WO2021129829A1 - 风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具 - Google Patents

风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具 Download PDF

Info

Publication number
WO2021129829A1
WO2021129829A1 PCT/CN2020/139582 CN2020139582W WO2021129829A1 WO 2021129829 A1 WO2021129829 A1 WO 2021129829A1 CN 2020139582 W CN2020139582 W CN 2020139582W WO 2021129829 A1 WO2021129829 A1 WO 2021129829A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade root
blade
wind power
mold
embedded
Prior art date
Application number
PCT/CN2020/139582
Other languages
English (en)
French (fr)
Inventor
鲁晓锋
张登刚
王向东
徐俊
李成良
Original Assignee
中材科技风电叶片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911368379.0A external-priority patent/CN111022248B/zh
Priority claimed from CN201911370578.5A external-priority patent/CN111169041A/zh
Application filed by 中材科技风电叶片股份有限公司 filed Critical 中材科技风电叶片股份有限公司
Priority to BR112022012779A priority Critical patent/BR112022012779A2/pt
Publication of WO2021129829A1 publication Critical patent/WO2021129829A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of wind power generation devices, in particular to a prefabricated part of a blade root of a wind power blade, a blade root component, a blade and a manufacturing method thereof, a production method and a mold of the blade root assembly.
  • Wind power is the fastest growing resource utilization method in the world today.
  • Wind power blades are an important part of wind turbines, and their development affects the development of the entire industry.
  • the load on the roots of the blades has become larger and larger, which places higher requirements on the production and processing of the roots of wind turbine blades.
  • the assembly of the blade root embedded parts is time-consuming and laborious, which brings greater difficulty to personnel operation. At present, the height of some semicircles even exceeds the height of personnel, and its assembly and production are more difficult.
  • the Chinese patent application with application number CN201711013375.1 discloses a root structure of a wind power blade and a manufacturing method thereof, and a wind power blade.
  • the root structure of the wind power blade includes a main body, a plurality of embedded parts, and an assembled part.
  • the body is made of fiber reinforced composite material.
  • a plurality of embedded pieces are arranged at intervals along the circumference of the root structure.
  • the assembled piece is spliced with the plurality of embedded pieces and embedded in the body, the assembled piece includes a plurality of first assembling bodies and a plurality of second assembling bodies, the plurality of first assembling bodies and the plurality of The embedded parts are arranged one by one at intervals, and the plurality of second assembling bodies abut one end of the plurality of embedded parts toward the top of the wind power blade in a one-to-one correspondence; on both sides of each of the first assembling bodies Both are formed with recesses, and any one of the embedded parts and the second assembling body abutting against it is matched and fitted with the recesses on both sides of the adjacent first assembling body.
  • a Chinese patent application with application number CN201310064327.0 discloses a blade insert for connecting a first blade segment to a second blade segment.
  • the blade insert may include an aerodynamic housing extending between a first end configured to be connected to the first blade section and a second end configured to be connected to the second blade section.
  • the pneumatic housing may include a pressure side and a suction side extending between the leading edge and the trailing edge.
  • the aerodynamic housing may be provided with a chord, wherein the chord at the first end is substantially equal to the chord at the second end. That is, the blades are designed as different independent parts, and the independent parts are produced separately, and finally the parts are spliced separately to form the entire blade, and finally fused together by thermoplastic welding or other methods.
  • a larger pitch circle diameter is designed.
  • the semicircle height of the blade root pitch circle in the prior art has exceeded the height of the operator, which makes assembly and production more difficult, and brings greater difficulty to personnel operation.
  • the Chinese patent application with the publication number CN100402374C provides a leaf root forming method, which is placed in the shell layer, the front-made support with a concave part, the lower fiber pad, the screw sleeve, the upper fiber pad, and the glass The fiber tape and fiber mat are then molded by vacuum infusion and other methods.
  • the disadvantage of using the above-mentioned application method is that in order to reduce the weight of the whole blade root, it is necessary to make an additional foam molding support, and the installation steps of the upper and lower fiber mats and glass fiber mats are more complicated, and the operation time is long.
  • the overall solution adopts integrated injection molding. , The perfusion quality cannot be guaranteed.
  • the purpose of this application is to provide a blade root prefabricated part, blade root part, blade and manufacturing method of a wind power blade, so as to solve the technical problem of the relatively difficult assembly and production of embedded parts in the prior art.
  • a wind turbine blade root prefabricated part which includes: embedded parts, a lower substrate, an upper substrate and an adhesive layer.
  • the lower substrate is a piece with adjacent two sides The sides are respectively arranged along a first direction and a second direction, the extension direction of a plurality of the embedded parts is the second direction, and the embedded parts are arranged on the lower substrate along the first direction, the A first groove for accommodating the embedded part is formed on the lower substrate; the upper substrate is a piece, and the upper substrate covers the embedded part; the adhesive layer is filled in the lower substrate and the upper substrate
  • the base bodies are arranged around the outer edge of the embedded part.
  • the length of the lower substrate in the first direction is greater than the length of the upper substrate in the first direction.
  • a second groove for accommodating the embedded part is formed on the upper base body, and the first groove and the second groove are arranged opposite to each other.
  • first groove and the second groove enclose to form a circle or an ellipse.
  • the embedded part is a bolt sleeve, and the length of the upper base body in the first direction is greater than the length of the embedded part in the first direction.
  • the lower base body is further provided with a plurality of fillers, and the fillers and the embedded parts are spliced and are jointly embedded in the first groove.
  • the filling piece includes a filling rod spliced with the embedded part and filling lugs provided on opposite sides of the filling rod, and the filling lugs of adjacent filling pieces abut against each other.
  • the lower base body includes a first part accommodating an embedded part and a second part accommodating a filler, and the first part and the second part have different thicknesses.
  • the end of the lower substrate away from the embedded part has an inclined guide surface, and the thickness of the side of the lower substrate away from the embedded part is smaller than the side of the lower substrate close to the embedded part The thickness of the filling piece becomes thinner at the end facing away from the embedded piece.
  • one end of the upper base body away from the embedded part has an inclined surface extending to the filling part.
  • the application also discloses a blade root component, which includes an outer fiber fabric, an inner fiber fabric, and a plurality of prefabricated pieces of wind turbine blade roots spliced with each other, the outer fiber fabric and the inner fiber The fabric is respectively wrapped on opposite sides of the preform.
  • the application also discloses a wind power blade, which comprises a blade tip part, a blade body part and the above-mentioned blade root part, and the above-mentioned blade root part comprises the above-mentioned preform.
  • the application also discloses a method for manufacturing leaf roots or blades, which includes the following steps:
  • the blade root or blade is poured into the blade root mold or the blade mold.
  • the splicing method between the preforms may be aligned splicing or staggered splicing.
  • the beneficial effects of the prefabricated parts, root parts, blades and manufacturing methods of the wind power blade roots are: compared with the prior art, part of the layup is prefabricated in advance, assembled and formed before placing Into the blade root mold and the remaining plies are integrated into one piece, which can reduce the difficulty and time during the later injection molding. In the thickness direction, the method of block stacking is adopted, and the ring-up is spliced with multi-segment preforms, which can greatly reduce the assembly time. Difficulty.
  • the prefabricated parts can be produced in standardization and modularization, can be produced in advance, easy to check and control defects, reduce risks, can further improve production efficiency, can realize the common use of different models, and facilitate standardized management.
  • the second purpose of the present application is to provide a production method and a mold for the blade root assembly of a wind power blade, so as to solve the technical problems in the prior art that the processing of the blade root of the wind power blade is complicated and the quality is difficult to guarantee.
  • the technical solution adopted in this application is to provide a method for producing a blade root assembly of a wind power blade, which includes the following steps:
  • the upper base and the lower base are both one piece, and the lower base is provided with a number of first grooves;
  • the assembly is cured and formed in a mold.
  • the upper matrix/or the lower matrix is a fiber-reinforced composite material.
  • the upper substrate and/or the lower substrate are formed by pultrusion.
  • the lower substrate has a second fixed cross section, and the lower substrate is pultruded from the second fixed cross section along the baseline;
  • the upper substrate has a first fixed cross section, and the upper substrate is pultruded from the first fixed cross section along the baseline.
  • the length directions of the first fixed cross section and the second fixed cross section are consistent with the length direction of the first groove, and the base line is perpendicular to the first fixed cross section and the second fixed cross section.
  • the shape of the first fixed cross section and/or the second fixed cross section is a trapezoid.
  • the length of the first fixed cross section is smaller than the length of the second fixed cross section.
  • a filling part is provided on one side of the embedded part, and at least a part of the filling part is spliced with the embedded part and embedded together. Set in the first groove.
  • the second fixed section includes a first part corresponding to the embedded part and a second part corresponding to the filling part in the first groove.
  • the thicknesses of the first part and the second part are different.
  • the sum of the length of the filling member in the first groove and the length of the embedded member is less than the length of the first groove.
  • a plurality of second grooves are provided on the upper base body, and the first grooves and the second grooves are arranged opposite to each other and surround the outer side of the embedded part.
  • the application also discloses a mold, which is used in the production method of the blade root assembly of a wind power blade, and includes a lower mold for accommodating the lower substrate and an upper mold for accommodating the upper substrate.
  • the lower mold is provided with A plurality of third grooves that are attached to the lower surface of the lower substrate.
  • the upper mold is rotatably connected with the lower mold, and a plurality of fourth grooves that are attached to the upper surface of the upper substrate are opened in the upper mold.
  • the beneficial effects of the wind power blade root assembly production method and mold provided in the present application are: Compared with the prior art, the wind power blade root assembly production method and mold of the present application preform the upper substrate and the lower substrate in advance, and then preform the upper substrate
  • the base body, the underlying base body and the embedded parts are placed in the mold for assembly and molding, and then uniformly heated and solidified.
  • the overall infusion is not required for post-processing.
  • the infusion quality is higher, which can reduce the difficulty and time during the later infusion molding, reduce the defect rate, and It can ensure the overall height consistency.
  • the upper substrate and the lower substrate can be preformed separately, which can greatly save time and improve production efficiency.
  • the processed preforms can be stored and assembled in sections.
  • the method of block stacking is adopted in the thickness direction, and multi-segment prefabrication is adopted in the ring direction. Piece splicing can greatly reduce the difficulty of assembly.
  • FIG. 1 is a schematic structural diagram of mold processing in a method for producing a preform according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a preform produced by the method for producing a wind power blade root preform according to an embodiment of the application;
  • Fig. 3 is another perspective view of the three-dimensional structure of the preform shown in Fig. 2, wherein the upper substrate is not shown;
  • Fig. 4 is a schematic diagram 1 of the front view of the preform shown in Fig. 2.
  • the preforms are aligned and spliced;
  • Fig. 5 is a schematic diagram 2 of the front view structure of the preform shown in Fig. 2.
  • the preform adopts a staggered splicing method
  • FIG. 6 is a schematic structural view of extrusion molding of the upper substrate and the lower substrate of the method for producing a preform according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a mold used in an embodiment of the application.
  • Fig. 8 is a schematic structural diagram of a blade root component provided by an embodiment of the application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • the method for producing the root prefabricated parts of wind power blades includes the following steps:
  • the upper base 3 and the lower base 2 are both one piece, and the lower base 2 is provided with a number of first grooves 21;
  • the method for producing the blade root prefabricated parts of wind power blades is that the upper substrate 3 and the lower substrate 2 are preformed in advance, and then the upper substrate 3, the lower substrate 2 and the embedded part 1 are placed in the mold 6 Assemble and form inside, and then uniformly heat and solidify.
  • the overall infusion is not required for later processing.
  • the infusion quality is higher, which can reduce the difficulty and time of later infusion and molding, reduce the defect rate, and ensure that the overall height is consistent.
  • the upper substrate 3 and the lower substrate 2 can be pre-formed separately, which can greatly save time and improve production efficiency, and the processed preforms can be stored and assembled in sections. In the thickness direction, the block stacking method is adopted, and the ring upwards are adopted.
  • the splicing of multiple preforms can greatly reduce the difficulty of assembly.
  • the prefabricated parts can be produced in standardization and modularization, can be produced in advance, easy to check and control defects, reduce risks, can further improve production efficiency, can realize the common use of different models, and facilitate standardized management.
  • the upper substrate 3 and the lower substrate 2 are both pre-processed and formed, and the adhesive layer 4 is a post-filler used to realize the fixed connection between the upper substrate 3, the embedded part 1 and the lower substrate 2.
  • the production method is simple. And it can be produced in advance, the single volume is small, the size of the entire prefabricated part can be adjusted according to the demand, and it is easy to check and control defects to reduce the risk.
  • the preform includes an embedded part 1, a lower substrate 2, an upper substrate 3, and an adhesive layer 4.
  • the lower substrate 2 is a single piece, which is adjacent to each other. The two sides are respectively arranged along the first direction and the second direction, the extension direction of the plurality of embedded parts 1 is the second direction, and the embedded parts 1 are arranged on the lower substrate along the first direction 2, and the lower base 2 is formed with a first groove 21 that is engaged with the outer edge of the embedded part 1; the upper base 3 is a single piece, and the upper base 3 covers the preset On the embedded part 1; the adhesive layer 4 is filled between the lower base body 2 and the upper base body 3 and is arranged around the outer edge of the embedded part 1.
  • the embedded part 1 can be a nut, a bolt limiting part, a foam filling part, a wooden object, a spacer, a three-dimensional fiber structure, and other parts that need to be embedded in the shape of the blade root. It is understandable that the embedded part 1 is a pre-formed part before assembly. At the same time, in order to facilitate assembly and improve the interface bonding strength, its surface will be treated accordingly, such as winding fibers or yarns, attaching a peelable layer, and surface processing. , Coating resin or adhesive. Specifically, the embedded part 1 refers to a bolt structure arranged at intervals along the circumferential direction of the blade root, which is used to connect the blade to the hub of the wind generator through bolts.
  • the first direction and the second direction are two mutually perpendicular directions on the horizontal plane.
  • the arrangement and extension direction of the embedded part 1 is perpendicular to the length extension direction of the first groove 21, that is, a number of embedded parts 1 are evenly spaced.
  • the upper substrate 3 may be formed with a second groove 31 that is engaged with the outer edge of the embedded part 1, and the first groove 21 and the second groove 31 are arranged oppositely.
  • the first grooves 21 are uniformly arranged along the first direction of the lower substrate 2, and the length direction of the first grooves 21 is consistent with the length direction of the lower substrate 2 in the second direction;
  • the second grooves 31 are also along the upper substrate 3 is uniformly arranged in the first direction, and the first groove 21 and the second groove 31 are oppositely arranged and enclosed to form a through hole, and the embedded part 1 is embedded in the through hole.
  • the first groove 21 and the second groove 31 may be formed by a sheet of the lower substrate 2 or a wavy sheet formed by bending a sheet of the upper substrate 3, or may be a sheet or a sheet directly on the lower substrate 2 A groove is formed on the sheet of the upper substrate 3.
  • the upper base 3 can also be directly buckled on the embedded part 1, and the second groove 31 is not provided on the upper base 3.
  • the pre-embedded The shape of the piece 1 may be a semicircle or a square, etc., which is not uniquely limited here.
  • the embedded part 1 refers to a bolt structure arranged at intervals along the circumferential direction of the blade root, which is used to achieve a fixed connection with the blade, and the cross-sectional shape of the embedded part 1 is generally a cylindrical ring body, and standard parts are used directly.
  • embedded parts 1 with oblate cylinder, square body or other polygonal cross-section can also be used; the material of the adhesive can be unlimited, and it can be adhesive glue, resin or prepreg fiber, etc., or it can be Other materials that can combine several sub-components into a whole, such as epoxy adhesives.
  • the upper matrix 3 and/or the lower matrix 2 are pre-formed reinforced fiber parts, which are manufactured by impregnating the fiber into a resin and curing it, such as using a prepreg process, a pultrusion process, or a continuous molding process.
  • the fiber mainly uses one or a combination of glass fiber, carbon fiber, natural fiber, polyester fiber, polyamide fiber, etc.
  • the resin can use epoxy resin, phenolic resin, unsaturated polyester, thermosetting resin, polyolefin, polyolefin, etc. Any thermosetting resin or thermoplastic resin such as ester resin and polyamide resin.
  • the upper base 3 and the lower base 2 are both pre-processed and shaped sheets, which respectively cover the upper and lower sides of the embedded part 1.
  • the material can be multi-axial fiber and thermosetting resin, and the upper base 3 and the lower base
  • the surface of the substrate 2 needs to be laid with a release cloth or other methods to roughen the surface to ensure the roughness, such as sandblasting, sanding, grinding, corona treatment, plasma treatment and the like.
  • the cross-sectional shape of the embedded part 1 is a circle or an ellipse, and the first groove 21 and the second groove 31 are enclosed to form a circle or an ellipse.
  • the cross-section of the embedded part 1 is generally circular or elliptical, that is, the embedded part 1 is a circular cylinder, and the inner surface of the embedded part 1 is provided with internal threads, and the bolt can be inserted into the embedded part 1 Inside the through hole in the part 1, so as to realize the bolt connection.
  • the first groove 21 and the second groove 31 are arranged oppositely, that is, the two first grooves 21 and the second groove 31 used to enclose an embedded part 1 are arranged oppositely, and the first groove
  • the two sides of the groove 21 and the second groove 31 may be connected, so that the first groove 21 and the second groove 31 are combined into a circle.
  • the diameter of the inner circle formed by the first groove 21 and the second groove 31 is slightly larger than or equal to the diameter of the outer circle of the embedded part 1, so as to ensure the fixing stability of the embedded part 1.
  • the number of the first grooves 21 and the second grooves 31 may be equal or unequal, and the upper substrate 3 and the lower substrate 2 may be arranged in a staggered manner, for example, so that the first first groove 21 of the upper substrate 3 It is arranged opposite to the second second groove 31 of the lower substrate 2.
  • the cross-sectional shape of the embedded part 1 is a square. At this time, the first groove 21 and the second groove 31 are combined to form a square. There is no unique restriction.
  • the upper substrate 3 and the lower substrate 2 are both pultruded, or only One of the upper substrate 3 or the lower substrate 2 is formed by pultrusion.
  • pultrusion is a process for producing composite profiles by infiltrating continuous fibers or fabrics with resin under the traction of a traction device and heating the resin through a forming mold to produce composite profiles.
  • the specific processing technology is in the prior art The conventional process.
  • the upper substrate 3 and the lower substrate 2 are generally made of multiaxial fibers and thermosetting resins, which can be formed by pultrusion, and can be formed directly without cutting, which can save a lot of materials.
  • the upper substrate 3 and/or the lower substrate 2 can also be processed and formed by vacuum infusion molding or compression molding, which is not uniquely limited here.
  • the upper substrate 3 has a first fixed cross section 33, and the upper substrate 3 is pultruded from the first fixed section 33 along the base line 34;
  • the lower base body 2 has a second fixed section 23, and the lower base body 2 is pultruded from the second fixed section 23 along the base line 24 forming.
  • the base lines 24 and 34 are arranged perpendicular to the direction of the first fixed section 33 and the second fixed section 23, and the first fixed section 33 and the second fixed section 23 can be pultruded along the extending direction of the base lines 24 and 34.
  • the direction of pultrusion can be pultruded along the first direction or along the second direction, as long as the shape of the upper substrate 3 and the lower substrate 2 can be formed.
  • the first fixed section 33 and the second fixed section 23 The length direction of is consistent with the length direction of the first groove 21, and the base lines 24 and 34 are perpendicular to the first fixed section 33 and the second fixed section 23. That is, at this time, the length direction of the first fixed section 33 and the second fixed section 23 is the second direction, and then the extension direction of the baseline is the first direction. At this time, the shape of the first fixed section 33 can be the same as that of the second fixed section of the upper substrate 3.
  • the longitudinal cross-sectional shape in the direction is consistent, and the shape of the second fixed cross-section 23 can be consistent with the longitudinal cross-sectional shape of the lower substrate 2 in the second direction, so that it can be stretched and formed at one time.
  • the shapes of the base lines 24 and 34 are formed by successively splicing several semicircles, and the connection between the semicircles has a transition arc.
  • the first fixed section 33 and the second fixed section 23 can be formed along the base lines 24 and 34 with several
  • the semicircle of the base line 24 and 34 is the first groove 21 and the second groove 31 in this application.
  • the number of semicircles is the same as that of the first groove 21, the second groove 31 and the embedded
  • the number of the parts 1 is the same, and the embedded parts 1 can be embedded in the first groove 21 and the second groove 31.
  • the extension direction of the first fixed section 33 and the second fixed section 23 can also be extended along the second direction
  • the baseline 34 or 24 extends along the first direction
  • the shape of the cross-section 33 and the second fixed cross-section 23 can be a number of semicircles spliced sequentially.
  • the lower substrate 2 with the first groove 21 and the upper substrate 3 with the second groove 31 can also be stretched, which can be used later.
  • the first substrate and the second substrate are further processed by cutting or grinding, etc., which is not uniquely limited here.
  • the first fixed cross section 33 and the second fixed cross section 23 are all trapezoids, and one side of the first fixed cross section 33 and the second fixed cross section 23 is perpendicular to the bottom side, the other side is inclined to the bottom side, and the length of the bottom side is greater than that of the bottom side. The length of the top side.
  • the first fixed cross-section 33 and the second fixed cross-section 23 are both right-angled trapezoids, and the side of the first fixed cross-section 33 and the second fixed cross-section 23 close to the embedded part 1 has a right-angle structure, and is far away from the embedded part 1.
  • One side is inclined. That is, the lower base body 2 forms an inclined guide surface 22 on the side away from the embedded part 1.
  • the inclined guide surface 22 is a transition slope, which can prevent the end of the lower base body 2 away from the embedded part 1 from being connected with other parts of the blade. When stress concentration occurs, the end of the lower substrate 2 is prevented from being damaged.
  • the length of the first fixed section 33 is smaller than that of the second fixed section 23 length.
  • the lengths of the first fixed cross section 33 and the second fixed cross section 23 correspond to the lengths of the upper substrate 3 and the lower substrate 2 in the second direction, that is, the lengths of the lower substrate 2 in the second direction.
  • the length of the upper substrate 3 in the second direction is greater than the length of the embedded part 1 in the second direction, and the lower substrate 2
  • the length of is longer than the length of the upper substrate 3, and the upper substrate 3 can completely cover the embedded part 1, which can ensure that a stable and complete filling effect can be achieved during injection and filling in the later stage.
  • the longer length of the lower base body 2 can facilitate the connection with the blade, and increase the area of the connecting surface between the blade root and the blade, thereby achieving a better connection effect.
  • the embedded part 1 and the upper base body 3 are both arranged at one end of the lower base body 2.
  • the thickness of the upper substrate 3 and the thickness of the lower substrate 2 are the same.
  • FIG. 3 As a specific implementation of the method for producing a prefabricated part of a wind power blade root provided in this application, it further includes the following steps:
  • a filling part 5 is provided on one side of the embedded part 1, and the filling part 5 is opposite to the embedded part 1. Spliced and jointly embedded in the first groove 21.
  • the material of the filler 5 is generally foam or other materials that have a lighter texture and can be filled. It is also arranged in the first groove 21.
  • the filler 5 includes a splicing piece with the embedded part 1.
  • the filling rod 51 and the filling lugs 52 provided on opposite sides of the filling rod 51 are abutted against the filling lugs 52 of the adjacent filling pieces 5.
  • the thickness of the filling rod 51 is the same as the thickness of the embedded part 1, or the thickness of the filling rod 51 is greater than the thickness of the embedded part 1.
  • the filling rod 51 is arranged at one end of the embedded part 1, and the filling lugs 52 are arranged on opposite sides of the filling rod 51 to prevent the filling rod 51 from rotating and also have a positioning effect.
  • the filling lug 52 is a protrusion protruding from both ends of the filling rod 51, and both ends of the first groove 21 and both ends of the second groove 31 can abut the filling lug 52, or The position between the first groove 21 and the second groove 31 is supported.
  • the filler 5 may also include spacers extending between adjacent embedded parts 1, such as prefabricated glass fiber reinforced plastic parts and foam spacers that match the shape of the embedded parts.
  • the sum of the length of the filling member 5 and the length of the embedded member 1 is less than the length of the first groove 21.
  • the embedded part 1 is arranged at one end of the first groove 21, and the filling part 5 is arranged close to the end of the embedded part 1 and extends to the other end of the first groove 21, thereby achieving the effect of filling and supporting .
  • the length of the first groove 21 is slightly larger than the total length of the filling member 5 and the embedded member 1, which can ensure a better coating effect at this time.
  • the thickness of the filling part 5 becomes thinner at the end facing away from the embedded part 1, that is, the filling part 5 is facing away from the embedded part 1.
  • the thickness of one end of the embedded part 1 becomes thinner.
  • the filler 5 is also formed with an inclined surface 32 at the end, so as to support the auxiliary filling support effect.
  • the structure of the entire filling piece 5 is gradually inclined, that is, the thickness of the filling piece 5 on the side toward the inclined guide surface 22 is thinner. At this time, the disassembly and assembly between the entire preform and the blade mold can be facilitated. It can also avoid damage caused by stress concentration.
  • the end of the upper substrate 3 also has an inclined surface 32, which is used to realize the complete coating of the embedded part 1, and one end of the inclined surface 32 is located on the embedded part 1 and the other end extends to the filling part 5.
  • the connection between the embedded part 1 and the filling part 5 can be shielded, so as to ensure the stability of the connection between the embedded part 1 and the filling part 5.
  • the upper base body 3 and the lower base body 2 generally adopt stronger materials such as limit composite reinforcement materials, but their weight is heavier, and the filler 5 generally adopts lighter weight such as foam Material, it is necessary to increase the volume of the filler 5 and reduce the volume of the upper substrate 3 and the lower substrate 2.
  • the cross-sectional size of the filler 5 can be larger than the very cross-sectional size of the embedded part 1, so in order to match the filler 5 and
  • the embedded part 1 has different sizes, and the entire outer edge of the upper base 3 and the lower base 2 should be smooth and uniform transition, so the corresponding thickness of the upper base 3 and the lower base 2 can be different, that is, it can be divided into the embedded parts 1
  • the matching first part has a thicker thickness; it may also include a second part matching the filler 5 with a thinner thickness.
  • the thickness of the first part and the second part can also be the same, which is not uniquely limited here.
  • a filling extension piece (not shown) can also be arranged between adjacent embedded pieces 1.
  • the filling extension piece may be provided separately or formed by extending the filling piece 5. . Because the material of the upper base 3 and the lower base 2 is heavy, and there may be a gap between the upper base 3 and the lower base 2 between the two adjacent embedded parts 1 due to processing accuracy and other reasons. It needs to be filled when pouring or bonding, but the weight of the filler is pampered, the use of a lighter weight filler extension can reduce the weight of the entire preform, and the material of the filler extension is the same as that of the filler 5, which can be foam or Other materials that are lighter and can be filled.
  • This application also provides another method for producing blade root prefabricated parts of wind power blades.
  • the difference from embodiment 1 is that: in step S3, the lower substrate 2, the embedded part 1, and the upper substrate 3 are stacked in advance, and then facing An adhesive is filled between the upper base 3 and the lower base 2, so that the upper base 3, the embedded part 1 and the lower base 2 can be bonded.
  • the operation is simpler.
  • the present application also provides a mold 6 used in the production method of a wind turbine blade root prefabricated part.
  • the mold 6 includes a lower mold 62 for accommodating the lower substrate 2 and a mold for accommodating
  • the upper mold 61 of the upper substrate 3 is provided with a plurality of third grooves 621 that are attached to the lower surface of the lower substrate 2 in the lower mold 62, and the upper mold 61 is provided with a plurality of The upper surface of the upper mold 61 is fitted with a number of fourth grooves 611, and the embedded part 1 is covered between the upper base body 3 and the lower base body 2.
  • the mold 6 provided in the present application can place the entire preform in the mold 6 for production and processing, and the height of the entire preform can be uniformly controlled through the standardized mold 6 to ensure the standard and uniformity of processing.
  • the production efficiency can be improved without occupying the blade mold.
  • the lower mold 62 and the upper mold 61 are opposed to each other, the third groove 621 and the fourth groove 611 are also opposed to each other, and the lower mold 62 is engaged with the lower surface of the lower substrate 2.
  • the lower surface of the base body 2 also has a plurality of protrusions that cooperate with the first groove 21, so the lower mold 62 is provided with a plurality of third grooves 621 that cooperate with the protrusions; the upper mold 61 is clamped to the upper layer
  • the upper surface of the base body 3 is engaged with each other.
  • the upper mold 61 is provided with a plurality of fourths that cooperate with the protrusions. ⁇ 611 ⁇ Groove 611.
  • the third groove 621 and the fourth groove 611 are also arranged in a one-to-one correspondence.
  • the upper mold 61 and the lower mold 62 can be opened and closed with each other.
  • the upper mold 61 and the lower mold 62 are hinged. That is, the upper mold 61 and the lower mold 62 can be two relatively independent molds, or the upper mold 61 and the lower mold 62 can be combined together, that is, the lower mold 62 can be kept stationary, and then the upper mold 61 can be movably fastened to the mold.
  • the connection between the upper mold 61 and the lower mold 62 can also be a rotary connection, or a snap connection, etc.; or, the upper mold 61 can be kept stationary, and the lower mold 62 can be movably buckled.
  • On the upper mold 61 there is no unique limitation here.
  • the third groove 621 includes a first groove section 6111 engaged with the upper substrate 3 and a second groove section 6112 engaged with the filler 5, and the first groove
  • An inclined surface 32 is formed at the junction of the groove section 6111 and the second groove section 6112, and the inclined surface 32 is used to fit the inclined surface 32 of the end of the upper substrate 3,
  • the second half of the lower substrate 2 is in contact with the upper mold 61 through the filler 5, and the filler 5 is also formed at the position opposite to the inclined guide surface 22
  • the inclined guide surface 22 that is consistent with the starting position and arc of the inclined guide surface 22, that is, the inclined convex surface of the third groove 621 can be opposite to the inclined guide surface 22, that is, the starting position and the inclined arc of the inclined guide surface 22 It is consistent with the inclined guide surface 22 of the lower base body 2. At this time, the cooperation between the upper mold 61 and the entire preform can be better realized.
  • the mold 6 is also provided with other auxiliary infusion components, such as heating elements and control elements. If the adhesive is resin, vacuum infusion may be required. Therefore, the mold 6 also needs to be provided with a vacuum port and a vacuum connected to a vacuum machine. Necessary equipment.
  • the application also provides a blade root component, which includes an outer layer fiber fabric 7, an inner layer fiber fabric 8 and a plurality of mutually spliced wind power blade root preforms as described in Example 1 or Example 2.
  • the outer fiber fabric 7 and the inner fiber fabric 8 are respectively wrapped on opposite sides of the preform.
  • the number of preforms can be multiple, and multiple preforms can be spliced between the outer fiber fabric 7 and the inner fiber fabric 8, and the splicing method can be aligned splicing or staggered splicing.
  • the leaf root manufacturing method includes the following steps:
  • the preforms when the preforms are assembled, all the preforms can be fixed on a flange (not shown) in sequence on the ground, and then the entire assembled preforms are uniformly hoisted to the outer fiber fabric 7;
  • the assembled preforms can be directly arranged on the outer fiber fabric 7, and then the preforms can be assembled on the spliced outer fiber fabric 7 and fixed on the flange, which is not uniquely limited here.
  • Prefabricate part of the layup in advance place it in the blade mold after assembly and form it together with the rest of the layup, which can reduce the difficulty and time during the later injection molding.
  • the method of block stacking is adopted in the thickness direction and the ring is used.
  • the splicing of multiple preforms can greatly reduce the difficulty of assembly.
  • the prefabricated parts can be produced in standardization and modularization, can be produced in advance, easy to check and control defects, reduce risks, can further improve production efficiency, can realize the common use of different models, and facilitate standardized management.
  • the formed blade root part can be directly combined with the blade tip part and the blade body part in the later stage, or can be injected and molded again after being combined, so as to form a complete blade.
  • the method of preforming the leaf roots now can facilitate the later assembly and molding.
  • the splicing method between the preforms may be aligned splicing or staggered splicing.
  • preforms when preforms are assembled, they can be aligned and assembled, that is, the end of the previous preform and the head of the next preform are directly aligned and spliced.
  • the assembly method is simple; the misaligned splicing is the end of the previous preform.
  • a section of the upper substrate 3 or the lower substrate 2 is reserved, and there is a part of the unsealed area on the latter preform, and the reserved upper substrate 3 or the lower substrate 2 can be connected with the reserved unstitched area, but The operation is more complicated.
  • other splicing methods may also be used, which are not exclusively limited here.
  • the application also provides a wind power blade, and the wind power blade includes a blade tip part, a blade body part and a blade root part, wherein the blade root part includes the preform disclosed in Embodiment 3.
  • the present application also provides a blade manufacturing method.
  • the difference between the blade manufacturing method and the blade root manufacturing method in Embodiment 5 is that the outer fiber fabric 7 is directly laid in the blade mold, and then combined Splicing several of the preforms in sequence, and then lay the inner fiber fabric 8 on the spliced preforms; then set the blade tip part and the blade body part in the blade mold, in the blade mold Poured and shaped into blades.
  • the production and processing are carried out directly on the blade mold, which can save the filling process and ensure the tightness of the connection between the blade root part, the blade tip part and the blade body part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Wind Motors (AREA)

Abstract

一种风电叶片叶根的预制件、叶根部件、叶片及其制造方法,制造出若干风电叶片叶根的预制件;在叶根模具中铺放外层纤维织物(7),并将若干预制件置于外层纤维织物(7)上,并将相邻的预制件进行拼接;在拼接后的预制件上铺设内层纤维织物(8);朝向叶根模具内灌注并成型为叶根。将部分铺层提前预制,组装成型后再放置到叶根模具中与剩余的铺层共同一体成型。以及一种风电叶片叶根组件生产方法以及模具,将提前预制成型的上层基体(3)、下层基体(2)和预埋件(1)置于模具内进行组装成型统一加热固化,无需整体灌注,可以减少后期灌注成型时的难度和时间,降低缺陷率,并且可以保证整体的高度一致。

Description

风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具
相关申请的援引
本申请要求在2019年12月26日提交中国专利局、申请号为2019113705785、发明名称为《风电叶片叶根组件生产方法以及模具》和在2019年12月26日提交中国专利局、申请号为2019113683790、发明名称为《风电叶片叶根的预制件、叶根部件、叶片及其制造方法》的中国专利申请的优先权,记载于上述申请中的全部内容通过引用结合在本申请中。
技术领域
本申请涉及风力发电装置的技术领域,具体涉及一种风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具。
背景技术
风力发电是当今世界上发展速度最快的一种资源利用方式。风电叶片作为风力发电机的重要组成部分,其发展影响整个行业的发展。随着海上市场的扩展和更长叶片的设计,叶片根部的载荷变得越来越大,这就对风电叶片的根部的生产和加工有了更高的要求。但是,由于叶根直径的不断扩大,叶根预埋件的组装费时费力,给人员操作带来了较大的难度,目前有的半圆高度甚至超过了人员高度,其组装和生产难度较大。
申请号为CN201711013375.1的中国专利申请,其公开了一种风电叶片的根部结构及其制造方法、风电叶片,所述风电叶片的根部结构包括本体、多个预埋件件及拼合件。本体由纤维增强复合材料制成。多个预埋件件沿根部结构的周向间隔布置。拼合件与所述多个预埋件件拼接并内嵌于本体内,所述拼合件包括多个第一拼接体和多个第二拼接体,所述多个第一拼接体和所述多个预埋件件一一间隔排列,所述多个第二拼接体一一对应的抵靠在所述多个预埋件件朝向风电叶片顶部的一端;各个所述第一拼接体的两侧均形成有凹部,任一所述预埋件和与其抵靠的所述第二拼接体均与相邻的第一拼接体两侧的所述凹部匹配贴合。
申请号为CN201310064327.0的中国专利申请,其公开了一种用于将第一叶片段连接到第二叶片段的叶片嵌件。所述叶片嵌件可包括气动壳体,所述气动壳体在经配置连接到所述第一叶片段的第一端与经配置连接到所述第二叶片段的第二端之间延伸。所述气动壳体可包括在前缘与后缘之间延伸的压力侧和吸入侧。另外,所述气动壳体可设有翼弦,其中所述第一端处的所述翼弦基本等于所述第二端处的所述翼弦。即将叶片设计为不同的独立部件,将各个独立的部件分别生产,最后将各个部件分别拼接,从而拼接 为整个叶片,最后通过热塑性材料焊接或其他方式融合一起。
上述两个专利申请中,虽然提出了叶片各个部分单独生产然后进行拼装的方案,但是针对于根部结构的生产加工时,仍然是由多个拼合件和预埋件在组装的过程中再单独进行拼合,其导致在组装的过程中耗费较多的时间,生产效率低下。
此外,为了适应叶根载荷变得越来越大的问题,其主要解决办法是:
1、增厚叶根铺层,叶根铺层的厚度的增加,将导致生产铺层操作的耗时加长,现有的叶根厚度一般都已经超过100mm,更大的厚度会进一步的加大灌注难度和增长灌注时间。
2、设计出更大的节圆直径,现有技术中叶根节圆的半圆高度已经超过了操作人员的高度,其组装和生产难度较大,且给人员操作带来较大难度。
公开号为CN100402374C的中国专利申请,其提供了一种叶根成型方式,该方式依次放入外壳层、前制作的具有凹入部分的支座、下纤维垫、螺套、上纤维垫、玻璃纤维带以及纤维垫,然后采用真空灌注等方式成型。采用上述申请的方式缺点在于为了减少整体叶根的重量,需要额外制作一个泡沫成型的支座,并且上下纤维垫和玻璃纤维垫等的安装步骤比较复杂,操作时间长,整体方案采用一体喷射成型,灌注质量得不到保障。
发明内容
本申请的目的在于提供一种风电叶片叶根的预制件、叶根部件、叶片及其制造方法,以解决现有技术中预埋件的组装和生产难度较大的技术问题。
为实现上述目的,本申请采用的技术方案是:提供一种风电叶片叶根预制件,包括:预埋件、下层基体、上层基体和粘接层,下层基体为一片体,其相邻两侧边分别沿着第一方向和第二方向设置,若干所述预埋件的延伸方向为第二方向,且所述预埋件沿着所述第一方向布置于所述下层基体上,所述下层基体上形成有容纳所述预埋件的第一凹槽;上层基体为一片体,所述上层基体盖设于所述预埋件上;粘接层填充于所述下层基体和所述上层基体之间且环设于所述预埋件的外缘。
进一步地,所述下层基体在所述第一方向上的长度大于所述上层基体在所述第一方向上的长度。
进一步地,所述上层基体上形成有容纳所述预埋件的第二凹槽,所述第一凹槽和所述第二凹槽相对设置。
进一步地,所述第一凹槽和所述第二凹槽围合形成圆形或椭圆形。
进一步地,所述预埋件为螺栓套,所述上层基体在所述第一方向上的长度大于所述预埋件在所述第一方向上的长度。
进一步地,所述下层基体上还设有若干填充件,所述填充件与所述预埋件相拼接并共同嵌设于所述第一凹槽内。
进一步地,所述填充件包括与所述预埋件相拼接的填充杆以及设于所述填充杆相对 两侧的填充搭耳,相邻的所述填充件的所述填充搭耳相抵接。
进一步地,所述下层基体包括容纳预埋件的第一部分和容纳填充件的第二部分,所述第一部分与所述第二部分具有不同的厚度。
进一步地,所述下层基体远离所述预埋件的一端具有倾斜导面,且所述下层基体远离所述预埋件的一侧的厚度小于所述下层基体靠近所述预埋件的一侧的厚度;所述填充件在朝向远离所述预埋件的一端厚度变薄。
进一步地,所述上层基体远离所述预埋件的一端具有延伸至所述填充件上的倾斜面。
本申请还公开了一种叶根部件,包括外层纤维织物、内层纤维织物以及若干相互拼接的如上所述的风电叶片叶根的预制件,所述外层纤维织物和所述内层纤维织物分别包覆于所述预制件的相对两侧。
本申请还公开了一种风电叶片,包括叶尖部分、叶身部分和如上所述的叶根部分,所述叶根部分包括如上所述的预制件。
本申请还公开了一种叶根或叶片制造方法,包括如下步骤:
制造出若干如上所述的风电叶片叶根的预制件;
在叶根模具或叶片模具中铺放外层纤维织物,并将若干所述预制件置于所述外层纤维织物上,并将相邻的所述预制件进行拼接;
在拼接后的所述预制件上铺设内层纤维织物;
在所述叶根模具或所述叶片模具内灌注成型叶根或叶片。
进一步地,所述预制件之间的拼接方式可以为对齐拼接或错位拼接。
本申请提供的风电叶片叶根的风电叶片叶根的预制件、叶根部件、叶片及其制造方法的有益效果在于:与现有技术相比,将部分铺层提前预制,组装成型后再放置到叶根模具中与剩余的铺层共同一体成型,可以减少后期灌注成型时的难度和时间,在厚度方向上采用分块叠加的方式,环向上采用多段预制件拼接,可以大大的降低组装的难度。同时预制件可以采用标准化和模块化生产,可以提前制作,容易检查控制缺陷,减小风险,可以进一步提升生产效率,可以实现不同型号通用,方便标准化管理。
本申请的第二目的在于提供一种风电叶片叶根组件生产方法以及模具,以解决现有技术中风电叶片叶根加工复杂且质量难以保证的技术问题。
为实现上述第二目的,本申请采用的技术方案是:提供一种风电叶片叶根组件生产方法,包括如下步骤:
预成型上层基体和下层基体,所述上层基体和所述下层基体均为一片材,且所述下层基体上设有若干第一凹槽;
将所述下层基体置于模具中,将若干预埋件置于所述第一凹槽内,将所述上层基体的扣合于所述预埋件上;
在所述下层基体和所述上层基体上分别涂覆或铺设粘接剂,并与所述预埋件实现粘 接,或在所述下层基体、所述预埋件、所述上层基体之间填充粘接剂并形成组合件;
在模具中使所述组合件固化成型。
进一步地,所述上层基体/或所述下层基体为纤维增强复合材料。
进一步地,所述上层基体和/或所述下层基体采用拉挤成型。
进一步地,所述下层基体具有第二固定截面,所述下层基体由所述第二固定截面沿着基线拉挤成型;
所述上层基体具有第一固定截面,所述上层基体由所述第一固定截面沿着基线拉挤成型。
进一步地,所述第一固定截面和所述第二固定截面的长度方向与所述第一凹槽的长度方向一致,所述基线垂直于第一固定截面和所述第二固定截面。
进一步地,所述第一固定截面和/或所述第二固定截面的形状为梯形。
进一步地,所述第一固定截面的长度小于所述第二固定截面的长度。
进一步地,将所述预埋件置于所述第一凹槽内之后,在所述预埋件的一侧设置填充件,所述填充件至少一部分与所述预埋件相拼接并共同嵌设于所述第一凹槽内。
进一步地,所述第二固定截面包括与所述预埋件对应的第一部分以及与所述第一凹槽内的填充件对应的第二部分,所述第一部分和所述第二部分的厚度不同。
进一步地,所述第一凹槽内的填充件的长度和所述预埋件的长度之和小于所述第一凹槽的长度。
进一步地,相邻的所述预埋件(1)之间设有填充延伸件
进一步地,所述上层基体上设有若干第二凹槽,且所述第一凹槽和所述第二凹槽相对设置并围合于所述预埋件外侧。
本申请还公开了一种模具,应用于风电叶片叶根组件生产方法中,包括用于容纳所述下层基体的下模具和用于容纳所述上层基体的上模具,所述下模具内开设有若干与所述下层基体的下表面相贴合的若干第三凹槽。
进一步地,所述上模具与所述下模具转动连接,所述上模具内开设有若干与所述上层基体的上表面相贴合的若干第四凹槽。
本申请提供的风电叶片叶根组件生产方法以及模具的有益效果在于:与现有技术相比,本申请风电叶片叶根组件生产方法以及模具,将上层基体和下层基体提前预制成型,然后将上层基体、下层基体和预埋件置于模具内进行组装成型,然后统一进行加热固化,不用后期加工时整体灌注,灌注质量更高,可以减少后期灌注成型时的难度和时间,降低缺陷率,并且可以保证整体的高度一致。可以将上层基体和下层基体分别预成型,能够大大的节省时间,提高生产效率,并且加工出的预制件可以分段存放和拼装,在厚度方向上采用分块叠加的方式,环向上采用多段预制件拼接,可以大大的降低组装的难度。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实 施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的预制件生产方法的模具加工的结构示意图;
图2为本申请实施例提供的风电叶片叶根预制件生产方法所生产的预制件的立体结构示意图;
图3为图2所示的预制件的另一角度立体结构示意图,其中上层基体未示;
图4为图2所示的预制件的主视结构示意图一,预制件采用对齐拼接的方式;
图5为图2所示的预制件的主视结构示意图二,预制件采用错位拼接的方式;
图6为本申请实施例提供的预制件生产方法的上层基体和下层基体挤压成型的结构示意图;
图7为本申请实施例所采用的模具的立体结构示意图;
图8为本申请实施例提供的叶根部件的结构示意图。
附图标记说明:
1、预埋件;2、下层基体;3、上层基体;4、粘接层;5、填充件;6、模具;7、外层纤维织物;8、内层纤维织物;21、第一凹槽;22、倾斜导面;23、第二固定截面;24、基线;31、第二凹槽;32、倾斜面;33、第一固定截面;34、基线;51、填充杆;52、填充搭耳;61、上模具;62、下模具;611、第四凹槽;621、第三凹槽;6111、第一凹槽段;6112、第二凹槽段。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
请一并参阅图1至图5,现对本申请提供的风电叶片叶根预制件生产方法进行说明。所述风电叶片叶根预制件生产方法,包括如下步骤:
S1.预成型上层基体3和下层基体2,所述上层基体3和所述下层基体2均为一片材,且所述下层基体2上设有若干第一凹槽21;
S2.将所述下层基体2置于模具6中,并将若干预埋件1置于所述第一凹槽21内,将所述上层基体3扣合于所述预埋件1上,且所述第一凹槽21和所述第二凹槽31相对设置并围合于所述预埋件1外侧;
S3.在所述下层基体2和所述上层基体3上分别涂覆粘接剂,并与所述预埋件1实现粘接,并使得上层基体3、预埋件1和下层基体2可以粘接为一组合件;其中,粘结剂的涂覆时间可以在预埋件1置于下层基体2之前,在下层基体2上涂覆一层粘结剂,在将上层基体3扣合于预埋件1上时,在预埋件1上或者在上层基体3的底部涂覆粘结剂。
S4.在模具6中将组装后的组合件固化成型,并制成成型出预制件。
本申请提供的风电叶片叶根预制件生产方法,与现有技术相比,将上层基体3和下层基体2提前预制成型,然后将上层基体3、下层基体2和预埋件1置于模具6内进行组装成型,然后统一进行加热固化,不用后期加工时整体灌注,灌注质量更高,可以减少后期灌注成型时的难度和时间,降低缺陷率,并且可以保证整体的高度一致。可以将上层基体3和下层基体2分别预成型,能够大大的节省时间,提高生产效率,并且加工出的预制件可以分段存放和拼装,在厚度方向上采用分块叠加的方式,环向上采用多段预制件拼接,可以大大的降低组装的难度。同时预制件可以采用标准化和模块化生产,可以提前制作,容易检查控制缺陷,减小风险,可以进一步提升生产效率,可以实现不同型号通用,方便标准化管理。此时上层基体3和下层基体2均为预先加工成型的,粘接层4为后期填充物用于实现上层基体3、预埋件1和下层基体2之间的固定连接,其生产方式简单,且可以预先生产制造,单个体积较小,可以根据需求调整预制的整个预制件的大小,容易检查控制缺陷减小风险。
采用上述预制件生产方生产出的预制件的结构如下:所述预制件包括预埋件1、下层基体2、上层基体3以及粘接层4,所述下层基体2为一片体,其相邻两侧边分别沿着第一方向和第二方向设置,若干所述预埋件1的延伸方向为第二方向,且所述预埋件1沿着所述第一方向布置于所述下层基体2上,且所述下层基体2上形成有卡合于所述预埋件1外缘的第一凹槽21;所述上层基体3为一片体,所述上层基体3盖设于所述预埋件1上;所述粘接层4填充于所述下层基体2和所述上层基体3之间且环设于所述预埋件1的外缘。
预埋件1可以为螺母、螺栓限位件、泡沫填充件、木制物、间隔件、立体纤维结构等需要随叶根成型而预埋在内的部件。可以理解的,预埋件1为在组装前预先成型的部件,同时,为了方便组装,提高界面结合强度,其表面会做相应的处理,比如缠绕纤维或纱线、附可剥离层、表面加工、涂敷树脂或粘结剂。具体的,预埋件1是指沿着叶根的周向间隔布置的螺栓结构,其用于将叶片通过螺栓与风力发电机轮毂连接。第一方向和第二方向为水平面上的两个相互垂直的方向,预埋件1的布置延伸方向和第一凹槽21的长度延伸方向相垂直,即为若干个预埋件1均匀间隔的设置在下层基体2上。
其中,所述上层基体3上可以形成有卡合于所述预埋件1外缘的第二凹槽31,所述第一凹槽21和所述第二凹槽31相对设置。第一凹槽21沿着下层基体2的第一方向均匀设置,且第一凹槽21的长度方向与下层基体2的长度方向一致均为第二方向;第二凹槽31也沿着上层基体3的第一方向均匀设置,且第一凹槽21和第二凹槽31相对设置并围合为一通孔,预埋件1嵌设于该通孔内。其中,第一凹槽21和第二凹槽31可以为下层基体2的片材或上层基体3的片材折弯形成的波浪形片材形成,也可以为直接在下层基体2的片材或上层基体3的片材上开设凹槽形成。当然,根据实际情况和具体需求,在本实用新型的其他实施例中,上层基体3还可以直接扣合在预埋件1上,不在上层基体3上开设第二凹槽31,此时预埋件1的形状可能为半圆形或方形等,此处不作唯一限定。
具体的,预埋件1是指沿着叶根的周向间隔布置的螺栓结构,其用于和叶片实现固定连接,且预埋件1的横截面形状一般为圆柱环体,采用标准件直接加工,也可以采用形状为扁圆柱体、方形主体或横截面为其他多边形的预埋件1;粘接剂可以材质不限,可以是粘接胶、树脂或预浸料纤维等,还可以为其他能够将若干个子部件合成整体的其他材质,如环氧粘接剂等。
上层基体3和/或下层基体2为预成型的增强纤维部件,通过将纤维浸入树脂并固化成型,如采用预浸料工艺、拉挤工艺或连续成型等工艺制造。其中,纤维主要采用玻璃纤维、碳纤维、天然纤维、聚酯纤维、聚酰胺纤维等一种或它们的组合,树脂可以采用环氧树脂、酚醛树脂、不饱和聚酯、热固性树脂、聚烯烃、聚酯树脂、聚酰胺树脂等任何热固性树脂或热塑性树脂。可选的,上层基体3和下层基体2均为预加工成型的片体,其分别覆盖于预埋件1的上下两侧,材质可选多轴向纤维和热固性树脂,且上层基体3和下层基体2的表面需要铺设脱模布或其他使表面粗糙化的方式保证粗糙度,例如喷砂、砂磨、研磨、电晕处理、等离子体处理等。
可选的,所述预埋件1的横截面形状为圆形或椭圆形,所述第一凹槽21和所述第二凹槽31围合形成圆形或椭圆形。具体的,预埋件1的横截面一般为圆形或椭圆形,即预埋件1为一圆环筒体,且预埋件1的内表面开设有内螺纹,螺栓可以插入至该预埋件1内的通孔内,从而实现螺栓的连接。第一凹槽21和第二凹槽31为相对设置的,即为用于围合同一预埋件1的两个第一凹槽21和第二凹槽31为正对设置的,且第一凹槽 21和第二凹槽31的两侧边可以相连接,从而使得第一凹槽21和第二凹槽31相拼合为圆形。第一凹槽21和第二凹槽31拼合成的圆形的内圆直径略大于或等于预埋件1外圆的直径,从而保证预埋件1的固定稳定性。其中,第一凹槽21和第二凹槽31的数量可以相等或不相等,且上层基体3和下层基体2之间可以错位设置,例如,使得上层基体3的第一个第一凹槽21和下层基体2的第二个第二凹槽31相对设置。当然,根据实际情况和具体需求,在本申请的其他实施例中,预埋件1的横截面的形状为方形,此时第一凹槽21和第二凹槽31拼合形成为方形,此处不作唯一限定。
进一步地,请一并参阅图6,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,所述上层基体3和所述下层基体2均采用拉挤成型,或者仅所述上层基体3或所述下层基体2中的一个采用拉挤成型。具体的,拉挤成型是在牵引设备的牵引下,将连续纤维或其织物进行树脂浸润并通过成型模具加热使树脂固化,来生产复合材料型材的工艺方法,其具体加工工艺为现有技术中的常规工艺。上层基体3和下层基体2的材质一般采用多轴向纤维和热固性树脂,其可以采用拉挤成型的方式成型,不需要切割直接可以成型,可以节省较多的材料。当然,根据实际情况和具体需求,在本申请的其他实施例中,上层基体3和/或下层基体2还可以采用真空灌注成型或模压等其他方式进行加工成型,此处不作唯一限定。
进一步地,请参阅图2、图3及图6,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,所述上层基体3具有第一固定截面33,所述上层基体3由所述第一固定截面33沿着基线34拉挤成型;所述下层基体2具有第二固定截面23,所述下层基体2由所述第二固定截面23沿着所述基线24拉挤成型。具体的,基线24和34垂直于第一固定截面33和第二固定截面23的方向设置,第一固定截面33和第二固定截面23可以沿着基线24和34的延伸方向拉挤成型。其中,拉挤的方向可以沿着第一方向拉挤也可以沿着第二方向拉挤,只需要能够形成上层基体3和下层基体2的形状即可。
可选地,请参阅图2、图3及图6,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,所述第一固定截面33和所述第二固定截面23的长度方向与所述第一凹槽21的长度方向一致,所述基线24和34垂直于第一固定截面33和所述第二固定截面23。即,此时第一固定截面33和第二固定截面23的长度方向为第二方向,然后基线的延伸方向为第一方向,此时第一固定截面33的形状可以与上层基体3的第二方向上的纵截面形状一致,第二固定截面23的形状可与下层基体2的第二方向上的纵截面形状一致,因此可以一次即拉伸成型。其中,基线24和34的形状由若干个半圆依次拼接形成,且半圆之间的连接处具有过渡圆弧,第一固定截面33和第二固定截面23可以沿着该基线24和34形成具有若干个凹槽的板体,基线24和34的半圆处即为本申请中的第一凹槽21和第二凹槽31,半圆的数量与第一凹槽21、第二凹槽31以及预埋件1的数量相同,预埋件1可以嵌设于该第一凹槽21和第二凹槽31的内部。
当然,在本申请的其他实施例中,第一固定截面33和第二固定截面23的延伸方向还可以为沿着第二方向延伸,基线34或24沿着第一方向延伸,且第一固定截面33和第二固定截面23的形状可以为若干个半圆依次拼接,此时也可以拉伸处具有第一凹槽21的下层基体2和具有第二凹槽31的上层基体3,后续可采用切削或磨削等方式对第一基体和第二基体进行进一步的加工,此处不作唯一限定。
进一步地,请参阅图2、图3及图6,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,所述第一固定截面33和所述第二固定截面23的形状均为梯形,且所述第一固定截面33和所述第二固定截面23的一侧边垂直于底边,另一侧边与所述底边相倾斜,所述底边的长度大于所述顶边的长度。具体的,第一固定截面33和第二固定截面23均为直角梯形,且第一固定截面33和第二固定截面23靠近预埋件1的一侧边为直角结构,远离预埋件1的一侧边为倾斜设置的。即为下层基体2在远离预埋件1的一侧面形成倾斜导面22,该倾斜导面22为过渡用斜坡,能够避免下层基体2远离预埋件1的一端在和叶片的其他部件实现连接时发生应力集中的现象,避免下层基体2端部的损坏。
进一步地,参阅图2、图3及图6,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,所述第一固定截面33的长度小于所述第二固定截面23的长度。具体的,第一固定截面33和第二固定截面23的长度即相当于上层基体3和下层基体2在第二方向上的长度,即为所述下层基体2在所述第二方向上的长度大于所述上层基体3在所述第二方向上的长度,所述上层基体3在所述第二方向上的长度大于所述预埋件1在所述第二方向上的长度,下层基体2的长度比上层基体3的长度较长,且上层基体3可以将预埋件1完整的包覆,可以保证后期注塑填充时可以实现稳定完整的填充效果。下层基体2的长度较长可以方便和叶片实现连接,加大叶根和叶片之间连接面的面积,从而达到更好地连接效果。其中,由于预埋件1和上层基体3的长度均较短,因此预埋件1和上层基体3均设置在下层基体2的一端。可选地,上层基体3的厚度和下层基体2的厚度一致。
进一步地,请参阅图3,作为本申请提供的风电叶片叶根预制件生产方法的一种具体实施方式,还包括如下步骤:
S3.1将所述预埋件1置于所述第一凹槽21内之后,在所述预埋件1的一侧设置填充件5,所述填充件5与所述预埋件1相拼接并共同嵌设于所述第一凹槽21内。具体的,填充件5的材质一般为泡沫或其他质地较轻且可实现填充的材质,其也设置在第一凹槽21内,所述填充件5包括与所述预埋件1相拼接的填充杆51以及设于所述填充杆51相对两侧的填充搭耳52,相邻的所述填充件5的所述填充搭耳52相抵接。填充杆51的粗细和预埋件1的粗细一致,或者填充杆51的粗细大于预埋件1的粗细。填充杆51设置在预埋件1的一端端部,填充搭耳52设置在填充杆51的相对两侧,可以防止填充杆51的转动,且还可以起到定位的效果。其中,填充搭耳52为凸出于填充杆51两端 的凸块,第一凹槽21的两侧端和第二凹槽31的两侧端均可以和该填充搭耳52相抵接,还可以对第一凹槽21和第二凹槽31之间的位置起到支撑的效果。可以理解的是,填充件5还可包括延伸在相邻预埋件1之间的间隔件,比如预制成与预埋件形状匹配的玻璃钢件、泡沫间隔件等。
其中,所述填充件5的长度和所述预埋件1的长度之和小于所述第一凹槽21的长度。具体的,预埋件1设置在第一凹槽21的一端,填充件5紧贴预埋件1的端部设置并延伸至第一凹槽21的另一端,从而起到填充和支持的效果。其中,第一凹槽21的长度略大于填充件5和预埋件1的总长度,此时能够保证较好的包覆效果。
由于下层基体2远离所述预埋件1的一端具有倾斜导面22,所述填充件5在朝向远离所述预埋件1的一端厚度变薄,即为所述填充件5在朝向远离所述预埋件1的一端厚度变薄。填充件5在该端部也形成有倾斜面32,从而起到支撑辅助填充支撑的效果。其中,整个填充件5的结构均为逐渐倾斜的,即越朝向倾斜导面22的一侧的填充件5的厚度越薄,此时既可以方便整个预制件和叶片模具之间的拆装,还可以避免应力集中造成的损坏。
上层基体3的末端也具有倾斜面32,该倾斜面32用于实现对预埋件1的完整包覆,且倾斜面32的一端位于预埋件1上另一端延伸至填充件5上,还可以对预埋件1和填充件5之间的连接处进行遮挡,从而保证预埋件1和填充件5之间的连接稳定性。
其中,为了使得整个预制件的重量更轻,上层基体3和下层基体2一般采用限位复合增强材料等强度较强的材料,但是其重量较重,填充件5一般采用泡沫等重量较轻的材料,因此需要增大填充件5的体积减小上层基体3和下层基体2的体积,因此填充件5的横截面尺寸可以比预埋件1的很截面尺寸大,因此为了匹配填充件5和预埋件1的不同尺寸,且整个上层基体3和下层基体2的外缘应该是平稳均匀过渡的,因此上层基体3和下层基体2对应的厚度可以不同,即其可以分为与预埋件1匹配的第一部分,其厚度较厚;还可以包括与填充件5匹配的第二部分,其厚度较薄。当然,根据实际情况和具体需求,第一部分和第二部分的厚度还可以一致,此处不唯一限定。
为了进一步的降低整个预制件的重量,还可以在相邻的预埋件1之间设置填充延伸件(图未示),该填充延伸件可以为单独设置的也可以为填充件5延伸形成的。由于上层基体3和下层基体2的材质重量较重,且由于位于相邻的两个预埋件1之间的上层基体3和下层基体2由于加工精度等原因可能存在间隙,对于该间隙在后期进行灌注或粘接时需要将其填充,但是填充物的重量娇宠,采用质量较轻的填充延伸件可以降低整个预制件的重量,且填充延伸件的材质与填充件5相同,可以采用泡沫或其他质地较轻且可实现填充的材质。
实施例2
本申请还提供了另一种风电叶片叶根预制件生产方法,其与实施例1的区别在于:在S3步骤中,预先将下层基体2、预埋件1和上层基体3堆叠好,然后朝向上层基体3 和下层基体2之间填充粘接剂,从而使得上层基体3、预埋件1和下层基体2之间可以实现粘接。相较于实施例1中多次涂抹粘接剂的方式,其操作更加简单。
实施例3
请参阅图1及图7,本申请还提供一种应用于风电叶片叶根预制件生产方法中的模具6,所述模具6包括用于容纳所述下层基体2的下模具62和用于容纳所述上层基体3的上模具61,所述下模具62内开设有若干与所述下层基体2的下表面相贴合的若干第三凹槽621,所述上模具61内开设有若干与所述上模具61的上表面相贴合的若干第四凹槽611,所述上层基体3和所述下层基体2之间包覆有预埋件1。本申请提供的模具6,可以将整个预制件置于该模具6内进行生产和加工,通过标准化的模具6可以对整个预制件的高度进行统一控制,保证加工的标准性和统一性。通过该模具6进行提前热压,能够在不占用叶片模具的基础上提高生产效率。
其中,下模具62和上模具61为相对设置的,第三凹槽621和第四凹槽611也为相对设置的,且下模具62卡合于下层基体2的下表面相卡合,由于下层基体2的下表面也具有若干个与第一凹槽21配合的凸起部,因此下模具62上设有若干个与该凸起部配合的第三凹槽621;上模具61卡合于上层基体3的上表面相卡合,由于上层基体3的上表面也具有若干个与第二凹槽31配合的凸起部,因此上模具61上设有若干个与该凸起部配合的第四凹槽611。此时,第三凹槽621和第四凹槽611也是一一对应设置的。
上模具61和下模具62之间可以实现相互开合,可选的,所述上模具61与所述下模具62相铰接。即上模具61和下模具62可以为两个相对独立的模具,也可以将上模具61和下模具62组合在一起,即下模具62可以保持不动,然后上模具61可以活动扣合在该下模具62上,其中,上模具61和下模具62之间的连接方式还可以为转动连接,也可以为卡接等;或者,也可以为上模具61保持不动,下模具62活动扣合在上模具61上,此处不作唯一限定。
其中,所述第三凹槽621包括与所述上层基体3相卡合的第一凹槽段6111以及与所述填充件5相卡合的第二凹槽段6112,且所述第一凹槽段6111和所述第二凹槽段6112的连接处形成有倾斜面32,该倾斜面32用于和上层基体3的末端的倾斜面32相贴合,
由于上层基体3的长度小于下层基体2的长度,因此下层基体2的后半部分是通过填充件5与上模具61相抵接的,填充件5在与倾斜导面22相对的位置是也形成有与倾斜导面22起始位置和弧度一致的倾斜导面22的,即第三凹槽621的倾斜凸面是可以和该倾斜导面22相对的,即倾斜导面22的起始位置和倾斜弧度等与下层基体2的倾斜导面22是一致的。此时能够更好的实现上模具61和整个预制件之间的配合。
其中,模具6上还设有其他辅助灌注部件,例如加热元件和控制元件,如果粘接剂选用树脂,则可能需要真空灌注,因此模具6上还需要设有与真空机连接的真空口和真空计等必要设备。
实施例4
本申请还提供了一种叶根部件,其包括外层纤维织物7、内层纤维织物8以及若干相互拼接的如实施例1或实施例2中所述的风电叶片叶根的预制件,所述外层纤维织物7和所述内层纤维织物8分别包覆于所述预制件的相对两侧。其中,预制件的数量可以为多个,多个预制件可以在外层纤维织物7和内层纤维织物8之间实现拼接,其拼接方法可以为对齐拼接或错位拼接。
实施例5
请参阅图8,本申请还提供一种叶根制造方法,所述叶根制造方法包括如下步骤:
S5.采用上述S1至S4中的步骤制造出若干如上述任一实施例中所述的风电叶片叶根的预制件;
S6.在叶根模具中铺放外层纤维织物7,并将若干所述预制件依次拼接;其中,叶根模具的结构和使用方法为现有技术,外层纤维织物7铺设在叶根模具中,且外层纤维织物7一般为一外部的保护层,然后再将预制件放置在外层纤维织物7上;
其中,预制件为拼装时,可以在地面上将所有预制件依次固定在一的法兰盘(图未示)上,然后再统一将整个拼装后的预制件吊装至外层纤维织物7上;也可以将拼装后的预制件直接设置外层纤维织物7上,然后依次将预制件拼装在拼接外层纤维织物7上,并固定在法兰盘上,此处不作唯一限定。
S7.在拼接后的所述预制件上铺设内层纤维织物8;内层纤维织物8铺设在预制件的内表面上,其可以对预制件的内表面进行保护,且内层纤维织物8和外层纤维织物7相结合还可以保证注塑成型的效果。
S8.在所述叶根模具内灌注并成型为叶根;其灌注成型的方式为现有技术,可以将内层纤维织物8、外层纤维织物7和预制件形成一体结构,保证其连接效果。
将部分铺层提前预制,组装成型后再放置到叶片模具中与剩余的铺层共同一体成型,可以减少后期灌注成型时的难度和时间,在厚度方向上采用分块叠加的方式,环向上采用多段预制件拼接,可以大大的降低组装的难度。同时预制件可以采用标准化和模块化生产,可以提前制作,容易检查控制缺陷,减小风险,可以进一步提升生产效率,可以实现不同型号通用,方便标准化管理。
其中,制作成型的叶根部件可以后期与叶尖部分和叶身部分直接拼合或者拼合后再次进行灌注成型,从而成型为完整的叶片。采用现将叶根预成型的方式,能够方便后期的组装和成型。
进一步地,请参阅图3和图4,作为本申请提供的叶片制造方法的一种具体实施方式,所述预制件之间的拼接方式可以为对齐拼接或错位拼接。具体的,在预制件组装时,可以为对齐拼装,即为前一预制件的末端和后一预制件的首端直接对齐拼接,此时拼装方式简单;错位拼接即为前一预制件的末端预留有一段上层基体3或下层基体2,后一预制件上存在部分未被封合的区域,且预留的上层基体3或下层基体2可以和预留未被缝合的区域相连接,但是操作较为复杂。当然,根据实际情况和具体需求,在本申请的 其他实施例中,还可以为其他拼接方式,此处不作唯一限定。
实施例6
本申请还提供了一种风电叶片,且风电叶片包括叶尖部分、叶身部分和叶根部分,其中,叶根部分包括实施例3中公开的预制件。
实施例7
请参阅图8,本申请还提供一种叶片制造方法,所述叶片制造方法与实施例5中的叶根制造方法的区别在于:将外层纤维织物7直接铺放在叶片模具中,然后并将若干所述预制件依次拼接,再在拼接后的所述预制件上铺设内层纤维织物8;再将叶尖部分和叶身部分的相关部件设置在叶片模具内,在所述叶片模具内灌注并成型为叶片。
此时采用直接在叶片模具上进行生产加工,能够节省灌装的工序,且保证叶根部分、叶尖部分和叶身部分之间的连接紧密性。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (28)

  1. 风电叶片叶根的预制件,其特征在于,包括:
    预埋件(1);
    下层基体(2),为一片体,其相邻两侧边分别沿着第一方向和第二方向设置,若干所述预埋件(1)的延伸方向为第二方向,且所述预埋件(1)沿着所述第一方向布置于所述下层基体(2)上,所述下层基体(2)上形成有容纳所述预埋件(1)的第一凹槽(21);
    上层基体(3),为一片体,所述上层基体(3)盖设于所述预埋件(1)上;以及
    粘接层(4),其填充于所述下层基体(2)和所述上层基体(3)之间且环设于所述预埋件(1)的外缘。
  2. 如权利要求1所述的风电叶片叶根的预制件,其特征在于:所述下层基体(2)在所述第一方向上的长度大于所述上层基体(3)在所述第一方向上的长度。
  3. 如权利要求1所述的风电叶片叶根的预制件,其特征在于:所述上层基体(3)上形成有容纳所述预埋件(1)的第二凹槽(31),所述第一凹槽(21)和所述第二凹槽(31)相对设置。
  4. 如权利要求3所述的风电叶片叶根的预制件,其特征在于:所述第一凹槽(21)和所述第二凹槽(31)围合形成圆形或椭圆形。
  5. 如权利要求1至4任一项所述的风电叶片叶根的预制件,其特征在于:所述预埋件(1)为螺栓套,所述上层基体(3)在所述第一方向上的长度大于所述预埋件(1)在所述第一方向上的长度。
  6. 如权利要求5所述的风电叶片叶根的预制件,其特征在于:所述下层基体(2)上还设有若干填充件(5),所述填充件(5)与所述预埋件(1)相拼接并共同嵌设于所述第一凹槽(21)内。
  7. 如权利要求6所述的风电叶片叶根的预制件,其特征在于:所述填充件(5)包括与所述预埋件(1)相拼接的填充杆(51)以及设于所述填充杆(51)相对两侧的填充搭耳(52),相邻的所述填充件(5)的所述填充搭耳(52)相抵接。
  8. 如权利要求6所述的风电叶片叶根的预制件,其特征在于:所述下层基体(2)包括容纳预埋件(1)的第一部分和容纳填充件(5)的第二部分,所述第一部分与所述第二部分具有不同的厚度。
  9. 如权利要求6所述的风电叶片叶根的预制件,其特征在于:所述下层基体(2)远离所述预埋件(1)的一端具有倾斜导面(22),且所述下层基体(2)远离所述预埋件(1)的一侧的厚度小于所述下层基体(2)靠近所述预埋件(1)的一侧的厚度;所述填充件(5)在朝向远离所述预埋件(1)的一端厚度变薄。
  10. 如权利要求6所述的风电叶片叶根的预制件,其特征在于:所述上层基体(3)远离所述预埋件(1)的一端具有延伸至所述填充件(5)上的倾斜面(32)。
  11. 叶根部件,其特征在于:包括外层纤维织物(6)、内层纤维织物(7)以及若干相互拼接的如权利要求1至10任一项所述的风电叶片叶根的预制件,所述外层纤维织物(7)和所述内层纤维织物(8)分别包覆于所述预制件的相对两侧。
  12. 风电叶片,其特征在于:包括叶尖部分、叶身部分和叶根部分,所述叶根部分包括如权利要求1至10任一项所述的预制件。
  13. 叶根或叶片的制造方法,其特征在于,包括如下步骤:
    制造出若干如权利要求1至10任一项所述的风电叶片叶根的预制件;
    在叶根模具或叶片模具中铺放外层纤维织物(7),并将若干所述预制件置于所述外层纤维织物(7)上,并将相邻的所述预制件进行拼接;
    在拼接后的所述预制件上铺设内层纤维织物(8);
    在所述叶根模具或所述叶片模具内灌注成型叶根或叶片。
  14. 如权利要求13所述的叶片制造方法,其特征在于:所述预制件之间的拼接方式可以为对齐拼接或错位拼接。
  15. 风电叶片叶根组件生产方法,其特征在于,包括如下步骤:
    预成型上层基体(3)和下层基体(2),所述上层基体(3)和所述下层基体(2)均为一片材,且所述下层基体(2)上设有若干第一凹槽(21);
    将所述下层基体(2)置于模具(6)中,将若干预埋件(1)置于所述第一凹槽(21)内,将所述上层基体(3)的扣合于所述预埋件(1)上;
    在所述下层基体(2)和所述上层基体(3)上分别涂覆或铺设粘接剂,并与所述预埋件(1)实现粘接,或在所述下层基体(2)、所述预埋件(1)、所述上层基体(3)之间填充粘接剂并形成组合件;
    在模具(6)中使所述组合件固化成型。
  16. 如权利要求15所述的风电叶片叶根组件生产方法,其特征在于:所述上层基体(3)和/或所述下层基体(2)为纤维增强复合材料。
  17. 如权利要求16所述的风电叶片叶根组件生产方法,其特征在于:所述上层基体(3)和/或所述下层基体(2)采用拉挤成型。
  18. 如权利要求17所述的风电叶片叶根组件生产方法,其特征在于:所述下层基体(2)具有第二固定截面(23),所述下层基体(2)由所述第二固定截面(23)沿着基线(24)拉挤成型;
    所述上层基体(3)具有第一固定截面(33),所述上层基体(3)由所述第一固定截面(33)沿着基线(34)拉挤成型。
  19. 如权利要求18所述的风电叶片叶根组件生产方法,其特征在于:所述第一固定截面(33)和所述第二固定截面(23)的长度方向与所述第一凹槽(21)的长度方向一致,所述基线(24和34)垂直于第一固定截面(33)和所述第二固定截面(23)。
  20. 如权利要求19所述的风电叶片叶根组件生产方法,其特征在于:所述第一固 定截面(33)和/或所述第二固定截面(23)的形状为梯形。
  21. 如权利要求19所述的风电叶片叶根组件生产方法,其特征在于:所述第一固定截面(33)的长度小于所述第二固定截面(23)的长度。
  22. 如权利要求19所述的风电叶片叶根组件生产方法,其特征在于:将所述预埋件(1)置于所述第一凹槽(21)内之后,在所述预埋件(1)的一侧设置填充件(5),所述填充件(5)至少一部分与所述预埋件(1)相拼接并共同嵌设于所述第一凹槽(21)内。
  23. 如权利要求22所述的风电叶片叶根组件生产方法,其特征在于:所述第二固定截面(23)包括与所述预埋件(1)对应的第一部分以及与所述第一凹槽(21)内的填充件(5)对应的第二部分,所述第一部分和所述第二部分的厚度不同。
  24. 如权利要求22所述的风电叶片叶根组件生产方法,其特征在于:所述第一凹槽(21)内的填充件(5)的长度和所述预埋件(1)的长度之和小于所述第一凹槽(21)的长度。
  25. 如权利要求15至24任一项所述的风电叶片叶根组件生产方法,其特征在于:相邻的所述预埋件(1)之间设有填充延伸件。
  26. 如权利要求15至24任一项所述的风电叶片叶根组件生产方法,其特征在于:所述上层基体(3)上设有若干第二凹槽(31),且所述第一凹槽(21)和所述第二凹槽(31)相对设置并围合于所述预埋件(1)外侧。
  27. 模具(6),应用于如权利要求15至26任一条所述的风电叶片叶根组件生产方法中,其特征在于:包括用于容纳所述下层基体(2)的下模具(62)和用于容纳所述上层基体(3)的上模具(61),所述下模具(62)内开设有若干与所述下层基体(2)的下表面相贴合的若干第三凹槽(621)。
  28. 如权利要求27所述的模具(6),其特征在于:所述上模具(61)与所述下模具(62)转动连接,所述上模具(61)内开设有若干与所述上层基体(3)的上表面相贴合的若干第四凹槽(611)。
PCT/CN2020/139582 2019-12-26 2020-12-25 风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具 WO2021129829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112022012779A BR112022012779A2 (pt) 2019-12-26 2020-12-25 Elemento pré-fabricado de uma raiz de pá de uma pá de energia eólica, componente de raiz de pá, pá de energia eólica, método de fabricação de uma raiz de pá, método de produção de um conjunto de raiz de pá e molde

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911368379.0 2019-12-26
CN201911368379.0A CN111022248B (zh) 2019-12-26 2019-12-26 风电叶片叶根的预制件、叶根部件、叶片及其制造方法
CN201911370578.5 2019-12-26
CN201911370578.5A CN111169041A (zh) 2019-12-26 2019-12-26 风电叶片叶根组件生产方法以及模具

Publications (1)

Publication Number Publication Date
WO2021129829A1 true WO2021129829A1 (zh) 2021-07-01

Family

ID=76573693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139582 WO2021129829A1 (zh) 2019-12-26 2020-12-25 风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具

Country Status (2)

Country Link
BR (1) BR112022012779A2 (zh)
WO (1) WO2021129829A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311750A (zh) * 2021-12-31 2022-04-12 湖北三江航天红阳机电有限公司 叶片预成型体的制备方法、成型模和制备转子的方法
CN114320781A (zh) * 2022-01-05 2022-04-12 上海电气风电集团股份有限公司 风力发电机的叶片结构及制作方法及风力发电机
CN116696675A (zh) * 2023-08-02 2023-09-05 新创碳谷集团有限公司 一种叶根模块化榫卯式连接结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140039A2 (en) * 2011-04-11 2012-10-18 Lm Wind Power A/S Wind turbine blade comprising circumferential retaining means in root regions
CN103511191A (zh) * 2012-06-15 2014-01-15 华锐风电科技(集团)股份有限公司 预埋螺栓、预制叶根、叶片及其成型方法和风力发电机组
CN104110352A (zh) * 2014-06-19 2014-10-22 连云港中复连众复合材料集团有限公司 一种具有方形预埋螺栓套的风机叶片根部的制备方法
CN205841105U (zh) * 2016-07-14 2016-12-28 宜春学院 一种组合式风力机叶片根部结构
CN106368893A (zh) * 2015-07-22 2017-02-01 通用电气公司 用于风力涡轮的转子叶片根部组件
CN108943771A (zh) * 2018-07-04 2018-12-07 株洲时代新材料科技股份有限公司 一种风电叶片叶根预制件的制造方法
WO2019212561A1 (en) * 2018-05-04 2019-11-07 General Electric Company Method of forming wind turbine rotor blade root portions
CN111022248A (zh) * 2019-12-26 2020-04-17 中材科技风电叶片股份有限公司 风电叶片叶根的预制件、叶根部件、叶片及其制造方法
CN111169041A (zh) * 2019-12-26 2020-05-19 中材科技风电叶片股份有限公司 风电叶片叶根组件生产方法以及模具
CN211467555U (zh) * 2019-12-26 2020-09-11 中材科技风电叶片股份有限公司 风电叶片叶根模块化生产用模具
CN211549890U (zh) * 2019-12-26 2020-09-22 中材科技风电叶片股份有限公司 风电叶片叶根模块化的预制件、叶根部件以及叶片

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140039A2 (en) * 2011-04-11 2012-10-18 Lm Wind Power A/S Wind turbine blade comprising circumferential retaining means in root regions
CN103511191A (zh) * 2012-06-15 2014-01-15 华锐风电科技(集团)股份有限公司 预埋螺栓、预制叶根、叶片及其成型方法和风力发电机组
CN104110352A (zh) * 2014-06-19 2014-10-22 连云港中复连众复合材料集团有限公司 一种具有方形预埋螺栓套的风机叶片根部的制备方法
CN106368893A (zh) * 2015-07-22 2017-02-01 通用电气公司 用于风力涡轮的转子叶片根部组件
CN205841105U (zh) * 2016-07-14 2016-12-28 宜春学院 一种组合式风力机叶片根部结构
WO2019212561A1 (en) * 2018-05-04 2019-11-07 General Electric Company Method of forming wind turbine rotor blade root portions
CN108943771A (zh) * 2018-07-04 2018-12-07 株洲时代新材料科技股份有限公司 一种风电叶片叶根预制件的制造方法
CN111022248A (zh) * 2019-12-26 2020-04-17 中材科技风电叶片股份有限公司 风电叶片叶根的预制件、叶根部件、叶片及其制造方法
CN111169041A (zh) * 2019-12-26 2020-05-19 中材科技风电叶片股份有限公司 风电叶片叶根组件生产方法以及模具
CN211467555U (zh) * 2019-12-26 2020-09-11 中材科技风电叶片股份有限公司 风电叶片叶根模块化生产用模具
CN211549890U (zh) * 2019-12-26 2020-09-22 中材科技风电叶片股份有限公司 风电叶片叶根模块化的预制件、叶根部件以及叶片

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311750A (zh) * 2021-12-31 2022-04-12 湖北三江航天红阳机电有限公司 叶片预成型体的制备方法、成型模和制备转子的方法
CN114311750B (zh) * 2021-12-31 2024-02-13 湖北三江航天红阳机电有限公司 叶片预成型体的制备方法、成型模和制备转子的方法
CN114320781A (zh) * 2022-01-05 2022-04-12 上海电气风电集团股份有限公司 风力发电机的叶片结构及制作方法及风力发电机
CN116696675A (zh) * 2023-08-02 2023-09-05 新创碳谷集团有限公司 一种叶根模块化榫卯式连接结构
CN116696675B (zh) * 2023-08-02 2023-10-24 新创碳谷集团有限公司 一种叶根模块化榫卯式连接结构

Also Published As

Publication number Publication date
BR112022012779A2 (pt) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2021129829A1 (zh) 风电叶片叶根的预制件、叶根部件、叶片及其制造方法、叶根组件的生产方法和模具
CN107708982B (zh) 用于风轮机叶片的加强结构
US10179425B2 (en) Fibre preform for laying on a curved surface of a mould
CN106457696B (zh) 以两个步骤制造的风力涡轮机叶片部件
CN106457719B (zh) 具有改进的纤维过渡的风力涡轮机叶片
US9599094B2 (en) Method of manufacturing an aerodynamic shell part for a wind turbine blade
CN103477069B (zh) 用于保持至少一个衬套的模块
CN111684155B (zh) 用于风力涡轮机叶片根部的插入件
US20130189114A1 (en) Method of manufacturing a wind turbine blade and a wind turbine blade
CN111022248B (zh) 风电叶片叶根的预制件、叶根部件、叶片及其制造方法
US20170320275A1 (en) Manufacture of i-shaped shear web
US10513810B2 (en) Method of producing a continuous fibre reinforcement layer from individual fibre mats
EP2918399B1 (en) A method for manufacturing a rotor blade for a wind turbine
US10690113B2 (en) Wind turbine blades and related methods of manufacturing
CN211549890U (zh) 风电叶片叶根模块化的预制件、叶根部件以及叶片
WO2011113812A1 (en) Improved wind turbine blade spar
EP3393767A1 (en) A method of manufacturing a composite laminate structure of a wind turbine blade part and related wind turbine blade part
CN108495739B (zh) 用于制造风轮机叶片本体的方法与设备
EP3964352B1 (en) Lightweight spar cap with concave structure for wind turbine blade and manufacturing method thereof
US10151296B2 (en) Blade for a wind turbine and a method for manufacturing a blade for a wind turbine
CN111169041A (zh) 风电叶片叶根组件生产方法以及模具
CN211467555U (zh) 风电叶片叶根模块化生产用模具
US11951659B2 (en) Wind turbine blade body manufacturing method
CN112840120A (zh) 具有多个梁帽的风力涡轮机叶片
EP4234192A1 (en) Method for manufacturing wind turbine blade preforms with complex geometries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907317

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012779

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022012779

Country of ref document: BR

Free format text: SOLICITA-SE EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DA GRU SOB O CODIGO 260 PARA A REGULARIZACAO DO PEDIDO CONFORME A RESOLUCAO NO189/2017 UMA VEZ QUE A PETICAO NO 870220075817 APRESENTA DOCUMENTOS REFERENTES A DOIS SERVICOS DIVERSOS (MODIFICACAO DO PEDIDO E TRADUCAO DOS DOCUMENTOS APRESENTADOS NO DEPOSITO) TENDO SIDO PAGO SOMENTE UMA RETRIBUICAO. DEVERA SER PAGA MAIS 1 (UMA) GRU SOB O CODIGO 260 ALEM DA GRU 207, REFERENTE A RESPOSTA DE EXIGENCIA.

ENP Entry into the national phase

Ref document number: 112022012779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220627

122 Ep: pct application non-entry in european phase

Ref document number: 20907317

Country of ref document: EP

Kind code of ref document: A1