WO2021128066A1 - 一种处理无线信号的方法和装置以及通信设备 - Google Patents

一种处理无线信号的方法和装置以及通信设备 Download PDF

Info

Publication number
WO2021128066A1
WO2021128066A1 PCT/CN2019/128340 CN2019128340W WO2021128066A1 WO 2021128066 A1 WO2021128066 A1 WO 2021128066A1 CN 2019128340 W CN2019128340 W CN 2019128340W WO 2021128066 A1 WO2021128066 A1 WO 2021128066A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
network device
power
gain control
received power
Prior art date
Application number
PCT/CN2019/128340
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/128340 priority Critical patent/WO2021128066A1/zh
Publication of WO2021128066A1 publication Critical patent/WO2021128066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and apparatus for processing wireless signals, and a communication device.
  • the transmission power of the network device is usually much greater than the transmission power of the terminal device.
  • the downlink signal will cause serious interference to the uplink signal, which will cause the front-end low noise amplifier (LNA) of the network device receiving the uplink signal to be blocked, and the signal cannot be received normally. Therefore, in the prior art, it is necessary for network devices operating in the same or adjacent operating frequency bands and geographically close locations to maintain the same transmission direction (ie, simultaneous downlink transmission or simultaneous uplink transmission) to avoid uplink transmission caused by downlink transmission. interference.
  • LNA low noise amplifier
  • the downlink traffic and uplink traffic of adjacent network devices using the same working frequency band at the same time vary greatly, and the restrictions of using the same uplink and downlink communication configuration will not be able to meet the requirements of different network devices.
  • TDD dynamic time division duplexing
  • the present application provides a method and device for processing wireless signals and a communication device, which can reduce the probability of LNA blocking due to excessive signal interference sent by neighboring network devices, and improve the signal-to-interference-to-noise ratio (SINR) of the received signal.
  • SINR signal-to-interference-to-noise ratio
  • a method for processing a wireless signal including: a first network device detects the received power of a first signal, the first signal is a signal sent by a second network device; the first network device detects the received power according to the received power , Adjust the parameter of the gain control unit to the first value, so that the low noise amplifier LNA works in the linear region after the fourth signal is input, where the fourth signal is the third signal passing the parameter of the first value
  • the signal after the power is adjusted by the gain control unit, the third signal includes a signal sent by the second network device and a second signal, and the second signal is a signal received by the first network device from the terminal device.
  • the first network device adjusts the parameter of the gain control unit to the first value by detecting the interference (ie receiving power) of the received signal sent by the other network device, so that even if the second signal sent by the receiving terminal device has other
  • the interference of the signal sent by the network device will not cause the LNA of the first network device to be blocked due to excessive interference. It can effectively reduce the probability of LNA blockage caused by excessive signal interference sent by neighboring network equipment.
  • the third signal includes a signal sent by the second network device and a second signal, where the signal sent by the second network device may be the first signal or other signals sent by the second network device. signal.
  • the method further includes: the first network device notifies the terminal device of the transmission power of the second signal, where the transmission power is determined by the first network device according to the The received power is determined.
  • the first network device adjusts the power of the second signal sent by the terminal device according to the power of the interference signal, which can improve the signal-to-interference and noise ratio (SINR) of the received signal.
  • SINR signal-to-interference and noise ratio
  • the received power is the average power of the first signal in the second time interval.
  • the received power is the average power of the first signal in the second time interval after the power of the gain control unit whose parameter is the minimum value is adjusted, wherein, The minimum value is the minimum value in the value range of the parameter.
  • the first network device adjusts the power of the first signal through the gain control unit with the minimum parameter and detects the average power, so that a more accurate received power of the first signal can be obtained, so as to more accurately estimate the power of the first signal.
  • the interference level of the signal received by the first network device is not limited to the above solution.
  • the first network device detecting the received power of the first signal includes: the first network device periodically detects the first signal at a first time interval The received power of a signal.
  • the first time interval is indicated to the first network device by an OAM network unit of the core network.
  • the first network device periodically receives the first signal and adjusts the gain of the gain control unit at the end of each period, and can make corresponding adjustments according to changes in interference to ensure normal signal reception.
  • the first network device detecting the received power of the first signal includes: the first network device detecting the received power of the first signal according to an interference detection indication, The interference detection indication is used to trigger the first network device to detect the received power of the first signal once.
  • the interference detection indication is received by the first network device from an OAM network unit of operation, management and maintenance of the core network.
  • the received power of the first signal is detected after the interference detection instruction of the core network device is triggered and the parameters of the gain control unit are adjusted.
  • the coordination of the core network enables the first network device to reduce LNA blocking caused by excessive interference. The probability that the signal cannot be received normally.
  • the first signal includes a signal carried on a first frequency bandwidth and/or a signal carried on a second frequency bandwidth
  • the first frequency bandwidth is the The frequency bandwidth of the signal received by the first network device
  • the second frequency bandwidth includes a frequency value different from the first frequency bandwidth
  • the method can reduce the interference of signals of different frequency bands, that is, the same frequency or different frequency, on the received signal.
  • the first value makes the power of the signal passing through the gain control unit smaller.
  • the first value of the gain control unit determined according to the received power of the first signal can reduce the power of the signal passing through the gain control unit, so that the signal with reduced power can make the LNA work in the linear region.
  • an apparatus for processing wireless signals including: a processing unit, configured to detect the received power of a first signal, the first signal being a signal sent by a second network device; and the processing unit, further configured to The received power adjusts the parameter of the gain control unit to the first value; the gain control unit adjusts the power of the third signal and then outputs the fourth signal, so that the low noise amplifier LNA works online after the fourth signal is input
  • the parameter of the gain control unit is the first value
  • the third signal includes a signal sent by the second network device and a second signal
  • the second signal is received by the first network device from the terminal device. To the signal.
  • the transceiver unit is configured to notify the terminal device of the transmission power of the second signal sent, and the transmission power is determined by the processing unit according to the received power.
  • the received power is the average power of the first signal in the second time interval.
  • the received power is the average power of the first signal in the second time interval after the power of the gain control unit whose parameter is the minimum value is adjusted, wherein ,
  • the minimum value is the minimum value in the value range of the parameter.
  • the processing unit is configured to detect the received power of the first signal, including: the processing unit periodically detects the first signal with a first time interval as a period The received power.
  • the first time interval is indicated by an OAM network unit of the core network.
  • the processing unit detects the received power of the first signal according to an interference detection indication, and the interference detection indication is used to trigger the first network device to detect the first signal once. The received power of the signal.
  • the interference detection indication is received by the transceiver unit from the operation, management and maintenance OAM network of the core network.
  • the first signal includes a signal carried on a first frequency bandwidth and/or a signal carried on a second frequency bandwidth
  • the first frequency bandwidth is the The frequency bandwidth of the signal received by the first network device
  • the second frequency bandwidth includes a frequency value different from the first frequency bandwidth
  • the first value makes the power of the signal passing through the gain control unit smaller.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing first aspect and the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive signals through the input circuit and transmit signals through the output circuit, so that the processor executes the first aspect and the method in any one of the possible implementation manners of the first aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the first aspect and the method in any one of the possible implementation manners of the first aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above fifth aspect may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the first aspect and the first aspect. Any one of the possible implementation methods.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect and the first Any one of the possible implementation methods in the aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned core network device, first network device, second network device, and terminal device.
  • Fig. 1 is a schematic architecture diagram of the communication system of the present application.
  • FIG. 2 is a schematic flowchart of a method for processing wireless communication provided by an embodiment of the present application.
  • Fig. 3 is a schematic flow chart for adjusting parameters of a gain control unit provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an example of the communication frequency band of the present application.
  • FIG. 5 is a schematic flowchart of receiving signal #2 according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of an example of the communication device of the present application.
  • Fig. 7 is a schematic block diagram of another example of the communication device of the present application.
  • Fig. 8 is a schematic structural diagram of an example of a terminal device of the present application.
  • Fig. 9 is a schematic structural diagram of an example of a network device of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new wireless
  • V2X can include vehicle-to-network (V2N), vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (vehicle to infrastructure, V2I), vehicle to pedestrian (V2P), etc.
  • LTE-V Long Term Evolution-Vehicle
  • LTE-V for workshop communication
  • Internet of Vehicles Internet of Vehicles
  • MTC machine type communication
  • IoT Internet of Things
  • LTE-M long term evolution-machine
  • M2M machine to machine
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one core network device, such as the core network device 150 shown in FIG. 1, and the wireless communication system 100 may include at least two network devices, such as the network shown in FIG. The device 110 and the network device 120.
  • the wireless communication system 100 may also include at least one terminal device, such as the terminal device 130 and the terminal device 140 shown in FIG. 1.
  • the signal sent by the network device to the terminal device is called the downlink signal
  • the signal sent by the terminal device to the network device is called the uplink signal.
  • the network device receives the terminal device to send the uplink signal, it may be served by other network devices in the neighboring cell.
  • the interference of sent downlink signals for example, the serving cells of the network device 110 and the network device 120 in FIG. 1 are adjacent.
  • the network device 120 When the network device 110 receives the uplink signal sent by the terminal device 130, the network device 120 is also serving it.
  • the terminal device 140 sends a downlink signal, and the downlink signal sent by the network device 120 will cause interference to the uplink signal sent by the terminal device 130.
  • the network device 110 is a network device in an industrial private network, and more uplink resources need to be configured to support a large number of uplink transmission services of terminal devices such as cameras and sensors.
  • the network device 120 in the adjacent public network needs to be configured with more
  • the downlink resource provides the terminal device 140 with downlink transmission services such as web browsing and video calling. Therefore, when the network device 120 sends a downlink signal, it will cause interference to the network device 110 to receive the uplink signal sent by the terminal device 130.
  • the method for processing wireless signals provided in this application can reduce excessive signal interference caused by neighboring network devices. Causes the probability of occurrence of LNA congestion, and improves the SINR of the received signal.
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal , Wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminal in transportation safety), wireless terminal in smart city, wireless terminal in smart home (smart home), cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local Loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehi
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in the embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), node B (NB), home base station (for example, home evolved nodeB, or Home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point in wireless fidelity (WIFI) system (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • NB node B
  • home base station for example, home evolved nodeB, or Home Node B, HNB
  • BBU baseband unit
  • AP access point
  • wireless relay node wireless backhaul node
  • transmission point in wireless fidelity (WIFI) system transmission point, TP
  • TRP transmission and reception point
  • TRP transmission and reception point
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU for short).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It may also belong to the base station corresponding to the small cell, where the small cell may include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage area and low transmit power, and are suitable for providing high-speed data transmission services.
  • a network device detects the interference caused by the signal sent by the neighboring network device to the signal received by the neighboring network device by receiving the signal sent by the neighboring network device, and adjusts the parameters of the gain control unit according to the interference level of the neighboring network device, so that the After the output signal of the gain control unit is input to a low noise amplifier (LNA), the LNA works in a linear working area, which can reduce the probability of blocking the LNA due to excessive signal interference sent by adjacent network devices.
  • LNA low noise amplifier
  • Fig. 2 is a schematic flowchart of the method for processing wireless communication of the present application.
  • S210 The core network device sends instruction information to the network device.
  • S220 Network device A receives signal #1 sent by other network devices.
  • Network device A detects the received power of signal #1.
  • the network device A receives signal #1 sent by other network devices in the vicinity, so that the network device A can detect the interference level of the signal sent by the other network device to the signal received by the network device A.
  • the network device A detects the received power of the signal #1, and the network device A determines the interference level of the signal sent by other network devices to the signal received by the network device A according to the received power of the signal #1.
  • the received power of signal #1 may be the average power of signal #1 in time interval A.
  • the time interval is a continuous period of a certain length of time.
  • the network device A detects the received power of the signal #1 according to the interference detection instruction sent by the core network device, that is, the network device A receives the indication information sent by the core network device in S210 including the interference
  • the detection indication, the interference detection indication is used to trigger the network device A to detect the received power of the signal #1 once, and this detection method may also be referred to as aperiodic detection or trigger detection.
  • network device A detects the received power of signal #1 once, and adjusts the gain control according to the received power of signal #1 detected this time The parameters of the unit.
  • Network device A does not detect the received power of signal #1 when it does not receive the interference detection instruction sent by the core network device.
  • the interference detection instruction may be an instruction sent to the network device A by the operation, administration and maintenance (OAM) network element of the core network device.
  • OAM operation, administration and maintenance
  • network device A receives the interference detection instruction sent by the OAM network unit of the core network device, indicating the received power of network device A to detect signal #1, then network device A detects signal #1 in time interval A (that is, the second An example of a time interval) of the average power.
  • time interval A that is, the second An example of a time interval
  • the interference detection indication may also indicate the start time and/or end time of the time interval A.
  • the indication information sent by the core network device to network device A in S210 includes time interval B, and the indication information instructs network device A to use time interval B (that is, an example of the first time interval) as a period.
  • the received power of the signal #1 is periodically detected. This detection method can be called periodic detection.
  • the network device A adjusts the parameters of the gain control unit according to the detected received power of the signal #1 in the period.
  • the received power of the signal #1 in the period may be the average power of the signal #1 in the time interval A in the period, where the time interval A is less than the time length of the time interval B.
  • the time interval B may be configured or instructed by the core network device to the network device.
  • the time interval B may be configured or instructed by the OAM network unit of the core network device to the network device.
  • the instruction information sent by the core network device to the network device A is a next generation (NG) interface message in the 5G communication system.
  • NG next generation
  • the network device A includes a gain control unit, and the gain control unit is configured to adjust the power of the input signal of the gain control unit according to its set parameter value.
  • the set parameter value is a value in the value range of the parameter
  • the parameter value of the gain control unit is a scaling factor
  • the gain control unit amplifies or reduces the power of the input signal according to the set parameter value.
  • the gain control unit is connected to the LNA, and the output signal of the gain control unit will be input to the LNA. Therefore, the gain control unit can adjust the power of the input signal so that the adjusted power signal enters the LNA, and the LNA can work In the linear region, reduce the probability of LNA blocking due to excessive interference.
  • the value of this parameter can be a real number greater than 1, or a real number greater than 0 and less than 1.
  • the gain control unit amplifies the power of the input signal; when the parameter takes a real number greater than 0 and less than 1, the gain control unit reduces the power of the input signal.
  • the value of the parameter may also be expressed in the form of a decibel (decibel, dB) value, and the value of the parameter may be a positive decibel value or a negative decibel value.
  • the gain control unit amplifies the power of the input signal; when the parameter takes a negative decibel value, the gain control unit reduces the power of the input signal.
  • the network device A before receiving the signal #1, sets the parameter of the gain control unit to the minimum value in the value range, so that the gain control unit adjusts the power of the signal #1 according to the minimum value.
  • the received power of signal #1 is the average power of signal #1 after power adjustment.
  • signal #1 can be detected by the power detection unit after adjusting the power in the network device A through the gain control unit with the minimum parameter.
  • the received power is obtained, and the network device A adjusts the value of the parameter of the gain control unit according to the received power. Setting the parameter of the gain control unit to the minimum value enables the network device A to more accurately detect the received power of the signal #1, so as to more accurately estimate the interference level of the signal #1, but the application is not limited to this.
  • the network device A receives a signal in the first frequency band, where the frequency band is a continuous frequency interval between one frequency and another frequency, which may also be referred to as a frequency bandwidth.
  • Signal #1 may include signals sent by other network devices in the first frequency band, which may be called same-frequency signals, or may include signals sent by other network devices in frequency bands other than the first frequency band, or may be called inter-frequency signals, or ,
  • Signal #1 includes both the same frequency signal sent by other network equipment and the different frequency signal sent by other network equipment, which is not limited in this application.
  • signal #1 may include signal B sent by network device B (that is, other network devices including network device B) in the first frequency band, and signal B is a co-channel interference signal of the received signal of network device A.
  • the network device A adjusts the parameters of the gain control unit according to the received power of the detected signal B.
  • signal #1 may include a signal C sent by network device C (that is, other network devices including network device C) using frequency resources of the second frequency band, and signal C is an inter-frequency interference signal of a received signal of network device A.
  • the network device A adjusts the parameters of the gain control unit according to the received power of the detected signal B.
  • the second frequency band may be an adjacent frequency band of the first frequency band.
  • the first frequency band is a frequency interval from frequency f2 to frequency f3
  • the second frequency band may be an adjacent frequency band whose lowest frequency is greater than or equal to the highest frequency of the first frequency band, as shown in Example 1 in Figure 4
  • the second frequency band is a frequency interval from frequency f3 to frequency f4
  • the lowest frequency f3 of the second frequency band is equal to the highest frequency f3 of the first frequency band, that is to say, the second frequency band is a high frequency adjacent to the frequency higher than the first frequency band frequency band.
  • the second frequency band may also be an adjacent frequency band whose highest frequency is less than or equal to the lowest frequency of the first frequency band.
  • the second frequency band is a frequency interval from frequency f1 to frequency f2.
  • the highest frequency f2 is equal to the lowest frequency f2 of the first frequency, that is, the second frequency band is a low-frequency adjacent frequency band of the first frequency band.
  • signal #1 includes both the signal B sent by the network device B on the frequency resource of the first frequency band and the signal C sent by the network device C on the second frequency band, that is, the other network devices include both the network device B and the network device.
  • the network device A adjusts the parameters of the gain control unit according to the detected received power of signal #1 that includes both signal B and signal C. For example, in the case of aperiodic detection, after receiving the interference detection instruction sent by the core network device, network device A detects the received power of signal #1 including signal B and signal C. For another example, in the case of periodic detection, at the end of a cycle, network device A adjusts the parameters of the gain control unit according to the average power of signal #1 including signal B and signal C in the cycle in time interval A.
  • Signal #1 may also include same-frequency signals and different-frequency signals sent by the same network device, but the application is not limited to this.
  • signal #1 includes signal B sent by network device B in the first frequency band and signal C sent in the second frequency band, and network device A is based on the received power of signal #1 including signal B and signal C sent by network device B. , Adjust the parameters of the gain control unit.
  • the network device A adjusts the parameter of the gain control unit to the first value according to the received power of the signal #1.
  • Network device A determines the transmit power of the terminal device according to the receive power of signal #1
  • S260 The network device A notifies the terminal device to transmit the transmit power of signal #2 (that is, an example of the second signal).
  • Network device A receives terminal device signal #2.
  • S280 The gain control unit of network device A adjusts the power of signal #3 according to the first value.
  • network device A After detecting the received power of signal #1 in S230, network device A adjusts the parameter of the gain control unit to the first value according to the received power.
  • the first value makes the power of the signal decrease after passing through the gain control unit whose parameter is the first value, that is, the first value is a real number or a negative decibel value greater than 0 and less than 1.
  • the network device receives signal #2 sent by the terminal device to obtain signal #3 (ie, an example of the third signal), where signal #3 includes signal #2 sent by the terminal device and signals sent by other network devices, that is, signal The interference signal of #2, where the other network device is the network device that sends signal #1.
  • the signal #3 is adjusted by the gain control unit whose parameter is the first value to output signal #4 (that is, an example of the fourth signal).
  • the first value makes the signal #4 input into the LNA and the LNA works in the linear region, as shown in the figure 5 shown.
  • network device A determines the first value of the parameter of the gain control unit according to the received power of signal #1, so that after signal #3 is adjusted by the gain control unit whose parameter is the first value, the LNA works linearly. area.
  • the output signal #4 after the power is adjusted by the gain control unit whose parameter is the first value is input to the LNA to make the LNA work in an optimal state, that is, the amplification factor is the maximum value of the linear region.
  • network device A executes S250 to determine the transmission of terminal device sending signal #2 according to the received power of signal #1
  • the terminal device is notified of the transmission power of the signal #2.
  • This transmission power increases the signal interference and noise ratio of the received signal of the signal #2 received by the network device A in the presence of interference from other network devices. noise ratio, SINR).
  • SINR noise ratio
  • the terminal device After the parameter value of the gain control unit is adjusted by the receiving power of the terminal device, the terminal device is notified to send the transmission power B of the signal #2. After receiving the notification from the network device A, the terminal device uses the transmission power B to send the signal #2, the transmission power B Greater than the transmit power A.
  • the SINR is improved by increasing the transmission power of the terminal device because in an industrial scenario, the terminal device usually does not use the maximum transmission power to transmit a signal, so there is room for adjusting the transmission power of the terminal device.
  • the network device A detects the received power A of the signal #1 at one time, and the network device A adjusts the parameter of the gain control unit to the first value A according to the received power A
  • the signal #1 is detected next time
  • the parameter of the gain control unit is adjusted to the first value B. If the first value is expressed as a real number, the first value B is a real number greater than 0 and less than 1, and the first value A value B is greater than the first value A; if the first value is expressed as a decibel value, the first value B is a negative number, and the first value B is less than the first value A.
  • the network device A notifies the terminal device of the transmission power of the signal #2, which is less than the original transmission power, so that the SINR of the received signal obtained by the network device A receiving the signal #2 meets the demand, and the power consumption of the terminal device can be reduced.
  • the next time may be the next triggered detection of the aperiodic detection, or the next cycle of the periodic detection, but the application is not limited to this.
  • the first network device adjusts the parameter of the gain control unit to the first value by detecting the interference of receiving signals sent by other network devices, that is, the receiving power, so that even if the second signal sent by the receiving terminal device exists in other networks
  • the interference of the signal sent by the device will not cause the LNA of the first network device to be blocked due to excessive interference. It can effectively reduce the probability of LNA blockage caused by excessive signal interference sent by neighboring network equipment.
  • the first network device can adjust the power of the second signal sent by the terminal device according to the power of the interference signal, which can improve the SINR of the received signal.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1500 may include a transceiving unit 1510, a gain control unit 1520, and a processing unit 1530, and the communication device 1500 may also include an LNA 1540.
  • the communication device 1500 may correspond to the network device A in the above method embodiment, for example, it may be the network device A, or a chip configured in the network device A.
  • the communication device 1500 may correspond to the network device A in the method 200 according to the embodiment of the present application, and the communication device 1500 may include a unit for executing the method executed by the network device A in the method 200 in FIG. 2.
  • the units in the communication device 1500 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the transceiver unit 1510 can be used to execute S210, S220, S260, and S270 in the method 200, and the processing unit 1530 can be used to execute S230, S240, and S250 in the method 200.
  • the gain control unit 1520 can be used to execute S280 in the method 200.
  • the transceiver unit 1510 in the communication device 1500 can correspond to the transceiver 3100 in the network device 3000 shown in FIG.
  • the transceiver 3100 in the network device 3000 shown may further include a gain control unit 1520 and an LNA 1540, and the processing unit 1530 in the communication device 1500 may correspond to the processor 3202 in the network device 3000 shown in FIG. 9.
  • the communication device 1500 may further include a processing unit 1530, and the processing unit 1530 may be used to process instructions or data to implement corresponding operations.
  • the communication device 1500 may further include a storage unit, the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the transceiver unit 1510 in the communication device 1500 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, may correspond to the network shown in FIG. 9
  • the transceiver 3100 in the device 3000 in an implementation manner, the transceiver 3100 in the network device 3000 shown in FIG. 9 may also include a gain control unit 1520 and an LNA 1540, and the processing unit 1530 in the communication device 1500 may pass at least one
  • the processor implementation for example, may correspond to the processor 3202 in the network device 3000 shown in FIG. 9, and the processing unit 1530 in the communication device 1500 may be implemented by at least one logic circuit.
  • FIG. 7 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1600 may include a transceiver unit 1610 and a processing unit 1620.
  • the communication device 1600 may correspond to other network devices in the above method embodiments, for example, it may be other network devices or chips configured in other network devices.
  • the communication apparatus 1600 may correspond to other network equipment in the method 200 according to the embodiment of the present application, and the communication apparatus 1600 may include a unit for executing the method executed by the other network equipment in the method 200 in FIG. 2.
  • the units in the communication device 1600 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the transceiver unit 1610 may be used to execute S220 in the method 200. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1610 in the communication device 1600 may correspond to the transceiver 3100 in the network device 3000 shown in FIG. 9, and the processing unit in the communication device 1600 1620 may correspond to the processor 3202 in the network device 3000 shown in FIG. 9.
  • the communication device 1600 may further include a processing unit 1620, and the processing unit 1620 may be used to process instructions or data to implement corresponding operations.
  • the communication device 1600 may further include a storage unit, and the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the transceiver unit 1610 in the communication device 1600 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the one shown in FIG. 9
  • the transceiver 3100 in the network device 3000, the processing unit 1620 in the communication device 1600 may be implemented by at least one processor, for example, may correspond to the processor 3202 in the network device 3000 shown in FIG.
  • the processing unit 1620 can be implemented by at least one logic circuit.
  • the communication device 1600 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication device 1600 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication device 1600 may include a unit for executing the method executed by the terminal device in the method 200 in FIG. 2.
  • the units in the communication device 1600 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the transceiver unit 1610 may be used to execute S260 and S270 in the method 200. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1610 in the communication device 1600 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 8, and the processing unit 1620 in the communication device 1600 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 8.
  • the transceiving unit 1610 in the communication device 1600 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it may correspond to the terminal device shown in FIG. 8
  • the processing unit 1620 in the communication device 1600 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the terminal device 2000 shown in FIG. 8, and the processing in the communication device 1600
  • the unit 1620 can also be implemented by at least one logic circuit.
  • the communication device 1600 may further include a processing unit 1620, and the processing unit 1620 may be used to process instructions or data to implement corresponding operations.
  • the communication device 1600 may further include a storage unit, and the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the communication device 1600 may correspond to the core network device in the above method embodiment, for example, it may be a core network device or a chip configured in the core network device.
  • the communication device 1600 may correspond to the core network device in the method 200 according to the embodiment of the present application, and the communication device 1600 may include a unit for executing the method executed by the core network device in the method 200 in FIG. 2.
  • the units in the communication device 1600 and the other operations and/or functions described above are respectively intended to implement the corresponding process of the method 200 in FIG. 2.
  • the transceiver unit 1610 can be used to execute S210 in the method 200. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the communication device 1600 may further include a processing unit 1620, and the processing unit 1620 may be used to process instructions or data to implement corresponding operations.
  • the communication device 1600 may further include a storage unit, and the storage unit may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • FIG. 8 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2020, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit 1620 in FIG. 7.
  • the aforementioned transceiver 2020 may correspond to the transceiver unit 1610 in FIG. 7.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 8 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 9 is a schematic diagram of a structure of a network device provided by an embodiment of the present application, for example, it may be a schematic diagram of a related structure of a network device.
  • the network device 3000 shown in FIG. 9 can implement various processes involving the network device in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the network device 3000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the network device 3000 shown in FIG. 9 is only a possible architecture of the network device, and should not constitute any limitation to this application.
  • the method provided in this application can be applied to network devices of other architectures.
  • network equipment including CU, DU, and AAU. This application does not limit the specific architecture of the network device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 2 In the method.
  • the present application also provides a computer-readable storage medium that stores program code.
  • the program code runs on a computer, the computer executes the program shown in FIG. 2 The method in the embodiment.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and at least two network devices.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线信号的处理方法和装置以及通信设备,该方法包括:第一网络设备检测第一信号的接收功率,该第一信号为第二网络设备发送的信号。该第一网络设备根据该接收功率,调节增益控制单元的参数值,以使低噪声放大器LNA在输入接收信号后工作在线性区域,其中,该接收信号是经过该增益控制单元调整功率后的信号。能够减少因LNA阻塞而无法正常接收信号的概率,达到降低干扰的目的。

Description

一种处理无线信号的方法和装置以及通信设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种处理无线信号的方法和装置以及通信设备。
背景技术
在无线通信系统中,两个地理位置较近的网络设备同时在相同或邻近的工作频带上分别接收上行信号和发送下行信号时,由于网络设备的发射功率通常远远大于终端设备的发射功率,该下行信号将对该上行信号造成严重的干扰,将导致接收该上行信号的网络设备的前端低噪声放大器(low noise amplifier,LNA)阻塞,无法正常接收信号。因此,在现有技术中,需要工作在相同或邻近工作频带且地理位置较近的网络设备保持相同的传输方向(即同时进行下行传输或同时进行上行传输)来规避下行传输对上行传输造成的干扰。随着无线通信业务范围的扩展,采用同一工作频带且邻近的网络设备在同一时刻的下行业务量和上行业务量差异较大,采用相同的上、下行通信配置的限制将无法满足不同网络设备的业务需求。因此,邻近网络设备采用不同的上下行配置,又可以称为动态时分复用(time division duplexing,TDD)时,如何避免接收上行信号的网络设备因其他网络设备的下行信号的干扰而造成的LNA阻塞无法正常接收信号的情况,成为本领域技术人员亟待解决的问题。
发明内容
本申请提供一种处理无线信号的方法和装置以及通信设备,能够减少因邻近网络设备发送的信号干扰过大造成LNA阻塞的情况发生的概率,并提高接收信号的信干噪比SINR。
第一方面,提供了一种处理无线信号的方法,包括:第一网络设备检测第一信号的接收功率,该第一信号为第二网络设备发送的信号;该第一网络设备根据该接收功率,将增益控制单元的参数调节至第一值,以使低噪声放大器LNA在输入第四信号后工作在线性区域,其中,该第四信号为第三信号经过该参数为该第一值的该增益控制单元调整功率后的信号,该第三信号包括该第二网络设备发送的信号和第二信号,该第二信号是该第一网络设备从终端设备接收到的信号。
根据上述方案,第一网络设备通过检测接收到的其他网络设备发送的信号的干扰(即接收功率),调节增益控制单元的参数至第一值,使得即使接收终端设备发送的第二信号存在其他网络设备发送的信号的干扰,也不会使得第一网络设备的LNA因干扰过大而造成阻塞。能够有效地减少因邻近网络设备发送的信号干扰过大造成LNA阻塞的情况发生的概率。
作为示例非限定,该第三信号包括该第二网络设备发送的信号和第二信号,其中,该第二网络设备发送的信号可以是该第一信号,也可以是第二网络设备发送的其他信号。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一网络设备通知该终端设备发送该第二信号的发射功率,该发射功率是该第一网络设备根据该接收功率确定的。
根据上述方案,第一网络设备根据干扰信号的功率,调节终端设备发送第二信号的功率,能够提高接收信号的信干噪比SINR。
结合第一方面,在第一方面的某些实现方式中,该接收功率是该第一信号在第二时间间隔内的平均功率。
结合第一方面,在第一方面的某些实现方式中,该接收功率是该第一信号经过该参数为最小值的增益控制单元调节功率后在该第二时间间隔内的平均功率,其中,该最小值为该参数的取值范围中的最小值。
根据上述方案,第一网络设备通过参数为最小值的增益控制单元调整第一信号的功率后检测平均功率,能够得到较准确的第一信号的接收功率,以便较准确地估计第一信号的对第一网络设备接收信号的干扰大小。
结合第一方面,在第一方面的某些实现方式中,该第一网络设备检测第一信号的接收功率,包括:该第一网络设备以第一时间间隔为周期,周期性地检测该第一信号的接收功率。
结合第一方面,在第一方面的某些实现方式中,该第一时间间隔是核心网的操作管理维护OAM网络单元向该第一网络设备指示的。
根据上述方案,第一网络设备通过周期性地接收第一信号并且在每个周期结束时调整增益控制单元的增益,能够根据干扰的变化作出相应的调整,以保证正常接收信号。
结合第一方面,在第一方面的某些实现方式中,该第一网络设备检测第一信号的接收功率,包括:该第一网络设备根据干扰检测指示,检测该第一信号的接收功率,该干扰检测指示用于触发该第一网络设备检测一次该第一信号的接收功率。
结合第一方面,在第一方面的某些实现方式中,该干扰检测指示是该第一网络设备从核心网的操作管理维护OAM网络单元接收得到的。
根据上述方案,由核心网设备的干扰检测指示触发后检测第一信号的接收功率并调整增益控制单元的参数,能够通过核心网的协调使得第一网络设备减少因干扰过大而造成LNA阻塞而无法正常接收信号的情况发生的概率。
结合第一方面,在第一方面的某些实现方式中,该第一信号包括承载在第一频率带宽上的信号和/或承载在第二频率带宽上的信号,该第一频率带宽为该第一网络设备接收信号的频率带宽,该第二频率带宽包括与该第一频率带宽不相同的频率值。
根据上述方案,该方法能够实现降低不同频段即同频或异频的信号对接收信号的干扰。
结合第一方面,在第一方面的某些实现方式中,该第一值使得经过该增益控制单元的信号的功率变小。
根据上述方案,根据第一信号的接收功率确定的增益控制单元的第一值,能够使得经过增益控制单元的信号的功率变小,以实现功率变小后的信号使LNA工作在线性区域。
第二方面,提供了一种处理无线信号的装置,包括:处理单元,用于检测第一信号的接收功率,该第一信号为第二网络设备发送的信号;该处理单元,还用于根据该接收功率, 将增益控制单元的参数调节至第一值;该增益控制单元,用于调整第三信号的功率后输出第四信号,以使低噪声放大器LNA在输入该第四信号后工作在线性区域,其中,该增益控制单元的该参数为该第一值,该第三信号包括该第二网络设备发送的信号和第二信号,该第二信号是该第一网络设备从终端设备接收到的信号。
结合第二方面,在第二方面的某些实现方式中,收发单元,用于通知该终端设备发送该第二信号的发射功率,该发射功率是该处理单元根据该接收功率确定的。
结合第二方面,在第二方面的某些实现方式中,该接收功率是该第一信号在第二时间间隔内的平均功率。
结合第二方面,在第二方面的某些实现方式中,该接收功率是该第一信号经过该参数为最小值的增益控制单元调节功率后在该第二时间间隔内的的平均功率,其中,该最小值为该参数的取值范围中的最小值。
结合第二方面,在第二方面的某些实现方式中,该处理单元用于检测第一信号的接收功率,包括:该处理单元以第一时间间隔为周期,周期性地检测该第一信号的接收功率。
结合第二方面,在第二方面的某些实现方式中,该第一时间间隔是核心网的操作管理维护OAM网络单元指示的。
结合第二方面,在第二方面的某些实现方式中,该处理单元根据干扰检测指示,检测该第一信号的接收功率,该干扰检测指示用于触发该第一网络设备检测一次该第一信号的接收功率。
结合第二方面,在第二方面的某些实现方式中,该干扰检测指示是该收发单元从核心网的操作管理维护OAM网络接收得到的。
结合第二方面,在第二方面的某些实现方式中,该第一信号包括承载在第一频率带宽上的信号和/或承载在第二频率带宽上的信号,该第一频率带宽为该第一网络设备接收信号的频率带宽,该第二频率带宽包括与该第一频率带宽不相同的频率值。
结合第二方面,在第二方面的某些实现方式中,该第一值使得经过该增益控制单元的信号的功率变小。
第三方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第四方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面以及第一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。 输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第五方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面以及第一方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第五方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种通信系统,包括前述的核心网设备、第一网络设备、第二网络设备和终端设备。
附图说明
图1是本申请的通信系统的示意性架构图。
图2是本申请实施例提供的处理无线通信的方法的一示意性流程图。
图3是本申请实施例提供的调节增益控制单元的参数的一示意性流程图。
图4是本申请的通信频带的一例的示意图。
图5是本申请实施例提供的接收信号#2的一示意性流程图。
图6是本申请的通信装置的一例的示意性框图。
图7是本申请的通信装置的另一例的示意性框图。
图8是本申请的终端设备的一例的示意性结构图。
图9是本申请的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR),车到其它设备(Vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(Long Term Evolution-Vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of Things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M)等。
图1是适用于本申请实施例的无线通信系统100的一示意图。
如图1所示,该无线通信系统100可以包括至少一个核心网设备,例如图1所示的核心网设备150,该无线通信系统100可以包括至少两个网络设备,例如图1所示的网络设备110和网络设备120,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备130和终端设备140。网络设备向终端设备发送的信号称为下行信号,终端设备向网络设备发送的信号称为上行信号,网络设备接收终端设备发送上行信号时可能受到相邻小区的其他网络设备向其服务的终端设备发送的下行信号的干扰,例如,图1中的网络设备110和网络设备120的服务小区相邻,当网络设备110接收终端设备130发送的上行信号的同时,网络设备120也在向其服务的终端设备140发送下行信号,则网络设备120发送的下行信号会对终端设备130发送的上行信号造成干扰。例如,网络设备110为工业私网中的网络设备,需要配置更多上行资源以支持摄像头、传感器等终端设备的大量上行传输业务,然而,邻近的公网中的网络设备120需要配置更多的下行资源为终端设备140提供网页浏览、视频通话等下行传输业务的服务。因此,网络设备120的在发送下行信号时会对网络设备110接收终端设备130发送的上行信号造成干扰,通过本申请提供的处理无线信号的方法,能够减少因邻近网络设备发送的信号干扰过大造成LNA阻塞的情况发生的概率,并提高接收信号的信干噪比SINR。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、 蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
应理解,本申请对于终端设备的具体形式不作限定。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、家庭基站(例如,home evolved nodeB,或Home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)系统中的gNB或传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB 等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请中,一个网络设备通过接收邻近网络设备的发送信号,检测邻近网络设备发送的信号对该网络设备接收信号造成的干扰,根据邻近网络设备的干扰大小调节增益控制单元的参数,使得该增益控制单元的输出信号输入低噪声放大器(low noise amplify,LNA)后该LNA工作在线性工作区域,能够减少因邻近网络设备发送的信号干扰过大造成LNA阻塞的情况发生的概率。
图2是本申请的处理无线通信的方法的一示意性流程图。
S210,核心网设备向网络设备发送指示信息。
S220,网络设备A接收其他网络设备发送的信号#1。
S230,网络设备A检测信号#1的接收功率。
网络设备A接收邻近的其他网络设备发送的信号#1,以便网络设备A检测该其他网络设备发送的信号对网络设备A接收信号的干扰大小。网络设备A检测得到信号#1的接收功率,网络设备A根据信号#1的接收功率确定其他网络设备发送的信号对网络设备A接收信号的干扰大小。
作为示例非限定,信号#1的接收功率可以是信号#1在时间间隔A内的平均功率。在本申请中,时间间隔为特定时间长度的一段连续时间。
一种实施方式中,网络设备A根据核心网设备发送的干扰检测指示,检测该信号#1的接收功率,也就是说,网络设备A在S210中接收核心网设备发送的指示信息中包括该干扰检测指示,该干扰检测指示用于触发该网络设备A检测一次该信号#1的接收功率,该检测方式也可以称作非周期检测或触发检测。也就说,仅当网络设备A接收到核心网设备发送的干扰检测指示后,网络设备A即检测一次信号#1的接收功率,根据本次检测到的信号#1的接收功率调整该增益控制单元的参数。网络设备A在没有接收到核心网设备发送的该干扰检测指示的情况下,不检测信号#1的接收功率。
作为示例非限定,该干扰检测指示可以是核心网设备的操作管理维护(operation,administration and maintenance,OAM)网络单元向该网络设备A发送的指示。
例如,网络设备A接收到该核心网设备的OAM网络单元发送的干扰检测指示,指示网络设备A检测信号#1的接收功率,则网络设备A检测信号#1在时间间隔A(即,第二时间间隔的一例)内的平均功率。其中,相邻两次干扰检测指示的时间间隔不小于时间间隔A。可选地,干扰检测指示还可以指示时间间隔A的起始时刻和/或终止时刻。
另一种实施方式中,S210中核心网设备向网络设备A发送的指示信息中包括时间间隔B,该指示信息指示网络设备A以时间间隔B(即,第一时间间隔的一例)为周期,周期性地检测该信号#1的接收功率。该检测方式可以称为周期性检测。网络设备A在每个周期结束时根据检测得到的该周期内的信号#1的接收功率,调整增益控制单元的参数。该周期内的信号#1的接收功率可以是该周期内信号#1在时间间隔A内的平均功率,其中,时间间隔A小于时间间隔B的时间长度。
作为示例非限定,时间间隔B可以是核心网设备向该网络设备配置或指示的。可选地,该时间间隔B可以由核心网设备的OAM网络单元向该网络设备配置或指示的。
作为示例非限定,核心网设备向网络设备A发送的指示信息为5G通信系统中的下一代(next generation,NG)接口消息。
在本申请方案中,网络设备A包括增益控制单元,该增益控制单元用于根据其被设置的参数值调整该增益控制单元的输入信号的功率。该被设置的参数值为该参数的取值范围中的一个值,该增益控制单元的参数值为一个缩放系数,增益控制单元根据其被设置的参数值将输入信号的功率放大或缩小。该增益控制单元与LNA相连接,增益控制单元的输出信号将输入至LNA,因此,该增益控制单元可以对输入的信号的功率进行调整,使得其调整功率后的信号进入LNA后,LNA可以工作在线性区域,降低因干扰过大而造成的LNA阻塞的概率。
作为示例非限定,该参数的取值可以为大于1的实数,也可以为大于0且小于1的实数。当该参数取大于1的实数时,该增益控制单元将输入信号的功率放大;当该参数取大于0且小于1的实数时,该增益控制单元将输入信号的功率减小。
作为示例非限定,该参数的取值还可以表示为分贝(decibel,dB)值的形式,该参数的取值可以为正分贝值,也可以为负分贝值。当该参数取正分贝值时,该增益控制单元将输入信号的功率放大;当该参数取负分贝值时,该增益控制单元将输入信号的功率减小。
一种实施方式中,网络设备A在接收该信号#1前将该增益控制单元的参数设置为取值范围中的最小值,使增益控制单元根据该最小值调整该信号#1的功率,该信号#1的接收功率为调整功率后的信号#1的平均功率,例如图3所示,信号#1可以在网络设备A中通过参数为最小值的增益控制单元调整功率后由功率检测单元检测得到接收功率,网络设备A根据该接收功率调节增益控制单元的参数的值。将增益控制单元的参数设置为最小值,使网络设备A能够较准确地检测信号#1的接收功率,以便较准确地估计信号#1的干扰大小,但本申请不限于此。
在本申请方案中,网络设备A在第一频带接收信号,其中,频带为一个频率到另一个频率之间连续的一段频率间隔,也可以称为频率带宽。信号#1可以包括其他网络设备在该第一频带发送的信号,可以称为同频信号,也可以包括其他网络设备在第一频带以外的频带发送的信号,也可以称为异频信号,或者,信号#1即包括其他网络设备发送的同频信号又包括其他网络设备发送的异频信号,本申请对此不作限定。
例如,信号#1可以包括网络设备B(即其他网络设备包括网络设备B)在第一频带发送的信号B,信号B为网络设备A的接收信号的同频干扰信号。网络设备A根据检测得到的信号B的接收功率调节增益控制单元的参数。
再例如,信号#1可以包括网络设备C(即其他网络设备包括网络设备C)采用第二频带的频率资源发送的信号C,信号C为网络设备A的接收信号的异频干扰信号。网络设备A根据检测得到的信号B的接收功率调节增益控制单元的参数。
作为示例非限定,第二频带可以是第一频带的相邻频带。例如图4所示,第一频带为频率f2到频率f3的一段频率间隔,第二频带可以是最低频率大于或等于第一频带的最高频率的相邻频带,如图4中的示例1所示,第二频带为频率f3到频率f4的一段频率间隔,第二频带的最低频率f3等于第一频带的最高频率f3,也就是说,第二频带为频率高于第一频带的高频相邻频带。第二频带也可以是最高频率小于或等于第一频带的最低频率的相邻频带,如图4中的示例2所示,第二频带为频率f1到频率f2的一段频率间隔,第二频 带的最高频率f2等于第一频率的最低频率f2,也就是说,第二频带为第一频带的低频相邻频带。
再例如,信号#1既包括网络设备B在第一频带的频率资源发送的信号B又包括网络设备C在第二频带上发送的信号C,即其他网络设备既包括网络设备B又包括网络设备C,网络设备A根据检测得到的既包括信号B又包括信号C的信号#1的接收功率调节增益控制单元的参数。例如,非周期性检测的情况下,网络设备A接收到核心网设备发送的干扰检测指示后,检测包括信号B和信号C的信号#1的接收功率。再例如,在周期性检测的情况下,网络设备A在一个周期结束时,根据该周期内包括信号B和信号C的信号#1在时间间隔A中的平均功率,调节增益控制单元的参数。
信号#1还可以包括同一网络设备发送的同频信号和异频信号,但本申请不限于此。例如,信号#1包括网络设备B在第一频带发送的信号B和在第二频带发送的信号C,网络设备A根据该网络设备B发送的包括信号B和信号C的信号#1的接收功率,调节增益控制单元的参数。
S240,网络设备A根据信号#1的接收功率调节增益控制单元的参数为第一值。
S250,网络设备A根据信号#1的接收功率,确定终端设备的发送功率
S260,网络设备A通知终端设备发送信号#2(即,第二信号的一例)的发射功率。
S270,网络设备A接收终端设备信号#2。
S280,网络设备A的增益控制单元根据第一值调整信号#3的功率。
网络设备A在S230检测得到信号#1的接收功率后,根据该接收功率将增益控制单元的参数调节为第一值。作为示例非限定,该第一值使得信号经过参数为第一值的增益控制单元后功率变小,也就是说,该第一值为大于0且小于1的实数或者负分贝值。
在S270中,网络设备接收终端设备发送的信号#2得到信号#3(即,第三信号的一例),其中信号#3包括终端设备发送的信号#2和其他网络设备发送的信号,即信号#2的干扰信号,其中,该其他网络设备是发送信号#1的网络设备。该信号#3经过参数为第一值的增益控制单元调整功率后输出信号#4(即,第四信号的一例),该第一值使得信号#4输入LNA后LNA工作在线性区域,例如图5所示。也就是说,网络设备A根据信号#1的接收功率确定的增益控制单元的参数的第一值,能够使信号#3经过参数为第一值的增益控制单元调整功率输入LNA后,LNA工作线性区域。优选地,经该参数为第一值的增益控制单元调整功率后输出的信号#4,输入LNA后使得LNA工作在最佳状态,即放大系数为线性区域的最大值。
可选地,在网络设备A根据信号#1的接收功率调节增益控制单元的参数为第一值后,网络设备A执行S250,根据该信号#1的接收功率确定终端设备发送信号#2的发射功率,并在S260中通知终端设备发送信号#2的发射功率,该发射功率使得存在其他网络设备的干扰的情况下,提高网络设备A接收信号#2的接收信号的信干噪比(signal interference noise ratio,SINR)。例如,在不存在其他网络设备的干扰的情况下,终端设备以发射功率A向网络设备A发送信号,当存在其他网络设备的干扰的情况下,网络设备A根据其他网络设备发送的信号#1的接收功率调节增益控制单元的参数值后,通知终端设备发送信号#2的发射功率B,终端设备接收到网络设备A发送的该通知后,采用发射功率B发送信号#2,该发射功率B大于发射功率A。通过增加终端设备的发射功率来提升SINR, 是因为工业场景下,终端设备通常不会采用最大发射功率发送信号,因此,有余地调整终端设备发射功率。
另外,当网络设备A在一次检测到的信号#1的接收功率A时,且网络设备A根据接收功率A将增益控制单元的参数调节为第一值A,而在下一次检测到的信号#1的接收功率B小于接收功率A时,将增益控制单元的参数调节为第一值B,若该第一值表示为实数,则该第一值B为大于0且小于1的实数,且该第一值B大于第一值A;若该第一值表示为分贝值,则该第一值B为负数,且该第一值B小于第一值A。并且网络设备A通知终端设备发送信号#2的发射功率,该发射功率小于原发射功率,使网络设备A接收信号#2得到的接收信号的SINR满足需求的同时,能够降低终端设备的功率消耗。其中,下一次可以是非周期性检测的下一次被触发的检测,也可以是周期性检测的下一个周期的检测,但本申请不限于此。
根据本申请的方案,第一网络设备通过检测接收其他网络设备发送的信号的干扰,即接收功率,调节增益控制单元的参数至第一值,使得即使接收终端设备发送的第二信号存在其他网络设备发送的信号的干扰,也不会使得第一网络设备的LNA因干扰过大而造成阻塞。能够有效地减少因邻近网络设备发送的信号干扰过大造成LNA阻塞的情况发生的概率。另外,第一网络设备可以根据干扰信号的功率,调节终端设备发送第二信号的功率,能够提高接收信号的信干噪比SINR。
以上,结合图2至图5详细说明了本申请实施例提供的方法。以下,结合图6至图9详细说明本申请实施例提供的装置。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该通信装置1500可以包括收发单元1510、增益控制单元1520、处理单元1530,以及,通信装置1500还可以包括LNA1540。
在一种可能的设计中,该通信装置1500可对应于上文方法实施例中的网络设备A,例如,可以为网络设备A,或者配置于网络设备A中的芯片。
应理解,该通信装置1500可对应于根据本申请实施例的方法200中的网络设备A,该通信装置1500可以包括用于执行图2中的方法200中网络设备A执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1500用于执行图2中的方法200,收发单元1510可用于执行方法200中的S210、S220、S260、S270,处理单元1530可用于执行方法200中的S230、S240、S250,增益控制单元1520可用于执行方法200中的S280,。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1500为网络设备A时,该通信装置1500中的收发单元1510为可对应于图9中示出的网络设备3000中的收发器3100,一种实现方式中图9中示出的网络设备3000中的收发器3100还可以包括增益控制单元1520和LNA1540,该通信装置1500中的处理单元1530可对应于图9中示出的网络设备3000中的处理器3202。
可选地,通信装置1500还可以包括处理单元1530,该处理单元1530可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置1500还可以包括存储单元,该存储单元可以用于存储指令或者数 据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1500为网络设备A时,该通信装置1500中的收发单元1510可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图9中示出的网络设备3000中的收发器3100,一种实现方式中图9中示出的网络设备3000中的收发器3100还可以包括增益控制单元1520和LNA1540,该通信装置1500中的处理单元1530可通过至少一个处理器实现,例如可对应于图9中示出的网络设备3000中的处理器3202,该通信装置1500中的处理单元1530可通过至少一个逻辑电路实现。
图7是本申请实施例提供的通信装置的另一示意性框图。如图7所示,该通信装置1600可以包括收发单元1610、处理单元1620,
在另一种可能的设计中,该通信装置1600可对应于上文方法实施例中的其他网络设备,例如,可以为其他网络设备,或者配置于其他网络设备中的芯片。
应理解,该通信装置1600可对应于根据本申请实施例的方法200中的其他网络设备,该通信装置1600可以包括用于执行图2中的方法200中其他网络设备执行的方法的单元。并且,该通信装置1600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1600用于执行图2中的方法200,收发单元1610可用于执行方法200中的S220。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1600为其他网络设备时,该通信装置1600中的收发单元1610为可对应于图9中示出的网络设备3000中的收发器3100,该通信装置1600中的处理单元1620可对应于图9中示出的网络设备3000中的处理器3202。
可选地,通信装置1600还可以包括处理单元1620,该处理单元1620可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置1600还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1600为其他网络设备时,该通信装置1600中的收发单元1610为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图9中示出的网络设备3000中的收发器3100,该通信装置1600中的处理单元1620可通过至少一个处理器实现,例如可对应于图9中示出的网络设备3000中的处理器3202,该通信装置1600中的处理单元1620可通过至少一个逻辑电路实现。
在另一种可能的设计中,该通信装置1600可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
应理解,该通信装置1600可对应于根据本申请实施例的方法200中的终端设备,该通信装置1600可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置1600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的 相应流程。
其中,当该通信装置1600用于执行图2中的方法200,收发单元1610可用于执行方法200中的S260、S270。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1600为终端设备时,该通信装置1600中的收发单元1610可对应于图8中示出的终端设备2000中的收发器2020,该通信装置1600中的处理单元1620可对应于图8中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1600为终端设备时,该通信装置1600中的收发单元1610可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图8中示出的终端设备2000中的收发器2020,该通信装置1600中的处理单元1620可通过至少一个处理器实现,例如可对应于图8中示出的终端设备2000中的处理器2010,该通信装置1600中的处理单元1620还可以通过至少一个逻辑电路实现。
可选地,通信装置1600还可以包括处理单元1620,该处理单元1620可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置1600还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置1600可对应于上文方法实施例中的核心网设备,例如,可以为核心网设备,或者配置于核心网设备中的芯片。
应理解,该通信装置1600可对应于根据本申请实施例的方法200中的核心网设备,该通信装置1600可以包括用于执行图2中的方法200中核心网设备执行的方法的单元。并且,该通信装置1600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1600用于执行图2中的方法200,收发单元1610可用于执行方法200中的S210。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,通信装置1600还可以包括处理单元1620,该处理单元1620可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置1600还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图8是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2020和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设 备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图7中的处理单元1620对应。
上述收发器2020可以与图7中的收发单元1610对应。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图8所示的终端设备2000能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图9是本申请实施例提供的网络设备的结构示意图,例如可以为网络设备的相关结构的示意图。
应理解,图9所示的网络设备3000能够实现图2所示方法实施例中涉及网络设备的各个过程。网络设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图9所示出的网络设备3000仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和AAU的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及至少两个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施 例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种处理无线信号的方法,其特征在于,包括:
    第一网络设备检测第一信号的接收功率,所述第一信号为第二网络设备发送的信号;
    所述第一网络设备根据所述接收功率,将增益控制单元的参数调节至第一值,以使低噪声放大器LNA在输入第四信号后工作在线性区域,其中,所述第四信号为第三信号经过所述参数为所述第一值的所述增益控制单元调整功率后的信号,所述第三信号包括所述第二网络设备发送的信号和第二信号,所述第二信号是所述第一网络设备从终端设备接收到的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备通知所述终端设备发送所述第二信号的发射功率,所述发射功率是所述第一网络设备根据所述接收功率确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述接收功率是所述第一信号在第二时间间隔内的平均功率。
  4. 根据权利要求3所述的方法,其特征在于,所述平均功率是所述第一信号经过所述参数为最小值的增益控制单元调节功率后在所述第二时间间隔内的平均功率,其中,所述最小值为所述参数的取值范围中的最小值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网络设备检测第一信号的接收功率,包括:
    所述第一网络设备以第一时间间隔为周期,周期性地检测所述第一信号的接收功率,或者,
    所述第一网络设备根据干扰检测指示,检测所述第一信号的接收功率,所述干扰检测指示用于触发所述第一网络设备检测一次所述第一信号的接收功率。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收核心网的操作管理维护OAM网络单元发送的以下一种或多种信息:
    指示所述第一时间单元的信息、指示所述第二时间单元的信息或所述干扰检测指示。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一信号包括承载在第一频率带宽上的信号和/或承载在第二频率带宽上的信号,所述第一频率带宽为所述第一网络设备接收信号的频率带宽,所述第二频率带宽包括与所述第一频率带宽不相同的频率值。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一值使得经过所述增益控制单元的信号的功率变小。
  9. 一种处理无线信号的装置,其特征在于,包括:
    处理单元,用于检测第一信号的接收功率,所述第一信号为第二网络设备发送的信号;
    所述处理单元,还用于根据所述接收功率,将增益控制单元的参数调节至第一值;
    所述增益控制单元,用于调整第三信号的功率后输出第四信号,以使低噪声放大器LNA在输入所述第四信号后工作在线性区域,其中,所述增益控制单元的所述参数为所 述第一值,所述第三信号包括所述第二网络设备发送的信号和第二信号,所述第二信号是收发单元从终端设备接收到的信号。
  10. 根据权利要求9所述的装置,其特征在于,包括:
    所述收发单元,用于通知所述终端设备发送所述第二信号的发射功率,所述发射功率是所述处理单元根据所述接收功率确定的。
  11. 根据权利要求9或10所述的装置,其特征在于,所述接收功率是所述第一信号在第二时间间隔内的平均功率。
  12. 根据权利要求11所述的装置,其特征在于,所述平均功率是所述第一信号经过所述参数为最小值的增益控制单元调节功率后在所述第二时间间隔内的平均功率,其中,所述最小值为所述参数的取值范围中的最小值。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,所述处理单元用于检测第一信号的接收功率,包括:
    所述处理单元以第一时间间隔为周期,周期性地检测所述第一信号的接收功率,或者,
    所述处理单元根据干扰检测指示,检测所述第一信号的接收功率,所述干扰检测指示用于触发所述处理单元检测一次所述第一信号的接收功率。
  14. 根据权利要求13所述的装置,其特征在于,包括:
    所述收发单元还用于接收核心网的操作管理维护OAM网络单元发送的以下一种或多种信息:
    指示所述第一时间间隔的信息、指示所述第二时间间隔的信息或所述干扰检测指示。
  15. 根据权利要求9至14中任一项所述的装置,其特征在于,所述第一信号包括承载在第一频率带宽上的信号和/或承载在第二频率带宽上的信号,所述第一频率带宽为所述收发单元接收信号的频率带宽,所述第二频率带宽包括与所述第一频率带宽不相同的频率值。
  16. 根据权利要求9至15中任一项所述的装置,其特征在于,所述第一值使得经过所述增益控制单元的信号的功率变小。
  17. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法。
  19. 一种芯片,其特征在于,包括至少一个处理器和接口;
    所述至少一个所述处理器,用于调用并运行计算机程序,以使所述芯片执行如权利要求1至8中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2019/128340 2019-12-25 2019-12-25 一种处理无线信号的方法和装置以及通信设备 WO2021128066A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128340 WO2021128066A1 (zh) 2019-12-25 2019-12-25 一种处理无线信号的方法和装置以及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128340 WO2021128066A1 (zh) 2019-12-25 2019-12-25 一种处理无线信号的方法和装置以及通信设备

Publications (1)

Publication Number Publication Date
WO2021128066A1 true WO2021128066A1 (zh) 2021-07-01

Family

ID=76575033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128340 WO2021128066A1 (zh) 2019-12-25 2019-12-25 一种处理无线信号的方法和装置以及通信设备

Country Status (1)

Country Link
WO (1) WO2021128066A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612952A1 (en) * 2004-06-30 2006-01-04 Research In Motion Limited Methods and apparatus for reducing signal interference in a wireless receiver based on signal-to-interference ratio
CN1770627A (zh) * 2004-11-05 2006-05-10 中国科学院半导体研究所 自适应型偏置可变增益低噪声放大器的自动反馈控制方法
CN103369586A (zh) * 2012-03-28 2013-10-23 中兴通讯股份有限公司 一种处理基站上行外部干扰的方法及装置
CN104185186A (zh) * 2013-05-23 2014-12-03 华为技术有限公司 信号干扰的抑制方法及网络设备
CN105992330A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 一种增益调整方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612952A1 (en) * 2004-06-30 2006-01-04 Research In Motion Limited Methods and apparatus for reducing signal interference in a wireless receiver based on signal-to-interference ratio
CN1770627A (zh) * 2004-11-05 2006-05-10 中国科学院半导体研究所 自适应型偏置可变增益低噪声放大器的自动反馈控制方法
CN103369586A (zh) * 2012-03-28 2013-10-23 中兴通讯股份有限公司 一种处理基站上行外部干扰的方法及装置
CN104185186A (zh) * 2013-05-23 2014-12-03 华为技术有限公司 信号干扰的抑制方法及网络设备
CN105992330A (zh) * 2015-01-28 2016-10-05 中国移动通信集团公司 一种增益调整方法及装置

Similar Documents

Publication Publication Date Title
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2021000289A1 (zh) 用于传输小数据的方法及设备
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
CN110710149B (zh) 信息确定方法、终端设备和网络设备
US20210377916A1 (en) Wireless Communications Method and Apparatus
WO2021217668A1 (zh) 多载波通信方法、终端设备和网络设备
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
US20220225274A1 (en) Paging message detection method, apparatus, and communication device
WO2019072170A1 (zh) 通信方法和通信装置
WO2021088158A1 (zh) 无线通信方法、终端设备和网络设备
WO2020087292A1 (zh) 无线通信方法、终端设备和网络设备
WO2021189461A1 (zh) 确定寻呼分组的方法、终端设备和网络设备
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
WO2022036528A1 (zh) 双连接架构下实现最小化路测的方法、终端设备和网络设备
WO2019157756A1 (zh) 信号传输的方法和设备
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2021213136A1 (zh) 一种通信方法和终端设备
WO2022082670A1 (zh) 边链路资源选择方法以及装置
WO2021128066A1 (zh) 一种处理无线信号的方法和装置以及通信设备
WO2022021035A1 (zh) 测量方法、终端设备和网络设备
WO2021072602A1 (zh) 链路失败检测的方法和装置
WO2021120009A1 (zh) 信号检测方法、信号传输方法、终端设备和网络设备
WO2020199213A1 (zh) 一种信号传输方法及装置、网络设备
WO2019157734A1 (zh) 确定最大发送功率的方法、装置、系统及存储介质
WO2021168628A1 (zh) 搜索空间组切换方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957793

Country of ref document: EP

Kind code of ref document: A1