WO2021128971A1 - 一种便携式现场多频率振动加速度校正系统和方法 - Google Patents
一种便携式现场多频率振动加速度校正系统和方法 Download PDFInfo
- Publication number
- WO2021128971A1 WO2021128971A1 PCT/CN2020/115565 CN2020115565W WO2021128971A1 WO 2021128971 A1 WO2021128971 A1 WO 2021128971A1 CN 2020115565 W CN2020115565 W CN 2020115565W WO 2021128971 A1 WO2021128971 A1 WO 2021128971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration acceleration
- frequency
- portable
- correction system
- acceleration sensor
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 98
- 238000012937 correction Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000005284 excitation Effects 0.000 claims abstract description 45
- 238000012360 testing method Methods 0.000 claims abstract description 38
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 3
- 230000005672 electromagnetic field Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
Definitions
- the invention relates to the technical field of commutation variable vibration testing equipment, in particular to a portable on-site multi-frequency vibration acceleration correction system and method.
- the commutation transformer vibration test is a method of monitoring the state of commutation transformers based on the analysis of vibration signals. It is a new technical means to detect the state of commutation transformer windings and iron cores. It can evaluate the working conditions of iron cores and windings and predict possible short-circuits. For faults such as winding deformation and loosening of structural parts such as iron core windings, the corresponding converter transformer condition maintenance strategy shall be formulated.
- the commutation variable vibration test device is a commutation variable vibration acceleration test system based on an acceleration sensor. Whether the acceleration sensor, acquisition card and data analysis system work normally has a great influence on the result of the commutation variable vibration test.
- the portable multi-frequency standard vibration source is provided as a standard multi-frequency vibration source to the converter variable vibration test device.
- the acceleration can be determined according to the detection signal of the vibration source and the converter variable vibration test device.
- the sensor and the device are calibrated; at the same time, the vibration signal of the device can be balanced and cleared according to the vibration source signal, eliminating the zero drift of the acceleration sensor and the converter variable vibration device, and ensuring the device's converter variable vibration detection accuracy.
- the equipment currently used in the vibration detection of converter transformers is complicated and bulky, not easy to install and test quickly, and the methods are complicated.
- the present invention provides a portable on-site multi-frequency vibration acceleration correction system and method.
- the standard vibration source is convenient to carry to the site for commutation and variable vibration testing.
- the correction system is simple in composition and can be quickly installed for testing and operation. The steps are simple.
- a portable field multi-frequency vibration acceleration correction system which includes a portable multi-frequency standard vibration source, a capture card industrial control box and a computer.
- the portable multi-frequency standard vibration source includes a housing in which a central magnetic pole and an excitation coil are arranged , A modulation circuit and a DC power supply, the modulation circuit converts the DC input current of the DC power supply into an AC input current and acts on the excitation coil, at least two of the excitation coils are coaxially arranged and formed with an axial center hole,
- the central magnetic pole is arranged in the axial center hole of the excitation coil, and is reciprocated along the axis of the axial central hole under the action of the alternating electromagnetic field of the excitation coil, and the end of the central magnetic pole facing the outside is provided with a movable Ring platform, the moving coil platform is provided with a first screw and a second screw, the first screw is connected to the acquisition card industrial control box through a piezoelectric vibration acceleration sensor for testing, and the second screw is vibrated by a standard
- the excitation coil is fixed in the housing through a porcelain cylinder.
- a guide for guiding the reciprocating movement of the central magnetic pole is provided in the housing.
- a cover for covering the excitation coil is provided in the housing.
- the housing is a cylinder, the diameter of the housing is 50mm, and the height is 120mm
- the modulation circuit is a voltage-type single-phase full-bridge bipolar sinusoidal pulse width modulation DC-AC inverter circuit.
- a portable on-site multi-frequency vibration acceleration correction method which is used in the above-mentioned portable on-site multi-frequency vibration acceleration correction system, includes the following steps:
- Step 1 Mount the piezoelectric vibration acceleration sensor for testing on the first screw, and mount the standard vibration acceleration sensor on the second screw;
- Step 2 Start the portable multi-frequency standard vibration source and select the frequency of vibration acceleration
- Step 3 Connect the piezoelectric vibration acceleration sensor for testing and the standard vibration acceleration sensor to the capture card industrial control box through a coaxial cable;
- Step 4 Connect the communication interface of the capture card industrial control box to the computer through a network cable;
- Step 5 Start the computer and open the signal analysis software installed in the computer;
- Step 6 Use the signal analysis software to balance and clear the acceleration vibration signals of the piezoelectric vibration acceleration sensor for testing and the acquisition card industrial control box, and eliminate the zero drift of the piezoelectric vibration acceleration sensor for testing and the acquisition card industrial control box. Then operate the signal analysis software to obtain the output frequency and amplitude of the piezoelectric vibration acceleration sensor for testing, and compare it with the output frequency and amplitude of the standard vibration acceleration sensor to complete the correction operation;
- Step 7 Complete the measurement of the vibration acceleration during the operation of the converter transformer through the signal analysis software, and obtain the vibration acceleration signal during the operation of the converter transformer.
- the frequency of the vibration acceleration is 100 Hz or 200 Hz or 300 Hz, and the frequency deviation is within 2%.
- the amplitude of the vibration acceleration is 10m/s2, and the amplitude deviation is within 5%.
- the vibration source adopts a portable design, and each component is sealed inside a cylindrical shell.
- the cylindrical shell has a size of only 50mm in diameter and 120mm in height, which is convenient for carrying out conversion at the converter station site.
- the vibration source Used in variable vibration testing; the vibration source is powered by 24V DC power supply, no external power supply is needed, which is convenient for the converter station to use; multi-frequency design, the vibration source can be set to multiple frequencies, the same amplitude, multiple frequencies and commutation
- the variable characteristic frequency is the same, which can ensure the accuracy of the device's commutation variable vibration detection; the method has simple operation steps.
- Figure 1 is a schematic diagram of the structure of a portable multi-frequency standard vibration source
- Figure 2 is a schematic diagram of a portable on-site multi-frequency vibration acceleration correction system.
- a portable on-site multi-frequency vibration acceleration correction system includes a portable multi-frequency standard vibration source 10, a capture card industrial control box 14 and a computer 16.
- the portable multi-frequency standard vibration source includes a housing 1, a housing 1 is equipped with a central magnetic pole 5, an excitation coil, a modulation circuit 3 and a DC power supply 2.
- the modulation circuit 3 converts the DC input current of the DC power supply 2 into an AC input current and acts on the excitation coil.
- the output voltage of the DC power supply 2 is 24V.
- the DC power supply 2 is connected with the modulation circuit 3 to provide a stable 24V DC voltage, and the vibration source is powered by the 24V DC power supply 2 without external power supply, which is convenient for on-site use of the converter station.
- the first excitation coil 401 and the second excitation coil 402 are coaxially arranged and formed with an axial central hole.
- the central magnetic pole 5 is arranged in the axial central hole of the excitation coil and is acted by the alternating electromagnetic field of the excitation coil along the axial central hole.
- the axial reciprocating movement of the central magnetic pole 5 is provided with a moving coil platform 7 at the outer end.
- the modulation circuit 3 for realizing direct-to-AC conversion is an existing technology, and the implementation method can be implemented by using a single-phase full-bridge inverter circuit and bipolar SPWM modulation circuit 3, or by using other inverters.
- the modulation circuit 3 can modulate the 24V DC voltage into two single-phase AC voltages with the same amplitude, frequency, and phase.
- the two single-phase AC voltages act on the first excitation coil 401 and the second excitation coil 402.
- the first excitation coil The sine wave magnetic field generated by the 401 and the second excitation coil 402 interacts with the central magnetic pole 5 at the same time, and the central magnetic pole 5 is subjected to electromagnetic force to generate sine wave acceleration in the vertical direction; the central magnetic pole 5 and the moving coil platform 7 are connected to each other in the vertical direction,
- the moving coil platform 7 is also subject to vertical sine wave acceleration.
- the acceleration frequency is the same as the frequency of the single-phase AC voltage.
- the moving coil platform 7 can be reciprocated along the axial center hole. Speed and acceleration.
- the moving coil platform 7 is provided with a first screw 701 and a second screw 702.
- the first screw 701 is connected to the capture card industrial control box 14 through the piezoelectric vibration acceleration sensor 11 for testing, and the second screw 702 is connected to the acquisition card industrial control box 14 through the standard vibration acceleration sensor 12
- the acquisition card industrial control box 14 is connected, and the acquisition card industrial control box 14 is connected with the computer 16 for control signals.
- the excitation coil is fixed in the housing 1 by the porcelain cylinder 6.
- the first excitation coil 401 and the second excitation coil 402 are wound on the porcelain cylinder 6, and the porcelain cylinder 6 is the first excitation coil 401 and the second excitation coil 401.
- the excitation coil 402 provides mechanical support and insulation.
- the housing 1 is provided with a guide 8 for guiding the reciprocating movement of the central magnetic pole 5.
- the shell 1 is cylindrical and the size of the shell 1 is 50mm in diameter and 120mm in height.
- the vibration source adopts a portable design, and the components are sealed inside the cylindrical shell 1 to facilitate the implementation of converter transformer vibration at the converter station site. Used when testing.
- a cover 9 for covering the excitation coil is provided in the housing 1 to prevent the internal excitation coil, guide 8, central magnetic pole 5 and other electrical components from being interfered by external impurities, dust and the like.
- the modulation circuit 3 is a voltage type single-phase full-bridge bipolar sinusoidal pulse width modulation DC-AC inverter circuit, the modulation circuit 3 is provided with a switching frequency control circuit, and the voltage of the switching frequency control circuit is adjusted according to an external button to realize the adjustment Switching frequency, since the switching frequency is 15 times the frequency of the single-phase AC voltage output by the modulation circuit 3, the frequency of the output sine wave current can be adjusted by adjusting the switching frequency; the sine wave acceleration frequency of the moving coil platform 7 can be based on the switching frequency of the modulation circuit The selection is 100Hz, 200Hz, 300Hz, the frequency deviation is within 2%, the sine wave acceleration amplitude of the moving coil platform 5 is 10m/s 2 , and the amplitude deviation is within 5%.
- a portable field multi-frequency vibration acceleration correction method which is used in the above portable field multi-frequency vibration acceleration correction system, includes the following steps:
- Step 1 Mount the piezoelectric vibration acceleration sensor 11 for testing on the first screw 701, and mount the standard vibration acceleration sensor 12 on the second screw 702. Specifically, the vibration of a converter transformer in a ⁇ 800kV converter station in Guangzhou Take the test as an example.
- the test piezoelectric vibration acceleration sensor 11 and the standard vibration acceleration sensor 12 are installed on the screw of the moving coil platform 7 of the portable multi-frequency standard vibration source 10 through the screw of the sensor itself At the same time, it is ensured that the installation positions of the piezoelectric vibration acceleration sensor 11 and the standard vibration acceleration sensor 12 for testing are symmetrical positions of the center of the moving coil platform 7.
- Step 2 Start the portable multi-frequency standard vibration source and select the frequency of vibration acceleration. Select the frequency of vibration acceleration as 100 Hz.
- the 24V DC power supply 2 is connected to the modulation circuit 3 to provide a stable 24V DC voltage for the modulation circuit 3.
- the modulation circuit 3 is a voltage type single-phase full-bridge bipolar sinusoidal pulse width modulation circuit that can convert 24V DC
- the voltage modulation is two single-phase AC voltages with the same amplitude, frequency and phase.
- the modulation circuit 3 is equipped with a switching frequency control circuit. If the external button is selected as a frequency of 100Hz, the voltage of the switching frequency control circuit is 2V, which corresponds to that of the modulation circuit.
- the switching frequency is set to 1500 Hz.
- the switching frequency is 15 times the frequency of the single-phase AC voltage output by the modulation circuit 3, the frequency of the single-phase AC voltage is 100 Hz respectively; two single-phase AC voltages are input to the first excitation coil 401 and the first excitation coil 401 and the first excitation coil 401.
- Two excitation coils 402; two first excitation coils 401 and second excitation coils 402 are wound on the porcelain cylinder 6.
- the porcelain cylinder 6 provides mechanical support and insulation for the first excitation coil 401 and the second excitation coil 402; two The sine wave magnetic field (frequency of 100 Hz) generated by the first excitation coil 401 and the second excitation coil 402 interacts with the central magnetic pole 5 at the same time, and the central magnetic pole 5 is subjected to electromagnetic force to generate a sine wave acceleration in the vertical direction;
- the coil platform 7 is hard-connected in the vertical direction, and the moving coil platform 7 is also subjected to vertical sine wave acceleration.
- the acceleration frequency is the same as the frequency of the single-phase AC voltage, that is, 100 Hz, and the amplitude is maintained at 10 m/s 2 .
- Step 3 Connect the test piezoelectric vibration acceleration sensor 11 and the standard vibration acceleration sensor 12 to the capture card industrial control box 14 through the coaxial cable 13;
- Step 4 Connect the communication interface of the capture card industrial control box 14 to the computer 16 through the network cable 15;
- Step 5 Start the computer 16 and open the signal analysis software installed in the computer 16;
- Step 6 Use the signal analysis software to balance and clear the acceleration vibration signals of the piezoelectric vibration acceleration sensor 11 and the acquisition card industrial control box 14 for testing, and exclude the piezoelectric vibration acceleration sensor 11 and the acquisition card industrial control box 14 for testing. Then operate the signal analysis software to obtain the output frequency and amplitude of the piezoelectric vibration acceleration sensor 11 for testing, and compare it with the output frequency and amplitude of the standard vibration acceleration sensor 12 to complete the correction operation;
- Step 7 Complete the measurement of the vibration acceleration during the operation of the converter transformer through the signal analysis software, and obtain the vibration acceleration signal during the operation of the converter transformer.
- the frequency of the vibration acceleration is 100 Hz or 200 Hz or 300 Hz, and the frequency deviation is within 2%.
- the amplitude of the vibration acceleration is 10m/s2, and the amplitude deviation is within 5%.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
一种便携式现场多频率振动加速度校正系统和方法,系统包括便携式多频率标准振动源(10)、采集卡工控箱(14)和计算机(16),便携式多频率标准振动源(10)包括圆柱壳体(1)、直流电源(2)、调制电路(3)、励磁线圈(401、402)、中心磁极(5)、瓷缸(6)、动圈平台(7)、导向件(8)、罩盖(9)。方法用于便携式现场多频率振动加速度校正系统,标准振动源(10)方便携带到现场进行换流变振动测试,校正系统组成简单,可快速安装进行测试,操作步骤简单。
Description
本发明涉及换流变振动测试设备技术领域,具体涉及一种便携式现场多频率振动加速度校正系统和方法。
换流变振动测试试验是基于振动信号分析的换流变状态监测方法,检测换流变绕组和铁芯状态的新的技术手段,可评估铁芯、绕组工作状态,预测可能发生的短路引起的绕组变形以及铁芯绕组等结构件松动等故障,制定相应的换流变压器状态检修策略。
换流变振动测试装置是基于加速度传感器的换流变振动加速度测试系统,加速度传感器、采集卡以及数据分析系统是否正常工作对换流变振动测试的结果有着非常大的影响。便携式多频率标准振动源作为标准的多频率振动源提供给换流变振动测试装置,可在换流站现场开展振动测试前,可根据振动源与换流变振动测试装置的检测信号,对加速度传感器和装置进行校正;同时,可根据振动源信号,对装置进行振动信号的平衡清零操作,排除加速度传感器和换流变振动装置的零漂,保证装置的换流变振动检测精度。但目前应用于换流变振动检测的设备复杂且体积大、不易快速安装和测试,方法繁琐。
发明内容
针对现有技术中的不足,本发明提供一种便携式现场多频率振动加速度校正系统和方法,标准振动源方便携带到现场进行换流变振动测试,校正系统组成简单,可快速安装进行测试,操作步骤简单。
为实现上述目的,本发明的技术方案如下:
一种便携式现场多频率振动加速度校正系统,其包括便携式多频率标准振动源、采集卡工控箱和计算机,所述便携式多频率标准振动源包括壳体,所述壳体内设有中心磁极、励磁线圈、调制电路和直流电源,所述调制电路将所述直流电源的直流输入电流转换为交流输入电流并作用于所述励磁线圈,至少两所述励磁线圈同轴设置并形成有轴向中心孔,所述中心磁极设置于所述励磁线圈的轴向中心孔中,并受所述励磁线圈的交变电磁场作用沿轴向中心孔的轴向往复运动,所述中心磁极朝向外侧的一端设有动圈平台,所述动圈平台上设有第一螺杆和第二螺杆,所述第一螺杆通过测试用压电式振动加速度传感器与所述采集卡工控箱连 接,所述第二螺杆通过标准振动加速度传感器与所述采集卡工控箱连接,所述采集卡工控箱与所述计算机控制信号连接。
如上所述的便携式现场多频率振动加速度校正系统,进一步地,所述励磁线圈通过瓷缸固定在所述壳体内。
如上所述的便携式现场多频率振动加速度校正系统,进一步地,所述壳体内设有用于给所述中心磁极往复运动导向的导向件。
如上所述的便携式现场多频率振动加速度校正系统,进一步地,所述壳体内设有用于覆盖所述励磁线圈的罩盖。
如上所述的便携式现场多频率振动加速度校正系统,进一步地,所述壳体为圆柱体且所述壳体的直径为50mm,高为120mm
如上所述的便携式现场多频率振动加速度校正系统,进一步地,所述调制电路为电压型单相全桥双极性正弦脉宽调制直流-交流逆变电路。
一种便携式现场多频率振动加速度校正方法,其用于如上所述的便携式现场多频率振动加速度校正系统,包括以下步骤:
步骤1:将测试用压电式振动加速度传感器安装在第一螺杆上,将标准振动加速度传感器安装在第二螺杆上;
步骤2:启动便携式多频率标准振动源,选择振动加速度的频率;
步骤3、将测试用压电式振动加速度传感器和标准振动加速度传感器通过同轴电缆连接至采集卡工控箱;
步骤4、将采集卡工控箱的通讯接口通过网线连接至计算机;
步骤5、启动计算机,打开安装在计算机中的信号分析软件;
步骤6、通过信号分析软件对测试用压电式振动加速度传感器和采集卡工控箱进行加速度振动信号的平衡和清零操作,排除测试用压电式振动加速度传感器和采集卡工控箱的零漂,进而操作信号分析软件获取测试用测试用压电式振动加速度传感器的输出频率和幅值,并与标准振动加速度传感器的输出频率和幅值做比较,完成校正操作;
步骤7、通过信号分析软件完成对换流变运行中的振动加速度进行测量,获取换流变运行中的振动加速度信号。
如上所述的便携式现场多频率振动加速度校正方法,进一步地,振动加速度的频率为100Hz或200Hz或300Hz,频率偏差在2%以内。
如上所述的便携式现场多频率振动加速度校正方法,进一步地,振动加速度的幅值为 10m/s2,幅值偏差在5%以内。
本发明与现有技术相比,其有益效果在于:振动源采用便携式设计,各部件密封在圆柱壳体内部,圆柱壳体尺寸仅为直径50mm,高120mm,方便在换流站现场开展换流变振动测试时使用;振动源采用24V直流电源供电,无需外部电源,方便换流站现场使用;采用多频率设计,振动源可分别设置为多个频率、幅值相同,多个频率与换流变特征频率相同,可保证装置的换流变振动检测精度;方法操作步骤简单。
图1为便携式多频率标准振动源的结构示意图;
图2为便携式现场多频率振动加速度校正系统示意图。
附图标记说明:1、壳体;2、直流电源;3、调制电路;401、第一励磁线圈;402、第二励磁线圈;5、中心磁极;6、瓷缸;601、瓷缸盖;7、动圈平台;701、第一螺杆;702、第二螺杆;8、导向件;9、罩盖;10、便携式多频率标准振动源;11、测试用压电式振动加速度传感器;12、标准振动加速度传感器;13、同轴电缆;14、采集卡工控箱;15、网线;16、计算机。
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
参见图1和图2,一种便携式现场多频率振动加速度校正系统,其包括便携式多频率标准振动源10、采集卡工控箱14和计算机16,便携式多频率标准振动源包括壳体1,壳体1内设有中心磁极5、励磁线圈、调制电路3和直流电源2,调制电路3将直流电源2的直流输入电流转换为交流输入电流并作用于励磁线圈,直流电源2的输出电压为24V,直流电源2与调制电路3连接以提供稳定的24V直流电压,振动源采用24V直流电源2供电,无需外部电源,方便换流站现场使用。第一励磁线圈401和第二励磁线圈402同轴设置并形成有轴向中心孔,中心磁极5设置于励磁线圈的轴向中心孔中,并受励磁线圈的交变电磁场作用沿轴向中心孔的轴向往复运动,中心磁极5朝向外侧的一端设有动圈平台7。实现直-交流转换的调制电路3为现有技术,实现方式可以是使用单相全桥逆变电路双极性SPWM调制电路3,也可以使用其他逆变器实现。调制电路3可将24V直流电压调制为两路相同幅值、频率、相位的单相交流电压,两路单相交流电压作用在第一励磁线圈401和第二励磁线圈402上,第 一励磁线圈401和第二励磁线圈402产生的正弦波磁场同时与中心磁极5相互作用,中心磁极5受到电磁力的作用产生垂直方向的正弦波加速度;中心磁极5与动圈平台7在垂直方向相互连接,动圈平台7同样受到垂直方向的正弦波加速度,加速度频率与单相交流电压的频率相同,通过控制调制电路3的输出电压频率即可实现动圈平台7沿轴向中心孔的轴向往复运动的速度和加速度。动圈平台7上设有第一螺杆701和第二螺杆702,第一螺杆701通过测试用压电式振动加速度传感器11与采集卡工控箱14连接,第二螺杆702通过标准振动加速度传感器12与采集卡工控箱14连接,采集卡工控箱14与计算机16控制信号连接。
进一步地,励磁线圈通过瓷缸6固定在壳体1内,具体地,第一励磁线圈401和第二励磁线圈402绕制在瓷缸6上,瓷缸6为第一励磁线圈401和第二励磁线圈402提供机械支撑和绝缘作用。
进一步地,便于中心磁极5沿轴向中心孔的轴向往复运动,壳体1内设有用于给中心磁极5往复运动导向的导向件8。
进一步地,壳体1为圆柱形且壳体1尺寸的直径为50mm,高为120mm,振动源采用便携式设计,各部件密封在圆柱壳体1内部,方便在换流站现场开展换流变振动测试时使用。
进一步地,壳体1内设有用于覆盖励磁线圈的罩盖9,防止内部的励磁线圈、导向件8、中心磁极5等电性部件收到外界杂质、灰尘等干扰。
进一步地,调制电路3为电压型单相全桥双极性正弦脉宽调制直流-交流逆变电路,调制电路3设置有开关频率控制电路,根据外部按钮调节开关频率控制电路的电压,实现调节开关频率,由于开关频率为调制电路3输出单相交流电压的频率的15倍,因此调节开关频率可以调整输出正弦波电流的频率;动圈平台7的正弦波加速度频率可根据调制电路的开关频率选择为100Hz、200Hz、300Hz,频率偏差在2%以内,动圈平台5的正弦波加速度幅值为10m/s
2,幅值偏差在5%以内。
一种便携式现场多频率振动加速度校正方法,其用于如上的便携式现场多频率振动加速度校正系统,包括以下步骤:
步骤1:将测试用压电式振动加速度传感器11安装在第一螺杆701上,将标准振动加速度传感器12安装在第二螺杆702上,具体地,以广州某±800kV换流站内换流变振动测试为例。在换流站内开展换流变振动测试前,将测试用压电式振动加速度传感器11和标准振动加速度传感器12通过传感器自身的螺纹安装至便携式多频率标准振动源10的动圈平台7的螺杆上,同时保证测试用压电式振动加速度传感器11和标准振动加速度传感器12安装位置为动圈平台7中心的对称位置。
步骤2:启动便携式多频率标准振动源,选择振动加速度的频率。选择振动加速度的频率为100Hz。如图1所示,24V直流电源2与调制电路3连接,为调制电路3提供稳定的24V直流电压;调制电路3为电压型单相全桥双极性正弦脉宽调制电路,可将24V直流电压调制为两相同幅值、频率、相位的单相交流电压,调制电路3设置有开关频率控制电路,外部按钮选择为100Hz的频率,则开关频率控制电路的电压为2V,则对应调制电路的开关频率设置为1500Hz,由于开关频率为调制电路3输出单相交流电压的频率的15倍,因此单相交流电压的频率分别为100Hz;两路单相交流电压输入至第一励磁线圈401和第二励磁线圈402;两个第一励磁线圈401和第二励磁线圈402绕制在瓷缸6上,瓷缸6为第一励磁线圈401和第二励磁线圈402提供机械支撑和绝缘作用;两个第一励磁线圈401和第二励磁线圈402产生的正弦波磁场(频率为100Hz)同时与中心磁极5相互作用,中心磁极5受到电磁力的作用产生垂直方向的正弦波加速度;中心磁极5与动圈平台7在垂直方向硬连接,动圈平台7同样受到垂直方向的正弦波加速度,加速度频率与单相交流电压的频率相同,即为100Hz,幅值保持为10m/s
2。
步骤3、将测试用压电式振动加速度传感器11和标准振动加速度传感器12通过同轴电缆13连接至采集卡工控箱14;
步骤4、将采集卡工控箱14的通讯接口通过网线15连接至计算机16;
步骤5、启动计算机16,打开安装在计算机16中的信号分析软件;
步骤6、通过信号分析软件对测试用压电式振动加速度传感器11和采集卡工控箱14进行加速度振动信号的平衡和清零操作,排除测试用压电式振动加速度传感器11和采集卡工控箱14的零漂,进而操作信号分析软件获取测试用测试用压电式振动加速度传感器11的输出频率和幅值,并与标准振动加速度传感器12的输出频率和幅值做比较,完成校正操作;
步骤7、通过信号分析软件完成对换流变运行中的振动加速度进行测量,获取换流变运行中的振动加速度信号。
进一步地,振动加速度的频率为100Hz或200Hz或300Hz,频率偏差在2%以内。
进一步地,振动加速度的幅值为10m/s2,幅值偏差在5%以内。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。
Claims (9)
- 一种便携式现场多频率振动加速度校正系统,其特征在于,包括便携式多频率标准振动源、采集卡工控箱和计算机,所述便携式多频率标准振动源包括壳体,所述壳体内设有中心磁极、励磁线圈、调制电路和直流电源,所述调制电路将所述直流电源的直流输入电流转换为交流输入电流并作用于所述励磁线圈,至少两所述励磁线圈同轴设置并形成有轴向中心孔,所述中心磁极设置于所述励磁线圈的轴向中心孔中,并受所述励磁线圈的交变电磁场作用沿轴向中心孔的轴向往复运动,所述中心磁极朝向外侧的一端设有动圈平台,所述动圈平台上设有第一螺杆和第二螺杆,所述第一螺杆通过测试用压电式振动加速度传感器与所述采集卡工控箱连接,所述第二螺杆通过标准振动加速度传感器与所述采集卡工控箱连接,所述采集卡工控箱与所述计算机控制信号连接。
- 根据权利要求1所述的便携式现场多频率振动加速度校正系统,其特征在于,所述励磁线圈通过瓷缸固定在所述壳体内。
- 根据权利要求1所述的便携式现场多频率振动加速度校正系统,其特征在于,所述壳体内设有用于给所述中心磁极往复运动导向的导向件。
- 根据权利要求1所述的便携式现场多频率振动加速度校正系统,其特征在于,所述壳体内设有用于覆盖所述励磁线圈的罩盖。
- 根据权利要求1所述的便携式现场多频率振动加速度校正系统,其特征在于,所述壳体为圆柱体且所述壳体的直径为50mm,高为120mm
- 根据权利要求1所述的便携式现场多频率振动加速度校正系统,其特征在于,所述调制电路为电压型单相全桥双极性正弦脉宽调制直流-交流逆变电路。
- 一种便携式现场多频率振动加速度校正方法,其特征在于,用于如权利要求1至6任一所述的便携式现场多频率振动加速度校正系统,包括以下步骤:步骤1:将测试用压电式振动加速度传感器安装在第一螺杆上,将标准振动加速度传感器安装在第二螺杆上;步骤2:启动便携式多频率标准振动源,选择振动加速度的频率;步骤3、将测试用压电式振动加速度传感器和标准振动加速度传感器通过同轴电缆连接至采集卡工控箱;步骤4、将采集卡工控箱的通讯接口通过网线连接至计算机;步骤5、启动计算机,打开安装在计算机中的信号分析软件;步骤6、通过信号分析软件对测试用压电式振动加速度传感器和采集卡工控箱进行加速 度振动信号的平衡和清零操作,排除测试用压电式振动加速度传感器和采集卡工控箱的零漂,进而操作信号分析软件获取测试用测试用压电式振动加速度传感器的输出频率和幅值,并与标准振动加速度传感器的输出频率和幅值做比较,完成校正操作;步骤7、通过信号分析软件完成对换流变运行中的振动加速度进行测量,获取换流变运行中的振动加速度信号。
- 根据权利要求7所述的便携式现场多频率振动加速度校正方法,其特征在于,振动加速度的频率为100Hz或200Hz或300Hz,频率偏差在2%以内。
- 根据权利要求7所述的便携式现场多频率振动加速度校正方法,其特征在于,振动加速度的幅值为10m/s 2,幅值偏差在5%以内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911369798.6A CN111089987A (zh) | 2019-12-26 | 2019-12-26 | 一种便携式现场多频率振动加速度校正系统和方法 |
CN201911369798.6 | 2019-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128971A1 true WO2021128971A1 (zh) | 2021-07-01 |
Family
ID=70397203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/115565 WO2021128971A1 (zh) | 2019-12-26 | 2020-09-16 | 一种便携式现场多频率振动加速度校正系统和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111089987A (zh) |
WO (1) | WO2021128971A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111089987A (zh) * | 2019-12-26 | 2020-05-01 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种便携式现场多频率振动加速度校正系统和方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1900660A (zh) * | 2006-07-19 | 2007-01-24 | 中国航空工业第一集团公司北京长城计量测试技术研究所 | 电动式角振动台 |
JP2011047927A (ja) * | 2009-07-27 | 2011-03-10 | Sanko Controls Co Ltd | 振動発生装置 |
CN104459205A (zh) * | 2014-12-08 | 2015-03-25 | 福建宁德核电有限公司 | 一种加速度传感器的标定方法及系统 |
CN105149199A (zh) * | 2015-07-14 | 2015-12-16 | 北京卫星环境工程研究所 | 在航天器动力学离心状态下使用的电磁振动台 |
CN106597024A (zh) * | 2016-12-30 | 2017-04-26 | 浙江大学 | 一种微加速度振动装置 |
CN109470888A (zh) * | 2018-12-05 | 2019-03-15 | 西北工业大学 | 基于深度学习的高g值加速度计的标定系统及标定方法 |
CN209069550U (zh) * | 2018-11-09 | 2019-07-05 | 苏州东菱振动试验仪器有限公司 | 一种振动台 |
CN111089987A (zh) * | 2019-12-26 | 2020-05-01 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种便携式现场多频率振动加速度校正系统和方法 |
CN211457013U (zh) * | 2019-12-26 | 2020-09-08 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种便携式多频率标准振动源 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1955644A (zh) * | 2006-07-07 | 2007-05-02 | 中国航空工业第一集团公司北京长城计量测试技术研究所 | 低频角振动台 |
CN202372252U (zh) * | 2011-12-30 | 2012-08-08 | 东北石油大学 | 基于加速度计校验系统的电涡流传感器动态校验装置 |
CN103513060A (zh) * | 2012-06-28 | 2014-01-15 | 洛阳市重冶矿山机械有限公司 | 改装pr9270型激振器为压电加速度计校准器的方法 |
CN106124803A (zh) * | 2016-06-13 | 2016-11-16 | 中国地质大学(武汉) | 一种光纤加速度传感器的标定系统 |
CN106404160B (zh) * | 2016-06-30 | 2019-10-15 | 国网重庆市电力公司电力科学研究院 | 一种现场环境下输电线路监测装置计量系统及方法 |
CN106597023B (zh) * | 2016-12-30 | 2020-01-21 | 浙江大学 | 一种电磁驱动式微加速度振动装置 |
CN107421729A (zh) * | 2017-08-11 | 2017-12-01 | 南京理工大学 | 一种磁流变弹性体隔振器动态性能测试系统 |
CN207248916U (zh) * | 2017-09-04 | 2018-04-17 | 广西电网有限责任公司电力科学研究院 | 一种加速度传感器校准装置 |
CN209342325U (zh) * | 2018-11-09 | 2019-09-03 | 西人马(厦门)科技有限公司 | 一种振动台 |
CN109579973A (zh) * | 2018-11-22 | 2019-04-05 | 国网天津市电力公司电力科学研究院 | 一种振动速度传感器灵敏度系数校验方法 |
CN109579976A (zh) * | 2018-11-22 | 2019-04-05 | 国网天津市电力公司电力科学研究院 | 一种压电式加速度传感器灵敏度系数校验方法 |
-
2019
- 2019-12-26 CN CN201911369798.6A patent/CN111089987A/zh active Pending
-
2020
- 2020-09-16 WO PCT/CN2020/115565 patent/WO2021128971A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1900660A (zh) * | 2006-07-19 | 2007-01-24 | 中国航空工业第一集团公司北京长城计量测试技术研究所 | 电动式角振动台 |
JP2011047927A (ja) * | 2009-07-27 | 2011-03-10 | Sanko Controls Co Ltd | 振動発生装置 |
CN104459205A (zh) * | 2014-12-08 | 2015-03-25 | 福建宁德核电有限公司 | 一种加速度传感器的标定方法及系统 |
CN105149199A (zh) * | 2015-07-14 | 2015-12-16 | 北京卫星环境工程研究所 | 在航天器动力学离心状态下使用的电磁振动台 |
CN106597024A (zh) * | 2016-12-30 | 2017-04-26 | 浙江大学 | 一种微加速度振动装置 |
CN209069550U (zh) * | 2018-11-09 | 2019-07-05 | 苏州东菱振动试验仪器有限公司 | 一种振动台 |
CN109470888A (zh) * | 2018-12-05 | 2019-03-15 | 西北工业大学 | 基于深度学习的高g值加速度计的标定系统及标定方法 |
CN111089987A (zh) * | 2019-12-26 | 2020-05-01 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种便携式现场多频率振动加速度校正系统和方法 |
CN211457013U (zh) * | 2019-12-26 | 2020-09-08 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种便携式多频率标准振动源 |
Also Published As
Publication number | Publication date |
---|---|
CN111089987A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108459249B (zh) | 可控饱和电抗的特高压gil交流耐压试验装置及方法 | |
CN102412739B (zh) | 一种超低频高压电源 | |
US20100277137A1 (en) | System for detecting generator winding faults | |
CN101201363A (zh) | 换流变压器感应耐压试验电源装置及其局部放电测量方法 | |
CN105226610A (zh) | 一种变压器合闸励磁涌流消除器 | |
WO2021128971A1 (zh) | 一种便携式现场多频率振动加速度校正系统和方法 | |
WO2023179153A1 (zh) | 降低试验冲击电流的发电机铁心损耗试验系统及方法 | |
JP2005241297A (ja) | 電力設備の耐電圧試験方法 | |
CN110880792B (zh) | 电气系统一次通压同期核相快速切换检验系统及检验方法 | |
CN1964159A (zh) | 松耦合感应电源 | |
CN205039524U (zh) | 一种变压器合闸励磁涌流消除器 | |
CN110824346A (zh) | 一种电动汽车供电的配电网断路器串联谐振耐压装置 | |
CN108427062A (zh) | 采用间歇激励的变频谐振耐压局放试验装置及方法 | |
CN110488800A (zh) | 一种电机控制器测试系统及方法 | |
CN101975784B (zh) | 便携式恒频x射线探伤机 | |
CN103777139A (zh) | 一种变压器有载分接开关检测装置及检测方法 | |
CN204101642U (zh) | 一种介质损耗因数测量装置 | |
CN112083231B (zh) | 一种能减小合闸冲击电流的发电机定子铁心损耗试验装置 | |
CN212622935U (zh) | 一种电动汽车供电的配电网断路器串联谐振耐压装置 | |
CN102193051A (zh) | 一种1000kV交流特高压变压器现场局部放电试验装置及方法 | |
CN201266232Y (zh) | 变压器有载分接开关动作特性交流测试装置 | |
JP7461568B2 (ja) | 無停電検出に基づく変圧器の巻線変形程度評価装置及び方法 | |
CN211457013U (zh) | 一种便携式多频率标准振动源 | |
CN103424583A (zh) | 一种自动换极性直流升压装置 | |
CN103338025B (zh) | 工频调感谐振装置及其调频判断工频串联谐振状态的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20904442 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20904442 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20904442 Country of ref document: EP Kind code of ref document: A1 |