WO2021130810A1 - 基地局装置、端末装置、および無線通信システム - Google Patents

基地局装置、端末装置、および無線通信システム Download PDF

Info

Publication number
WO2021130810A1
WO2021130810A1 PCT/JP2019/050320 JP2019050320W WO2021130810A1 WO 2021130810 A1 WO2021130810 A1 WO 2021130810A1 JP 2019050320 W JP2019050320 W JP 2019050320W WO 2021130810 A1 WO2021130810 A1 WO 2021130810A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
information
transmits
abnormal state
Prior art date
Application number
PCT/JP2019/050320
Other languages
English (en)
French (fr)
Inventor
頼人 三橋
大介 新田
美知子 安部
昂 平田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/050320 priority Critical patent/WO2021130810A1/ja
Publication of WO2021130810A1 publication Critical patent/WO2021130810A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to a base station device, a terminal device, and a wireless communication system including the base station device and the terminal device.
  • the 5th generation communication standard is being examined by the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was released at the end of 2017 (for example, Non-Patent Documents 14 to 43).
  • the mobile network is mainly composed of a core network (CN) and a radio access network (RAN). Then, when a failure occurs between the core network and the wireless access network, the communication of the terminal device (UE: User Equipment) connected to the wireless access network is cut off.
  • CN core network
  • RAN radio access network
  • Patent Document 1 A method of securing an emergency line by communicating between an adjacent base station and a base station when the line between the control station and the base station is disconnected has been proposed (for example, Patent Document 1).
  • a radio base station including a connection portion has been proposed (for example, Patent Document 2).
  • 3GPP TS 36.133 V16.3.0 (2019-10) 3GPP TS 36.211 V15.7.0 (2019-09) 3GPP TS 36.212 V15.7.0 (2019-09) 3GPP TS 36.213 V15.7.0 (2019-09) 3GPP TS 36.214 V15.4.0 (2019-09) 3GPP TS 36.300 V15.7.0 (2019-09) 3GPP TS 36.321 V15.7.0 (2019-09) 3GPP TS 36.322 V15.3.0 (2019-09) 3GPP TS 36.323 V15.4.0 (2019-06) 3GPP TS 36.331 V15.7.0 (2019-09) 3GPP TS 36.413 V15.7.1 (2019-10) 3GPP TS 36.423 V15.7.0 (2019-10) 3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TR 23.501 V16.2.0 (2019-09) 3GPP TS 37.324 V15.1.0 (2018-09) 3
  • MEC mobile edge computing
  • the MEC server provides services from a location close to the user terminal (ie, the edge of the network).
  • the MEC server provides some of the functions of the core network to the radio access network.
  • the MEC server connects to a core network such as an EPC (Evolved Packet Core) network.
  • EPC Evolved Packet Core
  • An object relating to one aspect of the present invention is to provide a recovery method for a connection failure with a core network in a mobile network.
  • the base station apparatus communicates with a terminal and another base station.
  • This base station device transmits a signal for making a connection between a transmission unit that transmits information indicating the occurrence of an abnormal state to the terminal and the other base station after transmitting the information to the terminal. It includes a communication unit that receives from another base station and communicates with the other base station in response to the signal.
  • the base station apparatus communicates with a terminal and another base station.
  • This base station apparatus is related to a transmission unit that transmits first information indicating the occurrence of an abnormal state to the terminal and a connection to the other base station after transmitting the first information to the terminal. It includes a receiving unit that receives the information of 2 from the terminal, and a communication unit that communicates with the other base station based on the second information.
  • MEC mobile edge computing
  • No. 2 which shows the restoration procedure shown in FIG.
  • FIG. 1 is a diagram illustrating mobile edge computing (MEC).
  • MEC mobile edge computing
  • the base station 100 is connected to the core network 300 via the mobile network 200.
  • the mobile network 200 is, for example, a network composed of mobile carriers.
  • the core network 300 is, for example, an EPC network. In this case, it may be difficult to provide an ultra-low latency and / or ultra-wideband mobile communication service to a terminal (UE: User Equipment) accommodated in the base station 100.
  • UE User Equipment
  • the MEC server 210 is provided, for example, at the edge of the mobile network 200. Then, the MEC server 210 provides a part of the functions of the core network 300 in the embodiment of the present invention. Therefore, the terminal accommodated in the base station 100 can receive the ultra-low latency and / or ultra-wideband mobile communication service from the MEC server 210.
  • FIG. 2A shows an example of a MEC server used in a 5G mobile network.
  • the MEC server has a function equivalent to that of the function node of the core network. That is, the MEC server includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), AUSF (Authentication Server Function), UDM (Unified Data Management), PCF (Policy Control Function), It is equipped with AF (Application Function) and the like.
  • the MEC server is realized by one or a plurality of computers.
  • FIG. 2B shows an example of a MEC server used in a 4G mobile network.
  • the MEC server has a function equivalent to that of the EPC node. That is, the MEC server includes an MME (Mobility Management Entity), an HSS (Home Subscriber Server), an S-GW (Serving Gateway), a P-GW (Packet data network Gateway), a PCRF (Policy and Charging Rules Function), and the like. Also in this case, the MEC server is realized by one or a plurality of computers.
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • S-GW Serving Gateway
  • P-GW Packet data network Gateway
  • PCRF Policy and Charging Rules Function
  • FIG. 3 shows an example of recovery against a failure between the MEC server and the core network.
  • base stations (gNB) 110a and 110b are provided under the MEC server 210.
  • Each base station 110a, 110b can accommodate one or more terminals (UEs).
  • the terminal 400a is connected to the base station 110a
  • the terminal 400b is connected to the base station 110b.
  • the MEC server 210 and the base stations 110a and 110b form one local network.
  • the MEC server 210 connects to the EPC network 310.
  • the EPC network 310 constitutes a core network.
  • the terminals 400a and 400b can be connected to the EPC network 310 via the MEC server 210.
  • base stations 110c and 110d are connected to the EPC network 310. Each base station 110c, 110d can also accommodate one or more terminals.
  • Each base station 110a to 110d is not directly connected to another base station. However, each of the base stations 110a to 110d has a function for connecting to another base station. For example, each base station 110a to 110d has an IAB (Integrated Access and Backhaul) function. In this case, each of the base stations 110a to 110d can simultaneously provide an access line with the terminal and a backhaul line with another base station.
  • the backhaul line is realized by utilizing, for example, the millimeter wave band.
  • the MEC server 210 attempts to connect to the adjacent network by using the terminal.
  • a terminal 400b that can be connected to both a base station provided under the MEC server 210 and a base station belonging to an adjacent network is used.
  • the MEC server 210 causes the base station 110b to transmit information indicating the occurrence of an abnormal state (that is, a state in which the network under the MEC server 210 is isolated from the core network). This information is received by the terminal 400b. Then, the terminal 400b searches for another base station. In this example, the terminal 400b can be connected to the base station 110c. In this case, the MEC server 210 can communicate with the EPC network 310 via the base station 110b, the terminal 400b, and the base station 110c.
  • the network system shifts to a state in which the base station 110b and the base station 110c communicate with each other without going through the terminal 400b.
  • the base station 110b and the base station 110c transmit signals to each other by using, for example, the IAB function.
  • the terminal 400a can be connected to the EPC network 310 via the base station 110a, the MEC server 210, the base station 110b, and the base station 110c.
  • the terminal 400b can be connected to the EPC network 310 via the base station 110b and the base station 110c.
  • FIG. 4 shows an example of the network system according to the first embodiment.
  • a plurality of virtual platforms 500 # 1 to 500 # 3 are connected to the EPC network 310.
  • the EPC network 310 is an example of a core network.
  • Each virtual board 500 # 1 to 500 # 3 includes a base station (gNB) 120, a MEC server 210, and a control unit 220. In addition, each virtual board 500 # 1 to 500 # 3 may have other functions or circuits not shown in FIG.
  • the base station 120 includes a central unit (CU: central unit) 121 and a remote unit (DU: distributed unit) 122.
  • the aggregation unit 121 and the remote unit 122 share the functions of the base station 120.
  • the processing of the PDCP layer is realized by the aggregation unit 121.
  • the radio frequency circuit is realized by the remote unit 122.
  • the physical layer, MAC layer, and RLC layer are realized by the aggregation unit 121 or the remote unit 122 depending on the configuration of the base station.
  • the MEC server 210 provides a part of the functions of the core network.
  • the MEC server 210 provides the function shown in FIG. 2 (a).
  • the control unit 220 controls the base station 120 and the MEC server 210.
  • the virtual board 500 # 2 does not include the MEC server 210, but the virtual board 500 # 2 may include the MEC server 210.
  • the terminal (UE) 400 can be connected to any base station 120. Further, the terminal 400 can be connected to two or more base stations 120 at the same time.
  • the control unit 220 (that is, the control unit 220 # 1) of the virtual board 500 # 1 detects a failure between the virtual board 500 # 1 and the EPC network 310.
  • the method of detecting a failure is not particularly limited.
  • the control unit 220 # 1 may determine that a failure has occurred with the EPC network 310 when the response to the signal transmitted to the EPC network 310 is not received within a predetermined time. Then, when the control unit 220 # 1 detects the above-mentioned failure, the control unit 220 # 1 starts the MEC server 210 (that is, the MEC server 210 # 1) mounted on the virtual board 500 # 1.
  • control unit 220 # 1 gives the MEC server 210 information indicating that a failure has occurred between the virtual infrastructure 500 # 1 and the EPC network 310. Then, the MEC server 210 # 1 recognizes that the base station 120 (that is, the base station 120 # 1) mounted on the virtual infrastructure 500 # 1 is isolated from the EPC network 310.
  • the MEC server 210 # 1 instructs the base station 120 # 1 to search for another base station in order to eliminate the state in which the base station 120 # 1 is isolated.
  • This instruction may include information indicating that a failure has occurred between the virtual infrastructure 500 # 1 and the EPC network 310 or information indicating that the base station 120 # 1 is isolated.
  • the base station 120 # 1 transmits a search request in response to the instruction given by the MEC server 210 # 1.
  • the base station 120 # 1 may select one terminal from the terminals located in the cell and send a search request to the selected terminal.
  • the base station 120 # 1 recognizes the terminal located in the cell.
  • base station 120 # 1 may send a search request to all terminals located in the cell.
  • the search request is set, for example, in the SIB (system information block) or in the control information for one selected terminal. If the selected terminal cannot be connected to another base station, a signal indicating that the connection cannot be made may be transmitted. In that case, the base station 120 # 1 transmits a search request from a plurality of terminals to the terminals excluding the terminals indicating that the connection is not possible. Further, as described above, the search request is transmitted due to the failure between the virtual infrastructure 500 # 1 and the EPC network 310. Therefore, the search request is an example of information indicating the occurrence of an abnormal state. That is, the base station 120 # 1 transmits information indicating the occurrence of an abnormal state to the terminal.
  • SIB system information block
  • the terminal that received the search request searches for another connectable base station in S4. At this time, the terminal 400 performs, for example, a cell search or the like, and executes random access to the other detected base stations. As a result, in this embodiment, the terminal 400 is connected to the base station 120 (that is, the base station 120 # 2) mounted on the virtual board 500 # 2.
  • the terminal 400 transmits to the base station 120 # 2 information indicating that a failure has occurred between the base station 120 # 1 and the EPC network 310.
  • This information is set in, for example, a measurement report (MR) message and transmitted from the terminal 400 to the base station 120 # 2.
  • MR measurement report
  • this information is given to the control unit 220 (that is, the control unit 220 # 2) of the virtual board 500 # 2. Therefore, the control unit 220 # 2 recognizes that a failure has occurred between the base station 120 # 1 and the EPC network 310.
  • the MR message includes information indicating the received radio wave intensity and the like, and is periodically transmitted.
  • control unit 220 # 2 confirms whether or not the line between the base station 120 # 2 and the EPC network 310 is normal. In this embodiment, it is assumed that the line between the base station 120 # 2 and the EPC network 310 is normal. In this case, the control unit 220 # 2 gives an instruction to the base station 120 # 2 to establish a line between the base station 120 # 1 and the base station 120 # 2.
  • base station 120 # 2 establishes a line with base station 120 # 1.
  • base station 120 # 2 uses IAB to establish a line with base station 120 # 1.
  • base station 120 # 2 transmits a signal to base station 120 # 1 for making a connection between base station 120 # 1 and base station 120 # 2.
  • base station 120 # 1 and base station 120 # 2 execute a sequence for establishing a line between base station 120 # 1 and base station 120 # 2.
  • a wireless backhaul line is established between the base stations 120 # 1 and the base stations 120 # 2.
  • the terminal connected to the base station 120 # 1 is connected to the EPC network 310. That is, the terminal connected to the base station 120 # 1 can be connected to the EPC network 310 via the base station 120 # 1, the wireless backhaul line, and the base station 120 # 2.
  • a wireless backhaul line is also established by the IAB between the base station 120 # 1 and the base station 120 (that is, the base station 120 # 3) mounted on the virtual board 500 # 3.
  • the method of establishing a line between the base station 120 # 1 and the base station 120 # 3 may be the same as the method of establishing a line between the base station 120 # 1 and the base station 120 # 2.
  • a terminal capable of connecting to both base station 120 # 1 and base station 120 # 3 is used.
  • the terminal connected to the base station 120 # 3 is connected to the EPC network 310 via the base station 120 # 3, the wireless backhaul line, the base station 120 # 1, the wireless backhaul line, and the base station 120 # 2. You can connect.
  • FIG. 6 to 7 are sequence diagrams showing the restoration procedure shown in FIG.
  • the control unit starts the MEC server when it detects a failure.
  • the MEC server instructs the base station (gNB) to search for another base station.
  • the base station then paging the terminals in the cell.
  • the base station transmits an SIB including information indicating the occurrence of an abnormal state to the terminal 400.
  • the terminal (UE) 400 executes a random access procedure after detecting another base station by cell search or the like. That is, the terminal 400 transmits a random access preamble to the detected base station of the virtual board 500 # 2. Then, the base station transmits a random access response to the terminal 400. Subsequently, the terminal 400 transmits an RRC connection request to the base station of the virtual board 500 # 2. The base station then sends the RRC connection setup to the terminal 400. As a result, an RRC connection is set between the terminal 400 and the base station of the virtual board 500 # 2. Then, the terminal 400 uses this RRC connection to transmit an MR message including information related to the abnormal state of the base station of the virtual board 500 # 1 to the base station of the virtual board 500 # 2. The configuration information for transmitting the MR message is included in, for example, the RRC connection request.
  • the control unit of the virtual board 500 # 2 Upon receiving the information related to the abnormal state of the base station of the virtual board 500 # 1, the control unit of the virtual board 500 # 2 makes a line between the base station of the virtual board 500 # 1 and the base station of the virtual board 500 # 2. Begin the procedure for establishing. In this embodiment, the IAB is used to establish a wireless backhaul line. After that, the terminal connected to the base station of the virtual board 500 # 1 can communicate with the EPC network 310 via the base station of the virtual board 500 # 1 and the base station of the virtual board 500 # 2. Become.
  • the MEC server of the virtual infrastructure 500 # 1 succeeds in connecting to the EPC network 310, it is between the base station of the virtual infrastructure 500 # 1 and the base station of the virtual infrastructure 500 # 3. Perform the steps to establish a line. Specifically, the MEC server of the virtual infrastructure 500 # 1 notifies the base station of the virtual infrastructure 500 # 1 of a recovery notification indicating that the connection with the EPC has been restored. Upon receiving the recovery notification, the base station of the virtual infrastructure 500 # 1 transmits a message to the base station of the virtual infrastructure 500 # 3. The control unit of the virtual board 500 # 3 starts a procedure for establishing a line between the base station of the virtual board 500 # 1 and the base station of the virtual board 500 # 3. In this embodiment, the IAB is used to establish a wireless backhaul line. After that, the base station of the virtual board 500 # 3 can communicate with the EPC network 310 via the base station of the virtual board 500 # 1 and the base station of the virtual board 500 # 2.
  • FIG. 8 is a flowchart showing an example of processing of the base station and the terminal in the first embodiment.
  • a network system in which a plurality of virtual infrastructures are connected to an EPC network, it is assumed that a failure occurs between a certain virtual infrastructure and the EPC network.
  • the base station mounted on this virtual infrastructure may be referred to as an "isolated base station”.
  • another base station adjacent to the isolated base station may be referred to as an "adjacent base station”.
  • FIG. 8A is a flowchart showing an example of processing of an isolated base station.
  • the control unit detects the failure and the MEC server is started.
  • the MEC server instructs the isolated base station to search for another base station.
  • the isolated base station transmits information indicating the occurrence of an abnormal state to the terminal in response to an instruction from the MEC server.
  • This information may include information that identifies an isolated base station. This information may also include instructions to search for adjacent base stations. Then, this information is stored in the SIB, for example, and transmitted to the terminal.
  • the process of S101 corresponds to S3 executed by the base station 120 # 1 mounted on the virtual board 500 # 1.
  • the isolated base station establishes a line with the adjacent base station according to the signal received from the adjacent base station.
  • This signal may require the start of a procedure for connecting an isolated base station to an adjacent base station.
  • the signal may also include information that identifies adjacent base stations.
  • this signal may contain the information needed to set up a line between the isolated base station and the adjacent base station. For example, this signal may contain information that specifies the resource.
  • the isolated base station establishes a line between the isolated base station and the adjacent base station while exchanging necessary information with the adjacent base station.
  • IAB is used to establish a wireless backhaul line between an isolated base station and an adjacent base station.
  • the process of S102 corresponds to S7 executed by the virtual boards 500 # 1 and 500 # 2.
  • FIG. 8B is a flowchart showing an example of terminal processing. The processing of this flowchart is executed after S101 shown in FIG. 8A.
  • the terminal receives information indicating the occurrence of an abnormal state from the isolated base station. This information is stored in the SIB and transmitted by the isolated base station, for example, as described above.
  • the terminal searches for an adjacent base station other than the isolated base station. At this time, the terminal searches for an adjacent base station that can be connected by random access, for example.
  • the terminal transmits information related to the abnormal state of the isolated base station to the adjacent base station. This information may include information that identifies an isolated base station. This information may also include instructions to set up a line between the isolated base station and the adjacent base station. Then, this information is set in the MR message and transmitted from the terminal to the adjacent base station, for example.
  • the processing of S111 to S113 corresponds to S4 to S5 executed by the terminal 400 in the example shown in FIG.
  • FIG. 8C is a flowchart showing an example of processing of an adjacent base station. The processing of this flowchart is executed after S111 to S113 shown in FIG. 8B. That is, it is assumed that a line is set between the terminal and the adjacent base station.
  • the adjacent base station receives information related to the abnormal state of the isolated base station from the terminal.
  • the control unit confirms whether or not the line to and from the core network is normal. In the example shown in FIG. 5, this process corresponds to S6 executed by the control unit 220 # 2 mounted on the virtual board 500 # 2.
  • the adjacent base station establishes a line with the isolated base station.
  • the adjacent base station transmits a signal to the isolated base station for making a connection between the isolated base station and the adjacent base station. That is, this signal requires the establishment of a line between the isolated base station and the adjacent base station. Then, this signal is received by the isolated base station in S102 shown in FIG. 8A.
  • the adjacent base station establishes a line between the isolated base station and the adjacent base station while exchanging necessary information with the isolated base station.
  • the adjacent base station may notify the isolated base station whether or not the line to and from the core network is normal. Alternatively, the adjacent base station may initiate the procedure of establishing a line with the isolated base station only if the line with the core network is normal.
  • FIG. 9 shows an example of the recovery procedure when a failure occurs between the core network and all the virtual infrastructures.
  • the MEC server 210 mounted on the virtual infrastructure 500 # 1 starts the recovery procedure.
  • the processing of S1 to S6 is substantially the same in FIGS. 5 and 9. That is, the SIB including the information indicating the occurrence of the abnormal state is transmitted from the base station 120 # 1 mounted on the virtual board 500 # 1 to the terminal 400. Further, an MR message including information related to the abnormal state of the base station 120 # 1 is transmitted from the terminal 400 to the base station 120 # 2 mounted on the virtual board 500 # 2.
  • control unit 220 # 2 of the virtual board 500 # 2 confirms whether or not the line between the base station 120 # 2 and the EPC network 310 is normal. In this embodiment, a failure has occurred between the base station 120 # 2 and the EPC network 310.
  • a wireless backhaul line is established between base station 120 # 1 and base station 120 # 2 using IAB. That is, local communication is established by the MEC server 210 # 1 mounted on the virtual board 500 # 1 and the MEC server 210 # 2 mounted on the virtual board 500 # 2.
  • the base station 120 # 2 is not connected to the EPC network 310 either. Therefore, the MEC server 210 # 2 notifies the MEC server 210 # 1 of information indicating that the base station 120 # 2 is not connected to the EPC network 310.
  • the MEC server 210 # 1 recognizes that it can connect to the network under the MEC server 210 # 2, but cannot connect to the EPC network 310.
  • a wireless backhaul line is established between base station 120 # 1 and base station 120 # 3 using IAB. That is, local communication is established by the MEC server 210 # 1 mounted on the MEC server 210 # 1 and the virtual infrastructure 500 # 3. However, the MEC server 210 # 1 notifies the MEC server 210 # 3 of information indicating that the base station 120 # 1 cannot connect to the EPC network 310. As a result, the MEC server 210 # 3 recognizes that it can connect to the networks under the MEC server 210 # 1 and the MEC server 210 # 2, but cannot connect to the EPC network 310.
  • FIG. 10 to 11 are sequence diagrams showing the restoration procedure shown in FIG. That is, local communication between MEC servers is established.
  • the "notification" shown in FIG. 10 indicates that local communication between the MEC servers 210 # 1 and 210 # 2 has been established, and is transmitted from the MEC server 210 # 1 to the MEC server 210 # 3.
  • FIG. 10 is an example showing processing up to performing MEC communication between the base stations 120 # 1, the base stations 120 # 2, and the base stations 120 # 3.
  • each terminal connected to the base station mounted on the virtual board 500 # 1 communicates with an arbitrary terminal connected to the base station mounted on the virtual boards 500 # 2 and 500 # 3. be able to.
  • each terminal connected to the base station mounted on the virtual board 500 # 2 can communicate with any terminal connected to each base station mounted on the virtual boards 500 # 1 and 500 # 3. .
  • each terminal connected to the base station mounted on the virtual board 500 # 3 can communicate with any terminal connected to each base station mounted on the virtual boards 500 # 1 and 500 # 2.
  • the control unit 220 # 1 detects the restoration of the line. Then, the control unit 220 # 1 notifies the MEC server 210 # 1 that the line between the base station 120 # 1 and the EPC network 310 has been restored.
  • MEC server 210 # 1 sends a recovery notification to other MEC servers 210 # 2 and 210 # 3, respectively.
  • This recovery notification indicates that the line between the MEC server 210 # 1 and the EPC network 310 has been recovered. Further, the recovery notification is transmitted, for example, via a line established between the base stations.
  • the terminal connected to the base station of the virtual board 500 # 2 can be connected to the EPC network 310 via the base station of the virtual board 500 # 1.
  • a terminal connected to the base station of the virtual board 500 # 3 can also be connected to the EPC network 310 via the base station of the virtual board 500 # 1.
  • FIG. 12A shows an example of the hardware configuration of the virtual infrastructure.
  • the virtual board 500 includes a memory 500a, a processor 500b, a wireless IF500c, and a transmission line IF500d.
  • the virtual board 500 may include hardware elements not shown in FIG. 12 (a).
  • the virtual board 500 is an example of a communication processing device.
  • the memory 500a stores a program that describes the functions provided by the virtual infrastructure 500. Further, the memory 500a stores data and information used by the virtual infrastructure 500.
  • the processor 500b realizes the function of the virtual infrastructure 500 by executing the program stored in the memory 500a.
  • the wireless IF500c transmits a wireless signal via the wireless antenna and also receives the wireless signal via the wireless antenna.
  • the wireless IF500c corresponds to the remote unit (DU) of the base station (gNB).
  • the wireless IF500c can also provide an interface for connecting to another base station by using the IAB.
  • the transmission line IF500d provides an interface for connecting to the EPC network 310.
  • FIG. 12B shows an example of the hardware configuration of the terminal.
  • the terminal (UE) 400 includes a memory 400a, a processor 400b, a baseband circuit 400c, and an RF circuit 400d.
  • the terminal 400 may include hardware elements not shown in FIG. 12 (b).
  • the memory 400a stores a program that describes the functions provided by the terminal 400. Further, the memory 400a stores data and information used by the terminal 400.
  • the processor 400b realizes the function of the terminal 400 by executing the program stored in the memory 400a.
  • the baseband circuit 400c processes the signal in the baseband region.
  • the RF circuit 400d transmits a radio signal to the base station via the radio antenna, and also receives the radio signal from the base station via the radio antenna.
  • FIG. 13 shows an example of the configuration of the virtual infrastructure.
  • the hardware of the virtual board 500 includes a processor, a memory, and a hard disk (HDD).
  • the radio IF 503 and the transmission line IF 504 shown in FIG. 12 (a) are omitted.
  • the hypervisor realizes the virtualization of the infrastructure. That is, the hypervisor provides a plurality of virtual machines. In this case, the plurality of virtual machines can operate on independent OSs. Then, by operating the OS, middleware, and application on each virtual machine, a MEC server, a control unit, a base station aggregation unit (CU), and a remote unit (DU) are realized.
  • FIG. 14 shows an example of the software configuration of the virtual infrastructure and the terminal. Note that FIG. 14 shows a function related to recovery of a failure that has occurred between the base station and the core network.
  • the control unit 220 includes a failure detection unit 221, a MEC control unit 222, a line determination unit 223, and an IAB control unit 224.
  • the fault detection unit 221 detects a fault in the line between the base station 120 and the core network (EPC network 310 in the embodiment).
  • the MEC control unit 222 controls the MEC server 210. For example, when the failure detection unit 221 detects a failure, the MEC control unit 222 starts the MEC server 210. Then, the control unit 222 instructs the MEC server 210 to start the recovery process.
  • the fault detection unit 221 and the MEC control unit 222 operate in the control unit of the virtual board on which the isolated base station is mounted.
  • the line determination unit 223 and the IAB control unit 224 are activated when the base station receives information related to the abnormal state of the isolated base station from the terminal.
  • the line determination unit 223 determines whether or not the line to and from the core network is normal.
  • the IAB control unit 224 executes a process of establishing a line with an isolated base station using the IAB. At this time, it is preferable that the IAB control unit 224 notifies the isolated base station of the determination result by the line determination unit 223.
  • the MEC server 210 includes an SIB control unit 211 and a notification unit 212.
  • the SIB control unit 211 When the MEC server 210 is started by the control unit 220, the SIB control unit 211 generates an SIB including information indicating the occurrence of an abnormal state. In this case, the SIB control unit 211 requests the base station 120 to transmit the generated SIB. Alternatively, the SIB control unit 211 may request the base station 120 to generate and transmit the SIB.
  • the notification unit 212 notifies the MEC server of another virtual infrastructure that the line has been established between the base station 120 and the core network. For example, the recovery notification shown in FIG. 11 is sent by the notification unit 212.
  • the base station 120 includes a transmission unit 121, a reception unit 122, and an IAB transmission / reception unit 123.
  • the transmission unit 121 transmits a signal to the terminal.
  • the transmission unit 121 can transmit the SIB to the terminal at the request of the MEC server 210.
  • the receiving unit 122 receives a signal from the terminal.
  • the IAB transmission / reception unit 123 has a function of establishing a line using the IAB. Further, the IAB transmission / reception unit 123 can communicate with another base station via a line established by using the IAB.
  • the terminal 400 includes a search unit 401, a receiving unit 402, and a transmitting unit 403.
  • the search unit 401 searches for a communicable base station by random access.
  • the terminal 400 can be connected to a plurality of base stations at the same time.
  • the receiving unit 402 receives a signal from the base station. Therefore, when the base station transmits the SIB, the terminal 400 receives the SIB.
  • the transmission unit 403 transmits a signal to the base station.
  • the transmitting unit 403 transmits an MR message including information related to the abnormal state of the base station to the adjacent base station.
  • FIG. 15 shows an example of the restoration procedure performed in the second embodiment.
  • the virtual boards 500 # 1 and 500 # 2 are connected to the EPC network 310 as in the first embodiment. Then, it is assumed that a failure occurs in the line between the virtual infrastructure 500 # 1 and the EPC network 310 (that is, the line between the base station 120 # 1 and the EPC network 310). Therefore, in the following description, the base station 120 # 1 mounted on the virtual board 500 # 1 may be referred to as an “isolated base station”. Further, the base station 120 # 2 mounted on the virtual board 500 # 2 may be referred to as an "adjacent base station".
  • the processes of S1 to S6 are substantially the same in FIGS. 5 and 15. That is, the SIB including the information indicating the occurrence of the abnormal state is transmitted from the base station (isolated base station) 120 # 1 mounted on the virtual board 500 # 1 to the terminal 400. Further, an MR message including information related to the abnormal state of the isolated base station 120 # 1 is transmitted from the terminal 400 to the base station (adjacent base station) 120 # 2 mounted on the virtual board 500 # 2. Then, the adjacent base station 120 # 2 determines whether or not the connection with the EPC network 310 is normal. In this example, no failure has occurred between the adjacent base station 120 # 2 and the EPC network 310.
  • the adjacent base station 120 # 2 transmits information related to the connection to the adjacent base station 120 # 2 to the terminal 400.
  • This information may include information that identifies adjacent base stations 120 # 2.
  • this information may include information necessary for accessing the adjacent base station 120 # 2. For example, it may contain information that specifies a resource.
  • the terminal 400 receives the information related to the connection from the adjacent base station 120 # 2 to the adjacent base station 120 # 2, the terminal 400 transmits the information to the isolated base station 120 # 1 in S22.
  • the isolated base station 120 # 1 acquires information related to the connection to the adjacent base station 120 # 2.
  • the isolated base station 120 # 1 is a signal for making a connection between the isolated base station 120 # 1 and the adjacent base station 120 # 2 based on the information related to the connection to the adjacent base station 120 # 2. Is transmitted to the adjacent base station 120 # 2.
  • This signal may include, for example, a signal requesting the establishment of a wireless backhaul line utilizing the IAB. In this case, a wireless backhaul line is established between the isolated base station 120 # 1 and the adjacent base station 120 # 2.
  • the terminal connected to the isolated base station 120 # 1 can be connected to the EPC network 310 via the isolated base station 120 # 1 and the adjacent base station 120 # 2.
  • FIG. 16 is a flowchart showing an example of processing of the base station and the terminal in the second embodiment.
  • a network system in which a plurality of virtual infrastructures are connected to an EPC network, it is assumed that a failure occurs between a certain virtual infrastructure and the EPC network.
  • the base station mounted on this virtual infrastructure may be referred to as an "isolated base station”.
  • a base station adjacent to an isolated base station may be referred to as an "adjacent base station”.
  • FIG. 16A is a flowchart showing an example of processing of an isolated base station.
  • the control unit detects the failure and the MEC server is started.
  • the MEC server instructs the isolated base station to search for another base station.
  • the processing of S131 is the same as that of S101 shown in FIG. 8 (a). That is, the isolated base station transmits information indicating the occurrence of an abnormal state to the terminal. This information may include information that identifies an isolated base station. This information may also include instructions to search for adjacent base stations. Then, this information is stored in the SIB, for example, and transmitted to the terminal.
  • the isolated base station receives information related to the connection to the adjacent base station from the terminal. This information may include information that identifies adjacent base stations.
  • the isolated base station accesses the adjacent base station based on the information related to the connection to the adjacent base station. At this time, the isolated base station transmits a signal for making a connection between the isolated base station and the adjacent base station to the adjacent base station. In this embodiment, the isolated base station transmits a signal to the adjacent base station to establish a wireless backhaul line utilizing the IAB.
  • the processes S131 to S133 are executed by the base stations 120 # 1 mounted on the virtual board 500 # 1.
  • FIG. 16B is a flowchart showing an example of terminal processing. The processing of this flowchart is executed after S131 shown in FIG. 16A.
  • S141 to S143 The processing of S141 to S143 is the same as that of S111 to S113 shown in FIG. 8B. That is, when the terminal receives the information indicating the occurrence of the abnormal state from the isolated base station, the terminal transmits the information related to the abnormal state of the isolated base station to the adjacent base station.
  • the terminal receives information related to the connection to the adjacent base station from the adjacent base station. This information may include information that identifies adjacent base stations. Then, in S145, the terminal transmits information related to the connection to the adjacent base station to the isolated base station. This information is received by the isolated base station in S132 shown in FIG. 16 (a).
  • FIG. 16C is a flowchart showing an example of processing of an adjacent base station. The processing of this flowchart is executed after S141 to S143 shown in FIG. 16B. That is, it is assumed that a line is set between the terminal and the adjacent base station.
  • the processing of S151 is the same as that of S121 shown in FIG. 8 (c). That is, the adjacent base station receives information related to the abnormal state of the isolated base station from the terminal.
  • the adjacent base station transmits information related to the connection to the adjacent base station to the terminal. This information may include information that identifies adjacent base stations.
  • the adjacent base station receives a signal from the isolated base station for making a connection between the isolated base station and the adjacent base station. Then, the isolated base station and the adjacent base station establish a line between the isolated base station and the adjacent base station.
  • the processes S151 to S153 are executed by the base stations 120 # 2 mounted on the virtual board 500 # 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

モバイルエッジコンピューティングを利用するモバイルネットワークにおいて、障害に対する復旧方法を提供する。基地局装置は、端末および他の基地局と通信を行うために、送信部および通信部を備える。送信部は、異常状態の発生を表す情報を端末に送信する。通信部は、送信部が異常状態の発生を表す情報を端末に送信した後に、他の基地局から、他の基地局との間の接続を行うための信号を受信すると、その信号に応じて他の基地局と通信を行う。

Description

基地局装置、端末装置、および無線通信システム
 本発明は、基地局装置、端末装置、並びに基地局装置および端末装置を含む無線通信システムに係わる。
 現在、ネットワークのリソースの多くは、モバイル端末(スマートフォンまたはフューチャーフォンを含む)が使用するトラフィックにより占有されている。また、モバイル端末が使用するトラフィックは、今後も増加していくと考えられる。
 他方、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、様々な要求条件を持つサービスに対応することが求められている。このため、第5世代移動体通信(5GまたはNR(New Radio))の通信規格では、第4世代移動体通信(4G(LTE:Long Term Evolution))の標準技術(例えば、非特許文献1~13)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で検討されており、2017年末に標準規格書の初版が公開されている(例えば、非特許文献14~43)。
 また、モバイルネットワークは、主に、コアネットワーク(CN)および無線アクセスネットワーク(RAN)から構成される。そして、コアネットワークと無線アクセスネットワークとの間で障害が発生すると、無線アクセスネットワークに接続する端末装置(UE:User Equipment)の通信は遮断されてしまう。
 なお、制御局と基地局との間の回線が切断された際に、隣接基地局と基地局間通信を行うことで緊急回線を確保する方法が提案されている(例えば、特許文献1)。また、コアネットワークとの間の伝送障害を検出する障害検出部と、伝送障害が検出されたときに、コアネットワークに代わって、自局に在圏する移動局同士の間の呼接続を行う呼接続部を備える無線基地局が提案されている(例えば、特許文献2)。
特開2001-045569号公報 特開2010-233184号公報
3GPP TS 36.133 V16.3.0(2019-10) 3GPP TS 36.211 V15.7.0(2019-09) 3GPP TS 36.212 V15.7.0(2019-09) 3GPP TS 36.213 V15.7.0(2019-09) 3GPP TS 36.214 V15.4.0(2019-09) 3GPP TS 36.300 V15.7.0(2019-09) 3GPP TS 36.321 V15.7.0(2019-09) 3GPP TS 36.322 V15.3.0(2019-09) 3GPP TS 36.323 V15.4.0(2019-06) 3GPP TS 36.331 V15.7.0(2019-09) 3GPP TS 36.413 V15.7.1(2019-10) 3GPP TS 36.423 V15.7.0(2019-10) 3GPP TS 36.425 V15.0.0(2018-06) 3GPP TR 23.501 V16.2.0(2019-09) 3GPP TS 37.324 V15.1.0(2018-09) 3GPP TS 37.340 V15.7.0(2019-09) 3GPP TS 38.201 V15.0.0(2018-01) 3GPP TS 38.202 V15.5.0(2019-06) 3GPP TS 38.211 V15.7.0(2019-09) 3GPP TS 38.212 V15.7.0(2019-09) 3GPP TS 38.213 V15.7.0(2019-09) 3GPP TS 38.214 V15.7.0(2019-09) 3GPP TS 38.215 V15.5.0(2019-06) 3GPP TS 38.300 V15.7.0(2019-09) 3GPP TS 38.321 V15.7.0(2019-09) 3GPP TS 38.322 V15.5.0(2019-04) 3GPP TS 38.323 V15.6.0(2019-06) 3GPP TS 38.331 V15.7.0(2019-09) 3GPP TS 38.401 V15.6.0(2019-07) 3GPP TS 38.410 V15.2.0(2018-12) 3GPP TS 38.413 V15.5.0(2019-10) 3GPP TS 38.420 V15.2.0(2018-12) 3GPP TS 38.423 V15.5.0(2019-10) 3GPP TS 38.470 V15.6.0(2019-07) 3GPP TS 38.473 V15.7.0(2019-10) 3GPP TR 38.801 V14.0.0(2017-03) 3GPP TR 38.802 V14.2.0(2017-09) 3GPP TR 38.803 V14.2.0(2017-09) 3GPP TR 38.804 V14.0.0(2017-03) 3GPP TR 38.900 V15.0.0(2018-06) 3GPP TR 38.912 V15.0.0(2018-07) 3GPP TR 38.913 V15.0.0(2018-07) 3GPP TR 38.889 V16.0.0(2018-12)
 4G及び5Gにおいて、モバイルネットワークのソフトウェア化および仮想化が検討されている。例えば、超低遅延および/または超広帯域のモバイル通信を実現する技術の1つとして、モバイルエッジコンピューティング(MEC)が提案されている。MECサーバは、ユーザ端末に近い場所(即ち、ネットワークのエッジ)からサービスを提供する。一例として、MECサーバは、無線アクセスネットワークに対して、コアネットワークの機能の一部を提供する。この場合、MECサーバは、EPC(Evolved Packet Core)ネットワーク等のコアネットワークと接続する。
 MECサーバとコアネットワークとの間で障害が発生した場合、MECサーバの配下の無線アクセスネットワークに接続する端末装置の通信は遮断されてしまう。ところが、このような障害に対する復旧方法は、決められていない。なお、一例としてMECを例に説明したが、基地局間の通信でも同様なことが起こりうる場合もある。
 本発明の1つの側面に係わる目的は、モバイルネットワークにおいて、コアネットワークとの接続障害に対する復旧方法を提供することである。
 本発明の1つの態様に係わる基地局装置は、端末および他の基地局と通信を行う。この基地局装置は、異常状態の発生を表す情報を前記端末に送信する送信部と、前記情報を前記端末に送信した後に、前記他の基地局との間の接続を行うための信号を前記他の基地局から受信し、前記信号に応じて前記他の基地局と通信を行う通信部と、を備える。
 本発明の他の態様に係わる基地局装置は、端末および他の基地局と通信を行う。この基地局装置は、異常状態の発生を表す第1の情報を前記端末に送信する送信部と、前記第1の情報を前記端末に送信した後に、前記他の基地局への接続に係わる第2の情報を前記端末から受信する受信部と、前記第2の情報に基づいて前記他の基地局と通信を行う通信部と、を備える。
 上述の態様によれば、モバイルネットワークにおいて、コアネットワークとの接続障害発生時の通信の切断が抑制される。
モバイルエッジコンピューティング(MEC)について説明する図である。 MECサーバの例を示す図である。 MECサーバとコアネットワークとの間の障害に対する復旧の一例を示す図である。 第1の実施形態に係わるネットワークシステムの一例を示す図である。 第1の実施形態において行われる復旧手順の一例を示す図である。 図5に示す復旧手順を表すシーケンス図(その1)である。 図5に示す復旧手順を表すシーケンス図(その2)である。 第1の実施形態における基地局および端末の処理の一例を示すフローチャートである。 コアネットワークとすべての仮想基盤との間で障害が発生したときの復旧手順の一例を示す図である。 図9に示す復旧手順を表すシーケンス図(その1)である。 図9に示す復旧手順を表すシーケンス図(その2)である。 仮想基盤および端末のハードウェア構成の一例を示す図である。 仮想基盤の構成の一例を示す図である。 仮想基盤および端末のソフトウェア構成の一例を示す図である。 第2の実施形態において行われる復旧手順の一例を示す図である。 第2の実施形態における基地局および端末の処理の一例を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、本明細書における課題および実施例は一例であり、本件特許出願の権利範囲を限定するものではない。例えば、記載の表現が異なっていても、技術的に同等であれば、本件特許出願の技術が適用され得る。また、本明細書に記載されている実施形態は、矛盾のない範囲で適宜組み合わせることが可能である。
 本明細書で使用する用語および技術的内容は、3GPP等の通信に関する規格として仕様書(例えば、3GPP TS 38.211 V15.7.0 (2019-09))または奇書に記載された用語および技術的内容が用いられてもよい。
 図1は、モバイルエッジコンピューティング(MEC)について説明する図である。なお、MECを利用しない構成では、図1(a)に示すように、基地局100は、モバイルネットワーク200を介してコアネットワーク300に接続する。モバイルネットワーク200は、例えば、モバイルキャリアにより構成されるネットワークである。コアネットワーク300は、例えば、EPCネットワークである。この場合、基地局100に収容される端末(UE:User Equipment)に対して、超低遅延および/または超広帯域のモバイル通信サービスの提供が困難なことがある。
 MECサーバ210は、図1(b)に示すように、例えば、モバイルネットワーク200のエッジに設けられる。そして、MECサーバ210は、本発明の実施形態では、コアネットワーク300の機能の一部を提供する。したがって、基地局100に収容される端末は、MECサーバ210から超低遅延および/または超広帯域のモバイル通信サービスを受けることができる。
 図2(a)は、5Gのモバイルネットワークにおいて使用されるMECサーバの一例を示す。この場合、MECサーバは、コアネットワークのファンクションノードと同等の機能を備える。すなわち、MECサーバは、AMF(Access and Mobility Management Function)、SMF(Session Management Function)、UPF(User Plane Function)、AUSF(Authentication Server Function)、UDM(Unified Data Management)、PCF(Policy Control Function)、AF(Application Function)等を備える。なお、MECサーバは、1または複数のコンピュータにより実現される。
 図2(b)は、4Gのモバイルネットワークにおいて使用されるMECサーバの一例を示す。この場合、MECサーバは、EPCのノードと同等の機能を備える。すなわち、MECサーバは、MME(Mobility Management Entity)、HSS(Home Subscriber Server)、S-GW(Serving Gateway)、P-GW(Packet data network Gateway)、PCRF(Policy and Charging Rules Function)等を備える。なお、この場合も、MECサーバは、1または複数のコンピュータにより実現される。
 図3は、MECサーバとコアネットワークとの間の障害に対する復旧の一例を示す。なお、この実施例では、図3(a)に示すように、MECサーバ210の配下に基地局(gNB)110a、110bが設けられている。各基地局110a、110bは、1または複数の端末(UE)を収容できる。図3においては、端末400aが基地局110aに接続し、端末400bが基地局110bに接続している。そして、MECサーバ210および基地局110a、110bは、1つのローカルネットワークを構成する。
 MECサーバ210は、EPCネットワーク310に接続する。EPCネットワーク310は、コアネットワークを構成する。そして、端末400a、400bは、MECサーバ210を介してEPCネットワーク310に接続することができる。また、EPCネットワーク310には、基地局110c、110dが接続されている。各基地局110c、110dも、1または複数の端末を収容できる。
 各基地局110a~110dは、他の基地局と直接的には接続されていない。但し、各基地局110a~110dは、他の基地局と接続するための機能を備えている。例えば、各基地局110a~110dは、IAB(Integrated Access and Backhaul)機能を備える。この場合、各基地局110a~110dは、端末との間のアクセス回線および他の基地局との間のバックホール回線を同時に提供できる。バックホール回線は、例えば、ミリ波帯を利用して実現される。
 上記構成のネットワークシステムにおいて、図3(b)に示すように、MECサーバ210とEPCネットワーク310との間で障害が発生するものとする。この場合、MECサーバ210は、端末を利用して、隣接ネットワークへの接続を試みる。図3に示す例では、MECサーバ210の配下に設けられている基地局および隣接ネットワークに属する基地局の双方に接続可能な端末400bが使用される。
 具体的には、MECサーバ210は、基地局110bに、異常状態(すなわち、MECサーバ210の配下のネットワークがコアネットワークから孤立した状態)の発生を表す情報を送信させる。この情報は、端末400bにより受信される。そうすると、端末400bは、他の基地局をサーチする。この例では、端末400bは、基地局110cに接続可能である。この場合、MECサーバ210は、基地局110b、端末400b、および基地局110cを介してEPCネットワーク310と通信を行うことができる。
 ただし、端末を介してMECサーバとEPCネットワークとを接続すると、端末の負荷が非常の大きくなる。また、端末が移動すると、MECサーバとEPCネットワークとの間の通信が切断される。このため、ネットワークシステムは、図3(c)に示すように、基地局110bおよび基地局110cが端末400bを介することなく通信を行う状態に移行する。このとき、基地局110bおよび基地局110cは、例えば、IAB機能を利用して、相互に信号を送信する。この結果、例えば、端末400aは、基地局110a、MECサーバ210、基地局110b、基地局110cを経由してEPCネットワーク310に接続することができる。また、端末400bは、基地局110b、基地局110cを経由してEPCネットワーク310に接続することができる。
 <第1の実施形態>
 図4は、第1の実施形態に係わるネットワークシステムの一例を示す。第1の実施形態では、EPCネットワーク310に複数の仮想基盤(virtual platform)500#1~500#3が接続されている。なお、EPCネットワーク310は、上述したように、コアネットワークの一例である。
 各仮想基盤500#1~500#3は、基地局(gNB)120、MECサーバ210および制御部220を備える。なお、各仮想基盤500#1~500#3は、図4に示していない他の機能または回路を備えてもよい。
 基地局120は、集約ユニット(CU:central unit)121およびリモートユニット(DU:distributed unit)122を備える。ここで、集約ユニット121およびリモートユニット122は、基地局120の機能を分担する。具体的には、PDCPレイヤの処理は、集約ユニット121により実現される。無線周波数回路は、リモートユニット122により実現される。物理レイヤ、MACレイヤ、RLCレイヤは、基地局の構成により、集約ユニット121またはリモートユニット122により実現される。
 MECサーバ210は、上述したように、コアネットワークの機能の一部を提供する。例えば、5Gにおいては、MECサーバ210は、図2(a)に示す機能を提供する。制御部220は、基地局120およびMECサーバ210を制御する。なお、図4に示す例では、仮想基盤500#2はMECサーバ210を備えていないが、仮想基盤500#2はMECサーバ210を備えていてもよい。
 端末(UE)400は、任意の基地局120に接続することができる。また、端末400は、同時に2以上の基地局120に接続することができる。
 図4に示すネットワークシステムにおいて、仮想基盤500#1とEPCネットワーク310との間、及び、仮想基盤500#3とEPCネットワーク310との間で障害が発生するものとする。このとき、仮想基盤500#2とEPCネットワーク310との間では、正常に通信を行うことができるものとする。この場合、ネットワークシステムにおいて、図5に示す復旧手順が実行される。
 S1において、仮想基盤500#1の制御部220(即ち、制御部220#1)は、仮想基盤500#1とEPCネットワーク310との間の障害を検知する。なお、障害を検知する方法は、特に限定されるものではない。たとえば、制御部220#1は、EPCネットワーク310に送信した信号に対する応答を所定時間内に受信しなかったときに、EPCネットワーク310との間で障害が発生したと判定してもよい。そして、制御部220#1は、上述の障害を検知すると、仮想基盤500#1に実装されるMECサーバ210(即ち、MECサーバ210#1)を起動する。このとき、制御部220#1は、仮想基盤500#1とEPCネットワーク310との間で障害が発生したことを表す情報をMECサーバ210に与える。そうすると、MECサーバ210#1は、仮想基盤500#1に実装される基地局120(即ち、基地局120#1)がEPCネットワーク310から孤立していることを認識する。
 S2において、MECサーバ210#1は、基地局120#1が孤立している状態を解消するために、基地局120#1に対して他の基地局のサーチを指示する。この指示は、仮想基盤500#1とEPCネットワーク310との間で障害が発生したことを表す情報または基地局120#1が孤立していることを表す情報を含んでもよい。
 S3において、基地局120#1は、MECサーバ210#1から与えられる指示に応じて、サーチリクエストを送信する。このとき、基地局120#1は、セル内に位置する端末の中から1つの端末を選択し、選択した端末に対してサーチリクエストを送信してもよい。なお、基地局120#1は、セル内に位置する端末を認識している。或いは、基地局120#1は、セル内に位置するすべての端末にサーチリクエストを送信してもよい。
 サーチリクエストは、例えば、SIB(system information block)の中に設定されるか、または、選択された1つの端末に対する制御情報の中に設定される。なお、選択した端末が他の基地局との接続ができない場合は、接続不可を示す信号を送信するようにしても良い。その場合は、基地局120#1は、複数の端末から接続不可を示す端末を除いた端末に、サーチリクエストを送信する。また、サーチリクエストは、上述したように、仮想基盤500#1とEPCネットワーク310との間の障害に起因して送信される。よって、サーチリクエストは、異常状態の発生を表す情報の一例である。すなわち、基地局120#1は、異常状態の発生を表す情報を、端末に送信する。
 サーチリクエストを受信した端末(この実施例では、端末400)は、S4において、接続可能な他の基地局をサーチする。このとき、端末400は、例えば、セルサーチ等を行い、検出した他の基地局に対してランダムアクセスを実行する。この結果、この実施例では、端末400は、仮想基盤500#2に実装される基地局120(即ち、基地局120#2)に接続するものとする。
 S5において、端末400は、基地局120#2に対して、基地局120#1とEPCネットワーク310との間で障害が発生したことを表す情報を送信する。この情報は、例えば、メジャメントレポート(MR:measuring report)メッセージの中に設定されて、端末400から基地局120#2に送信される。そして、この情報は、仮想基盤500#2の制御部220(即ち、制御部220#2)に与えられる。よって、制御部220#2は、基地局120#1とEPCネットワーク310との間で障害が発生したことを認識する。なお、MRメッセージは、受信電波強度などを表す情報を含み、定期的に送信される。なお、MRメッセージを利用することで、現状の仕様から大きな変更を行わずに、本発明を達成することができる。
 S6において、制御部220#2は、基地局120#2とEPCネットワーク310との間の回線が正常か否かを確認する。この実施例では、基地局120#2とEPCネットワーク310との間の回線が正常であるものとする。この場合、制御部220#2は、基地局120#1と基地局120#2との間に回線を確立するための指示を、基地局120#2に与える。
 S7において、基地局120#2は、基地局120#1との間に回線を確立する。一例としては、基地局120#2は、IABを利用して、基地局120#1との間に回線を確立する。例えば、基地局120#2は、基地局120#1と基地局120#2との間の接続を行うための信号を、基地局120#1に送信する。続いて、基地局120#1および基地局120#2は、基地局120#1と基地局120#2との間に回線を確立するためのシーケンスを実行する。この結果、基地局120#1と基地局120#2との間に、無線バックホール回線が確立される。なお、S3でセル内に位置するすべての端末にサーチリクエストを送信する場合、EPCと接続できている複数の基地局から回線を確立するメッセージを受信する状況が生じ得るが、この場合は、例えば、最初に受信したメッセージに対応する基地局と接続するようにする。
 S8において、基地局120#1に接続する端末は、EPCネットワーク310に接続する。すなわち、基地局120#1に接続する端末は、基地局120#1、無線バックホール回線、基地局120#2を経由して、EPCネットワーク310に接続することができる。
 S9において、基地局120#1と仮想基盤500#3に実装される基地局120(即ち、基地局120#3)との間にも、IABにより無線バックホール回線が確立される。基地局120#1と基地局120#3との間に回線を確立する方法は、基地局120#1と基地局120#2との間に回線を確立する方法と同じであってもよい。この場合、基地局120#1および基地局120#3の双方に接続可能な端末が使用される。この後、基地局120#3に接続する端末は、基地局120#3、無線バックホール回線、基地局120#1、無線バックホール回線、基地局120#2を経由して、EPCネットワーク310に接続することができる。
 図6~図7は、図5に示す復旧手順を表すシーケンス図である。この例では、仮想基盤500#1において、制御部は、障害を検知すると、MECサーバを起動する。MECサーバは、基地局(gNB)に対して、他の基地局のサーチを指示する。そうすると、基地局は、セル内の端末に対してページングを行う。その後、基地局は、異常状態の発生を表す情報を含むSIBを端末400に送信する。
 図6に示すように、端末(UE)400は、セルサーチ等で他の基地局の検出を行った後、ランダムアクセス手順を実行する。即ち、端末400は、検出した仮想基盤500#2の基地局にランダムアクセスプリアンブルを送信する。そうすると、基地局は、ランダムアクセス応答を端末400に送信する。続いて、端末400は、仮想基盤500#2の基地局にRRCコネクションリクエストを送信する。そうすると、基地局は、RRCコネクションセットアップを端末400に送信する。これにより、端末400と仮想基盤500#2の基地局との間にRRCコネクションが設定される。そして、端末400は、このRRCコネクションを利用して、仮想基盤500#1の基地局の異常状態に係わる情報を含むMRメッセージを、仮想基盤500#2の基地局に送信する。なお、MRメッセージを送信するための構成情報は、例えば、RRCコネクションリクエストに含まれる。
 仮想基盤500#1の基地局の異常状態に係わる情報を受信すると、仮想基盤500#2の制御部は、仮想基盤500#1の基地局と仮想基盤500#2の基地局との間に回線を確立するための手順を開始する。この実施例では、IABを利用して、無線バックホール回線が確立される。この後、仮想基盤500#1の基地局に接続する端末は、仮想基盤500#1の基地局および仮想基盤500#2の基地局を経由して、EPCネットワーク310と通信を行うことが可能になる。
 その後、図7に示すように、仮想基盤500#1のMECサーバは、EPCネットワーク310との接続に成功すると、仮想基盤500#1の基地局と仮想基盤500#3の基地局との間に回線を確立するための手順を実行する。具体的には、仮想基盤500#1のMECサーバから仮想基盤500#1の基地局に、EPCとの接続が復旧したことを示す復旧通知を通知する。復旧通知を受け取った仮想基盤500#1の基地局は、仮想基盤500#3の基地局に、メッセージを送信する。仮想基盤500#3の制御部は、仮想基盤500#1の基地局と仮想基盤500#3の基地局との間に回線を確立するための手順を開始する。この実施例では、IABを利用して、無線バックホール回線が確立される。この後、仮想基盤500#3の基地局は、仮想基盤500#1の基地局および仮想基盤500#2の基地局を経由して、EPCネットワーク310と通信を行うことが可能になる。
 図8は、第1の実施形態における基地局および端末の処理の一例を示すフローチャートである。なお、EPCネットワークに複数の仮想基盤が接続されたネットワークシステムにおいて、ある仮想基盤とEPCネットワークとの間で障害が発生するものとする。そして、以下の記載では、この仮想基盤に実装される基地局を「孤立基地局」と呼ぶことがある。また、孤立基地局に隣接する他の基地局を「隣接基地局」と呼ぶことがある。
 図8(a)は、孤立基地局の処理の一例を示すフローチャートである。なお、孤立基地局が実装される仮想基盤において、制御部が障害を検知し、MECサーバが起動されるものとする。この場合、MECサーバは、孤立基地局に対して、他の基地局のサーチを指示する。
 S101において、孤立基地局は、MECサーバからの指示に応じて、異常状態の発生を表す情報を端末に送信する。この情報は、孤立基地局を識別する情報を含んでもよい。また、この情報は、隣接する基地局をサーチする旨の指示を含んでもよい。そして、この情報は、例えば、SIBに格納されて端末に送信される。なお、S101の処理は、図5に示す例では、仮想基盤500#1に実装される基地局120#1により実行されるS3に相当する。
 S102において、孤立基地局は、隣接基地局から受信する信号に応じて、隣接基地局との間の回線を確立する。この信号は、孤立基地局と隣接基地局とを接続する手順の開始を要求してもよい。また、この信号は、隣接基地局を識別する情報を含んでもよい。さらに、この信号は、孤立基地局と隣接基地局との間に回線を設定するために必要な情報を含んでもよい。例えば、この信号は、リソースを指定する情報を含んでもよい。そして、孤立基地局は、隣接基地局との間で必要な情報を交換しながら、孤立基地局と隣接基地局との間に回線を確立する。一例としては、IABを利用して、孤立基地局と隣接基地局との間に無線バックホール回線が確立される。なお、S102の処理は、図5に示す例では、仮想基盤500#1、500#2により実行されるS7に相当する。
 図8(b)は、端末の処理の一例を示すフローチャートである。なお、このフローチャートの処理は、図8(a)に示すS101の後に実行される。
 S111において、端末は、異常状態の発生を表す情報を孤立基地局から受信する。この情報は、例えば、上述したように、孤立基地局によりSIBに格納されて送信される。S112において、端末は、孤立基地局以外の隣接基地局を探す。このとき、端末は、例えば、ランダムアクセスにより接続可能な隣接基地局をサーチする。S113において、端末は、孤立基地局の異常状態に係わる情報を隣接基地局に送信する。この情報は、孤立基地局を識別する情報を含んでもよい。また、この情報は、孤立基地局と隣接基地局との間に回線を設定する旨の指示を含んでもよい。そして、この情報は、例えば、MRメッセージの中に設定されて端末から隣接基地局に送信される。なお、S111~S113の処理は、図5に示す例では、端末400により実行されるS4~S5に相当する。
 図8(c)は、隣接基地局の処理の一例を示すフローチャートである。なお、このフローチャートの処理は、図8(b)に示すS111~S113の後に実行される。即ち、端末と隣接基地局との間に回線が設定されているものとする。
 S121において、隣接基地局は、孤立基地局の異常状態に係わる情報を端末から受信する。なお、隣接基地局が実装される仮想基盤において、制御部は、コアネットワークとの間の回線が正常か否かを確認する。この処理は、図5に示す例では、仮想基盤500#2に実装される制御部220#2により実行されるS6に相当する。
 S122において、隣接基地局は、孤立基地局との間に回線を確立する。このとき、隣接基地局は、孤立基地局に対して、孤立基地局と隣接基地局との間の接続を行うための信号を送信する。すなわち、この信号は、孤立基地局と隣接基地局との間の回線の確立を要求する。そして、この信号は、図8(a)に示すS102において孤立基地局により受信される。この後、隣接基地局は、孤立基地局との間で必要な情報を交換しながら、孤立基地局と隣接基地局との間に回線を確立する。なお、隣接基地局は、コアネットワークとの間の回線が正常か否かを孤立基地局に通知してもよい。或いは、隣接基地局は、コアネットワークとの間の回線が正常である場合に限って孤立基地局との間に回線を確立する手順を開始してもよい。
 図9は、コアネットワークとすべての仮想基盤との間で障害が発生したときの復旧手順の一例を示す。この例では、仮想基盤500#1に実装されるMECサーバ210が復旧手順を開始するものとする。
 S1~S6の処理は、図5および図9において実質的に同じである。すなわち、異常状態の発生を表す情報を含むSIBが、仮想基盤500#1に実装される基地局120#1から端末400送信される。また、基地局120#1の異常状態に係わる情報を含むMRメッセージが、端末400から仮想基盤500#2に実装される基地局120#2に送信される。
 S6において、仮想基盤500#2の制御部220#2は、基地局120#2とEPCネットワーク310との間の回線が正常か否かを確認する。この実施例では、基地局120#2とEPCネットワーク310との間で障害が発生している。
 S11において、IABを利用して、基地局120#1と基地局120#2との間に無線バックホール回線が確立される。すなわち、仮想基盤500#1に実装されるMECサーバ210#1および仮想基盤500#2に実装されるMECサーバ210#2によるローカル通信が確立される。ただし、図9に示す例では、基地局120#2もEPCネットワーク310に接続していない。よって、基地局120#2がEPCネットワーク310に接続していないことを表す情報が、MECサーバ210#2からMECサーバ210#1に通知される。この結果、MECサーバ210#1は、MECサーバ210#2の配下のネットワークに接続できるが、EPCネットワーク310には接続できないことを認識する。
 S12において、IABを利用して、基地局120#1と基地局120#3との間に無線バックホール回線が確立される。すなわち、MECサーバ210#1および仮想基盤500#3に実装されるMECサーバ210#3によるローカル通信が確立される。但し、基地局120#1がEPCネットワーク310に接続できないことを表す情報が、MECサーバ210#1からMECサーバ210#3に通知される。この結果、MECサーバ210#3は、MECサーバ210#1およびMECサーバ210#2の配下のネットワークに接続できるが、EPCネットワーク310には接続できないことを認識する。
 図10~図11は、図9に示す復旧手順を表すシーケンス図である。すなわち、MECサーバ間のローカル通信が確立される。なお、図10に示す「通知」は、MECサーバ210#1、210#2間のローカル通信が確立されたことを表し、MECサーバ210#1からMECサーバ210#3に送信される。なお、図10は、基地局120#1、基地局120#2、及び基地局120#3のそれぞれの間でMEC通信を行うまでの処理を示す例である。
 上述の復旧手順の結果、仮想基盤500#1に実装される基地局に接続する各端末は、仮想基盤500#2、500#3に実装される基地局に接続する任意の端末と通信を行うことができる。同様に、仮想基盤500#2に実装される基地局に接続する各端末は、仮想基盤500#1、500#3に実装される各基地局に接続する任意の端末と通信を行うことができる。また、仮想基盤500#3に実装される基地局に接続する各端末は、仮想基盤500#1、500#2に実装される各基地局に接続する任意の端末と通信を行うことができる。
 この後、基地局120#1とEPCネットワーク310との間の回線が復旧したものとする。この場合、図11に示すように、仮想基盤500#1において、制御部220#1により回線の復旧が検知される。そうすると、制御部220#1は、基地局120#1とEPCネットワーク310との間の回線が復旧したことをMECサーバ210#1に通知する。
 MECサーバ210#1は、他のMECサーバ210#2、210#3に対してそれぞれ復旧通知を送信する。この復旧通知は、MECサーバ210#1とEPCネットワーク310との間の回線が復旧したことを表す。また、復旧通知は、例えば、基地局間に確立された回線を介して送信される。この結果、仮想基盤500#2の基地局に接続する端末は、仮想基盤500#1の基地局を経由してEPCネットワーク310に接続できる。同様に、仮想基盤500#3の基地局に接続する端末も、仮想基盤500#1の基地局を経由してEPCネットワーク310に接続できる。
 図12(a)は、仮想基盤のハードウェア構成の一例を示す。仮想基盤500は、メモリ500a、プロセッサ500b、無線IF500c、伝送路IF500dを備える。なお、仮想基盤500は、図12(a)に示していないハードウェア要素を備えていてもよい。また、仮想基盤500は、通信処理装置の一例である。
 メモリ500aは、仮想基盤500が提供する機能を記述したプログラムを格納する。また、メモリ500aには、仮想基盤500が使用するデータおよび情報が格納される。プロセッサ500bは、メモリ500aに格納されているプログラムを実行することにより、仮想基盤500の機能を実現する。無線IF500cは、無線アンテナを介して無線信号を送信し、また、無線アンテナを介して無線信号を受信する。なお、無線IF500cは、基地局(gNB)のリモートユニット(DU)に相当する。また、無線IF500cは、IABを利用して、他の基地局と接続するためのインタフェースを提供することもできる。伝送路IF500dは、EPCネットワーク310と接続するためのインタフェースを提供する。
 図12(b)は、端末のハードウェア構成の一例を示す。端末(UE)400は、メモリ400a、プロセッサ400b、ベースバンド回路400c、RF回路400dを備える。なお、端末400は、図12(b)に示していないハードウェア要素を備えていてもよい。
 メモリ400aは、端末400が提供する機能を記述したプログラムを格納する。また、メモリ400aには、端末400が使用するデータおよび情報が格納される。プロセッサ400bは、メモリ400aに格納されているプログラムを実行することにより、端末400の機能を実現する。ベースバンド回路400cは、ベースバンド領域で信号を処理する。RF回路400dは、無線アンテナを介して基地局に無線信号を送信し、また、無線アンテナを介して基地局から無線信号を受信する。
 図13は、仮想基盤の構成の一例を示す。仮想基盤500のハードウェアは、プロセッサ、メモリ、ハードディスク(HDD)を含む。なお、図13においては、図12(a)に示す無線IF503および伝送路IF504は省略されている。ハイパーバイザは、基盤の仮想化を実現する。すなわち、ハイパーバイザにより、複数の仮想マシンが提供される。この場合、複数の仮想マシンは、独立したOS上で動作できる。そして、各仮想マシン上でOS、ミドルウェア、およびアプリケーションが動作することにより、MECサーバ、制御部、基地局の集約ユニット(CU)およびリモートユニット(DU)が実現される。
 図14は、仮想基盤および端末のソフトウェア構成の一例を示す。なお、図14においては、基地局とコアネットワークとの間で発生した障害の復旧に係わる機能が表されている。
 制御部220は、障害検知部221、MEC制御部222、回線判定部223、IAB制御部224を備える。障害検知部221は、基地局120とコアネットワーク(実施例では、EPCネットワーク310)との間の回線の障害を検知する。MEC制御部222は、MECサーバ210を制御する。例えば、障害検知部221が障害を検知すると、MEC制御部222は、MECサーバ210を起動する。そして、制御部222は、MECサーバ210に復旧処理の開始を指示する。なお、障害検知部221およびMEC制御部222は、孤立基地局が実装される仮想基盤の制御部において動作する。
 回線判定部223およびIAB制御部224は、基地局が、孤立基地局の異常状態に係わる情報を端末から受信したときに起動される。回線判定部223は、コアネットワークとの間の回線が正常か否かを判定する。IAB制御部224は、IABを利用して孤立基地局との間に回線を確立する処理を実行する。このとき、IAB制御部224は、回線判定部223による判定結果を孤立基地局に通知することが好ましい。
 MECサーバ210は、SIB制御部211および通知部212を備える。SIB制御部211は、制御部220によりMECサーバ210が起動されたときに、異常状態の発生を表す情報を含むSIBを生成する。この場合、SIB制御部211は、生成したSIBの送信を基地局120に依頼する。或いは、SIB制御部211は、SIB生成および送信を基地局120に依頼してもよい。通知部212は、基地局120とコアネットワークとの間に回線が確立されたことを他の仮想基盤のMECサーバに通知する。例えば、図11に示す復旧通知は、通知部212により行われる。
 基地局120は、送信部121、受信部122、IAB送受信部123を備える。送信部121は、端末に信号を送信する。例えば、送信部121は、MECサーバ210からの依頼により、端末にSIBを送信することができる。受信部122は、端末から信号を受信する。IAB送受信部123は、IABを利用して回線を確立する機能を備える。また、IAB送受信部123は、IABを利用して確立した回線を介して、他の基地局と通信を行うことができる。
 端末400は、サーチ部401、受信部402、送信部403を備える。サーチ部401は、ランダムアクセスにより、通信可能な基地局をサーチする。なお、端末400は、同時に複数の基地局に接続することができる。受信部402は、基地局から信号を受信する。したがって、基地局がSIBを送信したときは、端末400は、そのSIBを受信する。送信部403は、基地局に信号を送信する。また、受信部402が孤立基地局から異常状態の発生を表す情報を受信したときは、送信部403は、基地局の異常状態に係わる情報を含むMRメッセージを隣接基地局に送信する。なお、SIBやMRメッセージ等の既存のメッセージを利用することで、現状の仕様から大きな変更を行わずに、本発明を達成することができる。
 <第2の実施形態>
 図15は、第2の実施形態において行われる復旧手順の一例を示す。なお、仮想基盤500#1、500#2は、第1の実施形態と同様に、EPCネットワーク310に接続されている。そして、仮想基盤500#1とEPCネットワーク310との間の回線(すなわち、基地局120#1とEPCネットワーク310との間の回線)に障害が発生するものとする。よって、以下の記載では、仮想基盤500#1に実装される基地局120#1を「孤立基地局」と呼ぶことがある。また、仮想基盤500#2に実装される基地局120#2を「隣接基地局」と呼ぶことがある。
 S1~S6の処理は、図5および図15において実質的に同じである。すなわち、異常状態の発生を表す情報を含むSIBが、仮想基盤500#1に実装される基地局(孤立基地局)120#1から端末400送信される。また、孤立基地局120#1の異常状態に係わる情報を含むMRメッセージが、端末400から仮想基盤500#2に実装される基地局(隣接基地局)120#2に送信される。そして、隣接基地局120#2は、EPCネットワーク310との間の接続が正常であるか否かを判定する。この例では、隣接基地局120#2とEPCネットワーク310との間で障害は発生していない。
 S21において、隣接基地局120#2は、隣接基地局120#2への接続に係わる情報を端末400に送信する。この情報は、隣接基地局120#2を識別する情報を含んでもよい。また、この情報は、隣接基地局120#2にアクセスするために必要な情報を含んでもよい。例えば、リソースを指定する情報を含んでもよい。そして、端末400は、隣接基地局120#2から隣接基地局120#2への接続に係わる情報を受信すると、S22において、その情報を孤立基地局120#1に送信する。この結果、孤立基地局120#1は、隣接基地局120#2への接続に係わる情報を取得する。
 S23において、孤立基地局120#1は、隣接基地局120#2への接続に係わる情報に基づいて、孤立基地局120#1と隣接基地局120#2との間の接続を行うための信号を隣接基地局120#2に送信する。この信号は、例えば、IABを利用する無線バックホール回線の確立を要求する信号を含んでもよい。この場合、孤立基地局120#1と隣接基地局120#2との間に、無線バックホール回線が確立される。この後、孤立基地局120#1に接続する端末は、孤立基地局120#1および隣接基地局120#2を介してEPCネットワーク310と接続できる。
 図16は、第2の実施形態における基地局および端末の処理の一例を示すフローチャートである。なお、EPCネットワークに複数の仮想基盤が接続されたネットワークシステムにおいて、ある仮想基盤とEPCネットワークとの間で障害が発生するものとする。そして、以下の記載では、この仮想基盤に実装される基地局を「孤立基地局」と呼ぶことがある。また、孤立基地局に隣接する基地局を「隣接基地局」と呼ぶことがある。
 図16(a)は、孤立基地局の処理の一例を示すフローチャートである。なお、孤立基地局が実装される仮想基盤において、制御部が障害を検知し、MECサーバが起動されるものとする。この場合、MECサーバは、孤立基地局に対して、他の基地局のサーチを指示する。
 S131の処理は、図8(a)に示すS101と同じである。即ち、孤立基地局は、異常状態の発生を表す情報を端末に送信する。この情報は、孤立基地局を識別する情報を含んでもよい。また、この情報は、隣接する基地局をサーチする旨の指示を含んでもよい。そして、この情報は、例えば、SIBに格納されて端末に送信される。
 S132において、孤立基地局は、隣接基地局への接続に係わる情報を端末から受信する。この情報は、隣接基地局を識別する情報を含んでもよい。S133において、孤立基地局は、隣接基地局への接続に係わる情報に基づいて隣接基地局にアクセスする。このとき、孤立基地局は、孤立基地局と隣接基地局との間の接続を行うための信号を隣接基地局に送信する。この実施例では、孤立基地局は、IABを利用する無線バックホール回線を確立するための信号を隣接基地局に送信する。なお、S131~S133の処理は、図15に示す例では、仮想基盤500#1に実装される基地局120#1により実行される。
 図16(b)は、端末の処理の一例を示すフローチャートである。なお、このフローチャートの処理は、図16(a)に示すS131の後に実行される。
 S141~S143の処理は、図8(b)に示すS111~S113と同じである。即ち、端末は、異常状態の発生を表す情報を孤立基地局から受信すると、孤立基地局の異常状態に係わる情報を隣接基地局に送信する。
 S144において、端末は、隣接基地局への接続に係わる情報を隣接基地局から受信する。この情報は、隣接基地局を識別する情報を含んでもよい。そして、端末は、S145において、隣接基地局への接続に係わる情報を孤立基地局に送信する。この情報は、図16(a)に示すS132において孤立基地局により受信される。
 図16(c)は、隣接基地局の処理の一例を示すフローチャートである。なお、このフローチャートの処理は、図16(b)に示すS141~S143の後に実行される。すなわち、端末と隣接基地局との間に回線が設定されているものとする。
 S151の処理は、図8(c)に示すS121と同じである。即ち、隣接基地局は、孤立基地局の異常状態に係わる情報を端末から受信する。
 S152において、隣接基地局は、隣接基地局への接続に係わる情報を端末に送信する。この情報は、隣接基地局を識別する情報を含んでもよい。この後、隣接基地局は、S153において、孤立基地局から、孤立基地局と隣接基地局との間の接続を行うための信号を受信する。そうすると、孤立基地局および隣接基地局は、孤立基地局と隣接基地局との間に回線を確立する。なお、S151~S153の処理は、図15に示す例では、仮想基盤500#2に実装される基地局120#2により実行される。
120(120#1~120#3) 基地局
121 送信部
122 受信部
123 IAB送受信部
210(210#1~210#3) MECサーバ
211 SIB制御部
212 通知部
220(220#1~220#3) 制御部
221 障害検知部
222 MEC制御部
223 回線判定部
224 IAB制御部
310 EPCネットワーク
400 端末
400b プロセッサ
401 サーチ部
402 受信部
403 送信部
500(500#1~500#3) 仮想基盤
500b プロセッサ
 

Claims (12)

  1.  端末および他の基地局と通信を行う基地局装置であって、
     異常状態の発生を表す情報を前記端末に送信する送信部と、
     前記情報を前記端末に送信した後に、前記他の基地局との間の接続を行うための信号を前記他の基地局から受信し、前記信号に応じて前記他の基地局と通信を行う通信部と、
     を備える基地局装置。
  2.  端末および他の基地局と通信を行う基地局装置であって、
     前記他の基地局の異常状態を表す情報を前記端末から受信する受信部と、
     前記端末から前記情報を受信した後に、前記他の基地局との間の接続を行うための信号を前記他の基地局に送信し、前記他の基地局と通信を行う通信部と、
     を備える基地局装置。
  3.  前記受信部は、前記情報を含むメジャメントレポートを受信する
     ことを特徴とする請求項2に記載の基地局。
  4.  第1の基地局および第2の基地局と通信を行う端末装置であって、
     異常状態の発生を表す第1の情報を前記第1の基地局から受信する受信部と、
     前記第1の基地局から前記第1の情報を受信した後に、前記第1の基地局の異常状態を表す第2の情報を前記第2の基地局に送信する送信部と、
     を備える端末装置。
  5.  第1の基地局、第2の基地局、および端末を備える無線通信システムであって、
     前記第1の基地局は、異常状態の発生を表す第1の情報を前記端末に送信し、
     前記端末は、前記第1の基地局から前記第1の情報を受信すると、前記第1の基地局の異常状態を表す第2の情報を前記第2の基地局に送信し、
     前記第2の基地局は、前記端末から前記第2の情報を受信すると、前記第1の基地局と前記第2の基地局との間の接続を行うための信号を前記第1の基地局に送信し、
     前記第1の基地局および前記第2の基地局は、前記第2の基地局が前記第1の基地局に前記信号を送信した後に、前記第1の基地局と前記第2の基地局との間の接続を確立する
     ことを特徴とする無線通信システム。
  6.  コアネットワークに接続する通信処理装置であって、
     前記コアネットワークの機能の一部を提供するモバイルエッジコンピューティングサーバと、
     前記モバイルエッジコンピューティングサーバを制御する制御部と、
     端末および他の基地局と通信を行う基地局装置と、を備え、
     前記制御部は、
      前記コアネットワークと当該通信処理装置との間の障害を検知する障害検知部と、
      前記障害検知部により前記障害が検知されたときに、前記モバイルエッジコンピューティングサーバを起動するMEC制御部と、を備え、
     前記モバイルエッジコンピューティングサーバは、前記MEC制御部により起動されたときに、前記基地局装置に対して、異常状態の発生を表す情報の送信を指示し、
     前記基地局装置は、
      前記モバイルエッジコンピューティングサーバからの指示に応じて、異常状態の発生を表す情報を前記端末に送信する送信部と、
      前記情報を前記端末に送信した後に、当該基地局装置と前記他の基地局との間の接続を行うための信号を前記他の基地局から受信し、前記信号に応じて前記他の基地局と通信を行う通信部と、を備える
     ことを特徴とする通信処理装置。
  7.  端末および他の基地局と通信を行う基地局装置であって、
     異常状態の発生を表す第1の情報を前記端末に送信する送信部と、
     前記第1の情報を前記端末に送信した後に、前記他の基地局への接続に係わる第2の情報を前記端末から受信する受信部と、
     前記第2の情報に基づいて前記他の基地局と通信を行う通信部と、
     を備える基地局装置。
  8.  前記通信部は、前記第2の情報に基づいて、当該基地局装置と前記他の基地局との間の接続を行うための信号を、前記他の基地局に送信する
     ことを特徴とする請求項7に記載の基地局装置。
  9.  端末および他の基地局と通信を行う基地局装置であって、
     前記他の基地局の異常状態を表す第1の情報を前記端末から受信する受信部と、
     前記端末から前記第1の情報を受信した後に、当該基地局装置への接続に係わる第2の情報を前記端末に送信する送信部と、
     前記第2の情報を前記端末に送信した後に、前記他の基地局から受信する前記他の基地局と当該基地局装置との間の接続を行うための信号に応じて、前記他の基地局と通信を行う通信部と、
     を備える基地局装置。
  10.  第1の基地局および第2の基地局と通信を行う端末装置であって、
     異常状態の発生を表す第1の情報を前記第1の基地局から受信する受信部と、
     前記第1の基地局から前記第1の情報を受信した後に、前記第1の基地局の異常状態を表す第2の情報を前記第2の基地局に送信する送信部と、を備え、
     前記第2の情報を前記第2の基地局に送信した後に、前記受信部が前記第2の基地局への接続に係わる第3の情報を前記第2の基地局から受信すると、前記送信部は、前記第3の情報を前記第1の基地局に送信する
     ことを特徴とする端末装置。
  11.  第1の基地局、第2の基地局、および端末を備える無線通信システムであって、
     前記第1の基地局は、異常状態の発生を表す第1の情報を前記端末に送信し、
     前記端末は、前記第1の基地局から前記第1の情報を受信すると、前記第1の基地局の異常状態を表す第2の情報を前記第2の基地局に送信し、
     前記第2の基地局は、前記端末から前記第2の情報を受信すると、前記第2の基地局への接続に係わる第3の情報を前記端末に送信し、
     前記端末は、前記第2の基地局から前記第3の情報を受信すると、前記第3の情報を前記第1の基地局に送信し、
     前記第1の基地局は、前記端末から前記第3の情報を受信すると、前記第1の基地局と前記第2の基地局との間の接続を行うための信号を前記第2の基地局に送信し、
     前記第1の基地局および前記第2の基地局は、前記第1の基地局が前記第2の基地局に前記信号を送信した後に、前記第1の基地局と前記第2の基地局との間の接続を確立する
     ことを特徴とする無線通信システム。
  12.  コアネットワークに接続する通信処理装置であって、
     前記コアネットワークの機能の一部を提供するモバイルエッジコンピューティングサーバと、
     前記モバイルエッジコンピューティングサーバを制御する制御部と、
     端末および他の基地局と通信を行う基地局装置と、を備え、
     前記制御部は、
      前記コアネットワークと当該通信処理装置との間の障害を検知する障害検知部と、
      前記障害検知部により前記障害が検知されたときに、前記モバイルエッジコンピューティングサーバを起動するMEC制御部と、を備え、
     前記モバイルエッジコンピューティングサーバは、前記MEC制御部により起動されたときに、前記基地局装置に対して、異常状態の発生を表す情報の送信を指示し、
     前記基地局装置は、
      異常状態の発生を表す第1の情報を前記端末に送信する送信部と、
      前記送信部が前記第1の情報を前記端末に送信した後に、前記他の基地局への接続に係わる第2の情報を前記端末から受信する受信部と、
      前記第2の情報に基づいて前記他の基地局と通信を行う通信部と、を備える
     ことを特徴とする通信処理装置。
PCT/JP2019/050320 2019-12-23 2019-12-23 基地局装置、端末装置、および無線通信システム WO2021130810A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050320 WO2021130810A1 (ja) 2019-12-23 2019-12-23 基地局装置、端末装置、および無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050320 WO2021130810A1 (ja) 2019-12-23 2019-12-23 基地局装置、端末装置、および無線通信システム

Publications (1)

Publication Number Publication Date
WO2021130810A1 true WO2021130810A1 (ja) 2021-07-01

Family

ID=76575770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050320 WO2021130810A1 (ja) 2019-12-23 2019-12-23 基地局装置、端末装置、および無線通信システム

Country Status (1)

Country Link
WO (1) WO2021130810A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115633380A (zh) * 2022-11-16 2023-01-20 合肥工业大学智能制造技术研究院 一种考虑动态拓扑的多边缘服务缓存调度方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537757A (ja) * 2010-08-03 2013-10-03 ゼットティーイー コーポレイション デジタルトランキングシステムに基づくフェイルソフト処理のための処理方法及び基地局
JP2015091060A (ja) * 2013-11-06 2015-05-11 富士通株式会社 基地局装置および無線アクセスシステム
JP2017500776A (ja) * 2013-11-01 2017-01-05 日本電気株式会社 二重接続における無線リンク障害ハンドリング
WO2017029811A1 (ja) * 2015-08-20 2017-02-23 日本電気株式会社 通信システム、基地局装置、制御装置、及び通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537757A (ja) * 2010-08-03 2013-10-03 ゼットティーイー コーポレイション デジタルトランキングシステムに基づくフェイルソフト処理のための処理方法及び基地局
JP2017500776A (ja) * 2013-11-01 2017-01-05 日本電気株式会社 二重接続における無線リンク障害ハンドリング
JP2015091060A (ja) * 2013-11-06 2015-05-11 富士通株式会社 基地局装置および無線アクセスシステム
WO2017029811A1 (ja) * 2015-08-20 2017-02-23 日本電気株式会社 通信システム、基地局装置、制御装置、及び通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115633380A (zh) * 2022-11-16 2023-01-20 合肥工业大学智能制造技术研究院 一种考虑动态拓扑的多边缘服务缓存调度方法和系统

Similar Documents

Publication Publication Date Title
US20210112524A1 (en) Wireless communication method, network device, and terminal device
CN109429276B (zh) 通信方法及装置
US9125122B2 (en) Paging for circuit switched fallback (CSFB) in long term evolution (LTE) connected mode
JP5420660B2 (ja) 通信に複数の周波数帯域を使用する方法と装置
RU2742143C1 (ru) Способ конфигурирования интервала измерения и соответствующие аппарат, устройство, оконечное устройство и система
WO2018228468A1 (zh) 一种无线链路监控方法和装置
KR20210136761A (ko) 에지 컴퓨팅 서비스 관련 정보 관리 방법 및 장치
US20220110025A1 (en) Link switching method and communication device
WO2020135850A1 (zh) 通信方法和装置
CN115065988B (zh) 中继传输的方法、中继终端和远端终端
US20210022203A1 (en) Method for deactivating user plane connection and network entity for controlling user plane connection deactivation in network
WO2022222774A1 (zh) 网络连接重建方法及其装置
CN113747516B (zh) 一种实现业务连续性的方法及装置
US20220225128A1 (en) Information Update Method, Device, and System
CN109429366B (zh) 一种pdu会话处理方法及设备
JP2022540445A (ja) 通信方法及びネットワーク要素
TW202119855A (zh) 用於行動通訊系統之基地台及其資料傳輸方法
JP2016541163A (ja) ワイヤレスデバイスのリレー動作を変更するためのシステム、方法およびデバイス
US11510257B2 (en) Communications method and apparatus
WO2021130810A1 (ja) 基地局装置、端末装置、および無線通信システム
CN111565479B (zh) 通信方法及其装置、系统
JP2020061732A (ja) ハンドオーバーでのアップリンクベアラーバインディング
CN115442859A (zh) 信令风暴抑制方法、移动终端、电子设备及存储介质
JP2023539805A (ja) 機器の検索と登録方法、ネットワーク側機器
US20160308600A1 (en) Base station apparatus, terminal apparatus, and wireless access system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP