WO2021128759A1 - 一种gnss天线 - Google Patents
一种gnss天线 Download PDFInfo
- Publication number
- WO2021128759A1 WO2021128759A1 PCT/CN2020/096051 CN2020096051W WO2021128759A1 WO 2021128759 A1 WO2021128759 A1 WO 2021128759A1 CN 2020096051 W CN2020096051 W CN 2020096051W WO 2021128759 A1 WO2021128759 A1 WO 2021128759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microstrip patch
- antenna
- antenna substrate
- input ports
- probe
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
Definitions
- This application relates to the field of wireless communication technology, and in particular to a GNSS antenna.
- satellite navigation Because satellite navigation has all-time, all-weather, and high-precision, it is widely used in navigation, surveying and mapping, monitoring, timing, communication and other fields.
- the use of GPS, GLONASS, Beidou and GALILEO for integrated navigation can greatly increase the number of satellites observed, which is beneficial to shorten the positioning time.
- the use of existing GNSS antennas at this time has better positioning accuracy. difference.
- the present application provides a GNSS antenna, which solves the technical problem of poor positioning accuracy when the existing GNSS antenna is used for integrated navigation.
- the first aspect of the present application provides a GNSS antenna, including: a probe, a first antenna substrate, a first microstrip patch, a second antenna substrate, and a second microstrip patch;
- the first microstrip patch, the first antenna substrate, the second microstrip patch, and the second antenna substrate are assembled on the probe from top to bottom;
- the first microstrip patch is mounted on the first antenna substrate, and the first microstrip patch is provided with four first input ports, and the four first input ports are The probes are distributed at four vertices with a square center;
- the second microstrip patch is mounted on the second antenna substrate, and the second microstrip patch is provided with four second input ports, and the four second input ports are The probes are distributed at four vertices with a square center.
- a first sector-shaped slot is arranged between each of the first input ports and the outer edge of the first microstrip patch.
- the outer edge of the first microstrip patch is provided with first serrations.
- a second sector-shaped slot is provided between each of the second input ports and the outer edge of the second microstrip patch.
- An arc-shaped piece is arranged in the second sector-shaped slot, and the arrangement direction of the arc-shaped piece is perpendicular to the extending direction of the sector-shaped slot.
- a second saw tooth is provided on the outer edge of the second microstrip patch.
- the second antenna substrate is provided with a plurality of through holes, and the distribution of the plurality of through holes matches the shape of the second antenna substrate.
- Both the first antenna substrate and the first microstrip patch are circular.
- the second antenna substrate and the second microstrip patch are both circular.
- the dielectric constants of the materials of the first antenna substrate and the second antenna substrate are both above 2.65.
- a GNSS antenna provided by this application includes: a probe, a first antenna substrate, a first microstrip patch, a second antenna substrate, and a second microstrip patch; a first microstrip patch, a first antenna substrate, The second microstrip patch and the second antenna substrate are assembled on the probe from top to bottom; the first microstrip patch is mounted on the first antenna substrate, and the first microstrip patch is provided with four first Input ports, and the four first input ports are distributed with four square vertices centered on the probe; the second microstrip patch is mounted on the second antenna substrate, and the second microstrip patch is provided with four The second input port, and the four second input ports are distributed with four vertices of a square centered on the probe.
- the first microstrip patch and the second microstrip patch with a double-layer structure are provided, so that the GNSS antenna can receive satellite signals in the L1 frequency band as well as satellite signals in the L2 frequency band to meet the requirements of integrated navigation.
- the first microstrip patch is provided with four first input ports distributed in a square centered on the probe
- the second microstrip patch is provided with four second input ports distributed in a square centered on the probe.
- the two input ports respectively improve the reception capability of the first microstrip patch and the second microstrip patch for low-elevation satellite signals, improve the positioning accuracy of the antenna, and solve the problem of using the existing GNSS in integrated navigation. Antenna, the technical problem of poor positioning accuracy.
- FIG. 1 is a top view of a GNSS antenna in an embodiment of this application
- FIG. 2 is a flowchart of processing satellite signals by a GNSS antenna in an embodiment of the application
- the embodiment of the present application provides a GNSS antenna, which solves the technical problem of poor positioning accuracy when the existing GNSS antenna is used for integrated navigation.
- GNSS antenna provided in the present application will be described in detail below.
- the embodiment of the present application provides a first embodiment of a GNSS antenna. Please refer to FIG. 1 for details.
- the GNSS antenna in this embodiment includes: a probe, a first antenna substrate 3, a first microstrip patch 2, a second antenna substrate 7 and a second microstrip patch 6; the first microstrip patch 2, the first The antenna substrate 3, the second microstrip patch 6, and the second antenna substrate 7 are assembled on the probe from top to bottom; the first microstrip patch 2 is attached to the first antenna substrate 3, and the first microstrip patch
- the sheet 2 is provided with four first input ports 4, and the four first input ports 4 are distributed with four vertices of a square with the probe as the center; the second microstrip patch 6 is mounted on the second antenna substrate 7 , And four second input ports 8 are provided on the second microstrip patch 6, and the four second input ports 8 are distributed with four vertices of a square centered on the probe.
- the four first input ports 4 are distributed with four vertices of a square centered on the probe, that is, the corresponding two input ports are axisymmetric with the probe as the center, and the adjacent input ports The phase difference is 90°.
- the four first input ports 4 are fed by the probe, and the satellite signal can be introduced into the phase shift coupling network of the L1 frequency band corresponding to the antenna (not shown in the figure).
- the above-mentioned principle of the second input port 8 is similar to that of the first input port 4.
- the first microstrip patch 2 and the second microstrip patch 6 of a double-layer structure are arranged, so that the GNSS antenna can receive both satellite signals in the L1 frequency band and The satellite signal in the L2 frequency band can meet the needs of integrated navigation, and the first microstrip patch 2 is provided with four first input ports 4 and the second microstrip patch 6 arranged in a square with the probe as the center.
- the four second input ports 8 distributed in a square shape with the probe as the center are arranged to respectively improve the reception capability of the first microstrip patch 2 and the second microstrip patch 6 to low-elevation satellite signals, and improve the positioning of the antenna Accuracy, which solves the technical problem of poor positioning accuracy when using existing GNSS antennas for integrated navigation.
- the above is the first embodiment of a GNSS antenna provided by the embodiment of the application, and the following is the second embodiment of a GNSS antenna provided by the embodiment of the application. Please refer to FIG. 1 for details.
- the GNSS antenna in this embodiment includes: a probe, a first antenna substrate 3, a first microstrip patch 2, a second antenna substrate 7 and a second microstrip patch 6; the first microstrip patch 2, the first The antenna substrate 3, the second microstrip patch 6, and the second antenna substrate 7 are assembled on the probe from top to bottom; the first microstrip patch 2 is attached to the first antenna substrate 3, and the first microstrip patch
- the sheet 2 is provided with four first input ports 4, and the four first input ports 4 are distributed with four vertices of a square with the probe as the center; the second microstrip patch 6 is mounted on the second antenna substrate 7 , And four second input ports 8 are provided on the second microstrip patch 6, and the four second input ports 8 are distributed with four vertices of a square centered on the probe.
- each first sector-shaped slot 13 is located between the first input port 4 and the outer edge of the first microstrip patch 2. That is to say, the distribution of the four first sector slots 13 in the four first input ports 4 is the same.
- the four first input ports 4 set in this way are equal to one capacitor, which can compensate for the impedance, thereby expanding the impedance of the antenna. Bandwidth makes the antenna gain bandwidth wider.
- the actually processed antenna will shift the frequency point, and the first saw tooth 5 that helps to adjust the resonance frequency is provided on the outer edge of the first microstrip patch.
- the frequency point corresponding to the L1 band is 1575.42 ⁇ 1.023MHz.
- a second fan-shaped slot 14 is provided between each second input port 8 and the outer edge of the second microstrip patch 6.
- the principle of the second sector groove 14 is similar to the principle of the above-mentioned first sector groove 13.
- the left-right symmetrical structure of the antenna is changed, and the current path of the original electromagnetic resonance mode is destroyed, thereby causing multiple resonances.
- the generation of the pattern affects the circular polarization radiation characteristics of the antenna, so an arc 10 is arranged in the second sector slot 14 on the second microstrip patch 6.
- the coupling of the second sector 14 and the arc 10 with the parasitic element improves the damaged current path, suppresses the multiple resonant modes generated, and expands the L2 frequency band. Impedance bandwidth. It can be understood that the number of arc-shaped members 10 may be three, and the three arc-shaped members 10 are evenly distributed.
- a second sawtooth 11 is provided on the outer edge of the second microstrip patch 6 to help adjust the resonance frequency.
- the L2 frequency band corresponds to The frequency point is: 1227.60 ⁇ 1.023MHz.
- a plurality of through holes 12 are opened near the outer edge of the second antenna substrate 7, and the distribution of the plurality of through holes 12 is matched with the shape of the second antenna substrate 7, which can help suppress the microstrip patch.
- the generated surface wave also suppresses the external multipath signal, enhances the polarization performance of the antenna, widens the axial ratio bandwidth of the antenna, and improves the multipath suppression capability of the antenna.
- the circular microstrip patch has good symmetry and is easier to achieve circular polarization. Therefore, the first antenna substrate 3 and the first microstrip patch 2 in this embodiment are both circular.
- the circular microstrip patch has good symmetry and is easier to achieve circular polarization.
- the second antenna substrate 7 and the second microstrip patch 6 are both circular.
- the dielectric constants of the materials of the first antenna substrate 3 and the second antenna substrate 7 are both above 2.65.
- the use of high-permittivity high-frequency microwave plates can effectively reduce the size of the antenna, miniaturize the antenna, and make it easier to assemble In small equipment.
- the GNSS antenna in this embodiment enters the L1 frequency band phase-shift coupling network 19 and the L2 frequency band phase-shift coupling network 20 after inputting the satellite signal into the low-noise amplification of the L1 frequency band.
- Module 22 and L2 band low-noise amplifying module 21 then the two signals are combined through an inter-frequency duplex combining network 23 composed of filters and microstrip lines, and the combined signals are amplified by amplifier 24. Then the gain is matched and selected by the high and low gain switching module 25, and finally the signal enters the receiver through the radio frequency connector 26 for processing.
- the first microstrip patch 2 and the second microstrip patch 6 are provided with a double-layer structure, and both the first microstrip patch 2 and the second microstrip patch 6 are made of high-frequency microwave plates. So that the GNSS antenna can receive satellite signals in the L1 frequency band and the satellite signals in the L2 frequency band to meet the needs of integrated navigation, and the first microstrip patch 2 is provided with a square distribution centered on the probe. There are four first input ports 4, and the second microstrip patch 6 is provided with four second input ports 8 distributed in a square with the probe as the center, which increase the first microstrip patch 2 and the second microstrip patch respectively.
- the ability of the sheet 6 to receive low-elevation satellite signals improves the positioning accuracy of the antenna, thereby solving the technical problem of poor positioning accuracy when the existing GNSS antenna is used in integrated navigation.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种GNSS天线,包括:探针、第一天线基板、第一微带贴片、第二天线基板和第二微带贴片;第一微带贴片、第一天线基板、第二微带贴片、第二天线基板由上至下地装配于探针上;第一微带贴片贴装于第一天线基板上,且第一微带贴片上设置有四个第一输入端口,且四个第一输入端口以探针为中心呈正方形的四个顶点分布;第二微带贴片贴装于第二天线基板上,且第二微带贴片上设置有四个第二输入端口,且四个第二输入端口以探针为中心呈正方形的四个顶点分布,解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
Description
本申请要求于2019年12月23日提交中国专利局、申请号为201922333226.4、发明名称为“一种GNSS天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信技术领域,尤其涉及一种GNSS天线。
由于卫星导航具有全时空、全天候、高精度,广泛应用于导航、测绘、监测、授时、通信等多种领域。
根据卫星信号特征及GNSS应用原理,利用GPS、GLONASS、北斗和GALILEO进行组合导航,可以使观测到的卫星数目大大增加,有利于缩短定位时间,然而此时采用现有的GNSS天线,定位精度较差。
发明内容
有鉴于此,本申请提供了一种GNSS天线,解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
本申请第一方面提供了一种GNSS天线,包括:探针、第一天线基板、第一微带贴片、第二天线基板和第二微带贴片;
所述第一微带贴片、所述第一天线基板、所述第二微带贴片、所述第二天线基板由上至下地装配于所述探针上;
所述第一微带贴片贴装于所述第一天线基板上,且所述第一微带贴片上设置有四个第一输入端口,且四个所述第一输入端口以所述探针为中心呈正方形的四个顶点分布;
所述第二微带贴片贴装于所述第二天线基板上,且所述第二微带贴片上设置有四个第二输入端口,且四个所述第二输入端口以所述探针为中心呈正方形的四个顶点分布。
可选地,
每一所述第一输入端口与所述第一微带贴片的外沿之间设置有一个第一扇形槽。
可选地,
所述第一微带贴片的外沿上设置有第一锯齿。
可选地,
每一所述第二输入端口与所述第二微带贴片的外沿之间设置有一个第二扇形槽。
可选地,
所述第二扇形槽内设置有弧形件,所述弧形件的设置方向与所述扇形槽的延伸方向垂直。
可选地,
所述第二微带贴片的外沿上设置有第二锯齿。
可选地,
所述第二天线基板上开设有多个通孔,且多个所述通孔的分布配合于所述第二天线基板的形状。
可选地,
第一天线基板、第一微带贴片均为圆形。
可选地,
第二天线基板、第二微带贴片均为圆形。
可选地,
所述第一天线基板和所述第二天线基板的材料的介电常数均在2.65以上。
从以上技术方案可以看出,本申请具有以下优点:
本申请提供的一种GNSS天线,包括:探针、第一天线基板、第一微带贴片、第二天线基板和第二微带贴片;第一微带贴片、第一天线基板、第二微带贴片、第二天线基板由上至下地装配于探针上;第一微带贴片贴装于第一天线基板上,且第一微带贴片上设置有四个第一输入端口,且四个第一输入端口以探针为中心呈正方形的四个顶点分布;第二微带贴片贴装于第二天线基板上,且第二微带贴片上设置有四个第二输入端口,且四 个第二输入端口以探针为中心呈正方形的四个顶点分布。
本申请中,通过设置双层结构的第一微带贴片和第二微带贴片,使得该GNSS天线既可以接收L1频段的卫星信号,也可以接收L2频段的卫星信号,以满足组合导航的需求,且分别在第一微带贴片上设置以探针为中心呈正方形分布的四个第一输入端口,第二微带贴片上设置以探针为中心呈正方形分布的四个第二输入端口,分别提高了第一微带贴片和第二微带贴片对低仰角卫星信号的接收能力,提高了天线的定位精度,从而解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
图1为本申请实施例中一种GNSS天线的俯视图;
图2为本申请实施例中的GNSS天线对卫星信号的处理流程图;
其中,附图标记如下:
3、第一天线基板;2、第一微带贴片;7、第二天线基板;6、第二微带贴片;4、第一输入端口;8、第二输入端口;13、第一扇形槽;5、第一锯齿;14、第二扇形槽;11、第二锯齿;10、弧形件;12、通孔;19、移相耦合网络;20、移相耦合网络;22、低噪声放大模块;21、低噪声放大模块;异频双工合路网络23;24、放大器;25、高低增益切换模块;26、射频接头。
本申请实施例提供了一种GNSS天线,解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
下面将结合附图对本申请实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于 附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可更换连接,或一体地连接,可以是机械连接,也可以是电连接,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
以便于理解,下面对本申请提供的一种GNSS天线进行详细说明。
本申请实施例提供一种GNSS天线的实施例一,具体请参阅图1。
本实施例中的GNSS天线包括:探针、第一天线基板3、第一微带贴片2、第二天线基板7和第二微带贴片6;第一微带贴片2、第一天线基板3、第二微带贴片6、第二天线基板7由上至下地装配于探针上;第一微带贴片2贴装于第一天线基板3上,且第一微带贴片2上设置有四个第一输入端口4,且四个第一输入端口4以探针为中心呈正方形的四个顶点分布;第二微带贴片6贴装于第二天线基板7上,且第二微带贴片6上设置有四个第二输入端口8,且四个第二输入端口8以探针为中心呈正方形的四个顶点分布。
需要说明的是,且四个第一输入端口4以探针为中心呈正方形的四个顶点分布即对应的每相对的两个输入端口以所述探针为中心轴对称,相邻的输入端口相位相差90°,此时这四个第一输入端口4通过该探针馈电,可以将卫星信号引入到该天线对应的L1频段的移相耦合网络(图中未示出)。可以理解的是,第二输入端口8的上述原理和第一输入端口4的相似,具体可以参见第一输入端口4的上述描述,在此不再赘述。
考虑到上述背景技术中的问题,本实施例通过设置双层结构的第一微带贴片2和第二微带贴片6,使得该GNSS天线既可以接收L1频段的卫星信号,也可以接收L2频段的卫星信号,以满足组合导航的需求,且分别 在第一微带贴片2上设置以探针为中心呈正方形分布的四个第一输入端口4,第二微带贴片6上设置以探针为中心呈正方形分布的四个第二输入端口8,分别提高了第一微带贴片2和第二微带贴片6对低仰角卫星信号的接收能力,提高了天线的定位精度,从而解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
以上为本申请实施例提供的一种GNSS天线的实施例一,以下为本申请实施例提供的一种GNSS天线的实施例二,具体请参阅图1。
本实施例中的GNSS天线包括:探针、第一天线基板3、第一微带贴片2、第二天线基板7和第二微带贴片6;第一微带贴片2、第一天线基板3、第二微带贴片6、第二天线基板7由上至下地装配于探针上;第一微带贴片2贴装于第一天线基板3上,且第一微带贴片2上设置有四个第一输入端口4,且四个第一输入端口4以探针为中心呈正方形的四个顶点分布;第二微带贴片6贴装于第二天线基板7上,且第二微带贴片6上设置有四个第二输入端口8,且四个第二输入端口8以探针为中心呈正方形的四个顶点分布。
具体地,在第一微带贴片2开四个第一扇形槽13,且每一第一扇形槽13位于第一输入端口4与所述第一微带贴片2的外沿之间,也就是说四个第一扇形槽13的分布于四个第一输入端口4的分布相同,这样设置的四个第一输入端口4等于一个电容,可以对阻抗进行补偿,从而拓展了天线的阻抗带宽,使天线增益带宽变宽。
具体地,由于加工差异性,实际加工出来的天线会使频点发生偏移,在第一微带贴片的外沿设置有助于调整谐振频率的第一锯齿5。其中L1频段对应的频点为:1575.42±1.023MHz。
具体地,每一第二输入端口8与第二微带贴片6的外沿之间设置有一个第二扇形槽14。第二扇形槽14的原理与上述第一扇形槽13的原理相似,具体可以参见上述第一扇形槽13的描述,在此不再赘述。
具体地,由于第一微带贴片2的同轴馈电要穿过第二微带贴片6,改变了天线的左右对称结构,破坏了原来电磁共振模式的电流路径,从而造成多次谐振模式的产生,影响天线的圆极化辐射特性,故在第二微带贴片 6上的第二扇形槽14内设置弧形件10。第二扇形槽14、弧形件10与寄生单元耦合(第二扇形槽14的两尖端之间产生的),改善了被破坏的电流路径,抑制产生的多次谐振模,拓展了L2频段的阻抗带宽。可以理解的是,弧形件10的数量可以为3个,且3个的弧形件10均匀分布。
具体地,由于加工差异性,实际加工出来的天线会使频点发生偏移,在第二微带贴片6的外沿上设置有有助于调整谐振频率的第二锯齿11,L2频段对应的频点为:1227.60±1.023MHz。
具体地,在第二天线基板7的靠近外沿处开设多个通孔12,且多个通孔12的分布配合于第二天线基板7的形状,可以有助于抑制在微带贴片上产生的表面波,同时也抑制外面的多路径信号,增强天线的极化性能,使天线的轴比带宽增宽,提高天线的抑制多路径能力。
具体地,圆形的微带贴片具有良好的对称性,更容易实现圆极化,因此本实施例中的第一天线基板3、第一微带贴片2均为圆形。
具体地,圆形的微带贴片具有良好的对称性,更容易实现圆极化,第二天线基板7、第二微带贴片6均为圆形。
具体地,第一天线基板3和第二天线基板7的材料的介电常数均在2.65以上,采用高介电常数的高频微波板材,有效减小天线尺寸,使天线小型化,更容易装配于小型设备中。
需要说明的是,如图2所示本实施例中的GNSS天线在将卫星信号输入至L1频段的移相耦合网络19和L2频段的移相耦合网络20后,分别进入L1频段的低噪声放大模块22和L2频段的低噪声放大模块21,然后两路信号在通过由滤波器和微带线组成的异频双工合路网络23进行合路,合路后的信号经过放大器24进行放大,然后通过高低增益切换模块25对增益进行匹配选择,最后信号通过射频接头26进入接收机中进行处理。
本实施例中,通过设置双层结构的第一微带贴片2和第二微带贴片6,且第一微带贴片2和第二微带贴片6均采用高频微波板材,使得该GNSS天线既可以接收L1频段的卫星信号,也可以接收L2频段的卫星信号,以满足组合导航的需求,且分别在第一微带贴片2上设置以探针为中心呈正方形分布的四个第一输入端口4,第二微带贴片6上设置以探针为中心呈 正方形分布的四个第二输入端口8,分别提高了第一微带贴片2和第二微带贴片6对低仰角卫星信号的接收能力,提高了天线的定位精度,从而解决了在进行组合导航时,采用现有的GNSS天线,定位精度较差的技术问题。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种GNSS天线,其特征在于,包括:探针、第一天线基板、第一微带贴片、第二天线基板和第二微带贴片;所述第一微带贴片、所述第一天线基板、所述第二微带贴片、所述第二天线基板由上至下地装配于所述探针上;所述第一微带贴片贴装于所述第一天线基板上,且所述第一微带贴片上设置有四个第一输入端口,且四个所述第一输入端口以所述探针为中心呈正方形的四个顶点分布;所述第二微带贴片贴装于所述第二天线基板上,且所述第二微带贴片上设置有四个第二输入端口,且四个所述第二输入端口以所述探针为中心呈正方形的四个顶点分布。
- 根据权利要求1所述的GNSS天线,其特征在于,每一所述第一输入端口与所述第一微带贴片的外沿之间设置有一个第一扇形槽。
- 根据权利要求1所述的GNSS天线,其特征在于,所述第一微带贴片的外沿上设置有第一锯齿。
- 根据权利要求1所述的GNSS天线,其特征在于,每一所述第二输入端口与所述第二微带贴片的外沿之间设置有一个第二扇形槽。
- 根据权利要求4所述的GNSS天线,其特征在于,所述第二扇形槽内设置有弧形件,所述弧形件的设置方向与所述扇形槽的延伸方向垂直。
- 根据权利要求1所述的GNSS天线,其特征在于,所述第二微带贴片的外沿上设置有第二锯齿。
- 根据权利要求1所述的GNSS天线,其特征在于,所述第二天线基板上开设有多个通孔,且多个所述通孔的分布配合于所述第二天线基板的形状。
- 根据权利要求1所述的GNSS天线,其特征在于,第一天线基板、第一微带贴片均为圆形。
- 根据权利要求1所述的GNSS天线,其特征在于,第二天线基板、第二微带贴片均为圆形。
- 根据权利要求1所述的GNSS天线,其特征在于,所述第一天线基板和所述第二天线基板的材料的介电常数均在2.65以上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922333226 | 2019-12-23 | ||
CN201922333226.4 | 2019-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128759A1 true WO2021128759A1 (zh) | 2021-07-01 |
Family
ID=76573613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096051 WO2021128759A1 (zh) | 2019-12-23 | 2020-06-15 | 一种gnss天线 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021128759A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832691A (zh) * | 2022-12-19 | 2023-03-21 | 杭州电子科技大学 | 双零点高隔离双极化直通探针贴片天线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201741802U (zh) * | 2010-07-07 | 2011-02-09 | 上海航天测控通信研究所 | 一种宽频gnss接收天线 |
CN204257814U (zh) * | 2014-11-27 | 2015-04-08 | 广州中海达卫星导航技术股份有限公司 | 轻型宽带gnss测量型天线 |
CN106207472A (zh) * | 2016-06-29 | 2016-12-07 | 武汉中原电子集团有限公司 | 一种双频圆极化微带北斗天线 |
CN208862167U (zh) * | 2018-07-16 | 2019-05-14 | 华南理工大学 | 双频双圆极化北斗导航天线及北斗卫星导航终端设备 |
US10418723B1 (en) * | 2017-12-05 | 2019-09-17 | Rockwell Collins, Inc. | Dual polarized circular or cylindrical antenna array |
-
2020
- 2020-06-15 WO PCT/CN2020/096051 patent/WO2021128759A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201741802U (zh) * | 2010-07-07 | 2011-02-09 | 上海航天测控通信研究所 | 一种宽频gnss接收天线 |
CN204257814U (zh) * | 2014-11-27 | 2015-04-08 | 广州中海达卫星导航技术股份有限公司 | 轻型宽带gnss测量型天线 |
CN106207472A (zh) * | 2016-06-29 | 2016-12-07 | 武汉中原电子集团有限公司 | 一种双频圆极化微带北斗天线 |
US10418723B1 (en) * | 2017-12-05 | 2019-09-17 | Rockwell Collins, Inc. | Dual polarized circular or cylindrical antenna array |
CN208862167U (zh) * | 2018-07-16 | 2019-05-14 | 华南理工大学 | 双频双圆极化北斗导航天线及北斗卫星导航终端设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832691A (zh) * | 2022-12-19 | 2023-03-21 | 杭州电子科技大学 | 双零点高隔离双极化直通探针贴片天线 |
CN115832691B (zh) * | 2022-12-19 | 2023-07-04 | 杭州电子科技大学 | 双零点高隔离双极化直通探针贴片天线 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8289213B2 (en) | Multi-band antenna for satellite positioning system | |
US9184504B2 (en) | Compact dual-frequency patch antenna | |
CN102013551B (zh) | 一种基于带状线多缝隙耦合馈电的圆极化陶瓷天线 | |
CA2869003C (en) | Capacitively coupled patch antenna | |
US9246222B2 (en) | Compact wideband patch antenna | |
CN103022663A (zh) | 一种小型双频有源导航天线装置 | |
US20210210867A1 (en) | Capacitively coupled patch antenna | |
CN204257814U (zh) | 轻型宽带gnss测量型天线 | |
CN101752664A (zh) | 基于正交耦合馈电的环形圆极化陶瓷天线 | |
CN109037929B (zh) | 一种测量型gnss天线 | |
US10950944B2 (en) | Capacitively coupled patch antenna | |
CN103794846B (zh) | 一种双频圆极化北斗天线 | |
CN110112554A (zh) | 一种圆极化微带天线 | |
RU2315398C1 (ru) | Многодиапазонная микрополосковая антенна этажерочного типа | |
WO2021128759A1 (zh) | 一种gnss天线 | |
US11581649B2 (en) | Substrate-type antenna for global navigation satellite system | |
CN216597968U (zh) | 一种小型化双频低轨掩星gnss天线 | |
Boccia et al. | A high performance dual frequency microstrip antenna for Global Positioning System | |
CN212380572U (zh) | 一种宽带gnss卫星接收天线 | |
CN109167160A (zh) | 天线装置和gnss测量天线 | |
US11799203B2 (en) | Modified-material-based high-precision combined antenna for satellite navigation and communications | |
Wang et al. | A low-cost dual-wideband active GNSS antenna with low-angle multipath mitigation for vehicle applications | |
JPH11195922A (ja) | アンテナ装置 | |
CN106972248B (zh) | 一种小型化印刷共形四臂螺旋天线 | |
JP2001094338A (ja) | 円偏波パッチアンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20905708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20905708 Country of ref document: EP Kind code of ref document: A1 |