WO2021128188A1 - Lentille optique de caméra - Google Patents

Lentille optique de caméra Download PDF

Info

Publication number
WO2021128188A1
WO2021128188A1 PCT/CN2019/128806 CN2019128806W WO2021128188A1 WO 2021128188 A1 WO2021128188 A1 WO 2021128188A1 CN 2019128806 W CN2019128806 W CN 2019128806W WO 2021128188 A1 WO2021128188 A1 WO 2021128188A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
ttl
optical lens
curvature
Prior art date
Application number
PCT/CN2019/128806
Other languages
English (en)
Chinese (zh)
Inventor
山崎郁
张磊
崔元善
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/128806 priority Critical patent/WO2021128188A1/fr
Publication of WO2021128188A1 publication Critical patent/WO2021128188A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application relates to the field of optical lenses, and in particular to a camera optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the pixel size of photosensitive devices has been reduced, and the development trend of current electronic products with good functions, thin and short appearance, therefore, has The miniaturized camera lens with good image quality has become the mainstream in the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the purpose of the present application is to provide an imaging optical lens that can meet the requirements of ultra-thinness and wide-angle while obtaining high imaging performance.
  • the imaging optical lens includes in order from the object side to the image side: a first lens with negative refractive power, and a second lens with negative refractive power. Two lenses, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens, a sixth lens, and a seventh lens;
  • the object side surface of the first lens is convex on the paraxial axis, and the image side surface is concave on the paraxial axis;
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the first lens The curvature radius of the object side surface is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -4.50 ⁇ f1/f ⁇ -1.20; 0.67 ⁇ (R1+R2)/(R1-R2) ⁇ 7.10; 0.03 ⁇ d1/TTL ⁇ 0.19.
  • the imaging optical lens satisfies the following relationship: -2.82 ⁇ f1/f ⁇ -1.50; 1.07 ⁇ (R1+R2)/(R1-R2) ⁇ 5.68; 0.05 ⁇ d1/TTL ⁇ 0.15.
  • the object side of the second lens is concave on the paraxial; the focal length of the imaging optical lens is f, the focal length of the second lens is f2, and the radius of curvature of the object side of the second lens is R3, so The curvature radius of the image side surface of the second lens is R4, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: f2/f ⁇ -11.21; -67.69 ⁇ (R3+R4)/(R3-R4) ⁇ -0.30; 0.04 ⁇ d3/TTL ⁇ 0.16.
  • the imaging optical lens satisfies the following relationship: f2/f ⁇ -14.02; -42.31 ⁇ (R3+R4)/(R3-R4) ⁇ -0.38; 0.07 ⁇ d3/TTL ⁇ 0.13.
  • the object side of the third lens is convex on the paraxial axis, and the image side is convex on the paraxial;
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the third lens The curvature radius of the object side surface is R5, the curvature radius of the image side surface of the third lens is R6, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.71 ⁇ f3/f ⁇ 4.29; -0.89 ⁇ ( R5+R6)/(R5-R6) ⁇ 0.52; 0.03 ⁇ d5/TTL ⁇ 0.13.
  • the imaging optical lens satisfies the following relationship: 1.13 ⁇ f3/f ⁇ 3.44; -0.55 ⁇ (R5+R6)/(R5-R6) ⁇ 0.41; 0.05 ⁇ d5/TTL ⁇ 0.11.
  • the object side of the fourth lens is convex on the paraxial axis, and the image side is convex on the paraxial;
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the fourth lens The curvature radius of the object side is R7
  • the curvature radius of the image side of the fourth lens is R8,
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.51 ⁇ f4/f ⁇ 1.67; 0.10 ⁇ (R7+R8)/(R7-R8) ⁇ 0.61; 0.04 ⁇ d7/TTL ⁇ 0.18.
  • the imaging optical lens satisfies the following relationship: 0.82 ⁇ f4/f ⁇ 1.33; 0.16 ⁇ (R7+R8)/(R7-R8) ⁇ 0.48; 0.06 ⁇ d7/TTL ⁇ 0.14.
  • the object side of the fifth lens is concave on the paraxial axis, and the image side is concave on the paraxial;
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the fifth lens The radius of curvature of the object side surface is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the axial thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -3.01 ⁇ f5/f ⁇ -0.89; -1.58 ⁇ (R9+R10)/(R9-R10) ⁇ 0.27; 0.02 ⁇ d9/TTL ⁇ 0.08.
  • the imaging optical lens satisfies the following relationship: -1.88 ⁇ f5/f ⁇ -1.12; -0.99 ⁇ (R9+R10)/(R9-R10) ⁇ 0.22; 0.04 ⁇ d9/TTL ⁇ 0.07.
  • the object side surface of the sixth lens is convex on the paraxial axis, and the image side surface is concave on the paraxial axis;
  • the focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6, and the sixth lens
  • the radius of curvature of the object side surface is R11
  • the radius of curvature of the image side surface of the sixth lens is R12
  • the axial thickness of the sixth lens is d11
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 1.53 ⁇ f6/f ⁇ 7.29; -20.66 ⁇ (R11+R12)/(R11-R12) ⁇ -2.81; 0.05 ⁇ d11/TTL ⁇ 0.19.
  • the imaging optical lens satisfies the following relationship: 2.45 ⁇ f6/f ⁇ 5.83; -12.91 ⁇ (R11+R12)/(R11-R12) ⁇ -3.51; 0.08 ⁇ d11/TTL ⁇ 0.15.
  • the object side of the seventh lens is convex on the paraxial axis, and the image side is concave on the paraxial;
  • the focal length of the imaging optical lens is f
  • the focal length of the seventh lens is f7
  • the seventh lens The curvature radius of the object side surface is R13
  • the curvature radius of the image side surface of the seventh lens is R14
  • the axial thickness of the seventh lens is d13
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -13.21 ⁇ f7/f ⁇ -2.42; 1.84 ⁇ (R13+R14)/(R13-R14) ⁇ 11.92; 0.03 ⁇ d13/TTL ⁇ 0.09.
  • the imaging optical lens satisfies the following relationship: -8.26 ⁇ f7/f ⁇ -3.02; 2.94 ⁇ (R13+R14)/(R13-R14) ⁇ 9.54; 0.04 ⁇ d13/TTL ⁇ 0.07.
  • the total optical length TTL of the imaging optical lens is less than or equal to 8.78 mm.
  • the total optical length TTL of the imaging optical lens is less than or equal to 8.38 mm.
  • the aperture F number of the imaging optical lens is less than or equal to 2.88.
  • the aperture F number of the imaging optical lens is less than or equal to 2.83.
  • the imaging optical lens according to the present application has excellent optical characteristics, is ultra-thin, wide-angle and fully compensated for chromatic aberration, and is especially suitable for mobile phone camera lenses composed of high-pixel CCD, CMOS and other imaging elements Components and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present application
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present application.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present application.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the application.
  • the imaging optical lens 10 includes seven lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: a first lens L1, a second lens L2, a third lens L3, an aperture S1, a fourth lens L4, a fifth lens L5, and a sixth lens. Lens L6 and seventh lens L7.
  • An optical element such as an optical filter GF may be provided on the image side of the seventh lens L7.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic
  • the seventh lens is made of plastic.
  • the lens L7 is made of plastic.
  • the maximum angle of view of the imaging optical lens 10 is defined as FOV, 100.00° ⁇ FOV ⁇ 135.00°.
  • the field of view angle of the camera optical lens 10 is defined, and within the range, ultra-wide-angle camera can be realized and the user experience can be improved.
  • the on-axis thickness of the first lens L1 as d1
  • the on-axis thickness of the second lens L2 as d3
  • the on-axis thickness of the third lens L3 as d5, 1.40 ⁇ (d1+d5)/d3 ⁇ 2.50.
  • the dispersion coefficient of the first lens L1 as v1
  • the dispersion coefficient of the seventh lens as v7, 8.00 ⁇ v1-v7 ⁇ 23.00.
  • the difference between the dispersion coefficient of the first lens and the seventh lens is specified. Within the range, it can effectively correct the dispersion of the imaging optical lens, improve the sharpness of the imaging, close to the true color of the subject, and improve the imaging quality.
  • the imaging optical lens 10 When the focal length of the imaging optical lens 10, the focal length of each lens, the refractive index of the related lens, the total optical length of the imaging optical lens 10, the axial thickness and the radius of curvature of the present application satisfy the above-mentioned relational expressions, the imaging optical lens 10 can be made to have High performance, and meet the design requirements of low TTL.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is concave at the paraxial position, and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the first lens L1 is f1
  • f1 which satisfies the following relationship: -4.50 ⁇ f1/f ⁇ -1.20, which specifies the ratio of the focal length of the first lens L1 to the overall focal length.
  • the first lens L1 has an appropriate negative refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • -2.82 ⁇ f1/f ⁇ -1.50 is beneficial to the development of ultra-thin and wide-angle lenses.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: 0.67 ⁇ (R1+R2)/(R1-R2) ⁇ 7.10, reasonable control of the first lens L1
  • the shape of the first lens L1 can effectively correct the spherical aberration of the system.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.19, which is conducive to achieving ultra-thinness.
  • the object side surface of the second lens L2 is concave at the paraxial position and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2 which satisfies the following relationship: -40158.79 ⁇ f2/f ⁇ -11.21, by controlling the negative power of the second lens L2 within a reasonable range, Conducive to correcting the aberration of the optical system.
  • f2 the focal length of the second lens L2
  • -40158.79 ⁇ f2/f ⁇ -11.21 by controlling the negative power of the second lens L2 within a reasonable range, Conducive to correcting the aberration of the optical system.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: -67.69 ⁇ (R3+R4)/(R3-R4) ⁇ -0.30, which specifies the second
  • -67.69 ⁇ (R3+R4)/(R3-R4) ⁇ -0.30 which specifies the second
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d3/TTL ⁇ 0.16, which specifies the on-axis thickness of the second lens L2 and the imaging optical lens 10
  • the ratio of the total optical length to TTL is conducive to achieving ultra-thinness.
  • the object side surface of the third lens L3 is convex at the paraxial position, and the image side surface is convex at the paraxial position, and has positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3, which satisfies the following relationship: 0.71 ⁇ f3/f ⁇ 4.29.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, 1.13 ⁇ f3/f ⁇ 3.44.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -0.89 ⁇ (R5+R6)/(R5-R6) ⁇ 0.52, which can effectively control the third lens
  • the shape of the lens L3 is conducive to the molding of the third lens L3.
  • the degree of deflection of the light passing through the lens can be alleviated, and aberrations can be effectively reduced.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d5/TTL ⁇ 0.13, which is beneficial to realize ultra-thinness.
  • the object side surface of the fourth lens L4 is convex at the paraxial position, and the image side surface is convex at the paraxial position, and has positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: 0.51 ⁇ f4/f ⁇ 1.67.
  • the reasonable distribution of optical power enables the system to have better imaging quality and comparison. Low sensitivity.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.10 ⁇ (R7+R8)/(R7-R8) ⁇ 0.61, the fourth lens is specified
  • the shape of L4 is within the range, with the development of ultra-thin and wide-angle, it is helpful to correct the aberration of the off-axis angle of view.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.18, which is beneficial to realize ultra-thinness.
  • the object side surface of the fifth lens L5 is concave at the paraxial position, and the image side surface is concave at the paraxial position, and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: -3.01 ⁇ f5/f ⁇ -0.89.
  • the limitation on the fifth lens L5 can effectively make the light angle of the imaging lens Gentle, reduce tolerance sensitivity.
  • the radius of curvature of the object side surface of the fifth lens L5 is R9
  • the radius of curvature of the image side surface of the fifth lens L5 is R10, which satisfies the following relationship: -1.58 ⁇ (R9+R10)/(R9-R10) ⁇ 0.27, which is the fifth
  • -1.58 ⁇ (R9+R10)/(R9-R10) ⁇ 0.27 which is the fifth
  • it is beneficial to correct the aberration of the off-axis angle of view Preferably, -0.99 ⁇ (R9+R10)/(R9-R10) ⁇ 0.22.
  • the object side surface of the sixth lens L6 is convex at the paraxial position, and the image side surface is concave at the paraxial position, and has positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: 1.53 ⁇ f6/f ⁇ 7.29.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, 2.45 ⁇ f6/f ⁇ 5.83.
  • the curvature radius of the object side surface of the sixth lens L6 is R11
  • the curvature radius of the image side surface of the sixth lens L6 is R12, which satisfies the following relationship: -20.66 ⁇ (R11+R12)/(R11-R12) ⁇ -2.81.
  • the shape of the six lens L6 is within the range of conditions, with the development of ultra-thin and wide-angle, it is conducive to correcting the aberration of the off-axis angle of view.
  • the on-axis thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d11/TTL ⁇ 0.19, which is conducive to achieving ultra-thinness.
  • the object side surface of the seventh lens L7 is convex at the paraxial position, and the image side surface is concave at the paraxial position, and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the seventh lens L7 is f7, which satisfies the following relationship: -13.21 ⁇ f7/f ⁇ -2.42.
  • the reasonable distribution of the optical power enables the system to have better imaging quality And lower sensitivity.
  • the curvature radius of the object side surface of the seventh lens L7 is R13
  • the curvature radius of the image side surface of the seventh lens L7 is R14, which satisfies the following relationship: 1.84 ⁇ (R13+R14)/(R13-R14) ⁇ 11.92, which specifies the seventh lens L7
  • 1.84 ⁇ (R13+R14)/(R13-R14) ⁇ 11.92 which specifies the seventh lens L7
  • the axial thickness of the seventh lens L7 is d13, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d13/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 8.78 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 8.38 mm.
  • the aperture F number of the imaging optical lens 10 is less than or equal to 2.88. Large aperture, good imaging performance. Preferably, the aperture F number of the imaging optical lens 10 is less than or equal to 2.83.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present application will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present application.
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the optical filter GF
  • R16 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
  • d15 the axial thickness of the optical filter GF
  • d16 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • ndg the refractive index of the d-line of the optical filter GF
  • v2 the dispersion coefficient of the second lens L2
  • v4 the dispersion coefficient of the fourth lens L4
  • v6 the dispersion coefficient of the sixth lens L6
  • vg the dispersion coefficient of the optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • this application is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
  • P4R1, P4R2 represent the object side and image side of the fourth lens L4
  • P5R1, P5R2 represent the object side and image side of the fifth lens L5
  • P6R1, P6R2 represent the object side and image side of the sixth lens L6,
  • P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 656 nm, 588 nm, and 486 nm pass through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 588 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 13 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens 10 is 0.923mm
  • the full-field image height is 2.30mm
  • the maximum angle of view of the imaging optical lens 10 is 100.99°.
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present application.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 of the second embodiment of the present application.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present application. ⁇ Table 7 ⁇
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 588 nm, and 486 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 588 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens 20 is 0.793mm
  • the full-field image height is 2.30mm
  • the maximum field of view angle of the imaging optical lens 20 is 117.54°, wide-angle, ultra-thin, and its axis and axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 of the third embodiment of the present application.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present application.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present application.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 588 nm, and 486 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 588 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter of the imaging optical lens 30 is 0.699mm
  • the full-field image height is 2.30mm
  • the maximum field of view angle of the imaging optical lens 30 is 132.95°, wide-angle, ultra-thin, and its axis and axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 f 2.584 2.219 1.957 f1 -5.820 -4.116 -3.525 f2 -56.580 -37.329 -39298.150 f3 3.655 4.653 5.603 f4 2.870 2.266 2.089 f5 -3.832 -2.979 -2.942 f6 12.564 6.807 6.858 f7 -17.067 -8.044 -9.519 f12 -5.235 -3.757 -3.738 FNO 2.80 2.80 2.80 FOV 100.99° 117.54° 132.95° (d1+d5)/d3 1.404 1.952 2.450 v1-v7 8.05 15.50 22.75
  • f12 is the combined focal length of the first lens L1 and the second lens L2, and FNO is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

L'invention concerne une lentille optique de caméra (10, 20, 30), appartenant au domaine des lentilles optiques. La lentille optique de caméra (10, 20, 30) comprend, d'un côté objet à un côté image dans L'ordre suivant : une première lentille (L1), une deuxième lentille (L2), une troisième lentille (L3), une quatrième lentille (L4), une cinquième lentille (L5), une sixième lentille (L6) et une septième lentille (L7). La lentille optique de caméra (10, 20, 30) satisfait les relations suivantes : 100,00° ≤ FOV ≤ 135,00°, 1,40 ≤ (d1 + d5)/d3 ≤ 2,50, et 8,00 ≤ v1-v7 ≤ 23,00. La lentille optique de caméra (10, 20, 30) peut obtenir des performances d'imagerie élevées tout en obtenant une TTL faible.
PCT/CN2019/128806 2019-12-26 2019-12-26 Lentille optique de caméra WO2021128188A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128806 WO2021128188A1 (fr) 2019-12-26 2019-12-26 Lentille optique de caméra

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128806 WO2021128188A1 (fr) 2019-12-26 2019-12-26 Lentille optique de caméra

Publications (1)

Publication Number Publication Date
WO2021128188A1 true WO2021128188A1 (fr) 2021-07-01

Family

ID=76573635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128806 WO2021128188A1 (fr) 2019-12-26 2019-12-26 Lentille optique de caméra

Country Status (1)

Country Link
WO (1) WO2021128188A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308490A (zh) * 2013-05-28 2016-02-03 索尼公司 成像透镜、相机模块和成像装置
CN206002757U (zh) * 2016-08-25 2017-03-08 嘉兴中润光学科技有限公司 一种广角镜头
CN108873270A (zh) * 2018-07-13 2018-11-23 舜宇光学(中山)有限公司 玻塑混合定焦镜头
US20180372991A1 (en) * 2017-06-26 2018-12-27 Canon Kabushiki Kaisha Converter lens and camera apparatus including the same
CN109324395A (zh) * 2018-11-15 2019-02-12 江西特莱斯光学有限公司 一种定焦无畸变玻塑镜头
CN110412720A (zh) * 2018-04-28 2019-11-05 宁波舜宇车载光学技术有限公司 光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308490A (zh) * 2013-05-28 2016-02-03 索尼公司 成像透镜、相机模块和成像装置
CN206002757U (zh) * 2016-08-25 2017-03-08 嘉兴中润光学科技有限公司 一种广角镜头
US20180372991A1 (en) * 2017-06-26 2018-12-27 Canon Kabushiki Kaisha Converter lens and camera apparatus including the same
CN110412720A (zh) * 2018-04-28 2019-11-05 宁波舜宇车载光学技术有限公司 光学镜头
CN108873270A (zh) * 2018-07-13 2018-11-23 舜宇光学(中山)有限公司 玻塑混合定焦镜头
CN109324395A (zh) * 2018-11-15 2019-02-12 江西特莱斯光学有限公司 一种定焦无畸变玻塑镜头

Similar Documents

Publication Publication Date Title
WO2021253517A1 (fr) Lentille optique de caméra
WO2021168889A1 (fr) Lentille optique de caméra
WO2021168890A1 (fr) Lentille optique de caméra
WO2021128144A1 (fr) Lentille optique photographique
WO2021128122A1 (fr) Lentille optique de caméra
WO2021128185A1 (fr) Lentille optique d'appareil de prise de vues
WO2021128137A1 (fr) Lentille optique de caméra
WO2021127827A1 (fr) Lentille optique d'appareil de prise de vues
WO2021127893A1 (fr) Lentille optique de caméra
WO2021128183A1 (fr) Lentille optique d'appareil de prise de vues
WO2021128261A1 (fr) Lentille optique de capture d'image
WO2021128190A1 (fr) Lentille optique d'appareil de prise de vues
WO2021109078A1 (fr) Lentille optique photographique
WO2021128133A1 (fr) Lentille optique photographique
WO2021128195A1 (fr) Lentille optique d'appareil de prise de vues
WO2021128139A1 (fr) Lentille optique de caméra
WO2021128188A1 (fr) Lentille optique de caméra
WO2021168880A1 (fr) Lentille optique de caméra
WO2021128149A1 (fr) Lentille optique photographique
WO2021128271A1 (fr) Lentille optique de caméra
WO2021128237A1 (fr) Lentille optique de caméra
WO2021128260A1 (fr) Lentille optique d'appareil de prise de vues
WO2021128147A1 (fr) Lentille optique d'appareil de prise de vues
WO2021128276A1 (fr) Lentille optique de caméra
WO2021128132A1 (fr) Lentille optique d'appareil de prise de vues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957895

Country of ref document: EP

Kind code of ref document: A1