WO2021128299A1 - 一种确定参考信号的方法及装置 - Google Patents

一种确定参考信号的方法及装置 Download PDF

Info

Publication number
WO2021128299A1
WO2021128299A1 PCT/CN2019/129323 CN2019129323W WO2021128299A1 WO 2021128299 A1 WO2021128299 A1 WO 2021128299A1 CN 2019129323 W CN2019129323 W CN 2019129323W WO 2021128299 A1 WO2021128299 A1 WO 2021128299A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
sequence
signal sequence
threshold
ptrs
Prior art date
Application number
PCT/CN2019/129323
Other languages
English (en)
French (fr)
Inventor
刘凤威
徐明慧
黄博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/129323 priority Critical patent/WO2021128299A1/zh
Priority to CA3163202A priority patent/CA3163202A1/en
Priority to EP19957448.4A priority patent/EP4068892A4/en
Priority to CN201980103263.6A priority patent/CN114902774A/zh
Publication of WO2021128299A1 publication Critical patent/WO2021128299A1/zh
Priority to US17/849,336 priority patent/US20220337461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technologies, and in particular, to a method and device for determining a reference signal.
  • the working frequency band of the communication system is above 6GHz , such as 28GHz, 39GHz, 60GHz, 73GHz and other frequency bands, so the new generation of wireless communication network has the remarkable characteristics of high-frequency communication system, so that it is easy to achieve higher throughput.
  • the phase noise level deteriorates at a level of 20 ⁇ log10 (f1/f2), where both f1 and f2 It is the frequency point of the carrier, that is, the phase noise power spectral density of the f1 frequency band is 20 ⁇ log10 (f1/f2) dB higher than the phase noise power spectral density of the f2 frequency band.
  • the phase noise level of 28G frequency band is 23dB higher than that of 2G frequency band. The higher the phase noise level, the greater the phase error caused by the common phase error (CPE) to the transmitted signal.
  • CPE common phase error
  • both uplink and downlink use demodulation reference signal (de-modulation reference signal, DMRS) and phase compensation reference signal (phase compensation reference signal, PCRS) to jointly complete channel estimation, phase noise estimation, and data demodulation.
  • DMRS demodulation reference signal
  • PCRS phase compensation reference signal
  • the PCRS may also be referred to as a phase tracking reference signal (phase tracking reference signal, PTRS).
  • PTRS phase tracking reference signal
  • the following are collectively referred to as PTRS.
  • the existing ICI estimation method mainly constructs a matrix through the received signal of the resource element (Resource Element, RE) where the PTRS is located, or combines the received signal of the RE near the RE where the PTRS is located, and constructs a matrix through matrix inversion and reference signal transmission. Obtain ICI estimates.
  • the PTRS used in the existing ICI estimation is usually the symbols mapped in the frequency domain quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation. If the phase noise is bad or the channel is not flat at this time, it is easy to cause subcarriers. The estimated interference between the two is inaccurate.
  • the present application provides a method and device for determining a reference signal to solve the problem of inaccurate phase noise estimation in the prior art.
  • the first device determines the first reference signal sequence from the reference signal sequence set; the first reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal; wherein the influence of phase noise on the received signal includes At least one of the following: inter-subcarrier interference, common phase error, phase noise; the reference signal sequence set includes at least: the first type of reference signal sequence; the time domain and frequency domain amplitude variance of the first type of reference signal sequence meets the preset Threshold; the first device maps the first reference signal sequence to the first symbol sequence, and sends the first reference signal corresponding to the first reference signal sequence to the second device.
  • the first device determines the first reference signal sequence by determining the reference signal sequence set, where the first type of reference signal sequence in the reference signal sequence set may have a time-domain amplitude and a frequency-domain amplitude whose variance is less than a given preset
  • the threshold value enables the determined first reference signal sequence to have a relatively stable amplitude response in the frequency domain and the time domain, which solves the problem of the PTRS sequence used for orthogonal frequency division multiplexing (OFDM) in the prior art
  • OFDM orthogonal frequency division multiplexing
  • the first device determines the first reference signal sequence from the reference signal sequence set according to the first parameter; the first parameter includes at least one of the following: the hardware capabilities of the first device and/or the second device; The transmission parameters of the first device and the second device, and the phase tracking reference signal PTRS parameter of the second device.
  • the first device can determine the transmission scenario in which the first device and the second device are located according to the first parameter, and can flexibly determine the appropriate reference signal sequence in the scenario according to the first parameter, thereby effectively improving The accuracy of phase noise estimation.
  • the reference signal sequence set includes: a Pi/2 binary phase shift keying (BPSK) reference signal sequence based on the Gly Golay complementary sequence; if the first device determines that the first parameter satisfies Under the following conditions, it is determined that the first reference signal sequence is the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence: the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c; or, the PTRS block is used for The block size corresponding to the effective sequence carrying the first reference signal sequence is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c; where a, b, and c are positive integers.
  • BPSK binary phase shift keying
  • the first device can determine the PTRS pattern according to the first parameter when the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the PTRS block size corresponding to the valid sequence is 2 ⁇ a ⁇
  • the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence can be selected as the first reference signal sequence, so that the selected PTRS can be stable in both the frequency domain and the time domain. Amplitude response effectively improves the accuracy of phase noise estimation.
  • the reference signal sequence set includes: ZC sequence; if the first device determines that the first parameter satisfies the following conditions, it determines that the first reference signal sequence is the ZC column: the PTRS block size is a prime number; or, in the PTRS block The block size of the effective sequence used to carry the first reference signal sequence is a prime number.
  • the first device can select the ZC sequence as the first reference signal sequence when the PTRS block size determined by the first parameter is a prime number or the PTRS block size corresponding to the effective sequence is a prime number. , Which in turn enables the selected PTRS to satisfy a stable amplitude response in both the frequency domain and the time domain, effectively improving the accuracy of phase noise estimation.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of the P2 reference sequences whose variance meets the third threshold; where P1 and P2 are positive integers; if the first device determines that the first parameter meets the following conditions, the first reference signal sequence is determined to be the frequency domain QPSK time domain amplitude Stable sequence and/or time-domain QPSK frequency-domain amplitude stabilization sequence: the PTRS block size M included in the pattern of the first reference signal is greater than or equal to the first threshold; or, the
  • the first device determines the PTRS pattern according to the first parameter, and when the PTRS block size is greater than the first threshold, it can select a reference signal sequence with stable amplitude in the time and frequency domain as the first reference signal sequence, thereby making the selected PTRS can meet the requirements of the reference signal sequence for phase noise estimation when the PTRS block size is large, and effectively improve the accuracy of phase noise estimation.
  • the first device determines the power boost value of the second device according to the PTRS block size in the pattern of the first reference signal, or the first device determines the power boost value of the second device to be a fixed value.
  • the first device can improve the accuracy of phase noise estimation through proper power boost, based on the characteristics of the current transmission environment and under the condition that the first device and the second device have the ability to resolve the first reference signal.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence; the first device determines from the second type of reference signal sequence according to the first parameter The second reference signal sequence; where the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the influence of phase noise on the received signal includes at least one of the following: inter-subcarrier interference, common phase error, phase Noise; the first device maps the second reference signal sequence to the second symbol sequence, and sends the second reference signal corresponding to the second reference signal sequence to the second device; the PTRS block size included in the pattern of the second reference signal sequence is 1
  • the first parameter also includes at least one of the following: a pattern of the second reference signal, an MCS threshold used to determine the pattern of the second reference signal, and a bandwidth threshold used to determine the pattern of the second reference signal.
  • the first device determines the PTRS pattern according to the first parameter.
  • the PTRS block size is equal to 1
  • the discrete reference signal sequence can be selected as the first reference signal sequence, so that the selected PTRS can meet the poor channel conditions.
  • the phase noise estimation requires the reference signal sequence to effectively improve the accuracy of the phase noise estimation.
  • the power boost value of the second reference signal sequence is determined by the MCS of the second device; or, the power boost value of the second device is a fixed value.
  • the power boost value of the second device is 0dB; if the first device determines that the MCS of the second device is less than the first MCS threshold At this time, the power boost value of the second device is determined by the number of DMRS ports associated with the PTRS port of the second device.
  • the power boost value of the second device is 0dB; if the first device determines that the MCS of the second device is less than or equal to the first MCS threshold At this time, the power boost value of the second device is determined by the number of DMRS ports associated with the PTRS port.
  • the first device can increase the power through a suitable power boost based on the characteristics of the current transmission environment, for example, poor channel conditions, and under the condition that the first device and the second device's ability to resolve the second reference signal are satisfied. , Improve the accuracy of phase noise estimation.
  • the first device determines the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, the first device determines the first reference signal sequence according to the association relationship between the first parameter and the second reference signal sequence The second reference signal sequence.
  • the complexity of determining the first reference signal sequence or the second reference signal sequence by the first device by the first parameter can be reduced.
  • the first device sends indication information of the first reference signal sequence to the second device; the indication information is used to indicate the first reference signal sequence; or the first device sends the second reference signal sequence to the second device The indication information; the indication information is used to indicate the second reference signal sequence.
  • the first device and the second device determine the complexity and consistency of the first reference signal sequence or the second reference signal sequence through the first parameter.
  • an embodiment of the present application provides a communication device (hereinafter referred to as the device) having a function of implementing the steps performed by the first device in the method example of the first aspect.
  • the apparatus may be located in a first device, and the first device may be a network device or a terminal device.
  • the above-mentioned functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit. These units can execute the corresponding steps or functions performed by the first device in the method example of the first aspect described above, including the transceiving unit and the processing unit.
  • the processing unit is configured to determine the first reference signal sequence from the reference signal sequence set; the first reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the influence of phase noise on the received signal includes at least the following One item: Inter-subcarrier interference, common phase error, phase noise; the reference signal sequence set includes at least: the first type of reference signal sequence; the time domain or frequency domain amplitude variance of the first type of reference signal sequence meets the preset threshold; the transceiver unit , Used to map the first reference signal sequence to the first symbol sequence, and send the first reference signal corresponding to the first reference signal sequence to the second device.
  • the processing unit is specifically configured to determine the first reference signal sequence from the reference signal sequence set according to the first parameter; the first parameter includes at least one of the following: transmission parameters of the first device and the second device, The pattern of the first reference signal.
  • the reference signal sequence set includes: a BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence; the processing unit is specifically configured to: determine the first reference signal if it is determined that the first parameter meets the following conditions
  • the sequence is the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence: the size of the PTRS resource block is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the effective sequence used to carry the first reference signal sequence in the PTRS block
  • the corresponding block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, where a, b, and c are positive integers.
  • the reference signal sequence set includes: a ZC sequence; a processing unit, specifically configured to determine that the first reference signal sequence is a ZC column if it is determined that the first parameter satisfies the following conditions: the PTRS block size is a prime number; or, The block size of the effective sequence used to carry the first reference signal sequence in the PTRS block is a prime number.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of P2 reference sequences whose variance meets the third threshold; P1 and P2 are positive integers;
  • the processing unit is specifically configured to determine that the first reference signal sequence is the frequency domain QPSK time domain amplitude stable sequence and/or the time domain QPSK frequency domain amplitude stable sequence: the pattern of the first reference signal
  • the included PTRS block size M is greater than or equal to the first threshold; or the block size M corresponding to the valid sequence used to carry the first reference signal sequence in the PTRS blocks included in the pattern of the first reference signal is greater than or equal to the first threshold;
  • M And L are positive integers.
  • the processing unit is further configured to determine the power boost value of the second device according to the PTRS block size in the pattern of the first reference signal if it is determined that the first reference signal sequence is a blocky non-zero power sequence; Alternatively, the processing unit is further configured to determine the power boost value of the first reference signal sequence to a fixed value.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence; the processing unit is also used to obtain the second type of reference signal sequence according to the first parameter The second reference signal sequence is determined; wherein the PTRS block size included in the pattern of the second reference signal sequence is 1; the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the phase noise on the received signal The impact of including sub-carrier interference and/or common phase error and or phase noise;
  • the transceiver unit is further configured to map the second reference signal sequence to the second symbol sequence, and send a second reference signal corresponding to the second reference signal sequence to the second device;
  • the first parameter further includes at least one of the following: a second reference The pattern of the signal, the MCS threshold used to determine the pattern of the second reference signal, and the bandwidth threshold used to determine the pattern of the second reference signal.
  • the processing unit is also used to determine the power boost value of the second device according to the MCS of the second device.
  • the processing unit is specifically configured to: if it is determined that the MCS of the second device is equal to or greater than the first MCS threshold, determine that the power boost value of the second device is 0dB; if it is determined that the MCS of the second device is less than the first MCS threshold When an MCS threshold is set, the power boost value of the second device is determined according to the number of DMRS ports associated with the PTRS port of the second device.
  • the power boost value of the second device is determined to be 0dB; if it is determined that the MCS of the second device is less than or equal to the first MCS threshold, then The number of DMRS ports associated with the PTRS port of the second device determines the power boost value of the second device.
  • the processing unit is further configured to: determine the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, according to the association relationship between the first parameter and the second reference signal sequence, Determine the second reference signal sequence.
  • the transceiver unit is further configured to: send indication information of the first reference signal sequence to the second device; the indication information is used to indicate the first reference signal sequence; or, send the second reference signal sequence to the second device The indication information; the indication information is used to indicate the second reference signal sequence.
  • an embodiment of the present application provides a method for determining a reference signal.
  • a second device determines a first reference signal sequence from a reference signal sequence set; the reference signal sequence set includes at least: the first type of reference signal sequence; the first type The time-domain and frequency-domain amplitude variances of the reference signal sequence meet the preset threshold; the second device receives the first reference signal from the first device, and decodes the first reference signal according to the first symbol sequence mapped by the first reference signal sequence Mapping to obtain the received signal of the first reference signal sequence; the received signal of the first reference signal sequence and the first reference signal sequence are used for the second device to estimate the influence of phase noise on the received signal.
  • the influence of phase noise on the received signal includes At least one of the following: inter-subcarrier interference, common phase error, phase noise.
  • the second device can determine the first reference signal sequence by determining the reference signal sequence set, where the reference signal sequence of the first type in the reference signal sequence set may have a time domain amplitude and a frequency domain amplitude whose variance is less than a preset value.
  • the threshold value makes the determined first reference signal sequence have a relatively stable amplitude response in the frequency domain and the time domain, and solves the random fluctuation of the time domain amplitude characteristics of the PTRS sequence used for OFDM in the prior art after being transformed into the frequency domain.
  • the reference signal sequence cannot resist the serious channel frequency selectivity problem, which improves the phase noise estimation accuracy.
  • the second device determines the first reference signal sequence from the reference signal sequence set according to the first parameter; wherein, the first parameter includes at least one of the following:
  • the hardware capabilities of the first device and/or the second device are The hardware capabilities of the first device and/or the second device;
  • the phase tracking reference signal PTRS parameter of the second device is the phase tracking reference signal PTRS parameter of the second device.
  • the second device can determine the suitable reference signal sequence in the scene according to the transmission scene of the first device and the second device determined by the first parameter, and further, the phase noise estimation can be guaranteed in different scenes. Accuracy.
  • the reference signal sequence set includes: a BPSK reference signal sequence based on the Pi/2 of the Golay complementary sequence; if the second device determines that the first parameter meets the following conditions, it determines that the first reference signal sequence is based on the Golay Complementary sequence Pi/2 BPSK reference signal sequence: the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the block size corresponding to the effective sequence used to carry the first reference signal sequence in the PTRS block is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, a, b, and c are positive integers.
  • the second device can determine the PTRS pattern according to the first parameter when the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the PTRS block size corresponding to the valid sequence is 2 ⁇ a ⁇
  • the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence can be determined as the first reference signal sequence, so that the determined PTRS can satisfy the stable amplitude in both the frequency domain and the time domain. Response effectively guarantees the accuracy of phase noise estimation.
  • the reference signal sequence set includes: ZC sequence; if the second device determines that the first parameter satisfies the following conditions, the first reference signal sequence is determined to be the ZC column: the PTRS block size is a prime number; or, in the PTRS block The block size of the effective sequence used to carry the first reference signal sequence is a prime number.
  • the second device can determine the PTRS pattern according to the first parameter, and can determine the ZC sequence as the first reference signal sequence when the PTRS block size is a prime number or the PTRS block size corresponding to the effective sequence is a prime number.
  • the determined PTRS can satisfy a stable amplitude response in both the frequency domain and the time domain, which effectively guarantees the accuracy of phase noise estimation.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of the P2 reference sequences whose variance meets the third threshold; P1 and P2 are positive integers; if the second device determines that the first parameter meets the following conditions, the first reference signal sequence is determined to be a frequency-domain QPSK time-domain amplitude stable sequence And/or time-domain QPSK frequency-domain amplitude stabilization sequence: the PTRS block size M included in the pattern of the first reference signal is greater than or equal to the first threshold; or,
  • the second device determines the PTRS pattern according to the first parameter, and when the PTRS block size is greater than the first threshold, it can determine the reference signal sequence with stable amplitude in the time-frequency domain as the first reference signal sequence, thereby making the determined PTRS It can meet the requirements of the reference signal sequence for phase noise estimation when the PTRS block size is large, and effectively improve the accuracy of phase noise estimation.
  • the second device determines the power boost value of the second device according to the PTRS block size in the pattern of the first reference signal, or the second device determines the power boost value of the second device to be a fixed value.
  • the second device can determine the power boost value of the first reference signal sequence according to the characteristics of the current transmission environment, and then effectively analyze the first reference signal, so that the accuracy of phase noise estimation is improved.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence; the second device determines from the second type of reference signal sequence according to the first parameter A second reference signal sequence; where the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the influence of phase noise on the received signal includes inter-subcarrier interference and/or common phase error and or phase noise;
  • the second device receives the second reference signal from the first device, and demaps the second reference signal according to the second symbol sequence mapped by the second reference signal sequence to obtain the received signal of the second reference signal sequence;
  • the PTRS block size included in the pattern of the signal sequence is 1; the first parameter also includes at least one of the following: the pattern of the second reference signal, the MCS threshold used to determine the pattern of the second reference signal, and the The bandwidth threshold of the pattern.
  • the second device determines the PTRS pattern according to the first parameter.
  • the PTRS block size is equal to 1
  • the discrete reference signal sequence can be determined as the first reference signal sequence, so that the selected PTRS can meet the poor channel conditions.
  • Perform effective analysis on the first reference signal so that the accuracy of phase noise estimation is improved.
  • the second device determines the power boost value of the second device according to the MCS of the second device; or the second device determines the power boost value of the second device to a fixed value.
  • the power boost value is 0dB; if the second device determines that the MCS of the second device is less than the first MCS threshold, then The power boost value is determined by the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the power boost value is 0dB; if the second device determines that the MCS of the second device is less than or equal to the first MCS threshold, then The power boost value is determined by the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the second device can determine the power boost value selected by the first device according to the characteristics of the current transmission environment, thereby improving the accuracy of phase noise estimation.
  • the first parameter includes at least one of the following: the phase noise model of the first device and/or the second device, the phase noise power spectral density of the first device and/or the second device, the subcarrier spacing, the carrier frequency Point, the bandwidth of the second device, the modulation and coding mode MCS of the second device, the modulation order of the second device, the channel parameters between the first device and the second device, the pattern of the first reference signal, used to determine the first reference
  • the MCS threshold of the pattern of the signal is used to determine the bandwidth threshold of the pattern of the first reference signal.
  • the first reference signal sequence is one of the following sequences: QPSK pseudo-random sequence, block end-to-end cyclic sequence, DMRS sequence, block zero power sequence, ZC sequence, block non-zero power sequence.
  • the second device determines the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, the second device determines the first reference signal sequence according to the first parameter and the second reference signal sequence.
  • the sequence association relationship determines the second reference signal sequence.
  • the complexity of determining the first reference signal sequence or the second reference signal sequence by the second device through the first parameter can be reduced, the content of signaling sent, and the transmission resources occupied by the signaling can be reduced.
  • a possible design is that the second device receives the indication information of the first reference signal sequence from the second device; the indication information is used to indicate the first reference signal sequence; or the second device receives the second reference signal from the second device Sequence indication information; the indication information is used to indicate the second reference signal sequence.
  • the complexity of determining the first reference signal sequence or the second reference signal sequence by the second device can be ensured, and it can be ensured that both the first device and the second device can select the consistent first reference signal sequence or the second reference signal sequence, Used for the second device to estimate phase noise.
  • an embodiment of the present application provides a communication device, which has a function of implementing the behavior in the method example of the third aspect.
  • the apparatus may be located in a second device, and the second device may be a network device or a terminal device.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit.
  • these units can perform the corresponding steps or functions in the above-mentioned method example of the third aspect, including: a transceiving unit and a processing unit, where the transceiving unit is used for Receiving the first reference signal from the first device; a processing unit, configured to determine the first reference signal sequence from the reference signal sequence set, and demap the first reference signal according to the first symbol sequence mapped by the first reference signal sequence , To obtain the received signal of the first reference signal sequence; the reference signal sequence set includes at least: the first type of reference signal sequence; the time domain or frequency domain amplitude variance of the first type of reference signal sequence meets the preset threshold; the first reference signal sequence
  • the received signal of is used by the communication device to estimate the influence of phase noise on the received signal, and the influence of phase noise on the received signal includes at least one of the following: inter-subcarrier interference, common phase error, and phase noise.
  • the processing unit is specifically configured to determine the first reference signal sequence from the reference signal sequence set according to the first parameter; wherein the first parameter includes at least one of the following: transmission parameters of the first device and the communication device , The pattern of the first reference signal.
  • the reference signal sequence set includes: a BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence; the processing unit is specifically configured to: determine the first reference signal if it is determined that the first parameter meets the following conditions
  • the sequence is the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence: the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the effective sequence used to carry the first reference signal sequence in the PTRS block corresponds to The block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c.
  • the reference signal sequence set includes: a ZC sequence; a processing unit, specifically configured to: if it is determined that the first parameter satisfies the following conditions, determine that the first reference signal sequence is a ZC column: the PTRS block size is a prime number; or , The block size used to carry the effective sequence of the first reference signal sequence in the PTRS block is a prime number.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of P2 reference sequences whose variance meets the third threshold; P1 and P2 are positive integers;
  • the processing unit is specifically configured to: if it is determined that the first parameter satisfies the following conditions, determine that the first reference signal sequence is a frequency-domain QPSK time-domain amplitude stable sequence and/or a time-domain QPSK frequency-domain amplitude stable sequence:
  • the PTRS block size M included in the pattern is greater than or equal to the first threshold; or, the block size M corresponding to the effective sequence used to carry the first reference signal sequence in the PTRS blocks included in the pattern of the first reference signal is greater than or equal to the first threshold;
  • M and L are positive integers.
  • the processing unit is further configured to determine the power boost value of the communication device according to the PTRS block size in the pattern of the first reference signal; or, determine the power boost value of the communication device to a fixed value.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence;
  • the transceiver unit is also used to receive the second reference signal from the first device
  • the processing unit is further configured to determine a second reference signal sequence from the second type of reference signal sequence according to the first parameter, and demap the second reference signal according to the second symbol sequence mapped by the second reference signal sequence to Acquire the received signal of the second reference signal sequence; wherein the PTRS block size included in the pattern of the second reference signal sequence is 1; the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the phase noise on the received signal
  • the influence of the signal includes inter-subcarrier interference and/or common phase error and or phase noise;
  • the first parameter also includes at least one of the following: the pattern of the second reference signal, the MCS threshold used to determine the pattern of the second reference signal, and the To determine the bandwidth threshold of the pattern of the second reference signal.
  • the processing unit is further configured to: determine the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, according to the association relationship between the first parameter and the second reference signal sequence, Determine the second reference signal sequence.
  • the transceiver unit is further configured to: receive the indication information of the first reference signal sequence from the second device; the indication information of the first reference signal sequence is used to indicate the first reference signal sequence; or, to receive the indication information from the first reference signal sequence.
  • the indication information of the second reference signal sequence of the second device; the indication information of the second reference signal sequence is used to indicate the second reference signal sequence.
  • the processing unit is also used to determine the power boost value of the communication device according to the MCS of the communication device; alternatively, determine the power boost value of the communication device to a fixed value.
  • the power boost value is 0 dB
  • the power boost value is determined according to the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the power boost value is 0 dB
  • the power boost value is determined according to the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the first parameter includes at least one of the following: phase noise model of the communication device, phase noise power spectral density of the communication device, subcarrier spacing, carrier frequency, bandwidth of the communication device, modulation and coding mode of the communication device MCS, the modulation order of the communication device, the channel parameter of the communication device, the pattern of the first reference signal, the MCS threshold used to determine the pattern of the first reference signal, and the bandwidth threshold used to determine the pattern of the first reference signal.
  • the first reference signal sequence is one of the following sequences: QPSK pseudo-random sequence, block end-to-end cyclic sequence, DMRS sequence, block zero power sequence, ZC sequence, block non-zero power sequence;
  • second The reference signal sequence is one of the following sequences: QPSK pseudo-random sequence, DMRS sequence.
  • a communication device in a fifth aspect, has the function of implementing the first device or the second device of the above method, and includes components corresponding to the first aspect and any one of the possible implementation manners of the first aspect, the described steps or functions (means).
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be a network device or a terminal device.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the first device or the second device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data of the device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the communication device executes any one of the first aspect and the first aspect. The method completed by the first device in one possible implementation.
  • the foregoing communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding function of the first device in the above method.
  • the communication device may further include one or more memories, where the memories are used for coupling with the processor and store necessary program instructions and/or data for the terminal device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be located in a network device or terminal device, or may be a network device or terminal device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device can execute any one of the first aspect and the first aspect.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method in the first aspect and any one of the possible implementation manners of the first aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the foregoing first aspect and any one of the possible implementation manners of the first aspect In the method.
  • a communication device such as a chip system, which is connected to a memory, and is used to read and execute a software program stored in the memory, and execute any one of the foregoing first aspect and the first aspect. The method in the way.
  • a communication device in a ninth aspect, has the function of implementing the first device or the second device in the foregoing method, and includes functions corresponding to the steps or functions described in the second aspect and any one of the possible implementation manners of the second aspect. Means.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a second device; the second device may be a network device or a terminal device.
  • the foregoing communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding function of the second device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data of the device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the third aspect or any one of the third aspect It is possible to implement the method completed by the second device in the manner.
  • the foregoing apparatus includes one or more processors and communication units.
  • One or more processors are configured to support the communication device to perform corresponding functions of the originating device or the receiving device in the foregoing method.
  • the communication device may further include one or more memories, where the memories are used for coupling with the processor and store necessary program instructions and/or data for the terminal device.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be located in the second device, and the second device may be a network device or a terminal device.
  • the foregoing communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device can execute any one of the third aspect and the third aspect. The method completed by the second device in the implementation mode.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the method in the third aspect and any one of the possible implementation manners of the third aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any of the foregoing third aspect and any one of the possible implementation manners of the third aspect Methods.
  • a communication device such as a chip system, which is connected to a memory, and is used to read and execute a software program stored in the memory, and execute any one of the above-mentioned third aspect and the third aspect.
  • the method in the implementation mode is provided, which is connected to a memory, and is used to read and execute a software program stored in the memory, and execute any one of the above-mentioned third aspect and the third aspect. The method in the implementation mode.
  • a communication system in a thirteenth aspect, includes a first device for executing the method described in the first aspect and a second device for executing the method described in the third aspect.
  • FIGS 1a-1c are schematic diagrams of the architecture of the communication system provided by this application.
  • FIGS. 2a-2b are schematic diagrams of a phase noise estimation model provided by this application.
  • FIGS. 2c-2e are schematic diagrams of a phase noise estimation provided by this application.
  • FIG. 3 is a schematic diagram of a pattern of a reference signal sequence provided by this application.
  • 4a to 4c are schematic diagrams of a reference signal sequence provided by this application.
  • 5a-5c are schematic diagrams of a reference signal sequence pattern provided by this application.
  • FIG. 6 is a schematic diagram of a process for determining a reference signal provided by this application.
  • FIG. 7 is a schematic diagram of a pattern of a reference signal sequence provided by this application.
  • FIG. 8 is a schematic diagram of a pattern of a reference signal sequence provided by this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable device is not only a kind of hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • Network equipment which can be an evolved base station (evolutional node b, eNB or eNodeB) in a long term evolution (LTE) system, or a cloud radio access network (CRAN)
  • a wireless controller or a network device in a 5G network, such as a base station (generation nodeb, gNB) or a small station or a micro station in a wireless access (new radio access technology in 3gpp, NR) system, and a transmission receiving point (transmission)
  • the reception point (TRP) may also be any other wireless access equipment such as a relay station, an access point, or a network equipment in a public land mobile network (PLMN) that will evolve in the future, and the embodiment of the present application is not limited thereto.
  • PLMN public land mobile network
  • Time domain resources including time units.
  • the time unit can be slot, mini-slot, symbol or other time domain granularity (such as system frame, subframe), one of them
  • the time slot may include at least one symbol, for example, 14 symbols, or 12 symbols.
  • a time slot can be composed of at least one of symbols used for downlink transmission, flexible symbols, and symbols used for uplink transmission.
  • the composition of such a time slot is called a different slot format (slot format).
  • slot format format, SF
  • Timeslots can have different timeslot types, and different timeslot types include different numbers of symbols. For example, a mini slot contains less than 7 symbols, 2 symbols, 3 symbols, 4 symbols, etc. Ordinary time slot (slot) contains 7 symbols or 14 symbols, etc. The length of each symbol can be different according to the subcarrier spacing, so the length of the time slot can be different.
  • a bandwidth part (BWP) is defined in a carrier, which can also be called a carrier bandwidth part (carrier bandwidth part).
  • the BWP includes several consecutive resource units in the frequency domain, such as resource blocks (RB).
  • the bandwidth part may be a downlink or uplink bandwidth part, and the terminal device receives or sends data on the data channel in the activated bandwidth part.
  • Frequency domain resources include sub-channels, bands, carriers, bandwidth parts (BWP), resource blocks (resource blocks, RB), resource units RE, or resource pools, etc.
  • the RB occupies 1 subframe or 1 time slot in the time domain, and occupies multiple consecutive subcarriers in the frequency domain.
  • the PRB occupies 14 consecutive OFDM symbols in a subframe in the time domain, and 12 consecutive subcarriers in the frequency domain.
  • a subchannel is the smallest unit of frequency domain resources occupied by a physical side-line shared channel, and a subchannel may include one or more resource blocks (RB).
  • the bandwidth of the wireless communication system in the frequency domain may include multiple RBs.
  • the included PRBs may be 6, 15, 25, 50, and so on.
  • the sub-carrier spacing is the spacing value between the center positions or peak positions of two adjacent sub-carriers in the frequency domain in the OFDM system.
  • SCS sub-carrier spacing
  • the baseline is 15kHz, which can be 15kHz ⁇ 2 n , and n is an integer, ranging from 3.75kHz, 7.5kHz to 480kHz.
  • Table 1 below:
  • the length of a time slot corresponding to different subcarrier intervals is different.
  • the length of a time slot corresponding to the subcarrier interval of 15kHz is 0.5ms
  • the length of a time slot corresponding to the subcarrier interval of 60kHz is 0.125ms, etc.
  • the length of a symbol corresponding to different sub-carrier intervals is also different.
  • one RB can include several subcarriers.
  • one RB includes 12 subcarriers, where each subcarrier interval can be 15kHz.
  • other subcarrier intervals can also be used, such as 3.75kHz. , 30kHz, 60kHz or 120kHz sub-carrier spacing, there is no limitation here.
  • Sequence resources also called code domain resources, are related parameters used to indicate sequences.
  • the parameters of the sequence include the initial position of the sequence, the length of the sequence, and the initial value of the sequence; for low peak-to-average ratio sequences (such as ZC (zadoff-chu) sequences), the parameters of the sequence include root sequence, mask, scrambling Code, cyclic shift (CS) or orthogonal cover code (OCC), etc.
  • the initial value of the sequence refers to the initial value of the shift register that generates the sequence for a random sequence (such as Gold sequence, m sequence).
  • the random sequence used in transmission a is the initial position of the random sequence, L is the length of the random sequence, generally a is a non-negative integer, such as a is 0, or a is 2, etc.
  • the reference signal mainly refers to the reference signal for transmitting the modulation and demodulation of the data.
  • the device that sends the reference signal can be the originating device that sends the control information and the first data, or the device that performs measurement or provides a synchronization source.
  • Reference signals are used for the following purposes: carrying control information and data for transmission, measuring channel state information (channel state information, CSI), radio resource management (radio resource management, RRM) or radio link monitoring (radio link monitoring, RLM), Perform synchronization, etc.
  • the reference signal carries the transmitted data, it can be carried by a sequence or by control information coded bits in the feedback channel.
  • the specific reference signal can be a physical downlink shared channel (PDSCH), a physical uplink Demodulation reference signal (demodulation reference signal, DMRS) used by channels such as the physical uplink shared channel (PDSCH), the physical downlink control channel (PDCCH), and the physical uplink control channel (PUCCH) );
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • the reference signal can be RS, or channel sounding reference signal (SRS), or CSI-RS, etc.
  • SRS channel sounding reference signal
  • CSI-RS channel sounding reference signal
  • the reference signal can be Reference signals used by the physical broadcast channel (PBCH), etc.
  • sequence of the demodulation reference signal may be generated as follows:
  • Fig. 1a is a schematic diagram of the architecture of a communication system applicable to this application.
  • the communication system may include an access point (AP) 101 and at least one station (station, STA) (FIG. 1a takes STA102 and STA103 as examples). Communicate between AP and STA.
  • the STA can be a fixed location, or it can be mobile. This application does not limit the number of APs and STAs included in the communication system.
  • APs are also called access points or hotspots, etc., which are used to provide wireless access services, allow other wireless devices to access, and provide data access.
  • APs are the access points for STAs to enter the wired network, and can be deployed in homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • AP can be a base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), next generation base station (gNB) in 5G communication system, and future communication system
  • a distributed unit (DU) can also be a router; it can also be a switch; it can also be a bridge. This application does not limit the specific technology and specific device form adopted by the AP.
  • An STA is a communication device connected to a wireless network, such as a wireless communication chip, terminal device, etc.; wherein the terminal device may also be called a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminal equipment can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the Internet, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on. This application does not limit the specific technology and specific device form adopted by the terminal device.
  • Scenario 1 Communication between the AP and a single STA.
  • AP is the transmitting end and STA is the receiving end, that is, the communication system can be used for single-user downlink transmission; or, STA is the transmitting end and AP is the receiving end, that is, the communication system can be used for single-user downlink transmission.
  • Uplink transmission is the transmitting end and STA is the receiving end, that is, the communication system can be used for single-user downlink transmission.
  • the AP communicates with multiple STAs.
  • the simultaneous communication between the AP and multiple STAs can be divided into the AP sending signals to multiple STAs at the same time, and the multiple STAs sending signals to the AP at the same time.
  • AP sends signals to multiple STAs at the same time, that is, AP is the sender and STA is the receiver, that is, the communication system can be used for multi-user downlink transmission; multiple STAs send signals to AP at the same time, that is, STA is the sender, and AP It is the receiving end, that is, the communication system can be used for multi-user uplink transmission.
  • the AP and the STA can communicate through frequency bands above 6 GHz, such as 28 GHz, 39 GHz, 60 GHz, and 73 GHz.
  • the base station can use a low frequency (mainly below 6 GHz) or a relatively high frequency (above 6 GHz) millimeter wave frequency band to communicate with the terminal.
  • the millimeter wave frequency band may be 28 GHz, 38 GHz, or an enhanced-band frequency band of a data plane with a small coverage area, such as a frequency band above 70 GHz.
  • the terminal under the coverage of the base station can communicate with the base station using a low-frequency or high-frequency millimeter wave frequency band.
  • Figure 1a is only a simplified schematic diagram of an example, and the network may also include other devices, which are not shown in Figure 1a.
  • the present invention can also be applied to the following scenarios: backhaul (solid arrow), wireless broadband to the home (wireless to the x, WTTx) (solid arrow), enhanced Mobile broadband (enhanced mobile broadband, eMBB) (solid line non-solid arrow in the figure), device to device (device to device, D2D) (dotted line non-solid arrow in the figure) and other high-frequency, high-order and high-rate scenarios.
  • backhaul solid arrow
  • wireless broadband to the home wireless to the x, WTTx
  • eMBB enhanced Mobile broadband
  • D2D device to device
  • dotted line non-solid arrow in the figure and other high-frequency, high-order and high-rate scenarios.
  • the device for reference signal transmission provided in this application may be located in the communication module of the AP, or may also be located in the communication module of the SAT.
  • FIG. 1c is a schematic structural diagram of a reference signal transmitting and receiving apparatus in this application.
  • the device includes a radio frequency unit (RF unit), a transmitting module (transport module, Tx module), a receiving module (receive module, Rx module), a processor (processor), and a memory (memory)
  • RF unit radio frequency unit
  • Tx module transmits the reference signal to be sent to the RF unit for transmission
  • Rx module receives the signal from the RF unit and transmits it to the processor for further processing, such as synchronization, channel estimation, and channel equalization.
  • the apparatus for reference signal transmission may be an OFDM transmitter.
  • FIG. 1c it is a schematic structural diagram of an OFDM transmitter provided in this application.
  • the OFDM transmitter includes a discrete Fourier transform (DFT) module, a Mapping module, a parallel/serial (P/S) converter, a radio frequency (RF) module and an antenna; among them, Mapping
  • the module can be used to map the signal output by the DFT to the sub-carrier; M represents the number of DFT points, and N represents the number of IFFT points.
  • the device for signal transmission may also be an OFDM receiver.
  • the signal processing process of the OFDM receiver is the inverse process of the signal processing of the OFDM transmitter.
  • phase noise is a kind of noise introduced by the non-ideality of frequency devices in the communication system, as the frequency band increases, the power spectrum density of the phase noise increases, and the intensity of the phase noise increases with the increase of the carrier frequency.
  • S i is the signal of the received sub-carrier i
  • E 0 is the Common Phase Error (CPE), which is caused by the rotation/scaling of the original signal on the sub-carrier due to the introduction of phase noise. Since this value has nothing to do with the sub-carrier number, That is, the rotation/scaling of the original signal on all sub-carriers is the same, so it is called CPE.
  • CPE Common Phase Error
  • ICI Inter sub-Carrier Interference
  • Fig. 2c-2e it is the influence of different phase noise on the received signal in the frequency domain (the abscissa is in-phase, and the ordinate is 90-degree quadrature).
  • Figure 2c is 32QAM
  • Figure 2d is 64QAM
  • Figure 2e is 256QAM.
  • Figure 2f-2h it is the influence of phase noise CPE and ICI on the received signal (frequency domain) under the same power spectral density.
  • Figure 2f is a schematic diagram of CPE, and Figure 2g and Figure 2h are respectively after compensation for CPE, 64QAM Compared with the constellation points of 256QAM, it can be seen from the figure on the far right that the constellation points of 256QAM are more ambiguous than 64QAM because of the interference between subcarriers. It can be seen that after the phase noise power spectrum density reaches a certain level, when the modulation method is high, in addition to CPE, the ICI caused by phase noise cannot be ignored. Therefore, high-frequency, high-order and high-rate modulation needs to consider the CPE introduced by phase noise. And ICI estimation and compensation to facilitate the phase tracking of the OFDM system, that is, to determine the phase noise of the signal in the OFDM system.
  • FIG. 3 a schematic diagram of a PTRS pattern provided by an embodiment of this application.
  • the number of PTRS blocks in the PTRS pattern is N, that is, the symbols of the mapped PTRS include N PTRS blocks; each PTRS block may include multiple consecutive PTRS sampling points or multiple consecutive resources Unit RE, for simplicity of description, in this application, the number of consecutive multiple PTRS sampling points or consecutive multiple resource unit REs included in the PTRS block is referred to as the PTRS block size.
  • the block size of each PTRS block is M.
  • a PTRS chunk consists of one or more continuous PTRS signals
  • a PTRS sample point may refer to a PTRS signal
  • a signal carried on an RE may also refer to a PTRS signal.
  • M the reference signal sequence
  • the reference signal sequence is a discrete reference signal sequence
  • the reference signal sequence may be a block reference signal sequence.
  • the reference signal sequence pattern based on the ICI estimation of the block-shaped non-zero power reference signal sequence NZP-PTRS can be as shown in Figure 4a.
  • the reference signal sequence is concentrated on a certain segment of frequency domain resources, such as M subcarriers/RE, or M/L (where M is an integer multiple of L, and L is the number of REs contained in one RB, for example, it can be 12) on RBs.
  • the sequence can be obtained from a QPSK modulated pseudo-random sequence, or it can be composed of M symbols selected from the QPSK symbol set, which can be expressed as: ⁇ s 1 ,s 2 ,s 3 ,...,s M -1 ,s M ⁇ , as shown in Figure 4b.
  • the first reference signal sequence may include random QPSK symbols + a first and last cyclic sequence.
  • the effective sequence length can be obtained by QPSK modulation with pseudo-random sequence, or it can be obtained from QPSK symbol set
  • Select Q symbols in the, plus the cycle sequence at the beginning and the end can be expressed as: ⁇ s M-2u1-u2+1 ,...,s M-u1-u2 ,s 1 ,s 2 ,s 3 ,...,s M -u1-u2 ,s 1 ,s 2 ,...,s u2 ⁇ , as shown in Figure 4c.
  • ⁇ s M-2u1-u2+1 ,...,s M-u1-u2 , ⁇ are cyclic prefixes
  • ⁇ s 1 ,s 2 ,...,s u2 ⁇ are cyclic suffixes.
  • a matrix can be constructed by using the signals transmitted on M resource units where the reference signal sequence is located, and the ICI estimate can be obtained by matrix inversion and received signals on M or Q REs where the reference signal sequence is located. value.
  • the reference signal sequence used for ICI estimation is usually a random QPSK sequence, or randomly selected from the QPSK symbol set, and mapped in the frequency domain. It has a constant model in the frequency domain, but it is not considered.
  • the characteristics of the time domain that is, the feature that the phase noise is a multiplicative noise (that is, it only affects the phase of the time domain signal) cannot be fully utilized to ensure the estimation performance of the phase noise ICI.
  • Another reference signal sequence used for phase noise estimation can be the block zero-power reference signal sequence ZP-PTRS.
  • the pattern of the block zero-power reference signal sequence can be as shown in Figure 5a.
  • the reference signal sequence occupies M resource units.
  • the other REs are all zero power reference signal sequences, that is, all other REs are empty and no signal is sent.
  • E i f (r i, u)
  • the sequence of the block zero-power reference signal sequence is mapped in the frequency domain, that is, it can be equivalent to an impact signal in the frequency domain.
  • the reference signal sequence After the reference signal sequence is transformed into the time domain, it has a constant mode characteristic. Therefore, the block zero-power reference signal is It can have better performance when estimating the time domain phase. Assuming that the sequence length is M, all the others are 0 except for the effective value of the middle sequence.
  • the power on the subcarrier corresponding to the sequence 0 can be used to increase the power of the non-zero sequence, that is, the power on the resource unit corresponding to the non-zero power can be determined according to the size of the PTRS block, For example, if the reference signal sequence on the intermediate resource unit is s 1 , the block zero-power reference signal sequence can be expressed as: ⁇ 0,0,...,0, sqrt(M) ⁇ s 1 ,0,...,0 ⁇ , As shown in Figure 5c. However, because it has a signal on only one subcarrier in a PTRS block, it is more severely affected by the channel frequency selectivity than the block non-zero power pilot sequence.
  • the power is increased
  • the difference between the power on the sub-carrier corresponding to the reference signal sequence and the average power on the adjacent sub-carriers used to transmit data or other information may be too large, thereby increasing the peak-to-average ratio of the signal and improving the terminal
  • the difficulty of the device to demodulate the reference signal may even lead to unresolved problems.
  • the present application proposes a method for determining a reference signal, referring to the schematic flowchart of the method shown in FIG. 6.
  • This method can be applied to the communication system shown in Fig. 1a, or the communication device shown in Fig. 1b, or the OFDM transmitter shown in Fig. 1c, and can also be applied to other communication systems or communication scenarios, and there is no limitation on this without application. .
  • the method includes the following steps:
  • Step 601 The first device determines a first reference signal sequence from the set of reference signal sequences.
  • the first device involved in the embodiments of the present application may refer to a network device, and the corresponding second device may refer to a terminal device.
  • the first device may refer to a terminal device, and the corresponding second device may refer to a network device.
  • the first device may refer to a terminal device, and the corresponding second device may also refer to a terminal device.
  • the first reference signal sequence is used for the second device to estimate the influence of phase noise on the received signal.
  • the influence of phase noise on the received signal includes at least one of the following: inter-subcarrier interference, common phase error, phase noise, etc.
  • the first reference signal sequence can be used to compensate for the CPE/ICI effect caused by the phase noise.
  • the network devices in the system can be configured with other functions of the first reference signal sequence, such as Doppler estimation and compensation, time synchronization, and channel estimation Wait, it is not limited here.
  • the network device mentioned in this application can be the first device as the network device or the second device as the network device, or it can be other network devices that schedule the first device or the second device. limited.
  • the association relationship between the function corresponding to the reference signal sequence and the first reference signal sequence may be configured through the network device, and further, the first device may determine the first reference signal sequence from the reference signal sequence set according to the association relationship.
  • the first device and the second device respectively determine the first reference signal sequence according to the reference signal sequence set; in another possible implementation manner, the first device determines the first reference signal sequence from the reference signal sequence set After the signal sequence, the instruction information of the first reference signal sequence is sent to the second device, so that the second device receives the first reference signal sequence on the corresponding transmission resource according to the instruction information of the first reference signal sequence, and estimates that the phase noise affects the first reference signal sequence. 2. The influence of the signal received by the device.
  • the reference signal sequence set includes at least the first type of reference signal sequence; the time domain and frequency domain amplitude variances of the first type of reference signal sequence meet the preset threshold , So that the first device or the second device can select a reference signal sequence that has a relatively stable amplitude response in the time domain and the frequency domain through the reference signal sequence set, thereby improving the accuracy of phase noise estimation.
  • the method for determining the reference signal sequence set can be pre-configured by the network device, or pre-defined by the protocol, or pre-configured by high-level signaling, or the network device is the first
  • the set of reference signal sequences indicated by the device and/or the second device is further stored in the first device and/or the second device in advance, which is not limited herein.
  • the first type of reference signal sequence may be a block reference signal sequence.
  • the following specifically describes the block reference signal sequence whose time domain and/or frequency domain amplitude variance of the first type of reference signal sequence meets the preset threshold.
  • the first type of reference signal sequence may be a block reference signal sequence generated based on QPSK symbols.
  • the first type of reference signal sequence can be a sequence with a stable amplitude in the time domain for QPSK in the frequency domain.
  • the sequence is defined in the frequency domain, that is, the value of a symbol in the sequence is ⁇ 1+1j, 1-1j , -1+1j, -1-1j ⁇ /sqrt(2), where sqrt( ⁇ ) represents the root of " ⁇ ". Since it is a symbol of QPSK modulation, the frequency domain block reference signal sequence corresponds to a constant modulus signal in the frequency domain, that is, the corresponding amplitude of the block reference signal sequence on each subcarrier or RE is 1, and the frequency domain modulation symbol It is a standard QPSK signal.
  • the frequency domain QPSK sequence whose time domain and frequency domain amplitude variances both meet the preset threshold can be obtained in the following way:
  • the sequence length is M and the effective sequence length is Q, that is, there are cyclic prefixes and suffixes.
  • the sequence whose time-domain amplitude response meets the preset threshold is selected as the effective sequence of the first type of reference signal sequence.
  • a sequence whose time-domain amplitude volatility meets a preset threshold can be determined as an effective sequence.
  • the volatility can be the signal amplitude difference at each sampling point in the time domain.
  • the volatility can be the average value avg(abs(x i -x j )) of the signal amplitude difference at each sampling point in the time domain, or the time domain.
  • the maximum value of the signal amplitude difference at each sampling point of the domain max(abs(x i -x j )) or max(abs(x i ))-min(abs(x i )) or max(x i )-min (x i ), where the signal amplitude at the time domain sampling point i is denoted as x i , and the signal amplitude at the time domain sampling point j is denoted as x j .
  • the volatility can be the variance of the signal amplitude at each sampling point in the time domain, or the mean square error of the amplitude, etc.
  • the first P group is selected as the effective sequence set of the first type of reference signal sequence. It can be seen that the larger the Q, the more stable the time-domain amplitude response of the selected sequence.
  • the first-type reference signal sequence whose volatility meets the first amplitude threshold can also be determined according to other methods, which is not limited here.
  • the first type of reference signal sequence can be a time domain QPSK frequency domain amplitude stable sequence, which is first defined in the time domain, and the modulation symbol in the time domain is a standard QPSK signal or a scaled standard QPSK signal signal.
  • the time domain block reference signal sequence corresponds to a constant modulus signal in the time domain, that is, the corresponding amplitude of the block reference signal sequence is 1 at each sampling point.
  • the method of obtaining the sequence is similar to that of the frequency domain QPSK with stable amplitude in the time domain. That is, the 4 ⁇ Q group sequence corresponding to the effective length of Q is transformed into the frequency domain through the Q-point Fourier transform and the sequence whose frequency domain amplitude response meets the preset threshold is selected as the effective sequence of the first type of reference signal sequence.
  • the sequence whose frequency domain amplitude response meets the preset threshold can include 128 sets of first-type reference signal sequences.
  • the first-type reference signal sequence can be: ⁇ 0.7071 +0.7071i, 0.7071 +0.7071 i, 0.7071 +0.7071i, 0.7071 -0.7071i, -0.7071 -0.7071i, 0.7071 +0.7071i, -0.7071 -0.7071i, 0.7071 -0.7071i ⁇ .
  • a group of sequences in the above-mentioned P group of time-domain QPSK frequency-domain amplitude stability sequences can be used as the first reference signal, and the aforementioned P group of frequency-domain QPSK time-domain amplitude stability sequences can also be used
  • the inverse Fourier transformed signal of a set of sequences in is used as the first reference signal.
  • a group of sequences in the above-mentioned P group of time domain QPSK frequency domain amplitude stable sequences can be used as the first reference signal after Fourier transform to the frequency domain.
  • a group of sequences in the aforementioned P group of frequency-domain QPSK time-domain amplitude stable sequences can be used as the first reference signal.
  • the above method of selecting the QPSK sequence as the first type of reference signal sequence can also be applied to other sequences, which will not be repeated here.
  • it can also be a BPSK sequence, Pi/2BPSK, a DMRS sequence, etc., where BPSK has only two symbols ⁇ 1, -1 ⁇ , so a sequence with an effective sequence length of Q corresponds to a combination of 2 ⁇ Q, the first type of reference signal
  • the sequence can be selected from the time-domain BPSK sequence with P frequency-domain amplitudes meeting the preset threshold, or selected from the frequency-domain BPSK sequence with P time-domain amplitudes meeting the preset threshold, that is, from the effective length of Q
  • P sequences whose amplitudes in the time domain and the frequency domain meet the preset threshold are selected as the effective sequences of the first type of reference signal sequence.
  • the Pi/2BPSK sequence is based on the BPSK sequence determined in the above embodiment that the time-domain or frequency-domain amplitude response meets the preset threshold, plus the phase shift mod(k,2) ⁇ Pi/2 related to the mapping position, where k Determined by the mapping location.
  • the first type of reference signal sequence can also be a Pi/2BPSK sequence based on the Golay complementary sequence in the frequency domain.
  • the sequence is defined in the frequency domain, that is, the modulation symbol in the frequency domain is a signal with Pi/2BPSK.
  • This sequence is a complementary sequence.
  • the sequences are called sequence b A and sequence b B respectively .
  • the Pi/2BPSK sequence generated from the complementary sequence can have many forms. For example, as shown in FIG. 5a, the two sequences are respectively added with a cyclic prefix and a cyclic suffix, and are independently mapped to different frequency domain resources or sampling points. As another example, the sequence S A and S B spliced into a new sequence [S A S B], and in the cyclic postfix is added before the new sequence.
  • the sequence b A and sequence b B can be expressed as:
  • each element in the frequency domain sequence after Pi/2-BPSK modulation is a constant in the frequency domain sequence after Pi/2-BPSK modulation. Therefore, the Pi/2BPSK sequence based on the Golay complementary sequence can have constant mode characteristics in the time domain and the frequency domain.
  • the first type of reference signal sequence can be a ZC sequence. Since its root sequence has constant mode characteristics in both the time and frequency domains, the sequence can be defined in both the time and frequency domains, that is, the time domain can be generated.
  • the ZC sequence in the domain is used as the first type of reference signal sequence, and the ZC sequence in the frequency domain can also be generated as the first type of reference signal sequence.
  • the first type of reference signal sequence can be determined according to the following formula:
  • Nz c is the largest prime number or largest prime number less than M.
  • the ZC sequence can be determined according to the following formula:
  • the initial value q may be configured by the network device to the terminal device, or may be determined by the terminal device according to parameters such as a cell identity.
  • the reference signal sequence set may further include: a second type of reference signal sequence; where the second type of reference signal sequence may be a discrete reference signal sequence.
  • the discrete PTRS are evenly distributed on one OFDM, and the PTRS resource unit interval is S, that is, there are S resource units between two adjacent PTRS resource units (including one PTRS resource unit and S-1 data).
  • Resource unit that is, there is one reference signal on every S subcarriers/resource units, or there is one reference signal on every S/L resource blocks, and L represents the number of resource units included in one resource block.
  • the reference sequence The length is related to the scheduling bandwidth.
  • the first reference signal sequence may be a DMRS sequence.
  • the sequence of DMRS is a complementary sequence, or a Golay complementary sequence.
  • the original modulation symbol of the DMRS mapped on the subcarrier where the PTRS is located can be directly used as the modulation symbol of the PTRS.
  • DMRS and PTRS are located on different OFDM symbols.
  • the first reference signal sequence may be a pseudo-random sequence. That is, the pseudo-random sequence is used to generate the original bit sequence, and then the first reference signal sequence is obtained through QPSK modulation. Take the pseudo-random sequence as the Gold sequence of the 31-bit shift register, or the m sequence:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod 2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2
  • the above sequence is mapped on the frequency domain. Since the above sequences are all QPSK modulated symbols, the first reference signal sequence is a constant modulus signal in the frequency domain, and the amplitude is all 1.
  • the first type of reference signal sequence and the second type of reference signal sequence are used to estimate CPE in the same way. Only the received signal of the RE where the reference signal sequence is located and the reference signal sequence transmit signal can be used to estimate the CPE. When the estimation only needs to estimate the CPE, the first type of reference signal sequence or the second type of reference signal sequence can be selected.
  • the PTRS patterns corresponding to the second type of reference signal sequences have better symbol dispersion and are less affected by channel frequency selection. Strong frequency selection. Therefore, when the channel corresponding to the sent reference signal is not flat or has severe channel frequency selectivity, the PTRS sequence can be determined to be the second type of reference signal sequence.
  • the second type of reference signal sequence here can also be a sequence whose time domain and frequency domain amplitude variance meets a preset threshold, so as to reduce the types of reference signal sequences that need to be configured in the reference signal sequence set, and reduce the terminal
  • the complexity of the reference signal sequence generated by the device For example, the reference signal sequence set configured for the first device and the second device includes only sequences whose time-domain and frequency-domain amplitude variances meet a preset threshold. This sequence is suitable for the scenario of discrete resource units in the PTRS pattern. In the scene where the block size is greater than 1 in the PTRS pattern.
  • sequence set in the present invention includes but is not limited to the sequences listed above.
  • sequence set may not include all the sequences listed above, that is, the sequence set in the present invention may also include at least one of the sequences listed above.
  • the first type of reference signal sequence in the reference signal sequence set can have a time-domain amplitude and frequency-domain amplitude variance less than a preset threshold, so that the PTRS sequence is in the frequency domain and time domain. It has relatively stable amplitude response in both time domain and frequency domain. It can be applied to the estimation of phase noise in the time domain or frequency domain, or it can be applied to the estimation of CPE and ICI. It can also be applied to OFDM and discrete Fourier transform extended orthogonal frequency.
  • the first device may determine the first reference signal sequence from the reference signal sequence set according to the first parameter.
  • the first parameter may include at least one of the following:
  • the hardware conditions of the first device and/or the second device are the hardware conditions of the first device and/or the second device.
  • the first parameter may include one or more of the above parameters, which is not limited here.
  • the hardware conditions of the first device and/or the second device may include at least one of the following:
  • phase noise power spectral density of the first device and/or the second device is the phase noise power spectral density of the first device and/or the second device.
  • the transmission parameters between the first device and the second device may include at least one of the following: subcarrier spacing, carrier frequency, scheduling bandwidth of the second device, The modulation and coding mode MCS of the second device, the modulation order of the second device; the PTRS parameter of the second device may include at least one of the following: an MCS threshold used to determine the pattern of the first reference signal, and used to determine the first reference signal The bandwidth threshold of the pattern, the pattern of the first reference signal, etc.
  • the transmission parameters between the first device and the second device may include at least one of the following: subcarrier spacing, carrier frequency, scheduling bandwidth of the first device,
  • the PTRS parameters of the first device may include at least one of the following: MCS threshold for determining the pattern of the first reference signal, Bandwidth threshold, pattern of the first reference signal, etc.
  • the transmission parameters between the first device and the second device may include at least one of the following: subcarrier spacing, carrier frequency, scheduling bandwidth of the first device, The MCS of the first device, the modulation order of the first device, the scheduling bandwidth of the second device, the MCS of the second device, and the modulation order of the second device;
  • the PTRS parameter of the second device may include at least one of the following: Determine the MCS threshold of the pattern of the first reference signal, the bandwidth threshold used to determine the pattern of the first reference signal, the pattern of the first reference signal, and so on.
  • the PTRS parameters may also include: the maximum block size M01 occupied by the maximum block zero-power reference signal sequence allowed by the hardware conditions of uplink transmission fed back by the terminal device, and/or the maximum block size allowed by the hardware conditions of the downlink transmission on the terminal side
  • the PTRS parameter can also be the hardware condition of the network device integrating the network device and the terminal device, indicating the first threshold M0 in the uplink and downlink transmission (the maximum value of the block zero-power reference signal sequence used by the first device and/or the second device). Block size), or the first upstream and downstream threshold M0 of the network device (the maximum block size of the block zero-power reference signal sequence used by the base station side).
  • the MCS threshold and/or the scheduling bandwidth threshold may be determined according to at least one of a phase noise model, subcarrier spacing, and carrier frequency.
  • the subcarrier interval refers to the subcarrier interval of the carrier transmitting the PTRS
  • the carrier frequency refers to the frequency of the carrier transmitting the PTRS.
  • the MCS and scheduling bandwidth are configured by the network side, and the specific configuration method is not limited in this embodiment of the application.
  • the PTRS pattern in the first parameter can be determined in the following manner:
  • the first device may determine the PTRS block density associated with at least one of the MCS and the scheduling bandwidth, the PTRS sampling points or the number of REs included in the PTRS block according to at least one of the MCS and the scheduling bandwidth , And then determine the PTRS block density of the PTRS pattern and the number of PTRS sampling points or REs included in the PTRS block.
  • the first device may directly determine the PTRS block size and the number of PTRS blocks of the PTRS pattern according to at least one of the phase noise level, subcarrier spacing, frequency point, and channel condition.
  • the PTRS pattern of the first reference signal sequence may be determined as the PTRS block size M greater than 1, that is, the PTRS pattern corresponds to the block reference signal sequence picture of.
  • the volatility between the subcarriers of the second device is greater than the second amplitude threshold.
  • the first device can determine that the channel of the second device has greater volatility, and it can determine that the PTRS pattern is that the PTRS is a discrete resource unit , Or the PTRS block size M is equal to 1, that is, the PTRS pattern corresponds to the pattern of the discrete reference signal sequence.
  • the volatility may include: the amplitude difference on each subcarrier in the frequency domain (the average value of the amplitude difference of each subcarrier, the maximum value of the amplitude difference of each subcarrier, etc.), the amplitude variance, the mean square deviation of the amplitude, and so on.
  • the second device when the second device is a terminal device, it can also feed back the phase noise level to the network device. Furthermore, the network device can determine the MCS threshold and the scheduling bandwidth threshold according to the information fed back by the terminal device, and determine the MCS The threshold and scheduling bandwidth threshold are sent to the terminal device.
  • the specific method for determining the MCS threshold and/or the scheduling bandwidth threshold is not limited in the embodiment of the present application, and will not be repeated here.
  • the protocol may be pre-defined or determined by the network device.
  • the association relationship between the first parameter and the first reference signal sequence or the second reference signal sequence is preconfigured, and the first device and/or the second device can determine the first reference signal sequence according to the first parameter in the current scheduling and the association relationship Or the second reference signal sequence.
  • the first reference signal sequence is determined according to the first parameter.
  • the PTRS pattern may be used as the first parameter to determine the first reference signal sequence.
  • the specific manners for determining the first reference signal sequence according to the first parameter may include but are not limited to the following:
  • the first device determines the first parameter for generating the first reference signal sequence or the first parameter for generating the second reference signal sequence, and further, the first device determines the corresponding first reference signal sequence according to the first parameter.
  • the first parameter used to generate the first reference signal sequence or the first parameter used to generate the second reference signal sequence may be pre-defined by the protocol or pre-configured by the network device for the first device and/or the second device.
  • the first device may determine the type of the first reference signal sequence according to the PTRS block size included in the PTRS pattern. At this time, there may be more than one type of reference signal sequence satisfying the PTRS pattern in the reference signal sequence set, and the first device can independently select one of the types as required, which is not limited here.
  • the first device determines that the first parameter used to generate the first reference signal sequence includes: PTRS pattern, first threshold M0, phase noise model
  • the first device can use the PTRS pattern, first threshold M0, phase noise
  • the specific value of the model determines the type of the first reference signal sequence. For example, if it is determined that the phase noise model is a phase noise model that only requires CPE estimation and compensation, and the PTRS pattern is that the PTRS block size is greater than 1 and less than the first threshold, then the first type of sequence length in the reference signal sequence set that matches the PTRS pattern can be selected Any reference signal sequence in the reference signal sequence.
  • the first device determines the association relationship between the first parameter and the first reference signal sequence.
  • the association relationship may be pre-defined by the protocol or pre-configured by the network device for the first device and/or the second device.
  • the first device or the second device may determine the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence.
  • the specific association relationship may be as shown in Table 2 below:
  • M is the PTRS block size
  • N is the number of PTRS blocks.
  • M0 is the first threshold, which can be determined according to the hardware conditions of the first device and/or the second device.
  • the first threshold M01 can be set for the first device and the first threshold M02 for the second device as needed.
  • the first length threshold M1, the second length threshold M2, etc. can also be set according to needs.
  • a, b, and c are integers
  • t is a positive integer.
  • the first device may determine that the first device generates a second reference signal sequence, for example, one of a DMRS sequence, a pseudo-random sequence, and a frequency-domain random QPSK sequence. If the first device determines that the first parameter satisfies the second association relationship, it may determine that the first device generates the first reference signal sequence, and the first reference signal sequence is a block zero-power reference signal sequence. If the first device determines that the first parameter satisfies the third association relationship, it may determine that the first device generates the first reference signal sequence, and the first reference signal sequence is a ZC sequence.
  • a second reference signal sequence for example, one of a DMRS sequence, a pseudo-random sequence, and a frequency-domain random QPSK sequence.
  • the first device determines that the first parameter satisfies the second association relationship, it may determine that the first device generates the first reference signal sequence, and the first reference signal sequence is a block zero-power reference signal sequence. If the first device determines that the first parameter
  • the first device determines that the first parameter satisfies the fourth association relationship, it may determine that the first device generates the first reference signal sequence, and the first reference signal sequence is the pi/2BPSK sequence based on the Golay complementary sequence. If the first device determines that the first parameter satisfies the fifth association relationship, it can determine that the first device generates the first reference signal sequence, and the first reference signal sequence is a stable sequence in the time-frequency domain, and the amplitudes in the real-time domain and the frequency domain satisfy Sequence of preset thresholds.
  • association relationship is only an example.
  • the required association relationship in the reference signal sequence set can be determined according to needs, which is not limited here.
  • the above method 1 and method 2 can be executed separately or combined, which is not limited here.
  • the indication methods in the first and second methods can be notified to the terminal device by high-level signaling or RRC or DCI or broadcast or pre-defined.
  • the association relationship may be terminal-based (that is, the association relationship of each terminal is independent) , It can also be cell-based (that is, each group shares the same association relationship); the indication content can be an association relationship or a threshold, or an adjustment amount according to an agreed method.
  • the first parameter used to determine the first reference signal sequence and/or the association relationship between the first parameter and the first reference signal sequence is indicated through signaling, and further, the first device and/or the second device according to the indicated first parameter
  • the parameter, and/or the association relationship between the first parameter and the first reference signal sequence determines the first reference signal sequence.
  • the first device or the second device can directly determine the first reference signal sequence or the second reference signal sequence implicitly from the first parameter according to the association relationship between the first parameter and the reference signal sequence in the reference signal sequence set , That is, no additional signaling is required to specifically indicate the specific PTRS sequence, which saves signaling overhead.
  • Manner 3 After the first reference signal sequence is determined by the network device, the first reference signal sequence is directly indicated to the terminal device through signaling. In this manner, there is no need to indicate the first parameter for determining the first reference signal sequence , Or the association relationship between the first parameter and the first reference signal sequence.
  • the specific indication method may be high-level signaling or radio resource control (Radio Resource Control, RRC) signaling or Downlink Control Information (DCI) or broadcast or pre-defined display notification to the terminal, where the display notification may be based on
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the display notification may be based on
  • the terminal it can also be cell-based; it should be noted that when the network device displays the indicated reference signal sequence, the indicated reference signal sequence can be determined by the network device according to the pre-configuration, or it can be determined by the network device by other means. Yes, it is not limited here.
  • the network device determines the type of the first reference signal sequence or the second reference signal sequence from the reference signal sequence set, the type of the first reference signal sequence or the second reference signal sequence is indicated to the terminal through signaling, which can avoid the first reference signal sequence. There may be estimation errors caused by inconsistencies in the association relationship between the device and the second device.
  • the first device or the second device can determine the type of the first reference signal sequence or the type of the second reference signal sequence based on one or more of the first parameters and based on different scenarios.
  • the first device may determine the type of the selected first reference signal sequence according to the pattern of the first reference signal. For example, if the first device determines that the PTRS block size M included in the pattern of the first reference signal is greater than 1 and less than or equal to the first threshold, it may select the first reference signal sequence as the block zero-power reference signal sequence.
  • the first threshold can be determined according to the hardware conditions of the first device and/or the second device. When the sequence PTRS block size M is less than the first threshold, the block zero-power reference signal sequence is used, which can ensure accuracy without increasing While the first device or the second device analyzes the difficulty of subcarriers, it effectively reduces the complexity of phase noise estimation.
  • the first device may also select the first reference signal sequence as a blocky non-zero power reference signal sequence. Specifically, it may be determined whether to select the block-shaped non-zero power reference signal sequence or the block-shaped zero-power reference signal sequence according to the hardware conditions of the first device and/or the second device, which is not limited herein.
  • the first reference signal sequence may be determined as a time domain QPSK frequency domain amplitude stable sequence or a frequency domain QPSK time domain amplitude stable sequence.
  • the first reference signal sequence may also include a guard interval, that is, the reference signal sequence includes a cyclic prefix and/or a cyclic suffix.
  • the prefix and suffix lengths of the sequence are u1 and u2, respectively
  • the values of u1 and u2 can be associated with the value of M.
  • the length of the first reference signal sequence is greater than the first length threshold, the length of the guard interval needs to be increased . Therefore, the first length threshold M1 can be set.
  • U0, U1, U2, U3 are positive integers.
  • the following table is only an example.
  • the classification (number of intervals or number of cyclic prefixes and suffixes) in Table 3 is not limited to 4 intervals, and can be selected according to needs.
  • the first device determines from the reference signal sequence set that there are more than one first reference signal sequence that meets the first parameter, for example, the first device determines the number of selected time domain QPSK frequency domain amplitude stable sequences or When the group number P of the sequence with stable time domain amplitude of frequency domain QPSK is greater than 1, then it can be further based on the terminal identification UE-ID, PTRS port number, PTRS frequency domain position offset, DMRS sequence scrambling code, DMRS port number, cycle At least one type of information such as a redundancy check (Cyclic Redundancy Check, CRC) scrambling code determines a specific set of sequences as the first reference signal sequence.
  • the first device may send the selected first reference signal sequence to the second device through instruction information, so that the second device determines the first reference signal sequence selected by the first device according to the instruction information.
  • the effective length Q under this condition can meet the requirements of prime numbers by limiting the length of the cyclic prefix and suffix.
  • the PTRS block size M is greater than the first threshold M0, or the block size M corresponding to the effective sequence carrying the first reference signal sequence among the PTRS blocks included in the pattern of the first reference signal Scenes greater than or equal to the first threshold M0.
  • the first threshold M0 may be determined according to the hardware conditions of the first device and/or the second device, and the first threshold M0 may be predetermined, for example, through Radio Resource Control (RRC), media Instruction/notification of access control (Media Access Control, MAC), Downlink Control Information (DCI), etc., to the terminal.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • DCI Downlink Control Information
  • the first device determines that the first parameter satisfies the following conditions, it determines that the first reference signal sequence is a stable QPSK sequence in the time-frequency domain.
  • the frequency domain QPSK time domain amplitude stable sequence and/or the time domain QPSK frequency domain amplitude stable sequence; the frequency domain QPSK time domain amplitude stable sequence is based on the time domain amplitude variance selected from the frequency domain QPSK sequence set with the effective sequence length Q One of the P1 reference sequences that meet the second threshold;
  • the time-domain QPSK frequency-domain amplitude stable sequence is based on the P2 reference sequences of which the frequency-domain amplitude variance selected from the time-domain QPSK sequence set with effective sequence length Q meets the third threshold One of; P1, P2 are positive integers.
  • the specific selection method can refer to the embodiment in scenario 1, which will not be repeated here.
  • the first device determines that in the PTRS pattern, the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the number of PTRS blocks in the first reference signal pattern is an integer multiple of 2, then the first The reference signal sequence is determined as a Pi/2BPSK sequence based on the Golay complementary sequence in the frequency domain.
  • the length M of the first reference signal sequence is greater than M0, the number of PTRS blocks of the first reference signal sequence is an even number, and the effective length Q of the first reference signal sequence may be 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c. That is, if the first reference signal sequence does not include the first and last cycles, the length of the first reference signal sequence is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c.
  • the effective length of the first reference signal sequence is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c.
  • Scenario 5 If the first device determines that in the PTRS pattern, the PTRS block size M is smaller than M0, and the subcarrier or RE selected for mapping the PTRS or the channel at the symbol position has low volatility, block zero can be selected.
  • the power reference signal sequence or the block-shaped non-zero power reference signal sequence is used as the first reference signal sequence.
  • the first device may determine according to the first parameter that the block size M in the PTRS pattern is smaller than the first threshold M0. Further, the first device may also select subcarriers or REs or channels on symbol positions for mapping PTRS The volatility of is smaller than the second amplitude threshold to improve the accuracy of phase noise estimation.
  • the first device determines that the PTRS block size included in the pattern of the second reference signal sequence is 1, it can determine the second reference signal sequence from the second type of reference signal sequence.
  • the second reference signal sequence may be a discrete reference sequence. Specifically, it may be a reference signal sequence that is the same as the DMRS sequence, a pseudo-random sequence, or a frequency-domain random QPSK sequence.
  • the specific form of the second reference signal sequence may be any type of the second type of reference signal sequence, and may also be determined as required, which is not limited here.
  • the QPSK sequence is similar to the discrete reference sequence, and can refer to the implementation of the discrete reference sequence, which will not be repeated here.
  • the first device may also determine the type of the first reference signal sequence according to one or more of the first parameters, and then determine the specific value of the first reference signal sequence. This is not limited.
  • the first device may also determine the power value of the first reference signal sequence or the second reference signal sequence to further improve the accuracy of phase noise estimation.
  • the current protocol Due to the small overhead of PTRS, the current protocol has a maximum of 1/24, which has a limited impact on the power of the entire OFDM symbol. Therefore, a possible implementation is to increase the power of a fixed value, for example, a fixed value of 3dB. The power rises.
  • different power boost values may be set for different reference signal sequences. For example, the power boost value may be determined by the PTRS pattern, the PTRS sequence, or the first parameter.
  • the first device determines the power boost value of the second device according to the PTRS block size in the pattern of the first reference signal.
  • the NZP-PTRS power increase value in each block is 10 ⁇ lg(M)dB, Where M is the block size.
  • the power on the resource unit corresponding to zero power can be determined according to the size of the PTRS block, for example, on the intermediate resource unit
  • the reference signal sequence of is s 1
  • the block zero-power reference signal sequence can be expressed as: ⁇ 0,0,...,0, sqrt(M) ⁇ s 1 ,0,...,0 ⁇ .
  • the PTRS sequence determined by the scene parameters is a time-domain and frequency-domain amplitude stable QPSK/BPSK/Pi/2BPSK sequence, or a ZC sequence or a Pi/2BPSK sequence based on the Golay complementary sequence in the frequency domain.
  • the power of a reference signal sequence can be fixedly increased by 3dB.
  • Another possible implementation is to determine the modulation order of the power boost power data. For example, when the modulation order is less than or equal to 64QAM: the power boost value of the first reference signal sequence can be 0dB, and the first reference signal sequence when the modulation order is 256QAM The power boost value of the first reference signal sequence may be 4.23dB, and when the modulation order is 1024QAM, the power boost value of the first reference signal sequence may be 4.5dB.
  • the power boost value can also be determined according to the coding bit rate or MCS. Among them, when the coding rate or MCS is higher, the power boost value that can be set is lower. For example, when the MCS of the second device is greater than the first MCS threshold, the power boost value is set to 0. When the first device determines that the MCS of the second device is less than or equal to the first MCS threshold, the power boost value of the second device is changed from The number of DMRS ports associated with the PTRS port of the second device is determined.
  • the power boost value of the second reference signal sequence is determined by the estimated ICI order required by the second device.
  • the power can be increased by 3dB, or the power increase value can be determined by the number of transmission layers according to the existing protocol .
  • the ICI order is equal to 1, which means that only CPE is estimated.
  • the first device determines that the second reference signal sequence is a discrete reference signal sequence, and the ICI order that needs to be estimated is greater than 1, it determines that the power boost value of the second reference signal sequence is 0 dB.
  • ICI order greater than 1 means that ICI needs to be estimated.
  • the power boost value of the second reference signal sequence is determined by the MCS of the second device.
  • the power boost value of the second device is 0 dB
  • the power boost value of the second device is determined by the number of DMRS ports associated with the PTRS port of the second device.
  • the power boost value of the second device is 0dB; if the first device determines that the MCS of the second device is less than or equal to the first MCS threshold, the second device The power boost value of the device is determined by the number of DMRS ports associated with the PTRS port of the second device.
  • the power boost value of the second reference signal sequence may be a fixed value, and the specific value of the fixed value may be determined as required, which is not limited here.
  • Step 602 The first device maps the first reference signal sequence to the first symbol sequence, and sends the first reference signal corresponding to the first reference signal sequence to the second device.
  • the specific value of the first reference signal sequence may also be determined according to the parameters of the first reference signal sequence.
  • the parameters of the first reference signal sequence may include: the initial position of the sequence, the cyclic shift of the sequence, and the initial value of the sequence.
  • the parameters of the sequence may also include root sequence, mask, scrambling code, cyclic shift (CS) or orthogonal cover code (OCC), etc.
  • At least one of UE-ID, cell ID, subframe number, symbol, PTRS port number, associated DMRS port number, etc. can be used to determine the initial value of the specific sequence, the initial position of the sequence, and the cycle of the sequence. Shift, etc., to determine the specific value of the first reference signal sequence.
  • Step 603 The second device determines the first reference signal sequence from the reference signal sequence set.
  • the second device may first determine the PTRS pattern, and then determine the first reference signal sequence according to the PTRS pattern and other first parameters.
  • the first reference signal sequence may also be determined according to the PTRS pattern and other first parameters indicated by the first device.
  • Step 604 The second device receives the first reference signal from the first device, and demaps the first reference signal according to the first symbol sequence mapped by the first reference signal sequence to obtain the received signal of the first reference signal sequence.
  • the method for determining the reference signal provided in this application can be applied to scenarios with high frequency and high bit rate.
  • the above-mentioned solution can not only ensure the estimation accuracy of CPE and or ICI in a given scenario, but can also adaptively adapt to the optimal scenario according to the scenario. Optimize the CPE and/or ICI estimation performance. Under the given PTRS overhead, while improving the demodulation performance, reducing the complexity, thereby improving the spectrum efficiency.
  • an embodiment of the present application also provides a communication device.
  • the communication device The 800 includes a processing unit 801 and a transceiving unit 802.
  • the communication device 800 (hereinafter referred to as the device 800) can be used to implement the method executed by the first device in the foregoing embodiment.
  • the apparatus 800 may be a network device or a terminal device, may also be located in a network device or a terminal device, or may be a first device or an originating device.
  • the foregoing apparatus 800 may be a network device or a terminal device, or a chip applied to the network device or terminal device, or other combination devices or components having the functions of the foregoing network device or terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the apparatus 800 may be used to execute the steps executed by the first device in the above method embodiment, or execute the steps executed by the originating device.
  • the processing unit 801 is configured to determine a first reference signal sequence from a set of reference signal sequences; the first reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the influence of phase noise on the received signal includes At least one of the following: inter-subcarrier interference, common phase error, phase noise; the reference signal sequence set includes at least: the first type of reference signal sequence; the time domain and/or frequency domain amplitude variance of the first type of reference signal sequence meets the preset Threshold;
  • the transceiver unit 802 is configured to map the first reference signal sequence to the first symbol sequence, and send the first reference signal corresponding to the first reference signal sequence to the second device according to the first symbol sequence.
  • the processing unit 801 is specifically configured to determine the first reference signal sequence from the reference signal sequence set according to the first parameter; the first parameter includes at least one of the following: transmission parameters of the first device and the second device , The pattern of the first reference signal.
  • the reference signal sequence set includes: a BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence; the processing unit 801 is specifically configured to: determine the first reference if it is determined that the first parameter satisfies the following conditions
  • the signal sequence is the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence: the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the effective sequence used to carry the first reference signal sequence in the PTRS block
  • the corresponding block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, where a, b, and c are positive integers.
  • the reference signal sequence set includes: a ZC sequence; the processing unit 801 is specifically configured to determine that the first reference signal sequence is a ZC sequence if it is determined that the first parameter satisfies the following conditions: the PTRS block size is a prime number; or , The block size used to carry the effective sequence of the first reference signal sequence in the PTRS block is a prime number.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of P2 reference sequences whose variance meets the third threshold; where P1 and P2 are positive integers;
  • the processing unit 801 is specifically configured to determine that the first reference signal sequence is the frequency domain QPSK time domain amplitude stable sequence and/or the time domain QPSK frequency domain amplitude stable sequence: the first reference signal
  • the PTRS block size M included in the pattern is greater than or equal to the first threshold; or, the block size M corresponding to the effective sequence used to carry the first reference signal sequence in the PTRS blocks included in the pattern of the first reference signal is greater than or equal to the first threshold.
  • the processing unit 801 is further configured to determine the power boost value of the second device according to the PTRS block size in the pattern of the first reference signal if it is determined that the first reference signal sequence is a blocky non-zero power sequence Or, the processing unit 801 is further configured to determine the power boost value of the first reference signal sequence to a fixed value.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence; the processing unit 801 is further configured to obtain information from the second type of reference signal according to the first parameter In the sequence, determine the second reference signal sequence; where the PTRS block size included in the pattern of the second reference signal sequence is 1; the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, and the phase noise on the received signal
  • the influence of the signal includes at least one of the following: inter-subcarrier interference, common phase error, and phase noise.
  • the transceiver unit 802 is further configured to map the second reference signal sequence to the second symbol sequence, and send a second reference signal corresponding to the second reference signal sequence to the second device; the first parameter further includes at least one of the following: second The pattern of the reference signal, the MCS threshold used to determine the pattern of the second reference signal, and the bandwidth threshold used to determine the pattern of the second reference signal.
  • the processing unit 801 is further configured to determine the power boost value of the second device according to the MCS of the second device.
  • the processing unit 801 is specifically configured to: if it is determined that the MCS of the second device is equal to or greater than the first MCS threshold, determine that the power boost value of the second device is 0 dB;
  • the power boost value of the second device is determined according to the number of DMRS ports associated with the PTRS port of the second device.
  • the processing unit 801 is specifically configured to: if it is determined that the MCS of the second device is greater than the first MCS threshold, determine that the power boost value of the second device is 0dB; if it is determined that the MCS of the second device is less than or equal to When the first MCS threshold is used, the power boost value of the second device is determined according to the number of DMRS ports associated with the PTRS port of the second device.
  • the processing unit 801 is further configured to: determine the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, according to the association relationship between the first parameter and the second reference signal sequence , Determine the second reference signal sequence.
  • the transceiver unit 802 is further configured to: send indication information of the first reference signal sequence to the second device; the indication information is used to indicate the first reference signal sequence; or, send the second reference signal sequence to the second device Indication information of the signal sequence; the indication information is used to indicate the second reference signal sequence.
  • the first parameter includes at least one of the following: phase noise model of the communication device, phase noise power spectral density of the communication device, subcarrier spacing, carrier frequency, bandwidth of the communication device, modulation and coding mode of the communication device MCS, the modulation order of the communication device, the channel parameter of the communication device, the pattern of the first reference signal, the MCS threshold used to determine the pattern of the first reference signal, the bandwidth threshold used to determine the pattern of the first reference signal, and so on.
  • the first reference signal sequence is one of the following sequences: QPSK pseudo-random sequence, block head-to-tail cyclic sequence, DMRS sequence, block zero power sequence, ZC sequence, block non-zero power sequence;
  • the second reference signal sequence is one of the following sequences: QPSK pseudo-random sequence and DMRS sequence.
  • each functional unit in each embodiment of this application may be Integrated in one processing unit, it can also be a separate physical presence, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application further provides a communication device 900.
  • the communication device 900 (hereinafter referred to as the device 900) can be used to implement the method executed by the first device in the foregoing method embodiment.
  • the device 900 may be a network device or a terminal device, or may be located in Network equipment or terminal equipment can be the originating equipment.
  • the apparatus 900 includes one or more processors 901.
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device 900 may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, and so on.
  • the apparatus 900 includes one or more processors 901, and the one or more processors 901 can implement the method executed by the originating device or the first device in the above-described embodiment.
  • processor 901 may implement other functions in addition to the method in the embodiment shown above.
  • the processor 901 may execute instructions to make the apparatus 900 execute the method for determining the reference signal executed by the first device in the foregoing method embodiment.
  • the instruction can be stored in whole or in part in the processor 901, such as the instruction 903, or stored in the memory 902 coupled to the processor 901 in whole or in part, such as the instruction 904, or the device 900 can be executed by the instructions 903 and 904 together.
  • the communication device 900 may also include a circuit, which may implement the functions performed by the terminal device in the foregoing method embodiment.
  • the device 900 may include one or more memories 902, on which instructions 904 are stored, and the instructions may be executed on a processor, so that the device 900 executes the determination described in the foregoing method embodiments. Reference signal method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the foregoing one or more memories 902 may store the association or correspondence described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory may be separately provided, or may be integrated or coupled together.
  • the device 900 may further include a transceiver unit 905.
  • the processor 901 may be referred to as a processing unit, and controls a device (terminal or base station).
  • the transceiving unit 905 may be referred to as a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 900 may include a transceiver unit 905.
  • the device 900 may further include a transceiver unit 905 and an antenna 906.
  • the processor 901 may be referred to as a processing unit, and controls a device (terminal or base station).
  • the transceiving unit 905 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 906.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the determination reference signal described in any method embodiment applied to the originating device or the first device is realized. Sequence method.
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the method for determining a reference signal sequence described in any method embodiment applied to the originating device or the first device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center through a wired (for example, coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method for determining a reference signal sequence described in any method embodiment applied to the originating device or the first device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor It may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • the method for determining the reference signal provided by the embodiment of the present application is described in detail above with reference to FIG. 6. Based on the same inventive concept as the method for determining the reference signal described above, the embodiment of the present application also provides a communication device.
  • the device 1000 includes a processing unit 1001 and a transceiver unit 1002, and the communication device 1000 (hereinafter referred to as the device 1000) can be used to implement the method executed by the second device in the foregoing embodiment.
  • the apparatus 1000 may be a network device or a terminal device, may also be located in a network device or a terminal device, or may be a second device or a receiving device.
  • the foregoing apparatus 1000 may be a network device or a terminal device, or may be a chip applied to the network device or terminal device, or other combination devices or components having the functions of the foregoing terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the apparatus 1000 is used to execute the steps executed by the second device in the foregoing method embodiment, or execute the steps executed by the receiving device.
  • the transceiving unit 1002 is configured to receive the first reference signal from the first device; the processing unit 1001 is configured to determine the first reference signal sequence from the reference signal sequence set, and the first symbol sequence mapped according to the first reference signal sequence, Demap the first reference signal to obtain the received signal of the first reference signal sequence; the reference signal sequence set includes at least: the first type of reference signal sequence; the time domain and/or frequency domain amplitude variance of the first type of reference signal sequence Meet the preset threshold; the received signal of the first reference signal sequence is used by the communication device to estimate the influence of phase noise on the received signal, where the influence of phase noise on the received signal includes at least one of the following: inter-subcarrier interference, common phase error, Phase noise.
  • the processing unit 1001 is specifically configured to determine the first reference signal sequence from the reference signal sequence set according to the first parameter; wherein the first parameter includes at least one of the following: transmission between the first device and the communication device Parameter, the pattern of the first reference signal.
  • the reference signal sequence set includes: a BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence; the processing unit 1001 is specifically configured to: determine the first reference if it is determined that the first parameter satisfies the following conditions
  • the signal sequence is the BPSK reference signal sequence of Pi/2 based on the Golay complementary sequence:
  • the PTRS block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, or the effective sequence used to carry the first reference signal sequence in the PTRS block
  • the corresponding block size is 2 ⁇ a ⁇ 10 ⁇ b ⁇ 26 ⁇ c, where a, b, and c are positive integers.
  • the reference signal sequence set includes: a ZC sequence; the processing unit 1001 is specifically configured to: if it is determined that the first parameter satisfies the following conditions, determine that the first reference signal sequence is a ZC column: the PTRS block size is Prime number; or, the block size used to carry the effective sequence of the first reference signal sequence in the PTRS block is a prime number.
  • the reference signal sequence set includes: frequency domain QPSK time domain amplitude stable sequence and/or time domain QPSK frequency domain amplitude stable sequence; frequency domain QPSK time domain amplitude stable sequence is based on the frequency domain with effective sequence length Q One of the P1 reference sequences whose time-domain amplitude variance selected from the QPSK sequence set satisfies the second threshold; the time-domain QPSK frequency-domain amplitude stable sequence is based on the frequency-domain amplitude selected from the time-domain QPSK sequence set with an effective sequence length of Q One of P2 reference sequences whose variance meets the third threshold; where P1 and P2 are positive integers;
  • the processing unit 1001 is specifically configured to: if it is determined that the first parameter satisfies the following conditions, determine that the first reference signal sequence is a frequency domain QPSK time domain amplitude stable sequence and/or a time domain QPSK frequency domain amplitude stable sequence: first reference signal
  • the PTRS block size M included in the pattern of is greater than or equal to the first threshold; or, the block size M corresponding to the effective sequence used to carry the first reference signal sequence in the PTRS blocks included in the pattern of the first reference signal is greater than or equal to the first threshold .
  • the processing unit 1001 is further configured to determine the power boost value of the communication device according to the PTRS block size in the pattern of the first reference signal; or, determine the power boost value of the communication device to a fixed value.
  • the reference signal sequence set further includes: a second type of reference signal sequence; the second type of reference signal sequence is a discrete reference signal sequence; the transceiver unit 1002 is further configured to receive the second reference signal from the first device; The processing unit 1001 is further configured to determine a second reference signal sequence from the second type of reference signal sequence according to the first parameter, and demap the second reference signal according to the second symbol sequence mapped by the second reference signal sequence, To obtain the received signal of the second reference signal sequence; wherein the PTRS block size included in the pattern of the second reference signal sequence is 1; the second reference signal sequence is used by the second device to estimate the influence of phase noise on the received signal, The influence of the received signal includes at least one of the following: inter-subcarrier interference, common phase error, phase noise; the first parameter also includes at least one of the following: the pattern of the second reference signal, the MCS used to determine the pattern of the second reference signal The threshold is used to determine the bandwidth threshold of the pattern of the second reference signal.
  • the processing unit 1001 is further configured to: determine the first reference signal sequence according to the association relationship between the first parameter and the first reference signal sequence; or, according to the association relationship between the first parameter and the second reference signal sequence , Determine the second reference signal sequence.
  • the transceiver unit 1002 is also used to: receive the indication information of the first reference signal sequence from the second device; the indication information of the first reference signal sequence is used to indicate the first reference signal sequence; or The indication information of the second reference signal sequence of the second device; the indication information of the second reference signal sequence is used to indicate the second reference signal sequence.
  • the processing unit 1001 is further configured to determine the power boost value of the communication device according to the MCS of the communication device; alternatively, determine the power boost value of the communication device to a fixed value.
  • the processing unit 1001 is specifically configured to: if it is determined that the MCS of the communication device is equal to or greater than the first MCS threshold, determine that the power boost value is 0 dB; if it is determined that the MCS of the communication device is less than the first MCS threshold, Then, the power boost value is determined according to the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the processing unit 1001 is specifically configured to: if it is determined that the MCS of the communication device is greater than the first MCS threshold, determine that the power boost value is 0dB; if it is determined that the MCS of the communication device is less than or equal to the first MCS threshold, Then, the power boost value is determined according to the number of demodulation reference signal DMRS ports associated with the phase noise estimation reference signal PTRS port.
  • the first parameter includes at least one of the following: phase noise model of the communication device, phase noise power spectral density of the communication device, subcarrier spacing, carrier frequency, bandwidth of the communication device, modulation and coding mode of the communication device MCS, the modulation order of the communication device, the channel parameter of the communication device, the pattern of the first reference signal, the MCS threshold used to determine the pattern of the first reference signal, the bandwidth threshold used to determine the pattern of the first reference signal, and so on.
  • the first reference signal sequence is one of the following sequences: QPSK pseudo-random sequence, block head-to-tail cyclic sequence, DMRS sequence, block zero power sequence, ZC sequence, block non-zero power sequence;
  • the second reference signal sequence is one of the following sequences: QPSK pseudo-random sequence and DMRS sequence.
  • each functional unit in each embodiment of this application may be Integrated in one processing unit, it can also be a separate physical presence, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • an embodiment of the present application further provides a communication device 1100.
  • the apparatus 1100 can be used to implement the method executed by the second device in the foregoing method embodiment.
  • the device 1100 may be located in the second device or the receiving device, and may be a network device or a network device. Terminal Equipment.
  • the device 1100 includes one or more processors 1101.
  • the processor 1101 may be a general-purpose processor, a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device 1100 may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, and so on.
  • the apparatus 1100 includes one or more processors 1101, and the one or more processors 1101 can implement the method executed by the second device or the receiving device in the above-mentioned embodiment.
  • processor 1101 may implement other functions in addition to the method in the above-mentioned embodiment.
  • the processor 1101 may execute instructions to cause the apparatus 1100 to execute the method for determining the reference signal executed by the second device in the foregoing method embodiment.
  • the instruction may be stored in whole or in part in the processor, such as instruction 1103, or may be stored in whole or in part in a memory 1102 coupled to the processor 1101, such as instruction 1104, or through instructions 1103 and 1104 together, the device 1100 can execute the above The method for determining the reference signal performed by the second device described in the method embodiment.
  • the communication device 1100 may also include a circuit, which may implement the functions performed by the terminal device in the foregoing method embodiment.
  • the device 1100 may include one or more memories 1102, on which instructions 1104 are stored, and the instructions may be executed on the processor, so that the device 1100 executes the determination described in the foregoing method embodiments. Reference signal method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the foregoing one or more memories 1102 may store the association or correspondence described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory may be separately provided, or may be integrated or coupled together.
  • the apparatus 1100 may further include a transceiver unit 1105.
  • the processor 1101 may be referred to as a processing unit, and controls a device (terminal or base station).
  • the transceiving unit 1105 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the device 1100 may include a transceiver unit 1105.
  • the device 1100 may further include a transceiver unit 1105 and an antenna 1106.
  • the processor 1101 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiver unit 1105 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1106.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable Logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the above method steps in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a computer, the determination reference described in any method embodiment applied to the second device or the terminal device is realized. Signal method.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the method for determining a reference signal described in any method embodiment applied to the second device or the terminating device.
  • the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server, or data center through a wired (for example, coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method for determining a reference signal described in any method embodiment applied to the second device or the receiving device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor It may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the solutions and objectives provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable storage medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • a computer storage medium may be any available medium that can be accessed by a computer.
  • computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures Any other medium that can be accessed by a computer in the desired form of program code.
  • any connection can also become a computer-readable storage medium as appropriate.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and Disc include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs.
  • CDs compact discs
  • DVD digital versatile discs
  • Discs can usually copy data magnetically, and Discs can use lasers to optically copy data. The above combination should also be included in the protection scope of the computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本申请公开了一种确定参考信号的方法及装置,该方法包括:第一设备从参考信号序列集合中,确定第一参考信号序列;第一设备将第一参考信号序列映射到第一符号序列上,并根据第一符号序列向第二设备发送第一参考信号序列对应的第一参考信号。第一参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;参考信号序列集合至少包括:第一类参考信号序列;第一类参考信号序列的时域和频域幅度方差满足预设阈值。

Description

一种确定参考信号的方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种确定参考信号的方法及装置。
背景技术
在新一代无线通信网络中(如第五代移动通信技术(5th generation mobile networks,5G)或第六代移动通信技术(6th generation mobile networks,6G)通信网络),通信系统的工作频段在6GHz以上,例如28GHz、39GHz、60GHz、73GHz等频段,因此新一代无线通信网络具有高频通信系统的显著特点,从而容易实现较高的吞吐量。但是,相对现有的无线通信网络,工作在6GHz以上范围的新一代无线通信网络,随着工作频段的增加,相位噪声水平以20×log10(f1/f2)的水平恶化,其中f1和f2均为载波的频点,即f1频段的相位噪声功率谱密度比f2频段的相位噪声功率谱密度高20×log10(f1/f2)dB。以2G频段和28G频段为例,28G频段的相位噪声水平比2G频段高23dB。相位噪声水平越高,公共相位误差(common phase error,CPE)对传输的信号造成的相位误差就越大。
现有技术中,上行和下行都是采用解调参考信号(de-modulation reference signal,DMRS)和相位补偿参考信号(phase compensation reference signal,PCRS)共同完成信道估计、相位噪声估计以及数据解调,从而通过估计出的相位噪声进行相位噪声误差补偿,提高通信质量。其中PCRS也可以称为相位跟踪参考信号(phase tracking reference signal,PTRS),为描述方便,以下均统一称为PTRS。当调制与编码策略(modulation and coding scheme,MCS)大于其对应MCS门限时,子载波间的干扰增加明显,显著增加解调或解码难度。因此,在高阶调制时,需要考虑对子载波间的干扰(inter sub-carrier interference,ICI)的估计与补偿。
现有的ICI估计方法,主要是通过PTRS所在的资源单元(Resource Element,RE)的接收信号,或联合PTRS所在的RE附近RE的接收信号构造矩阵,并通过矩阵求逆和参考信号的发射信号获取ICI估计值。现有的ICI估计中采用的PTRS通常为映射在频域正交相移键控(quadrature phase shift keying,QPSK)调制的符号,若此时相噪较恶劣或者信道不平坦,很容易导致子载波间的干扰估计不准确。
发明内容
本申请提供一种确定参考信号的方法及装置,用以解决现有技术中相噪估计不准确的问题。
第一方面,第一设备从参考信号序列集合中,确定第一参考信号序列;第一参考信号序列用于第二设备估计相位噪声对接收信号的影响;其中,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;该参考信号序列集合至少包括:第一类参考信号序列;该第一类参考信号序列的时域和频域幅度方差满足预设阈值;第一设备将第一参考信号序列映射到第一符号序列上,向第二设备发送第一参考信号序列对应的第一参考信号。
通过上述方法,第一设备通过确定参考信号序列集合确定第一参考信号序列,其中,参考信号序列集合中的第一类参考信号序列可以具有时域幅度和频域幅度的方差小于给定预设阈值,使得确定的第一参考信号序列在频域和时域均有较为稳定的幅度响应,解决了现有技术中用于正交频分复用(orthogonal frequency division multiplexing,OFDM)的PTRS的序列变换到频域后的时域幅度特性波动较随机,以及参考信号序列不能抵抗严重的信道频选性的问题,提高了相噪估计精度。
一种可能的设计,第一设备根据第一参数,从参考信号序列集合中确定第一参考信号序列;该第一参数包括以下至少一项:第一设备和/或第二设备的硬件能力;第一设备与第二设备的传输参数,第二设备的相位跟踪参考信号PTRS参数。
通过上述方法,第一设备可以根据第一参数确定的第一设备与第二设备所处的传输场景,可以灵活的根据第一参数,确定该场景下适合的参考信号序列,进而,有效的提高相噪估计的精度。
一种可能的设计,参考信号序列集合包括:基于格莱Golay互补序列的Pi/2的二进制相移键控(binary phase shift keying,BPSK)的参考信号序列;第一设备若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS块大小为2^a×10^b×26^c;或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c;其中,a,b,c为正整数。
通过上述方法,第一设备可以根据第一参数确定的PTRS图案,在满足PTRS块大小为2^a×10^b×26^c,或用于有效序列对应的PTRS块大小为2^a×10^b×26^c时,可以选择基于Golay互补序列的Pi/2的BPSK的参考信号序列,作为第一参考信号序列,进而使得选择的PTRS可以满足在频域和时域均有稳定的幅度响应,有效提高相噪估计的精度。
一种可能的设计,参考信号序列集合包括:ZC序列;第一设备若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
通过上述方法,第一设备可以根据第一参数确定的PTRS图案,在满足PTRS块大小为质数,或用于有效序列对应的PTRS块大小为质数时,可以选择ZC序列,作为第一参考信号序列,进而使得选择的PTRS可以满足在频域和时域均有稳定的幅度响应,有效提高相噪估计的精度。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;其中,P1,P2为正整数;第一设备若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值;和/或,M为L的整数倍,其中L为一个资源块(resource block,RB)内包含的资源单元RE数;M和L为正整数。
通过上述方法,第一设备根据第一参数确定的PTRS图案,在满足PTRS块大小大于第一阈值时,可以选择时频域幅度稳定的参考信号序列,作为第一参考信号序列,进而使 得选择的PTRS可以满足PTRS块大小较大时进行相噪估计对参考信号序列的要求,有效提高相噪估计的精度。
一种可能的设计,第一设备根据第一参考信号的图案中的PTRS块大小,确定第二设备的功率抬升值,或者,第一设备确定第二设备的功率抬升值为固定值。
通过上述方法,第一设备可以根据当前传输环境的特点,在满足第一设备和第二设备对第一参考信号的解析能力的条件下,通过合适的功率抬升,提高相噪估计的精度。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;第一设备根据第一参数,从第二类参考信号序列中,确定第二参考信号序列;其中,第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;第一设备将第二参考信号序列映射到第二符号序列上,向第二设备发送第二参考信号序列对应的第二参考信号;第二参考信号序列的图案包括的PTRS块大小为1;第一参数还包括以下至少一种:第二参考信号的图案、用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
通过上述方法,第一设备根据第一参数确定的PTRS图案,在满足PTRS块大小等于1时,可以选择离散参考信号序列作为第一参考信号序列,进而使得选择的PTRS可以满足信道条件较差时进行相噪估计对参考信号序列的要求,有效提高相噪估计的精度。
一种可能的设计,第二参考信号序列的功率抬升值由第二设备的MCS确定;或者,第二设备的功率抬升值为固定值。
一种可能的设计,第一设备若确定第二设备的MCS等于或大于第一MCS阈值时,第二设备的功率抬升值为0dB;第一设备若确定第二设备的MCS小于第一MCS阈值时,第二设备的功率抬升值由第二设备的PTRS端口所关联的DMRS端口数确定。
一种可能的设计,第一设备若确定第二设备的MCS大于第一MCS阈值时,第二设备的功率抬升值为0dB;第一设备若确定第二设备的MCS小于或等于第一MCS阈值时,第二设备的功率抬升值由PTRS端口所关联的DMRS端口数确定。
通过上述方法,第一设备可以根据当前传输环境的特点,例如,信道条件较差的情况,在满足第一设备和第二设备对第二参考信号的解析能力的条件下,通过合适的功率抬升,提高相噪估计的精度。
一种可能的设计,第一设备根据第一参数与第一参考信号序列的关联关系,确定第一参考信号序列;或者,第一设备根据第一参数与第二参考信号序列的关联关系,确定第二参考信号序列。
通过上述方法,可以减少第一设备通过第一参数确定第一参考信号序列或第二参考信号序列的复杂度。
一种可能的设计,第一设备向第二设备发送第一参考信号序列的指示信息;该指示信息用于指示第一参考信号序列;或者,第一设备向第二设备发送第二参考信号序列的指示信息;该指示信息用于指示第二参考信号序列。
通过上述方法,可以保证第一设备与第二设备通过第一参数确定第一参考信号序列或第二参考信号序列的复杂度及一致性。
第二方面,本申请实施例提供一种通信装置,该通信装置(以下简称装置)具有实现上述第一方面的方法实例中第一设备所执行的步骤的功能。该装置可以位于第一设备中, 第一设备可以为网络设备或终端设备。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,装置的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面方法示例中第一设备所执行的相应步骤或功能,包括收发单元和处理单元。其中,处理单元,用于从参考信号序列集合中,确定第一参考信号序列;第一参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;参考信号序列集合至少包括:第一类参考信号序列;第一类参考信号序列的时域或频域幅度方差满足预设阈值;收发单元,用于将第一参考信号序列映射到第一符号序列上,向第二设备发送第一参考信号序列对应的第一参考信号。
一种可能的设计,处理单元,具体用于根据第一参数,从参考信号序列集合中确定第一参考信号序列;第一参数包括以下至少一项:第一设备与第二设备的传输参数,第一参考信号的图案。
一种可能的设计,参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;处理单元,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS资块大小为2^a×10^b×26^c,或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c,a,b,c为正整数。
一种可能的设计,参考信号序列集合包括:ZC序列;处理单元,具体用于若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;
处理单元,具体用于若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值;M和L为正整数。
一种可能的设计,处理单元,还用于若确定第一参考信号序列为块状非零功率序列,则根据第一参考信号的图案中的PTRS块大小,确定第二设备的功率抬升值;或者,处理单元,还用于确定第一参考信号序列的功率抬升值为固定值。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;处理单元,还用于根据第一参数,从第二类参考信号序列中,确定第二参考信号序列;其中,第二参考信号序列的图案包括的PTRS块大小为1;第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括子载波间干扰和/或公共相位误差和或相位噪声;
收发单元,还用于将第二参考信号序列映射到第二符号序列上,向第二设备发送第二参考信号序列对应的第二参考信号;第一参数还包括以下至少一种:第二参考信号的图案、 用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
一种可能的设计,处理单元,还用于根据第二设备的MCS确定第二设备的功率抬升值。
一种可能的设计,处理单元,具体用于:若确定第二设备的MCS等于或大于第一MCS阈值时,则确定第二设备的功率抬升值为0dB;若确定第二设备的MCS小于第一MCS阈值时,则根据第二设备的PTRS端口所关联的DMRS端口数确定第二设备的功率抬升值。
一种可能的设计,若确定第二设备的MCS大于第一MCS阈值时,则确定第二设备的功率抬升值为0dB;若确定第二设备的MCS小于或等于第一MCS阈值时,则根据第二设备的PTRS端口所关联的DMRS端口数确定第二设备的功率抬升值。
一种可能的设计,处理单元,还用于:根据第一参数与第一参考信号序列的关联关系,确定第一参考信号序列;或者,根据第一参数与第二参考信号序列的关联关系,确定第二参考信号序列。
一种可能的设计,收发单元,还用于:向第二设备发送第一参考信号序列的指示信息;指示信息用于指示第一参考信号序列;或者,向第二设备发送第二参考信号序列的指示信息;指示信息用于指示第二参考信号序列。
第三方面,本申请实施例提供一种确定参考信号的方法,第二设备从参考信号序列集合中确定第一参考信号序列;参考信号序列集合至少包括:第一类参考信号序列;第一类参考信号序列的时域和频域幅度方差满足预设阈值;第二设备接收来自第一设备的第一参考信号,并根据第一参考信号序列映射的第一符号序列,对第一参考信号解映射,以获取第一参考信号序列的接收信号;第一参考信号序列的接收信号和第一参考信号序列,用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声。
通过上述方法,第二设备可以通过确定参考信号序列集合确定第一参考信号序列,其中,参考信号序列集合中的第一类参考信号序列可以具有时域幅度和频域幅度的方差小于给预设阈值,使得确定的第一参考信号序列在频域和时域均有较为稳定的幅度响应,解决了现有技术中用于OFDM的PTRS的序列变换到频域后的时域幅度特性波动较随机,以及参考信号序列不能抵抗严重的信道频选性的问题,提高了相噪估计精度。
一种可能的设计,第二设备根据第一参数,从参考信号序列集合中确定第一参考信号序列;其中,第一参数包括以下至少一种:
第一设备和/或第二设备的硬件能力;
第一设备与第二设备间的传输参数;
第二设备的相位跟踪参考信号PTRS参数。
通过上述方法,第二设备可以根据第一参数所确定的第一设备与第二设备所处的传输场景,确定该场景下适合的参考信号序列,进而,在不同场景下都可以保证相噪估计的精度。
一种可能的设计,参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;第二设备若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS块大小为2^a×10^b×26^c,或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c,a,b,c为正整数。
通过上述方法,第二设备可以根据第一参数确定的PTRS图案,在满足PTRS块大小为2^a×10^b×26^c,或用于有效序列对应的PTRS块大小为2^a×10^b×26^c时,可以确定基于Golay互补序列的Pi/2的BPSK的参考信号序列作为第一参考信号序列,进而使得确定的PTRS可以满足在频域和时域均有稳定的幅度响应,有效保证了相噪估计的精度。
一种可能的设计,参考信号序列集合包括:ZC序列;第二设备若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
通过上述方法,第二设备可以根据第一参数确定的PTRS图案,在满足PTRS块大小为质数,或用于有效序列对应的PTRS块大小为质数时,可以确定ZC序列作为第一参考信号序列,进而使得确定的PTRS可以满足在频域和时域均有稳定的幅度响应,有效保证了相噪估计的精度。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;第二设备若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值;M和L为正整数。
通过上述方法,第二设备根据第一参数确定的PTRS图案,在满足PTRS块大小大于第一阈值时,可以确定时频域幅度稳定的参考信号序列作为第一参考信号序列,进而使得确定的PTRS可以满足PTRS块大小较大时进行相噪估计对参考信号序列的要求,有效提高相噪估计的精度。
一种可能的设计,第二设备根据第一参考信号的图案中的PTRS块大小,确定第二设备的功率抬升值,或者,第二设备确定第二设备的功率抬升值为固定值。
通过上述方法,第二设备可以根据当前传输环境的特点,确定第一参考信号序列的功率抬升值,进而对第一参考信号进行有效解析,使得相噪估计的精度得到提升。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;第二设备根据第一参数,从第二类参考信号序列中,确定第二参考信号序列;其中,第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括子载波间干扰和/或公共相位误差和或相位噪声;第二设备接收来自第一设备的第二参考信号,并根据第二参考信号序列映射的第二符号序列,对第二参考信号解映射,以获取第二参考信号序列的接收信号;第二参考信号序列的图案包括的PTRS块大小为1;第一参数还包括以下至少一种:第二参考信号的图案、用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
通过上述方法,第二设备根据第一参数确定的PTRS图案,在满足PTRS块大小等于1时,可以确定离散参考信号序列为第一参考信号序列,进而使得选择的PTRS可以满足信道条件较差时,对第一参考信号进行有效解析,使得相噪估计的精度得到提升。
一种可能的设计,第二设备根据第二设备的MCS,确定第二设备的功率抬升值;或者, 第二设备确定第二设备的功率抬升值为固定值。
一种可能的设计,第二设备若确定第二设备的MCS等于或大于第一MCS阈值时,则功率抬升值为0dB;第二设备若确定第二设备的MCS小于第一MCS阈值时,则功率抬升值由相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定。
一种可能的设计,第二设备若确定第二设备的MCS大于第一MCS阈值时,则功率抬升值为0dB;第二设备若确定第二设备的MCS小于或等于第一MCS阈值时,则功率抬升值由相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定。
通过上述方法,第二设备可以根据当前传输环境的特点,确定第一设备选择的功率抬升值,提高相噪估计的精度。
一种可能的设计,第一参数包括以下至少一种:第一设备和/或第二设备相噪模型、第一设备和/或第二设备的相噪功率谱密度、子载波间隔、载波频点、第二设备的带宽、第二设备的调制编码方式MCS、第二设备的调制阶数、第一设备与第二设备间的信道参数、第一参考信号的图案、用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限。
一种可能的设计,第一参考信号序列为以下序列的一种:QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列。
一种可能的设计,第二设备根据第一参数与第一参考信序列的关联关系,确定所述第一参考信号序列;或者,所述第二设备根据所述第一参数与第二参考信序列的关联关系,确定第二参考信号序列。
通过上述方法,可以减少第二设备通过第一参数确定第一参考信号序列或第二参考信号序列的复杂度,减少信令发送的内容,降低信令所占用的传输资源。
一种可能的设计,第二设备接收来自第二设备的第一参考信号序列的指示信息;指示信息用于指示第一参考信号序列;或者,第二设备接收来自第二设备的第二参考信号序列的指示信息;指示信息用于指示第二参考信号序列。
通过上述方法,可以保证第二设备确定第一参考信号序列或第二参考信号序列的复杂度,保证第一设备与第二设备都可以选择一致的第一参考信号序列或第二参考信号序列,用于第二设备进行相噪估计。
第四方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面的方法实例中行为的功能。该装置可以位于第二设备中,第二设备可以为网络设备或终端设备。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,装置的结构中包括处理单元和收发单元,这些单元可以执行上述第三方面方法示例中的相应步骤或功能,包括:收发单元和处理单元,其中,收发单元,用于接收来自第一设备的第一参考信号;处理单元,用于从参考信号序列集合中确定第一参考信号序列,并根据第一参考信号序列映射的第一符号序列,对第一参考信号解映射,以获取第一参考信号序列的接收信号;参考信号序列集合至少包括:第一类参考信号序列;第一类参考信号序列的时域或频域幅度方差满足预设阈值;第一参考信号序列的接收信号用于通信装置估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声。
一种可能的设计,处理单元,具体用于根据第一参数,从参考信号序列集合中确定第一参考信号序列;其中,第一参数包括以下至少一种:第一设备与通信装置的传输参数, 第一参考信号的图案。
一种可能的设计,参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;处理单元,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS块大小为2^a×10^b×26^c,或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c。
一种可能的设计,参考信号序列集合包括:ZC序列;处理单元,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;
处理单元,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值;M和L为正整数。
一种可能的设计,处理单元,还用于根据第一参考信号的图案中的PTRS块大小,确定通信装置的功率抬升值;或者,确定通信装置的功率抬升值为固定值。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;
收发单元,还用于接收来自第一设备的第二参考信号;
处理单元,还用于根据第一参数,从第二类参考信号序列中,确定第二参考信号序列,并根据第二参考信号序列映射的第二符号序列,对第二参考信号解映射,以获取第二参考信号序列的接收信号;其中,第二参考信号序列的图案包括的PTRS块大小为1;第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括子载波间干扰和/或公共相位误差和或相位噪声;第一参数还包括以下至少一种:第二参考信号的图案、用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
一种可能的设计,处理单元,还用于:根据第一参数与第一参考信序列的关联关系,确定第一参考信号序列;或者,根据第一参数与第二参考信序列的关联关系,确定第二参考信号序列。
一种可能的设计,收发单元,还用于:接收来自第二设备的第一参考信号序列的指示信息;第一参考信号序列的指示信息用于指示第一参考信号序列;或者,接收来自第二设备的第二参考信号序列的指示信息;第二参考信号序列的指示信息用于指示第二参考信号序列。
一种可能的设计,处理单元,还用于根据通信装置的MCS,确定通信装置的功率抬升值;或者,确定通信装置的功率抬升值为固定值。
一种可能的设计,处理单元,具体用于:
若确定通信装置的MCS等于或大于第一MCS阈值时,则确定功率抬升值为0dB;
若确定通信装置的MCS小于第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定功率抬升值。
一种可能的设计,处理单元,具体用于:
若确定通信装置的MCS大于第一MCS阈值时,则确定功率抬升值为0dB;
若确定通信装置的MCS小于或等于第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定功率抬升值。
一种可能的设计,第一参数包括以下至少一种:通信装置的相噪模型、通信装置的相噪功率谱密度、子载波间隔、载波频点、通信装置的带宽、通信装置的调制编码方式MCS、通信装置的调制阶数、通信装置的信道参数、第一参考信号的图案、用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限。
一种可能的设计,第一参考信号序列为以下序列的一种:QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列;第二参考信号序列为以下序列的一种:QPSK伪随机序列、DMRS序列。
第五方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法第一设备或第二设备的功能,其包括用于执行第一方面、第一方面中任一种可能实现方式、所描述的步骤或功能相对应的部件(means)。步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,该装置可以为网络设备或终端设备。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中第一设备或第二设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该通信装置执行第一方面、第一方面中任一种可能实现方式中第一设备完成的方法。
在一种可能的实现中,上述通信装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中第一设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。通信装置可以位于网络设备或终端设备中,或为网络设备或终端设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面、第一方面中任一种可能实现方式中发端设备或收端设备完成的方法。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第一方面中任一种可能实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码, 当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种通信装置,例如芯片系统等,该装置与存储器相连,用于读取并执行存储器中存储的软件程序,执行上述第一方面、第一方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法方面第一设备或第二设备的功能,其包括用于执行第二方面、第二方面中任一种可能实现方式中所描述的步骤或功能相对应的部件(means)。步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,通信装置可以为第二设备;第二设备可以为网络设备或终端设备。
在一种可能的实现中,上述通信装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中第二设备相应的功能。
可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第三方面或第三方面中任一种可能实现方式中第二设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。一个或多个处理器被配置为支持通信装置执行上述方法中发端设备或收端设备相应的功能。可选的,通信装置还可以包括一个或多个存储器,存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。通信装置可以位于第二设备中,第二设备可以为网络设备或终端设备。
另一个可能的实现中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第三方面、第三方面中任一种可能实现方式中第二设备完成的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面、第三方面中任一种可能实现方式中的方法的指令。
第十一方面,提供一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第三方面、第三方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信装置,例如芯片系统等,该装置与存储器相连,用于读取并执行存储器中存储的软件程序,执行上述第三方面、第三方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,通信系统包括用于执行上述第一方面所述的方法的第一设备、用于执行上述第三方面所述的方法的第二设备。
附图说明
图1a-图1c为本申请提供的通信系统的架构示意图;
图2a-图2b为本申请提供的一种相噪估计模型的示意图;
图2c-图2e为本申请提供的一种相噪估计的示意图;
图2f-图2h为本申请提供的一种相噪估计的示意图;
图3为本申请提供的一种参考信号序列的图样示意图;
图4a-图4c为本申请提供的一种参考信号序列的图样示意图;
图5a-图5c为本申请提供的一种参考信号序列的图样示意图;
图6为本申请提供的一种确定参考信号的流程示意图;
图7为本申请提供的一种参考信号序列的图样示意图;
图8为本申请提供的一种参考信号序列的图样示意图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构示意图;
图11为本申请提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅 是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)、网络设备,可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node b,eNB或eNodeB),或者是云无线接入网络(cloud radio access network,CRAN)中的无线控制器,或者可以为5G网络中的网络设备,如无线接入(new radio access technology in 3gpp,NR)系统中的基站(generation nodeb,gNB)或小站、微站,传输接收点(transmission reception point,TRP),还可以是中继站、接入点或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等任何其它无线接入设备,本申请实施例不限于此。
3)、时域资源,包括时间单元,时间单元可以为时隙(slot),迷你时隙(mini-slot),符号(symbol)或其他时域粒度(如系统帧、子帧),其中一个时隙可以包括至少一个符号,例如14个符号,或者12个符号。
在5G NR中,一个时隙可以由用作下行传输的符号、用作灵活的符号、用作上行传输的符号等其中的至少一个组成,这样时隙的构成称为不同的时隙格式(slot format,SF),时隙格式最多可能有256种。
时隙可以有不同的时隙类型,不同的时隙类型包括的符号个数不一样,如迷你时隙(mini slot)包含小于7个符号,2个符号,3个符号,4个符号等,普通时隙(slot)包含7个符号或14个符号等。根据子载波间隔不同,每个符号长度可以不同,因此时隙长度可以不同。
5)频域上,由于5G NR单载波带宽可以达到400MHz,因而又在一个载波内定义了带宽部分(bandwidth part,BWP),也可以称为载波带宽部分(carrier bandwidth part)。BWP包括频域上的连续若干个资源单元,比如资源块(resource block,RB)。带宽部分可以为下行或上行带宽部分,终端设备在激活的带宽部分内的数据信道上接收或发送数据。
频域资源,包括子信道、频段(band)、载波(carrier)、带宽部分(bandwidth part,BWP)、资源块(resource block,RB),资源单元RE,或资源池等。其中,RB在时域上占用1个子帧或1个时隙,在频域上占用连续的多个子载波。LTE中,PRB在时域上占一个子帧中连续的14个OFDM符号,频域上占用连续的12个子载波。
子信道,是物理侧行共享信道占用频域资源的最小单位,一个子信道可以包括一个或多个资源块(resource block,RB)。无线通信系统在频域上的带宽可以包括多个RB,例如,在LTE系统的各可能的带宽中,包括的PRB可以为6个、15个、25个、50个等。
子载波间隔(sub-carrier spacing,SCS),是OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。在5G NR中,引入了多种子载波间隔,不同的载波可以有不同的子载波间隔。基线为15kHz,可以是15kHz×2 n,n是整数,从3.75kHz,7.5kHz直到480kHz,例如,关于子载波间隔,可参考如下的表1:
表1
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
其中,μ用于指示子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。不同的子载波间隔对应的一个时隙的长度是不同的,15kHz的子载波间隔对应的一个时隙的长度为0.5ms,60kHz的子载波间隔对应的一个时隙的长度为0.125ms,等等。那么相应的,不同的子载波间隔对应的一个符号的长度也就是不同的。
在频域上,一个RB可以包括若干个子载波,例如,在LTE系统中,一个RB包括12个子载波,其中,每个子载波间隔可以为15kHz,当然,也可以采用其他子载波间隔,例如3.75kHz、30kHz、60kHz或120kHz子载波间隔,在此不作限制。
6)序列资源,又称码域资源,为用来指示序列的相关参数。对于随机序列,序列的参数包括序列的初始位置,序列的长度,序列的初始值;对于低峰均比序列(例如ZC(zadoff–chu)序列),序列的参数包括根序列、掩码、扰码、循环移位(cyclic shift,CS)或正交覆盖码(orthogonal cover code,OCC)等。
序列的初始值,指对于随机序列(如Gold序列,m序列)来说,生成序列的移位寄存器的初始值。
序列的初始位置与用于传输时使用的随机序列之间满足:c(n)=c(n+a),n=0,1,2,…,L-1,其中c(n)为用于传输时使用的随机序列,a为随机序列的初始位置,L为随机序列的长度,一般a为非负的整数,如a为0,或a为2等。
参考信号,主要指传输针对数据的调制解调的参考信号,发送参考信号的设备可以为发送控制信息和第一数据的发端设备,也可以为进行测量或提供同步源的设备。参考信号有以下用途:承载传输的控制信息及数据,进行信道状态信息(channel state information,CSI)、无线资源管理(radio resource management,RRM)或无线链路监控(radio link monitoring,RLM)测量,进行同步等。参考信号在承载传输的数据时,可以是用序列承载,也可以是用反馈信道中的控制信息编码比特来承载,具体参考信号可以为物理下行共享信道(physical downlink shared channel,PDSCH),物理上行共享信道(physical uplink shared channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),物理上行控制信道(physical uplink control channel,PUCCH)等信道使用的解调参考信号(demodulation reference signal,DMRS);参考信道在进行CSI、RRM或RLM测量时,参考信号可以为RS,或信道探测参考信号(sounding reference signal,SRS),或CSI-RS等;参考信号在进行同步时,参考信号可以为物理广播信道(physical broadcast channel,PBCH)使用的参考信号等。
举例来说,解调参考信号的序列可以是按如下方式生成的:
r l(n)=(1-2c(n))
其中n=0,1,2,…;r l()表示参考信号的序列;c(n)为随机序列,例如,随机序列为31bit或31位的移位寄存器的Gold序列,或者m序列。
7)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。同时,应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述各种消息、请求和终端,但 这些消息、请求和终端不应限于这些术语。这些术语仅用来将消息、请求和终端彼此区分开。
图1a是本申请的可应用的一种通信系统的架构示意图。
如图1a所示,该通信系统可包括接入点(access point,AP)101和至少一个站(station,STA)(图1a以STA102和STA103为例)。AP与STA之间进行通信。STA可以是固定位置的,也可以是可移动的。本申请对该通信系统中包括的AP和STA的数量不做限定。
AP也称为接入点或热点等,用于提供无线接入服务,允许其它无线设备接入,提供数据访问。也就是说,AP是STA进入有线网络的接入点,可部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米。当然,也可以部署于户外。AP相当于一个连接有线网以及无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP可以为基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G通信系统中的新一代基站(next generation nodeb,gNB)、未来通信系统中的基站或无线保真(wireless-fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central uni,CU),也可以是分布式单元(distributed unit,DU),也可以是路由器;也可以是交换机;也可以是网桥等。本申请对AP所采用的具体技术和具体设备形态不做限定。
STA是连接到无线网络中的通信设备,例如无线通讯芯片、终端设备等;其中,终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请对终端设备所采用的具体技术和具体设备形态不做限定。
如下给出上述通信系统可应用的两种可能的场景。
场景一,AP与单个STA之间进行通信。
在该场景一中,AP为发送端,STA为接收端,即该通信系统可以用于单用户下行传输;或者,STA为发送端,AP为接收端,即是该通信系统可以用于单用户上行传输。
场景二,AP与多个STA之间进行通信。
在该场景二中,AP与多个STA同时进行通信又可分为AP同时向多个STA发送信号,以及多个STA同时向AP发送信号。其中,AP同时向多个STA发送信号,即AP为发送端,STA为接收端,即该通信系统可以用于多用户下行传输;多个STA同时向AP发送信号,即STA为发送端,AP为接收端,即该通信系统可以用于多用户上行传输。
AP与STA之间可以通过6GHz以上,例如28GHz、39GHz、60GHz、73GHz等频段进行通信。以AP为基站,STA为终端为例,基站可以使用低频(主要为6GHz以下)或者相对较高的频率(6GHz以上)的毫米波频段与终端通信。例如,毫米波频段可以是28GHz、38GHz,或覆盖面积较小的数据平面的增强带宽(enhanced-band)频段,比如70GHz以上的频段。基站覆盖下的终端可以使用低频或者频率较高的毫米波频段与基站进行通信。图1a只是举例的简化示意图,网络中还可以包括其他设备,图1a中未予以画出。如图1b所示,针对高频相噪较严重场景下,本发明还可适用于以下场景:回传(实心箭头),无线宽带到户(wireless to the x,WTTx)(实心箭头),增强移动宽带(enhanced mobile broadband,eMBB)(图中实线非实心箭头),设备到设备(device to device,D2D)(图中虚线非实心箭头)等 高频高阶高码率场景。
基于上述内容,本申请所提供的用于参考信号传输的装置可位于AP的通信模块,或者也可位于SAT的通信模块。请参阅图1c,图1c为本申请中的一种用于参考信号的发送、接收装置的结构示意图。如图1c所示,该装置包括射频单元(radio frequency unit,RF unit)、发送模块(transport module,Tx module)、接收模块(receive module,Rx module)、处理器(processor)以及存储器(memory),其中,Tx module将待发送的参考信号传输给RF unit进行发送,Rx module则接收来自RF unit的信号,传输至处理器进行进一步的处理,比如同步、信道估计、信道均衡等。
在一种可能的实现方式中,该用于参考信号传输的装置可能为OFDM发射机。如图1c所示,为本申请提供的一种OFDM发射机的结构示意图。该OFDM发射机包括离散傅里叶变换(discrete fourier transform,DFT)模块、Mapping模块、并串(parallel/serial,P/S)转换器、射频(radio frequency,RF)模块和天线;其中,Mapping模块可用于将DFT输出的信号映射到子载波上;M表示DFT点数,N表示IFFT点数。可以理解的是,该用于信号传输的装置也可能为OFDM接收机。该OFDM接收机的结构可参见上述OFDM发射机的结构示意图,OFDM接收机对信号的处理过程为OFDM发射机对信号处理的逆过程。
为满足日益增加的通信需求,对高阶调制如256QAM(quadrature amplitude modulation)甚至1024QAM的需求也越来越高。由于相位噪声是通信系统中由频率器件的非理想性而引入的一种噪声,随着频段的增加,相位噪声功率谱密度越高,相位噪声的强度随载波频率的增大而增强,对接收信号影响越大,分别如图2a-图2h所示。如图2a-图2b所示,为2种相噪模型。假设一个正交频分复用时域信号上的相位噪声为θ n,n=0,...,N c-1,其频域响应为:
Figure PCTCN2019129323-appb-000001
该相噪对频域信号的影响可表示为:
Figure PCTCN2019129323-appb-000002
其中,
Figure PCTCN2019129323-appb-000003
S i为接收的子载波i的信号,E 0为公共相位误差(Common Phase Error,CPE),是由相噪引入导致子载波上原始信号发生旋转/缩放,由于该值与子载波编号无关,
Figure PCTCN2019129323-appb-000004
即所有子载波上原始信号受到的旋转/缩放均相同,因此称之为CPE。上式中第二项求和公式
Figure PCTCN2019129323-appb-000005
即为子载波i上的信号受到的相噪引入的载波间干扰(Inter sub-Carrier Interference,ICI)。
如图2c-图2e所示,为不同相位噪声对频域接收信号的影响(横坐标为同相(in-phase),纵坐标为90度相(quadrature))。图2c为32QAM,图2d为64QAM,图2e为256QAM。如图2f-图2h所示,为同一功率谱密度下的相噪CPE和ICI对接收信号(频域)的影响,图2f为CPE的示意图,图2g和图2h分别为补偿CPE后,64QAM和256QAM的星座点,从最右边的图可看出,256QAM的星座点因为子载波间的干扰,星座点之间较64QAM更为模糊。可以看出,相噪功率谱密度达到一定水平后,当调制方式较高时,除了CPE,因相噪引起的ICI也不可忽略,因此高频高阶高码率调制需考虑相噪引入的CPE和ICI的估计与补偿,以便于OFDM系统进行相位跟踪,即确定OFDM系统中信号的相位噪声。
举例来说,如图3所示,为本申请实施例提供的一种PTRS图案示意图。图3中,PTRS的图案(pattern)的PTRS块数量为N,即映射PTRS的符号中包括N个PTRS块;每个PTRS块中,可以包括连续的多个PTRS采样点或连续的多个资源单元RE,为描述简便,本申请中,将PTRS块中包括的连续的多个PTRS采样点或连续的多个资源单元RE的数量称为PTRS块大小。如图3所示,即每个PTRS块的块大小为M。本申请实施例中,PTRS块(chunk):由1个或以上连续的PTRS信号组成,PTRS采样点(sample)可以是指一个PTRS信号,一个RE上所承载的信号也可以指一个PTRS信号。举例来说,若M为1,则参考信号序列为离散参考信号序列,若M大于1,则参考信号序列可以为块状参考信号序列。
基于块状参考信号序列中不同的相噪ICI估计方式,可以分为块状非零功率参考信号序列和块状零功率参考信号序列。其中,基于块状非零功率参考信号序列NZP-PTRS的ICI估计的参考信号序列图案,可以如图4a所示,参考信号序列集中在某一段频域资源上,如M个子载波/RE,或M/L(其中,M为L的整数倍,L为一个RB上所包含的RE数,例如,可以为12)个RB上。例如,假设序列长度为M,该序列可用QPSK调制伪随机序列得到,也可以从QPSK的符号集合中选择M个符号组成,可表示为:{s 1,s 2,s 3,…,s M-1,s M},如图4b所示。
在需要增加保护间隔的场景中,第一参考信号序列可以包括随机QPSK符号+首尾循环序列。假设序列长度为M,首尾各有{u1,u2}个循环序列,则有效序列长度为Q=M-u1-u2,有效序列长度可用伪随机序列通过QPSK调制得到,也可以从QPSK的符号集合中选择Q个符号组成,加上首尾的循环序列,可表示为:{s M-2u1-u2+1,…,s M-u1-u2,s 1,s 2,s 3,…,s M-u1-u2,s 1,s 2,…,s u2},如图4c所示。其中,{s M-2u1-u2+1,…,s M-u1-u2,}为循环前缀,{s 1,s 2,…,s u2}为循环后缀。
块状非零功率参考信号序列估计ICI时可利用参考信号序列所在的M个资源单元上发射的信号构造矩阵,通过矩阵求逆和参考信号序列所在M或Q个RE上的接收信号获取ICI估计值。
现有技术中,用于ICI估计的参考信号序列,通常为随机QPSK序列,或由QPSK的符号集合中随机选择,映射在频域,其在频域的具有恒模特性,但是没有考虑其在时域的特性,即无法充分利用相噪是一种乘性噪声(即其仅影响时域信号的相位)的特点,保证相噪ICI的估计性能。
另一种用于相噪估计的参考信号序列可以为块状零功率参考信号序列ZP-PTRS,块状零功率参考信号序列的图案可以如图5a所示,参考信号序列占据在M个资源单元RE上,块状参考信号序列中除了中间的RE上是非零功率的参考信号序列外,其他RE上均为零 功率参考信号序列,即其他RE均空置,不发送任何信号。块状零功率参考信号序列估计ICI时,相比块状非零功率参考信号序列的估计较为简单,可通过发射在中间RE上的发射信号u,与在M个RE上接收的信号r i,确定,例如,如图5b所示,ICI估计值E i可由接收信号r i与发射信号u获取,即E i=f(r i,u)。在块状零功率参考信号序列适用的场景下,可以有效的降低第一设备和第二设备的相噪估计的复杂度。
块状零功率参考信号序列的序列映射在频域,即在频域可以等效为一个冲击信号,该参考信号序列变换到时域后,具有恒模特性,因此,块状零功率参考信号在估计时域相位时可以有较好的性能。假设序列长度为M,除了中间的序列为有效值外,其他均为0。
为了充分利用各子载波上的功率,可将序列为0对应的子载波上的功率用于提升非0序列的功率,即非零功率对应的资源单元上的功率可以根据PTRS块的大小确定,例如,在中间资源单元上的参考信号序列为s 1,则块状零功率参考信号序列可表示为:{0,0,…,0,sqrt(M)×s 1,0,…,0},如图5c所示。但是,由于其在一个PTRS块内只有一个子载波上有信号,因此其受信道频选性的影响较块状非零功率导频序列更严重,另外,当M较大时,经功率提升后的参考信号序列对应的子载波上的功率,与用于传输数据或其他信息的相邻的子载波上的功率的均值的差距可能过大,进而增加了信号的峰均比,提高了对终端设备解调参考信号的难度,甚至可能导致无法解析。
基于上述问题,本申请提出一种确定参考信号的方法,参考图6所示的方法流程示意图。该方法可以应用于如上图1a所示的通信系统,或图1b所示的通信装置、或图1c所示的OFDM发射机,也可以应用其他通信系统或通信场景,不申请对此不做限定。该方法包括以下步骤:
步骤601:第一设备从参考信号序列集合中,确定第一参考信号序列。
本申请实施例中涉及的第一设备可以是指网络设备,相应的第二设备可以是指终端设备。或者,第一设备可以是指终端设备,相应的第二设备可以是指网络设备。或者,第一设备可以是指终端设备,相应的第二设备也可以是指终端设备。
其中,第一参考信号序列用于第二设备估计相位噪声对接收信号的影响。相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声等。具体的,若第一设备与第二设备间的数据解调性能受相噪影响较大时,第一参考信号序列可用于补偿相噪引入的CPE/ICI的影响。若第一设备与第二设备间的数据解调性能受相噪影响较小时,可由系统中的网络设备配置第一参考信号序列的其他功能,如多普勒估计与补偿、时间同步、信道估计等,在此不做限定。需要说明的是,本申请提及的网络设备可以为作为网络设备的第一设备或作为网络设备的第二设备,也可以为调度第一设备或第二设备的其他网络设备,在此不做限定。具体的,可以通过网络设备配置参考信号序列对应的功能与第一参考信号序列间的关联关系,进而,第一设备可以根据该关联关系,从参考信号序列集合中,确定第一参考信号序列。
一种可能的实现方式中,第一设备和第二设备分别根据参考信号序列集合确定第一参考信号序列;另一种可能的实现方式中,第一设备从参考信号序列集合中确定第一参考信号序列后,向第二设备发送第一参考信号序列的指示信息,以使第二设备根据第一参考信号序列的指示信息在对应的传输资源上接收第一参考信号序列,估计相位噪声对第二设备接收的信号的影响。
进一步的,为提高参考信号序列在高频高调制场景的适应性,参考信号序列集合中至 少包括第一类参考信号序列;第一类参考信号序列的时域和频域幅度方差满足预设阈值,使得第一设备或第二设备可以通过参考信号序列集合选择出在时域和频域均有较稳定的幅度响应的参考信号序列,提高相噪估计的准确性。需要说明的是,参考信号序列集合的确定方式(即确定参考信号序列集合中的元素)可以通过网络设备预配置,或通过协议预定义,或通过高层信令预配置,或网络设备为第一设备和/或第二设备指示的参考信号序列集合,进而预先存储至第一设备和/或第二设备的,在此不做限定。
下面具体说明适用于本申请实施例的第一类参考信号序列的形式。
一种可能的实现方式,第一类参考信号序列可以为块状参考信号序列。
下面具体描述第一类参考信号序列的时域和/或频域幅度方差满足预设阈值的块状参考信号序列。
第一类参考信号序列可以为基于QPSK符号生成的块状参考信号序列。
一种可能的实现方式,第一类参考信号序列可以为频域QPSK在时域幅度稳定的序列,该序列定义在频域,即序列中一个符号的取值为{1+1j,1-1j,-1+1j,-1-1j}/sqrt(2),其中sqrt(·)表示对“·”取根号。由于其为QPSK调制的符号,因此频域块状参考信号序列在频域对应恒模的信号,即块状参考信号序列在每个子载波或RE上对应的幅度均为1,频域的调制符号为标准QPSK信号。
一种可能的实现方式,时域和频域幅度方差均满足预设阈值的频域QPSK序列可通过下列方式获取:此时,假设序列长度为M,有效序列长度为Q,即有循环前后缀时,Q=M-u1-u2,不含循环前后缀时,Q=M,则序列的组合有4^Q种,将所有4^Q个序列,通过Q点逆傅里叶变换到时域后选择时域幅度响应满足预设阈值的序列作为第一类参考信号序列的有效序列。
在具体实施过程中,可以将所有4^Q通过Q点逆傅里叶变换到时域后,确定时域幅度的波动性满足预设阈值的序列作为有效序列。其中,波动性可以是时域各采样点上的信号幅度差,例如,波动性可以为时域各采样点上的信号幅度差的平均值avg(abs(x i-x j))、或时域各采样点上的信号幅度差的最大值,max(abs(x i-x j))或max(abs(x i))-min(abs(x i))或max(x i)-min(x i),其中,时域采样点i上的信号幅度表示为x i,时域采样点j上的信号幅度表示为x j。或者波动性可以是时域各采样点上的信号幅度方差,或者是幅度的均方差等。例如,按幅度的方差值,从小到大的顺序,选择前P组作为第一类参考信号序列的有效序列集合,可知Q越大,选出来的序列的时域幅度响应越稳定。当然,还可以根据其他方式确定波动性满足第一幅度阈值的第一类参考信号序列,在此不做限定。
一种可能的实现方式,第一类参考信号序列可以为时域QPSK频域幅度稳定序列,该序列先定义在时域,即时域的调制符号为标准QPSK信号或标准QPSK信号按比例缩放后的信号。时域块状参考信号序列在时域对应恒模的信号,即块状参考信号序列在每个采样点上对应的幅度均为1。序列的获取方式与频域QPSK在时域幅度稳定的序列类似。即有效长度为Q对应的4^Q组序列,通过Q点傅里叶变换到频域后选择频域幅度响应满足预设阈值的序列作为第一类参考信号序列的有效序列。
如当有效序列长度为8时,频域幅度响应满足预设阈值的序列可包含128组第一类参考信号序列,例如,第一类参考信号序列可以为:{0.7071 +0.7071i,0.7071 +0.7071i,0.7071 +0.7071i,0.7071 -0.7071i,-0.7071 -0.7071i,0.7071 +0.7071i,-0.7071 -0.7071i,0.7071 -0.7071i}。
当第一参考信号序列需映射在时域时,可以用上述P组时域QPSK频域幅度稳定序列中一组序列作为第一参考信号,还可以用上述P组频域QPSK时域幅度稳定序列中的一组序列经逆傅里叶变换后的信号作为第一参考信号。当第一参考信号序列需映射在频域时,可以用上述P组时域QPSK频域幅度稳定序列中的一组序列,经傅里叶变换到频域后的信号作为第一参考信号,还可以用上述P组频域QPSK时域幅度稳定序列中的一组序列作为第一参考信号。
需要说明的是,上述选择QPSK序列作为第一类参考信号序列的方式,还可以适用于其他序列,在此不再赘述。例如,还可以为BPSK序列,Pi/2BPSK,DMRS序列等,其中BPSK只有两个符号{1,-1},因此有效序列长度为Q的序列对应有2^Q中组合,第一类参考信号序列可以是时域BPSK序列中选择的P个频域幅度满足预设阈值的序列,或频域BPSK序列中选择出的P个时域幅度满足预设阈值的序列,即,从有效长度为Q的序列组合数为2^Q的BPSK序列中,选择P个时域和频域的幅度满足预设阈值的序列作为第一类参考信号序列的有效序列。
另外Pi/2BPSK序列为在上述实施例中确定时域或频域幅度响应满足预设阈值BPSK序列基础上,加上与映射位置有关的相移mod(k,2)×Pi/2,其中k由映射位置决定。
进一步的,第一类参考信号序列还可以为频域基于Golay互补序列的Pi/2BPSK序列,该序列定义在频域,即频域的调制符号为Pi/2BPSK的信号,该序列由于为互补序列,序列的长度可以表示为2^a×10^b×26^c,(a,b,c=0,1,2,…),互补序列成对存在,将一对互补序列中的两个序列分别称为序列b A和序列b B。其中,互补序列是指序列b A和序列b B乘积为0,即可以表示为b A·(b B H)=0,H表示共轭转置。根据互补序列生成的Pi/2BPSK序列可以有多种形式,例如,如图5a所示,两个序列分别添加循环前缀后循环后缀,并独立映射至不同的频域资源或采样点。再比如,序列S A和S B拼接成一个新的序列[S A S B],并在新的序列上添加循环前后缀。以互补序列为二元序列为例,序列b A和序列b B可以表示为:
b A=[1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1];
b B=[1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1]
Golay互补序列可以通过Pi/2-BPSK调制,将调制后的互补序列分别记为S A和S B,S A和S B具有相同的长度,且均为Q,可得到:
Figure PCTCN2019129323-appb-000006
Figure PCTCN2019129323-appb-000007
其中,j为复数符号。应注意,Pi/2-BPSK调制的星座点可能具有不同的形式,例如,序列S A(k)和序列S B(k)可包含一个初始相位。根据互补序列的性质,经过Pi/2-BPSK调制的互补序列对,经FFT变换后的频域序列中的每一个元素为常数。因此,基于Golay互补序列的Pi/2BPSK序列在时域和频域可以具有恒模特性。
另一种可能的实现方式,第一类参考信号序列可以为ZC序列,由于其根序列在时频域均具有恒模特性,因此该序列可同时定义在时域和频域,即可以生成时域的ZC序列作为第一类参考信号序列,也可以生成频域的ZC序列,作为第一类参考信号序列。第一类参考信号序列可以根据如下公式确定:
x(n+Nz c)=x(n),n=0,1,…,M-1,
其中,Nz c为小于M的最大素数或最大质数。ZC序列可以根据如下公式确定:
x_q(n)=exp(-j×Pi×q×n×(n+1)/Nz c),n=0,1,…,Nzc
其中,初始值q可以为由网络设备配置给终端设备的,也可以为由终端设备根据小区标识等参数确定的。
另一种可能的实现方式中,参考信号序列集合还可以包括:第二类参考信号序列;其中,第二类参考信号序列可以为离散参考信号序列。
如图7所示,离散的PTRS均匀分布在一个OFDM上,PTRS资源单元间隔为S,即两个相邻的PTRS资源单元间包含S个资源单元(包含一个PTRS资源单元和S-1个数据资源单元),即每S个子载波/资源单元上有一个参考信号,或者每S/L个资源块上有一个参考信号,L表示1个资源块包括的资源单元的数量,此时,参考序列的长度与调度带宽有关。
举例来说,第一参考信号序列可以为DMRS序列。例如,DMRS的序列为互补序列,或为Golay互补序列。
一种可能的方式,可以将PTRS所在子载波上映射的DMRS的原始调制符号直接作为PTRS的调制符号。其中,DMRS与PTRS位于不同的OFDM的符号上。
再比如,第一参考信号序列可以为伪随机序列。即利用伪随机序列生成原始比特序列,再通过QPSK调制得到第一参考信号序列。以伪随机序列为31位的移位寄存器的Gold序列,或者m序列:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,第一个m序列的初始值可以为:x 1(0)=1,x 1(n)=0,n=1,2,...,30,第二个m序列的初始值可以为
Figure PCTCN2019129323-appb-000008
c init可以由小区标识,终端标识,第一参考信号的子帧号,符号等至少一种确定。
上述序列对于OFDM符号而言,是映射在频域上的,由于上述序列都为QPSK调制的符号,因此,第一参考信号序列在频域是恒模的信号,幅度均为1。
第一类参考信号序列和第二类参考信号序列用于估计CPE的方式是相同的,仅需参考信号序列所在RE的接收信号和参考信号序列发射信号即可估计出CPE,因此,若相噪估计仅需估计CPE时,可以选择第一类参考信号序列或第二类参考信号序列。
根据第二类参考信号序列进行ICI估计时,需联合参考信号序列所在RE的接收信号和参考信号序列所在RE附近RE的接收信号构造矩阵,并通过矩阵求逆和参考信号序列发射信号获取ICI估计值。
相比第一类参考信号序列对应的PTRS图案集中在一个连续的资源块来说,第二类参考信号序列对应的PTRS图案的符号分散性较好,受信道频选性的影响较小,抗频选性较强。因此,在发送参考信号对应的信道不平坦,或具有严重的信道频选性时,可以确定PTRS序列为第二类参考信号序列。
需要说明的是,此处的第二类参考信号序列,还可以为时域和频域幅度方差满足预设阈值的序列,以减少参考信号序列集合中需配置的参考信号序列的类型,降低终端设备生成参考信号序列的复杂度。例如,为第一设备和第二设备配置的参考信号序列集合中仅包 括时域和频域幅度方差满足预设阈值的序列,该序列适用于PTRS图案中离散的资源单元的场景,也可以适用于PTRS图案中块大小大于1的场景。
需要说明的是,上述序列仅为举例,参考信号序列集合中还可包含其他已公开的序列,本发明中的序列集合包括但不限于上述所列举的序列。另外,序列集合也可以不包含上述所列举的所有序列,即本发明中的序列集合还可包含上述所列举的序列的至少一种。
本申请实施例中,通过确定参考信号序列集合,参考信号序列集合中的第一类参考信号序列可以具有时域幅度和频域幅度的方差小于给预设阈值,使得PTRS序列在频域和时域均有较为稳定的幅度响应,可以同时适用于时域或频域对相噪的估计,或同时适用于CPE和ICI的估计,还可同时适用于OFDM和离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform-spread OFDM,DFT-s-OFDM)或单载波,保证CPE/ICI或时频域估计相噪的准确度,解决了现有技术中用于OFDM的PTRS的序列变换到频域后的时域幅度特性波动较随机,以及时域恒模但频域不恒模或不平坦的序列不能抵抗严重的信道频选性的问题,提高了ICI估计精度。
在具体实施过程中,第一设备可以根据第一参数,从参考信号序列集合中确定第一参考信号序列。
其中,第一参数可以包括以下至少一种:
第一设备和/或第二设备的硬件条件;
第一设备和第二设备间的传输参数;
第二设备的PTRS参数;
第一设备与第二设备间的信道参数等。
在具体实施过程中,第一参数可以包括上述参数中的一项或多项,在此不做限定。
具体的,第一设备和/或第二设备的硬件条件可以包括以下至少一种:
第一设备和/或第二设备相噪模型;
第一设备和/或第二设备的相噪功率谱密度。
基于第一设备为网络设备,第二设备为终端设备的场景,第一设备和第二设备间的传输参数可以包括以下至少一种:子载波间隔、载波频点、第二设备的调度带宽、第二设备的调制编码方式MCS、第二设备的调制阶数;第二设备的PTRS参数可以包括以下至少一项:用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限,第一参考信号的图案等。
基于第一设备为终端设备,第二设备为网络设备的场景,第一设备和第二设备间的传输参数可以包括以下至少一种:子载波间隔、载波频点、第一设备的调度带宽、第一设备的MCS、第一设备的调制阶数;第一设备的PTRS参数可以包括以下至少一项:用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限,第一参考信号的图案等。
基于第一设备为终端设备,第二设备为终端设备的场景,第一设备和第二设备间的传输参数可以包括以下至少一种:子载波间隔、载波频点、第一设备的调度带宽、第一设备的MCS、第一设备的调制阶数、第二设备的调度带宽、第二设备的MCS、第二设备的调制阶数;第二设备的PTRS参数可以包括以下至少一项:用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限,第一参考信号的图案等。
其中,PTRS参数还可以包括:终端设备反馈的在上行传输的硬件条件允许的最大块 状零功率参考信号序列占用的块大小M01,和/或终端侧在下行传输的硬件条件允许的最大块状零功率参考信号序列占用的块大小M02。或者,PTRS参数还可以为网络设备综合网络设备与终端设备的硬件条件,指示的上下行传输中的第一阈值M0(第一设备和/或第二设备采用块状零功率参考信号序列的最大块大小),或网络设备的上下行的第一阈值M0(基站侧采用块状零功率参考信号序列的最大块大小)。
其中,MCS门限和/或调度带宽门限可以根据相噪模型、子载波间隔、载波频点中的至少一种确定。子载波间隔是指发送PTRS的载波的子载波间隔,载波频点是指发送PTRS的载波的频点。MCS、调度带宽由网络侧配置,具体的配置方法本申请实施例并不限定。
第一参数中的PTRS图案可以通过以下方式确定:
一种可能的实现方式,第一设备可以根据MCS、调度带宽中的至少一种,确定与MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点或RE数量,进而确定PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点或RE数量。
另一种可能的实现方式,第一设备还可以直接根据相噪水平、子载波间隔、频点、信道条件中的至少一种,确定PTRS的图案的PTRS块大小和PTRS块数量。
例如,第二设备的子载波所对应的信道波动性小于第二幅值阈值时,可以将第一参考信号序列的PTRS图案确定为PTRS块大小M大于1,即PTRS图案对应块状参考信号序列的图案。
再比如,第二设备的子载波间的波动性大于第二幅值阈值,此时,第一设备可以确定第二设备的信道的波动性较大,则可以确定PTRS图案为PTRS为离散资源单元,或PTRS块大小M等于1,即PTRS图案对应离散参考信号序列的图案。其中,波动性可以包括:频域各子载波上的幅度差(各子载波的幅度差的平均值、各子载波的幅度差的最大值等),幅度方差,幅度的均方差等。
另一种可能的实现方式,第二设备为终端设备时,还可以向网络设备反馈相噪水平,进而,网络设备可以根据终端设备反馈的信息确定MCS门限、调度带宽门限,并将确定的MCS门限、调度带宽门限发送给终端设备。MCS门限和/或调度带宽门限的具体确定方法,本申请实施例对此并不限定,在此不再赘述。
本申请实施例中,由于第一设备与第二设备位于不同的传输场景下,可能会确定出不同的第一参考信号序列或第二参考信号序列的图案,因此协议可预先规定或由网络设备预配置第一参数与第一参考信号序列或第二参考信号序列间的关联关系,第一设备和/或第二设备可以根据当前调度中的第一参数与该关联关系确定第一参考信号序列或第二参考信号序列。同理,根据第一参数确定第一参考信号序列的方式,可以为第一设备或第二设备确定了PTRS图案后,将PTRS图案作为第一参数,进而确定第一参考信号序列。具体的根据第一参数确定第一参考信号序列的方式可以包括但不限于以下几种:
方式一:第一设备确定用于生成第一参考信号序列的第一参数或生成第二参考信序列的第一参数,进而,第一设备根据第一参数,确定对应的第一参考信号序列。用于生成第一参考信号序列的第一参数或生成第二参考信序列的第一参数可以为协议预定义或网络设备为第一设备和/或第二设备预配置的。
举例来说,若第一设备确定用于生成第一参考信号序列的第一参数为PTRS图案,则第一设备可以根据PTRS图案中包括的PTRS块大小,确定第一参考信号序列的类型。此时,在参考信号序列集合中满足PTRS图案的参考信号序列可能不止一种类型,第一设备 可以根据需要自主选择其中一种类型,在此不做限定。
再比如,若第一设备确定用于生成第一参考信号序列的第一参数包括:PTRS图案,第一阈值M0,相噪模型,则第一设备可以根据PTRS图案,第一阈值M0,相噪模型的具体值,确定第一参考信号序列的类型。例如,若确定相噪模型为仅需要CPE估计补偿的相噪模型,PTRS图案为PTRS块大小大于1小于第一阈值,则可以选择参考信号序列集合中的序列长度与PTRS图案匹配的第一类参考信号序列中的任一种参考信序列。
方式二:第一设备确定第一参数与第一参考信号序列的关联关系。该关联关系可以为协议预定义或网络设备为第一设备和/或第二设备预配置的。进而,第一设备或第二设备可以根据第一参数与第一参考信号序列的关联关系,确定第一参考信号序列。
举例来说,若第一设备确定的关联关系包括第一关联关系,第二关联关系,第三关联关系,第四关联关系,第五关联关系,具体的关联关系可以如下表2所示:
Figure PCTCN2019129323-appb-000009
表2
其中,M为PTRS块大小,N为PTRS块的数量。M0为第一阈值,可以根据第一设备和/或第二设备的硬件条件确定,例如,可以根据需要为第一设备设置第一阈值M01,为第二设备设置第一阈值M02。当然,也可以根据需要设置第一长度阈值M1,第二长度阈值M2等,具体的实施方式可以参考下文中的举例,在此不赘述。其中,a,b,c为整数,t为正整数。
其中,第一设备若确定第一参数满足第一关联关系,则可以确定第一设备生成第二参考信号序列,例如,DMRS序列,伪随机序列,频域随机QPSK序列中的一种。第一设备 若确定第一参数满足第二关联关系,则可以确定第一设备生成第一参考信号序列,且第一参考信号序列为块状零功率参考信号序列。第一设备若确定第一参数满足第三关联关系,则可以确定第一设备生成第一参考信号序列,且第一参考信号序列为ZC序列。第一设备若确定第一参数满足第四关联关系,则可以确定第一设备生成第一参考信号序列,且第一参考信号序列为基于Golay互补序列的pi/2BPSK序列。第一设备若确定第一参数满足第五关联关系,则可以确定第一设备生成第一参考信号序列,且第一参考信号序列为时频域稳定的序列,即时域和频域的幅值满足预设阈值的序列。
上述关联关系仅为举例,在具体实施过程中,可以根据需要,确定参考信号序列集合中所需的关联关系,在此不做限定。
上述方式一和方式二可以单独执行,也可以结合,在此不做限定。方式一和方式二中的指示方式,可以为由高层信令或RRC或DCI或广播或预先定义等通知给终端设备,关联关系可以是基于终端的(即每个终端的关联关系是独立的),也可以是基于小区的(即每个小组共享相同的关联关系);指示内容可以是关联关系或门限,也可以是按约定方法的调整量。通过信令指示用于确定第一参考信号序列的第一参数,和/或第一参数与第一参考信号序列间的关联关系,进而,第一设备和/或第二设备根据指示的第一参数,和/或第一参数与第一参考信号序列间的关联关系,确定第一参考信号序列。
通过上述方式,第一设备或第二设备可以根据第一参数与参考信号序列集合中的参考信号序列的关联关系,可直接由第一参数隐式确定第一参考信号序列或第二参考信号序列,即不需要额外的信令专门指示具体的PTRS序列,节省了信令的开销。
方式三:由网络设备确定第一参考信号序列后,通过信令的方式直接向终端设备指示第一参考信号序列,在该方式中,可以无需指示用于确定第一参考信号序列的第一参数,或第一参数与第一参考信号序列的关联关系。
具体的指示方式可以由高层信令或无线资源控制(Radio Resource Control,RRC)信令或者下行控制信息(Downlink Control Information,DCI)或广播或预先定义显示通知给终端,其中该显示通知可以是基于终端的,也可以是基于小区的;需要说明的是,网络设备显示指示参考信号序列时,指示的参考信号序列可以是网络设备根据预配置确定出的,也可以是网络设备通过其他方式确定出的,在此不做限定。
通过网络设备从参考信号序列集合中确定第一参考信号序列或第二参考信号序列的类型后,将第一参考信号序列或第二参考信号序列的类型通过信令指示给终端,可避免第一设备和第二设备所采用的关联关系可能出现不一致导致的估计错误。
下面具体介绍第一设备或第二设备可根据第一参数中的一个或多个参数,基于不同的场景,确定第一参考信号序列的类型或第二参考信号序列的类型。
场景一
第一设备可以根据第一参考信号的图案,确定选择的第一参考信号序列的类型。例如,第一设备若确定第一参考信号的图案包括的PTRS块大小M大于1且小于或等于第一阈值,可以选择第一参考信号序列为块状零功率参考信号序列。其中,第一阈值可以根据第一设备和/或第二设备的硬件条件确定,在序列PTRS块大小M小于第一阈值时,采用块状零功率参考信号序列,可以在保证精度,且不增加第一设备或第二设备解析子载波难度的同时,有效降低相噪估计的复杂度。当然,第一设备若确定第一参考信号的图案包括的PTRS块大小M大于1且小于或等于第一阈值时,也可以选择第一参考信号序列为块状非零功率 参考信号序列。具体可以根据第一设备和/或第二设备的硬件条件确定选择块状非零功率参考信号序列还是块状零功率参考信号序列,在此不做限定。
举例来说,假设RB包含子载波数目为L时,若第一设备确定序列的长度M满足M=m×L,其中m=1,2,3,..,若根据调制阶数确定为QPSK,则可以将第一参考信号序列确定为时域QPSK频域幅度稳定序列或频域QPSK时域幅度稳定序列。序列的总长度M占用整数个RB,以L=12为例,序列M的取值为12,24,36,48等值。本申请实施例中,第一参考信号序列中还可以包括保护间隔,即参考信号序列包括循环前缀和/或循环后缀。假设序列的前缀、后缀长度分别为u1和u2,则未添加循环前后缀的有效序列长度为Q=M-u1-u2。此时,可限定u1或u2的取值来确定Q的取值,例如,M=m×L,其中m=1,2,3,L=12为例,当u1=u2=2时,Q的取值分别为8,20,32,44。当u1=u2=3时,Q的取值分别为6,18,30,42。进一步考虑到保护间隔与ICI估计的精度有关,可以考虑将u1和u2的取值和M的取值相关联,当第一参考信号序列的长度大于第一长度阈值时,需增加保护间隔的长度。因此,可以设置第一长度阈值M1,当第一参考信号序列的长度M小于或等于第一长度阈值M1时,即当M<=M1(例如M1=24)时,u1=u2=U0(例如U0=2),当M>M1时,u1=u2=U1(例如U1=3)。
可选的,对于长的序列可进一步设置第二长度阈值M2、第三长度阈值M3等,且M3>=M2>=M1,一个区间对应一个循环前后缀长度取值。如下表所示,即当M<=M1(例如M1=24)时,u1=u2=U0,当M2>=M>M1时,u1=u2=U1,当M3>=M>M2时,u1=u2=U2,当M4>M时,u1=u2=U3。U0,U1,U2,U3为正整数。下表仅为举例,表3中的分类(区间数或循环前后缀取值数)不限制为4个区间,可以根据需要选择。
序列长度M u1/u2长度
0<M<=M1 U0
M1<M<=M2 U1
M3<M<=M4 U2
M4<M U3
表3
进一步的,若第一设备从参考信号序列集合中确定满足第一参数的第一参考信号序列不止1组,例如,第一设备确定选出的时域QPSK频域幅度稳定的序列的组数或频域QPSK时域幅度稳定的序列的组数P大于1时,则可以进一步根据终端标识UE-ID、PTRS端口号、PTRS的频域位置偏移量、DMRS序列扰码、DMRS端口号、循环冗余校验(Cyclic Redundancy Check,CRC)扰码等至少一种信息确定具体的一组序列作为第一参考信号序列。对应的,第一设备可以将选择的第一参考信号序列通过指示信息发送给第二设备,以使第二设备根据指示信息,确定第一设备选择的第一参考信号序列。
场景二,第一设备若确定PTRS图案中,有效序列长度或序列长度为质数的场景,此时,第一参考信号序列可以为ZC序列。若第一参考信号序列不包括首尾循环,则第一参考信号序列的长度M为质数。若第一参考信号序列包括首尾循环,则第一参考信号序列的有效长度Q为质数。例如,第一设备若确定第一类参考信号序列的有效序列的长度为质数,即Q=Nz c。 例如,Q=7,11,13,17,19,23,29,31,37,41,43,以保证第一类参考信号序列的时频恒模特性。
考虑保护间隔的场景中,若确定第一参考信号序列的长度M不满足质数的要求,如M=m×L,例如,L=12时,M的取值为12,24,36,48等,可以通过限制循环前后缀的长度使得此条件下的有效长度Q满足质数的要求。举例来说,根据第一参考信号序列的总长度,确定循环序列u1和u2的长度的方式中:当M=12时,可以令Q=7,则可以有u1=3和u2=2或u1=2和u2=3;当M=24时,可以令Q=19,则可以有u1=3和u2=2或u1=2和u2=3;当M=24时,可以令Q=17,则可以有u1=3和u2=4或u1=4和u2=3;当M=36时,可以令Q=31,则可以有u1=3和u2=2或u1=2和u2=3;当M=36时,可以令Q=29,则可以有u1=3和u2=4或u1=4和u2=3;当M=48时,可以令Q=43,则可以有u1=3和u2=2或u1=2和u2=3;当M=48时,可以令Q=41,则可以有u1=3和u2=4或u1=4和u2=3;当M=48时,可以令Q=37,则可以有u1=5和u2=6或u1=6和u2=5。
场景三,考虑信道频选性或硬件限制的影响,超出硬件限制范围,使得ICI估计准确度严重下降的问题,当M较大(如M≥7)时,由于功率抬升将会导致非零功率参考信号序列所在子载波上的功率与其旁边子载波上的功率相差太大,增加信号的峰均功率比(Peak-to-Average Power Ratio,PAPR),和硬件实现复杂度,或该信号超出了硬件的限制条件,引入的非线性失真等会严重恶化ICI的估计性能,显著增加256QAM的解调/解码难度。
第一设备若确定PTRS图案中,PTRS块大小M大于第一阈值M0的场景,或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值M0的场景。其中,第一阈值M0,可以为根据第一设备和/或第二设备的硬件条件确定的,第一阈值M0可以为预先约定的,例如,通过无线资源控制(Radio Resource Control,RRC)、媒体接入控制(Media Access Control,MAC)、下行控制信息(Downlink Control Information,DCI)等指示/通知给终端。
此时,第一设备若确定第一参数满足以下条件时,则确定第一参考信号序列为时频域稳定的QPSK序列。其中,频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数。具体的选择方式可以参考场景一中的实施例,在此不再赘述。
场景四,第一设备若确定PTRS图案中,PTRS块大小为2^a×10^b×26^c,或第一参考信号的图案中PTRS块数量为2的整数倍,则可以将第一参考信号序列确定为频域基于Golay互补序列的Pi/2BPSK序列。此时,第一参考信号序列的长度M大于M0,第一参考信号序列的PTRS块数量为偶数,第一参考信号序列的有效长度Q可以为2^a×10^b×26^c。即若第一参考信号序列不包括首尾循环,则第一参考信号序列的长度为2^a×10^b×26^c。若第一参考信号序列包括首尾循环,则第一参考信号序列的有效长度为2^a×10^b×26^c。或第一参考信号序列的PTRS块数量为奇数,第一参考信号序列的有效长度Q的一半为2^a×10^b×26^c(a>=0),即有效序列长度Q为2×2^a×10^b×26^c。即若第一参考信号序列不包括首尾循环,则第一参考信号序列的长度为2×2^a×10^b×26^c;若第一参考信号序列包 括首尾循环,则第一参考信号序列的有效长度为2×2^a×10^b×26^c。
场景五,第一设备若确定PTRS图案中,PTRS块大小M小于M0,且选择用于映射PTRS的子载波或RE或符号位置上的信道的波动性较小的场景中,可以选择块状零功率参考信号序列或块状非零功率参考信号序列作为第一参考信号序列。
举例来说,第一设备可以根据第一参数确定出PTRS图案中块大小M小于第一阈值M0,进一步的,第一设备还可以选择用于映射PTRS的子载波或RE或符号位置上的信道的波动性小于第二幅值阈值,以提高相噪估计的精度。
场景六,第一设备若确定第二参考信号序列的图案包括的PTRS块大小为1,则可以从第二类参考信号序列中,确定第二参考信号序列。此时,第二参考信号序列,可以为离散参考序列,具体的,可以为与DMRS序列相同的参考信号序列,伪随机序列,频域随机QPSK序列。具体的第二参考信号序列的形式可以为第二类参考信号序列的任一种,也可以根据需要确定,在此不做限定。
场景七,当仅需要估计CPE时,或者,调制编码方案较低或相噪较理想时,不需要考虑时域上的幅值对ICI估计的影响,块状参考信号序列可选择随机的频域QPSK序列,与离散参考序列类似,可以参考离散参考序列的实施方式,在此不再赘述。
需要说明的是,上述仅是示意性举例,第一设备还可以根据第一参数中的一个或多个参数,确定第一参考信号序列的类型,进而确定第一参考信号序列的具体值,在此不做限定。
进一步的,第一设备还可以确定第一参考信号序列或第二参考信号序列的功率值,以进一步提高相噪估计的准确度。
由于PTRS的开销较小,目前协议中最大为1/24,对整个OFDM符号的功率影响有限,因此,一种可能的实现方式,可以对其进行固定值的功率抬升,例如,可设置固定3dB的功率抬升。另一种可能的实现方式,还可以针对不同的参考信号序列,设置不同的功率抬升值,例如,功率抬升值可以由PTRS图案,PTRS序列,或者,第一参数确定。
方式一
第一设备根据第一参考信号的图案中的PTRS块大小,确定第二设备的功率抬升值。
如当由场景参数确定出的PTRS图案类型或离散零功率参考信号序列或序列为ZP-PTRS+NZP-PTRS时,每个块内的NZP-PTRS功率抬升值为10×lg(M)dB,其中M为块大小。
另一种可能的实现方式,在第一设备和/或第二设备的硬件能力的允许范围内,零功率对应的资源单元上的功率可以根据PTRS块的大小确定,例如,在中间资源单元上的参考信号序列为s 1,则块状零功率参考信号序列可表示为:{0,0,…,0,sqrt(M)×s 1,0,…,0}。
方式二
一种可能的实现方式,当场景参数确定出的PTRS序列为时域和频域幅度稳定QPSK/BPSK/Pi/2BPSK序列,或ZC序列或频域基于Golay互补序列的Pi/2BPSK序列时,第一参考信号序列的功率可固定抬升3dB。
另一种可能的实现方式,功率抬升功率数据的调制阶数确定,如调制阶数≤64QAM时:第一参考信号序列的功率抬升值可以为0dB,调制阶数为256QAM时第一参考信号序列的功率抬升值可以为4.23dB,调制阶数为1024QAM时,第一参考信号序列的功率抬升值可以为4.5dB。
另一种可能的实现方式,功率抬升值还可以根据编码码率或MCS确定。其中,在编码码率或MCS越高时,可以设置的功率抬升值越低。例如,第二设备的MCS大于第一MCS阈值时,则设置功率抬升值为0,当第一设备若确定第二设备的MCS小于或等于第一MCS阈值时,第二设备的功率抬升值由第二设备的PTRS端口所关联的DMRS端口数确定。
方式三
一种可能的实现方式,第二参考信号序列的功率抬升值由第二设备所需估计的ICI阶数确定。
举例来说,第一设备若确定第二参考信号序列为离散参考信号序列,且所需估计的ICI阶数为1时,功率可抬升3dB,或根据现有协议由传输层数确定功率抬升值。此处ICI阶数等于1表示仅估计CPE。
举例来说,第一设备若确定第二参考信号序列为离散参考信号序列,且所需估计的ICI阶数大于1时,则确定第二参考信号序列的功率抬升值为0dB。此处ICI阶数大于1表示需估计ICI。
另一种可能的实现方式,第二参考信号序列的功率抬升值由第二设备的MCS确定。
具体的,第一设备若确定第二设备的MCS等于或大于第一MCS阈值时,第二设备的功率抬升值为0dB;
第一设备若确定第二设备的MCS小于第一MCS阈值时,第二设备的功率抬升值由第二设备的PTRS端口所关联的DMRS端口数确定。
或者,第一设备若确定第二设备的MCS大于第一MCS阈值时,第二设备的功率抬升值为0dB;第一设备若确定第二设备的MCS小于或等于第一MCS阈值时,第二设备的功率抬升值由第二设备的PTRS端口所关联的DMRS端口数确定。
再比如,第二参考信号序列的功率抬升值可以为固定值,可以根据需要确定固定值的具体数值,在此不做限定。
步骤602:第一设备将第一参考信号序列映射到第一符号序列上,向第二设备发送第一参考信号序列对应的第一参考信号。
第一设备确定第一参考信号序列的过程,还可以根据第一参考信号序列的参数确定第一参考信号序列的具体值。第一参考信号序列的参数可以包括:序列的初始位置,序列的循环移位,序列的初始值。对于低峰均比序列(例如ZC序列),序列的参数还可以包括根序列、掩码、扰码、循环移位(cyclic shift,CS)或正交覆盖码(orthogonal cover code,OCC)等。
举例来说,可以由UE-ID、小区ID、子帧号、符号、PTRS端口号、所关联的DMRS端口号等至少一种,确定具体的序列的初始值,序列的初始位置,序列的循环移位等,进而确定第一参考信号序列的具体值。
步骤603:第二设备从参考信号序列集合中确定第一参考信号序列。
具体实施过程可以参考第一设备从参考信号序列集合中确定第一参考信号序列的方式,在此不再赘述。例如,第二设备可以先确定PTRS图案,进而,根据PTRS图案及其他第一参数,确定第一参考信号序列。也可以根据第一设备指示的PTRS图案及其他第一参数确定第一参考信号序列。
步骤604:第二设备接收来自第一设备的第一参考信号,并根据第一参考信号序列映 射的第一符号序列,对第一参考信号解映射,以获取第一参考信号序列的接收信号。
本申请所提供的确定参考信号的方法可应用于高频高码率的场景,上述方案不仅可以保证给定场景下CPE和或ICI的估计准确度,还能根据场景自适应适配出最优的序列,优化CPE和/或ICI估计性能,在给定PTRS开销下,提高解调性能的同时,降低复杂度,进而提高频谱效率。
以上结合图6说明了本申请实施例提供的确定参考信号的方法,基于与上述确定参考信号的方法相同的发明构思,本申请实施例还提供一种通信装置,如图8所示,通信装置800中包含处理单元801和收发单元802,通信装置800(以下简称装置800)可用于实现上述实施例中第一设备所执行的方法。装置800可以为网络设备或终端设备,也可以位于网络设备或终端设备内,或为第一设备或发端设备。
需要说明的是,上述装置800可以是网络设备或终端设备,也可以是应用于网络设备或终端设备中的芯片或者其他具有上述网络设备或终端设备功能的组合器件、部件等。当装置800是网络设备或终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置800是具有上述网络设备或终端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置800是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置800可以用于执行上述方法实施例中第一设备所执行的步骤,或执行发端设备所执行的步骤。
具体的,处理单元801,用于从参考信号序列集合中,确定第一参考信号序列;第一参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;参考信号序列集合至少包括:第一类参考信号序列;第一类参考信号序列的时域和/或频域幅度方差满足预设阈值;收发单元802,用于将第一参考信号序列映射到第一符号序列上,并根据第一符号序列向第二设备发送第一参考信号序列对应的第一参考信号。
一种可能的设计,处理单元801,具体用于根据第一参数,从参考信号序列集合中确定第一参考信号序列;第一参数包括以下至少一项:第一设备与第二设备的传输参数,第一参考信号的图案。
一种可能的设计,参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;处理单元801,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS块大小为2^a×10^b×26^c,或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c,其中,a,b,c为正整数。
一种可能的设计,参考信号序列集合包括:ZC序列;处理单元801,具体用于若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC序列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅 度方差满足第三阈值的P2个参考序列中的一个;其中,P1,P2为正整数;
处理单元801,具体用于若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值。
一种可能的设计,处理单元801,还用于若确定第一参考信号序列为块状非零功率序列,则根据第一参考信号的图案中的PTRS块大小,确定第二设备的功率抬升值;或者,处理单元801,还用于确定第一参考信号序列的功率抬升值为固定值。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;处理单元801,还用于根据第一参数,从第二类参考信号序列中,确定第二参考信号序列;其中,第二参考信号序列的图案包括的PTRS块大小为1;第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰、公共相位误差、相位噪声。
收发单元802,还用于将第二参考信号序列映射到第二符号序列上,向第二设备发送第二参考信号序列对应的第二参考信号;第一参数还包括以下至少一种:第二参考信号的图案、用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
一种可能的设计,处理单元801,还用于根据第二设备的MCS确定第二设备的功率抬升值。
一种可能的设计,处理单元801,具体用于:若确定第二设备的MCS等于或大于第一MCS阈值时,则确定第二设备的功率抬升值为0dB;
若确定第二设备的MCS小于第一MCS阈值时,则根据第二设备的PTRS端口所关联的DMRS端口数确定第二设备的功率抬升值。
一种可能的设计,处理单元801,具体用于:若确定第二设备的MCS大于第一MCS阈值时,则确定第二设备的功率抬升值为0dB;若确定第二设备的MCS小于或等于第一MCS阈值时,则根据第二设备的PTRS端口所关联的DMRS端口数确定第二设备的功率抬升值。
一种可能的设计,处理单元801,还用于:根据第一参数与第一参考信号序列的关联关系,确定第一参考信号序列;或者,根据第一参数与第二参考信号序列的关联关系,确定第二参考信号序列。
一种可能的设计,收发单元802,还用于:向第二设备发送第一参考信号序列的指示信息;该指示信息用于指示第一参考信号序列;或者,向第二设备发送第二参考信号序列的指示信息;该指示信息用于指示第二参考信号序列。
一种可能的设计,第一参数包括以下至少一种:通信装置的相噪模型、通信装置的相噪功率谱密度、子载波间隔、载波频点、通信装置的带宽、通信装置的调制编码方式MCS、通信装置的调制阶数、通信装置的信道参数、第一参考信号的图案、用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限等。
一种可能的设计,第一参考信号序列为以下序列中的一种:QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列;第二参考信号序列为以下序列中的一种:QPSK伪随机序列、DMRS序列。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述确定参考信号的方法相同的构思,如图9所示,本申请实施例还提供一种通信装置900。通信装置900(以下简称装置900)可用于实现上述方法实施例中由第一设备所执行的方法,可以参见上述方法实施例中的说明,其中装置900可以为网络设备或终端设备,或者可以位于网络设备或终端设备中,可以为发端设备。
装置900包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置900可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
装置900包括一个或多个处理器901,一个或多个处理器901可实现上述所示的实施例中发端设备或第一设备执行的方法。
可选的,处理器901除了可以实现上述所示的实施例中的方法,还可以实现其他功能。
可选的,一种设计中,处理器901可以执行指令,使得装置900执行上述方法实施例中第一设备所执行的确定参考信号的方法。该指令可以全部或部分存储在处理器901内,如指令903,也可以全部或部分存储在与处理器901耦合的存储器902中,如指令904,也可以通过指令903和904共同使得装置900执行上述方法实施例中第一设备所执行的方法。
在又一种可能的设计中,通信装置900也可以包括电路,该电路可以实现前述方法实施例中终端设备所执行的功能。
在又一种可能的设计中,装置900中可以包括一个或多个存储器902,其上存储有指令904,该指令可在处理器上被运行,使得装置900执行上述方法实施例中描述的确定参考信号的方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。例如,上述一个或多个存储器902可以存储上述实施例中所描述的关联或对应关系,或者上述实施例中所涉及的相关的参数或表格等。其中,处理器和存储器可以单独设置,也可以集成或耦合在一起。
在又一种可能的设计中,装置900还可以包括收发单元905。处理器901可以称为处理单元,对装置(终端或者基站)进行控制。收发单元905可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果装置900为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,装置900中可以包括收发单元905。
在又一种可能的设计中,装置900还可以包括收发单元905以及天线906。处理器901可以称为处理单元,对装置(终端或者基站)进行控制。收发单元905可以称为收发机、收发电路、或者收发器等,用于通过天线906实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例公开的方法步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于发端设备或第一设备的任一方法实施例所述的确定参考信号序列的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于发端设备或第一设备的任一方法实施例所述的确定参考信号序列的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber  line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种处理装置,包括处理器和接口;处理器,用于执行上述应用于发端设备或第一设备的任一方法实施例所述的确定参考信号序列的方法。
应理解,上述处理装置可以是一个芯片,处理器可以通过硬件实现也可以通过软件实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码实现,该存储器可以集成在处理器中,也可以位于处理器之外,独立存在。
以上结合图6详细说明了本申请实施例提供的确定参考信号的方法,基于与上述确定参考信号的方法的相同发明构思,本申请实施例还提供一种通信装置,如图10所示,通信装置1000中包含处理单元1001和收发单元1002,通信装置1000(以下简称装置1000)可用于实现上述实施例中第二设备所执行的方法。装置1000可以为网络设备或终端设备,也可以位于网络设备或终端设备内,或为第二设备或收端设备。
需要说明的是,上述装置1000可以是网络设备或终端设备,也可以是应用于网络设备或终端设备中的芯片或者其他具有上述收端设备功能的组合器件、部件等。当装置是网络设备或终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置1000是具有上述网络设备或终端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置1000是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置1000用于执行上述方法实施例中第二设备所执行的步骤,或执行收端设备所执行的步骤。
收发单元1002,用于接收来自第一设备的第一参考信号;处理单元1001,用于从参考信号序列集合中确定第一参考信号序列,并根据第一参考信号序列映射的第一符号序列,对第一参考信号解映射,以获取第一参考信号序列的接收信号;参考信号序列集合至少包括:第一类参考信号序列;该第一类参考信号序列的时域和/或频域幅度方差满足预设阈值;第一参考信号序列的接收信号用于通信装置估计相位噪声对接收信号的影响,其中,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰、公共相位误差、相位噪声。
一种可能的设计,处理单元1001,具体用于根据第一参数,从参考信号序列集合中确定第一参考信号序列;其中,第一参数包括以下至少一种:第一设备与通信装置的传输参数,第一参考信号的图案。
一种可能的设计,参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;处理单元1001,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:PTRS块大小为2^a×10^b×26^c,或者,PTRS块中用于承载第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c,其中,a,b,c为正整数。
一种可能的设计,所述参考信号序列集合包括:ZC序列;处理单元1001,具体用于: 若确定第一参数满足以下条件时,则确定第一参考信号序列为ZC列:PTRS块大小为质数;或者,PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
一种可能的设计,参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;其中,P1,P2为正整数;
处理单元1001,具体用于:若确定第一参数满足以下条件时,则确定第一参考信号序列为频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,第一参考信号的图案包括的PTRS块中用于承载第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值。
一种可能的设计,处理单元1001,还用于根据第一参考信号的图案中的PTRS块大小,确定通信装置的功率抬升值;或者,确定通信装置的功率抬升值为固定值。
一种可能的设计,参考信号序列集合还包括:第二类参考信号序列;第二类参考信号序列为离散参考信号序列;收发单元1002,还用于接收来自第一设备的第二参考信号;处理单元1001,还用于根据第一参数,从第二类参考信号序列中,确定第二参考信号序列,并根据第二参考信号序列映射的第二符号序列,对第二参考信号解映射,以获取第二参考信号序列的接收信号;其中,第二参考信号序列的图案包括的PTRS块大小为1;第二参考信号序列用于第二设备估计相位噪声对接收信号的影响,相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;第一参数还包括以下至少一种:第二参考信号的图案、用于确定第二参考信号的图案的MCS门限、用于确定第二参考信号的图案的带宽门限。
一种可能的设计,处理单元1001,还用于:根据第一参数与第一参考信序列的关联关系,确定第一参考信号序列;或者,根据第一参数与第二参考信序列的关联关系,确定第二参考信号序列。
一种可能的设计,收发单元1002,还用于:接收来自第二设备的第一参考信号序列的指示信息;第一参考信号序列的指示信息用于指示第一参考信号序列;或者,接收来自第二设备的第二参考信号序列的指示信息;第二参考信号序列的指示信息用于指示第二参考信号序列。
一种可能的设计,处理单元1001,还用于根据通信装置的MCS,确定通信装置的功率抬升值;或者,确定通信装置的功率抬升值为固定值。
一种可能的设计,处理单元1001,具体用于:若确定通信装置的MCS等于或大于第一MCS阈值时,则确定功率抬升值为0dB;若确定通信装置的MCS小于第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定功率抬升值。
一种可能的设计,处理单元1001,具体用于:若确定通信装置的MCS大于第一MCS阈值时,则确定功率抬升值为0dB;若确定通信装置的MCS小于或等于第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定功率抬升值。
一种可能的设计,第一参数包括以下至少一种:通信装置的相噪模型、通信装置的相噪功率谱密度、子载波间隔、载波频点、通信装置的带宽、通信装置的调制编码方式MCS、 通信装置的调制阶数、通信装置的信道参数、第一参考信号的图案、用于确定第一参考信号的图案的MCS门限、用于确定第一参考信号的图案的带宽门限等。
一种可能的设计,第一参考信号序列为以下序列中的一种:QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列;第二参考信号序列为以下序列中的一种:QPSK伪随机序列、DMRS序列。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述确定参考信号的方法相同的构思,如图11所示,本申请实施例还提供一种通信装置1100。装置1100可用于实现上述方法实施例中由第二设备所执行的方法,可以参见上述方法实施例中的说明,其中所述装置1100可以位于第二设备或收端设备中,可以为网络设备或终端设备。
所述装置1100包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置1100可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
所述装置1100包括一个或多个处理器1101,一个或多个处理器1101可实现上述所示的实施例中第二设备或收端设备执行的方法。
可选的,处理器1101除了可以实现上述所示的实施例中的方法,还可以实现其他功能。
可选的,一种设计中,处理器1101可以执行指令,使得装置1100执行上述方法实施例中第二设备所执行的确定参考信号的方法。该指令可以全部或部分存储在处理器内,如指令1103,也可以全部或部分存储在与处理器1101耦合的存储器1102中,如指令1104,也可以通过指令1103和1104共同使得装置1100执行上述方法实施例中描述的第二设备所执行的确定参考信号的方法。
在又一种可能的设计中,通信装置1100也可以包括电路,该电路可以实现前述方法实施例中终端设备所执行的功能。
在又一种可能的设计中,装置1100中可以包括一个或多个存储器1102,其上存有指令1104,该指令可在处理器上被运行,使得装置1100执行上述方法实施例中描述的确定参考信号的方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。例如,上述一个或多个存储器1102可以存储上述实施例中所描述的关联或 对应关系,或者上述实施例中所涉及的相关的参数或表格等。其中,处理器和存储器可以单独设置,也可以集成或耦合在一起。
在又一种可能的设计中,装置1100还可以包括收发单元1105。处理器1101可以称为处理单元,对装置(终端或者基站)进行控制。收发单元1105可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1100为应用于网络设备或终端设备中的芯片或者其他具有上述网络设备功能或终端设备功能的组合器件、部件等,所述装置1100中可以包括收发单元1105。
在又一种可能的设计中,所述装置1100还可以包括收发单元1105以及天线1106。所述处理器1101可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1105可以称为收发机、收发电路、或者收发器等,用于通过天线1106实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例公开的方法步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于第二设备或收端设备的任一方法实施例所述的确定参考信号的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于第二设备或收端设备的任一方法实施例所述的确定参考信号的方法。
上述实施例,可以全部或部分地通过软件、硬件、固件或者其任意组合实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个 或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种处理装置,包括处理器和接口;处理器,用于执行上述应用于第二设备或收端设备的任一方法实施例所描述的确定参考信号的方法。
应理解,上述处理装置可以是一个芯片,处理器可以通过硬件实现也可以通过软件实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码实现,该存储器可以集成在处理器中,也可以位于处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同的方法实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
根据本申请所提供的几个实施例,应该理解,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,单元的划分,仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案和目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可以用硬件实现,软件实现,或固件实现,或它们的组合方式实现。当使用软件实现时,可以将上述功能存储在计算机可读存储介质中或作为计算机可读存储介质上的一个或多个指令或 代码进行传输。计算机可读存储介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。计算机存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外,任何连接也可以适当的成为计算机可读存储介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(Disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常可以磁性的复制数据,而碟则可以使用激光来光学的复制数据。上面的组合也应当包括在计算机可读存储介质的保护范围之内。
总之,以上所述仅为本申请提供的技术方案中较佳的实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (44)

  1. 一种确定参考信号的方法,其特征在于,包括:
    第一设备从参考信号序列集合中,确定第一参考信号序列;所述第一参考信号序列用于第二设备估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;
    所述参考信号序列集合至少包括:第一类参考信号序列;所述第一类参考信号序列的时域和频域幅度方差满足预设阈值;
    所述第一设备将所述第一参考信号序列映射到第一符号序列上,并根据所述第一符号序列向所述第二设备发送所述第一参考信号序列对应的第一参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备从参考信号序列集合中,确定第一参考信号序列,包括:
    所述第一设备根据第一参数,从所述参考信号序列集合中确定第一参考信号序列;所述第一参数包括以下至少一项:
    所述第一设备和/或所述第二设备的硬件能力;
    所述第一设备与所述第二设备间的传输参数;
    所述第二设备的相位跟踪参考信号PTRS参数。
  3. 根据权利要求2所述的方法,其特征在于,所述参考信号序列集合包括:基于格莱Golay互补序列的Pi/2的BPSK的参考信号序列;所述第一设备若确定所述第一参考信号的图案包括的PTRS块大小大于1且小于或等于第一阈值时,则确定所述第一参考信号序列为块状参考信号序列,包括:
    所述第一设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:
    所述PTRS块大小为2^a×10^b×26^c;或者,
    所述PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c;其中,a,b,c为整数。
  4. 根据权利要求2所述的方法,其特征在于,所述参考信号序列集合包括:ZC序列;所述第一设备若确定所述第一参考信号的图案包括的PTRS块大小大于1且小于或等于第一阈值时,则确定所述第一参考信号序列为块状参考信号序列,包括:
    所述第一设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为ZC列:
    所述PTRS块大小为质数;或者,
    所述PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
  5. 根据权利要求2所述的方法,其特征在于,所述参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;所述频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;所述时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;其中,P1,P2为正整数;
    所述第一设备根据第一参数,从所述参考信号序列集合中确定第一参考信号序列,包 括:
    所述第一设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为所述频域QPSK时域幅度稳定序列和/或所述时域QPSK频域幅度稳定序列:
    所述第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;
    或者,所述第一参考信号的图案包括的PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值;
    和/或,M为L的整数倍,其中L为一个资源块RB内包含的资源单元RE数;M和L为正整数。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据所述第一参考信号的图案中的PTRS块大小,确定所述第二设备的功率抬升值,或者,所述第一设备确定所述第二设备的功率抬升值为固定值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述参考信号序列集合还包括:第二类参考信号序列;所述第二类参考信号序列为离散参考信号序列;所述方法还包括:
    所述第一设备根据所述第一参数,从所述第二类参考信号序列中,确定第二参考信号序列;其中,所述第二参考信号序列用于估计所述第二设备相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;
    所述第一设备将所述第二参考信号序列映射到第二符号序列上,并根据所述第二符号序列向所述第二设备发送所述第二参考信号序列对应的第二参考信号;所述第二参考信号序列的图案包括的PTRS块大小为1;所述第一参数还包括以下至少一项:所述第二参考信号的图案、用于确定所述第二参考信号的图案的MCS门限、用于确定所述第二参考信号的图案的带宽门限。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二参考信号序列的功率抬升值由所述第二设备的MCS确定;或者,所述第二设备的功率抬升值为固定值。
  9. 根据权利要求8所述的方法,其特征在于,所述第二设备的功率抬升值由所述第二设备的MCS确定,包括:
    所述第一设备若确定所述第二设备的MCS等于或大于第一MCS阈值时,所述第二设备的功率抬升值为0dB;所述第一设备若确定所述第二设备的MCS小于第一MCS阈值时,所述第二设备的功率抬升值由PTRS端口所关联的DMRS端口数确定;或者,
    所述第一设备若确定所述第二设备的MCS大于第一MCS阈值时,所述第二设备的功率抬升值为0dB;所述第一设备若确定所述第二设备的MCS小于或等于第一MCS阈值时,所述第二设备的功率抬升值由PTRS端口所关联的DMRS端口数确定。
  10. 一种确定参考信号的方法,其特征在于,包括:
    第二设备从参考信号序列集合中确定第一参考信号序列;所述参考信号序列集合至少包括:第一类参考信号序列;所述第一类参考信号序列的时域和频域幅度方差满足预设阈值;
    所述第二设备接收来自第一设备的第一参考信号,并根据所述第一参考信号序列映射的第一符号序列,对所述第一参考信号解映射,以获取所述第一参考信号序列的接收信号;所述第一参考信号序列的接收信号和所述第一参考信号序列,用于所述第二设备估计相位 噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声。
  11. 根据权利要求10所述的方法,其特征在于,所述第二设备从参考信号序列集合中确定第一参考信号序列,包括:
    所述第二设备根据第一参数,从所述参考信号序列集合中确定所述第一参考信号序列;
    其中,所述第一参数包括以下至少一种:
    所述第一设备和/或所述第二设备的硬件能力;
    所述第一设备与所述第二设备间的传输参数;
    所述第二设备的相位跟踪参考信号PTRS参数。
  12. 根据权利要求11所述的方法,其特征在于,所述参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;所述第二设备若确定所述第一参考信号的图案包括的PTRS块大小大于1且小于或等于第一阈值时,则确定所述第一参考信号序列为块状参考信号序列,包括:
    所述第二设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:
    所述PTRS块大小为2^a×10^b×26^c;或者,
    所述PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c;其中,a,b,c为整数。
  13. 根据权利要求12所述的方法,其特征在于,所述参考信号序列集合包括:ZC序列;所述第一设备若确定所述第一参考信号的图案包括的PTRS块大小大于1且小于或等于第一阈值时,则确定所述第一参考信号序列为块状参考信号序列,包括:
    所述第二设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为ZC列:
    所述PTRS块大小为质数;或者,
    所述PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
  14. 根据权利要求11所述的方法,其特征在于,所述参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;所述频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;所述时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;
    所述第二设备根据第一参数,从所述参考信号序列集合中确定第一参考信号序列,包括:
    所述第二设备若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为所述频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:
    所述第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;
    或者,所述第一参考信号的图案包括的PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一参考信号的图案中的PTRS块大小,确定所述第二设备的 功率抬升值,或者,所述第二设备确定所述第二设备的功率抬升值为固定值。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述参考信号序列集合还包括:第二类参考信号序列;所述第二类参考信号序列为离散参考信号序列;所述方法还包括:
    所述第二设备根据所述第一参数,从所述第二类参考信号序列中,确定第二参考信号序列;其中,所述第二参考信号序列用于所述第二设备估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;
    所述第二设备接收来自第一设备的第二参考信号,并根据所述第二参考信号序列映射的第二符号序列,对所述第二参考信号解映射,以获取所述第二参考信号序列的接收信号;所述第二参考信号序列的图案包括的PTRS块大小为1;所述第一参数还包括以下至少一种:所述第二参考信号的图案、用于确定所述第二参考信号的图案的MCS门限、用于确定所述第二参考信号的图案的带宽门限。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第二设备的MCS,确定所述第二设备的功率抬升值;或者,所述第二设备确定所述第二设备的功率抬升值为固定值。
  18. 根据权利要求17所述的方法,其特征在于,所述第二设备根据所述第二设备的MCS,确定所述第二设备的功率抬升值,包括:
    所述第二设备若确定所述第二设备的MCS等于或大于第一MCS阈值时,则所述功率抬升值为0dB;所述第二设备若确定所述第二设备的MCS小于所述第一MCS阈值时,则所述功率抬升值由相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定;或者,
    所述第二设备若确定所述第二设备的MCS大于第一MCS阈值时,则所述功率抬升值为0dB;所述第二设备若确定所述第二设备的MCS小于或等于所述第一MCS阈值时,则所述功率抬升值由相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述第一参数包括以下至少一种:
    所述第一设备和/或所述第二设备相噪模型、所述第一设备和/或所述第二设备的相噪功率谱密度、子载波间隔、载波频点、所述第二设备的带宽、所述第二设备的调制编码方式MCS、所述第二设备的调制阶数、所述第一设备与所述第二设备间的信道参数、所述第一参考信号的图案、用于确定所述第一参考信号的图案的MCS门限、用于确定所述第一参考信号的图案的带宽门限。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,所述第一参考信号序列为以下序列的一种:
    QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列。
  21. 一种通信装置,其特征在于,包括处理单元和收发单元;
    所述处理单元,用于从参考信号序列集合中,确定第一参考信号序列;所述第一参考信号序列用于第二设备估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;所述参考信号序列集合至 少包括:第一类参考信号序列;所述第一类参考信号序列的时域或频域幅度方差满足预设阈值;
    所述收发单元,用于将所述第一参考信号序列映射到第一符号序列上,向所述第二设备发送所述第一参考信号序列对应的第一参考信号。
  22. 根据权利要求21所述的通信装置,其特征在于,所述处理单元,具体用于根据第一参数,从所述参考信号序列集合中确定第一参考信号序列;所述第一参数包括以下至少一项:所述第一设备与所述第二设备的传输参数,所述第一参考信号的图案。
  23. 根据权利要求22所述的通信装置,其特征在于,所述参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;所述处理单元,具体用于:若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:所述PTRS资块大小为2^a×10^b×26^c,或者,所述PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c,a,b,c为整数。
  24. 根据权利要求23所述的通信装置,其特征在于,所述参考信号序列集合包括:ZC序列;所述处理单元,具体用于若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为ZC列:所述PTRS块大小为质数;或者,所述PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
  25. 根据权利要求23所述的通信装置,其特征在于,所述参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;所述频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;所述时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;
    所述处理单元,具体用于若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为所述频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:所述第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,所述第一参考信号的图案包括的PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值。
  26. 根据权利要求22-25任一项所述的通信装置,其特征在于,所述处理单元,还用于若确定所述第一参考信号序列为块状非零功率序列,则根据所述第一参考信号的图案中的PTRS块大小,确定所述第二设备的功率抬升值;或者,所述处理单元,还用于确定所述第一参考信号序列的功率抬升值为固定值。
  27. 根据权利要求21-26任一项所述的通信装置,其特征在于,所述参考信号序列集合还包括:第二类参考信号序列;所述第二类参考信号序列为离散参考信号序列;所述处理单元,还用于根据所述第一参数,从所述第二类参考信号序列中,确定第二参考信号序列;其中,所述第二参考信号序列的图案包括的PTRS块大小为1;所述第二参考信号序列用于所述第二设备估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括子载波间干扰和/或公共相位误差和或相位噪声;
    所述收发单元,还用于将所述第二参考信号序列映射到第二符号序列上,向所述第二设备发送所述第二参考信号序列对应的第二参考信号;所述第一参数还包括以下至少一种: 所述第二参考信号的图案、用于确定所述第二参考信号的图案的MCS门限、用于确定所述第二参考信号的图案的带宽门限。
  28. 根据权利要求27所述的通信装置,其特征在于,所述处理单元,还用于根据所述第二设备的MCS确定所述第二设备的功率抬升值。
  29. 根据权利要求28所述的通信装置,其特征在于,所述处理单元,具体用于:
    若确定所述第二设备的MCS等于或大于第一MCS阈值时,则确定所述第二设备的功率抬升值为0dB;若确定所述第二设备的MCS小于第一MCS阈值时,则根据所述第二设备的PTRS端口所关联的DMRS端口数确定所述第二设备的功率抬升值;或者,若确定所述第二设备的MCS大于第一MCS阈值时,则确定所述第二设备的功率抬升值为0dB;若确定所述第二设备的MCS小于或等于第一MCS阈值时,则根据所述第二设备的PTRS端口所关联的DMRS端口数确定所述第二设备的功率抬升值。
  30. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收来自第一设备的第一参考信号;
    所述处理单元,用于从参考信号序列集合中确定第一参考信号序列,并根据所述第一参考信号序列映射的第一符号序列,对所述第一参考信号解映射,以获取所述第一参考信号序列的接收信号;所述参考信号序列集合至少包括:第一类参考信号序列;所述第一类参考信号序列的时域或频域幅度方差满足预设阈值;所述第一参考信号序列的接收信号用于所述通信装置估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声。
  31. 根据权利要求30所述的通信装置,其特征在于,所述处理单元,具体用于根据第一参数,从所述参考信号序列集合中确定所述第一参考信号序列;其中,所述第一参数包括以下至少一种:所述第一设备与所述通信装置的传输参数,所述第一参考信号的图案。
  32. 根据权利要求31所述的通信装置,其特征在于,所述参考信号序列集合包括:基于Golay互补序列的Pi/2的BPSK的参考信号序列;所述处理单元,具体用于:若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为基于Golay互补序列的Pi/2的BPSK的参考信号序列:所述PTRS块大小为2^a×10^b×26^c,或者,所述PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小为2^a×10^b×26^c。
  33. 根据权利要求31所述的通信装置,其特征在于,所述参考信号序列集合包括:ZC序列;所述处理单元,具体用于:若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为ZC列:所述PTRS块大小为质数;或者,所述PTRS块中用于承载第一参考信号序列的有效序列的块大小为质数。
  34. 根据权利要求31所述的通信装置,其特征在于,所述参考信号序列集合包括:频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列;所述频域QPSK时域幅度稳定序列为基于有效序列长度为Q的频域QPSK序列集合中选取的时域幅度方差满足第二阈值的P1个参考序列中的一个;所述时域QPSK频域幅度稳定序列为基于有效序列长度为Q的时域QPSK序列集合中选取的频域幅度方差满足第三阈值的P2个参考序列中的一个;P1,P2为正整数;
    所述处理单元,具体用于:若确定所述第一参数满足以下条件时,则确定所述第一参考信号序列为所述频域QPSK时域幅度稳定序列和/或时域QPSK频域幅度稳定序列:所述第一参考信号的图案包括的PTRS块大小M大于或等于第一阈值;或者,所述第一参考信 号的图案包括的PTRS块中用于承载所述第一参考信号序列的有效序列对应的块大小M大于或等于第一阈值。
  35. 根据权利要求31-34任一项所述的通信装置,其特征在于,所述处理单元,还用于根据所述第一参考信号的图案中的PTRS块大小,确定所述通信装置的功率抬升值;或者,确定所述通信装置的功率抬升值为固定值。
  36. 根据权利要求30-35任一项所述的通信装置,其特征在于,所述参考信号序列集合还包括:第二类参考信号序列;所述第二类参考信号序列为离散参考信号序列;
    所述收发单元,还用于接收来自第一设备的第二参考信号;
    所述处理单元,还用于根据所述第一参数,从所述第二类参考信号序列中,确定第二参考信号序列,并根据所述第二参考信号序列映射的第二符号序列,对所述第二参考信号解映射,以获取所述第二参考信号序列的接收信号;其中,所述第二参考信号序列的图案包括的PTRS块大小为1;所述第二参考信号序列用于所述第二设备估计相位噪声对接收信号的影响,所述相位噪声对接收信号的影响包括以下至少一项:子载波间干扰,公共相位误差,相位噪声;所述第一参数还包括以下至少一种:所述第二参考信号的图案、用于确定所述第二参考信号的图案的MCS门限、用于确定所述第二参考信号的图案的带宽门限。
  37. 根据权利要求30-36任一项所述的通信装置,其特征在于,所述处理单元,还用于根据所述通信装置的MCS,确定所述通信装置的功率抬升值;或者,确定所述通信装置的功率抬升值为固定值。
  38. 根据权利要求37所述的通信装置,其特征在于,所述处理单元,具体用于:
    若确定所述通信装置的MCS等于或大于第一MCS阈值时,则确定所述功率抬升值为0dB;若确定所述通信装置的MCS小于所述第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定所述功率抬升值;或者,若确定所述通信装置的MCS大于第一MCS阈值时,则确定所述功率抬升值为0dB;若确定所述通信装置的MCS小于或等于所述第一MCS阈值时,则根据相噪估计参考信号PTRS端口所关联的解调参考信号DMRS端口数确定所述功率抬升值。
  39. 根据权利要求21-29任一项所述的通信装置或权利要求30-38任一项所述的通信装置,其特征在于,所述第一参数包括以下至少一种:
    所述通信装置的相噪模型、所述通信装置的相噪功率谱密度、子载波间隔、载波频点、所述通信装置的带宽、所述通信装置的调制编码方式MCS、所述通信装置的调制阶数、所述通信装置的信道参数、所述第一参考信号的图案、用于确定所述第一参考信号的图案的MCS门限、用于确定所述第一参考信号的图案的带宽门限。
  40. 根据权利要求21-29任一项所述的通信装置或权利要求30-38任一项所述的通信装置,其特征在于,所述第一参考信号序列为以下序列的一种:
    QPSK伪随机序列、块状首尾循环序列、DMRS序列、块状零功率序列、ZC序列、块状非零功率序列;
    所述第二参考信号序列为以下序列的一种:QPSK伪随机序列、DMRS序列。
  41. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至9任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行 时,使得计算机执行如权利要求10至20任一项所述的方法。
  43. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器和收发器,所述收发器和所述至少一个处理器通过线路互联,所述处理器通过运行指令,以执行权利要求1到20任一项所述的方法。
  44. 一种通信系统,其特征在于,包括用于执行如权利要求1至9任一项所述的方法的第一设备、用于执行如权利要求10至20任一项所述的方法的第二设备。
PCT/CN2019/129323 2019-12-27 2019-12-27 一种确定参考信号的方法及装置 WO2021128299A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/129323 WO2021128299A1 (zh) 2019-12-27 2019-12-27 一种确定参考信号的方法及装置
CA3163202A CA3163202A1 (en) 2019-12-27 2019-12-27 Reference signal determining method and apparatus
EP19957448.4A EP4068892A4 (en) 2019-12-27 2019-12-27 METHOD AND DEVICE FOR DETERMINING A REFERENCE SIGNAL
CN201980103263.6A CN114902774A (zh) 2019-12-27 2019-12-27 一种确定参考信号的方法及装置
US17/849,336 US20220337461A1 (en) 2019-12-27 2022-06-24 Reference Signal Determining Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129323 WO2021128299A1 (zh) 2019-12-27 2019-12-27 一种确定参考信号的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,336 Continuation US20220337461A1 (en) 2019-12-27 2022-06-24 Reference Signal Determining Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021128299A1 true WO2021128299A1 (zh) 2021-07-01

Family

ID=76573485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129323 WO2021128299A1 (zh) 2019-12-27 2019-12-27 一种确定参考信号的方法及装置

Country Status (5)

Country Link
US (1) US20220337461A1 (zh)
EP (1) EP4068892A4 (zh)
CN (1) CN114902774A (zh)
CA (1) CA3163202A1 (zh)
WO (1) WO2021128299A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077612A1 (zh) * 2022-10-14 2024-04-18 华为技术有限公司 一种通信方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11463288B2 (en) * 2021-06-14 2022-10-04 Ultralogic 6G, Llc Amplitude-variation encoding for high-density 5G/6G modulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070767A1 (ko) * 2016-10-11 2018-04-19 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음을 제거하는 신호 전송 방법 및 그 장치
CN108632009A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信的方法和装置
CN109314686A (zh) * 2016-04-25 2019-02-05 Lg 电子株式会社 无线通信系统中估计相位噪声的信号传输方法
CN109617665A (zh) * 2019-01-16 2019-04-12 深圳职业技术学院 一种窄带物联网中分级数据传输方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131457A1 (en) * 2016-01-27 2017-08-03 Samsung Electronics Co., Ltd. Method and apparatus for estimating and correcting phase error in wireless communication system
WO2018101863A1 (en) * 2016-11-30 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive subcarrier spacing for reference signals in a multiuser mimo system
KR101971972B1 (ko) * 2017-01-09 2019-04-24 엘지전자 주식회사 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
CN108632005B (zh) * 2017-03-24 2023-12-15 华为技术有限公司 一种参考信号传输方法、装置及系统
CN108631987B (zh) * 2017-03-24 2022-05-17 中兴通讯股份有限公司 参考信号的处理方法及装置
CN114401173A (zh) * 2017-08-01 2022-04-26 华为技术有限公司 参考信号的传输方法及装置
CN109391448B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314686A (zh) * 2016-04-25 2019-02-05 Lg 电子株式会社 无线通信系统中估计相位噪声的信号传输方法
WO2018070767A1 (ko) * 2016-10-11 2018-04-19 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음을 제거하는 신호 전송 방법 및 그 장치
CN108632009A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信的方法和装置
CN109617665A (zh) * 2019-01-16 2019-04-12 深圳职业技术学院 一种窄带物联网中分级数据传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On phase tracking in DFT-S-OFDM waveform", 3GPP DRAFT; R1-1612338 ON PHASE TRACKING IN DFT-S-OFDM WAVEFORM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051176287 *
See also references of EP4068892A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077612A1 (zh) * 2022-10-14 2024-04-18 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4068892A1 (en) 2022-10-05
EP4068892A4 (en) 2023-03-01
CN114902774A (zh) 2022-08-12
CA3163202A1 (en) 2021-07-01
US20220337461A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
EP3567915B1 (en) Wireless communication method, device and system
US11949617B2 (en) Joint resource map design of DM-RS and PT-RS
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
US11272491B2 (en) Resource indication method, network device, and terminal device
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
WO2018082457A1 (zh) 配置参考信号的方法和装置
KR20140099238A (ko) 무선 네트워크에서 시간 및/또는 주파수 트래킹을 위한 참조신호
WO2022022579A1 (zh) 一种通信方法及装置
US20220337461A1 (en) Reference Signal Determining Method and Apparatus
WO2021189216A1 (zh) 参考信号设置方法及装置
US20230198715A1 (en) Phase tracking reference signal sending method and receiving method and communication apparatus
WO2020211767A1 (zh) 用于数据传输的方法和装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2018127177A1 (zh) 一种通知通信设备的能力信息的方法及设备
WO2018132944A1 (zh) 信号传输方法和设备
CN112235087B (zh) 一种解调参考信号配置方法、终端及网络侧设备
WO2018202106A1 (zh) 无线通信方法及装置
WO2021032030A1 (zh) 一种通信方法和装置
US12021774B2 (en) Method and device for transmitting and receiving reference signal in millimeter wave wireless communication system
CN111147215B (zh) 无线通信方法、装置及系统
EP4336786A1 (en) Signal transmission method and communication apparatus
WO2023010467A1 (en) Methods for multi-pdsch transmission with multiple pucch resources
CN113316905B (zh) 针对高容量的分组内速率适配
WO2022151500A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163202

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019957448

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE