WO2021129839A1 - 接口信息的发送方法及设备 - Google Patents

接口信息的发送方法及设备 Download PDF

Info

Publication number
WO2021129839A1
WO2021129839A1 PCT/CN2020/139625 CN2020139625W WO2021129839A1 WO 2021129839 A1 WO2021129839 A1 WO 2021129839A1 CN 2020139625 W CN2020139625 W CN 2020139625W WO 2021129839 A1 WO2021129839 A1 WO 2021129839A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
mode
network element
supported
current working
Prior art date
Application number
PCT/CN2020/139625
Other languages
English (en)
French (fr)
Inventor
韩柳燕
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to EP20904956.8A priority Critical patent/EP4084406A4/en
Publication of WO2021129839A1 publication Critical patent/WO2021129839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0876Aspects of the degree of configuration automation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a method and device for sending interface information.
  • FlexE is a lightweight enhancement based on Ethernet.
  • MAC Ethernet media access control
  • PHY Ethernet physical layer
  • FlexE Shim Flex Shim layer
  • FlexE can realize the decoupling of Ethernet media access control (MAC) layer rate and Ethernet physical layer (PHY) rate.
  • Slicing Packet Network is a new generation of bearer network technology system, mainly for 5G bearers.
  • Metro Transport Network MTN, Metro Transport Network
  • SCL slice channel layer
  • SPN Slicing Channel Layer
  • OAM operation and maintenance management
  • the management and control system can be used to set which mode (state) an interface is working in, such as setting it to ordinary Ethernet, or setting it to FlexE mode or MTN mode.
  • mode state
  • MTN mode MobilityE mode
  • At least one embodiment of the present disclosure provides a method for sending interface information, a terminal, and a network device, which can implement interface information interaction between devices and provide technical support for device intercommunication.
  • At least one embodiment provides a method for sending interface information, including:
  • the interface mode includes Ethernet mode, flexible Ethernet FlexE mode, and At least one of the MTN modes of the metropolitan area transport network
  • the second network element is a neighboring network element of the first network element.
  • the interface mode further includes a flexible Ethernet-aware FlexE Aware mode and a metropolitan area transport network-aware MTN Aware mode.
  • the method further includes:
  • the interface modes supported by the first interface and the second interface configure the working mode of the first interface as a target interface mode, and the target interface mode is one supported by both the first interface and the second interface Interface mode.
  • the method when the received current working mode of the second interface includes two or more interface modes, the method further includes:
  • the interface mode with the highest capability level is selected as the current working mode of the second interface.
  • the step of configuring the working mode of the first interface as the target interface mode according to the interface modes supported by the first interface and the second interface respectively includes:
  • an interface mode with the highest capability level is selected as the target interface mode, and the working mode of the first interface is configured as the target interface mode.
  • the method further includes:
  • the first network element configures the first interface as a default interface mode.
  • the first network element further carries the interface mode supported by the first interface and/or the current working mode of the first interface on the link layer discovery protocol LLDP message.
  • the type length value TLV is sent to the second network element.
  • the first network element further receives the interface mode supported by the second interface of the second network element and the current working mode of the second interface from the TLV of the LLDP message.
  • the method further includes:
  • the first network element adjusts the channel through which the first interface sends the LLDP packet based on the current working mode of the second interface of the second network element.
  • adjusting the channel through which the first interface sends LLDP packets based on the current working mode of the second interface of the second network element includes:
  • the layer-to-layer Shim to Shim management channel is enabled on the first interface, where: The Shim to Shim management channel is used to transmit LLDP packets.
  • the section management channel is used to transmit the LLDP message.
  • adjusting the channel through which the first interface sends LLDP packets based on the current working mode of the second interface of the second network element includes:
  • the section management channel and the Shim to Shim management channel of the FlexE/MTN overhead frame are simultaneously used on the first interface to transmit the LLDP message.
  • At least one embodiment provides a first network element, including:
  • the interface information sending module is configured to send the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface to the second network element, wherein the interface mode includes the Ethernet mode At least one of a flexible Ethernet FlexE mode and a metropolitan area transport network MTN mode, and the second network element is a neighboring network element of the first network element.
  • the first network element further includes:
  • the interface information receiving module is configured to receive the interface mode supported by the second interface of the second network element and/or the current working mode of the second interface sent by the second network element;
  • the interface configuration module is configured to configure the working mode of the first interface as a target interface mode according to the interface modes supported by the first interface and the second interface, and the target interface mode is the first interface and the second interface.
  • At least one embodiment provides a first network element including a transceiver and a processor, wherein,
  • the transceiver is configured to send the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface to a second network element, wherein the interface mode includes an Ethernet mode At least one of a flexible Ethernet FlexE mode and a metropolitan area transport network MTN mode, and the second network element is a neighboring network element of the first network element.
  • the first network element further includes:
  • the transceiver is further configured to receive the interface mode supported by the second interface of the second network element and/or the current working mode of the second interface sent by the second network element;
  • the processor is configured to configure the working mode of the first interface to be a target interface mode according to the interface modes each supported by the first interface and the second interface, and the target interface mode is the first interface and the second interface An interface mode supported by both interfaces.
  • At least one embodiment provides a first network element, including: a processor, a memory, and a program stored on the memory and capable of running on the processor, the program being The processor implements the steps of the method for sending interface information as described above when executed.
  • At least one embodiment provides a computer-readable storage medium with a program stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned method is implemented. step.
  • the method and device for sending interface information realize the intercommunication of interface information between network elements, so that neighboring network elements can learn the interface capability information of the opposite end, thereby providing an interface between devices.
  • Compatibility and device intercommunication provide technical support.
  • this application solves the problem that the device needs to be able to distinguish the FlexE/MTN capability of its interface at the technical level, and automatically compatible with the configuration and intercommunication, including the configuration of the working mode and the compatible configuration of the overhead channel.
  • this application can avoid or reduce the problem of manual configuration.
  • the device can support multiple interface modes in hardware, and this application can be used for flexible negotiation and activation during application.
  • the first network element in this application also reports the acquired peer interface information to the management and control system or the network management, so as to solve the problem that the management and control system or the network management is difficult to obtain the peer capability information.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the disclosure
  • FIG. 2 is a flowchart of a method for sending interface information provided by an embodiment of the disclosure
  • FIG. 3 is another flowchart of a method for sending interface information provided by an embodiment of the disclosure
  • FIG. 4 is a schematic structural diagram of a first network element provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of another structure of the first network element provided by an embodiment of the disclosure.
  • the device Since the device does not know the network status of the opposite end, it is prone to configuration errors, which can cause intercommunication.
  • the device ports at both ends one end is the client, which is a normal Ethernet port, and the other end is an SPN device port, if SPN If the device port is set to MTN mode, the two cannot communicate with each other. Only when it is set to normal Ethernet mode can the two communicate with each other.
  • the device needs to be able to distinguish the FlexE/MTN capabilities of its interface at the technical level, because the FlexE/MTN in related technologies is based on the same basic frame format at the interface level, and there is no significant distinction, which is easy to cause confusion and network confusion. Related technologies have no distinguishing means at the protocol level.
  • embodiments of the present disclosure provide a method for sending interface information.
  • This application proposes a method for sending interface information.
  • the mode supported by the interface is advertised between network elements in order to achieve interface compatibility and Device interoperability provides support. Specifically, it can be used to advertise the interface information of this network element to neighboring network elements, for example, to advertise the interface's ability to support Ethernet, FlexE, and MTN and the current configuration working mode, so as to solve the above-mentioned different interfaces. Provide reference information on compatibility and interoperability of modes.
  • Figure 1 shows a schematic diagram of an application scenario of the present application.
  • the first network element 110 has a first interface 111
  • the second network element 120 has a second interface 121.
  • the first interface 111 of the first network element 110 is connected to the second interface 121 of the second network element 120.
  • the connection between the first interface 111 and the second interface 121 may be a wired connection or a wireless connection. Connection, this application does not specifically limit this.
  • the first network element 110 and the second network element 120 are neighbor network elements to each other, that is, there is a neighbor relationship between the two.
  • the following uses the first network element as an example to describe the method for sending interface information of the present application. It should be noted that due to the symmetry between the two ends of the communication, the first network element below can also be replaced with the second network element, and the second network element below can also be replaced with the first network element.
  • the method for sending interface information provided by an embodiment of the present disclosure when applied to the first network element side, includes:
  • Step 21 Send the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface to the second network element.
  • the interface mode may include at least one of an Ethernet mode, a FlexE mode, and an MTN mode
  • the second network element is a neighboring network element of the first network element.
  • the current working mode of the first interface may be any of the interface modes supported by the first interface.
  • the interface mode supported by the first interface may only include the FlexE mode and the MTN mode.
  • the interface modes supported by the first interface may include Ethernet mode, FlexE mode, MTN mode, and other more modes.
  • the first network element may send to the second network element information about the interface mode supported by the first interface of the first network element and/or the current status of the first interface through one or more messages.
  • Information about the working mode For example, through a message, the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface is sent.
  • the interface mode supported by the first interface of the first network element is sent through one message, and the current working mode of the first interface is sent through another message.
  • the second network element may send the interface mode supported by the second interface and/or the current working mode of the second interface to the first network element through one or more messages. For example, through one message, the interface mode supported by the second interface and/or the current working mode of the second interface is sent. For another example, the interface mode supported by the second interface is sent through one message, and the current working mode of the second interface is sent through another message.
  • MTN Termination mode MTN Termination mode
  • FlexE mode FlexE Termination mode
  • the foregoing message may be a message based on the Link Layer Discovery Protocol (LLDP) or other related protocols, or a newly defined message of a new type.
  • LLDP Link Layer Discovery Protocol
  • the LLDP protocol is usually used to automatically discover neighboring network elements, and the embodiments of the present disclosure can be appropriately extended as the interface mode supported by the first interface carrying the first network element and/or the current interface mode of the first interface.
  • Working mode packet to indicate the interface mode supported by the local interface and the current working mode of the local interface.
  • TLV Type-Length-Value
  • Table 1 The specific format of TLV is shown in Table 1:
  • the LLDP message can also indicate the current working mode of the interface. Under normal circumstances, only one working mode can be identified as the current working mode in the message. Assuming that multiple working modes in the received message are identified as the current working mode, the receiving end can increase the level of capability according to the following: In the lowest order, the one with the highest capability level among the identified working modes is taken as the current working mode: MTN mode, FlexE mode, MTN Aware mode, FlexE Aware mode, Ethernet mode. That is, the ability level of each of the above modes gradually decreases.
  • the embodiment of the present disclosure may also extend the TLV format in the LLDP message to indicate the current working mode of the local interface.
  • the following provides an example of the above TLV format.
  • the specific format of TLV is the same as that shown in Table 1, and the example of filling in each field is shown in Table 3:
  • this application realizes the intercommunication of interface information between network elements, so that neighboring network elements can learn the interface capability information of the opposite end, thereby providing technical support for interface compatibility and device intercommunication between devices.
  • the interface mode may further include a flexible Ethernet awareness (FlexE Aware) mode and a metropolitan area transport network awareness (MTN Aware) mode.
  • FlexE Aware flexible Ethernet awareness
  • MTN Aware metropolitan area transport network awareness
  • another method for sending interface information provided by an embodiment of the present disclosure, when applied to the first network element side includes:
  • Step 31 Send the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface to the second network element.
  • Step 32 Receive the interface mode supported by the second interface of the second network element and/or the current working mode of the second interface sent by the second network element.
  • the interface mode supported by the first interface or the second interface may be one or more of Ethernet mode, FlexE mode and MTN mode, FlexE Aware and MTN Aware.
  • the second network element is a neighboring network element of the first network element.
  • the current working mode of the first interface may be any of the interface modes supported by the first interface.
  • the current working mode of the second interface may be any of the interface modes supported by the second interface.
  • the interface mode supported by the first interface may only include the FlexE mode and the MTN mode.
  • the interface modes supported by the first interface may include Ethernet mode, FlexE mode, MTN mode, and other more modes.
  • the interface modes supported by the second interface may only include the FlexE mode and the MTN mode.
  • the interface modes supported by the second interface may include Ethernet mode, FlexE mode, MTN mode, and other more modes.
  • the first network element can select the interface mode with the highest capability level from the two or more interface modes, As the current working mode of the second interface.
  • the capability levels of various interface modes may be predefined.
  • the first network element may perform step 31 and then perform step 32, or may perform step 32 and then perform step 31.
  • the first network element may also perform step 31 and step 32 at the same time.
  • the first network element receives information such as the interface mode supported by the second interface and the current working mode sent by the second network element, it can also change the interface mode supported by the second interface of the second network element and The current working mode and other information are reported to the management and control system.
  • Step 33 The first network element configures the working mode of the first interface to be the target interface mode according to the interface modes supported by the first interface and the second interface, and the target interface mode is the first interface An interface mode supported by both the second interface.
  • the first network element may configure the working mode of the first interface to an interface mode supported by both the first interface and the second interface according to the interface modes supported by the local and opposite interfaces, that is, Describe the target interface mode.
  • the target interface mode is the same as the current working mode of the first interface, no configuration processing may be performed at this time, and when the target interface mode is the same as the current working mode of the first interface, you can reconfigure The working mode of the first interface is adjusted to the target interface mode.
  • the embodiments of the present disclosure can configure the working mode of the local interface according to the capabilities of the local and opposite interfaces, so that the devices at both ends can communicate based on the same interface mode, ensuring the intercommunication between the devices.
  • the first network element and the second network element when configuring the target interface mode in step 33, can be configured according to the same rule, which can ensure that the interface modes configured at both ends are the same.
  • at least one interface mode supported by both the first interface and the second interface can be determined; then, from the at least one interface mode, an interface mode with a higher or highest capability level is selected as the interface mode.
  • the target interface mode is described, and the working mode of the first interface is configured as the target interface mode.
  • MTN mode MTN mode
  • FlexE mode MTN Aware mode
  • FlexE Aware mode MTN Aware mode
  • Ethernet mode MTN Aware mode
  • the following provides several examples of configuring target working modes. It is assumed that the first interface of the first network element supports the above 5 modes:
  • the first network element configures the local interface (ie, the first interface) to MTN mode.
  • the first network element configures the local interface as the Ethernet mode.
  • step 33 in the foregoing step 33:
  • the first network element uses the first interface and Select the interface mode with the highest capability level among the current working modes of the second interface as the target interface mode, and configure the working mode of the first interface as the target interface mode;
  • the first network element determines At least one interface mode supported by both the first interface and the second interface, from the at least one interface mode, the interface mode with the highest capability level is selected as the target interface mode, and the interface mode of the first interface The working mode is configured as the target interface mode.
  • the first network element configures the first interface as the default interface mode, for example, the interface with the lowest capability level mode. Specifically, when the first network element cannot receive the interface mode information supported by the second interface sent by the second network element at the opposite end, the first network element first configures the local interface to Ethernet mode, and then waits for the management and control system to determine the subsequent Configuration of working mode.
  • the LLDP message when the first interface works in the FlexE mode or the MTN mode, the LLDP message may be transmitted in the section management channel.
  • the foregoing method can be applied to a scenario where the physical connection relationship between the first network element and the second network element is a direct connection.
  • the first network element may also adjust the channel through which the first interface sends the LLDP packet based on the current working mode of the second interface of the second network element.
  • the first interface works in FlexE mode or MTN mode
  • the current working mode of the second interface is FlexE mode or MTN aware mode
  • Shim to Shim is enabled on the first interface.
  • Management channel where the Shim to Shim management channel is used to transmit LLDP packets.
  • the first interface works in FlexE mode or MTN mode
  • the current working mode of the second interface is FlexE mode or MTN aware mode
  • FlexE/ The Section management channel and Shim to Shim management channel of the MTN overhead frame transmit the LLDP message.
  • the LLDP protocol When the local interface works in FlexE or MTN mode, the LLDP protocol usually defaults to the section management channel of FlexE/MTN overhead frames for transmission. If the network element connected to the opposite end sends a message indicating that the current working mode is FlexE/MTN aware mode, the local network element will use the Shim to Shim management channel of the FlexE/MTN overhead frame at the same time on the local interface after receiving it. Transmit LLDP packets. This can ensure that the Shim to Shim management channel can traverse the intermediate FlexE/MTN aware network to reach the opposite end, and prevent the intercommunication problem of the LLDP protocol channel when traversing the intermediate FlexE/MTN aware network.
  • the first network element may predict the current working mode of the second interface of the second network element in the following manner, and then in step 21 or step 31, according to the prediction To the current working mode of the second interface, send information such as the interface mode and/or current working mode supported by the first interface to the second network element, and, in step 32, according to the predicted current working mode of the second interface , Receiving information such as the interface mode and/or current working mode supported by the second interface sent by the second network element:
  • the first network element can send one or more LLDP packets to the second network element through the Section management channel (fourth and fifth code blocks) of the FlexE/MTN overhead frame ,
  • the one or more packets carry information such as the interface mode and/or current working mode supported by the first interface;
  • the first network element may use the Section management channel of the FlexE/MTN overhead frame (fourth And the fifth code block), receive one or more LLDP messages sent by the second network element, and obtain the interface mode information and/or current working mode supported by the second interface from the corresponding TLV field of the received LLDP message Information.
  • the first network element fails to detect the MTN frame structure or the FlexE frame structure identifier sent by the second network element, it can be predicted that the second interface of the second network element works in Ethernet mode (standard Ethernet mode) .
  • the first network element sends one or more LLDP packets to the second network element on the first interface according to the IEEE standard Ethernet interface mode, which is used to indicate the first interface Supported interface mode and/or current working mode and other information; in the above step 32, the first network element can receive one or more LLDP packets sent by the second network element through the second interface according to the IEEE standard Ethernet interface mode , And obtain the interface mode information and/or current working mode information supported by the second interface from the corresponding TLV field of the received LLDP message.
  • an embodiment of the present disclosure provides a first network element 40, including:
  • the interface information sending module 41 is configured to send the interface mode supported by the first interface of the first network element and/or the current working mode of the first interface to the second network element, where the interface mode includes Ethernet At least one of a mode, a flexible Ethernet FlexE mode, and a metropolitan area transport network MTN mode, and the second network element is a neighboring network element of the first network element.
  • the first network element further includes the following modules (not shown in the figure):
  • the interface information receiving module is configured to receive the interface mode supported by the second interface of the second network element and/or the current working mode of the second interface sent by the second network element;
  • the interface configuration module is configured to configure the working mode of the first interface as a target interface mode according to the interface modes supported by the first interface and the second interface, and the target interface mode is the first interface and the second interface.
  • the interface mode further includes a flexible Ethernet-aware FlexE Aware mode and a metropolitan area transport network-aware MTN Aware mode.
  • the first network element further includes the following modules (not shown in the figure):
  • the mode determination module is configured to select the interface mode with the highest capability level from the two or more interface modes when the received current working mode of the second interface includes more than two interface modes, as the interface mode with the highest capability level. Describe the current working mode of the second interface.
  • the interface configuration module is further configured to determine at least one interface mode supported by both the first interface and the second interface; from the at least one interface mode, select the interface mode with the highest capability level As the target interface mode, and configure the working mode of the first interface as the target interface mode.
  • the interface configuration module is also used for:
  • the first network element supports the current working mode of the second interface
  • the second network element supports the current working mode of the first interface
  • the first network element does not support the current working mode of the second interface, or the second network element does not support the current working mode of the first interface, determine the first interface and the first interface At least one interface mode supported by both interfaces, from the at least one interface mode, the interface mode with the highest capability level is selected as the target interface mode, and the working mode of the first interface is configured as the Target interface mode.
  • the interface configuration module is further configured to configure the first interface as a default by the first network element when the first network element does not obtain the interface mode supported by the second network element Interface mode.
  • the interface information sending module is further configured to carry the interface mode supported by the first interface and/or the current working mode of the first interface on the type length of the link layer discovery protocol LLDP message
  • the value TLV is sent to the second network element.
  • the interface information sending module is further configured to receive the interface mode supported by the second interface of the second network element and the current working mode of the second interface from the TLV of the LLDP message.
  • the first network element further includes the following modules (not shown in the figure):
  • the channel adjustment module is configured to adjust the channel through which the first interface sends the link layer discovery protocol LLDP message based on the current working mode of the second interface of the second network element.
  • the channel adjustment module is also used to enable the first interface if the current working mode of the second interface is FlexE mode or MTN aware mode when the first interface is working in FlexE mode or MTN mode.
  • the LLDP message is transmitted in the section management channel.
  • the channel adjustment module is also used to if the current working mode of the second interface is FlexE mode or MTN aware mode, simultaneously use the section management channel and Shim to Shim management of the FlexE/MTN overhead frame on the first interface
  • the channel transmits the LLDP message.
  • the channel adjustment module is further configured to, when the first interface is working in FlexE mode or MTN mode, if the current working mode of the second interface is FlexE mode or MTN aware mode, it is still on the first interface. Enable the section management channel of the FlexE/MTN overhead frame.
  • an embodiment of the present disclosure provides a schematic structural diagram of a first network element 500, including: a processor 501, a transceiver 502, a memory 503, and a bus interface, where:
  • the first network element 500 further includes: a program that is stored in the memory 503 and can run on the processor 501, and when the program is executed by the processor 501, the following steps are implemented:
  • the interface mode includes Ethernet mode, flexible Ethernet FlexE mode, and At least one of the MTN modes of the metropolitan area transport network
  • the second network element is a neighboring network element of the first network element.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 501 and various circuits of the memory represented by the memory 503 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 502 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 503 can store data used by the processor 501 when performing operations.
  • a computer-readable storage medium on which a program is stored, and the program is executed by a processor to implement the following steps:
  • the interface mode includes Ethernet mode, flexible Ethernet FlexE mode, and At least one of the MTN modes of the metropolitan area transport network
  • the second network element is a neighboring network element of the first network element.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the disclosure.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a certain chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Communication Control (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开提供了一种接口信息的发送方法及设备,该方法包括:向第二网元发送第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。

Description

接口信息的发送方法及设备
相关申请的交叉引用
本申请主张在2019年12月27日在中国提交的中国专利申请号No.201911378452.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种接口信息的发送方法及设备。
背景技术
随着移动通信、数据中心和互联网等不同承载传输需求的发展,传输接口也随着技术不断演进和变化。
针对数据中心等大带宽传送需求,在传统以太网技术基础上,提出了灵活以太网(FlexE,Flex Ethernet)技术。FlexE是基于以太网的轻量级增强,在以太网L2的以太媒体接入控制(MAC)层和L1的以太物理层(PHY)之间的中间层增加垫层(FlexE Shim),Flex Shim层基于时分复用分发机制,将多个客户端口的数据按照时隙方式调度并分发至多个不同的子通道。FlexE可以实现以太媒体接入控制(MAC)层速率与以太物理层(PHY)速率的解耦。
切片分组网(SPN,Slicing Packet Network)是新一代承载网技术体系,主要面向5G承载。城域传送网(MTN,Metro Transport Network)则是ITU-T的传输技术标准体系,主要对应SPN的(硬)切片通道层(SCL,Slicing Channel Layer)和接口,包括切片路径层(Path layer)和切片段层(Section Layer)。MTN的接口兼容FlexE但不是FlexE,SPN/MTN在Section层兼容FlexE接口帧格式的基础上增加了端到端组网的Path层以及其相应的操作维护管理(OAM,Operation Administration and Maintenance)、性能监视和保护等功能。
由此可见,传统的以太网、FlexE和MTN是不同的接口和技术。目前设备在实现时,为了兼容各大场景,通常接口板卡可以灵活设置接口工作在普 通以太网或者工作在FlexE/MTN等模式。
相关技术,对于接口支持多种模式的设备,可以通过管控系统设置其某个接口工作在什么模式(状态),比如设置其为普通以太网,或者设置其为FlexE模式或者MTN模式。而由于设备接口模式的多样性,因此可能发生因接口模式不兼容而影响到设备互通的问题。
发明内容
本公开的至少一个实施例提供了一种接口信息的发送方法、终端及网络设备,可以实现设备间的接口信息的交互,为设备互通提供技术支持。
根据本公开的一个方面,至少一个实施例提供了一种接口信息的发送方法,包括:
向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
根据本公开的至少一个实施例,所述接口模式还包括灵活以太网感知FlexE Aware模式和城域传送网感知MTN Aware模式。
根据本公开的至少一个实施例,所述方法还包括:
接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
根据本公开的至少一个实施例,在接收到的所述第二接口的当前工作模式包括两种以上的接口模式时,所述方法还包括:
从所述两种以上的接口模式中,选择出能力级别最高的接口模式,作为所述第二接口的当前工作模式。
根据本公开的至少一个实施例,所述根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式的步骤,包 括:
确定所述第一接口和第二接口均支持的至少一种接口模式;
从所述至少一种接口模式中,选择出能力级别最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
根据本公开的至少一个实施例,在所述第一网元未获取到第二网元支持的接口模式的情况下,所述方法还包括:
所述第一网元将所述第一接口配置为默认接口模式。
根据本公开的至少一个实施例,所述第一网元进一步将所述第一接口支持的接口模式和/或所述第一接口的当前工作模式,承载于链路层发现协议LLDP报文的类型长度值TLV中发送给所述第二网元。
根据本公开的至少一个实施例,所述第一网元进一步从LLDP报文的TLV中,接收所述第二网元的第二接口支持的接口模式以及所述第二接口的当前工作模式。
根据本公开的至少一个实施例,所述方法还包括:
第一网元基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道。
根据本公开的至少一个实施例,基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道,包括:
在第一接口工作在FlexE模式或MTN模式的情况下,若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口启用垫层到垫层Shim to Shim管理通道,其中,所述Shim to Shim管理通道用于传输LLDP报文。
根据本公开的至少一个实施例,在第一接口工作在FlexE模式或MTN模式的情况下,使用段Section管理通道传输所述LLDP报文。
根据本公开的至少一个实施例,基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道,包括:
若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口同时使用FlexE/MTN开销帧的段Section管理通道和Shim to Shim管理通道传输所述LLDP报文。
根据本公开的另一方面,至少一个实施例提供了一种第一网元,包括:
接口信息发送模块,用于向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
根据本公开的至少一个实施例,所述第一网元还包括:
接口信息接收模块,用于接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
接口配置模块,用于根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
根据本公开的另一方面,至少一个实施例提供了一种第一网元,包括收发机和处理器,其中,
所述收发机,用于向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
根据本公开的至少一个实施例,所述第一网元还包括:
所述收发机,还用于接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
所述处理器,用于根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
根据本公开的另一方面,至少一个实施例提供了一种第一网元,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如上所述的接口信息的发送方法的步骤。
根据本公开的另一方面,至少一个实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时,实现如上所述的方法的步骤。
与相关技术相比,本公开实施例提供的接口信息的发送方法及设备,实现了网元间的接口信息的互通,这样相邻网元可以获知对端的接口能力信息,从而为设备间的接口兼容和设备互通提供了技术支持。另外,本申请解决了设备需要在技术层面能够区分其接口的FlexE/MTN能力,并且自动兼容配置互通的问题,包括工作模式的配置以及开销通道的兼容配置等。另外,对于移动通信、数据中心和互联网等不同承载传输需求,本申请可以避免或减少人工配置的问题,设备可以在硬件支持多种接口模式,而在应用时利用本申请进行灵活的协商启用。另外,本申请中第一网元还将获取到的对端接口信息上报给管控系统或网管,从而可以解决管控系统或者网管难以获知对端能力信息的问题。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例的一种应用场景示意图;
图2为本公开实施例提供的接口信息的发送方法的一种流程图;
图3为本公开实施例提供的接口信息的发送方法的另一种流程图;
图4为本公开实施例提供的第一网元的一种结构示意图;
图5为本公开实施例提供的第一网元的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的 数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
如背景技术中所述的,相关技术中设备之间通常会因为接口工作模式的多样性而存在以下问题:
1、由于设备不知道对端连接的网络状态,容易出现配置错误问题,造成无法互通,例如,两端设备端口,一端是客户端,为普通以太网端口,另一端是SPN设备端口,如果SPN设备端口设置为MTN模式,则两者无法互通,只有将其设置为普通以太网模式才能实现互通。
2、设备需要在技术层面能够区分其接口的FlexE/MTN能力,因为相关技术中的FlexE/MTN在接口层面基于同样的基本帧格式,没有显著区分,容易形成混淆和组网的混乱。相关技术没有协议层面的区分手段。
为解决以上问题中的至少一个,本公开实施例提供了一种接口信息的发送方法,本申请提出一种接口信息的发送方法,在网元之间通告接口支持的模式,为实现接口兼容和设备互通提供了支持,具体的,可用于将本网元接口信息通告给邻居网元,例如,通告该接口支持以太网、FlexE和MTN的能力及当前配置工作模式,从而可以为解决上述不同接口模式的兼容和互通问题提供参考信息。
图1给出了本申请的一种应用场景的示意图。第一网元110有第一接口111,第二网元120有第二接口121。第一网元110的第一接口111,与所述 第二网元120的第二接口121连接,这里,第一接口111和第二接口121之间的连接可以是有线连接,也可以是无线连接,本申请对此不作具体限定。上述场景中,第一网元110和第二网元120互为邻居网元,即两者之间存在邻居关系。
以下以第一网元为例,对本申请的接口信息的发送方法进行说明。需要说明的是,由于通信两端的对称性,下文中的第一网元也可以替换为第二网元,下文中的第二网元也可以替换为第一网元。
请参照图2,本公开实施例提供的一种接口信息的发送方法,在应用于第一网元侧时,包括:
步骤21,向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式。
这里,所述接口模式可以包括以太网模式、FlexE模式和MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。所述第一接口的当前工作模式可以是第一接口支持的接口模式中的任一种。
例如,所述第一接口支持的接口模式可以仅包括FlexE模式和MTN模式。又例如,所述第一接口支持的接口模式可以包括以太网模式、FlexE模式和MTN模式以及其他更多的模式。
具体的,第一网元可以通过一个或多个报文,向所述第二网元发送所述第一网元的第一接口支持的接口模式的信息和/或所述第一接口的当前工作模式的信息。例如,通过一个报文,发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式。又例如,通过一个报文发送所述第一网元的第一接口支持的接口模式,通过另一个报文发送所述第一接口的当前工作模式。
类似的,第二网元可以通过一个或多个报文,向所述第一网元发送所述第二接口支持的接口模式和/或所述第二接口的当前工作模式。例如,通过一个报文,发送所述第二接口支持的接口模式和/或所述第二接口的当前工作模式。又例如,通过一个报文发送所述第二接口支持的接口模式,通过另一个报文发送所述第二接口的当前工作模式。
另外,需要说明的是,本文中所述的MTN模式有时候也被称作MTN  Termination模式,所述的FlexE模式有时候也被称作FlexE Termination模式。
另外,上述报文可以为基于链路层发现协议(Link Layer Discovery Protocol,LLDP)或其他相关协议的报文,也可以是新定义一种新类型的报文。这里,LLDP协议通常用于自动发现邻居网元,本公开实施例可以对其进行适当扩展后作为承载所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式的报文,以指示本端接口支持的接口模式以及本端接口的当前工作模式。
下面提供扩展LLDP报文中的类型-长度-值(TLV,Type-Length-Value)格式来指示本端接口支持的接口模式的一个示例。TLV的具体格式如表1所示:
Figure PCTCN2020139625-appb-000001
表1
TLV各个字段的填写示例如表2所示:
Figure PCTCN2020139625-appb-000002
Figure PCTCN2020139625-appb-000003
表2
假设接口支持配置为以太网、FlexE和MTN模式,则需要同时标识dataField中的Bit0、Bit1和Bit2,即都设置为1。
另外,LLDP报文还可以指示接口的当前工作模式。通常情况下,只能有一种工作模式在报文中被标识为当前工作模式,假设收到的报文中有多个工作模式被标识为当前工作模式,则接收端可以按以下能力级别由高到低的顺序,在被标识的工作模式中取能力级别最高的一个工作模式,作为当前工作模式:MTN模式、FlexE模式、MTN Aware模式、FlexE Aware模式、以太网模式。即上述各个模式的能力级别逐渐降低。
类似的,本公开实施例也可以扩展LLDP报文中的TLV格式来指示本端接口的当前工作模式,下面提供上述TLV格式的一个示例。TLV的具体格式与表1所示相同,其各个字段的填写示例如表3所示:
Figure PCTCN2020139625-appb-000004
Figure PCTCN2020139625-appb-000005
表3
通过以上步骤,本申请实现了网元间的接口信息的互通,这样相邻网元可以获知对端的接口能力信息,从而为设备间的接口兼容和设备互通提供了技术支持。
根据本公开的至少一个实施例,所述接口模式还可以包括灵活以太网感知(FlexE Aware)模式和城域传送网感知(MTN Aware)等模式。当然,随着接口技术的发展,未来可能出现新的接口模式,本申请的所述步骤21中通告的接口模式还可以包括这些新的接口模式。
请参照图3,本公开实施例提供的另一种接口信息的发送方法,在应用于第一网元侧时,包括:
步骤31,向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式。
步骤32,接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式。
这里,所述第一接口或第二接口所支持的接口模式可以是以太网模式、FlexE模式和MTN模式、FlexE Aware和MTN Aware中的一种或多种。所述第二网元为所述第一网元的邻居网元。所述第一接口的当前工作模式可以是第一接口支持的接口模式中的任一种。所述第二接口的当前工作模式可以是第二接口支持的接口模式中的任一种。
例如,所述第一接口支持的接口模式可以仅包括FlexE模式和MTN模式。又例如,所述第一接口支持的接口模式可以包括以太网模式、FlexE模式和MTN模式以及其他更多的模式。
类似的,所述第二接口支持的接口模式可以仅包括FlexE模式和MTN模式。又例如,所述第二接口支持的接口模式可以包括以太网模式、FlexE模式和MTN模式以及其他更多的模式。
另外,如果接收到的所述第二接口的当前工作模式包括两种以上的接口模式,此时第一网元可以从所述两种以上的接口模式中,选择出能力级别最高的接口模式,作为所述第二接口的当前工作模式。本公开实施例中,各种 接口模式的能力级别可以是预先定义的。
另外,需要说明的是,以上步骤31和32之间并无严格的先后顺序关系,第一网元可以是先执行步骤31再执行步骤32,也可以先执行步骤32再执行步骤31。当然,第一网元也可能同时执行步骤31和步骤32。
另外,第一网元在收到第二网元发送的第二接口所支持的接口模式以及当前工作模式等信息后,还可以将所述第二网元的第二接口所支持的接口模式以及当前工作模式等信息上报给管控系统。
步骤33,所述第一网元根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
这里,第一网元可以根据本端以及对端接口各自支持的接口模式,将所述第一接口的工作模式配置为所述第一接口和第二接口均支持的一种接口模式,即所述目标接口模式。
如果所述目标接口模式与所述第一接口的当前工作模式相同,此时可以不执行任何配置处理,而在所述目标接口模式与所述第一接口的当前工作模式相同,可以通过重新配置第一接口的工作模式,将其调整为所述目标接口模式。
通过以上步骤,本公开实施例可以根据本端和对端接口的能力,配置本端接口的工作模式,从而使得两端设备可以基于相同的接口模式进行通信,保证了设备间的互通。
根据本公开的至少一个实施例,在步骤33中配置所述目标接口模式时,第一网元和第二网元可以按照相同的规则进行配置,这样可以保证两端所配置的接口模式相同。在步骤33中,可以确定所述第一接口和第二接口均支持的至少一种接口模式;然后,从所述至少一种接口模式中,选择出能力级别较高或最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
假设各种模式的能力级别由高到低的顺序为:MTN模式、FlexE模式、MTN Aware模式、FlexE Aware模式、以太网模式。下面提供几种配置目标工作模式的若干示例,这里假设第一网元的第一接口支持以上5种模式:
A)当对端接口(即第二接口)支持MTN模式或者MTN Aware模式时,第一网元将本端接口(即第一接口)配置为MTN模式。
B)当对端接口不支持MTN模式或者MTN Aware模式,仅支持FlexE模式或者FlexE Aware模式时,第一网元将本端接口配置为FlexE模式。
C)当对端接口仅支持以太网模式时,第一网元将本端接口配置为以太网模式。
根据本公开的至少一个实施例,上述步骤33中:
在所述第一网元支持所述第二接口的当前工作模式,且所述第二网元支持所述第一接口的当前工作模式的情况下,第一网元从所述第一接口和第二接口的当前工作模式中选择出能力级别最高的接口模式,作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式;以及,
在所述第一网元不支持所述第二接口的当前工作模式,或者,所述第二网元不支持所述第一接口的当前工作模式的情况下,所述第一网元确定所述第一接口和第二接口均支持的至少一种接口模式,从所述至少一种接口模式中,选择出能力级别最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
另外,在所述第一网元未获取到第二网元支持的接口模式的情况下,所述第一网元将所述第一接口配置为默认接口模式,例如配置为能力级别最低的接口模式。具体的,当第一网元无法收到对端的第二网元发送的第二接口支持的接口模式信息时,第一网元首先将本端接口配置为以太网模式,然后等待管控系统决定后续工作模式的配置。
根据本公开的至少一个实施例,在第一接口工作在FlexE模式或MTN模式的情况下,可以在段Section管理通道传输所述LLDP报文。上述方式可以应用于第一网元与第二网元的物理连接关系是直连的场景下。
根据本公开的至少一个实施例,第一网元还可以基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道。具体的,在第一接口工作在FlexE模式或MTN模式的情况下,若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口启用垫层到垫层(Shim to Shim)管理通道,其中,所述Shim to Shim管理通道用于传输LLDP报文。上述方 式可以应用于第一网元与第二网元的逻辑连接关系是直连的场景下。
根据本公开的至少一个实施例,在第一接口工作在FlexE模式或MTN模式的情况下,如果第二接口的当前工作模式为FlexE模式或MTN aware模式,则可以在第一接口同时使用FlexE/MTN开销帧的段Section管理通道和Shim to Shim管理通道传输所述LLDP报文。
由于本端接口工作在FlexE或者MTN模式时,LLDP协议通常默认在FlexE/MTN开销帧的Section管理通道进行传送。如果对端连接的网元发送了指示当前工作模式为FlexE/MTN aware模式的报文,则本端网元收到之后,将在本端接口同时使用FlexE/MTN开销帧的Shim to Shim管理通道传送LLDP报文。这样可以保证Shim to Shim管理通道可以穿越中间FlexE/MTN aware的网络到达对端,防止在穿越中间FlexE/MTN aware的网络时发生LLDP协议通道的互通问题。
另外,需要说明的是,在步骤21和步骤31之前,所述第一网元可以按照以下方式预测第二网元的第二接口的当前工作模式,进而在步骤21或步骤31中,根据预测到的第二接口的当前工作模式,向第二网元发送第一接口支持的接口模式和/或当前工作模式等信息,以及,在步骤32中,根据预测到的第二接口的当前工作模式,接收第二网元发送的第二接口支持的接口模式和/或当前工作模式等信息:
1)当第一网元检测到第二网元发送的MTN帧结构或FlexE帧结构标识符(0x4B+0x5)时,则可以预测第二网元的第二接口至少工作在MTN/FlexE模式。此时,在上述步骤21/步骤31中,第一网元可以通过FlexE/MTN开销帧的Section管理通道(第四及第五码块),向第二网元发送一个或多个LLDP报文,该一个或多个报文携带有第一接口支持的接口模式和/或当前工作模式等信息;在上述步骤32中,第一网元可以通过FlexE/MTN开销帧的Section管理通道(第四及第五码块),接收第二网元发送的一个或多个LLDP报文,并从接收到的LLDP报文的对应TLV字段中获得第二接口支持的接口模式信息和/或当前工作模式的信息。
2)当第一网元未能检测到第二网元发送的MTN帧结构或FlexE帧结构标识符时,则可以预测第二网元的第二接口工作在以太网模式(标准以太网 模式)。此时,在上述步骤21/步骤31中,第一网元在第一接口上,按照IEEE标准以太网接口模式,向第二网元发送一个或多个LLDP报文,用于指示第一接口支持的接口模式和/或当前工作模式等信息;在上述步骤32中,第一网元可以按照IEEE标准以太网接口模式,接收第二网元通过第二接口发送的一个或多个LLDP报文,并从接收到的LLDP报文的对应TLV字段中获得第二接口支持的接口模式信息和/或当前工作模式的信息。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
请参照图4,本公开实施例提供了一种第一网元40,包括:
接口信息发送模块41,用于向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
可选的,所述第一网元还包括以下模块(图中未示出):
接口信息接收模块,用于接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
接口配置模块,用于根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
可选的,所述接口模式还包括灵活以太网感知FlexE Aware模式和城域传送网感知MTN Aware模式。
可选的,所述第一网元还包括以下模块(图中未示出):
模式确定模块,用于在接收到的所述第二接口的当前工作模式包括两种以上的接口模式时,从所述两种以上的接口模式中,选择出能力级别最高的接口模式,作为所述第二接口的当前工作模式。
可选的,所述接口配置模块,还用于确定所述第一接口和第二接口均支持的至少一种接口模式;从所述至少一种接口模式中,选择出能力级别最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
可选的,所述接口配置模块,还用于:
在所述第一网元支持所述第二接口的当前工作模式,且所述第二网元支持所述第一接口的当前工作模式的情况下,从所述第一接口和第二接口的当前工作模式中选择出能力级别最高的接口模式,作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式;以及,
在所述第一网元不支持所述第二接口的当前工作模式,或者,所述第二网元不支持所述第一接口的当前工作模式的情况下,确定所述第一接口和第二接口均支持的至少一种接口模式,从所述至少一种接口模式中,选择出能力级别最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
可选的,所述接口配置模块,还用于在所述第一网元未获取到第二网元支持的接口模式的情况下,所述第一网元将所述第一接口配置为默认接口模式。
可选的,所述接口信息发送模块,还用于将所述第一接口支持的接口模式和/或所述第一接口的当前工作模式,承载于链路层发现协议LLDP报文的类型长度值TLV中发送给所述第二网元。
可选的,所述接口信息发送模块,还用于从LLDP报文的TLV中,接收所述第二网元的第二接口支持的接口模式以及所述第二接口的当前工作模式。
可选的,所述第一网元还包括以下模块(图中未示出):
通道调整模块,用于基于第二网元的第二接口的当前工作模式,调整第一接口发送链路层发现协议LLDP报文的通道。
可选的,所述通道调整模块,还用于在第一接口工作在FlexE模式或MTN模式的情况下,若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口启用垫层到垫层Shim to Shim管理通道,其中,所述Shim to Shim管理通道用于传输LLDP报文。
可选的,在第一接口工作在FlexE模式或MTN模式的情况下,在段Section管理通道传输所述LLDP报文。
可选的,所述通道调整模块,还用于若第二接口的当前工作模式为FlexE模式或MTN aware模式,在第一接口同时使用FlexE/MTN开销帧的段Section 管理通道和Shim to Shim管理通道传输所述LLDP报文。
可选的,所述通道调整模块,还用于在第一接口工作在FlexE模式或MTN模式的情况下,若第二接口的当前工作模式为FlexE模式或MTN aware模式,则还在第一接口启用FlexE/MTN开销帧的段Section管理通道。
请参考图5,本公开实施例提供了第一网元500的一结构示意图,包括:处理器501、收发机502、存储器503和总线接口,其中:
在本公开实施例中,第一网元500还包括:存储在存储器上503并可在处理器501上运行的程序,所述程序被处理器501执行时实现如下步骤:
向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
可理解的,本公开实施例中,所述计算机程序被处理器501执行时可实现上述图1或2所示的接口信息的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器501负责管理总线架构和通常的处理,存储器503可以存储处理器501在执行操作时所使用的数据。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现以下步骤:
向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
该程序被处理器执行时能实现上述接口信息的发送方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有 的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种接口信息的发送方法,应用于第一网元,包括:
    向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
  2. 如权利要求1所述的方法,其特征在于,所述接口模式还包括灵活以太网感知FlexE Aware模式和城域传送网感知MTN Aware模式。
  3. 如权利要求1或2所述的方法,还包括:
    接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
    根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
  4. 如权利要求3所述的方法,其中,在接收到的所述第二接口的当前工作模式包括两种以上的接口模式时,所述方法还包括:
    从所述两种以上的接口模式中,选择出能力级别最高的接口模式,作为所述第二接口的当前工作模式。
  5. 如权利要求3所述的方法,其中,所述根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式的步骤,包括:
    确定所述第一接口和第二接口均支持的至少一种接口模式;
    从所述至少一种接口模式中,选择出能力级别最高的接口模式作为所述目标接口模式,并将所述第一接口的工作模式配置为所述目标接口模式。
  6. 如权利要求1或2所述的方法,其中,
    在所述第一网元未获取到第二网元支持的接口模式的情况下,所述方法还包括:
    所述第一网元将所述第一接口配置为默认接口模式。
  7. 如权利要求1或2所述的方法,其中,
    所述第一网元进一步将所述第一接口支持的接口模式和/或所述第一接口的当前工作模式,承载于链路层发现协议LLDP报文的类型长度值TLV中发送给所述第二网元。
  8. 如权利要求3所述的方法,其中,
    所述第一网元进一步从LLDP报文的TLV中,接收所述第二网元的第二接口支持的接口模式以及所述第二接口的当前工作模式。
  9. 如权利要求1或2所述的方法,还包括:
    第一网元基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道。
  10. 如权利要求9所述的方法,其中,基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道,包括:
    在第一接口工作在FlexE模式或MTN模式的情况下,若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口启用垫层到垫层Shim to Shim管理通道,其中,所述Shim to Shim管理通道用于传输LLDP报文。
  11. 如权利要求7所述的方法,其中,
    在第一接口工作在FlexE模式或MTN模式的情况下,使用段Section管理通道传输所述LLDP报文。
  12. 如权利要求11所述的方法,其中,基于第二网元的第二接口的当前工作模式,调整第一接口发送LLDP报文的通道,包括:
    若第二接口的当前工作模式为FlexE模式或MTN aware模式,则在第一接口同时使用FlexE/MTN开销帧的段Section管理通道和Shim to Shim管理通道传输所述LLDP报文。
  13. 一种第一网元,包括:
    接口信息发送模块,用于向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
  14. 如权利要求13所述的第一网元,还包括:
    接口信息接收模块,用于接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
    接口配置模块,用于根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
  15. 一种第一网元,包括收发机和处理器,其中,
    所述收发机,用于向第二网元发送所述第一网元的第一接口支持的接口模式和/或所述第一接口的当前工作模式,其中,所述接口模式包括以太网模式、灵活以太网FlexE模式和城域传送网MTN模式中的至少一种,所述第二网元为所述第一网元的邻居网元。
  16. 如权利要求15所述的第一网元,还包括:
    所述收发机,还用于接收第二网元发送的所述第二网元的第二接口支持的接口模式和/或所述第二接口的当前工作模式;
    所述处理器,用于根据所述第一接口和第二接口各自支持的接口模式,配置所述第一接口的工作模式为目标接口模式,所述目标接口模式为所述第一接口和第二接口均支持的一种接口模式。
  17. 一种第一网元,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至12任一项所述的接口信息的发送方法的步骤。
  18. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12任一项所述的接口信息的发送方法的步骤。
PCT/CN2020/139625 2019-12-27 2020-12-25 接口信息的发送方法及设备 WO2021129839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20904956.8A EP4084406A4 (en) 2019-12-27 2020-12-25 METHOD AND DEVICE FOR SENDING AN INTERFACE MESSAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911378452.2 2019-12-27
CN201911378452.2A CN113055210A (zh) 2019-12-27 2019-12-27 一种接口信息的发送方法及设备

Publications (1)

Publication Number Publication Date
WO2021129839A1 true WO2021129839A1 (zh) 2021-07-01

Family

ID=76506831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139625 WO2021129839A1 (zh) 2019-12-27 2020-12-25 接口信息的发送方法及设备

Country Status (3)

Country Link
EP (1) EP4084406A4 (zh)
CN (1) CN113055210A (zh)
WO (1) WO2021129839A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676352B (zh) * 2021-08-18 2023-04-07 济南浪潮数据技术有限公司 一种lldp工作模式的配置方法及组件
CN114615136B (zh) * 2022-03-04 2023-10-27 浙江国盾量子电力科技有限公司 一种5G智能电网切片的FlexE接口管理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345754A (zh) * 2008-08-20 2009-01-14 北京星网锐捷网络技术有限公司 双工模式匹配方法与装置、通信系统
CN109302372A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种通信方法、设备及存储介质
US20190260640A1 (en) * 2016-10-31 2019-08-22 Huawei Technologies Co., Ltd. Port auto-negotiation method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330630B (zh) * 2015-07-03 2019-09-03 华为技术有限公司 传输灵活以太网的数据流的方法、发射机和接收机
WO2017070851A1 (en) * 2015-10-27 2017-05-04 Zte Corporation Channelization for flexible ethernet
CN109120657B (zh) * 2017-06-23 2022-08-16 中兴通讯股份有限公司 一种业务配置方法和节点
CN107395425A (zh) * 2017-07-31 2017-11-24 烽火通信科技股份有限公司 一种灵活以太网1+1保护倒换实现方法
CN109995588B (zh) * 2019-03-29 2020-07-07 烽火通信科技股份有限公司 一种灵活以太网链路管理方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345754A (zh) * 2008-08-20 2009-01-14 北京星网锐捷网络技术有限公司 双工模式匹配方法与装置、通信系统
US20190260640A1 (en) * 2016-10-31 2019-08-22 Huawei Technologies Co., Ltd. Port auto-negotiation method and device
CN109302372A (zh) * 2017-07-24 2019-02-01 华为技术有限公司 一种通信方法、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084406A4 *

Also Published As

Publication number Publication date
EP4084406A4 (en) 2024-01-17
EP4084406A1 (en) 2022-11-02
CN113055210A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
US11627493B2 (en) Supporting the fulfilment of E2E QoS requirements in TSN-3GPP network integration
EP3648403B1 (en) Communication method and device, and storage medium
US20210399989A1 (en) Method and device for data transmission, method and device for quality of service flow management, and storage medium
WO2019128467A1 (zh) 基于灵活以太网FlexE传输业务流的方法和装置
US10623293B2 (en) Systems and methods for dynamic operations, administration, and management
WO2018127144A1 (zh) 管理网络切片实例的方法、装置和系统
US11134029B2 (en) Communication method, communications device, and storage medium
EP3684137B1 (en) Providing connectivity service to multiple tsn domains by a single 3gpp network
WO2021129839A1 (zh) 接口信息的发送方法及设备
US9077625B2 (en) Apparatus and method for controlling a transmission interval of maintenance packets in a communication network
WO2010135987A1 (zh) 链路聚合方法及装置
AU2020201904B2 (en) Packet transmission method and apparatus
WO2015180154A1 (zh) 网络控制方法和装置
US20200120581A1 (en) Communication method and device
CN109691031B (zh) 业务报文传输方法及节点设备
WO2018213987A1 (zh) 一种分发数据的方法、装置和系统
JP2020530964A (ja) 通信方法、通信デバイス、および記憶媒体
US20190260640A1 (en) Port auto-negotiation method and device
EP2115949A2 (en) A network bridge and a method of operating thereof
WO2016082436A1 (zh) 一种业务混合集中处理方法和装置、存储介质
WO2014127633A1 (zh) Lldp报文传输方法及dcb设备
EP3691210B1 (en) Flexible ethernet message forwarding method and apparatus
WO2023011047A1 (zh) 一种处理方法及装置
CN106302256B (zh) 一种以太网交换设备和数据处理方法
EP2953299A1 (en) Protection switching method, system and node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904956

Country of ref document: EP

Effective date: 20220727