WO2021129637A1 - 一种室内分布系统 - Google Patents

一种室内分布系统 Download PDF

Info

Publication number
WO2021129637A1
WO2021129637A1 PCT/CN2020/138484 CN2020138484W WO2021129637A1 WO 2021129637 A1 WO2021129637 A1 WO 2021129637A1 CN 2020138484 W CN2020138484 W CN 2020138484W WO 2021129637 A1 WO2021129637 A1 WO 2021129637A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
access unit
signal
unit
Prior art date
Application number
PCT/CN2020/138484
Other languages
English (en)
French (fr)
Inventor
陈海宇
刘兴伟
李顺昌
Original Assignee
京信网络系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信网络系统股份有限公司 filed Critical 京信网络系统股份有限公司
Publication of WO2021129637A1 publication Critical patent/WO2021129637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to an indoor distribution system.
  • the existing technology mainly selects different indoor coverage schemes according to different customer needs, such as capacity scenarios, construction convenience, and equipment costs.
  • customer needs may change over time, such as from Low-capacity demand has risen to high-capacity demand, which requires rebuilding the indoor distribution system, resulting in a large amount of engineering.
  • the embodiments of the present application provide an indoor distribution system, which is used to realize that the indoor distribution system does not need to be rebuilt when the customer needs change.
  • Access unit expansion unit, remote unit;
  • the extension unit supports a first frequency band and a second frequency band, and the remote unit supports the first frequency band and the second frequency band; wherein, the first frequency band is when the access unit is a radio frequency access unit Corresponding frequency band, the second frequency band is a corresponding frequency band when the access unit is a baseband access unit.
  • the radio frequency access unit is connected to the base station through a coupler; the radio frequency access unit is used to convert a first radio frequency signal input from the base station into a first optical signal, and then to convert the first optical signal Transfer to the expansion unit.
  • the radio frequency access unit includes a wired radio frequency access unit and a wireless radio frequency access unit;
  • the first frequency band includes a third frequency band and a fourth frequency band;
  • the third frequency band is that the radio frequency access unit is The frequency band corresponding to the wired radio frequency access unit;
  • the fourth frequency band is the frequency band corresponding to the radio frequency access unit when the radio frequency access unit is a wireless radio frequency access unit.
  • the wired radio frequency access unit is connected to the base station through a wired coupler; the wireless radio frequency access unit is connected to the base station through a wireless coupler.
  • the radio frequency access unit includes a first radio frequency processing module, a first digital processing module, and a first optical module;
  • the first radio frequency processing module is configured to perform first processing on the first radio frequency signal to generate a first digital signal, and transmit it to the first digital processing module; the first processing includes radio frequency amplification, filtering, and radio frequency Signal to digital signal;
  • the first digital processing module is used to perform a second processing on the first digital signal to generate a second digital signal, and transmit it to the first optical module;
  • the second processing includes framing or deframing, sampling Rate conversion, filtering and routing conversion;
  • the first optical module is used to convert the second digital signal into the first optical signal.
  • the baseband access unit is connected to the core network through a gateway; the baseband access unit is configured to convert the first electrical signal of the core network into a second optical signal, and then convert the second optical signal Transfer to the expansion unit.
  • the baseband access unit includes an LTE module, a 3G module, a 2G module, a main control module, and a second optical module;
  • the LTE module is configured to transmit the first electrical signal of the LTE standard to the main control module; and transmit the first electrical signal of the 3G standard to the main control module through the 3G module; and The first electrical signal of the 2G standard is transmitted to the main control module through the 3G module and the 2G module;
  • the main control module is used for demodulating and sampling rate conversion of the first electrical signal
  • the second optical module is used for converting the first electrical signal after demodulation and sampling rate conversion of the main control module into the second optical signal.
  • the expansion unit includes a third optical module, a second digital processing module, a fourth optical module, and a remote power supply module;
  • the third optical module is used to convert the third optical signal input by the access unit into a second electrical signal, and transmit it to the second digital processing module;
  • the second digital processing module is used to perform third processing on the second electrical signal to generate a third electrical signal and transmit it to the fourth optical module;
  • the third processing includes framing or deframing, routing select;
  • the fourth optical module is used to convert the third electrical signal into a fourth optical signal and transmit it to the remote unit;
  • the remote power supply module is used for supplying power to the remote unit.
  • the remote unit includes a fifth optical module, a third digital processing module, a second radio frequency processing module, and an antenna module;
  • the fifth optical module is used to convert the fourth optical signal into a fourth electrical signal
  • the third digital processing module is configured to perform fourth processing on the fourth electrical signal to generate a second radio frequency signal, and transmit it to the second radio frequency processing module;
  • the fourth processing includes framing or deframing, Filtering, sampling rate conversion, digital signal to radio frequency signal;
  • the second radio frequency processing module is configured to perform fifth processing on the second radio frequency signal to generate a third radio frequency signal, and transmit it to the antenna module; the fifth processing includes radio frequency signal amplification, filtering, shunting, or Join
  • the antenna module is used to transmit the third radio frequency signal.
  • the access unit is connected to multiple extension units; each extension unit is connected to multiple remote units.
  • both the extension unit and the remote unit in the indoor distribution system can support the signal of the first frequency band and the signal of the second frequency band, that is, both the extension unit and the remote unit can support the radio frequency access unit and baseband access.
  • both the extension unit and the remote unit can support the radio frequency access unit and baseband access.
  • Figure 1 is the first indoor distribution system provided by an embodiment of this application.
  • Figure 2 is a second indoor distribution system provided by an embodiment of this application.
  • Figure 3 is a third indoor distribution system provided by an embodiment of this application.
  • Figure 4 is a radio frequency access unit provided by an embodiment of the application.
  • Figure 5 is a fourth indoor distribution system provided by an embodiment of this application.
  • Fig. 6 is a fifth indoor distribution system provided by an embodiment of this application.
  • FIG. 7 is a baseband access unit provided by an embodiment of the application.
  • Fig. 8 is a sixth indoor distribution system provided by an embodiment of the application.
  • Fig. 9 is a seventh indoor distribution system provided by an embodiment of the application.
  • FIG. 10 is an extension unit provided by an embodiment of this application.
  • Fig. 11 is a remote unit provided by an embodiment of the application.
  • FIG. 1 exemplarily shows that an embodiment of the present application provides an indoor distribution system.
  • the indoor distribution system may include an access unit (AU, Access Unit) 100, an extended unit (EU, Extended Unit) 200, and a remote unit (RU, Remote Unit) 300.
  • the access unit 100 may transmit the signal to the extension unit 200, and the extension unit 200 may then transmit the signal to the remote unit 300, or the access unit 100 may directly transmit the signal to the remote unit 300.
  • the access unit 100 may be a radio frequency access unit or a baseband access unit.
  • the frequency band corresponding to the signal in the indoor distribution system is the first frequency band.
  • the access unit 100 is a baseband access unit
  • the frequency band corresponding to the signal in the indoor distribution system is the second frequency band.
  • the extension unit 200 can support signals in the first frequency band and signals in the second frequency band
  • the remote unit 300 can also support signals in the first frequency band and signals in the second frequency band. In this way, no matter whether it is a radio frequency access unit or a baseband access unit in an indoor distributed system, there is no need to replace the expansion unit 200 and the remote unit 300.
  • the access unit 100 may be a radio frequency access unit, which is connected to the base station through a coupler, and the radio frequency access unit is used to convert the first radio frequency signal input by the base station into a first optical signal. In turn, the first optical signal is transmitted to the expansion unit 200.
  • the radio frequency access unit may include a wired radio frequency access unit and a wireless radio frequency access unit.
  • the first frequency band includes a third frequency band and a fourth frequency band.
  • the radio frequency access unit is a wired radio frequency access unit
  • the indoor distribution system The frequency band corresponding to the medium signal is the third frequency band.
  • the radio frequency access unit is a wireless radio frequency access unit
  • the frequency band corresponding to the signal in the indoor distribution system is the fourth frequency band.
  • the wired radio frequency access unit is connected to the base station through a wired coupler, and the wireless radio frequency access unit is connected to the base station through a wireless coupler.
  • FIG. 2 is a structural diagram of an indoor distribution system when the access unit 100 is a wired radio frequency access unit provided by an embodiment of the application.
  • the indoor distribution system includes a wired radio frequency access unit 110, an expansion unit 200, and a remote unit 300.
  • the baseband signal is transmitted to the wired radio frequency access unit 110 through wired coupling.
  • the wired radio frequency access unit 110 is connected to the base station 400 through a wired coupler.
  • the wired radio frequency access unit 110 converts the radio frequency signal of the base station 400 into a digital signal and then performs framing, which is converted into an optical signal by photoelectricity and transmitted via optical fiber.
  • the optical signal uploaded by the expansion unit 200 or the remote unit 300 is converted into a digital signal and then deframed, and then converted into an uplink radio frequency signal and transmitted to the base station 400 through the coupler.
  • FIG. 3 is an architecture diagram of an indoor distribution system when the access unit 100 is a radio frequency access unit provided by an embodiment of the application.
  • the indoor distribution system includes a radio frequency access unit 120, an expansion unit 200, and a remote unit 300.
  • the baseband signal is transmitted to the radio frequency access unit 120 in a wireless coupling manner.
  • the radio frequency access unit 120 is connected to the base station 400 through a wireless coupler.
  • the radio frequency access unit 120 converts the radio frequency signals received in the space into digital signals and then performs framing.
  • the optical fiber is transmitted to the expansion unit 200 or the remote unit 300.
  • the optical signal uploaded by the extension unit 200 or the remote unit 300 is converted into a digital signal and then deframed, and then converted into an uplink radio frequency signal and transmitted to the base station 400 through the wireless coupler.
  • the radio frequency access unit includes a first radio frequency processing module 111, a first digital processing module 112, and a first optical module 113.
  • the module 111 is configured to perform first processing on the first radio frequency signal to generate a first digital signal, and transmit the first digital signal to the first digital processing module 112; the first processing includes radio frequency amplification, filtering, and conversion of radio frequency signals to digital signals.
  • the first digital processing module 112 is used to perform a second processing on the first digital signal to generate a second digital signal, and transmit the second digital signal to the first optical module 113; the second processing includes framing or deframing, Sampling rate conversion, filtering and routing conversion; the first optical module 113 is used to convert the second digital signal into a first optical signal, and then transmit the first optical signal to the expansion unit 200.
  • the radio frequency access unit may be a wired radio frequency access unit 110 or a wireless radio frequency access unit 120.
  • an embodiment of the present application also provides an indoor distribution system in which a radio frequency access unit includes both a wired radio frequency access unit 110 and a wireless radio frequency access unit 120, as shown in FIG. 5.
  • the access unit 100 may be a baseband access unit, and the baseband access unit is connected to the core network 500 through a gateway; the baseband access unit is used to convert the first electrical signal of the core network 500 into a second optical signal. Signal, and then transmit the second optical signal to the expansion unit 200.
  • Fig. 6 is an architecture diagram of an indoor distribution system when the access unit 100 is a baseband access unit provided by an embodiment of the application.
  • the indoor distribution system includes a baseband access unit 130, an expansion unit 200, and a remote unit 300.
  • the baseband access unit 130 is connected to the core network 500 via Ethernet, and the baseband access unit 130 is used to modulate the signal of the core network gateway, convert it into an optical signal, and transmit it to the extension unit 200.
  • the baseband access unit 130 is connected to the core network 500 through Ethernet, modulates the signal of the gateway of the core network 500, converts the signal into an optical signal by photoelectricity, and transmits it to the extension unit 200 or the remote unit 300 through the optical fiber.
  • the optical signal uploaded by the extension unit 200 or the remote unit 300 is converted into a digital signal and then demodulated, and then transmitted to the core network 500 via Ethernet.
  • the baseband access unit 130 includes an LTE module 131, a 3G module 132, a 2G module 133, a main control module 134, and a second optical module 135; among them,
  • the LTE module 131, 3G module 132, and 2G module 133 are respectively connected to the main control module 134, and the LTE module 131 is used to transmit the signals accessed from the core network 500 to the main control module 134 according to the signal format, or transmit through the 3G module 132
  • the main control module 134 or transmit to the main control module 134 through the 3G module 132, 2G module 133, that is, the LTE module 131 is used as the main access module with the core network 500, and is specifically used to connect the first LTE standard
  • the electric signal is transmitted to the main control module 134, and the first electric signal of the 3G standard is transmitted to the main control module 134 through the 3G module 132, and the first electric signal of the 2
  • the LTE module 131 can be connected to the core network 500 through the PTN (Packet Transport Network) network, and is responsible for the back transmission of all access unit data.
  • the transmission medium is a gigabit network cable.
  • the LTE module 131 is connected to the 3G module 132 through a gigabit network cable, and the 3G module 132 is connected to the 2G module 133 through a gigabit network cable, so that the networks of the 3G module 132 and the 2G module 133 are unified into one network of the LTE module 131. mouth.
  • the LTE module 131, 3G module 132, and 2G module 133 can all be connected to the main control module 134 via optical fiber, the transmission rate is 3.072G, and the transmission protocol is CPRI protocol. All three can be used to transmit IQ data stream and monitoring data, and Realize clock synchronization.
  • the main control module 134 is used to receive the baseband signals input by the LTE module 131 or 3G module 132 or 2G module 133, demodulate them and convert the sampling rate at the same time, and route them to the corresponding expansion unit 200 or remote via the second optical module 135. End unit 300.
  • the indoor distributed system provided by the embodiments of the present application also supports simultaneous access to the wired radio frequency access unit 110, the wireless radio frequency access unit 120, and the baseband access unit 130.
  • the specific connection manner may be as shown in FIG. 8.
  • the access unit 100 may be connected to multiple extension units 200, and each extension unit 200 is connected to multiple remote units 300.
  • the extension unit 200 is used to forward the digital signal issued by the access unit 100 To multiple remote units 300; at the same time, the signals uploaded by multiple remote units 300 are combined, and then transmitted to the access unit 100; the remote unit 300 is used to transfer the numbers issued by the extension unit 200 or the access unit 100
  • the signal is converted into a radio frequency signal to achieve wireless coverage of 2G, 3G, LTE and other standards; at the same time, the received uplink radio frequency signal is converted into a digital signal and transmitted to the extension unit 200 or the access unit 100 to realize the access and operation of the working signal of a specific cell. cover.
  • It may be an architecture diagram as shown in FIG. 9, in which the access unit 100 and the extension unit 200 are connected by an optical fiber, and the extension unit 200 and the remote unit 300 are connected by a composite optical cable.
  • the expansion unit 200 includes a third optical module 201, a second digital processing module 202, a fourth optical module 203, and a remote power supply module 204;
  • the module 201 is used to convert the third optical signal input by the access unit 100 into a second electrical signal, and transmit it to the second digital processing module 202;
  • the second digital processing module 202 can process the electrical signal, and the second digital processing module 202 uses
  • the second electrical signal is subjected to third processing to generate a third electrical signal and transmitted to the fourth optical module 203;
  • the third processing includes framing or deframing, routing selection;
  • the fourth optical module 203 is used to transfer the third electrical signal
  • the signal is converted into a fourth optical signal and transmitted to the remote unit 300;
  • the remote power supply module 204 is used for supplying power to the remote unit 300.
  • the expansion unit 200 and the remote unit 300 can support low-voltage DC remote power supply through a photoelectric hybrid cable.
  • the remote power supply has short
  • the remote unit 300 includes a fifth optical module 301, a third digital processing module 302, a second radio frequency processing module 303, and an antenna module 304;
  • the module 301 is used to convert the fourth optical signal into a fourth electrical signal;
  • the third digital processing module 302 is used to perform a fourth processing on the fourth electrical signal to generate a second radio frequency signal;
  • the fourth processing includes framing or deframing, Filtering, sampling rate conversion, digital signal conversion to radio frequency signal;
  • the second radio frequency processing module 303 is used to perform fifth processing on the second radio frequency signal to generate a third radio frequency signal, and transmit the third radio frequency signal to the antenna module 304;
  • the five processing includes radio frequency signal amplification, filtering, splitting or combining;
  • the antenna module 304 is used to transmit the third radio frequency signal to the space through the built-in antenna.
  • the wired radio frequency access unit 110 may adopt a coupler + attenuator to directly feed the radio frequency signal of the base station 400. Specifically, it may feed the radio frequency signal of the LTE standard. Wired radio frequency signals and/or 3G standard wired radio frequency signals and/or 2G standard wired radio frequency signals.
  • the wired radio frequency access unit 110 can reserve four wired radio frequency interfaces externally. Taking a mobile operator as an example, the externally reserved interfaces can be as follows:
  • Interface 1 GSM900/FDD900 or GSM1800/FDDLTE1800
  • the radio frequency access unit 120 may be configured at a strong signal position to receive LTE radio frequency signals and/or 3G radio frequency signals and/or 2G radio frequency signals.
  • the radio frequency access unit 120 may reserve two radio frequency interfaces externally. Still taking a mobile operator as an example, the externally reserved interfaces may be as follows:
  • Interface 1 is GSM900/FDD900 or GSM1800/FDDLTE1800;
  • Interface 2 is TDD-LTE (D/E/F).
  • the baseband access unit 130 can be connected to the core network 500 by using a gigabit network cable to connect to the gateway.
  • the baseband access unit 130 can be used as a baseband processing unit and control.
  • the LTE module is used as the main access module for accessing from the core network 500.
  • the signal is transmitted to different modules according to different standards.
  • the baseband access unit 130 may reserve a gigabit Ethernet port externally.
  • both the extension unit and the remote unit in the indoor distribution system can support the signal of the first frequency band and the signal of the second frequency band, that is, both the extension unit and the remote unit can support the radio frequency access unit and baseband access.
  • both the extension unit and the remote unit can support the radio frequency access unit and baseband access.

Abstract

本申请公开了一种室内分布系统,其中,包括:接入单元、扩展单元、远端单元;扩展单元支持第一频段和第二频段,远端单元支持第一频段和第二频段;其中,第一频段是接入单元为射频接入单元时对应的频段,第二频段是接入单元为基带接入单元时对应的频段。该技术方案用以实现在客户需求发生改变时,无需重新搭建室内分布系统。

Description

一种室内分布系统 技术领域
本申请实施例涉及通信领域,尤其涉及一种室内分布系统。
背景技术
在搭建室内分布系统时,现有技术中主要根据不同的客户需求,如容量场景、施工便利和设备成本等,选择不同的室内覆盖方案,但由于客户需求可能会随着时间发生变化,如从低容量需求上升为高容量需求,这样需要重新搭建室内分布系统,造成较大工程量。
发明内容
本申请实施例提供一种室内分布系统,用以实现在客户需求发生改变时,无需重新搭建室内分布系统。
本申请实施例提供的一种室内分布系统,包括:
接入单元、扩展单元、远端单元;
所述扩展单元支持第一频段和第二频段,所述远端单元支持所述第一频段和所述第二频段;其中,所述第一频段是所述接入单元为射频接入单元时对应的频段,所述第二频段是所述接入单元为基带接入单元时对应的频段。
可选的,所述射频接入单元通过耦合器与基站连接;所述射频接入单元用于将所述基站输入的第一射频信号转换为第一光信号,进而将所述第一光信号传输至所述扩展单元。
可选的,所述射频接入单元包括有线射频接入单元和无线射频接入单元;所述第一频段包括第三频段和第四频段;所述第三频段是所述射频接入单元为有线射频接入单元时对应的频段;所述第四频段是所述射频接入单元为无线射 频接入单元时对应的频段。
可选的,所述有线射频接入单元通过有线耦合器与所述基站连接;所述无线射频接入单元通过无线耦合器与所述基站连接。
可选的,所述射频接入单元包括第一射频处理模块、第一数字处理模块和第一光模块;
所述第一射频处理模块用于对所述第一射频信号进行第一处理后生成第一数字信号,并传输至所述第一数字处理模块;所述第一处理包括射频放大、滤波、射频信号转数字信号;
所述第一数字处理模块用于对所述第一数字信号进行第二处理后生成第二数字信号,并传输至所述第一光模块;所述第二处理包括组帧或解帧、采样率变换、滤波和路由变换;
所述第一光模块用于将所述第二数字信号转换为所述第一光信号。
可选的,所述基带接入单元通过网关与核心网连接;所述基带接入单元用于将所述核心网的第一电信号转换为第二光信号,进而将所述第二光信号传输至所述扩展单元。
可选的,所述基带接入单元包括LTE模块、3G模块、2G模块、主控模块、第二光模块;
所述LTE模块用于将LTE制式的所述第一电信号传输至所述主控模块;和将3G制式的所述第一电信号通过所述3G模块传输至所述主控模块;和将2G制式的所述第一电信号通过所述3G模块、2G模块传输至所述主控模块;
所述主控模块用于将所述第一电信号进行解调和采样率变换;
所述第二光模块用于将所述主控模块进行解调和采样率变换后的第一电信号转换为所述第二光信号。
可选的,所述扩展单元包括第三光模块、第二数字处理模块、第四光模块和远程供电模块;
所述第三光模块用于将所述接入单元输入的第三光信号转换为第二电信 号,并传输至所述第二数字处理模块;
所述第二数字处理模块用于将所述第二电信号进行第三处理,生成第三电信号,并传输至所述第四光模块;所述第三处理包括组帧或解帧、路由选择;
所述第四光模块用于将所述第三电信号转换为第四光信号,并传输至所述远端单元;
所述远程供电模块用于为所述远端单元供电。
可选的,所述远端单元包括第五光模块、第三数字处理模块、第二射频处理模块、天线模块;
所述第五光模块用于将所述第四光信号转换为第四电信号;
所述第三数字处理模块用于将所述第四电信号进行第四处理后生成第二射频信号,并传输至所述第二射频处理模块;所述第四处理包括组帧或解帧、滤波、采样率变换、数字信号转射频信号;
所述第二射频处理模块用于将所述第二射频信号进行第五处理后生成第三射频信号,并传输至所述天线模块;所述第五处理包括射频信号放大、滤波、分路或合路;
所述天线模块用于将所述第三射频信号发射出去。
可选的,所述接入单元连接多个扩展单元;每个扩展单元连接多个远端单元。
上述技术方案中,室内分布系统中扩展单元和远端单元都可以支持第一频段的信号和第二频段的信号,也即,扩展单元和远端单元都可以支持射频接入单元、基带接入单元传入的信号,通过该方式,在客户需求发生改变时,无需重建整个室内分布系统,只需要更换不同的接入单元即可,从而降低工程量。
附图说明
图1为本申请实施例提供的第一种室内分布系统;
图2为本申请实施例提供的第二种室内分布系统;
图3为本申请实施例提供的第三种室内分布系统;
图4为本申请实施例提供的射频接入单元;
图5为本申请实施例提供的第四种室内分布系统;
图6为本申请实施例提供的第五种室内分布系统;
图7为本申请实施例提供的基带接入单元;
图8为本申请实施例提供的第六种室内分布系统;
图9为本申请实施例提供的第七种室内分布系统;
图10为本申请实施例提供的扩展单元;
图11为本申请实施例提供的远端单元。
具体实施方式
图1示例性的示出了本申请实施例提供室内分布系统,该室内分布系统可以包括接入单元(AU,Access Unit)100、扩展单元(EU,Extended Unit)200、远端单元(RU,Remote Unit)300。接入单元100可以将信号传输至扩展单元200,扩展单元200再将信号传输至远端单元300,还可以是接入单元100直接将信号传输至远端单元300。
本申请实施例中,接入单元100可以是射频接入单元,也可以是基带接入单元,当接入单元100是射频接入单元时,室内分布系统中信号对应的频段为第一频段,当接入单元100是基带接入单元时,室内分布系统中信号对应的频段为第二频段。扩展单元200可以支持第一频段的信号和第二频段的信号,远端单元300同样可以支持第一频段的信号和第二频段的信号。通过该方式,无论是室内分布系统中接入射频接入单元还是基带接入单元,都无需更换扩展单元200、远端单元300。
一种实现方式中,接入单元100可以是射频接入单元,射频接入单元通过耦合器与基站连接,该射频接入单元用于将基站输入的第一射频信号转换为第 一光信号,进而将第一光信号传输至扩展单元200。
具体的,射频接入单元又可以包括有线射频接入单元和无线射频接入单元,第一频段包括第三频段和第四频段,当射频接入单元是有线射频接入单元时,室内分布系统中信号对应的频段为第三频段,当射频接入单元是无线射频接入单元时,室内分布系统中信号对应的频段为第四频段。有线射频接入单元通过有线耦合器与基站连接,无线射频接入单元通过无线耦合器与基站连接。
如图2为本申请实施例提供的一种接入单元100为有线射频接入单元时的室内分布系统的架构图。该室内分布系统中包括有线射频接入单元110、扩展单元200、远端单元300。基带信号通过有线耦合方式传输至有线射频接入单元110。实际实现中,有线射频接入单元110通过有线耦合器与基站400连接,有线射频接入单元110将基站400的射频信号换成数字信号后进行组帧,经光电转换为光信号后通过光纤传至扩展单元200或远端单元300。同时,将扩展单元200或远端单元300上传的光信号转换成数字信号后进行解帧,然后转换成上行射频信号通过耦合器传至基站400。
如图3为本申请实施例提供的一种接入单元100为无线射频接入单元时的室内分布系统的架构图。该室内分布系统中包括无线射频接入单元120、扩展单元200、远端单元300。基带信号通过无线耦合方式传输至无线射频接入单元120。实际实现中,无线射频接入单元120通过无线耦合器与基站400连接,无线射频接入单元120将空间接收到的无线射频信号转换成数字信号后进行组帧,经光电转换为光信号后通过光纤传至扩展单元200或远端单元300。同时,将扩展单元200或远端单元300上传的光信号转换成数字信号后进行解帧,然后转换成上行射频信号通过无线耦合器传至基站400。
本申请实施例提供一种射频接入单元,如图4所示,该射频接入单元包括第一射频处理模块111、第一数字处理模块112和第一光模块113,其中,第一射频处理模块111用于对第一射频信号进行第一处理后生成第一数字信号,并将该第一数字信号传输至第一数字处理模块112;第一处理包括射频放大、 滤波、射频信号转数字信号;第一数字处理模块112用于对第一数字信号进行第二处理后生成第二数字信号,并将该第二数字信号传输至第一光模块113;第二处理包括组帧或解帧、采样率变换、滤波和路由变换;第一光模块113用于将第二数字信号转换为第一光信号,进而将该第一光信号传输至扩展单元200。此处,射频接入单元可以是有线射频接入单元110,也可以是无线射频接入单元120。
基于上述描述,本申请实施例还提供一种射频接入单元既包括有线射频接入单元110,又包括无线射频接入单元120的室内分布系统,可以如图5所示。
另一种实现方式中,接入单元100可以是基带接入单元,基带接入单元通过网关与核心网500连接;基带接入单元用于将核心网500的第一电信号转换为第二光信号,进而将第二光信号传输至扩展单元200。如图6为本申请实施例提供的一种接入单元100为基带接入单元时的室内分布系统的架构图。该室内分布系统中包括基带接入单元130、扩展单元200、远端单元300。基带接入单元130通过以太网与核心网500连接,基带接入单元130用于将核心网网关的信号调制,并转化为光信号后传至扩展单元200。实际实现中,基带接入单元130通过以太网与核心网500连接,将核心网500网关的信号调制,经光电转换为光信号后通过光纤传至扩展单元200或远端单元300。同时,将扩展单元200或远端单元300上传的光信号转换成数字信号后进行解调,然后通过以太网传至核心网500。
本申请实施例提供一种基带接入单元130,如图7所示,基带接入单元130包括LTE模块131、3G模块132、2G模块133、主控模块134、第二光模块135;其中,LTE模块131、3G模块132、2G模块133分别与主控模块134连接,LTE模块131用于将从核心网500接入的信号根据信号制式分别传输至主控模块134,或者通过3G模块132传输至主控模块134,又或者通过3G模块132、2G模块133传输至主控模块134,也就是说,LTE模块131作为与核心网500的主接入模块,具体用于将LTE制式的第一电信号传输至主控模块134, 和将3G制式的第一电信号通过3G模块132传输至主控模块134,和将2G制式的第一电信号通过3G模块132、2G模块133传输至主控模块134。主控模块134用于将第一电信号进行解调和采样率变换;第二光模块135用于将主控模块134进行解调和采样率变换后的第一电信号转换为第二光信号。
实际实现中,LTE模块131作为主接入模块,可以是通过PTN(Packet Transport Network,分组传送网)网络接入到核心网500,负责所有接入单元数据的回传,传输介质是千兆网线。具体的,LTE模块131通过千兆网线与3G模块132连接,3G模块132通过千兆网线与2G模块133连接,从而实现把3G模块132和2G模块133的网络都统一到LTE模块131的一个网口。LTE模块131、3G模块132、2G模块133都可以是通过光纤与主控模块134连接,传输速率为3.072G,传输协议为CPRI协议,三者都可以用于传输IQ数据流及监控数据,以及实现时钟同步。主控模块134用于接收LTE模块131或3G模块132或2G模块133输入的基带信号,同时将它们解调和采样率变换,并经第二光模块135路由交换到对应的扩展单元200或远端单元300。
当然,本申请实施例所提供的室内分布式系统也支持同时接入有线射频接入单元110、无线射频接入单元120和基带接入单元130,具体连接方式可以如图8所示。
本申请实施例中,接入单元100可以连接多个扩展单元200,每个扩展单元200连接多个远端单元300,具体的,扩展单元200用于将接入单元100下发的数字信号转发至多个远端单元300;同时,将多个远端单元300上传的信号进行合路,然后传至接入单元100;远端单元300用于将扩展单元200或接入单元100下发的数字信号转成射频信号,实现2G、3G、LTE等制式的无线覆盖;同时将接收的上行射频信号转成数字信号,传至扩展单元200或接入单元100,实现特定小区工作信号的接入和覆盖。可以是如图9示出的架构图中,其中,接入单元100和扩展单元200之间通过光纤连接,扩展单元200与远端单元300通过复合光缆连接。
本申请实施例提供一种扩展单元200,如图10所示,扩展单元200包括第三光模块201、第二数字处理模块202、第四光模块203和远程供电模块204;其中,第三光模块201用于将接入单元100输入的第三光信号转换为第二电信号,并传输至第二数字处理模块202;第二数字处理模块202可以处理电信号,第二数字处理模块202用于将第二电信号进行第三处理,生成第三电信号,并传输至第四光模块203;第三处理包括组帧或解帧、路由选择;第四光模块203用于将第三电信号转换为第四光信号,并传输至远端单元300;远程供电模块204用于为远端单元300供电。基于远程供电模块204,扩展单元200与远端单元300之间可通过光电混合缆支持低压直流远供,远程供电具备短路保护和自恢复功能,端口间供电故障隔离能力。
本申请实施例提供一种远端单元300,如图11所示,远端单元300包括第五光模块301、第三数字处理模块302、第二射频处理模块303、天线模块304;第五光模块301用于将第四光信号转换为第四电信号;第三数字处理模块302用于将第四电信号进行第四处理后生成第二射频信号;第四处理包括组帧或解帧、滤波、采样率变换、数字信号转射频信号;第二射频处理模块303用于将第二射频信号进行第五处理后,生成第三射频信号,并将第三射频信号传输至天线模块304;第五处理包括射频信号放大、滤波、分路或合路;天线模块304用于将第三射频信号通过内置天线发射到空间。
此外,为了更好地解释本申请,实际使用中,有线射频接入单元110可以采用耦合器+衰减器的方式,直接射频馈入基站400的射频信号,具体的,可以射频馈入LTE制式的有线射频信号和/或3G制式的有线射频信号和/或2G制式的有线射频信号。为了实现MIMO,有线射频接入单元110可以对外预留四个有线射频接口,以移动运营商为例,对外预留接口可以如下:
接口1:GSM900/FDD900或者GSM1800/FDDLTE1800
接口2:GSM900/FDD900或者GSM1800/FDDLTE1800
接口3:TDD-LTE(D/E/F)
接口4:TDD-LTE(D/E/F)
无线射频接入单元120可以配置在信号强的位置,以用于接收LTE制式的无线射频信号和/或3G制式的无线射频信号和/或2G制式的无线射频信号。无线射频接入单元120可以对外预留两个无线射频接口,仍以移动运营商为例,对外预留接口可以如下:
接口1为GSM900/FDD900或者GSM1800/FDDLTE1800;
接口2为TDD-LTE(D/E/F)。
基带接入单元130可以采用千兆网线连接网关与核心网500相连,基带接入单元130可以作为基带处理单元和控制,其中,LTE模块作为主接入模块,用于将从核心网500接入的信号根据不同制式传输至不同的模块。基带接入单元130可以对外预留千兆以太网口。
上述技术方案中,室内分布系统中扩展单元和远端单元都可以支持第一频段的信号和第二频段的信号,也即,扩展单元和远端单元都可以支持射频接入单元、基带接入单元传入的信号,通过该方式,在客户需求发生改变时,无需重建整个室内分布系统,只需要更换不同的接入单元即可,从而降低工程量。

Claims (10)

  1. 一种室内分布系统,其特征在于,包括:
    接入单元、扩展单元、远端单元;
    所述扩展单元支持第一频段和第二频段,所述远端单元支持所述第一频段和所述第二频段;其中,所述第一频段是所述接入单元为射频接入单元时对应的频段,所述第二频段是所述接入单元为基带接入单元时对应的频段。
  2. 如权利要求1所述的系统,其特征在于,所述射频接入单元通过耦合器与基站连接;所述射频接入单元用于将所述基站输入的第一射频信号转换为第一光信号,进而将所述第一光信号传输至所述扩展单元。
  3. 如权利要求2所述的系统,其特征在于,所述射频接入单元包括有线射频接入单元和无线射频接入单元;所述第一频段包括第三频段和第四频段;所述第三频段是所述射频接入单元为有线射频接入单元时对应的频段;所述第四频段是所述射频接入单元为无线射频接入单元时对应的频段。
  4. 如权利要求3所述的系统,其特征在于,所述有线射频接入单元通过有线耦合器与所述基站连接;所述无线射频接入单元通过无线耦合器与所述基站连接。
  5. 如权利要求2所述的系统,其特征在于,所述射频接入单元包括第一射频处理模块、第一数字处理模块和第一光模块;
    所述第一射频处理模块用于对所述第一射频信号进行第一处理后生成第一数字信号,并传输至所述第一数字处理模块;所述第一处理包括射频放大、滤波、射频信号转数字信号;
    所述第一数字处理模块用于对所述第一数字信号进行第二处理后生成第二数字信号,并传输至所述第一光模块;所述第二处理包括组帧或解帧、采样率变换、滤波和路由变换;
    所述第一光模块用于将所述第二数字信号转换为所述第一光信号。
  6. 如权利要求1所述的系统,其特征在于,所述基带接入单元通过网关 与核心网连接;所述基带接入单元用于将所述核心网的第一电信号转换为第二光信号,进而将所述第二光信号传输至所述扩展单元。
  7. 如权利要求6所述的系统,其特征在于,所述基带接入单元包括LTE模块、3G模块、2G模块、主控模块、第二光模块;
    所述LTE模块用于将LTE制式的所述第一电信号传输至所述主控模块;和将3G制式的所述第一电信号通过所述3G模块传输至所述主控模块;和将2G制式的所述第一电信号通过所述3G模块、2G模块传输至所述主控模块;
    所述主控模块用于将所述第一电信号进行解调和采样率变换;
    所述第二光模块用于将所述主控模块进行解调和采样率变换后的第一电信号转换为所述第二光信号。
  8. 如权利要求1所述的系统,其特征在于,所述扩展单元包括第三光模块、第二数字处理模块、第四光模块和远程供电模块;
    所述第三光模块用于将所述接入单元输入的第三光信号转换为第二电信号,并传输至所述第二数字处理模块;
    所述第二数字处理模块用于将所述第二电信号进行第三处理,生成第三电信号,并传输至所述第四光模块;所述第三处理包括组帧或解帧、路由选择;
    所述第四光模块用于将所述第三电信号转换为第四光信号,并传输至所述远端单元;
    所述远程供电模块用于为所述远端单元供电。
  9. 如权利要求1所述的系统,其特征在于,所述远端单元包括第五光模块、第三数字处理模块、第二射频处理模块、天线模块;
    所述第五光模块用于将所述第四光信号转换为第四电信号;
    所述第三数字处理模块用于将所述第四电信号进行第四处理后生成第二射频信号,并传输至所述第二射频处理模块;所述第四处理包括组帧或解帧、滤波、采样率变换、数字信号转射频信号;
    所述第二射频处理模块用于将所述第二射频信号进行第五处理后生成第 三射频信号,并传输至所述天线模块;所述第五处理包括射频信号放大、滤波、分路或合路;
    所述天线模块用于将所述第三射频信号发射出去。
  10. 如权利要求1至9任一项所述的系统,其特征在于,所述接入单元连接多个扩展单元;每个扩展单元连接多个远端单元。
PCT/CN2020/138484 2019-12-23 2020-12-23 一种室内分布系统 WO2021129637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911338220.4 2019-12-23
CN201911338220.4A CN111010680B (zh) 2019-12-23 2019-12-23 一种室内分布系统

Publications (1)

Publication Number Publication Date
WO2021129637A1 true WO2021129637A1 (zh) 2021-07-01

Family

ID=70117349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138484 WO2021129637A1 (zh) 2019-12-23 2020-12-23 一种室内分布系统

Country Status (2)

Country Link
CN (1) CN111010680B (zh)
WO (1) WO2021129637A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010680B (zh) * 2019-12-23 2021-09-24 京信网络系统股份有限公司 一种室内分布系统
CN112702753B (zh) * 2021-03-24 2021-06-08 四川创智联恒科技有限公司 通信射频单元自动配置恢复方法、装置、设备及存储介质
CN114245393B (zh) * 2021-12-21 2023-09-12 中信科移动通信技术股份有限公司 无线分布式信号覆盖系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321010A (zh) * 2008-03-07 2008-12-10 深圳国人通信有限公司 一种数字覆盖方法及系统
CN103401598A (zh) * 2013-07-17 2013-11-20 三维通信股份有限公司 一种新型的多网融合室内分布系统
US20140362763A1 (en) * 2012-01-06 2014-12-11 Comba Telecom Systemc (China) Ltd. Wireless communication system and method and expansion unit of flat network architecture
CN107395283A (zh) * 2017-08-11 2017-11-24 武汉虹信通信技术有限责任公司 一种数字光纤多业务分布式基站系统
CN111010680A (zh) * 2019-12-23 2020-04-14 京信通信系统(中国)有限公司 一种室内分布系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202841527U (zh) * 2012-09-18 2013-03-27 京信通信系统(中国)有限公司 一种具备宽带路由功能的室内分布系统
CN103117909B (zh) * 2012-12-26 2015-08-26 中邮科通信技术股份有限公司 一种多制式数字光纤五类线分布系统
CN204013544U (zh) * 2014-06-13 2014-12-10 广东阿尔创通信技术股份有限公司 一种多业务光纤接入室内分布系统
CN106209240B (zh) * 2016-07-08 2019-01-18 武汉虹信通信技术有限责任公司 一种新型多模光纤分布系统
CN106230509A (zh) * 2016-08-10 2016-12-14 武汉虹信通信技术有限责任公司 一种利用万兆以太网传输无线信号的方法及系统
CN109257098A (zh) * 2018-09-13 2019-01-22 郑州三友软件科技有限公司 一种多场景通信全业务光分布系统控制方法
CN109379140A (zh) * 2018-11-22 2019-02-22 淮北市硕华机械设备有限公司 一种光纤分布系统及其通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321010A (zh) * 2008-03-07 2008-12-10 深圳国人通信有限公司 一种数字覆盖方法及系统
US20140362763A1 (en) * 2012-01-06 2014-12-11 Comba Telecom Systemc (China) Ltd. Wireless communication system and method and expansion unit of flat network architecture
CN103401598A (zh) * 2013-07-17 2013-11-20 三维通信股份有限公司 一种新型的多网融合室内分布系统
CN107395283A (zh) * 2017-08-11 2017-11-24 武汉虹信通信技术有限责任公司 一种数字光纤多业务分布式基站系统
CN111010680A (zh) * 2019-12-23 2020-04-14 京信通信系统(中国)有限公司 一种室内分布系统

Also Published As

Publication number Publication date
CN111010680A (zh) 2020-04-14
CN111010680B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021129637A1 (zh) 一种室内分布系统
US11923905B2 (en) Distributed antenna system, method and apparatus
US8929295B2 (en) Radio equipment and radio base station
CN103220268B (zh) 机载超短波多媒体通信系统
US20070274279A1 (en) Distributed antenna system employing digital forward deployment of wireless transmit/receive locations
CN102202323B (zh) 多模覆盖接入系统
TW201803296A (zh) 一種多業務數位光分佈系統及多業務容量調度方法
CN110417452B (zh) 共建共享的5g数字室分系统
WO2012092810A1 (zh) 多模数字射频拉远系统
JP2019502281A (ja) 無線アクセスシステム
CN102231885B (zh) 一种多功能微功率室内分布系统
CN103369727A (zh) 一种射频拉远设备、基带处理设备和数据传输方法
CN105874824A (zh) 用于分布式天线网络的网络交换机
CN109963290A (zh) 多业务室内覆盖系统及工作方法
WO2019000884A1 (zh) 基于cpri架构的多制式混合组网传输系统及传输方法
WO2020095718A1 (ja) 中継装置、中継方法及び中継プログラム
CN105553528B (zh) 基于lte的多网融合接入系统
WO2014190512A1 (zh) 数据传输的方法、装置、设备及基站
CN113163410A (zh) 一种rru拉远系统
WO2013007213A1 (zh) 多输入多输出信号的传输系统、装置及方法
CN103139786B (zh) 多模数字射频拉远系统的中继端系统及中继方法
CN209787475U (zh) 一种可灵活扩展用户容量的das系统
CN213638000U (zh) 一种基于docsis的5g融合接入网
CN103166710B (zh) 下行信号传输方法、接入设备及中继设备
CN102457426B (zh) 一种汇聚型EoPDH网桥设备及其数据传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907272

Country of ref document: EP

Kind code of ref document: A1