WO2021125782A1 - Microporous hollow carbon black and manufacturing method therefor - Google Patents

Microporous hollow carbon black and manufacturing method therefor Download PDF

Info

Publication number
WO2021125782A1
WO2021125782A1 PCT/KR2020/018437 KR2020018437W WO2021125782A1 WO 2021125782 A1 WO2021125782 A1 WO 2021125782A1 KR 2020018437 W KR2020018437 W KR 2020018437W WO 2021125782 A1 WO2021125782 A1 WO 2021125782A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
phase oxidation
oxidation reaction
microporous hollow
gas phase
Prior art date
Application number
PCT/KR2020/018437
Other languages
French (fr)
Korean (ko)
Inventor
노재승
이상민
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Publication of WO2021125782A1 publication Critical patent/WO2021125782A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • C09C1/565Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hollow carbon black having microporous pores and a method for manufacturing the same, which can be used as a support that can be filled with other materials therein, and can be used as an electrocatalyst support for a secondary battery or a fuel cell. It is an invention that can be applied to materials in various fields such as members, carbon supports, negative electrode materials, and positive electrode materials.
  • Carbon black is widely used as a black pigment, as a reinforcing agent, as a filler, and the like. Carbon black is produced with different properties by different methods. The most common method is the production method by oxidative pyrolysis of carbon-containing carbon black raw materials. In this case, the carbon black raw material is burned incompletely in the presence of oxygen at a high temperature. Examples of this class of carbon black production method include a furnace black method, a gas black method and a lamp black method. Examples of other methods include an acetylene method, a thermal black method, and a plasma method.
  • carbon black is used as a conductive material for manganese batteries, lithium batteries, secondary batteries, etc., due to the characteristic of having high conductivity, and it is known that the more micropores there are in the aggregate of carbon black, the greater the capacity is, and research aimed at large batteries is being carried out.
  • fuel cells it is used as a catalyst carrier for the catalyst layer, and studies are being conducted to control the specific surface area of carbon black to reduce the amount of expensive platinum catalyst added and increase the active area. For example, various attempts have been made to form pores by chemically activating the surface of carbon black, or to increase energy storage by maintaining conductivity by introducing a mixed secondary structure between carbon blacks.
  • the present inventors have completed the present invention by preparing carbon black with a significantly increased micropore volume and increased specific surface area of furnace carbon black among carbon black. .
  • an object of the present invention is to provide a microporous hollow carbon black having a significantly increased specific surface area and an increased micropore volume compared to the raw material carbon black and a method for manufacturing the same.
  • microporous hollow carbon black which is a furnace carbon black prepared by performing vapor phase oxidation reaction of furnace carbon black using an oxidizing gas, which has a hollow structure and has micropores
  • the eggplant contains furnace carbon black.
  • the microporous hollow carbon black of the present invention may have a micropore volume satisfying Equation 1 below.
  • Equation 1 A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
  • the microporous hollow carbon black of the present invention may have a BET specific surface area of 180 to 1,200 m 2 /g.
  • the microporous hollow carbon black of the present invention may have a total pore volume of 0.190 to 1.200 cm 3 /g.
  • the average particle diameter of the micropores may be 4.0 to 8.0 nm.
  • Another object of the present invention relates to a method for producing the aforementioned microporous hollow carbon black, comprising: a first step of preparing the furnace carbon black; and a second step of performing a gas phase oxidation reaction of the furnace carbon black using an oxidizing gas.
  • the micropore volume of the furnace carbon black subjected to the two-step gas phase oxidation reaction may satisfy the following equation.
  • Equation 1 A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
  • the gas phase oxidation reaction is performed in an oxidation chamber, and while supplying an oxidizing gas in the oxidation chamber under 850° C. to 1200° C., it can be performed for 30 minutes to 150 minutes. have.
  • the oxidizing gas may contain 99.000 ⁇ 99.999% by volume of CO 2 .
  • the gas phase oxidation reaction may be performed while supplying the oxidizing gas into the oxidation chamber at a rate of 50 to 200 mL/min.
  • Another object of the present invention relates to an application using the microporous hollow carbon black described above, comprising an electrocatalyst carrier for a fuel cell comprising the microporous hollow carbon black, and the microporous hollow carbon black To provide a carbon support for secondary batteries, etc.
  • the carbon black produced by the production method of the present invention increases the micropore volume by at least 2 times and at most 6 times that of the furnace carbon black before the gas phase oxidation treatment, and as a result, the micropore volume having a high specific surface area and high total pore volume. of hollow furnace carbon black can be produced. And, as shown schematically in FIG. 1, unlike carbon black with a conventional porous structure, it has a hollow shape, and the microporous hollow furnace carbon black of the present invention can support various materials and has excellent electrical properties. , can be used as a material in a wide variety of fields.
  • FIG. 1 is a schematic diagram for explaining the structural difference between the porous carbon black before the gas phase oxidation reaction and the microporous hollow carbon black of the present invention subjected to the acid oxidation reaction.
  • FIG. 2 is a schematic diagram of an oxidation chamber used for a gas phase oxidation reaction in the present invention.
  • 3 to 6 are TEM measurement photographs of microporous hollow furnace carbon black prepared by performing gas phase oxidation reaction at 1,000° C. for different reaction times.
  • Step 1 of preparing the furnace carbon black of the present invention and a second step of performing a gas phase oxidation reaction of the furnace carbon black using an oxidizing gas to prepare a microporous hollow carbon black.
  • furnace carbon black in step 1 commercially available furnace carbon black may be used, and preferably at least one selected from the brand name Super-p and the brand name C-NERGY. Furnace carbon black containing may be used.
  • the vapor-phase oxidation reaction of the second step may be performed in the oxidation chamber schematically shown in FIG. 2, and after furnace carbon black is introduced into the oxidation chamber, the vapor-phase oxidation reaction may be performed while supplying an oxidizing gas into the oxidation chamber.
  • the gas phase oxidation reaction may be performed for 30 minutes to 150 minutes under 850° C. to 1200° C. while supplying a chemical gas in the oxidation chamber, preferably for 40 minutes to 120 minutes under 900° C. to 1150° C., more preferably Preferably, it can be carried out for 45 minutes to 110 minutes under 950 ° C. to 1100 ° C. If the gas phase oxidation reaction temperature is less than 850° C. or the gas phase oxidation reaction time is less than 30 minutes, there may be a problem in that the specific surface area, micropore volume, and total pore volume of the furnace carbon black subjected to the gas phase oxidation reaction are low. In addition, when the gas phase oxidation reaction temperature exceeds 1200° C.
  • the physical properties such as specific surface area and micropore volume of carbon black no longer increase, as well as pores (voids) Since there may be problems in that the retaining wall becomes thin and the pore shape is broken, the mechanical strength of carbon black is too low and thus easily brittle, and the manufacturing yield is greatly reduced, so it is preferable to carry out under the above temperature.
  • the oxidizing gas CO 2 is used, preferably 99.000 to 99.999 vol%, preferably 99.500 to 99.999 vol%, more preferably 99.800 to 99.999 vol%, CO 2 is preferably used.
  • the gas phase oxidation reaction may be performed while supplying the oxidizing gas into the oxidation chamber at a flow rate of 50 to 200 mL/min, preferably 80 to 150 mL/min, and more preferably 85 to 120 mL/min.
  • the burn-off yield of the microporous hollow carbon black prepared by the above method may be 25.0% to 65.0%, preferably 30.0 to 63.0%, more preferably 35.0 to 55.0%.
  • microporous hollow carbon black of the present invention prepared by this method has a hollow structure having micropores as schematically shown in FIG. 1 , and may have a micropore volume satisfying Equation 1 below.
  • Equation 1 A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
  • the microporous hollow carbon black of the present invention has a BET specific surface area of 180 to 1,200 m 2 /g, preferably a BET specific surface area of 320 to 1,150 m 2 /g, more preferably 450 to 820 m 2 /g , and more preferably 490 to 750 m 2 /g.
  • microporous hollow carbon black of the present invention may have a total pore volume of 0.190 to 1.200 cm 3 /g, preferably a total pore volume of 0.300 to 0.950 cm 3 /g, more preferably It can satisfy the total pore volume of 0.500 ⁇ 0.800 cm 3 /g.
  • the micropore hollow carbon black of the present invention may have an average particle diameter of the micropores of 4.0 to 8.0 nm, preferably 4.0 to 6.5 nm, more preferably 4.2 to 6.0 nm.
  • the fraction (V micro /V total X 100%) of the micropore volume (V micro ) relative to the total pore volume (V total ) may be 4.0 to 13.6%, preferably For example, it may be 5.0 to 13.6%.
  • Microporous hollow furnace carbon black can support various materials and has excellent electrical properties, so it can be used as a material in a wide variety of fields, for example, an electrocatalyst support for fuel cells, carbon support for secondary batteries, etc. .
  • Example 1 Preparation of microporous hollow furnace carbon black according to reaction time
  • Furnace carbon black (trade name: Super-P, manufacturer: IMERYS) was prepared as a raw material.
  • the basic physical properties of the prepared furnace carbon black are shown in Table 1 below.
  • the raw material is charged into the reaction tube of the oxidation chamber using a quartz boat, and then fixed at 1000° C.
  • a gas phase oxidation reaction was performed.
  • An oxidizing gas containing CO 2 at a concentration of 99.950% by volume as a reactive substance was used, and the flow rate of the oxidizing gas was maintained at 100 ml/min using a ball flow meter.
  • reaction time is shown in Table 2 below, the yield (%), BET specific surface area (m 2 /g), MV (micropore volume, cm 3 /) of the microporous hollow furnace carbon black prepared according to each reaction time g), the total pore volume (Total pore volume cm 3 /g), and the average pore size (nm) are shown in Table 2 below.
  • TEM transmission electron microscope
  • an appropriate gas phase oxidation reaction time is 30 minutes to 150 minutes, preferably 40 minutes to 120 minutes, more preferably 45 minutes to 110 minutes. was able to confirm that
  • Example 3 the furnace carbon black (raw material) was subjected to vapor phase oxidation, but by varying the oxidation treatment temperature as shown in Table 3 below, microporous hollow furnace carbon black was prepared, respectively. Physical properties of the prepared furnace carbon black was measured.
  • Example 3 Preparation of microporous hollow furnace carbon black according to oxidizing gas flow rate
  • Example 2 In the same manner as in Example 1, the furnace carbon black (raw material) was subjected to vapor phase oxidation, but as a reactive gas, CO 2 (concentration of 99.950 vol%), which is an oxidizing gas, was changed as shown in Table 4 below, and microporous hollow furnace carbon black were prepared, respectively, and the physical properties of the prepared furnace carbon black were measured.
  • CO 2 concentration of 99.950 vol%
  • a hollow hollow structure furnace carbon black having micropores having a very high micropore volume, total pore volume and BET specific surface area than the raw material and having micropores in high yield It was confirmed that it could be manufactured.
  • the microporous hollow furnace carbon black of the present invention can support various materials and has excellent electrical properties, so it is expected to be utilized as a material in a wide variety of fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a hollow carbon black having micropores and a manufacturing method therefor, wherein the present invention is utilized as a support inside which a different substance can be packed and is applicable as a material in various fields, such as electrocatalytic supports, carbon supports, anode materials, and cathode materials for secondary batteries or fuel cells.

Description

마이크로 다공극 할로우 카본블랙 및 이의 제조방법Microporous hollow carbon black and manufacturing method thereof
본 발명은 마이크로 다공극을 가지는 할로우 카본블랙(hollow carbon black) 및 이를 제조하는 방법에 관한 것으로서, 내부에 다른 물질을 채워 넣을 수 있는 담지체로서 활용 가능하고, 2차 전지 또는 연료전지용 전기촉매 담지체, 카본 지지체, 음극재, 양극재 등 다양한 분야의 소재로 응용 가능한 발명이다. The present invention relates to a hollow carbon black having microporous pores and a method for manufacturing the same, which can be used as a support that can be filled with other materials therein, and can be used as an electrocatalyst support for a secondary battery or a fuel cell. It is an invention that can be applied to materials in various fields such as members, carbon supports, negative electrode materials, and positive electrode materials.
카본 블랙(carbon black)은 흑색 안료로서, 그리고 강화제 및 충전제 등으로서 널리 사용된다. 카본 블랙은 상이한 방법들에 의해 상이한 성질을 갖는 상태로 제조된다. 가장 흔한 방법은 탄소 함유 카본 블랙 원료의 산화적 열분해에 의한 제조 방법이다. 이 경우에, 카본 블랙 원료를 고온에서 산소의 존재 하에서 불완전하게 연소시킨다. 이러한 부류의 카본 블랙 제조 방법의 예로는, 퍼니스 카본블랙(furnace black) 방법, 가스(gas) 블랙 방법 및 램프(lamp) 블랙 방법을 들 수 있다. 그 밖의 방법의 예로서는, 아세틸렌 방법, 열(thermal) 블랙 방법 및 플라즈마 방법을 들 수 있다.Carbon black is widely used as a black pigment, as a reinforcing agent, as a filler, and the like. Carbon black is produced with different properties by different methods. The most common method is the production method by oxidative pyrolysis of carbon-containing carbon black raw materials. In this case, the carbon black raw material is burned incompletely in the presence of oxygen at a high temperature. Examples of this class of carbon black production method include a furnace black method, a gas black method and a lamp black method. Examples of other methods include an acetylene method, a thermal black method, and a plasma method.
그리고, 카본블랙은 높은 전도성을 가지는 특성상, 망간전지, 리튬전지, 이차전지 등의 도전재로 사용되고 있으며, 카본블랙의 응집체내에 미세공이 많을수록 용량이 크다고 알려져 대형전지를 목표로 한 연구가 수행되고 있고, 연료전지에서는 촉매층의 촉매 담체로 사용되며 값비싼 백금촉매의 첨가량을 줄이고 활성면적을 높이기 위해 카본블랙의 비표면적 제어를 위한 연구가 수행되고 있다. 일례로, 카본블랙의 표면을 화학 활성화 처리를 실시하여 기공을 형성시키거나, 카본블랙간의 혼화된 2차 구조 도입에 의해 도전성을 유지하여 에너지 저장량을 증가시키는 등의 다양한 시도가 있다.In addition, carbon black is used as a conductive material for manganese batteries, lithium batteries, secondary batteries, etc., due to the characteristic of having high conductivity, and it is known that the more micropores there are in the aggregate of carbon black, the greater the capacity is, and research aimed at large batteries is being carried out. In fuel cells, it is used as a catalyst carrier for the catalyst layer, and studies are being conducted to control the specific surface area of carbon black to reduce the amount of expensive platinum catalyst added and increase the active area. For example, various attempts have been made to form pores by chemically activating the surface of carbon black, or to increase energy storage by maintaining conductivity by introducing a mixed secondary structure between carbon blacks.
본 발명자들은 카본블랙의 비표면적 제어를 위한 연구를 거듭 수행한 결과, 카본블랙 중 퍼니스 카본블랙의 마이크로 포어 볼륨을 현저하게 증가시키고 비표면적을 증가시킨 카본블랙을 제조하여 본 발명을 완성하기에 이르렀다. As a result of repeated research for controlling the specific surface area of carbon black, the present inventors have completed the present invention by preparing carbon black with a significantly increased micropore volume and increased specific surface area of furnace carbon black among carbon black. .
이와 같이, 본 발명은 원재료 카본블랙에 비해 현저히 비표면적이 늘어나고 마이크로 포어 볼륨이 증가한 마이크로 다공성 할로우 카본블랙 및 이의 제조방법을 제공하고자 한다. As described above, an object of the present invention is to provide a microporous hollow carbon black having a significantly increased specific surface area and an increased micropore volume compared to the raw material carbon black and a method for manufacturing the same.
상기 과제를 해결하기 위한 본 발명은 마이크로 다공극 할로우 카본블랙에 관한 것으로서, 퍼니스 카본블랙을 산화성 기체를 이용하여 기상 산화 반응을 수행하여 제조한 퍼니스 카본블랙으로서, 속이 빈 구조이고, 마이크로 다공극을 가지는 퍼니스 카본블랙을 포함한다.The present invention for solving the above problems relates to microporous hollow carbon black, which is a furnace carbon black prepared by performing vapor phase oxidation reaction of furnace carbon black using an oxidizing gas, which has a hollow structure and has micropores The eggplant contains furnace carbon black.
본 발명의 바람직한 일실시예로서, 본 발명의 마이크로 다공극 할로우 카본블랙은 하기 방정식 1을 만족하는 마이크로 포어 볼륨을 가질 수 있다.As a preferred embodiment of the present invention, the microporous hollow carbon black of the present invention may have a micropore volume satisfying Equation 1 below.
[방정식 1] [Equation 1]
2.0 ≤ B/A ≤ 7.02.0 ≤ B/A ≤ 7.0
방정식 1에서, A는 기상 산화 반응 수행 전의 퍼니스 카본블랙의 마이크로 포어 볼륨이고, B는 기상 산화 반응을 수행된 퍼니스 카본블랙의 마이크로 포어 볼륨이다.In Equation 1, A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
본 발명의 바람직한 일실시예로서, 본 발명의 마이크로 다공극 할로우 카본블랙은 BET 비표면적이 180 ~ 1,200 m2/g일 수 있다.As a preferred embodiment of the present invention, the microporous hollow carbon black of the present invention may have a BET specific surface area of 180 to 1,200 m 2 /g.
본 발명의 바람직한 일실시예로서, 본 발명의 마이크로 다공극 할로우 카본블랙은 총 포어 볼륨(Total pore volume)이 0.190 ~ 1.200 cm3/g일 수 있다.As a preferred embodiment of the present invention, the microporous hollow carbon black of the present invention may have a total pore volume of 0.190 to 1.200 cm 3 /g.
본 발명의 바람직한 일실시예로서, 본 발명의 마이크로 다공극 할로우 카본블랙은 마이크로 포어(pore)의 평균 입경이 4.0 ~ 8.0 nm일 수 있다.As a preferred embodiment of the present invention, in the microporous hollow carbon black of the present invention, the average particle diameter of the micropores may be 4.0 to 8.0 nm.
본 발명의 다른 목적은 앞서 설명한 마이크로 다공극 할로우 카본블랙을 제조하는 방법에 관한 것으로서, 퍼니스 카본블랙을 준비하는 1단계; 및 상기 퍼니스 카본블랙을 산화성 기체를 이용한 기상 산화 반응을 수행하는 2단계;를 포함하는 공정을 수행한다.Another object of the present invention relates to a method for producing the aforementioned microporous hollow carbon black, comprising: a first step of preparing the furnace carbon black; and a second step of performing a gas phase oxidation reaction of the furnace carbon black using an oxidizing gas.
본 발명의 바람직한 일실시예로서, 2단계의 기상 산화 반응 수행한 퍼니스 카본블랙의 마이크로 포어 볼륨은 하기 방정식을 만족할 수 있다.As a preferred embodiment of the present invention, the micropore volume of the furnace carbon black subjected to the two-step gas phase oxidation reaction may satisfy the following equation.
[방정식 1][Equation 1]
2.0 ≤ B/A ≤ 7.02.0 ≤ B/A ≤ 7.0
방정식 1에서, A는 기상 산화 반응 수행 전의 퍼니스 카본블랙의 마이크로 포어 볼륨이고, B는 기상 산화 반응을 수행된 퍼니스 카본블랙의 마이크로 포어 볼륨이다.In Equation 1, A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
본 발명의 바람직한 일실시예로서, 상기 기상 산화 반응은 기상 산화 반응은 산화챔버 내에서 수행하며, 850℃ ~ 1200℃ 하에서 산화성 기체를 산화챔버 내에서 공급하면서, 30분 ~ 150분 동안 수행할 수 있다.As a preferred embodiment of the present invention, the gas phase oxidation reaction is performed in an oxidation chamber, and while supplying an oxidizing gas in the oxidation chamber under 850° C. to 1200° C., it can be performed for 30 minutes to 150 minutes. have.
본 발명의 바람직한 일실시예로서, 상기 산화성 기체는 99.000 ~ 99.999 부피%의 CO2를 포함할 수 있다.As a preferred embodiment of the present invention, the oxidizing gas may contain 99.000 ~ 99.999% by volume of CO 2 .
본 발명의 바람직한 일실시예로서, 상기 기상 산화 반응은 산화성 기체를 50 ~ 200 mL/분 으로 산화챔버 내로 공급하면서 수행할 수 있다.As a preferred embodiment of the present invention, the gas phase oxidation reaction may be performed while supplying the oxidizing gas into the oxidation chamber at a rate of 50 to 200 mL/min.
또한, 본 발명의 다른 목적은 앞서 설명한 마이크로 다공극 할로우 카본블랙을 이용한 응용품에 관한 것으로서, 상기 마이크로 다공극 할로우 카본블랙을 포함하는 연료 전지용 전기촉매 담지체, 상기 마이크로 다공극 할로우 카본블랙을 포함하는 2차 전지용 카본 지지체 등을 제공하는데 있다.In addition, another object of the present invention relates to an application using the microporous hollow carbon black described above, comprising an electrocatalyst carrier for a fuel cell comprising the microporous hollow carbon black, and the microporous hollow carbon black To provide a carbon support for secondary batteries, etc.
본 발명의 제조방법으로 제조한 카본 블랙은 기상산화처리 전 퍼니스 카본 블랙 보다 적게는 2배, 많게는 6배 정도로 마이크로 포어 볼륨이 증가하며, 이로 인해 높은 비표면적, 높은 총 포어 볼륨을 가지는 마이크로 다공극의 할로우 퍼니스 카본 블랙을 제조할 수 있다. 그리고, 도 1에 개략도로 나타낸 바와 같이, 기존 다공성 구조의 카본블랙과 달리, 속이 빈 형태를 가지며, 이러한 본 발명의 마이크로 다공극 할로우 퍼니스 카본블랙은 다양한 물질을 담지할 수 있으며 전기적 특성도 우수한 바, 매우 다양한 분야의 소재로 활용할 수 있다.The carbon black produced by the production method of the present invention increases the micropore volume by at least 2 times and at most 6 times that of the furnace carbon black before the gas phase oxidation treatment, and as a result, the micropore volume having a high specific surface area and high total pore volume. of hollow furnace carbon black can be produced. And, as shown schematically in FIG. 1, unlike carbon black with a conventional porous structure, it has a hollow shape, and the microporous hollow furnace carbon black of the present invention can support various materials and has excellent electrical properties. , can be used as a material in a wide variety of fields.
도 1은 기상 산화 반응 전 다공성 카본블랙과 기산 산화 반응된 본 발명의 마이크로 다공극 할로우 카본블랙의 구조적 차이를 설명하기 위한 개략도이다.1 is a schematic diagram for explaining the structural difference between the porous carbon black before the gas phase oxidation reaction and the microporous hollow carbon black of the present invention subjected to the acid oxidation reaction.
도 2는 본 발명에서 기상 산화 반응에 사용되는 산화 챔버의 개략도이다.2 is a schematic diagram of an oxidation chamber used for a gas phase oxidation reaction in the present invention.
도 3 내지 도 6은 1,000℃에서 반응시간을 달리하여 기상 산화 반응을 수행하여 제조한 마이크로 다공극 할로우 퍼니스 카본블랙의 TEM 측정 사진이다.3 to 6 are TEM measurement photographs of microporous hollow furnace carbon black prepared by performing gas phase oxidation reaction at 1,000° C. for different reaction times.
이하에서는 본 발명의 마이크로 다공극 할로우 카본블랙을 제조하는 방법을 통해서 본 발명에 대해 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail through a method for producing the microporous hollow carbon black of the present invention.
본 발명의 퍼니스 카본블랙을 준비하는 1단계; 및 상기 퍼니스 카본블랙을 산화성 기체를 이용한 기상 산화 반응을 수행하는 2단계;를 포함하는 공정을 수행하여 마이크로 다공극 할로우 카본블랙을 제조한다.Step 1 of preparing the furnace carbon black of the present invention; and a second step of performing a gas phase oxidation reaction of the furnace carbon black using an oxidizing gas to prepare a microporous hollow carbon black.
1단계의 상기 퍼니스 카본블랙은 상업적으로 판매 및 구입 가능한 퍼니스 카본블랙을 사용할 수 있으며, 바람직하게는 상품명 슈퍼-p(Super-p) 및 상품명 C-너기(C-NERGY) 중에서 선택된 1종 이상을 포함하는 퍼니스 카본블랙을 사용할 수 있다.As the furnace carbon black in step 1, commercially available furnace carbon black may be used, and preferably at least one selected from the brand name Super-p and the brand name C-NERGY. Furnace carbon black containing may be used.
2단계의 상기 기상 산화 반응은 도 2에 개략도로 나타낸 산화 챔버에서 수행할 수 있으며, 산화 챔버에 퍼니스 카본블랙을 투입한 후, 산화성 기체를 산화 챔버 내에 공급하면서 기상 산화 반응을 수행할 수 있다.The vapor-phase oxidation reaction of the second step may be performed in the oxidation chamber schematically shown in FIG. 2, and after furnace carbon black is introduced into the oxidation chamber, the vapor-phase oxidation reaction may be performed while supplying an oxidizing gas into the oxidation chamber.
상기 기상 산화 반응은 화성 기체를 산화챔버 내에서 공급하면서, 850℃ ~ 1200℃ 하에서 30분 ~ 150분 동안 수행할 수 있으며, 바람직하게는 900℃ ~ 1150℃ 하에서 40분 ~ 120분 동안, 더욱 바람직하게는 950℃ ~ 1100℃ 하에서 45분 ~ 110분 동안 수행할 수 있다. 기상 산화 반응 온도가 850℃ 미만이거나, 기상 산화 반응 시간이 30분 미만이면, 기상 산화 반응시킨 퍼니스 카본블랙의 비표면적, 마이크로 포어 볼륨 및 총 포어 볼륨이 낮은 문제가 있을 수 있다. 그리고, 기상 산화 반응 온도가 1200℃를 초과하거나, 기상 산화 반응 시간이 150분을 초과하면, 카본블랙의 비표면적, 마이크로 포어 볼륨 등의 물성이 더 이상 증가하지 않을 뿐만 아니라, 기공(공극)을 유지하는 벽이 얇아져서 기공 형태가 무너지고, 카본블랙의 기계적 강도가 너무 낮아져서 쉽게 부서지며, 제조 수율이 크게 낮아지는 문제가 있을 수 있으므로, 상기 온도 하에서 수행하는 것이 좋다.The gas phase oxidation reaction may be performed for 30 minutes to 150 minutes under 850° C. to 1200° C. while supplying a chemical gas in the oxidation chamber, preferably for 40 minutes to 120 minutes under 900° C. to 1150° C., more preferably Preferably, it can be carried out for 45 minutes to 110 minutes under 950 ° C. to 1100 ° C. If the gas phase oxidation reaction temperature is less than 850° C. or the gas phase oxidation reaction time is less than 30 minutes, there may be a problem in that the specific surface area, micropore volume, and total pore volume of the furnace carbon black subjected to the gas phase oxidation reaction are low. In addition, when the gas phase oxidation reaction temperature exceeds 1200° C. or the gas phase oxidation reaction time exceeds 150 minutes, the physical properties such as specific surface area and micropore volume of carbon black no longer increase, as well as pores (voids) Since there may be problems in that the retaining wall becomes thin and the pore shape is broken, the mechanical strength of carbon black is too low and thus easily brittle, and the manufacturing yield is greatly reduced, so it is preferable to carry out under the above temperature.
상기 산화성 기체로는 CO2를 사용하며, 바람직하게는 99.000 ~ 99.999 부피%, 바람직하게는 99.500 ~ 99.999 부피%, 더욱 바람직하게는 99.800 ~ 99.999 부피%의 CO2를 사용하는 것이 좋다. 그리고, 산화성 기체를 50 ~ 200 mL/분, 바람직하게는 80 ~ 150 mL/분, 더욱 바람직하게는 85 ~ 120 mL/분 의 유속으로 산화챔버 내로 공급하면서 기상 산화 반응을 수행할 수 있다.As the oxidizing gas, CO 2 is used, preferably 99.000 to 99.999 vol%, preferably 99.500 to 99.999 vol%, more preferably 99.800 to 99.999 vol%, CO 2 is preferably used. Then, the gas phase oxidation reaction may be performed while supplying the oxidizing gas into the oxidation chamber at a flow rate of 50 to 200 mL/min, preferably 80 to 150 mL/min, and more preferably 85 to 120 mL/min.
그리고, 상기 방법으로 제조한 마이크로 다공극 할로우 카본블랙의 burn-off 수율은 25.0% ~ 65.0%, 바람직하게는 30.0 ~ 63.0%, 더욱 바람직하게는 35.0 ~ 55.0%일 수 있다.And, the burn-off yield of the microporous hollow carbon black prepared by the above method may be 25.0% to 65.0%, preferably 30.0 to 63.0%, more preferably 35.0 to 55.0%.
이러한 방법으로 제조한 본 발명의 마이크로 다공극 할로우 카본블랙은 도 1에 개략도로 나타낸 바와 같이 마이크로 다공극을 가지는 속이 빈 구조를 형성하고 있으며, 하기 방정식 1을 만족하는 마이크로 포어 볼륨을 가질 수 있다.The microporous hollow carbon black of the present invention prepared by this method has a hollow structure having micropores as schematically shown in FIG. 1 , and may have a micropore volume satisfying Equation 1 below.
[방정식 1][Equation 1]
2.0 ≤ B/A ≤ 7.0, 바람직하게는 2.5 ≤ B/A ≤ 6.8, 더욱 바람직하게는 3.0 ≤ B/A ≤ 6.52.0 ≤ B/A ≤ 7.0, preferably 2.5 ≤ B/A ≤ 6.8, more preferably 3.0 ≤ B/A ≤ 6.5
방정식 1에서, A는 기상 산화 반응 수행 전의 퍼니스 카본블랙의 마이크로 포어 볼륨이고, B는 기상 산화 반응을 수행된 퍼니스 카본블랙의 마이크로 포어 볼륨이다.In Equation 1, A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
또한, 본 발명의 마이크로 다공극 할로우 카본블랙은 BET 비표면적이 180 ~ 1,200 m2/g, 바람직하게는 BET 비표면적 320 ~ 1,150 m2/g, 더욱 바람직하게는 450 ~ 820 m2/g을, 더 더욱 바람직하게는 490 ~ 750 m2/g을 가질 수 있다.In addition, the microporous hollow carbon black of the present invention has a BET specific surface area of 180 to 1,200 m 2 /g, preferably a BET specific surface area of 320 to 1,150 m 2 /g, more preferably 450 to 820 m 2 /g , and more preferably 490 to 750 m 2 /g.
또한, 본 발명의 마이크로 다공극 할로우 카본블랙은 총 포어 볼륨(Total pore volume)이 0.190 ~ 1.200 cm3/g일 수 있으며, 바람직하게는 총 포어 볼륨 0.300 ~ 0.950 cm3/g, 더욱 바람직하게는 총 포어 볼륨 0.500 ~ 0.800 cm3/g을 만족할 수 있다.In addition, the microporous hollow carbon black of the present invention may have a total pore volume of 0.190 to 1.200 cm 3 /g, preferably a total pore volume of 0.300 to 0.950 cm 3 /g, more preferably It can satisfy the total pore volume of 0.500 ~ 0.800 cm 3 /g.
그리고, 본 발명의 마이크로 다공극 할로우 카본블랙은 마이크로 포어(pore)의 평균 입경이 4.0 ~ 8.0 nm일 수 있으며, 바람직하게는 4.0 ~ 6.5 nm, 더욱 바람직하게는 4.2 ~ 6.0 nm일 수 있다.And, the micropore hollow carbon black of the present invention may have an average particle diameter of the micropores of 4.0 to 8.0 nm, preferably 4.0 to 6.5 nm, more preferably 4.2 to 6.0 nm.
그리고, 본 발명의 마이크로 다공극 할로우 카본블랙은 전체 기공 부피(Vtotal)에 대한 마이크로 포어 부피(Vmicro)의 분율(Vmicro/Vtotal X 100%)이 4.0 ~ 13.6%일 수 있고, 바람직하게는 5.0 ~ 13.6%일 수 있다.In addition, in the microporous hollow carbon black of the present invention, the fraction (V micro /V total X 100%) of the micropore volume (V micro ) relative to the total pore volume (V total ) may be 4.0 to 13.6%, preferably For example, it may be 5.0 to 13.6%.
이러한, 본 발명의 마이크로 다공극 할로우 퍼니스 카본블랙은 다양한 물질을 담지할 수 있으며 전기적 특성도 우수한 바, 매우 다양한 분야의 소재, 예를 들면, 연료 전지용 전기촉매 담지체, 2차 전지용 카본 지지체 등의 소재로 활용할 수 있다.These, of the present invention Microporous hollow furnace carbon black can support various materials and has excellent electrical properties, so it can be used as a material in a wide variety of fields, for example, an electrocatalyst support for fuel cells, carbon support for secondary batteries, etc. .
이하 본 발명을 실시예에 의거하여 더욱 자세하게 설명을 한다. 그러나, 하기 실시예에 의해서 본 발명의 권리범위가 한정하여 해석해서는 안 된다.Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention should not be construed as being limited by the following examples.
[실시예][Example]
실시예 1 : 반응시간에 따른 마이크로 다공극 할로우 퍼니스 카본블랙의 제조Example 1: Preparation of microporous hollow furnace carbon black according to reaction time
퍼니스 카본블랙(상품명 : Super-P, 제조사 : IMERYS)를 원료로 준비하였다. 준비한 퍼니스 카본블랙의 기본 물성은 하기 표 1과 같다.Furnace carbon black (trade name: Super-P, manufacturer: IMERYS) was prepared as a raw material. The basic physical properties of the prepared furnace carbon black are shown in Table 1 below.
BET
비표먼적 (m2/g)
BET
non-representative (m 2 /g)
마이크로
포어 볼륨 (cm3/g)
Micro
Pore volume (cm 3 /g)
총 포어 볼륨
(cm3/g)
total pore volume
(cm 3 /g)
평균 기공 크기average pore size
61.461.4 0.010.01 0.1650.165 10.8 nm10.8 nm
다음으로, 도 2에 도시한 수평식 관상로(산화 챔버)를 1000℃로 예열한 후, 석영 보우트(boat)를 이용하여 상기 원료를 산화 챔버의 반응관에 장입한 후, 1000℃로 고정하여 기상 산화 반응을 수행하였다. 반응기체인 99.950 부피% 농도의 CO2를 포함하는 산화성 기체를 사용하였고, 산화성 기체의 유속은 볼(ball) 유량계를 이용하여 100 ml/분으로 유지하였다. 그리고, 반응시간은 하기 표 2에 나타내었으며, 각 반응시간에 따라 제조한 마이크로 다공극 할로우 퍼니스 카본블랙의 수율(%), BET 비표면적(m2/g), MV(micropore volume, cm3/g), 총 포어 볼륨(Total pore volume cm3/g) 및 평균 포어 크기(nm)를 하기 표 2에 나타내었다. 또한, 이들 각각에 대한 투과전자현미경(TEM) 측정 사진을 도 3 내지 도 6에 나타내었다.Next, after preheating the horizontal tubular furnace (oxidation chamber) shown in FIG. 2 to 1000° C., the raw material is charged into the reaction tube of the oxidation chamber using a quartz boat, and then fixed at 1000° C. A gas phase oxidation reaction was performed. An oxidizing gas containing CO 2 at a concentration of 99.950% by volume as a reactive substance was used, and the flow rate of the oxidizing gas was maintained at 100 ml/min using a ball flow meter. And, the reaction time is shown in Table 2 below, the yield (%), BET specific surface area (m 2 /g), MV (micropore volume, cm 3 /) of the microporous hollow furnace carbon black prepared according to each reaction time g), the total pore volume (Total pore volume cm 3 /g), and the average pore size (nm) are shown in Table 2 below. In addition, a transmission electron microscope (TEM) measurement photograph for each of them is shown in FIGS. 3 to 6 .
온도
(℃)
Temperature
(℃)
반응
시간
(분)
reaction
time
(minute)
Burn-off
수율
(%)
burn-off
yield
(%)
BET
비표먼적
(m2/g)
BET
non-representative
(m 2 /g)
마이크로
포어 볼륨
(cm3/g)
Micro
pore volume
(cm 3 /g)
총 포어
볼륨
(cm3/g)
gun pore
volume
(cm 3 /g)
평균 포어
크기
(nm)
average pore
size
(nm)
1,0001,000 00 00 61.461.4 0.0100.010 0.1650.165 10.810.8
1010 7.27.2 102.3102.3 0.0240.024 0.1760.176 9.59.5
3030 15.415.4 184.2184.2 0.0210.021 0.2070.207 7.87.8
5555 30.430.4 334.6334.6 0.0370.037 0.2730.273 5.55.5
9898 48.248.2 590.5590.5 0.0440.044 0.6330.633 4.34.3
115115 59.959.9 788.1788.1 0.0600.060 0.7660.766 5.95.9
148148 83.283.2 1,107.61,107.6 0.0550.055 1.3281.328 4.84.8
도 3을 살펴보면, 기상 산화 처리를 수행하지 않은 퍼니스 카본블랙의 경우, 내부에 기공이 관찰되지 않으며, 내부에 기공이 발달되지 않아서, BET 비표면적이 61.4 m2/g로 매우 적은 것을 확인할 수 있다.Referring to FIG. 3 , in the case of furnace carbon black that is not subjected to vapor phase oxidation treatment, no pores are observed inside and no pores are developed inside, so it can be seen that the BET specific surface area is very small as 61.4 m 2 /g. .
도 3을 살펴보면, 기상산화처리를 10분간 수행한 퍼니스 카본블랙의 경우, 내부의 결정자가 흐려지는 것이 관찰되었는데, 원료인 퍼니스 카본블랙에 비하여 마이크로 포어 볼륨이 2.4배 정도 증가함을 확인할 수 있었다.Referring to FIG. 3 , in the case of furnace carbon black subjected to vapor phase oxidation treatment for 10 minutes, it was observed that the crystallites inside were clouded, and it was confirmed that the micropore volume increased by about 2.4 times compared to the raw material furnace carbon black.
또한, 도 4와 도 5를 살펴보면, 기상산화처리를 30분간, 55분간 및 98분간 수행한 퍼니스 카본블랙의 경우, 내부 기공이 발달되고, 기공을 감싸는 벽의 결정성이 증가함을 확인할 수 있다.In addition, referring to FIGS. 4 and 5, in the case of furnace carbon black subjected to vapor phase oxidation treatment for 30 minutes, 55 minutes, and 98 minutes, it can be confirmed that internal pores are developed and the crystallinity of the wall surrounding the pores is increased. .
그리고, 도 5를 살펴보면, 기상 산화 처리를 115분간 수행한 퍼니스 카본블랙의 경우, 내부 기공을 감싸는 벽이 다소 얇아지고 약간의 지끄러짐이 발생하였다. 또한, 도 6을 살펴보면, 기상 산화 처리를 148분간 수행한 퍼니스 카본블랙의 경우, BET 비표면적이 원료에 비해 약 18배 정도 증가하고, 기공이 발달하면서 성장(합체)되어 카본 블랙의 1차 입자가 무너지는 현상이 관찰되었다. 또한, 기상 산화 처리를 148분간 수행한 퍼니스 카본블랙은 burn-off 수율이 83.2%로 너무 높아서 생성물에 대한 수율이 너무 낮은 문제가 있었다.And, referring to FIG. 5 , in the case of furnace carbon black subjected to vapor phase oxidation treatment for 115 minutes, the wall surrounding the internal pores became rather thin and some slippage occurred. In addition, referring to FIG. 6 , in the case of furnace carbon black subjected to vapor phase oxidation treatment for 148 minutes, the BET specific surface area is increased by about 18 times compared to the raw material, and the pores are developed and grown (merged) to form primary particles of carbon black. collapse was observed. In addition, the furnace carbon black subjected to the gas phase oxidation treatment for 148 minutes had a problem that the burn-off yield was too high as 83.2%, so that the yield for the product was too low.
또한, 상기 표 2 및 도 3을 살펴보면, 기상 산화 반응 시간이 증가할수록 BET 비표면적, 마이크로 포어 볼륨, 총 포어 볼륨이 증가하는 경향을 보였으나, 너무 오랜 시간 기상 산화 반응을 수행하면 기공이 찌그러지고, 퍼니스 블랙 간에 합체되는 현상이 있었으며, 적정 물성 및 수율을 확보하기 위한, 적정 기상 산화 반응 시간이 30분 ~ 150분, 바람직하게는 40분 ~ 120분, 더욱 바람직하게는 45분 ~ 110분 정도임을 확인할 수 있었다.In addition, looking at Tables 2 and 3, as the gas phase oxidation reaction time increased, the BET specific surface area, micropore volume, and total pore volume tended to increase, but if the gas phase oxidation reaction was performed for too long, the pores were crushed and , there was a phenomenon of coalescence between the furnace blacks, and in order to secure appropriate physical properties and yield, an appropriate gas phase oxidation reaction time is 30 minutes to 150 minutes, preferably 40 minutes to 120 minutes, more preferably 45 minutes to 110 minutes. was able to confirm that
실시예 2 : 반응온도에 따른 마이크로 다공극 할로우 퍼니스 카본블랙의 제조Example 2: Preparation of microporous hollow furnace carbon black according to reaction temperature
상기 실시예 1과 동일한 방법으로 퍼니스 카본블랙(원재료)를 기상 산화 처리하되, 산화처리 온도를 하기 표 3과 같이 달리하여 마이크로 다공극 할로우 퍼니스 카본블랙을 각각 제조하였으며, 제조한 퍼니스 카본블랙의 물성을 측정하였다.In the same manner as in Example 1, the furnace carbon black (raw material) was subjected to vapor phase oxidation, but by varying the oxidation treatment temperature as shown in Table 3 below, microporous hollow furnace carbon black was prepared, respectively. Physical properties of the prepared furnace carbon black was measured.
온도
(℃)
Temperature
(℃)
반응
시간
(분)
reaction
time
(minute)
Burn-off
수율
(%)
burn-off
yield
(%)
BET
비표먼적
(m2/g)
BET
non-representative
(m 2 /g)
마이크로
포어 볼륨
(cm3/g)
Micro
pore volume
(cm 3 /g)
총 포어
볼륨
(cm3/g)
gun pore
volume
(cm 3 /g)
평균 포어
크기
(nm)
average pore
size
(nm)
800800 9898 23.823.8 217.2217.2 0.0270.027 0.2490.249 6.96.9
880880 32.332.3 360.6360.6 0.0390.039 0.2980.298 5.15.1
950950 43.343.3 500.1500.1 0.0410.041 0.5910.591 4.84.8
10001000 48.248.2 590.5590.5 0.0440.044 0.6330.633 4.34.3
11501150 61.861.8 790.8790.8 0.0630.063 0.7980.798 5.75.7
12501250 75.075.0 907.6907.6 0.0570.057 1.2461.246 6.26.2
상기 표 3를 살펴보면, 반응 온도가 증가할수록 burn-off 수율이 증가하고, BET 비표면적, 마이크로 포어 볼륨, 총 포어 볼륨이 증가하고, 평균 포어 크기는 감소하는 경향이 있음을 확인할 수 있는데, 반응 온도가 1200℃를 초과한 1250℃의 경우, 1150℃와 비교할 때, Burn-off 수율이 급격하게 증가하고, 오히려 평균 포어 크기가 증가한 결과를 보였는데, 이는 마이크로 포어가 감소하고, 매크로 포어가 증가하였기 때문이며, 이에 따라 총 포어 볼륨을 크게 증가한 결과를 보였다.Looking at Table 3, it can be seen that as the reaction temperature increases, the burn-off yield increases, the BET specific surface area, micropore volume, and total pore volume increase, and the average pore size tends to decrease. In the case of 1250 ℃ exceeding 1200 ℃, compared with 1150 ℃, the burn-off yield increased sharply, but rather the average pore size increased, which resulted in a decrease in micro-pores and an increase in macro-pores. This is because, as a result, the total pore volume was significantly increased.
그리고, 반응 온도가 850℃ 미만인 800℃의 경우, 비표면적 및 마이크로 포어 볼륨 측면에서 너무 낮은 물성을 가지는 문제가 있었다.And, in the case of 800°C, where the reaction temperature is less than 850°C, there was a problem of having too low physical properties in terms of specific surface area and micropore volume.
실시예 3 : 산화성 기체 유량에 따른 마이크로 다공극 할로우 퍼니스 카본블랙의 제조Example 3: Preparation of microporous hollow furnace carbon black according to oxidizing gas flow rate
상기 실시예 1과 동일한 방법으로 퍼니스 카본블랙(원재료)를 기상 산화 처리하되, 반응기체로서, 산화성 기체인 CO2(농도 99.950 부피%)를 하기 표 4와 같이 달리하여 마이크로 다공극 할로우 퍼니스 카본블랙을 각각 제조하였으며, 제조한 퍼니스 카본블랙의 물성을 측정하였다.In the same manner as in Example 1, the furnace carbon black (raw material) was subjected to vapor phase oxidation, but as a reactive gas, CO 2 (concentration of 99.950 vol%), which is an oxidizing gas, was changed as shown in Table 4 below, and microporous hollow furnace carbon black were prepared, respectively, and the physical properties of the prepared furnace carbon black were measured.
CO2 유량
(ml/분)
CO 2 flow
(ml/min)
반응
시간/
반응
온도
reaction
time/
reaction
Temperature
Burn-off
수율
(%)
burn-off
yield
(%)
BET
비표먼적
(m2/g)
BET
non-representative
(m 2 /g)
마이크로
포어 볼륨
(cm3/g)
Micro
pore volume
(cm 3 /g)
총 포어
볼륨
(cm3/g)
gun pore
volume
(cm 3 /g)
평균 포어
크기
(nm)
average pore
size
(nm)
4545 98분 /
1000℃
98 minutes /
1000℃
32.332.3 307.5307.5 0.0310.031 0.4570.457 5.35.3
8080 46.546.5 580.1580.1 0.0420.042 0.6210.621 4.54.5
100100 48.248.2 590.5590.5 0.0440.044 0.6330.633 4.34.3
120120 48.948.9 598.1598.1 0.0470.047 0.6650.665 4.14.1
180180 55.155.1 620.9620.9 0.0590.059 0.9520.952 5.35.3
210210 63.863.8 841.7841.7 0.0650.065 1.1181.118 5.95.9
상기 표 3을 보면, CO2 유량이 증가할수록 번-오프 수율이 증가하고, BET 비표면적, 마이크로 포어 볼륨 및 총 포어 볼륨이 증가하는 경향을 보였다. 다만, CO2 유량 45 ml/분인 경우, 수율이 너무 낮은 문제가 있었고, CO2 유량 210 ml/분인 경우, 수율, 비표면적, 마이크로 포어 볼륨, 총 포어 볼륨 등의 물성은 우수하나, 기공이 너무 크고, 많이 형성되어 있어서, 강도가 너무 약해서 쉽게 부서지는 문제가 있었다.Referring to Table 3, as the CO 2 flow rate increased, the burn-off yield increased, and the BET specific surface area, micropore volume, and total pore volume tended to increase. However, when the CO 2 flow rate was 45 ml/min, there was a problem that the yield was too low, and when the CO 2 flow rate was 210 ml/min, the physical properties such as yield, specific surface area, micropore volume, and total pore volume were excellent, but the pores were too small It was large and formed a lot, so the strength was too weak and there was a problem that it was easily broken.
상기 실시예 및 실험예를 통하여, 본 발명의 제조방법으로 통해 원재료 보다 매우 높은 마이크로 포어 볼륨, 총 포어 볼륨 및 BET 비표면적을 가지면서 마이크로 다공극을 가지는 속인 빈 구조의 퍼니스 카본블랙을 높은 수율로 제조할 수 있음을 확인할 수 있었다. 이러한, 본 발명의 마이크로 다공극 할로우 퍼니스 카본블랙은 다양한 물질을 담지할 수 있으며, 전기적 특성도 우수한 바, 매우 다양한 분야의 소재로 활용할 수 있을 것으로 기대된다.Through the above Examples and Experimental Examples, through the manufacturing method of the present invention, a hollow hollow structure furnace carbon black having micropores having a very high micropore volume, total pore volume and BET specific surface area than the raw material and having micropores in high yield. It was confirmed that it could be manufactured. As such, the microporous hollow furnace carbon black of the present invention can support various materials and has excellent electrical properties, so it is expected to be utilized as a material in a wide variety of fields.

Claims (10)

  1. 퍼니스 카본블랙을 준비하는 1단계; 및Step 1 of preparing furnace carbon black; and
    상기 퍼니스 카본블랙을 산화성 기체를 이용한 기상 산화 반응을 수행하는 2단계;a second step of performing a gas phase oxidation reaction of the furnace carbon black using an oxidizing gas;
    를 포함하는 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙의 제조방법.A method for producing a microporous hollow carbon black comprising a.
  2. 제1항에 있어서, 2단계의 기상 산화 반응 수행한 퍼니스 카본블랙의 마이크로 포어 볼륨은 하기 방정식을 만족하는 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙의 제조방법;The method according to claim 1, wherein the micropore volume of the furnace carbon black subjected to the two-step gas phase oxidation reaction satisfies the following equation;
    [방정식 1][Equation 1]
    2.0 ≤ B/A ≤ 7.02.0 ≤ B/A ≤ 7.0
    방정식 1에서, A는 기상 산화 반응 수행 전의 퍼니스 카본블랙의 마이크로 포어 볼륨이고, B는 기상 산화 반응을 수행된 퍼니스 카본블랙의 마이크로 포어 볼륨이다.In Equation 1, A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
  3. 제1항에 있어서, 상기 기상 산화 반응은 산화챔버 내에서 수행하며, According to claim 1, wherein the gas phase oxidation reaction is carried out in an oxidation chamber,
    850 ~ 1200℃ 하에서, 산화성 기체를 공급하면서 30분 ~ 150분 동안 수행하는 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙의 제조방법.A method for producing microporous hollow carbon black, characterized in that it is carried out for 30 minutes to 150 minutes while supplying an oxidizing gas under 850 to 1200° C.
  4. 제1항에 있어서, 상기 산화성 기체는 99.000 ~ 99.999 부피%의 CO2를 포함하며, According to claim 1, wherein the oxidizing gas comprises 99.000 ~ 99.999% by volume of CO 2 ,
    상기 기상 산화 반응은 산화성 기체를 50 ~ 200 mL/분으로 공급하면서 수행하는 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙의 제조방법.The gas phase oxidation reaction is a method for producing microporous hollow carbon black, characterized in that it is performed while supplying an oxidizing gas at a rate of 50 to 200 mL/min.
  5. 퍼니스 카본블랙을 산화성 기체를 이용하여 기상 산화 반응시켜 제조한 퍼니스 카본블랙으로서, 속이 빈 구조이고, 다수의 마이크로 크기의 공극을 가지며,A furnace carbon black prepared by gas phase oxidation reaction of furnace carbon black using an oxidizing gas, it has a hollow structure and has a number of micro-sized pores,
    하기 방정식 1을 만족하는 마이크로 포어 볼륨을 갖는 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙;Microporous hollow carbon black, characterized in that it has a micropore volume satisfying Equation 1 below;
    [방정식 1][Equation 1]
    2.0 ≤ B/A ≤ 7.02.0 ≤ B/A ≤ 7.0
    방정식 1에서, A는 기상 산화 반응 수행 전의 퍼니스 카본블랙의 마이크로 포어 볼륨이고, B는 기상 산화 반응을 수행된 퍼니스 카본블랙의 마이크로 포어 볼륨이다.In Equation 1, A is the micropore volume of the furnace carbon black before the gas phase oxidation reaction is performed, and B is the micropore volume of the furnace carbon black subjected to the gas phase oxidation reaction.
  6. 제5항에 있어서, BET 비표면적이 180 ~ 1,200 m2/g인 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙.The microporous hollow carbon black according to claim 5, wherein the BET specific surface area is 180 to 1,200 m 2 /g.
  7. 제5항에 있어서, 총 포어 볼륨(Total pore volume)이 0.190 ~ 1.200 cm3/g인 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙.[Claim 6] The microporous hollow carbon black according to claim 5, wherein the total pore volume is 0.190 to 1.200 cm 3 /g.
  8. 제5항 내지 제7항 중에서 선택된 어느 한 항에 있어서, 마이크로 포어(pore)의 평균 입경이 4.0 ~ 8.0 nm인 것을 특징으로 하는 마이크로 다공극 할로우 카본블랙.[8] The microporous hollow carbon black according to any one of claims 5 to 7, wherein the average particle diameter of the micropores is 4.0 to 8.0 nm.
  9. 제5항 내지 제7항 중에서 선택된 어느 한 항의 마이크로 다공극 할로우 카본블랙을 포함하는 연료 전지용 전기촉매 담지체.An electrocatalyst carrier for a fuel cell comprising the microporous hollow carbon black of any one of claims 5 to 7.
  10. 제5항 내지 제7항 중에서 선택된 어느 한 항의 마이크로 다공극 할로우 카본블랙을 포함하는 2차 전지용 카본 지지체.A carbon support for a secondary battery comprising the microporous hollow carbon black of any one of claims 5 to 7.
PCT/KR2020/018437 2019-12-19 2020-12-16 Microporous hollow carbon black and manufacturing method therefor WO2021125782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190170878A KR102153241B1 (en) 2019-12-19 2019-12-19 Hollow carbon black having micro-porosity and manufacturing method thereof
KR10-2019-0170878 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021125782A1 true WO2021125782A1 (en) 2021-06-24

Family

ID=72472089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018437 WO2021125782A1 (en) 2019-12-19 2020-12-16 Microporous hollow carbon black and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102153241B1 (en)
WO (1) WO2021125782A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102153241B1 (en) * 2019-12-19 2020-09-07 금오공과대학교 산학협력단 Hollow carbon black having micro-porosity and manufacturing method thereof
KR102372490B1 (en) * 2020-01-21 2022-03-10 금오공과대학교 산학협력단 Hollow carbon black assembly having micro-porosity and manufacturing method thereof
KR102419743B1 (en) * 2020-05-19 2022-07-12 금오공과대학교 산학협력단 Hollow carbon black assembly having micro-porosity and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007937A (en) * 1998-06-23 2000-01-11 Mitsubishi Chemicals Corp Oxidizing treatment of carbon black
KR20140052231A (en) * 2012-10-23 2014-05-07 금오공과대학교 산학협력단 Hollow carbon black and preparation method thereof
KR20140087393A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 Method for manufacturing a porous carbon black and its applications
KR20170048344A (en) * 2014-08-29 2017-05-08 오리온 엔지니어드 카본스 게엠베하 Process for controlling the porosity of carbon blacks
KR20180104472A (en) * 2017-03-13 2018-09-21 한국과학기술원 Hierarchically Microporous and Mesoporous Carbon Spheres and Method of Preparing the Same
KR102153241B1 (en) * 2019-12-19 2020-09-07 금오공과대학교 산학협력단 Hollow carbon black having micro-porosity and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007937A (en) * 1998-06-23 2000-01-11 Mitsubishi Chemicals Corp Oxidizing treatment of carbon black
KR20140052231A (en) * 2012-10-23 2014-05-07 금오공과대학교 산학협력단 Hollow carbon black and preparation method thereof
KR20140087393A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 Method for manufacturing a porous carbon black and its applications
KR20170048344A (en) * 2014-08-29 2017-05-08 오리온 엔지니어드 카본스 게엠베하 Process for controlling the porosity of carbon blacks
KR20180104472A (en) * 2017-03-13 2018-09-21 한국과학기술원 Hierarchically Microporous and Mesoporous Carbon Spheres and Method of Preparing the Same
KR102153241B1 (en) * 2019-12-19 2020-09-07 금오공과대학교 산학협력단 Hollow carbon black having micro-porosity and manufacturing method thereof

Also Published As

Publication number Publication date
KR102153241B1 (en) 2020-09-07

Similar Documents

Publication Publication Date Title
WO2021125782A1 (en) Microporous hollow carbon black and manufacturing method therefor
WO2016153322A1 (en) Silicon-based anode active material and preparation method therefor
WO2016108645A1 (en) Silicon-based anode active material and method for manufacturing same
EP2754639B1 (en) Porous silica-carbon composite body and method for producing same
Li et al. Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy
WO2015043359A1 (en) Lithium ion battery anode composite material and preparing method thereof
WO2016161920A1 (en) Composite separator and preparation method therefor, and lithium-ion battery
WO2016117873A1 (en) Lithium-air battery
WO2012165884A2 (en) Method for manufacturing a carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery including same
CN107221660B (en) Flexible lithium-sulfur battery positive electrode material
WO2014030853A1 (en) Method for preparing silicon oxide/carbon composite for anode active material of lithium secondary battery
WO2019182356A1 (en) High strength graphene composite fiber and method for manufacturing same
CN110890550B (en) Air electrode and preparation method and application thereof
KR20160085998A (en) Method for synthesis of Silicon/Carbon/CNT as the lithium secondary battery anode material
WO2020032684A1 (en) Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
WO2014061974A1 (en) Silicon oxide-carbon composite and method for preparing same
CN112382759B (en) Preparation method of nitrogen-doped porous carbon-coated silicon composite nanofiber
WO2022030716A1 (en) Method for preparing porous carbon electrode material comprising hydrophilic mesopores from polymer precursor, and electrode for supercapacitor
CN116826060A (en) Composite sodium supplementing material, preparation method, positive pole piece, sodium battery and electric equipment
WO2016108387A1 (en) Olivine type positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
CN110592807B (en) Thin film material for inhibiting growth of lithium dendrite and preparation method thereof
CN111378203A (en) Preparation and application of rigid-flexible parallel solid electrolyte membrane
KR102419743B1 (en) Hollow carbon black assembly having micro-porosity and manufacturing method thereof
CN115832264A (en) Phosphorus-carbon composite negative electrode material, preparation method thereof, negative electrode and sodium ion battery
WO2021182926A1 (en) Negative active material, manufacturing method thereof, and lithium secondary battery having negative active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901561

Country of ref document: EP

Kind code of ref document: A1