WO2021127885A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021127885A1
WO2021127885A1 PCT/CN2019/127550 CN2019127550W WO2021127885A1 WO 2021127885 A1 WO2021127885 A1 WO 2021127885A1 CN 2019127550 W CN2019127550 W CN 2019127550W WO 2021127885 A1 WO2021127885 A1 WO 2021127885A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
radius
ttl
Prior art date
Application number
PCT/CN2019/127550
Other languages
English (en)
French (fr)
Inventor
李晚侠
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/127550 priority Critical patent/WO2021127885A1/zh
Publication of WO2021127885A1 publication Critical patent/WO2021127885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the lenses traditionally mounted on mobile phone cameras usually adopt a three-element, four-element, or five-element lens structure.
  • the pixel area of photosensitive devices continues to shrink and the system's requirements for image quality continue to increase, six-element, seven-element, and eight-element lens structures Gradually appeared in the lens design.
  • the object of the present invention is to provide an imaging optical lens that can meet the requirements of ultra-thin and wide-angle while obtaining high imaging performance.
  • the imaging optical lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side.
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the fourth lens image side The radius of curvature of is R8, the on-axis thickness of the third lens is d5, and the on-axis distance from the image side of the third lens to the object side of the fourth lens is d6, which satisfies the following relationship:
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12, which satisfies the following relationship:
  • the radius of curvature of the object side surface of the first lens is R1
  • the radius of curvature of the image side surface of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the third lens is f3
  • the on-axis thickness of the third lens is d5
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fourth lens is f4
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the sixth lens is f6, the axial thickness of the sixth lens is d11, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the focal length of the seventh lens is f7
  • the radius of curvature of the object side of the seventh lens is R13
  • the radius of curvature of the image side of the seventh lens is R14
  • the on-axis thickness of the seventh lens is d13
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the eighth lens is f8, the radius of curvature of the object side of the eighth lens is R15, the radius of curvature of the image side of the eighth lens is R16, and the on-axis thickness of the eighth lens is d15.
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the beneficial effect of the present invention is that the imaging optical lens according to the present invention has excellent optical characteristics, meets the requirements of large aperture, ultra-thin and wide-angle, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements. Camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of an imaging optical lens according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes eight lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens. Lens L6, seventh lens L7, and eighth lens L8.
  • An optical element such as an optical filter GF may be provided between the eighth lens L8 and the image plane Si.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the first lens L1 is f1
  • 0.81 ⁇ f1/f ⁇ 1.90 which specifies the ratio of the focal length of the first lens L1 to the total focal length of the system, which can effectively balance the system’s Ball difference and curvature of field.
  • 0.83 ⁇ f1/f ⁇ 1.90 is satisfied.
  • the focal length of the second lens L2 is defined as f2, f2 ⁇ 0.00, and the positive and negative of the focal length of the second lens L2 are defined.
  • the reasonable allocation of the focal length enables the system to have better imaging quality and lower sensitivity.
  • the radius of curvature of the object side surface of the fourth lens L4 is defined as R7, and the radius of curvature of the image side surface of the fourth lens L4 is R8, -19.00 ⁇ (R7+R8)/(R7-R8) ⁇ -3.50, which specifies
  • the shape of the four-lens L4 can ease the deflection of light passing through the lens and effectively reduce aberrations. Preferably, it satisfies -18.95 ⁇ (R7+R8)/(R7-R8) ⁇ -3.50.
  • the on-axis thickness of the third lens L3 is d5
  • the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 is d6, 0.50 ⁇ d5/d6 ⁇ 15.00, when d5/d6 satisfies
  • This conditional expression helps to compress the total length of the optical system and achieve an ultra-thinning effect.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, the on-axis distance from the image side to the object side of the relevant lens, and the on-axis thickness satisfy the above relationship, the imaging optical lens 10 can be made to have high performance and satisfy Low TTL design requirements.
  • the curvature radius R11 of the object side surface of the sixth lens L6 and the curvature radius R12 of the image side surface of the sixth lens L6 satisfy the following relationship: -16.00 ⁇ (R11+R12)/(R11-R12) ⁇ -7.00, which is When the shape of the sixth lens L6 is within the range of the conditional expression, it helps to correct the aberration of the off-axis angle of view. Preferably, 15.99 ⁇ (R11+R12)/(R11-R12) ⁇ -7.24 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1, and the curvature radius of the image side surface of the first lens L1 is R2, -9.09 ⁇ (R1+R2)/(R1-R2) ⁇ -0.80, and the first lens is reasonably controlled.
  • the shape of the lens L1 enables the first lens L1 to effectively correct the spherical aberration of the system. Preferably, it satisfies -5.68 ⁇ (R1+R2)/(R1-R2) ⁇ -1.00.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d1/TTL ⁇ 0.18, which is beneficial to realize ultra-thinness.
  • 0.07 ⁇ d1/TTL ⁇ 0.14 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, 1.71 ⁇ (R3+R4)/(R3-R4) ⁇ 8.57, which specifies the second lens L2
  • the shape of, within the scope of the conditional formula, can alleviate the degree of deflection of light passing through the lens and effectively reduce aberrations.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2, which satisfies the following relationship: -5.49 ⁇ f2/f ⁇ -0.99.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.11, which is beneficial to realize ultra-thinness.
  • 0.03 ⁇ d3/TTL ⁇ 0.09 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3
  • the following relationship is satisfied: 0.54 ⁇ f3/f ⁇ 3.06.
  • the system has better imaging quality and lower Sensitivity.
  • 0.87 ⁇ f3/f ⁇ 2.45 is satisfied.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.15, which is beneficial to realize ultra-thinness.
  • 0.03 ⁇ d5/TTL ⁇ 0.12 is satisfied.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 satisfy the following relationship: -4.81 ⁇ (R5+R6)/(R5-R6) ⁇ -0.14, which can effectively control the third lens
  • the shape of the lens L3 is conducive to the molding of the third lens L3.
  • the degree of deflection of the light passing through the lens can be relaxed, and aberrations can be effectively reduced.
  • it satisfies -3.00 ⁇ (R5+R6)/(R5-R6) ⁇ -0.18.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is f4 which satisfies the following relationship: -362.25 ⁇ f4/f ⁇ -7.28, which specifies the ratio of the focal length of the fourth lens to the focal length of the system. Distribution makes the system have better imaging quality and lower sensitivity. Preferably, it satisfies -226.41 ⁇ f4/f ⁇ -9.11.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.02 ⁇ d7/TTL ⁇ 0.18, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d7/TTL ⁇ 0.14 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: -128.07 ⁇ f5/f ⁇ 28.03.
  • the limitation on the fifth lens L5 can effectively make the light angle of the imaging lens smooth and reduce Tolerance sensitivity.
  • -80.04 ⁇ f5/f ⁇ 22.42 is satisfied.
  • the curvature radius R9 of the object side surface of the fifth lens L5 and the curvature radius R10 of the image side surface of the fifth lens L5 satisfy the following relationship: -44.70 ⁇ (R9+R10)/(R9-R10) ⁇ 7.42, the fifth lens is specified
  • the shape of L5 is within the range of conditions, with the development of ultra-thin and wide-angle, it is conducive to correcting the aberration of the off-axis angle of view.
  • it satisfies -27.94 ⁇ (R9+R10)/(R9-R10) ⁇ 5.94.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.01 ⁇ d9/TTL ⁇ 0.08, which is beneficial to realize ultra-thinness.
  • 0.02 ⁇ d9/TTL ⁇ 0.07 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: -37.03 ⁇ f6/f ⁇ -2.65.
  • the system has better imaging quality and comparison. Low sensitivity.
  • it satisfies -23.14 ⁇ f6/f ⁇ -3.31.
  • the on-axis thickness of the sixth lens L6 is d11, which satisfies the following relationship: 0.02 ⁇ d11/TTL ⁇ 0.07, which is conducive to achieving ultra-thinness.
  • 0.03 ⁇ d11/TTL ⁇ 0.06 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the seventh lens L7 is f7, which satisfies the following relationship: 0.56 ⁇ f7/f ⁇ 4.15.
  • the system has better imaging quality and lower Sensitivity.
  • 0.90 ⁇ f7/f ⁇ 3.32 is satisfied.
  • the curvature radius R13 of the object side surface of the seventh lens L7 and the curvature radius R14 of the image side surface of the seventh lens L7 satisfy the following relationship: -9.91 ⁇ (R13+R14)/(R13-R14) ⁇ -0.25, the seventh lens is specified
  • the shape of the lens L7 is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • -6.19 ⁇ (R13+R14)/(R13-R14) ⁇ -0.31 is satisfied.
  • the on-axis thickness of the seventh lens L7 is d13, which satisfies the following relationship: 0.07 ⁇ d13/TTL ⁇ 0.23, which is beneficial to realize ultra-thinness.
  • 0.12 ⁇ d13/TTL ⁇ 0.18 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the eighth lens L8 is f8, which satisfies the following relationship: -2.56 ⁇ f8/f ⁇ -0.49.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, -1.60 ⁇ f8/f ⁇ -0.62 is satisfied.
  • the curvature radius R15 of the object side surface of the eighth lens L8 and the curvature radius R16 of the image side surface of the eighth lens L8 satisfy the following relationship: 0.61 ⁇ (R15+R16)/(R15-R16) ⁇ 3.00, and the eighth lens L8 is specified
  • the shape is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • 0.98 ⁇ (R15+R16)/(R15-R16) ⁇ 2.40 is satisfied.
  • the on-axis thickness of the eighth lens L8 is d15, which satisfies the following relationship: 0.04 ⁇ d15/TTL ⁇ 0.16, which is beneficial to realize ultra-thinness.
  • 0.06 ⁇ d15/TTL ⁇ 0.13 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL
  • the image height of the imaging optical lens 10 is IH: TTL/IH ⁇ 1.66, which is beneficial to achieve ultra-thinness.
  • the aperture F number of the imaging optical lens 10 is less than or equal to 1.91. Large aperture, good imaging performance.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the radius of curvature of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side of the eighth lens L8;
  • R16 the radius of curvature of the image side surface of the eighth lens L8;
  • R17 the radius of curvature of the object side of the optical filter GF
  • R18 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
  • d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the eighth lens L8;
  • d16 the on-axis distance from the image side surface of the eighth lens L8 to the object side surface of the optical filter GF;
  • d17 the axial thickness of the optical filter GF
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • IH Image height
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
  • P4R1, P4R2 represent the object side and image side of the fourth lens L4
  • P5R1, P5R2 represent the object side and image side of the fifth lens L5
  • P6R1, P6R2 represent the object side and image side of the sixth lens L6
  • P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively
  • P8R1 and P8R2 represent the object side and the image side of the eighth lens L8, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. song.
  • Table 17 shows the values corresponding to the various numerical values in each of Examples 1, 2, 3, and 4 and the parameters specified in the conditional expressions. As shown in Table 17, the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 2.005mm
  • the full-field image height is 2.900mm
  • the diagonal field angle is 73.41°
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 2.097mm
  • the full-field image height is 2.900mm
  • the diagonal field angle is 71.81°, wide-angle, ultra-thin, and its axis and axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 30 of the third embodiment.
  • Table 17 the third embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 1.912mm
  • the full-field image height is 2.900mm
  • the diagonal field angle is 76.00°
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 40 of the third embodiment.
  • Table 17 the fourth embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 1.979mm
  • the full-field image height is 2.900mm
  • the diagonal viewing angle is 74.44°
  • wide-angle, ultra-thin, and its axis and axis The external chromatic aberration is fully corrected and has excellent optical characteristics.
  • Table 17 lists the numerical values corresponding to each conditional expression in the above four embodiments according to the above-mentioned conditional expression.
  • Example 1 Example 2
  • Example 3 Example 4 f1/f 0.88 0.84 1.33 1.89 (R7+R8)/(R7-R8) -18.91 -3.50 -18.73 -3.55 d5/d6 9.13 0.52 14.84 2.65 f 3.810 3.984 3.633 3.760 f1 3.357 3.347 4.834 7.110 f2 -6.00 -5.94 -9.97 -6.84 f3 7.778 7.818 6.540 4.077 f4 -202.536 -43.531 -208.802 -681.037 f5 -243.973 -246.930 57.622 70.255 f6 -15.763 -15.813 -16.303 -69.614 f7 4.462 4.471 4.353 10.409 f8 -3.018 -2.950 -3.039 -4.817 f12 5.781 5.824 7.495 51.436 Fno 1.90 1.90 1.90 1.90 1.90 1.
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)、第六透镜(L6)、第七透镜(L7)以及第八透镜(L8);且满足下列关系式:0.81≤f1/f≤1.90;f2≤0.00;-19.00≤(R7+R8)/(R7-R8)≤-3.50;0.50≤d5/d6≤15.00。这种摄像光学镜头具有大光圈、广角化和超薄的良好的光学性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式或五片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,六片式、七片式、八片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄的广角摄像光学镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包括:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面到第四透镜的物侧面的轴上距离为d6,满足下列关系式:
0.81≤f1/f≤1.90;
f2≤0.00;
-19.00≤(R7+R8)/(R7-R8)≤-3.50;
0.50≤d5/d6≤15.00。
优选地,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,满足下列关系式:
-16.00≤(R11+R12)/(R11-R12)≤-7.00。
优选地,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.09≤(R1+R2)/(R1-R2)≤-0.80;
0.04≤d1/TTL≤0.18。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-5.49≤f2/f≤-0.99;
0.02≤d3/TTL≤0.11;
1.71≤(R3+R4)/(R3-R4)≤8.57。
优选地,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.54≤f3/f≤3.06;
0.02≤d5/TTL≤0.15;
-4.81≤(R5+R6)/(R5-R6)≤-0.14。
优选地,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-362.25≤f4/f≤-7.28;
0.02≤d7/TTL≤0.18。
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-128.07≤f5/f≤28.03;
-44.70≤(R9+R10)/(R9-R10)≤7.42;
0.01≤d9/TTL≤0.08。
优选地,所述第六透镜的焦距为f6,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-37.03≤f6/f≤-2.65;
0.02≤d11/TTL≤0.07。
优选地,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.56≤f7/f≤4.15;
-9.91≤(R13+R14)/(R13-R14)≤-0.25;
0.07≤d13/TTL≤0.23。
优选地,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.56≤f8/f≤-0.49;
0.61≤(R15+R16)/(R15-R16)≤3.00;
0.04≤d15/TTL≤0.16。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,满足大光圈、超薄化和广角化的要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各 实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,0.81≤f1/f≤1.90,规定了第一透镜L1焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。优选地,满足0.83≤f1/f≤1.90。
定义所述第二透镜L2的焦距为f2,f2≤0.00,规定了第二透镜L2焦距的正负,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,-19.00≤(R7+R8)/(R7-R8)≤-3.50,规定了第四透镜L4的形状,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-18.95≤(R7+R8)/(R7-R8)≤-3.50。
所述第三透镜L3的轴上厚度为d5,所述第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离为d6,0.50≤d5/d6≤15.00,当d5/d6满足该条件式时,有助于压缩光学系统总长,实现超薄化效果。优选地,0.51≤d5/d6≤14.92。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜像侧面到物侧面的轴上距离、轴上厚度满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
所述第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,满足下列关系式:-16.00≤(R11+R12)/(R11-R12)≤-7.00,规定的是第六透镜L6的形状,在该条件式范围内时,有助于补正轴外画角的像差。优选地,满足15.99≤(R11+R12)/(R11-R12)≤-7.24。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,-9.09≤(R1+R2)/(R1-R2)≤-0.80,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-5.68≤(R1+R2)/(R1-R2)≤-1.00。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d1/TTL≤0.18,有利于实现超薄化。优选地,满足0.07≤d1/TTL≤0.14。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,1.71≤(R3+R4)/(R3-R4)≤8.57,规定了第二透镜L2的形状,在条件式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足2.73≤(R3+R4)/(R3-R4)≤6.86。
整体摄像光学镜头10的焦距为f,第二透镜L2的焦距为f2,满足下列关系式:-5.49≤f2/f≤-0.99,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。 优选地,满足-3.43≤f2/f≤-1.24。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.11,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.09。
整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,以及满足下列关系式:0.54≤f3/f≤3.06,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.87≤f3/f≤2.45。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.15,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.12。
第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式:-4.81≤(R5+R6)/(R5-R6)≤-0.14,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,在条件范围内时,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-3.00≤(R5+R6)/(R5-R6)≤-0.18。
整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式:-362.25≤f4/f≤-7.28,规定了第四透镜焦距与系统焦距的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-226.41≤f4/f≤-9.11。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.18,有利于实现超薄化。优选地,满足0.04≤d7/TTL≤0.14。
整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,满足下列关系式:-128.07≤f5/f≤28.03,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-80.04≤f5/f≤22.42。
第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式:-44.70≤(R9+R10)/(R9-R10)≤7.42,规定的是第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-27.94≤(R9+R10)/(R9-R10)≤5.94。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.01≤d9/TTL≤0.08,有利于实现超薄化。优选地,满足0.02≤d9/TTL≤0.07。
整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式:-37.03≤f6/f≤-2.65,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-23.14≤f6/f≤-3.31。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.02≤d11/TTL≤0.07,有利于实现超薄化。优选地,满足0.03≤d11/TTL≤0.06。
整体摄像光学镜头10的焦距为f,第七透镜L7焦距f7,满足下列关系式:0.56≤f7/f≤4.15,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.90≤f7/f≤3.32。
第七透镜L7物侧面的曲率半径R13,第七透镜L7像侧面的曲率半径R14,满足下列关 系式:-9.91≤(R13+R14)/(R13-R14)≤-0.25,规定的是第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-6.19≤(R13+R14)/(R13-R14)≤-0.31。
第七透镜L7的轴上厚度为d13,满足下列关系式:0.07≤d13/TTL≤0.23,有利于实现超薄化。优选地,满足0.12≤d13/TTL≤0.18。
整体摄像光学镜头10的焦距为f,第八透镜L8焦距f8,满足下列关系式:-2.56≤f8/f≤-0.49,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.60≤f8/f≤-0.62。
第八透镜L8物侧面的曲率半径R15,第八透镜L8像侧面的曲率半径R16,满足下列关系式:0.61≤(R15+R16)/(R15-R16)≤3.00,规定的是第八透镜L8的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.98≤(R15+R16)/(R15-R16)≤2.40。
第八透镜L8的轴上厚度为d15,满足下列关系式:0.04≤d15/TTL≤0.16,有利于实现超薄化。优选地,满足0.06≤d15/TTL≤0.13。
本实施方式中,摄像光学镜头10的光学总长为TTL,摄像光学镜头10的像高为IH:TTL/IH≤1.66,有利于实现超薄化。
本实施方式中,摄像光学镜头10的光圈F数小于或等于1.91。大光圈,成像性能好。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
Figure PCTCN2019127550-appb-000001
Figure PCTCN2019127550-appb-000002
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的物侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019127550-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16  (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 2 0.235 0.415  
P1R2 1 0.815    
P2R1 0      
P2R2 0      
P3R1 0      
P3R2 0      
P4R1 0      
P4R2 0      
P5R1 0      
P5R2 0      
P6R1 1 1.125    
P6R2 2 0.585 1.525  
P7R1 0      
P7R2 3 0.155 1.265 2.035
P8R1 3 0.485 2.295 2.435
P8R2 3 0.505 2.255 2.485
【表4】
  驻点个数 驻点位置1
P1R1 0  
P1R2 0  
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 0  
P5R2 0  
P6R1 0  
P6R2 0  
P7R1 1 0.925
P7R2 0  
P8R1 1 0.255
P8R2 1 1.065
图2、图3分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实例1、2、3、4中各种数值与条件式中已规定的参数所对应的值。如表17所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.005mm,全视场像高为2.900mm,对角线方向的视场角为73.41°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019127550-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019127550-appb-000005
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 3 0.285 0.315 1.025
P2R1 1 1.045    
P2R2 0      
P3R1 2 0.745 0.755  
P3R2 1 0.505    
P4R1 0      
P4R2 1 1.165    
P5R1 0      
P5R2 0      
P6R1 2 0.945 1.045  
P6R2 1 1.055    
P7R1 2 0.585 1.515  
P7R2 0      
P8R1 3 0.135 1.275 1.975
P8R2 1 0.485    
【表8】
  驻点个数 驻点位置1
P1R1 0  
P1R2 0  
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 1 0.795
P4R1 0  
P4R2 0  
P5R1 0  
P5R2 0  
P6R1 0  
P6R2 0  
P7R1 1 0.935
P7R2 0  
P8R1 1 0.235
P8R2 1 1.045
图6、图7分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表17所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.097mm,全视场像高为2.900mm,对角线方向的视场角为71.81°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019127550-appb-000006
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019127550-appb-000007
Figure PCTCN2019127550-appb-000008
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 2 0.285 0.475  
P2R1 1 0.815    
P2R2 0      
P3R1 2 0.715 0.805  
P3R2 0      
P4R1 0      
P4R2 0      
P5R1 0      
P5R2 1 1.185    
P6R1 0      
P6R2 1 1.065    
P7R1 2 0.635 1.535  
P7R2 2 0.505 0.715  
P8R1 3 0.145 1.275 1.875
P8R2 3 0.505 2.285 2.415
【表12】
  驻点个数 驻点位置1
P1R1 0  
P1R2 0  
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 0  
P5R2 0  
P6R1 0  
P6R2 0  
P7R1 1 1.005
P7R2 0  
P8R1 1 0.245
P8R2 1 1.115
图10、图11分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。如表17所示,第三实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.912mm,全视场像高为2.900mm,对角线方向的视场角为76.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019127550-appb-000009
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2019127550-appb-000010
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 1 0.815    
P2R1 1 0.355    
P2R2 1 0.865    
P3R1 1 0.675    
P3R2 2 0.685 0.995  
P4R1 1 0.645    
P4R2 1 1.015    
P5R1 2 0.405 1.105  
P5R2 2 0.205 1.215  
P6R1 0      
P6R2 2 0.555 1.065  
P7R1 1 0.525    
P7R2 1 0.775    
P8R1 3 0.255 1.165 1.825
P8R2 1 0.515    
【表16】
  驻点个数 驻点位置1
P1R1 0  
P1R2 1 0.975
P2R1 1 0.895
P2R2 0  
P3R1 1 0.915
P3R2 1 0.895
P4R1 1 0.935
P4R2 0  
P5R1 1 0.635
P5R2 1 0.385
P6R1 0  
P6R2 0  
P7R1 1 0.895
P7R2 1 1.485
P8R1 1 0.445
P8R2 1 1.165
图14、图15分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为546nm的光经过第三实施方式的摄像光学镜头40后的场曲及畸变示意图。如表17所示,第四实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.979mm,全视场像高为2.900mm,对角线方向的视场角为74.44°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
以下表17按照上述条件式列出了上述四个实施方式中对应各条件式的数值。
【表17】
参数及条件式 实施例1 实施例2 实施例3 实施例4
f1/f 0.88 0.84 1.33 1.89
(R7+R8)/(R7-R8) -18.91 -3.50 -18.73 -3.55
d5/d6 9.13 0.52 14.84 2.65
f 3.810 3.984 3.633 3.760
f1 3.357 3.347 4.834 7.110
f2 -6.00 -5.94 -9.97 -6.84
f3 7.778 7.818 6.540 4.077
f4 -202.536 -43.531 -208.802 -681.037
f5 -243.973 -246.930 57.622 70.255
f6 -15.763 -15.813 -16.303 -69.614
f7 4.462 4.471 4.353 10.409
f8 -3.018 -2.950 -3.039 -4.817
f12 5.781 5.824 7.495 51.436
Fno 1.90 1.90 1.90 1.90
Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包括:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面到第四透镜的物侧面的轴上距离为d6,满足下列关系式:
    0.81≤f1/f≤1.90;
    f2≤0.00;
    -19.00≤(R7+R8)/(R7-R8)≤-3.50;
    0.50≤d5/d6≤15.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,满足下列关系式:
    -16.00≤(R11+R12)/(R11-R12)≤-7.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -9.09≤(R1+R2)/(R1-R2)≤-0.80;
    0.04≤d1/TTL≤0.18。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -5.49≤f2/f≤-0.99;
    0.02≤d3/TTL≤0.11;
    1.71≤(R3+R4)/(R3-R4)≤8.57。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.54≤f3/f≤3.06;
    0.02≤d5/TTL≤0.15;
    -4.81≤(R5+R6)/(R5-R6)≤-0.14。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -362.25≤f4/f≤-7.28;
    0.02≤d7/TTL≤0.18。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -128.07≤f5/f≤28.03;
    -44.70≤(R9+R10)/(R9-R10)≤7.42;
    0.01≤d9/TTL≤0.08。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -37.03≤f6/f≤-2.65;
    0.02≤d11/TTL≤0.07。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.56≤f7/f≤4.15;
    -9.91≤(R13+R14)/(R13-R14)≤-0.25;
    0.07≤d13/TTL≤0.23。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.56≤f8/f≤-0.49;
    0.61≤(R15+R16)/(R15-R16)≤3.00;
    0.04≤d15/TTL≤0.16。
PCT/CN2019/127550 2019-12-23 2019-12-23 摄像光学镜头 WO2021127885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127550 WO2021127885A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127550 WO2021127885A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021127885A1 true WO2021127885A1 (zh) 2021-07-01

Family

ID=76573346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127550 WO2021127885A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021127885A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149808B1 (en) * 2008-08-02 2015-11-25 Ricoh Company, Ltd. Retrofocus type of imaging lens
CN106443986A (zh) * 2015-08-11 2017-02-22 大立光电股份有限公司 影像撷取镜片组、取像装置及电子装置
US20180239117A1 (en) * 2017-02-17 2018-08-23 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN109343203A (zh) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 光学成像透镜组
CN109541781A (zh) * 2018-07-20 2019-03-29 瑞声声学科技(深圳)有限公司 摄像镜头
US20190235196A1 (en) * 2016-09-26 2019-08-01 Sekonix Co., Ltd. Lens system for head-up display
CN110471168A (zh) * 2019-08-19 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111025560A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149808B1 (en) * 2008-08-02 2015-11-25 Ricoh Company, Ltd. Retrofocus type of imaging lens
CN106443986A (zh) * 2015-08-11 2017-02-22 大立光电股份有限公司 影像撷取镜片组、取像装置及电子装置
US20190235196A1 (en) * 2016-09-26 2019-08-01 Sekonix Co., Ltd. Lens system for head-up display
US20180239117A1 (en) * 2017-02-17 2018-08-23 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN109541781A (zh) * 2018-07-20 2019-03-29 瑞声声学科技(深圳)有限公司 摄像镜头
CN108873272A (zh) * 2018-08-02 2018-11-23 浙江舜宇光学有限公司 光学成像镜头
CN109343203A (zh) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 光学成像透镜组
CN110471168A (zh) * 2019-08-19 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111025560A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
WO2021237782A1 (zh) 摄像光学镜头
WO2021128390A1 (zh) 摄像光学镜头
WO2021114241A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021114242A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021114236A1 (zh) 摄像光学镜头
WO2021127885A1 (zh) 摄像光学镜头
WO2021127872A1 (zh) 摄像光学镜头
WO2021127879A1 (zh) 摄像光学镜头
WO2021127856A1 (zh) 摄像光学镜头
WO2021127851A1 (zh) 摄像光学镜头
WO2021127884A1 (zh) 摄像光学镜头
WO2021127870A1 (zh) 摄像光学镜头
WO2021127871A1 (zh) 摄像光学镜头
WO2021127878A1 (zh) 摄像光学镜头
WO2021128385A1 (zh) 摄像光学镜头
WO2021128396A1 (zh) 摄像光学镜头
WO2021128394A1 (zh) 摄像光学镜头
WO2021128388A1 (zh) 摄像光学镜头
WO2021127847A1 (zh) 摄像光学镜头
WO2021114240A1 (zh) 摄像光学镜头
WO2021128391A1 (zh) 摄像光学镜头
WO2021128395A1 (zh) 摄像光学镜头
WO2021128392A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957266

Country of ref document: EP

Kind code of ref document: A1