WO2021127877A1 - 一种石油输送管道用基于多重密封防漏的平板阀门 - Google Patents

一种石油输送管道用基于多重密封防漏的平板阀门 Download PDF

Info

Publication number
WO2021127877A1
WO2021127877A1 PCT/CN2019/127528 CN2019127528W WO2021127877A1 WO 2021127877 A1 WO2021127877 A1 WO 2021127877A1 CN 2019127528 W CN2019127528 W CN 2019127528W WO 2021127877 A1 WO2021127877 A1 WO 2021127877A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow ball
sampling
hollow
ball
fixedly connected
Prior art date
Application number
PCT/CN2019/127528
Other languages
English (en)
French (fr)
Inventor
周传本
刘俊新
李国伟
李玉
Original Assignee
江苏政轩石油机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏政轩石油机械股份有限公司 filed Critical 江苏政轩石油机械股份有限公司
Priority to PCT/CN2019/127528 priority Critical patent/WO2021127877A1/zh
Publication of WO2021127877A1 publication Critical patent/WO2021127877A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor

Definitions

  • the invention relates to the technical field of petroleum transportation, in particular to a flat valve based on multiple seals and leakage prevention for petroleum transportation pipelines.
  • the installation of the transmission pipeline is particularly important.
  • the anti-leakage and anti-blocking function of the pipeline directly affects the normal operation of oil exploitation.
  • the flat valve is widely used due to its excellent use effect and easy-to-operate use method.
  • For the oil transportation pipeline it plays a vital role in the adjustment of the transportation process of each part of the pipeline and the prevention of accidents. Since the oil contains more impurities when it is not processed in the initial stage, its impurity content directly determines the technical means used in subsequent oil processing. Therefore, sampling is also essential in the process of oil extraction. At present, most of the methods used are oil barrel sampling. In this sampling method, other impurities may exist in the oil after it has been transported and discharged into the oil drum for many times. Therefore, the pipeline sampling method can best reflect the quality of the initial oil and its test accuracy.
  • the present invention provides a multiple-sealed leak-proof flat valve for petroleum transportation pipelines, which facilitates sampling of petroleum in various layers during pipeline sampling, and improves the working efficiency of pipeline sampling.
  • a flat valve for oil transportation pipelines based on multiple seals to prevent leakage including a valve body, a screw rod is arranged in the valve body, and the top of the screw rod is connected to the swivel ring Fixed connection, the middle of the screw rod is sleeved with a ball shaft matching the thread groove of its thread, and a driving gear is sleeved on the ball shaft.
  • the left and right sides of the driving gear mesh with the opposite sides of the two driven gears, and the two The tops of the two driven gears are movably installed in the valve body through a ball shaft.
  • Two driven screw rods are fixedly connected to the two driven gears, and both sides of the top of the valve body are welded with cylinders for accommodating the driven screw rods.
  • the bottom end of the screw rod is fitted with a large valve plate, the bottom ends of the two driven screw rods are both fitted with small valve plates, and a sampling mechanism is set between the two small valve plates and the large valve plate, and the sampling mechanism is fixed. Installed in the pipe of the valve body.
  • the sampling mechanism includes a first hollow sphere, a sampling port for communicating inside and outside the first hollow sphere, a connecting pipe, a knob, a second hollow sphere for sampling, a sampling port, a bent tube for discharging samples, and
  • the sample inlet, the number of first hollow spheres is three, and the three first hollow spheres are equidistantly arranged on the same vertical line.
  • the sample inlet is opened on the left side of the first hollow sphere, and the top of the connecting tube is fixedly connected At the bottom of the first hollow ball, except for the connecting pipe at the bottom, the bottom ends of the other two connecting pipes are respectively fixedly connected to the tops of the two first hollow balls at the middle and the bottom.
  • the connecting pipes are connected to the first hollow ball.
  • the inner cavity of the hollow ball is connected, the knob is movably installed at the bottom end of the lowermost connecting pipe, the second hollow ball is embedded in the first hollow ball, and the outer surface of the second hollow ball is connected to the inner surface of the first hollow ball.
  • the sample outlet is opened at the bottom of the second hollow ball and communicates with the inner cavity of the second hollow ball.
  • the top end of the bent tube is inserted into the sample outlet through a sealed bearing, and the lower half of the bent tube faces The front bend and extend through the front of the valve body to the outside of the valve body, and the sample inlet is opened on the outer surface of the second hollow ball and communicates with the inner cavity of the second hollow ball.
  • the front end of the bent tube is vertically bent downward and is threadedly connected with a sample bottle with a threaded bottle mouth through a threaded groove on the inner wall, and the sample bottle may be a glass bottle, and the top section of the bent tube
  • a sampling control mechanism is provided, and the sampling control mechanism controls the sampling amount of the sample during the process of introducing petroleum into the sample bottle by the bent tube, and at the same time driving each second hollow ball to complete the sampling of each layer of the petroleum.
  • the sample inlet is located on the back, right and front of the three second hollow balls in order from top to bottom.
  • the shape of the inlet is circular, and the three second hollow balls rotate in a single time.
  • the angle is ninety degrees.
  • the three second hollow spheres overlap with the injection port in turn when rotating to complete the sampling of each layer of petroleum. After all the second hollow spheres are rotated and sampled, they will return. To the initial position, the function of recycling is reached.
  • the sampling control mechanism includes a downwardly inclined guide vane, a rotating shaft, a curved piece for receiving fluid impact, a longitudinal bevel gear, a transverse bevel gear, a first connecting rod and a second connecting rod,
  • the deflector is welded to the top of the left wall of the top section of the bending tube, the rotating shaft is inserted into the middle of the back of the top section of the bending tube through a sealed bearing, and the front end of the rotating shaft extends into the bending tube.
  • the curved surface of the shaft, the longitudinal bevel gear is sleeved on the rear section of the shaft, and the bottom of the longitudinal bevel gear meshes with the top of the horizontal bevel gear, the number of the first connecting rod is two, and the number of the first connecting rod is two.
  • the bottom ends are respectively fixedly connected to the left and right sides of the top of the transverse bevel gear, the top ends of the two first connecting rods are respectively fixedly connected to the left and right sides of the bottom of the second hollow ball, the number of second connecting rods is two, and two The bottom ends of the second connecting rods are respectively fixedly connected to the left and right sides of the top of the next second hollow ball.
  • the second hollow ball When the oil flows into the bending tube to drive the sampling control mechanism, the second hollow ball is subjected to the counterclockwise rotation of the horizontal bevel gear and the first A connecting rod is driven to rotate, so that the second hollow sphere continues to operate from the beginning of sampling, ensuring that the sample is collected in an appropriate amount, and will not greatly reduce the oil height in the pipeline, resulting in inaccurate sampling positions of each layer.
  • the side of the deflector away from the inner left wall of the bending tube extends to the right side of the vertical line of the rotating shaft, and the middle of the curved piece protrudes to the right.
  • the oil flows downward through the deflector it must be located on the right half of the rotating shaft.
  • the curved piece of the part contacts and exerts a downward force, so that the rotating shaft rotates clockwise and drives the longitudinal bevel gear to rotate clockwise, ensuring that the horizontal bevel gear meshing with it rotates counterclockwise.
  • the sampling control mechanism in the bending tube in the lowermost sampling mechanism is not provided with a second connecting rod, and the top of the knob is fixedly connected to the bottom of the transverse bevel gear instead of the second connecting rod, and is rotated counterclockwise.
  • the ninety-degree method of the knob drives the second hollow ball at the top to rotate and start sampling, and then the automatic sampling of each layer of petroleum can be started.
  • the invention provides a flat valve based on multiple seals and leakage prevention for petroleum transportation pipelines. Has the following beneficial effects:
  • the oil pipeline uses a flat valve based on multiple seals to prevent leakage.
  • the sampling mechanism can be kept free of petroleum in the non-sampling state, thereby ensuring the accuracy of sampling At the same time, it only needs to turn the knob once under manual operation to automatically complete the sampling work of each layer of petroleum, and the second hollow ball can be moved to the initial position after the sampling work is completed, which is convenient for subsequent sampling work.
  • the oil pipeline uses a flat valve based on multiple seals to prevent leakage.
  • the second hollow ball is driven by the sampling control mechanism during the rotating sampling process, which avoids excessive sampling leading to a large drop in the height of the oil in the closed pipeline, resulting in non-separation. Accurate sampling results are poor.
  • the sampling control mechanism drives the next hollow sphere to rotate at the same angle while completing the control of the oil production of a single second hollow sphere, sealing the second hollow sphere that has been sampled to prevent oil from continuing to enter The situation that leads to excessive sampling occurs, and the next second hollow ball is immediately driven at the same time, which ensures the working efficiency of the sampling work.
  • the oil pipeline uses a flat valve based on multiple seals to prevent leakage.
  • the oil in the three second hollow spheres is discharged through three bent pipes, which avoids the inaccurate detection effect caused by the mixing of samples.
  • the special design based on the shape of the bent tube allows the second hollow ball to quickly discharge the sample into the sample bottle after sampling.
  • Figure 1 is a cross-sectional view of the structure of the present invention
  • Figure 2 is a cross-sectional view of the sampling mechanism of the present invention.
  • Fig. 3 is an enlarged view of the structure at A in Fig. 2 of the present invention.
  • Figure 4 is a right side view of the sampling mechanism of the present invention.
  • Figure 5 is a schematic view of the three-dimensional structure of the three second hollow balls of the present invention from top to bottom.
  • valve body 1 valve body, 2 driving gear, 3 driven gear, 4 driven screw, 5 cylinder, 6 large valve plate, 7 small valve plate, 8 sampling mechanism, 9 sampling control mechanism, 81 first hollow ball , 82 injection port, 83 connecting tube, 84 knob, 85 second hollow ball, 86 discharge port, 87 bending tube, 88 injection port, 91 guide vane, 92 rotating shaft, 93 curved piece, 94 longitudinal taper Gears, 95 transverse bevel gears, 96 first connecting rods, 97 second connecting rods.
  • a multi-seal and leak-proof flat valve for petroleum transportation pipelines including a valve body 1.
  • the structure of the valve body 1 is a common manual rotation in the field.
  • a screw rod is arranged in the valve body 1, and the top of the screw rod is fixedly connected with the swivel ring.
  • the middle part of the screw rod is sleeved with a ball shaft with a thread groove matching its thread, and the ball shaft is sleeved with
  • the driving gear 2, the left and right sides of the driving gear 2 respectively mesh with the opposite sides of the two driven gears 3, and the tops of the two driven gears 3 are movably mounted in the valve body 1 through a ball shaft, and the two driven gears
  • the gear 3 is fixedly connected with two driven screw rods 4, and both sides of the top of the valve body 1 are welded with a cylinder 5 for accommodating the driven screw rod 4, and the bottom end of the screw rod is sleeved with a large valve plate 6, two
  • the bottom end of each driven screw rod 4 is fitted with a small valve plate 7, and a sampling mechanism 8 is set between the two small valve plates 7 and the large valve plate 6, and the sampling mechanism 8 is fixedly installed in the pipeline of the valve body 1. .
  • the sampling mechanism 8 includes a first hollow ball 81, a sampling port 82 for internal and external communication of the first hollow ball 81, a connecting pipe 83, a knob 84, a second hollow ball 85 for sampling, a discharge port 86, and a discharge port.
  • the bending tube 87 and the sample inlet 88 of the sample, the number of the first hollow spheres 81 is three, and the three first hollow spheres 81 are equidistantly arranged on the same vertical vertical line, and the sample inlet 82 is opened in the first hollow
  • the top end of the connecting pipe 83 is fixedly connected to the bottom of the first hollow ball 81.
  • the bottom ends of the remaining two connecting pipes 83 are fixedly connected in the middle and the lowest part, respectively.
  • the connecting pipe 83 communicates with the inner cavity of the first hollow ball 81
  • the knob 84 is movably mounted on the bottom end of the lowermost connecting pipe 83
  • the second hollow ball 85 is embedded in Inside the first hollow ball 81, and the outer surface of the second hollow ball 85 is in close contact with the inner surface of the first hollow ball 81, the sample outlet 86 is opened at the bottom of the second hollow ball 85 and is connected to the second hollow ball 85.
  • the inner cavity is connected, the top end of the bending tube 87 is inserted into the discharge port 86 through a sealed bearing, and the lower half of the bending tube 87 is bent forward and extends through the front of the valve body 1 to the outside of the valve body 1.
  • the sample port 88 is opened on the outer surface of the second hollow ball 85 and communicates with the inner cavity of the second hollow ball 85.
  • the sample bottle 10 is threadedly connected, and the sample bottle 10 can be a glass bottle.
  • the top section of the bent tube 87 is provided with a sampling control mechanism 9, and the sample inlet 88 is located in the three second hollow spheres in order from top to bottom. On the back, right and front of 85, the shape of the inlet 88 is circular.
  • the sampling control mechanism 9 includes a guide vane 91 inclined downward, a rotating shaft 92, a curved piece 93 for bearing the impact of fluid, a longitudinal bevel gear 94, a transverse bevel gear 95, a first connecting rod 96, and a second connecting rod.
  • the rod 97 and the deflector 91 are welded to the top of the inner left wall of the top section of the bending tube 87, the rotating shaft 92 is inserted into the middle of the back of the top section of the bending tube 87 through a sealed bearing, and the front end of the rotating shaft 92 extends into the bending tube 87 ,
  • the curved piece 93 is welded to the curved surface of the rotating shaft 92 in an equidistant circle
  • the longitudinal bevel gear 94 is sleeved on the rear section of the rotating shaft 92, and the bottom of the longitudinal bevel gear 94 meshes with the top of the transverse bevel gear 95
  • the first The number of connecting rods 96 is two, and the bottom ends of the two first connecting rods 96 are respectively fixedly connected to the left and right sides of the top of the transverse bevel gear 95, and the top ends of the two first connecting rods 96 are respectively fixedly connected to the second On the left and right sides of the bottom of the hollow ball
  • the rotating ring drives the screw rod to rotate in the valve body 1, and at the same time, the driven gear 3 and the driven screw rod 4 are driven to rotate through the rotation of the driving gear 2.
  • the large valve plate 6 and the small valve plate 7 descend and close the pipeline at the same time.
  • Turn the knob 84 ninety degrees counterclockwise so that the second hollow ball 82 located at the top rotates ninety degrees counterclockwise and coincides with the injection port 82 to introduce the oil in the closed section of the pipeline into the second hollow ball 85.
  • the oil passes through The sample discharge port 86 is discharged into the bending tube 87 and contacts the curved piece 93 via the deflector 91, so that the rotating shaft 92 rotates clockwise and drives the longitudinal bevel gear 94 to rotate, so that the transverse bevel gear 95 meshes with it and rotates counterclockwise , So that the second hollow ball 82 is driven to rotate ninety degrees counterclockwise through the first connecting rod 96 so that the injection port 82 is closed, the sample flows into the sample bottle 10 through the bending tube 87, and the second connecting rod 97 drives the next second hollow
  • the ball 85 rotates, and the above steps are repeated to automatically complete the sampling of each layer of petroleum. At the same time, all the second hollow balls 85 rotate one circle to reset to the initial position, which is convenient for recycling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种石油输送管道用基于多重密封防漏的平板阀门,包括阀体(1),阀体(1)内设置有丝杆,且丝杆的顶端与转环固定连接,丝杆的中部套设有与其螺纹相匹配螺纹槽的球轴,且球轴上套装有主动齿轮(2),主动齿轮(2)的左右两侧分别与两个从动齿轮(3)的相对一侧啮合。该平板阀门通过第二空心球(85)水平转动的采样方式,可在非采样状态下保持采样机构(8)内不含有石油,从而确保采样时的准确性,同时在手动操作下仅需要转动一次旋钮即可自动完成石油各分层的采样工作。

Description

一种石油输送管道用基于多重密封防漏的平板阀门 技术领域
本发明涉及石油输送技术领域,具体为一种石油输送管道用基于多重密封防漏的平板阀门。
背景技术
在石油开采的过程中,输送管线的设置尤为重要,管道防漏防堵功能的好坏直接影响到了石油开采的正常进行,平板阀门由于其优异的使用效果,以及便于操作的使用方法,广泛用于石油输送管道,对管线各部分输送进程的调整以及意外情况的防治起到了至关重要的作用。由于石油初期未处理时含有较多杂质,其杂质含量直接决定了后续石油加工时采用的技术手段指标,因此在石油开采过程中采样工作同样必不可少,目前大多数采用的方式为油桶采样,这样的采样方式由于石油经过多次输送并排入油桶后,导致其中可能存在其他杂质,因此管线采样的方式最能够反应初期石油的质量及其测试准确性。
石油在管线中由于阀门封闭,沉淀一段时间后其内部逐渐分层,各层之间的取样方式通过人工操作较为繁琐,因此需提出一种在检验效果最佳的管线采样方式中便于对石油各分层进行取样的平板阀门。
发明内容
针对现有技术的不足,本发明提供了一种石油输送管道用基于多重密封防漏的平板阀门,便于在管线取样中对石油各分层进行采样,提高了管线取样的工作效率。
为实现以上目的,本发明通过以下技术方案予以实现:一种石油输送管道用基于多重密封防漏的平板阀门,包括阀体,所述阀体内设置有丝杆,且丝杆的顶端与转环固定连接,丝杆的中部套设有与其螺纹相匹配螺纹槽的球轴,且球轴上套装有主动齿轮,主动齿轮的左右两侧分别与两个从动齿轮的 相对一侧啮合,且两个从动齿轮的顶部均通过球轴活动安装在阀体内,两个从动齿轮内固定连接有两个从动丝杆,且阀体顶部的两侧均焊接有用于容纳从动丝杆的筒体,丝杆的底端套装有大阀板,两个从动丝杆的底端均套装有小阀板,且两个小阀板与大阀板之间均设置有采样机构,采样机构固定安装在阀体的管道内。
所述采样机构包括第一空心球、用于第一空心球内外连通的进样口、连接管、旋钮、用于采样的第二空心球、排样口、用于排出样品的弯折管和入样口,第一空心球的数量为三个,且三个第一空心球等距设置在同一纵垂线上,进样口开设在第一空心球的左侧,连接管的顶端固定连接在第一空心球的底部,除去位于最下方的连接管之外,其余两个连接管的底端分别固定连接在位于中部和最下方的两个第一空心球的顶部,连接管与第一空心球的内腔连通,旋钮活动安装在位于最下方的连接管的底端,第二空心球嵌装在第一空心球内,且第二空心球的外表面与第一空心球的内表面紧密贴合,排样口开设在第二空心球的底部并与第二空心球的内腔连通,弯折管的顶端通过密封轴承插接在排样口内,且弯折管的下半段向前弯折并贯穿阀体的正面延伸至阀体外部,入样口开设在第二空心球的外表面并与第二空心球的内腔连通。
优选的,所述弯折管的前端垂直向下弯折并通过在内壁开设螺纹槽与带有螺纹瓶口的样品瓶螺纹连接,且样品瓶具体可为玻璃瓶,弯折管的顶段内设置有取样控制机构,弯折管在引入石油并将其排入样品瓶的过程中通过取样控制机构控制样品的采量,同时驱动各第二空心球完成对石油各分层的采样。
优选的,所述入样口依照从上到下的顺序分别位于三个第二空心球的背面、右侧和正面,入样口的形状为圆形,三个第二空心球单次转动的角度为九十度,同时由于进样口的位置固定,使得三个第二空心球转动时依次与进 样口重合并完成石油各分层的采样,在全部第二空心球完成转动采样后回到初始位置,达到循环使用功能。
优选的,所述取样控制机构包括呈向下倾斜状的导流片、转轴、用于承受流体冲击的曲片、纵向锥形齿轮、横向锥形齿轮、第一连接杆和第二连接杆,导流片焊接在弯折管顶段内左壁的顶部,转轴通过密封轴承穿插在弯折管顶段背面的中部,且转轴的前端延伸至弯折管内,曲片呈等距环绕状焊接在转轴的曲面,纵向锥形齿轮套装在转轴的后段上,且纵向锥形齿轮的底部与横向锥形齿轮的顶部啮合,第一连接杆的数量为两个,且两个第一连接杆的底端分别固定连接在横向锥形齿轮顶部的左右两侧,两个第一连接杆的顶端分别固定连接在第二空心球底部的左右两侧,第二连接杆的数量为两个,且两个第二连接杆的底端分别固定连接在下一个第二空心球顶部的左右两侧,石油在流入弯折管内驱动取样控制机构时,第二空心球受到逆时针转动的横向锥形齿轮与第一连接杆驱动转动,使得第二空心球从开始采样时持续运作,确保了样品采量适量,不会大幅降低管道内的石油高度,从而导致各分层采样位置不准确的情况出现。
优选的,所述导流片远离弯折管内左壁的一侧延伸至转轴垂直线的右侧,曲片的中部向右突出,石油在经由导流片向下流出时必然与位于转轴右半部的曲片接触并施加向下的作用力,使得转轴顺时针转动并带动纵向锥形齿轮顺时针转动,确保与其啮合的横向锥形齿轮逆时针转动。
优选的,所述位于最下方采样机构内弯折管中的取样控制机构未设有第二连接杆,且旋钮的顶部替代第二连接杆固定连接在横向锥形齿轮的底部,通过逆时针转动旋钮九十度的方式带动位于最上方的第二空心球转动开始采样,即可开始石油各分层采样的自动进行。
本发明提供了一种石油输送管道用基于多重密封防漏的平板阀门。具备以下有益效果:
(1)、该石油输送管道用基于多重密封防漏的平板阀门,通过第二空心球水平转动的采样方式,可在非采样状态下保持采样机构内不含有石油,从而确保采样时的准确性,同时在手动操作下仅需要转动一次旋钮即可自动完成石油各分层的采样工作,并能够在完成采样工作后将第二空心球移动至初始位置,方便以后的采样工作。
(2)、该石油输送管道用基于多重密封防漏的平板阀门,第二空心球在转动采样过程中通过取样控制机构驱动,避免了取样过多导致封闭管道内石油高度大幅下降导致分层不准确采样效果较差的情况出现,同时取样控制机构在完成对单个第二空心球石油采量控制的同时驱动下一空心球呈相同角度转动,封闭已采样的第二空心球,避免石油继续进入导致采量过多的情况出现,同时立即驱动下一第二空心球,确保了采样工作的工作效率。
(3)、该石油输送管道用基于多重密封防漏的平板阀门,通过三个弯折管排出三个第二空心球内的石油,避免了样品之间相互混合导致检测效果不准确的情况出现,同时基于弯折管形状的特殊设计,使得第二空心球完成采样后快速将样品排入样品瓶中。
附图说明
图1为本发明结构剖视图;
图2为本发明采样机构的剖视图;
图3为本发明图2中的A处结构放大图;
图4为本发明采样机构的右视图;
图5为本发明三个第二空心球从上至下的立体结构示意图。
图中:1阀体、2主动齿轮、3从动齿轮、4从动丝杆、5筒体、6大阀板、7小阀板、8采样机构、9取样控制机构、81第一空心球、82进样口、83连接管、84旋钮、85第二空心球、86排样口、87弯折管、88入样口、91导流片、92转轴、93曲片、94纵向锥形齿轮、95横向锥形齿轮、96第一连接杆、 97第二连接杆。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参阅图1-5,本发明提供一种技术方案:一种石油输送管道用基于多重密封防漏的平板阀门,包括阀体1,阀体1的结构为本领域内常见的通过手动转动转环驱动的平板阀门结构,阀体1内设置有丝杆,且丝杆的顶端与转环固定连接,丝杆的中部套设有与其螺纹相匹配螺纹槽的球轴,且球轴上套装有主动齿轮2,主动齿轮2的左右两侧分别与两个从动齿轮3的相对一侧啮合,且两个从动齿轮3的顶部均通过球轴活动安装在阀体1内,两个从动齿轮3内固定连接有两个从动丝杆4,且阀体1顶部的两侧均焊接有用于容纳从动丝杆4的筒体5,丝杆的底端套装有大阀板6,两个从动丝杆4的底端均套装有小阀板7,且两个小阀板7与大阀板6之间均设置有采样机构8,采样机构8固定安装在阀体1的管道内。
采样机构8包括第一空心球81、用于第一空心球81内外连通的进样口82、连接管83、旋钮84、用于采样的第二空心球85、排样口86、用于排出样品的弯折管87和入样口88,第一空心球81的数量为三个,且三个第一空心球81等距设置在同一纵垂线上,进样口82开设在第一空心球81的左侧,连接管83的顶端固定连接在第一空心球81的底部,除去位于最下方的连接管83之外,其余两个连接管83的底端分别固定连接在位于中部和最下方的两个第一空心球81的顶部,连接管83与第一空心球81的内腔连通,旋钮84 活动安装在位于最下方的连接管83的底端,第二空心球85嵌装在第一空心球81内,且第二空心球85的外表面与第一空心球81的内表面紧密贴合,排样口86开设在第二空心球85的底部并与第二空心球85的内腔连通,弯折管87的顶端通过密封轴承插接在排样口86内,且弯折管87的下半段向前弯折并贯穿阀体1的正面延伸至阀体1外部,入样口88开设在第二空心球85的外表面并与第二空心球85的内腔连通,弯折管87的前端垂直向下弯折并通过在内壁开设螺纹槽与带有螺纹瓶口的样品瓶10螺纹连接,且样品瓶10具体可为玻璃瓶,弯折管87的顶段内设置有取样控制机构9,入样口88依照从上到下的顺序分别位于三个第二空心球85的背面、右侧和正面,入样口88的形状为圆形。
取样控制机构9包括呈向下倾斜状的导流片91、转轴92、用于承受流体冲击的曲片93、纵向锥形齿轮94、横向锥形齿轮95、第一连接杆96和第二连接杆97,导流片91焊接在弯折管87顶段内左壁的顶部,转轴92通过密封轴承穿插在弯折管87顶段背面的中部,且转轴92的前端延伸至弯折管87内,曲片93呈等距环绕状焊接在转轴92的曲面,纵向锥形齿轮94套装在转轴92的后段上,且纵向锥形齿轮94的底部与横向锥形齿轮95的顶部啮合,第一连接杆96的数量为两个,且两个第一连接杆96的底端分别固定连接在横向锥形齿轮95顶部的左右两侧,两个第一连接杆96的顶端分别固定连接在第二空心球85底部的左右两侧,第二连接杆97的数量为两个,且两个第二连接杆97的底端分别固定连接在下一个第二空心球85顶部的左右两侧,导流片91远离弯折管87内左壁的一侧延伸至转轴92垂直线的右侧,曲片93的中部向右突出,位于最下方采样机构8内弯折管87中的取样控制机构9未设有第二连接杆97,且旋钮84的顶部替代第二连接杆97固定连接在横向锥形齿轮95的底部。
使用时,转动转环带动丝杆在阀体1内转动,同时通过主动齿轮2转动 带动从动齿轮3与从动丝杆4转动,大阀板6和小阀板7同时下降并封闭管道,逆时针转动旋钮84九十度,使得位于最上方的第二空心球82逆时针转动九十度并与进样口82重合,将管道封闭段内的石油引入第二空心球85中,石油经由排样口86排入弯折管87内并经由导流片91与曲片93接触,使得转轴92顺时针转动并带动纵向锥形齿轮94转动,使得横向锥形齿轮95与其啮合并逆时针转动,从而通过第一连接杆96带动第二空心球82逆时针转动九十度使得进样口82封闭,样品经由弯折管87流入样品瓶10中,第二连接杆97带动下一第二空心球85转动,重复以上步骤自动完成石油各分层的采样,同时所有第二空心球85均转动一周复位至初始位置,方便循环使用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种石油输送管道用基于多重密封防漏的平板阀门,包括阀体(1),其特征在于:所述阀体(1)内设置有丝杆,且丝杆的顶端与转环固定连接,丝杆的中部套设有与其螺纹相匹配螺纹槽的球轴,且球轴上套装有主动齿轮(2),主动齿轮(2)的左右两侧分别与两个从动齿轮(3)的相对一侧啮合,且两个从动齿轮(3)的顶部均通过球轴活动安装在阀体(1)内,两个从动齿轮(3)内固定连接有两个从动丝杆(4),且阀体(1)顶部的两侧均焊接有用于容纳从动丝杆(4)的筒体(5),丝杆的底端套装有大阀板(6),两个从动丝杆(4)的底端均套装有小阀板(7),且两个小阀板(7)与大阀板(6)之间均设置有采样机构(8),采样机构(8)固定安装在阀体(1)的管道内;
    所述采样机构(8)包括第一空心球(81)、用于第一空心球(81)内外连通的进样口(82)、连接管(83)、旋钮(84)、用于采样的第二空心球(85)、排样口(86)、用于排出样品的弯折管(87)和入样口(88),第一空心球(81)的数量为三个,且三个第一空心球(81)等距设置在同一纵垂线上,进样口(82)开设在第一空心球(81)的左侧,连接管(83)的顶端固定连接在第一空心球(81)的底部,除去位于最下方的连接管(83)之外,其余两个连接管(83)的底端分别固定连接在位于中部和最下方的两个第一空心球(81)的顶部,连接管(83)与第一空心球(81)的内腔连通,旋钮(84)活动安装在位于最下方的连接管(83)的底端,第二空心球(85)嵌装在第一空心球(81)内,且第二空心球(85)的外表面与第一空心球(81)的内表面紧密贴合,排样口(86)开设在第二空心球(85)的底部并与第二空心球(85)的内腔连通,弯折管(87)的顶端通过密封轴承插接在排样口(86)内,且弯折管(87)的下半段向前弯折并贯穿阀体(1)的正面延伸至阀体(1)外部,入样口(88)开设在第二空心球(85)的外表面并与第二空心球(85)的内腔连通。
  2. 根据权利要求1所述的一种石油输送管道用基于多重密封防漏的平板阀门,其特征在于:所述弯折管(87)的前端垂直向下弯折并通过在内壁开设螺纹槽与带有螺纹瓶口的样品瓶(10)螺纹连接,且样品瓶(10)具体可为玻璃瓶,弯折管(87)的顶段内设置有取样控制机构(9)。
  3. 根据权利要求1所述的一种石油输送管道用基于多重密封防漏的平板阀门,其特征在于:所述入样口(88)依照从上到下的顺序分别位于三个第二空心球(85)的背面、右侧和正面,入样口(88)的形状为圆形。
  4. 根据权利要求2所述的一种石油输送管道用基于多重密封防漏的平板阀门,其特征在于:所述取样控制机构(9)包括呈向下倾斜状的导流片(91)、转轴(92)、用于承受流体冲击的曲片(93)、纵向锥形齿轮(94)、横向锥形齿轮(95)、第一连接杆(96)和第二连接杆(97),导流片(91)焊接在弯折管(87)顶段内左壁的顶部,转轴(92)通过密封轴承穿插在弯折管(87)顶段背面的中部,且转轴(92)的前端延伸至弯折管(87)内,曲片(93)呈等距环绕状焊接在转轴(92)的曲面,纵向锥形齿轮(94)套装在转轴(92)的后段上,且纵向锥形齿轮(94)的底部与横向锥形齿轮(95)的顶部啮合,第一连接杆(96)的数量为两个,且两个第一连接杆(96)的底端分别固定连接在横向锥形齿轮(95)顶部的左右两侧,两个第一连接杆(96)的顶端分别固定连接在第二空心球(85)底部的左右两侧,第二连接杆(97)的数量为两个,且两个第二连接杆(97)的底端分别固定连接在下一个第二空心球(85)顶部的左右两侧。
  5. 根据权利要求4所述的一种石油输送管道用基于多重密封防漏的平板阀门,其特征在于:所述导流片(91)远离弯折管(87)内左壁的一侧延伸至转轴(92)垂直线的右侧,曲片(93)的中部向右突出。
  6. 根据权利要求4所述的一种石油输送管道用基于多重密封防漏的平板阀门,其特征在于:位于最下方采样机构(8)内弯折管(87)中的取样控制 机构(9)未设有第二连接杆(97),且旋钮(84)的顶部替代第二连接杆(97)固定连接在横向锥形齿轮(95)的底部。
PCT/CN2019/127528 2019-12-23 2019-12-23 一种石油输送管道用基于多重密封防漏的平板阀门 WO2021127877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127528 WO2021127877A1 (zh) 2019-12-23 2019-12-23 一种石油输送管道用基于多重密封防漏的平板阀门

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127528 WO2021127877A1 (zh) 2019-12-23 2019-12-23 一种石油输送管道用基于多重密封防漏的平板阀门

Publications (1)

Publication Number Publication Date
WO2021127877A1 true WO2021127877A1 (zh) 2021-07-01

Family

ID=76572875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127528 WO2021127877A1 (zh) 2019-12-23 2019-12-23 一种石油输送管道用基于多重密封防漏的平板阀门

Country Status (1)

Country Link
WO (1) WO2021127877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183552A (zh) * 2021-12-17 2022-03-15 江苏柏斯克石油机械有限公司 一种便于使用的石油钻采用平板阀及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518798C1 (ru) * 2012-12-10 2014-06-10 Общество с ограниченной ответственностью "Научно-производственное объединение "ГАКС-Армсервис" Способ диагностирования герметичности затвора трубопроводной арматуры (клиновой задвижки) и устройство для его осуществления
WO2014106231A1 (en) * 2012-12-31 2014-07-03 Vetco Gray Inc. Gate valve arrangement including multi-valve stem and seat seal assemblies
CN106051284A (zh) * 2016-06-29 2016-10-26 江苏政轩石油机械股份有限公司 一种手液动一体式平板阀
CN107387789A (zh) * 2017-09-04 2017-11-24 江苏雄越石油机械设备制造有限公司 一种防泄漏平板阀
CN208651789U (zh) * 2018-07-18 2019-03-26 江苏信得石油机械股份有限公司 一种防泄漏平板阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518798C1 (ru) * 2012-12-10 2014-06-10 Общество с ограниченной ответственностью "Научно-производственное объединение "ГАКС-Армсервис" Способ диагностирования герметичности затвора трубопроводной арматуры (клиновой задвижки) и устройство для его осуществления
WO2014106231A1 (en) * 2012-12-31 2014-07-03 Vetco Gray Inc. Gate valve arrangement including multi-valve stem and seat seal assemblies
CN106051284A (zh) * 2016-06-29 2016-10-26 江苏政轩石油机械股份有限公司 一种手液动一体式平板阀
CN107387789A (zh) * 2017-09-04 2017-11-24 江苏雄越石油机械设备制造有限公司 一种防泄漏平板阀
CN208651789U (zh) * 2018-07-18 2019-03-26 江苏信得石油机械股份有限公司 一种防泄漏平板阀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183552A (zh) * 2021-12-17 2022-03-15 江苏柏斯克石油机械有限公司 一种便于使用的石油钻采用平板阀及其使用方法

Similar Documents

Publication Publication Date Title
WO2021127877A1 (zh) 一种石油输送管道用基于多重密封防漏的平板阀门
CN108760174B (zh) 一种暖通用硬质管道气密性检测装置
CN105004874B (zh) 一种自动进样及剂量计量方法
WO2021027472A1 (zh) 一种成品芯片测试用高压加速老化试验机及其使用方法
CN210741594U (zh) 一种计量检定检测用的容器罐
CN204405371U (zh) 一种集装箱散装粮食取样器
CN204944773U (zh) 冷凝器、蒸发器空气压力检漏仪及连接接头
CN103743596B (zh) 管口可变径插接式采样仪
CN207129538U (zh) 钢管前进机构
CN207796236U (zh) 气液联动执行机构
CN103743594A (zh) 管口可变径插入式采样仪
CN203337410U (zh) 三筒扦样器
CN210221526U (zh) 一种滤棒、卷烟在线自动取样装置
CN113856783A (zh) 一种食品检验超声空化移液装置
CN109425659A (zh) 一种钢管探伤系统
CN112834285A (zh) 一种水环境检测用污水采集设备
CN103743599B (zh) 管口可变径插接式采样仪
CN117782440B (zh) 一种水利阀门检验台
CN111855372A (zh) 一种动态精密型水样配比装置
CN110261040A (zh) 通用型钢管打压试验装置及其操作方法
CN210665163U (zh) 一种检验用液体抽取装置
CN219475036U (zh) 一种水泥检查取样装置
CN220794749U (zh) 一种粉末气体输送管取样装置
CN219624843U (zh) 用于玻璃熔窑的液面测量装置
CN213148938U (zh) 一种水泥生产过程的化学分析数据在线检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958069

Country of ref document: EP

Kind code of ref document: A1