the controller 100 detects the abnormality and ends the plasma generation control, the controller 100 displays the detected abnormality information on the screen of the operation unit 15C.
 図9は、異常の情報を表示した操作部15Cの表示画面の一例を示している。図9に示すように、コントローラ100は、操作部15Cの表示画面141(タッチパネル)に、項目欄143、状態表示欄145、代表異常一覧147、バックボタン149、及びスクロールボタン151を表示する。項目欄143は、表示画面141に表示した画面のタイトルを示すものである。コントローラ100は、代表異常一覧147を表示する画面のタイトルとして「アラーム詳細」の文字を表示する。 FIG. 9 shows an example of the display screen of the operation unit 15C displaying the abnormality information. As shown in FIG. 9, the controller 100 displays the item column 143, the status display column 145, the representative abnormality list 147, the back button 149, and the scroll button 151 on the display screen 141 (touch panel) of the operation unit 15C. The item column 143 indicates the title of the screen displayed on the display screen 141. The controller 100 displays the characters "alarm details" as the title of the screen for displaying the representative abnormality list 147.
 また、コントローラ100は、プラズマ装置10の現在の状態を状態表示欄145に表示する。状態表示欄145に表示される状態は、例えば、起動中、初期化中、待機中、プラズマ処理中などの各種の状態である。バックボタン149は、一つ前の表示状態に戻すためのボタンである。 Further, the controller 100 displays the current state of the plasma device 10 in the state display column 145. The states displayed in the state display column 145 are various states such as, for example, starting, initializing, waiting, and plasma processing. The back button 149 is a button for returning to the previous display state.
 代表異常一覧147は、検出した異常を時系列に表示するための表示欄である。コントローラ100は、例えば、プラズマ装置10が備える各種のセンサ(漏電検出装置110、電流センサ111、マスフローコントローラ112、圧力センサ113、温度センサ114、熱電対92など)の少なくとも1つのセンサの検出値で異常を検出すると、プラズマ装置10に異常が発生したと判断する。コントローラ100は、例えば、ガス供給部15Bから供給する反応ガス、キャリアガス、加熱用ガスの流量、電源部15Aから電極33に印加する電圧値、電極33に流す電流値の少なくとも一つの値が異常を示す値になると、異常が発生したと判断する。図9及び後述する図12に示すように、コントローラ100は、例えば、プラズマ漏電異常、ガス圧力上昇異常、ガス圧力センサ異常、低電流異常、MAIN(GAS1)流量異常などを異常として検出する。プラズマ装置10が検出する異常の種類は、特に限定されない。例えば、コントローラ100は、漏電検出装置110で検出した漏電電流の電流値が、設定情報120の閾値を超えた場合、プラズマ漏電異常として判断する。また、例えば、コントローラ100は、圧力センサ113等で検出した処理ガスの圧力値が、設定情報120の閾値を超えた場合、ガス圧力センサ異常として判断する。 The representative abnormality list 147 is a display column for displaying the detected abnormalities in chronological order. The controller 100 is, for example, a detection value of at least one of various sensors (leakage detection device 110, current sensor 111, mass flow controller 112, pressure sensor 113, temperature sensor 114, thermocouple 92, etc.) included in the plasma device 10. When the abnormality is detected, it is determined that the abnormality has occurred in the plasma device 10. In the controller 100, for example, at least one of the reaction gas, the carrier gas, the flow rate of the heating gas supplied from the gas supply unit 15B, the voltage value applied from the power supply unit 15A to the electrode 33, and the current value flowing through the electrode 33 is abnormal. When the value indicates, it is judged that an abnormality has occurred. As shown in FIG. 9 and FIG. 12 described later, the controller 100 detects, for example, a plasma leakage abnormality, a gas pressure rise abnormality, a gas pressure sensor abnormality, a low current abnormality, a MAIN (GAS1) flow rate abnormality, and the like as abnormalities. The type of abnormality detected by the plasma device 10 is not particularly limited. For example, when the current value of the leakage current detected by the leakage detection device 110 exceeds the threshold value of the setting information 120, the controller 100 determines that the plasma leakage is abnormal. Further, for example, when the pressure value of the processing gas detected by the pressure sensor 113 or the like exceeds the threshold value of the setting information 120, the controller 100 determines that the gas pressure sensor is abnormal.
 また、コントローラ100は、異常が発生した日時が時間順となるように代表異常一覧147に表示する。コントローラ100は、例えば、最新の異常の表示名を代表異常一覧147の最も上に表示し、代表異常一覧147の上から下に順番により古い異常の表示名を表示する。コントローラ100は、各表示名の左に、新しい異常から順番に、1,2,・・と番号を表示する。コントローラ100は、スクロールボタン151に対する操作入力に基づいて、代表異常一覧147に表示しきれない異常の表示名等を表示する。 Further, the controller 100 displays in the representative abnormality list 147 so that the date and time when the abnormality occurs is in chronological order. For example, the controller 100 displays the display name of the latest abnormality at the top of the representative abnormality list 147, and displays the display name of the oldest abnormality in order from the top to the bottom of the representative abnormality list 147. The controller 100 displays numbers 1, 2, ... In order from the new abnormality to the left of each display name. The controller 100 displays an abnormality display name or the like that cannot be displayed in the representative abnormality list 147 based on the operation input for the scroll button 151.
 また、コントローラ100は、複数の種類の異常を同時に検出した場合、複数の種類の異常のうち、一種類の異常を代表異常として選択して代表異常一覧147に表示する。具体的には、コントローラ100は、例えば、状態情報118を記憶する1秒のサイクルよりも短い監視サイクルで、各種センサの検出値を判定する。コントローラ100は、同一の監視サイクルで検出した複数の検出値から複数の異常を検出した場合、それらの異常を同時に発生した異常として処理する。コントローラ100は、同時に発生(検出)した複数の異常から代表異常を選択し、選択した代表異常を代表異常一覧147に表示する。また、コントローラ100は、後述する図12の表示画面167で代表異常を含む同時に発生した複数の異常をまとめて表示する。コントローラ100は、代表異常一覧147において、異なる時間に発生した代表異常の表示名を、時系列順に表示する。これによれば、複数の種類の異常が同時に発生した場合に、複数の種類の異常から代表的な異常を選択して代表異常一覧147に表示することができる。尚、本開示の同時に検出された異常とは、上記したように、2つ以上の異常を同一時間(同一タイミング)に検出したものだけでなく、例えば、1秒などの短い時間の間に連続的に検出された異常も、同時に検出された異常として取り扱っても良い。 Further, when the controller 100 detects a plurality of types of abnormalities at the same time, the controller 100 selects one type of abnormality as the representative abnormality from the plurality of types of abnormalities and displays it in the representative abnormality list 147. Specifically, the controller 100 determines the detection values of various sensors in, for example, a monitoring cycle shorter than the one-second cycle in which the state information 118 is stored. When the controller 100 detects a plurality of abnormalities from a plurality of detected values detected in the same monitoring cycle, the controller 100 processes those abnormalities as abnormalities that have occurred at the same time. The controller 100 selects a representative abnormality from a plurality of abnormalities that have occurred (detected) at the same time, and displays the selected representative abnormality in the representative abnormality list 147. Further, the controller 100 collectively displays a plurality of simultaneously occurring abnormalities including a representative abnormality on the display screen 167 of FIG. 12, which will be described later. The controller 100 displays the display names of the representative abnormalities that occurred at different times in the representative abnormality list 147 in chronological order. According to this, when a plurality of types of abnormalities occur at the same time, a representative abnormality can be selected from the plurality of types of abnormalities and displayed in the representative abnormality list 147. The abnormalities detected at the same time in the present disclosure are not limited to those in which two or more abnormalities are detected at the same time (same timing) as described above, but are continuous for a short time such as 1 second. Anomalies detected in the same way may be treated as anomalies detected at the same time.
 また、複数の種類の異常から代表異常を選択する方法は、特に限定されない。例えば、プラズマ装置10のベンダー側で異常の発生頻度の統計を取り、発生頻度がより多い異常を代表異常として表示するように、プラズマ装置10に予め設定しても良い。あるいは、コントローラ100は、生産ラインなどでプラズマ装置10の実際の使用が開始されてから、その使用環境で発生した異常の種類の統計を取り、より発生頻度の高い異常、あるいは発生頻度の低い異常を代表異常として選択しても良い。また、コントローラ100は、例えば、複数の種類の異常のうち、電流の異常、ガス、熱、などの異常の種類を分け、発生した数の多い種類から代表異常を選択しても良い。 In addition, the method of selecting a representative abnormality from a plurality of types of abnormalities is not particularly limited. For example, the plasma device 10 may be set in advance so that the vendor side of the plasma device 10 collects statistics on the frequency of occurrence of abnormalities and displays the abnormalities having a higher frequency of occurrence as representative abnormalities. Alternatively, the controller 100 collects statistics on the types of abnormalities that have occurred in the usage environment since the actual use of the plasma device 10 is started on the production line or the like, and the abnormalities that occur more frequently or the abnormalities that occur less frequently occur. May be selected as the representative abnormality. Further, the controller 100 may, for example, classify the types of abnormalities such as current abnormality, gas, and heat from among a plurality of types of abnormalities, and select a representative abnormality from the types with a large number of occurrences.
 コントローラ100は、図9に示すように、表示画面141に代表異常一覧147を表示する状態で、代表異常一覧147に表示した代表異常のうち、任意の一つをタッチ操作されると、図10に示す表示画面153を操作部15Cに表示する。コントローラ100は、表示画面153の項目欄143として図9の表示画面141で選択された代表異常の番号を表示する。図10の項目欄143は、一例として、代表異常一覧147の一番目(プラズマ漏電異常)を選択した場合(アラーム1を選択した場合)を示している。 As shown in FIG. 9, the controller 100 displays the representative abnormality list 147 on the display screen 141, and when any one of the representative abnormalities displayed on the representative abnormality list 147 is touch-operated, FIG. The display screen 153 shown in the above is displayed on the operation unit 15C. The controller 100 displays the number of the representative abnormality selected on the display screen 141 of FIG. 9 as the item field 143 of the display screen 153. Item column 143 in FIG. 10 shows, as an example, the case where the first (plasma leakage abnormality) of the representative abnormality list 147 is selected (when alarm 1 is selected).
 また、コントローラ100は、表示画面153に、図9で選択された代表異常(この場合はアラーム1のプラズマ漏電異常)を検出した際の異常状態情報119及び状態情報118をまとめて一覧として異常一覧部155に表示する。図10に示すように、異常一覧部155には、複数の行列で区画して異常状態情報119及び状態情報118が表示されている。 Further, the controller 100 collectively lists the abnormality state information 119 and the state information 118 when the representative abnormality selected in FIG. 9 (in this case, the plasma leakage abnormality of the alarm 1) is detected on the display screen 153. Displayed in unit 155. As shown in FIG. 10, the abnormality list unit 155 displays the abnormality state information 119 and the state information 118 by dividing them into a plurality of matrices.
 異常一覧部155の一番上には、各列の説明となる項目名が表示されている。異常一覧部155の一番上には、例えば、Time、MG1(FR)、MG2(FR)、S1(FR)、S2(FR)、H(FR)、・・・・と、複数の項目名が表示される。本実施形態では、例えば、17個の項目名が異常一覧部155に設定されている。図10には、17個の項目名のうち、6個の項目名だけが異常一覧部155に表示されている。コントローラ100は、異常一覧部155の右側のスクロールボタン157が操作されることに基づいて、表示されていない右側の項目名を表示する。 At the top of the abnormality list section 155, the item names that explain each column are displayed. At the top of the abnormality list unit 155, for example, Time, MG1 (FR), MG2 (FR), S1 (FR), S2 (FR), H (FR), ... Is displayed. In this embodiment, for example, 17 item names are set in the abnormality list unit 155. In FIG. 10, out of the 17 item names, only 6 item names are displayed in the abnormality list unit 155. The controller 100 displays the item name on the right side that is not displayed based on the operation of the scroll button 157 on the right side of the abnormality list unit 155.
 項目名がTimeの列は、一番上に異常状態情報119が表示され、その下に状態情報118の情報が表示されている。状態情報118は、異常が発生した時点の最新の10秒の情報が表示される。状態情報118は、上から順番に、最新の情報(Timeの1)、次に新しい情報(Timeの2)・・・・の順に、即ち、下に行くに従って1sごとに古い情報が表示されている。図10は、10個の状態情報118のうち、4個の状態情報118だけが異常一覧部155に表示されている。コントローラ100は、異常一覧部155の下のスクロールボタン159が操作されることに基づいて、表示されていない状態情報118(5S以前)を表示する。 In the column whose item name is Time, the abnormal state information 119 is displayed at the top, and the information of the state information 118 is displayed below it. The state information 118 displays the latest 10-second information at the time when the abnormality occurs. The state information 118 displays the latest information (Time 1), then the new information (Time 2), and so on, in order from the top, that is, the old information is displayed every 1s as it goes down. There is. In FIG. 10, out of the 10 state information 118s, only 4 state information 118s are displayed in the abnormality list unit 155. The controller 100 displays the undisplayed state information 118 (before 5S) based on the operation of the scroll button 159 below the abnormality list unit 155.
 また、MG1(FR)以降の項目(列)は、異常状態情報119及び状態情報118として記憶した情報を示している。MG1(FR)は、反応ガス(種ガス)の酸素(O2)に混合する窒素(N2)の流量をガス供給部15Bのマスフローコントローラ112で検出した値である。MG2(FR)は、反応ガス(種ガス)の酸素(O2)の流量をマスフローコントローラ112で検出した値である。S1(FR)は、一対のキャリアガス流路63(ガス供給チューブ19)の一方に供給するキャリアガス(窒素(N2))の流量を検出した値であり、S2(FR)は、一対のキャリアガス流路63の他方に供給するキャリアガス(窒素(N2))の流量を検出した値である。H(FR)は、ヒートガスとして用いる加熱用ガス(空気)の流量を検出した値である。 Further, the items (columns) after MG1 (FR) indicate the information stored as the abnormal state information 119 and the state information 118. MG1 (FR) is a value obtained by detecting the flow rate of nitrogen (N2) mixed with oxygen (O2) of the reaction gas (seed gas) by the mass flow controller 112 of the gas supply unit 15B. MG2 (FR) is a value obtained by detecting the flow rate of oxygen (O2) of the reaction gas (seed gas) with the mass flow controller 112. S1 (FR) is a value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)) supplied to one of the pair of carrier gas flow paths 63 (gas supply tube 19), and S2 (FR) is the value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)). It is a value obtained by detecting the flow rate of the carrier gas (nitrogen (N2)) supplied to the other side of the gas flow path 63. H (FR) is a value obtained by detecting the flow rate of the heating gas (air) used as the heat gas.
 コントローラ100は、上記した情報の他に、例えば、熱電対92で検出したヒータ43の加熱温度を異常状態情報119及び状態情報118として記憶する。同様に、コントローラ100は、温度センサ114で検出したプラズマガスの温度を記憶する。また、コントローラ100は、プラズマガスを発生させる擬似アークAが消灯した(切れた)電流欠け回数を記憶する。コントローラ100は、例えば、電源部15Aから電極33に流れる電流値(電流センサ111で検出した電流値)が所定の値以上となり、擬似アークAが発生した後、電流値が所定の判定値以下になると、擬似アークAが消灯したと判断し、電流欠け回数を1つ増やす。コントローラ100は、例えば、プラズマガス発生制御を開始するごとに、電流欠け回数をリセットし、新たに電流欠け回数を計測し、状態情報118や異常状態情報119として記憶する。尚、コントローラ100は、プラズマ発生制御ごとに電流欠け回数をリセットせず、累積させて計測しても良い。 In addition to the above information, the controller 100 stores, for example, the heating temperature of the heater 43 detected by the thermocouple 92 as abnormal state information 119 and state information 118. Similarly, the controller 100 stores the temperature of the plasma gas detected by the temperature sensor 114. Further, the controller 100 stores the number of times the pseudo arc A that generates the plasma gas is turned off (cut off). In the controller 100, for example, the current value (current value detected by the current sensor 111) flowing from the power supply unit 15A to the electrode 33 becomes equal to or more than a predetermined value, and after the pseudo arc A is generated, the current value becomes equal to or less than the predetermined determination value. Then, it is determined that the pseudo arc A is turned off, and the number of times of current loss is increased by one. For example, each time the plasma gas generation control is started, the controller 100 resets the number of times of current shortage, newly measures the number of times of current shortage, and stores it as state information 118 or abnormal state information 119. The controller 100 may accumulate and measure the number of times of lack of current for each plasma generation control without resetting.
 また、コントローラ100は、混合した後の反応ガス(窒素+酸素)の圧力、キャリアガス(ガス供給チューブ19ごと)の圧力、加熱用ガスの圧力を、状態情報118や異常状態情報119として記憶する。コントローラ100は、これらの圧力を圧力センサ113により検出することができる。 Further, the controller 100 stores the pressure of the reaction gas (nitrogen + oxygen) after mixing, the pressure of the carrier gas (for each gas supply tube 19), and the pressure of the heating gas as state information 118 and abnormal state information 119. .. The controller 100 can detect these pressures by the pressure sensor 113.
 また、コントローラ100は、漏電検出装置110で検出した漏電電流の電流値を記憶する。例えば、電力ケーブル16のシールド部材からアースに流れる漏電電流は、プラズマを発生させるための電力供給時の電磁誘導等により流れる、即ち、電力ケーブル16に断線等が起きていない正常な電力供給において一定の電流値が流れる。そこで、コントローラ100は、正常な電力供給時の基準とする基準値、その基準値から一定の幅を有する上限値及び下限値を記憶しても良い。この上限値及び下限値は、漏電異常を判定するためのものである。尚、上記したTime、MG1(FR)から上限値、下限値までの17個の項目名は、一例であり、プラズマ装置10の構成に応じて適宜変更できる。 Further, the controller 100 stores the current value of the leakage current detected by the leakage detection device 110. For example, the leakage current flowing from the shield member of the power cable 16 to the ground flows due to electromagnetic induction during power supply for generating plasma, that is, it is constant in a normal power supply in which the power cable 16 is not broken. Current value flows. Therefore, the controller 100 may store a reference value as a reference at the time of normal power supply, and an upper limit value and a lower limit value having a certain range from the reference value. The upper limit value and the lower limit value are for determining an electric leakage abnormality. The 17 item names from Time and MG1 (FR) to the upper limit value and the lower limit value are examples, and can be appropriately changed according to the configuration of the plasma apparatus 10.
 従って、本実施形態のコントローラ100は、図10に示すように、操作部15Cに対する操作入力(代表異常一覧147のタッチ操作)に基づいて、代表異常を検出した際の異常状態情報119及び状態情報118を行列にまとめて操作部15Cに表示する。これによれば、ユーザは、操作部15Cを操作することで、代表異常の異常状態情報119と状態情報118をまとめて表示させ確認できる。異常時の異常状態情報119や状態情報118を、時系列順に比較して異常な値がないかなど、状態の確認を容易に行うことができる。 Therefore, as shown in FIG. 10, the controller 100 of the present embodiment has abnormal state information 119 and state information when a representative abnormality is detected based on an operation input to the operation unit 15C (touch operation of the representative abnormality list 147). 118 are grouped in a matrix and displayed on the operation unit 15C. According to this, the user can display and confirm the abnormal state information 119 and the state information 118 of the representative abnormality together by operating the operation unit 15C. It is possible to easily confirm the state, such as comparing the abnormal state information 119 and the state information 118 at the time of abnormality in chronological order to see if there is an abnormal value.
 コントローラ100は、図10に示すように、表示画面153に異常一覧部155を表示する状態で、異常一覧部155の下の装置情報ボタン161をタッチ操作されると、図11に示す表示画面163を操作部15Cに表示する。コントローラ100は、表示画面163の項目欄143として図9の表示画面141で選択された代表異常の時間情報を表示する。 As shown in FIG. 10, when the device information button 161 under the abnormality list unit 155 is touch-operated while the abnormality list unit 155 is displayed on the display screen 153, the controller 100 touches the display screen 163 shown in FIG. Is displayed on the operation unit 15C. The controller 100 displays the time information of the representative abnormality selected on the display screen 141 of FIG. 9 as the item field 143 of the display screen 163.
 また、コントローラ100は、設定情報120及び稼動時間情報121を表示画面163に表示する。図11に示すように、コントローラ100は、例えば、コントローラ100のCPUが実行するプログラム(プラズマ発生制御に用いる制御プログラム)のバージョン(Control ver.)、オペレーティングのバーション(System ver.)、を設定情報120として記憶し、表示画面163に表示する。同様に、コントローラ100は、ノズル35の着脱によるガス圧(反応ガスの圧力など)の変化を判定するための閾値であるガス圧(kPa)、プラズマガスの目標圧力(プラズマ圧力)、ヒータ43による暖機の完了を判断するための暖機完了圧力などを、設定情報120として記憶し表示する。これらの判定するための閾値や目標圧力は、ユーザによって変更可能である一方、異常の原因を判断する上で重要な情報となる。このため、コントローラ100は、異常時の閾値等を設定情報120として記憶し、表示画面163に表示する。 Further, the controller 100 displays the setting information 120 and the operating time information 121 on the display screen 163. As shown in FIG. 11, the controller 100 sets, for example, a version (Control ver.) Of a program (control program used for plasma generation control) executed by the CPU of the controller 100, and an operating version (System ver.). It is stored as information 120 and displayed on the display screen 163. Similarly, the controller 100 depends on the gas pressure (kPa), the target pressure of the plasma gas (plasma pressure), and the heater 43, which are thresholds for determining the change in the gas pressure (pressure of the reaction gas, etc.) due to the attachment / detachment of the nozzle 35. The warm-up completion pressure for determining the completion of warm-up is stored and displayed as the setting information 120. While the threshold value and the target pressure for determining these can be changed by the user, they are important information for determining the cause of the abnormality. Therefore, the controller 100 stores the threshold value and the like at the time of abnormality as the setting information 120 and displays it on the display screen 163.
 また、コントローラ100は、例えば、プラズマヘッド11、電極33、ノズル35、制御ボックス15の稼動時間を稼動時間情報121として記憶し、表示画面163に表示する。従って、稼動時間情報121としては、プラズマ装置10自体の稼動時間や、プラズマ装置10が備える各機器の稼動時間など、プラズマ装置10に係わる様々な稼動時間を記憶する情報として採用することができる。コントローラ100は、各機器等の稼動時間を継続して計測し、異常を検出するとそれまでの稼動時間を、稼動時間情報121として記憶装置116に記憶する。コントローラ100は、稼動時間情報121を異常状態情報119等に関連付けて記憶し、その後、表示画面163に表示する。尚、図11に示すように、コントローラ100は、プラズマヘッド11の定期的な清掃を通知する通知時間の残り時間を稼動時間情報121として表示しても良い。 Further, the controller 100 stores, for example, the operating time of the plasma head 11, the electrode 33, the nozzle 35, and the control box 15 as the operating time information 121, and displays the operating time on the display screen 163. Therefore, the operating time information 121 can be adopted as information for storing various operating times related to the plasma device 10, such as the operating time of the plasma device 10 itself and the operating time of each device included in the plasma device 10. The controller 100 continuously measures the operating time of each device, and when an abnormality is detected, stores the operating time up to that point in the storage device 116 as operating time information 121. The controller 100 stores the operating time information 121 in association with the abnormal state information 119 and the like, and then displays it on the display screen 163. As shown in FIG. 11, the controller 100 may display the remaining time of the notification time for notifying the periodic cleaning of the plasma head 11 as the operating time information 121.
 また、図11に示す設定情報120及び稼動時間情報121は、一例である。コントローラ100は、例えば、ノズル35の種類を示す情報、キャリアガス等の設定流量、ヒータ43の加熱温度の設定値等を記憶し表示しても良い。コントローラ100は、表示画面163に表示しきれなかった設定情報120及び稼動時間情報121を、表示画面163の下部に表示したOKボタン165をタッチ操作されるごとに表示する。 Further, the setting information 120 and the operating time information 121 shown in FIG. 11 are examples. The controller 100 may store and display, for example, information indicating the type of the nozzle 35, a set flow rate of the carrier gas or the like, a set value of the heating temperature of the heater 43, and the like. The controller 100 displays the setting information 120 and the operating time information 121 that could not be displayed on the display screen 163 each time the OK button 165 displayed at the lower part of the display screen 163 is touched.
 従って、本実施形態のコントローラ100は、プラズマ装置10の設定に係わる設定情報120で、且つ代表異常を検出した際の設定情報120と、代表異常を検出した際の稼動時間情報121を記憶する。コントローラ100は、操作部15Cに対する装置情報ボタン161のタッチ操作に基づいて、設定情報120及び稼動時間情報121を操作部15Cに表示する。これによれば、ユーザは、操作部15Cを操作することで、代表異常を検出した際の設定情報120や稼動時間情報121を確認できる。異常時の装置の状態を容易にまとめて確認することができる。 Therefore, the controller 100 of the present embodiment stores the setting information 120 related to the setting of the plasma device 10, the setting information 120 when the representative abnormality is detected, and the operating time information 121 when the representative abnormality is detected. The controller 100 displays the setting information 120 and the operating time information 121 on the operation unit 15C based on the touch operation of the device information button 161 on the operation unit 15C. According to this, the user can confirm the setting information 120 and the operating time information 121 when the representative abnormality is detected by operating the operation unit 15C. The state of the device at the time of abnormality can be easily checked collectively.
 そして、コントローラ100は、例えば、OKボタン165をタッチ操作されるごとに切り替えた最終画面として、図12に示す表示画面167を表示する。図11及び図12に示す例では、コントローラ100は、例えば、OKボタン165をタッチ操作されるごとに、表示画面の上の数字を、1/3、2/3、3/3と順番に増やして、3/3で表示画面167を表示する。コントローラ100は、異常一覧169を、表示画面167に表示する。コントローラ100は、例えば、図9の代表異常一覧147で選択された代表異常を異常一覧169の一番上(発生アラームの項目の下)に表示し、代表異常の下にその代表異常と同時に検出された他の異常の種類を順番に表示する(図12の低電流異常、MAIN(GS1)流量異常など)。また、コントローラ100は、同時に検出した異常の種類をすべて異常一覧169に表示できない場合、異常一覧169の右側に表示したスクロールボタン171に対するタッチ操作に応じて、表示できない他の異常の種類を表示する。コントローラ100は、表示画面167のOKボタン165をタッチ操作されると、例えば、図9に示す表示画面141を表示する。 Then, for example, the controller 100 displays the display screen 167 shown in FIG. 12 as the final screen in which the OK button 165 is switched each time the touch operation is performed. In the example shown in FIGS. 11 and 12, the controller 100 increases the number on the display screen to 1/3, 2/3, 3/3 in order each time the OK button 165 is touched, for example. The display screen 167 is displayed on 3/3. The controller 100 displays the abnormality list 169 on the display screen 167. For example, the controller 100 displays the representative abnormality selected in the representative abnormality list 147 of FIG. 9 at the top of the abnormality list 169 (below the item of the occurrence alarm), and detects the representative abnormality at the same time under the representative abnormality. The types of other abnormalities that have been detected are displayed in order (low current abnormality in FIG. 12, MAIN (GS1) flow rate abnormality, etc.). If the controller 100 cannot display all the types of abnormalities detected at the same time in the abnormality list 169, the controller 100 displays other types of abnormalities that cannot be displayed in response to a touch operation on the scroll button 171 displayed on the right side of the abnormality list 169. .. When the OK button 165 of the display screen 167 is touch-operated, the controller 100 displays, for example, the display screen 141 shown in FIG.
 従って、本実施形態のコントローラ100は、操作部15Cに対するOKボタン165のタッチ操作に基づいて、同時に発生した複数の種類の異常をまとめて操作部15Cに表示する。これによれば、ユーザは、操作部15Cを操作することで、代表異常の他にどのような種類の異常が同時に発生したのかを一つの表示内容で確認できる。複数の異常が同時に発生した場合に、画面表示により全ての種類の異常を容易に確認できる。また、図9~図12に示すように、ユーザは、操作部15Cを操作することで、自身が選択した代表異常に係わる情報を順番に確認でき、異常に関するあらゆる情報を、簡単な操作で確認できる。換言すれば、本実施形態のプラズマ装置10は、異常に関する様々な情報を、一元的に管理し表示することができる。 Therefore, the controller 100 of the present embodiment collectively displays a plurality of types of abnormalities that have occurred simultaneously on the operation unit 15C based on the touch operation of the OK button 165 on the operation unit 15C. According to this, by operating the operation unit 15C, the user can confirm what kind of abnormality has occurred at the same time in addition to the representative abnormality with one display content. When multiple abnormalities occur at the same time, all types of abnormalities can be easily confirmed on the screen display. Further, as shown in FIGS. 9 to 12, the user can confirm the information related to the representative abnormality selected by himself / herself in order by operating the operation unit 15C, and can confirm all the information related to the abnormality by a simple operation. it can. In other words, the plasma device 10 of the present embodiment can centrally manage and display various information related to the abnormality.
 尚、上記した図9~図12に示す表示形式は、一例である。例えば、コントローラ100は、図10に示す異常状態情報119や状態情報118の値を、時間軸を横にしてグラフにより表示しても良い。 The display formats shown in FIGS. 9 to 12 described above are examples. For example, the controller 100 may display the values of the abnormal state information 119 and the state information 118 shown in FIG. 10 in a graph with the time axis horizontal.
 因みに、操作部15Cは、表示装置、受付装置の一例である。コントローラ100は、制御装置、異常検出装置の一例である。電源部15A、ガス供給部15B、漏電検出装置110、電流センサ111、マスフローコントローラ112、圧力センサ113、温度センサ114、及び熱電対92は、異常検出装置の一例である。 By the way, the operation unit 15C is an example of a display device and a reception device. The controller 100 is an example of a control device and an abnormality detection device. The power supply unit 15A, the gas supply unit 15B, the leakage detection device 110, the current sensor 111, the mass flow controller 112, the pressure sensor 113, the temperature sensor 114, and the thermocouple 92 are examples of the abnormality detection device.
 以上、説明した実施形態によれば、以下の効果を奏する。
 本実施例の一態様では、コントローラ100は、プラズマ装置10の状態に係わる状態情報118を、所定時間ごとに記憶し、状態情報118とは別に、異常を検出した際の異常状態情報119を記憶する。これによれば、装置の状態に係わる状態情報118を所定時間ごとに記憶した情報に加え、異常を検出した際の装置の異常状態情報119を記憶することができる。これにより、異常時の状態を異常状態情報119により把握でき、異常前における状態を状態情報118により把握できる。従って、異常発生時の装置の状態をより正確に判断できる。尚、コントローラ100は、図8に示すように、異常の前後の状態情報118や異常後の状態情報118を記憶しても良い。
According to the embodiment described above, the following effects are obtained.
In one aspect of this embodiment, the controller 100 stores the state information 118 related to the state of the plasma device 10 at predetermined time intervals, and stores the abnormal state information 119 when an abnormality is detected separately from the state information 118. To do. According to this, in addition to the state information 118 related to the state of the device stored at predetermined time intervals, the abnormal state information 119 of the device when an abnormality is detected can be stored. As a result, the state at the time of abnormality can be grasped by the abnormality state information 119, and the state before the abnormality can be grasped by the state information 118. Therefore, it is possible to more accurately determine the state of the device when an abnormality occurs. As shown in FIG. 8, the controller 100 may store the state information 118 before and after the abnormality and the state information 118 after the abnormality.
 また、本開示の内容は上記実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、コントローラ100は、状態情報118、異常状態情報119、設定情報120、稼動時間情報121を関連付けずに記憶しても良い。この場合、ユーザは、操作部15Cを操作して記憶装置116に記憶された別々の情報を個別に確認できる。
 また、操作部15Cは、表示装置と受付装置の両方の機能を備えるタッチパネルを備えたが、表示装置と、受付装置とを別々に備えても良い。
 また、上記実施形態におけるガス供給チューブ19で供給する処理ガスの種類は、一例である。例えば、処理ガスとして、酸素、窒素以外の気体を用いても良い。
Further, the content of the present disclosure is not limited to the above-described embodiment, and it goes without saying that various improvements and changes can be made without departing from the spirit of the present disclosure.
For example, the controller 100 may store the state information 118, the abnormal state information 119, the setting information 120, and the operating time information 121 without associating them with each other. In this case, the user can operate the operation unit 15C to individually check the different information stored in the storage device 116.
Further, although the operation unit 15C is provided with a touch panel having both functions of the display device and the reception device, the display device and the reception device may be separately provided.
The type of processing gas supplied by the gas supply tube 19 in the above embodiment is an example. For example, a gas other than oxygen and nitrogen may be used as the processing gas.
 10 プラズマ装置、15A 電源部(異常検出装置)、15B ガス供給部(異常検出装置)、15C 操作部(表示装置、受付装置)、100 コントローラ(制御装置、異常検出装置)、110 漏電検出装置(異常検出装置)、111 電流センサ(異常検出装置)、112 マスフローコントローラ(異常検出装置)、113 圧力センサ(異常検出装置)、114 温度センサ(異常検出装置)。 10 Plasma device, 15A power supply unit (abnormality detection device), 15B gas supply unit (abnormality detection device), 15C operation unit (display device, reception device), 100 controller (control device, abnormality detection device), 110 leakage detection device ( Abnormality detection device), 111 current sensor (abnormality detection device), 112 mass flow controller (abnormality detection device), 113 pressure sensor (abnormality detection device), 114 temperature sensor (abnormality detection device).

Claims (7)

  1.  異常を検出する異常検出装置と、
     プラズマ装置の状態に係わる状態情報を、所定時間ごとに記憶し、前記異常検出装置により異常を検出した際の前記プラズマ装置の状態に係わる異常状態情報を記憶する制御装置と、
     を備えるプラズマ装置。
    Anomaly detection device that detects anomalies and
    A control device that stores state information related to the state of the plasma device at predetermined time intervals and stores abnormal state information related to the state of the plasma device when an abnormality is detected by the abnormality detecting device.
    Plasma device equipped with.
  2.  前記制御装置は、
     前記異常検出装置により異常を検出したことに基づいて、前記状態情報と前記異常状態情報とを関連付けて記憶し、前記異常検出装置により異常を検出した時点から一定時間だけ前までの期間に含まれる前記状態情報を記憶する、請求項1に記載のプラズマ装置。
    The control device is
    Based on the fact that the abnormality is detected by the abnormality detection device, the state information and the abnormality state information are stored in association with each other, and are included in the period from the time when the abnormality is detected by the abnormality detection device to a certain time before. The plasma apparatus according to claim 1, which stores the state information.
  3.  前記制御装置は、
     前記プラズマ装置の設定に係わる設定情報で、且つ前記異常検出装置により異常を検出した際の前記設定情報を、前記異常状態情報に関連付けて記憶する、請求項1又は請求項2に記載のプラズマ装置。
    The control device is
    The plasma device according to claim 1 or 2, wherein the setting information related to the setting of the plasma device and the setting information when an abnormality is detected by the abnormality detection device is stored in association with the abnormality state information. ..
  4.  表示装置を備え、
     前記制御装置は、
     前記異常検出装置により複数の種類の異常を同時に検出した場合、前記複数の種類の異常のうち、一種類の異常を代表異常として選択して前記表示装置に表示する、請求項1乃至請求項3の何れか1項に記載のプラズマ装置。
    Equipped with a display device
    The control device is
    Claims 1 to 3 in which, when a plurality of types of abnormalities are detected simultaneously by the abnormality detecting device, one type of abnormality is selected as a representative abnormality and displayed on the display device. The plasma apparatus according to any one of the above.
  5.  ユーザからの操作入力を受け付ける受付装置を備え、
     前記制御装置は、
     前記受付装置に対する操作入力に基づいて、前記代表異常を検出した際の前記異常状態情報、及び前記状態情報をまとめて前記表示装置に表示する、請求項4に記載のプラズマ装置。
    Equipped with a reception device that accepts operation input from the user
    The control device is
    The plasma device according to claim 4, wherein the abnormal state information when the representative abnormality is detected and the state information are collectively displayed on the display device based on the operation input to the receiving device.
  6.  ユーザからの操作入力を受け付ける受付装置を備え、
     前記制御装置は、
     前記プラズマ装置の設定に係わる設定情報で、且つ前記異常検出装置により前記代表異常を検出した際の前記設定情報と、前記異常検出装置により前記代表異常を検出した際の前記プラズマ装置に係わる稼動時間を記憶し、
     前記受付装置に対する操作入力に基づいて、前記設定情報及び前記稼動時間を前記表示装置に表示する、請求項4又は請求項5に記載のプラズマ装置。
    Equipped with a reception device that accepts operation input from the user
    The control device is
    Setting information related to the setting of the plasma device, the setting information when the representative abnormality is detected by the abnormality detecting device, and the operating time related to the plasma device when the representative abnormality is detected by the abnormality detecting device. Remember,
    The plasma device according to claim 4 or 5, wherein the setting information and the operating time are displayed on the display device based on an operation input to the reception device.
  7.  ユーザからの操作入力を受け付ける受付装置を備え、
     前記制御装置は、
     前記受付装置に対する操作入力に基づいて、同時に検出した前記複数の種類の異常をまとめて前記表示装置に表示する、請求項4乃至請求項6の何れか1項に記載のプラズマ装置。
    Equipped with a reception device that accepts operation input from the user
    The control device is
    The plasma device according to any one of claims 4 to 6, wherein a plurality of types of abnormalities detected at the same time are collectively displayed on the display device based on an operation input to the reception device.
PCT/JP2019/050550 2019-12-24 2019-12-24 Plasma apparatus WO2021130847A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021566423A JP7248821B2 (en) 2019-12-24 2019-12-24 Plasma device
CN201980103093.1A CN114830834A (en) 2019-12-24 2019-12-24 Plasma device
PCT/JP2019/050550 WO2021130847A1 (en) 2019-12-24 2019-12-24 Plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050550 WO2021130847A1 (en) 2019-12-24 2019-12-24 Plasma apparatus

Publications (1)

Publication Number Publication Date
WO2021130847A1 true WO2021130847A1 (en) 2021-07-01

Family

ID=76575766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050550 WO2021130847A1 (en) 2019-12-24 2019-12-24 Plasma apparatus

Country Status (3)

Country Link
JP (1) JP7248821B2 (en)
CN (1) CN114830834A (en)
WO (1) WO2021130847A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016517A (en) * 2006-07-03 2008-01-24 Ritsumeikan Method and system for plasma abnormal discharge diagnosis and computer program
JP2010171288A (en) * 2009-01-26 2010-08-05 Tokyo Electron Ltd Plasma processing apparatus
JP2017507501A (en) * 2014-02-25 2017-03-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pulse plasma monitoring using optical sensors
JP2017194951A (en) * 2016-04-19 2017-10-26 株式会社日立国際電気 Substrate processing device, device management controller, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843273B2 (en) 2018-01-23 2021-03-17 株式会社Fuji Plasma generator and information processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016517A (en) * 2006-07-03 2008-01-24 Ritsumeikan Method and system for plasma abnormal discharge diagnosis and computer program
JP2010171288A (en) * 2009-01-26 2010-08-05 Tokyo Electron Ltd Plasma processing apparatus
JP2017507501A (en) * 2014-02-25 2017-03-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pulse plasma monitoring using optical sensors
JP2017194951A (en) * 2016-04-19 2017-10-26 株式会社日立国際電気 Substrate processing device, device management controller, and program

Also Published As

Publication number Publication date
JP7248821B2 (en) 2023-03-29
CN114830834A (en) 2022-07-29
JPWO2021130847A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6723436B2 (en) Atmospheric pressure plasma device
TWI654900B (en) Integrated device and method for enhancing heater life and performance
EP3609300B1 (en) Plasma generating device with detector to detect a current flowing through a ground cable
US11412606B2 (en) Plasma generator and information processing method
US20050092736A1 (en) Heated device and method of redundant temperature sensing
WO2021130847A1 (en) Plasma apparatus
JP6941231B2 (en) Plasma processing machine
US20210313155A1 (en) Gas supply determination method and plasma generator
US10209136B2 (en) Filament temperature derivation in hotwire semiconductor process
JP2001293761A (en) Method and apparatus for monitoring injection molding machine
WO2021214876A1 (en) Plasma generating device
JP2020123593A (en) Plasma generation device
JP7212801B2 (en) Plasma device
US11929237B2 (en) Plasma generation device and plasma head cooling method
JP2009075029A (en) Display device and display method
JP2007196480A (en) Data processing method of molding machine and data processor therefor
CN218590567U (en) Oil bath device
CN109562481A (en) Hot-working welding torch, power supply device, welding wire feeder and hot-working system
JPS61128033A (en) Automatic heating cooking unit
JP6862116B2 (en) Cardiac electrical stimulator
JP6795924B2 (en) Cardiac electrical stimulator
CN117572106A (en) Cooking appliance fault monitoring method and device and cooking appliance
JPH05273167A (en) Differential scanning calorimeter with removable oven body
KR20120011501A (en) Heater efficiency detector system
KR20000046279A (en) Method for examining quality of induction heating cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957390

Country of ref document: EP

Kind code of ref document: A1