WO2021128666A1 - 一种用于相控阵系统的集成微波光子收发前端 - Google Patents

一种用于相控阵系统的集成微波光子收发前端 Download PDF

Info

Publication number
WO2021128666A1
WO2021128666A1 PCT/CN2020/086082 CN2020086082W WO2021128666A1 WO 2021128666 A1 WO2021128666 A1 WO 2021128666A1 CN 2020086082 W CN2020086082 W CN 2020086082W WO 2021128666 A1 WO2021128666 A1 WO 2021128666A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
optical
phased array
chip
chipset
Prior art date
Application number
PCT/CN2020/086082
Other languages
English (en)
French (fr)
Inventor
张羽
梁旭
徐静
孙力军
Original Assignee
中国电子科技集团公司第四十四研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第四十四研究所 filed Critical 中国电子科技集团公司第四十四研究所
Priority to US17/756,458 priority Critical patent/US11936433B2/en
Publication of WO2021128666A1 publication Critical patent/WO2021128666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the fields of microwave technology and optoelectronic technology, in particular to a microwave photon transceiver front end based on photonic integration technology that can be used in a phased array system.
  • phased array antennas can be used in military fields such as radar and electronic warfare, as well as in the civilian field of 5G/6G communications; compared with traditional mechanical scanning antennas, phased array antennas have better microwave radiation directivity Strong, faster scanning speed, stronger multi-target (multi-user) tracking ability.
  • the beam pointing and scanning are usually realized by microwave phase shifters, which is why it is called a phased array system; but because of the microwave The phase shift of the phase shifter does not change with frequency, or the phase shift does not have a linear relationship with frequency. Therefore, when the working frequency band changes, this problem will cause the beam direction formed by the phased array antenna to deviate. This effect is called the "aperture effect" of the phased array system, which severely restricts the working frequency range and instantaneous bandwidth of the phased array system.
  • the beam pointing at any broadband can be achieved without skew, that is, the aperture effect of the phased array system can be completely eliminated. Therefore, the introduction of a broadband true delay network into the phased array system is of great significance to ensure that the phased array system can exert excellent performance in a larger operating frequency range or a higher instantaneous bandwidth.
  • microwave technology which uses microwave waveguides or microstrip lines to cooperate with microwave switches to achieve true delay
  • photonic technology that is, microwave technology.
  • the signal is converted into an optical signal, and then converted back to a microwave signal after real delay in the optical domain.
  • these two technologies have certain problems.
  • the working bandwidth of the first technology is limited, because whether it is a waveguide or a microstrip line, its optimized design is related to frequency, and cannot maintain the same true delay and low insertion loss over a wide frequency range; therefore, this
  • the use of traditional microwave technology to achieve true delay will limit the working bandwidth of the phased array system, and its application is limited.
  • the second technology takes advantage of the ultra-wideband advantages of photonic technology, and can achieve precise true delays in various microwave frequency bands currently applied.
  • the current second technology is mainly realized by using discrete devices such as lasers, modulators, detectors, optical delayers, etc.
  • the functional unit that completes the true delay is relatively large; for phased array systems with a large number of antenna elements , A lot of such functional units are required to form a complex delay network, which leads to a very large size of the entire delay network. In many cases, it is completely unable to meet the application requirements of phased array systems.
  • the present invention adopts the photonic integration method to integrate the electro-optical conversion unit, the photon true delay unit, the amplitude adjustment unit, and the photoelectric conversion unit on a silicon-based chip; both use photonic technology.
  • the advantage of ultra-wideband of the phased array system solves the "aperture effect" problem of the phased array system, and uses the high integration of photonic integration technology to solve the problem of the limited space size in the large-scale phased array system.
  • the technical scheme of the present invention includes:
  • An integrated microwave photonic transceiver front end for a phased array system including a ceramic substrate on which a control integrated circuit, a silicon-based photonic integrated chip, a power amplifier chip set, a low noise amplifier chip set, and a microwave switch chip set are carried
  • the control integrated circuit controls the silicon-based photonic integrated chip and the microwave switch chip set through the input control signal; one end of the silicon-based photonic integrated chip is connected to the input/output fiber, and the other end is connected to the power amplifier chip set and low noise Amplifying chip set; two amplifying chip sets are respectively connected to the microwave switch chip set, and the microwave switch chip set is also connected with a phased array antenna.
  • control integrated circuit is used to convert externally input control signals into control levels, control the on and off of each microwave switch in the microwave switch chip set, and control the switching state of each optical switch of the silicon-based photonic integrated chip.
  • the silicon-based photonic integrated chip includes a transmitting beamforming chip and a receiving beamforming chip.
  • the transmit beamforming chip includes a first wavelength division multiplexer, a plurality of first optical switches, and a silicon germanium detector; the first wavelength division multiplexer receives the optical signal of the input optical fiber, and multiplexes it into the multi-photon channel
  • Each photonic channel is composed of a first optical switch connected in series and multiple optical waveguides with different delays.
  • the delayed optical signal is converted into a microwave signal by a silicon germanium detector, and then output to the power amplifier via a traveling wave electrode. chipset.
  • a first adjustable optical attenuator is also connected between the first optical switch and the silicon germanium detector.
  • the receiving beamforming chip includes a second wavelength division multiplexer, a plurality of second optical switches, a lithium niobate thin film modulator, a second wavelength division multiplexer, and a wavelength division multiplexer; the optical signal passes through the input The optical fiber enters the second wavelength division multiplexer to multiplex multiple photonic channels; the lithium niobate thin film modulator receives the microwave signal amplified by the low-noise amplifying chipset, and modulates the optical signal of each photon channel; The optical signal modulated by each photon channel is composed of multiple second optical switches connected in series and multiple optical waveguides with different delays. The delayed optical signal is multiplexed into the output fiber by the wavelength division multiplexer and output .
  • a second adjustable optical attenuator is also connected between the second optical switch and the wavelength division multiplexer.
  • the microwave switch chipset includes a plurality of microwave switches for communicating microwave signals between the power amplifier chipset and the phased array antenna, or communicating microwave signals between the phased array antenna and the low-noise amplifying chipset .
  • the integrated microwave photon transceiver front end of the present invention replaces the original phase shifter, eliminates the aperture effect of the phased array system from the root, and can realize the beam pointing without deflection under the ultra-wideband, thereby ensuring that the phased array system can be Working under a larger working frequency range or a higher instantaneous bandwidth, the use of a true delay network based on a photonic integrated chip enables the system to have a larger working bandwidth.
  • the integrated microwave photonic transceiver front end proposed by the present invention is based on silicon-based photonic integration process and lithium niobate thin film process.
  • the modulator unit, photon true delay unit, amplitude adjustment unit, detector unit and other units are singled on silicon material.
  • Figure 1 is a structural diagram of an integrated microwave photonic transceiver front-end used in a phased array system of the present invention
  • FIG. 2 is a structural diagram of a preferred integrated microwave photonic transceiver front-end used in a phased array system of the present invention
  • Fig. 3 is a structural diagram of the transmitting beamforming chip in the present invention.
  • Figure 4 is a structural diagram of a receiving beamforming chip in the present invention.
  • Fig. 5 is a structural diagram of a silicon-based photonic integrated chip in the present invention.
  • the present invention proposes an integrated microwave photonic transceiver front end for a phased array system, including a ceramic substrate, on which a control integrated circuit, a silicon-based photonic integrated chip, and a first amplifying chip set are carried.
  • the second amplifying chip set and the microwave switch chip set; the control integrated circuit controls the silicon-based photonic integrated chip and the microwave switch chip set through the input control signal; one end of the silicon-based photonic integrated chip is connected with an input/output optical fiber, The other end is connected with the first amplifying chip set and the second amplifying chip set; the two amplifying chip sets are respectively connected to the microwave switch chip set, and the microwave switch chip set is also connected with a phased array antenna.
  • control integrated circuit, the silicon-based photonic integrated chip, the first amplifying chip set, the second amplifying chip set, and the microwave switch chip set are carried on the ceramic substrate by bonding or sintering.
  • one end of the silicon-based photonic integrated chip is connected with an input/output fiber, and the other end is connected with a first amplifying chipset and a second amplifying chipset; one end of the microwave switch is connected with a phased array antenna, and the other One end is connected with the first amplifying group chip and the second amplifying group chip; among them, the silicon-based photonic integrated chip and the microwave switch chip group are controlled by the control integrated circuit, and the control integrated circuit is the form of an integrated circuit to convert the external input control signal To control the level, control the on and off of each microwave switch in the microwave switch chip set; and control the switching state of each optical switch of the silicon-based photonic integrated chip.
  • the input/output fiber is used as the optical input and output interface of the transceiver front end
  • the output radio frequency connector is connected between the phased array antenna and the microwave switch chipset, and the output radio frequency connector is welded with the microwave electrode on the microwave switch chipset.
  • Connect an external phased array antenna; the output radio frequency connector is used as a microwave input and output interface, and a control signal output interface is provided on the control integrated circuit.
  • the above interface will be the port for connecting the transceiver front end of the present invention with external signals/devices/equipment.
  • the ratio of the input fiber to the output fiber is set in a 2:1 relationship, for example, if there are two input fibers, there is one output fiber.
  • the first amplifying chip set is used to amplify the power of the microwave signal output by the silicon-based photonic integrated chip; the second amplifying chip set is used to amplify the low noise of the microwave signal output by the microwave switch chip set.
  • the first amplifying chipset is a power amplifying chipset, which has the function of amplifying the high saturation output power of multi-channel microwave signals, and can realize the emission in the silicon-based photonic integrated chip. High-power amplification of N-channel microwave signals output by the beamforming part.
  • the second amplifying chipset is a low-noise amplifying chipset, which has a low-noise amplifying function of multi-channel microwave signals, and can realize N channels from the microwave switch chipset. Low-noise amplification of microwave signals.
  • the first amplifying chip set and the second amplifying chip set may not be limited to realizing the above-mentioned functions, and their function as the amplifying chip set is to amplify microwave signals.
  • the microwave switch chipset includes multiple 2 ⁇ 1 microwave switches, which can realize the connection of N microwave signals between the power amplifier chipset and the antenna, or the phased array antenna and the low-noise amplifier chip.
  • the silicon-based photonic integrated chip includes a transmitting beamforming chip and a receiving beamforming chip, and the two beamforming chips are independent chips.
  • the transmit beamforming chip includes a first wave-decomposition multiplexer, a 1 ⁇ 2 optical switch, a 2 ⁇ 2 optical switch, a 2 ⁇ 1 optical switch, a silicon germanium detector, and an output line Wave electrode.
  • the light wave loaded with the microwave signal to be transmitted passes through the input fiber.
  • a single-mode fiber is selected to transmit the light signal (light wave/light wave signal) Input the transmit beamforming chip of the silicon-based photonic integrated chip, which is demultiplexed into N channels by the first wave decomposition multiplexer, and each channel is composed of multiple optical switches connected in series and M optical waveguides with different delays. It consists of an optical waveguide with a delay function between every two consecutive optical switches; M-bit digital control delay can be realized; the delayed optical signal is converted into a microwave signal by a germanium silicon detector and passed through a traveling wave Electrode output.
  • the receiving beamforming chip includes a second wave decomposition multiplexer, a lithium niobate thin film modulator, an input traveling wave electrode, a 1 ⁇ 2 optical switch, a 2 ⁇ 2 optical switch, 2 ⁇ 1 optical switch, wavelength division multiplexer.
  • the unmodulated optical signals of N wavelengths pass through the input optical fiber.
  • a single-mode optical fiber is selected to input the unmodulated optical signal into the receiving beamforming chip of the silicon-based photonic integrated chip, and it is decoded by the second wavelength division multiplexer.
  • the optical signal of each channel is modulated by the microwave signal from the input traveling wave electrode; the modulated optical signal in each channel passes through the series optical switch and M optical waveguides with different delays.
  • An optical waveguide with delay function is set between every two consecutive optical switches; realizes M-bit numerical control delay; the delayed optical signal is multiplexed into a single-mode optical fiber through a wavelength division multiplexer for output .
  • the transmitting beamforming chip and the receiving beamforming chip are integrated chips.
  • the transmit beamforming chip also includes a first adjustable optical attenuator located between the first optical switch and the silicon germanium detector; the first adjustable optical attenuator is used to control the amplitude of the delayed optical signal .
  • the receiving beamforming chip further includes a second tunable optical attenuator, located between the second optical switch and the wavelength division multiplexer; the second tunable optical attenuator is used to control the delay of the delayed optical signal Amplitude.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated, thereby limiting
  • the “first” and “second” features may explicitly or implicitly include at least one of the features; for example, the first adjustable optical attenuator and the second adjustable optical attenuator are the same adjustable optical attenuator.
  • the invention uses “first” and “second” as the distinction.
  • the microwave signal to be transmitted is modulated onto an optical carrier of N wavelengths, and inputted to the transmitting beam forming chip of the silicon-based photonic integrated chip in the integrated microwave photonics transceiver front-end through a single-mode fiber; the first wave decomposition multiplexing
  • the optical device demultiplexes N wavelengths of light into N photonic channels.
  • Each optical switch in each photon channel is controlled by a control integrated circuit.
  • the composition of the photonic channel includes M delay waveguides and M+1 first optical channels.
  • the switch composition is specifically composed of 1 1 ⁇ 2 optical switch, M-1 2 ⁇ 2 optical switch, and 1 2 ⁇ 1 optical switch; because each optical switch can control the optical path through the subsequent through optical waveguide or Optical waveguide with a certain delay amount; in this way, after the M+1 level optical switch and the delay optical waveguide are cascaded, the delay amount of each channel can be accurately adjusted by the control integrated circuit; the delay light is preferably followed waveguide 2 M ⁇ T, ...
  • the microwave signal received by the phased array antenna is input into the low-noise amplification chipset through the microwave switch chipset, and the amplified N-channel microwave signal is input into the radio frequency input of the lithium niobate thin film modulator in the photonic integrated chip.
  • the continuous wave laser of N wavelengths that has been multiplexed in a single optical fiber at the far end is input to the second wavelength division multiplexer of the silicon-based photonic integrated chip to demultiplex the N wavelengths
  • the light enters the N lithium niobate thin film modulators respectively; the modulated N light waves enter the N photon channels respectively, and the composition of each photon channel is similar to the emission beam forming chip, including M delay waveguides and M+1 second light Switch composition, specifically composed of M-1 2 ⁇ 2 optical switches, 1 1 ⁇ 2 optical switch, and 1 2 ⁇ 1 optical switch; the delay amount of each channel can be controlled by the control integrated circuit for each optical switch.
  • control delay of the optical waveguide is preferably implemented sequentially 2 0 ⁇ T, 2 1 ⁇ T, ... 2 M ⁇ T; delayed optical signal after amplitude control variable optical attenuator, and then by wave division multiplexing The user is multiplexed into 1 output fiber for output.
  • the specific implementation of the silicon-based photonic integrated chip is as follows: the optical input and output ports of the silicon-based photonic integrated chip realize the optical coupling between the optical fibers through the coupling grating made on the chip, and the wavelength division multiplexer and the wavelength division multiplexer are adopted It is realized in the form of arrayed waveguide grating.
  • the tunable optical attenuator is realized by the light absorption effect of carrier injection.
  • Each optical switch is realized based on the thermo-optical effect of silicon material and the structure of Machzide interferometer.
  • Silicon germanium detector It is realized by doping germanium in silicon material and waveguide coupling structure; the lithium niobate thin film modulator is a Machzide type intensity modulator made based on the lithium niobate thin film process, which is fixed on the silicon chip by bonding, and the lithium niobate thin film modulator achieved between the waveguide and the silicon thin film waveguide by evanescent wave coupling optical interconnect; produced directly on silicon photonic element to achieve various other optical interconnect directly through the silicon waveguide, 2 0 ⁇ T, 2 1 ⁇ T , ... 2 M ⁇ T various casting Time is achieved by silicon waveguides of different lengths.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及微波技术和光电子技术领域,具体涉及一种用于相控阵系统的集成微波光子收发前端,包括陶瓷基板,在陶瓷基板上承载有控制集成电路、硅基光子集成芯片、第一放大芯片组、第二放大芯片组以及微波开关芯片组;所述控制集成电路通过输入的控制信号控制硅基光子集成芯片以及微波开关芯片组;所述硅基光子集成芯片的一端连接有输入/输出光纤,另一端连接有第一放大芯片组和第二放大芯片组;两个放大芯片组分别连接至所述微波开关芯片组,所述微波开关芯片组还连接有相控阵天线。本发明能够实现超宽带下的波束指向无偏斜,从而确保相控阵系统能够在更大的工作频段范围或更高的瞬时带宽下工作,同时具有较小的尺寸。

Description

一种用于相控阵系统的集成微波光子收发前端 技术领域
本发明涉及微波技术和光电子技术领域,尤其涉及一种可用于相控阵系统的基于光子集成技术的微波光子收发前端。
背景技术
基于相控阵天线的电子信息系统可用于雷达、电子战等军用领域,也可应用于5G/6G通信的民用领域;与传统的机械扫描天线相比,相控阵天线的微波辐射指向性更强,扫描速度更快,多目标(多用户)追踪能力更强。
目前在基于相控阵天线的电子信息系统中,其波束的指向及扫描通常是通过微波移相器来实现的,这也是其被称作相控阵系统的原因;但是由于其所使用的微波移相器的相移量不随频率变化,或者说相移量与频率不具备线性关系,因此当工作频段发生变化时,这一问题将导致相控阵天线所形成的波束指向发生偏斜,这种效应被称作相控阵系统的“孔径效应”,该效应严重制约了相控阵系统的工作频段范围及瞬时带宽。
而通过真延时的技术来控制每个天线单元的相移,理论上可以实现任意宽带下的波束指向无偏斜,也就是完全消除相控阵系统的孔径效应。因此,在相控阵系统中引入宽带的真延时网络,对确保相控阵系统能够在更大的工作频段范围或更高的瞬时带宽下发挥优异的性能具有重要意义。
现有的用以实现真延时的技术主要有两种,一种是基于微波技术,即利用微波波导或微带线配合微波开关来实现真延时;另一种是基于光子技术,即将微波信号转换为光信号,在光域上实现真延时后再转换回微波信号。目前,这两种技术都存在一定的问题。
第一种技术的工作带宽有限,因为不论是波导还是微带线,其优化设计都与频率相关,无法在很宽的频率范围内保持真延时的一致,以及较低的插入损 耗;因此这种采用传统的微波技术来实现真延时会限制相控阵系统的工作带宽,其应用受限。
第二种技术利用了光子技术所具有的超宽带的优势,可以在目前所应用的各个微波频段实现精准的真延时。但是,目前第二种技术主要是利用激光器、调制器、探测器、光延时器等分立器件来实现,完成真延时的功能单元体积较大;对于天线单元数较多的相控阵系统,需要很多这样的功能单元来构成复杂的延时网络,这就导致整个延时网络的体积变得十分庞大,在很多场合下,就完全无法满足相控阵系统的应用需求。
发明内容
因此,为了解决上述问题,本发明采用光子集成的手段,在硅上将电光转换单元、光子真延时单元、幅度调整单元及光电转换单元等各个单元集成在硅基芯片;既利用了光子技术的超宽带优势,解决了相控阵系统的“孔径效应”问题,又利用了光子集成技术的高集成度解决了大规模相控阵系统中空间尺寸受限的问题。
本发明的技术方案包括:
一种用于相控阵系统的集成微波光子收发前端,包括陶瓷基板,在陶瓷基板上承载有控制集成电路、硅基光子集成芯片、功率放大芯片组、低噪声放大芯片组以及微波开关芯片组;所述控制集成电路通过输入的控制信号控制硅基光子集成芯片以及微波开关芯片组;所述硅基光子集成芯片的一端连接有输入/输出光纤,另一端连接有功率放大芯片组和低噪声放大芯片组;两个放大芯片组分别连接至所述微波开关芯片组,所述微波开关芯片组还连接有相控阵天线。
进一步的,所述控制集成电路用于将外部输入的控制信号转换为控制电平,控制微波开关芯片组中各个微波开关的通断;以及控制硅基光子集成芯片的各光开关的切换状态。
进一步的,所述硅基光子集成芯片包括发射波束成形芯片和接收波束成形芯片。
进一步的,所述发射波束成形芯片包括第一波分解复用器、多个第一光开关以及锗硅探测器;第一波分解复用器接收输入光纤的光信号,复用到多光子通道中,每个光子通道均由串联的第一光开关和多段不同延时量的光波导组成,将延时后的光信号通过锗硅探测器转换为微波信号,经行波电极输出至功率放大芯片组。
进一步的,所述第一光开关与锗硅探测器之间还连接有第一可调光衰减器。
进一步的,所述接收波束成形芯片包括第二波分解复用器、多个第二光开关、铌酸锂薄膜调制器、第二波分解复用器以及波分复用器;光信号通过输入光纤进入第二波分解复用器复用到多个光子通道;所述铌酸锂薄膜调制器接收经低噪声放大芯片组放大后的微波信号,对每个光子通道的光信号进行调制;每个光子通道被调制的光信号经过串联的多个第二光开关和多个不同延时量的光波导组成,延时后的光信号经波分复用器复用到输出光纤中,并输出。
进一步的,所述第二光开关与波分复用器之间还连接有第二可调光衰减器。
进一步的,所述微波开关芯片组包括多个微波开关,用于连通功率放大芯片组与相控阵天线之间的微波信号,或者连通相控阵天线与低噪声放大芯片组之间的微波信号。
本发明的有益效果:
本发明的集成微波光子收发前端中取代了原本的移相器,从根源上消除了相控阵系统的孔径效应,可以实现超宽带下的波束指向无偏斜,从而确保相控阵系统能够在更大的工作频段范围或更高的瞬时带宽下工作,采用基于光子集成芯片的真延时网络使系统具备更大的工作带宽。本发明提出的集成微波光子收发前端,基于硅基光子集成工艺和铌酸锂薄膜工艺,在硅材料上将调制器单元、光子真延时单元、幅度调整单元及探测器单元等各个单元进行单片集成;从而将基于光子真延时网络的相控阵系统的收发前端的尺寸大幅减小,尤其是在较大规模、通道数较多的相控阵系统中,本发明所提出的微波光子收发前端架构将具备更加明显的优势。
附图说明
图1为本发明的一种用于相控阵系统的集成微波光子收发前端结构图;
图2为本发明的一种优选的用于相控阵系统的集成微波光子收发前端结构图;
图3为本发明中发射波束成形芯片的结构图;
图4为本发明中接收波束成形芯片的结构图;
图5为本发明中硅基光子集成芯片的结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图1所示,本发明提出的一种用于相控阵系统的集成微波光子收发前端,包括陶瓷基板,在陶瓷基板上承载有控制集成电路、硅基光子集成芯片、第一放大芯片组、第二放大芯片组以及微波开关芯片组;所述控制集成电路通过输入的控制信号控制硅基光子集成芯片以及微波开关芯片组;所述硅基光子集成芯片的一端连接有输入/输出光纤,另一端连接有第一放大芯片组和第二放大芯片组;两个放大芯片组分别连接至所述微波开关芯片组,所述微波开关芯片组还连接有相控阵天线。
其中,作为一种优选实施例,在陶瓷基板上通过粘接或者烧结的方式承载控制集成电路、硅基光子集成芯片、第一放大芯片组、第二放大芯片组以及微波开关芯片组。
作为一个可实现方式,在硅基光子集成芯片的一端连接有输入/输出光纤,另一端连接有第一放大芯片组和第二放大芯片组;在微波开关的一端连接有相控阵天线,另一端连接第一放大组芯片和第二放大组芯片;其中,硅基光子集成芯片和微波开关芯片组都通过控制集成电路控制,而控制集成电路是以集成电路的形式将外部输入的控制信号转换为控制电平,控制微波开关芯片组中各 个微波开关的通断;以及控制硅基光子集成芯片的各光开关的切换状态。
其中,输入/输出光纤作为收发前端的光输入输出接口,相控阵天线与微波开关芯片组之间还连接有输出射频连接器,输出射频连接器与微波开关芯片组上的微波电极焊接,再连接外部的相控阵天线;该输出射频连接器作为微波输入输出接口,在控制集成电路上设置有控制信号输出接口,以上接口将作为本发明收发前端与外部信号/器件/设备连接的端口。
优选的,所述输入光纤与输出光纤的比例以2:1的关系设定,例如输入光纤有两根,则输出光纤则有一根。
在一个实施例中,所述第一放大芯片组用于放大硅基光子集成芯片输出的微波信号的功率;所述第二放大芯片组用于放大微波开关芯片组输出的微波信号的低噪声。
如图2所示,在一个优选实施例中,所述第一放大芯片组为功率放大芯片组,其具备多通道微波信号的高饱和输出功率的放大功能,可以实现硅基光子集成芯片中发射波束成形部分所输出的N个通道微波信号的大功率放大。
如图2所示,在一个优选实施例中,所述第二放大芯片组为低噪声放大芯片组,其具备多通道微波信号的低噪声放大功能,可以实现来自微波开关芯片组的N个通道微波信号的低噪声放大。
当然,第一放大芯片组和第二放大芯片组可以不限于实现上述功能,其作为放大芯片组所实现的功能是放大微波信号。
在一个优选实施例中,所述微波开关芯片组包括多个2×1微波开关,可以实现由功率放大芯片组与天线之间N路微波信号的连通,或者相控阵天线与低噪声放大芯片组之间N路微波信号的连通。
在一个实施例中,所述硅基光子集成芯片包括发射波束成形芯片和接收波束成形芯片,两个波束成型芯片为独立芯片。
如图3所示,在一个实施例中,发射波束成形芯片包括第一波分解复用器、1×2光开关、2×2光开关、2×1光开关、锗硅探测器、输出行波电极。加载有 待发射微波信号的光波(该光波包含有N个波长,每个波长的光波上均加载有待发射的微波信号)通过输入光纤,本实施例选择单模光纤将光信号(光波/光波信号)输入硅基光子集成芯片的发射波束成形芯片,经第一波分解复用器解复用到N个通道中,每个通道均由串联的多个光开关和M段不同延时量的光波导组成,每两个连续的光开关之间设置有一个起延时作用的光波导;可实现M比特的数控延时;延时后的光信号通过锗硅探测器转换为微波信号,经行波电极输出。
如图4所示,在一个实施例中,接收波束成形芯片包括第二波分解复用器、铌酸锂薄膜调制器、输入行波电极、1×2光开关、2×2光开关、2×1光开关、波分复用器。N个波长的未被调制的光信号通过输入光纤,本实施例选择单模光纤将未被调制的光信号输入硅基光子集成芯片的接收波束成形芯片中,经第二波分解复用器解复用到N个通道,并且每个通道的光信号由来自输入行波电极的微波信号调制;每个通道中被调制的光信号经过串联的光开关和M段不同延时量的光波导,每两个连续的光开关之间设置有一个起延时作用的光波导;实现M比特的数控延时;延时后的光信号经波分复用器复用到一根单模光纤中输出。
如图5所示,在一个优选实施例中,所述发射波束成形芯片和所述接收波束成形芯片为集成的芯片。所述发射波束成形芯片还包括第一可调光衰减器,位于所述第一光开关与锗硅探测器之间;所述第一可调光衰减器用于控制延时后的光信号的幅度。所述接收波束成形芯片还包括第二可调光衰减器,位于所述第二光开关与波分复用器之间;所述第二可调光衰减器用于控制延时后的光信号的幅度。
可以理解的是,此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征;例如,第一可调光衰减器与第二可调光衰减器为相同的可调光衰减器,本发明为了便 于区分其所存在的位置不同,因此以“第一”、“第二”作为区分。
下面将介绍本发明用于相控阵系统的集成微波光子收发前端的工作原理,在发射时,能够产生相控阵天线发射波束成形所需的微波信号;在接收时,将相控阵天线所接收的微波信号形成接收波束;具体的工作原理原理如下:
在发射时,待发射的微波信号被调制到N个波长的光载波上,通过单模光纤输入到集成微波光子收发前端中硅基光子集成芯片的发射波束形成芯片中;第一波分解复用器将N个波长的光解复用到N个光子通道中,每个光子通道内的各个光开关均由控制集成电路来控制,光子通道的组成包含M段延时波导和M+1个第一光开关构成,具体有1个1×2光开关、M-1个2×2光开关和1个2×1光开关构成;因为每一个光开关都可以控制光路经过其后的直通光波导或者有一定延时量的光波导;这样M+1级光开关和延时光波导经过级联后,每个通道的延时量均可通过控制集成电路来进行精确的调控;优选实现的延时光波导依次为2 MΔT、…2 1ΔT、2 0ΔT;延时后的光信号经过可调光衰减器控制幅度后,由锗硅探测器转换为微波信号输入到功率放大芯片组;N个通道的微波信号被放大后,通过微波开关芯片组输出到相控阵天线发射。
在接收时,相控阵天线接收到的微波信号通过微波开关芯片组输入低噪声放大芯片组中,放大后的N路微波信号输入光子集成芯片中的铌酸锂薄膜调制器射频输入,用以调制经过其中的光波;远端已经复用在单根光纤中的N个波长的连续波激光通输入到硅基光子集成芯片的第二波分解复用器中,解复用出的N个波长光分别进入N个铌酸锂薄膜调制器;被调制的N路光波分别进入N个光子通道中,每个光子通道组成与发射波束形成芯片类似,包含M段延时波导和M+1个第二光开关构成,具体有M-1个2×2光开关、1个1×2光开关和1个2×1光开关构成;每个通道的延时量均可通过控制集成电路对各个光开关的控制来进行精确的调控,优选实现的延时光波导依次为2 0ΔT、2 1ΔT、…2 MΔT;延时后的光信号经过可调光衰减器控制幅度后,再通过波分复用器复用到1根输出光纤中输出。
另外,硅基光子集成芯片的具体实施如下:硅基光子集成芯片的光输入输出端口通过在芯片上制作的耦合光栅实现光纤之间的光耦合,波分复用器和波分解复用器采用阵列波导光栅的形式来实现,可调光衰减器通过载流子注入的光吸收效应来实现,各个光开关是基于硅材料的热光效应及马赫泽德干涉仪结构来实现,锗硅探测器是在硅材料中掺杂锗及波导耦合结构来实现;铌酸锂薄膜调制器是基于铌酸锂薄膜工艺制作的马赫泽德型强度调制器,通过键合固定在硅片上,铌酸锂薄膜波导与硅波导之间通过倏逝波耦合实现光互联;硅片上直接制作出其他各个光子单元通过硅波导直接实现光互联,2 0ΔT、2 1ΔT、…2 MΔT的各种延时通过不同长度的硅波导来实现。
以上所举实施例,对本发明的目的、技术方案和优点进行了进一步的详细说明,所应理解的是,以上所举实施例仅为本发明的优选实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种用于相控阵系统的集成微波光子收发前端,其特征在于,包括陶瓷基板,在陶瓷基板上承载有控制集成电路、硅基光子集成芯片、第一放大芯片组、第二放大芯片组以及微波开关芯片组;所述控制集成电路通过输入的控制信号控制硅基光子集成芯片以及微波开关芯片组;所述硅基光子集成芯片的一端连接有输入/输出光纤,另一端连接有第一放大芯片组和第二放大芯片组;两个放大芯片组分别连接至所述微波开关芯片组,所述微波开关芯片组还连接有相控阵天线。
  2. 根据权利要求1所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述控制集成电路用于将外部输入的控制信号转换为控制电平,控制微波开关芯片组中各个微波开关的通断;以及控制硅基光子集成芯片的各光开关的切换状态。
  3. 根据权利要求1所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述硅基光子集成芯片包括发射波束成形芯片和接收波束成形芯片。
  4. 根据权利要求3所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述发射波束成形芯片包括第一波分解复用器、多个第一光开关以及锗硅探测器;第一波分解复用器接收输入光纤的光信号,复用到多光子通道中,每个光子通道均由多个串联的第一光开关和多段不同延时量的光波导组成,将延时后的光信号通过锗硅探测器转换为微波信号,经行波电极输出至第一放大芯片组。
  5. 根据权利要求4所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述第一光开关与锗硅探测器之间还连接有第一可调光衰减器。
  6. 根据权利要求3所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述接收波束成形芯片包括第二波分解复用器、多个第二光开关、铌酸锂薄膜调制器、第二波分解复用器以及波分复用器;光信号通过输入光纤 进入第二波分解复用器复用到多个光子通道;所述铌酸锂薄膜调制器接收经第二放大芯片组放大后的微波信号,对每个光子通道的光信号进行调制;每个光子通道中被调制的光信号经过串联的第二光开关和多个不同延时量的光波导,延时后的光信号经所述波分复用器复用到输出光纤中,并输出。
  7. 根据权利要求6所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,其特征在于,所述第二光开关与波分复用器之间还连接有第二可调光衰减器。
  8. 根据权利要求1所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,其特征在于,第一放大芯片组用于放大硅基光子集成芯片输出的微波信号的功率;第二放大芯片组用于放大微波开关芯片组输出的微波信号的低噪声。
  9. 根据权利要求1所述的一种用于相控阵系统的集成微波光子收发前端,其特征在于,所述微波开关芯片组包括多个微波开关,用于连通第一放大芯片组与相控阵天线之间的微波信号,或者连通相控阵天线与第二放大芯片组之间的微波信号。
PCT/CN2020/086082 2019-12-25 2020-04-22 一种用于相控阵系统的集成微波光子收发前端 WO2021128666A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/756,458 US11936433B2 (en) 2019-12-25 2020-04-22 Integrated microwave photon transceiving front-end for phased array system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911352920.9 2019-12-25
CN201911352920.9A CN111162844B (zh) 2019-12-25 2019-12-25 一种用于相控阵系统的集成微波光子收发前端

Publications (1)

Publication Number Publication Date
WO2021128666A1 true WO2021128666A1 (zh) 2021-07-01

Family

ID=70558015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086082 WO2021128666A1 (zh) 2019-12-25 2020-04-22 一种用于相控阵系统的集成微波光子收发前端

Country Status (3)

Country Link
US (1) US11936433B2 (zh)
CN (1) CN111162844B (zh)
WO (1) WO2021128666A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922882A (zh) * 2021-09-30 2022-01-11 中国船舶重工集团公司第七二三研究所 一种基于微波光子的高集成收发模块及其工作方法
CN114337859A (zh) * 2022-01-05 2022-04-12 中国电子科技集团公司第四十四研究所 一种增益可调的集成探测放大模块
CN114614904A (zh) * 2022-03-11 2022-06-10 清华大学 Pawg与obfn功能集成的信号产生装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917482B (zh) * 2020-06-30 2023-03-28 中国电子科技集团公司第五十五研究所 薄膜铌酸锂基异构集成微波光子收发芯片
CN112485777B (zh) * 2020-11-19 2024-05-10 浙江大学 基于可插拔式收发组件的光控微波相控阵雷达系统及反馈控制方法
CN113054397B (zh) * 2021-03-03 2022-09-23 中国电子科技集团公司第三十八研究所 宽带阵列微波射频前端及雷达
CN113067635B (zh) * 2021-03-22 2022-06-24 中国电子科技集团公司第三十八研究所 基于集成光延迟芯片的收发一体相控阵波束合成装置
CN113382322B (zh) * 2021-06-07 2023-04-25 东南大学 一种基于光开关的收发可切换波束形成芯片
CN114172017B (zh) * 2021-12-06 2024-01-30 中国电子科技集团公司第十三研究所 微波光子集成直调激光器芯片电路及激光器
CN114706175B (zh) * 2022-04-08 2023-11-14 江苏铌奥光电科技有限公司 一种高速率光模块结构及其封装方法
CN115473585A (zh) * 2022-04-20 2022-12-13 大连理工大学 多功能可配置光电转换阵列芯片
CN114567272B (zh) * 2022-04-28 2022-08-16 成都嘉纳海威科技有限责任公司 一种超宽带延时放大收发多功能芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941235A (zh) * 2014-02-26 2014-07-23 上海交通大学 全光控相控阵雷达发射机
CN104092485A (zh) * 2014-05-30 2014-10-08 中国电子科技集团公司第十研究所 分布式动中通轻质赋形天线
CN106230516A (zh) * 2016-08-31 2016-12-14 上海交通大学 基于微波光子的雷达通信对抗一体化系统
WO2018128662A2 (en) * 2016-10-14 2018-07-12 Analog Photonics LLC Large scale optical phased array

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0706307D0 (en) * 2007-03-30 2007-05-09 Ugcs University Of Glamorgan C Apparatus and method relating to time-delay systems for phased-array antennas
GB0711382D0 (en) * 2007-06-13 2007-07-25 Univ Edinburgh Improvements in and relating to reconfigurable antenna and switching
CN101141023B (zh) * 2007-09-07 2011-12-07 中国电子科技集团公司第五十五研究所 微机电层叠式毫米波天线
CN103529521A (zh) * 2013-10-30 2014-01-22 中国电子科技集团公司第四十四研究所 基于串联光开关的光延迟结构及数控集成光子延迟装置
CN104316908A (zh) * 2014-10-08 2015-01-28 上海航天电子通讯设备研究所 一种光控相控阵雷达前端的发射与接收方法及装置
WO2017111920A1 (en) * 2015-12-21 2017-06-29 Intel Corporation Microelectronic devices designed with high frequency communication modules having steerable beamforming capability
CN106027134B (zh) * 2016-05-20 2019-09-20 扬州大学 一种光子微波相控阵收发系统及其方法
US10928588B2 (en) * 2017-10-13 2021-02-23 Skorpios Technologies, Inc. Transceiver module for optical communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941235A (zh) * 2014-02-26 2014-07-23 上海交通大学 全光控相控阵雷达发射机
CN104092485A (zh) * 2014-05-30 2014-10-08 中国电子科技集团公司第十研究所 分布式动中通轻质赋形天线
CN106230516A (zh) * 2016-08-31 2016-12-14 上海交通大学 基于微波光子的雷达通信对抗一体化系统
WO2018128662A2 (en) * 2016-10-14 2018-07-12 Analog Photonics LLC Large scale optical phased array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922882A (zh) * 2021-09-30 2022-01-11 中国船舶重工集团公司第七二三研究所 一种基于微波光子的高集成收发模块及其工作方法
CN113922882B (zh) * 2021-09-30 2023-08-18 中国船舶重工集团公司第七二三研究所 一种基于微波光子的高集成收发模块及其工作方法
CN114337859A (zh) * 2022-01-05 2022-04-12 中国电子科技集团公司第四十四研究所 一种增益可调的集成探测放大模块
CN114614904A (zh) * 2022-03-11 2022-06-10 清华大学 Pawg与obfn功能集成的信号产生装置及方法

Also Published As

Publication number Publication date
CN111162844A (zh) 2020-05-15
CN111162844B (zh) 2023-04-18
US20230008212A1 (en) 2023-01-12
US11936433B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2021128666A1 (zh) 一种用于相控阵系统的集成微波光子收发前端
US11374654B2 (en) Extended transit time array photodetector combiner (ETT-APC)
CN113067635B (zh) 基于集成光延迟芯片的收发一体相控阵波束合成装置
EP3064956B1 (en) Fully optically controlled phased array radar transmitter
CN108448252B (zh) 一种大带宽、大角度、连续扫描光控相控阵天线接收装置及方法
WO2018153321A1 (zh) 一种波束赋形bf权值赋值的方法和装置
CN108761439A (zh) 基于波分复用的集成多波束光相控阵延迟网络
CN110365413A (zh) 一种基于相干光频梳的光载射频波束赋形系统
US20210006333A1 (en) Silicon photonics phased array systems
CN109104245B (zh) 多通道无杂散宽频带非合作信号稳相传输系统
CN103414519A (zh) 光控微波波束形成器
KR102611737B1 (ko) 위상 배열 안테나를 이용한 광학식 빔포밍 장치 및 이의 동작 방법
US11589140B2 (en) Optical beamforming device using phased array antenna and operating method thereof
CN112383363B (zh) 一种基于混频技术的大带宽相控阵接收装置
CN116865900A (zh) 一种全光同时多频段多波束相控阵发射机及其方法
CN113382322A (zh) 一种基于光开关的收发可切换波束形成芯片
CN117554972A (zh) 多波束微波光子相控阵雷达探测方法和系统
CN114337829A (zh) 一种密集波分复用的超长距离光模块
CN114785446B (zh) 基于阵列波导光栅周期化输出特性的波束形成系统
Banchi Multi-channel Microwave-Photonic link for Antenna remoting in Multifunctional Phased-Array Radar
CN117560081A (zh) 一种片上集成的无缆化光控相控阵列前端系统
RU2760107C1 (ru) Быстродействующее радиофотонное устройство сканирования антенных решеток
KR101304069B1 (ko) 진시간지연을 이용한 위상배열 안테나 시스템
Wu et al. Research on technology of microwave-photonic-based multifunctional radar
KR101999589B1 (ko) 고주파 대역용 광학빔 형성시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908398

Country of ref document: EP

Kind code of ref document: A1