WO2021125644A1 - 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법 - Google Patents

소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법 Download PDF

Info

Publication number
WO2021125644A1
WO2021125644A1 PCT/KR2020/017650 KR2020017650W WO2021125644A1 WO 2021125644 A1 WO2021125644 A1 WO 2021125644A1 KR 2020017650 W KR2020017650 W KR 2020017650W WO 2021125644 A1 WO2021125644 A1 WO 2021125644A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
cold
less
aging resistance
Prior art date
Application number
PCT/KR2020/017650
Other languages
English (en)
French (fr)
Inventor
이제웅
최용훈
하유미
한성호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2022536684A priority Critical patent/JP2023507724A/ja
Priority to US17/787,020 priority patent/US20230024446A1/en
Priority to CN202080088901.4A priority patent/CN114829664B/zh
Priority to EP20903585.6A priority patent/EP4079915A4/en
Publication of WO2021125644A1 publication Critical patent/WO2021125644A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet having properties particularly suitable as a material for exterior panels of automobiles due to excellent bake hardenability and room temperature aging resistance, and a method for manufacturing the same.
  • Bake hardening phenomenon refers to a phenomenon in which the activated carbon and nitrogen are fixed to dislocations formed during processing of the steel sheet during painting and baking, thereby increasing the yield strength of the steel sheet.
  • a steel sheet with excellent bake hardenability is easy to form before painting and baking, and since the final product has the property of improving dent resistance, it is evaluated as an ideal material for exterior panels of automobiles.
  • the material for the exterior panel of an automobile secures an appropriate level or more of bake hardenability and at the same time has an aging resistance of an appropriate level or more.
  • Patent Document 1 proposes a technique for improving bake hardenability by adding Sn, but does not provide a fundamental solution to the problem of deterioration of aging resistance due to increase in bake hardenability.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 1994-306531 (published on January 1, 1994)
  • a cold-rolled steel sheet and a plated steel sheet excellent in bake hardenability and room temperature aging resistance and a manufacturing method thereof.
  • the cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance according to an aspect of the present invention, in wt%, C: 0.002 to 0.015%, Mn: 1.5 to 3.0%, P: 0.03% or less, S: 0.01% or less, N : 0.01% or less, sol.Al: 0.02 ⁇ 0.06%, Cr: 1.2% or less (excluding 0%), the remainder Fe and unavoidable impurities, and the microstructure includes the matrix structure ferrite and the remainder hard structure,
  • the hard tissue occupancy ratio (V) of the triple point of the grain boundary defined by Relational Expression 1 may be 70% or more.
  • V(%) ⁇ Vtp / (Vgb + Vtp) ⁇ ⁇ 100
  • Vgb denotes the number of hard tissues observed at the ferrite grain boundary in the observation region
  • Vtp denotes the number of hard tissues observed at the ferrite grain boundary triple point in the observation region
  • the fraction of ferrite is 95 area% or more, and the hard structure may include martensite.
  • Hel defined by the following relation 2 may satisfy the range of 1.2 to 2.5.
  • the cold-rolled steel sheet may further include silicon (Si) in an amount of 0.1% or less (including 0%) by weight.
  • the cold-rolled steel sheet may have a bake hardening amount (BH, tensile test after heat treatment at 170° C. for 20 minutes) of 30 MPa or more, and elongation at yield (YP-El, tensile test after heat treatment at 100° C. for 1 hour) of 0.2% or less. .
  • BH bake hardening amount
  • YP-El tensile test after heat treatment at 100° C. for 1 hour
  • a plated steel sheet excellent in bake hardenability and room temperature aging resistance includes: the cold-rolled steel sheet; and a plating layer or an alloy plating layer formed on at least one side of the cold-rolled steel sheet.
  • the method for manufacturing a cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance according to an aspect of the present invention, in wt%, C: 0.002 to 0.015%, Mn: 1.5 to 3.0%, P: 0.03% or less, S: 0.01% or less, N: 0.01% or less, sol.Al: 0.02 to 0.06%, Cr: 1.2% or less (excluding 0%), heating the slab containing the remainder Fe and unavoidable impurities; providing a hot rolled steel sheet by hot rolling the slab; winding the hot-rolled steel sheet; providing a cold-rolled steel sheet by cold-rolling the hot-rolled steel sheet; and continuously annealing the cold-rolled steel sheet, wherein the continuous annealing is 30-240 after raising the temperature to a temperature range of (Ac1+5°C) to (Ac3-20°C) at a temperature increase rate of 1 to 10°C/s It can be carried out by holding for seconds.
  • Hel defined by the following Relation 2 may satisfy the range of 1.25 to 2.42.
  • the slab may further include silicon (Si) of 0.1% or less (including 0%) by weight%.
  • the slab heating temperature is 1100 ⁇ 1300 °C
  • the finish rolling temperature of the hot rolling is 880 °C or more
  • the winding temperature is 400 ⁇ 700 °C
  • the rolling reduction of the cold rolling may be 50 ⁇ 90%.
  • a method for manufacturing a plated steel sheet having excellent bake hardenability and room temperature aging resistance comprising the steps of: immersing the cold-rolled steel sheet manufactured by the manufacturing method in a hot-dip galvanizing bath at 440 to 480° C. to hot-dip galvanizing; And optionally, after the hot-dip galvanizing, it may further include the step of maintaining the alloying treatment in a temperature range of 460 ⁇ 610 °C for 20 seconds or more.
  • a steel sheet having properties particularly suitable as a material for exterior panels of automobiles due to excellent bake hardenability and room temperature aging resistance, and a method for manufacturing the same.
  • the present invention relates to a cold-rolled steel sheet and a plated steel sheet having excellent bake hardenability and room temperature aging resistance, and a method for manufacturing the same.
  • preferred embodiments of the present invention will be described. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The present embodiments are provided in order to further detail the present invention to those of ordinary skill in the art to which the present invention pertains.
  • the cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance according to an aspect of the present invention, in wt%, C: 0.002 to 0.015%, Mn: 1.5 to 3.0%, P: 0.03% or less, S: 0.01% or less, N : 0.01% or less, sol.Al: 0.02 ⁇ 0.06%, Cr: 1.2% or less (excluding 0%), the remainder Fe and unavoidable impurities, and the microstructure includes the matrix structure ferrite and the remainder hard structure,
  • the hard tissue occupancy ratio (V) of the triple point of the grain boundary defined by Relational Expression 1 may be 70% or more.
  • V(%) ⁇ Vtp / (Vgb + Vtp) ⁇ ⁇ 100
  • Vgb denotes the number of hard tissues observed at the ferrite grain boundary in the observation region
  • Vtp denotes the number of hard tissues observed at the ferrite grain boundary triple point in the observation region
  • alloy composition of the present invention will be described in more detail.
  • % and ppm related to the content of the alloy composition are based on weight.
  • the cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance according to an aspect of the present invention, in wt%, C: 0.002 to 0.015%, Mn: 1.5 to 3.0%, P: 0.03% or less, S: 0.01% or less, N : 0.01% or less, sol.Al: 0.02 to 0.06%, Cr: 1.2% or less (excluding 0%), the remainder may contain Fe and unavoidable impurities.
  • Carbon (C) is a component that effectively contributes to the formation of martensite, and in order to manufacture the composite steel for the purpose of the present invention, carbon (C) of a certain level or more must be added. Therefore, the present invention may limit the lower limit of the carbon (C) content to 0.002% in terms of securing bake hardenability and room temperature aging resistance according to the implementation of composite steel.
  • a preferable lower limit of the carbon (C) content may be 0.003%, and a more preferable lower limit of the carbon (C) content may be 0.004%.
  • the present invention may limit the upper limit of the carbon (C) content to 0.015%.
  • the upper limit of the preferable carbon (C) content may be 0.013%, and the upper limit of the more preferable carbon (C) content may be 0.01%.
  • Manganese (Mn) is not only a component that contributes to improvement of hardenability, but also a component that effectively contributes to the formation of martensite like carbon (C). Therefore, the present invention can limit the lower limit of the manganese (Mn) content to 1.5% in terms of securing bake hardenability and room temperature aging resistance according to the implementation of composite steel.
  • a preferred lower limit of the manganese (Mn) content may be 1.6%, and a more preferred lower limit of the manganese (Mn) content may be 1.8%.
  • the present invention may limit the upper limit of the manganese (Mn) content to 3.0%.
  • the upper limit of the preferable manganese (Mn) content may be 2.6%, and the upper limit of the more preferable manganese (Mn) content may be 2.3%.
  • Phosphorus (P) in steel is the most advantageous element for securing strength without significantly impairing formability.
  • the present invention may limit the upper limit of the phosphorus (P) content to 0.03%.
  • the present invention may exclude 0% from the lower limit of the phosphorus (P) content.
  • Sulfur (S) is an impurity element that is unavoidably introduced into steel, and it is desirable to manage its content as low as possible.
  • sulfur (S) in steel may cause red heat brittleness
  • the present invention may limit the upper limit of the sulfur (S) content to 0.01%.
  • the present invention may exclude 0% from the lower limit of the sulfur (S) content.
  • Nitrogen (N) is also an impurity element that inevitably flows into the steel. Therefore, it is preferable to manage the content as low as possible, but in consideration of the steelmaking load and operating conditions, the present invention can limit the upper limit of the nitrogen (N) content to 0.01%. However, in consideration of the unavoidable inflow level, the present invention may exclude 0% from the lower limit of the nitrogen (N) content.
  • Aluminum (Al) is a component added for particle size reduction and deoxidation of steel.
  • the present invention may limit the lower limit of the content of aluminum (sol.Al) for acid value to 0.02% in order to manufacture aluminum-killed steel in a stable state.
  • a preferred lower limit of the content of aluminum (sol.Al) for acid value may be 0.025%.
  • the upper limit of the content of aluminum (sol.Al) for acid value may be limited to 0.06%, and more preferably, the upper limit of the content of aluminum (sol.Al) for acid value may be 0.07%.
  • chromium (Cr) Since chromium (Cr) has properties similar to those of manganese (Mn) described above, it not only improves the hardenability of steel, but also effectively contributes to the formation of martensite.
  • Cr Cr
  • coarse chromium (Cr)-based carbides such as Cr 23 C 6 are formed during hot rolling, and the amount of dissolved carbon (C) in the steel is controlled to an appropriate level or less to yield point elongation (YP).
  • YP yield point elongation
  • -El) generation is suppressed, so it is possible to provide a composite steel with a low yield ratio.
  • chromium (Cr) is also an element that effectively contributes to securing the elongation of the composite steel by minimizing the decrease in the elongation compared to the increase in strength. Therefore, in the present invention, chromium (Cr) may be necessarily added to achieve such an effect. On the other hand, when chromium (Cr) is added in excess, since the formation rate of martensite is excessively increased, elongation may be deteriorated, and corrosion resistance may be deteriorated. Accordingly, in the present invention, the upper limit of the chromium (Cr) content may be limited to 1.2%, and more preferably, the upper limit of the chromium (Cr) content may be 0.95%.
  • the cold-rolled steel sheet excellent in bake hardenability and room temperature aging resistance may further include, by weight %, silicon (Si) of 0.1% or less.
  • silicon (Si) is a component contributing to the increase in strength of steel by solid solution strengthening, silicon is not intentionally added in the present invention. In the case of the present invention, even if silicon (Si) is not added, desired physical properties can be secured.
  • the silicon (Si) content exceeds a certain level, since there is a problem in that the surface properties of the final plating material are deteriorated by the Si oxide formed from the hot rolling step, the present invention sets the upper limit of the silicon (Si) content to 0.1%. can be limited The upper limit of the preferable silicon (Si) content may be 0.08%.
  • 0% may be excluded from the lower limit of the silicon (Si) content.
  • the cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance may contain the remainder Fe and other unavoidable impurities in addition to the above components.
  • unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, it cannot be completely excluded. Since these impurities are known to those of ordinary skill in the art, all contents thereof are not specifically mentioned in the present specification.
  • addition of effective ingredients other than the above composition is not excluded.
  • Hel defined by the following relational expression 2 may satisfy the range of 1.2 to 2.5.
  • the present invention limits the range of carbon (C) content to a range of 0.002 to 0.015%, appropriate additives such as Mn and Cr, which are elements for improving hardenability, are essential in order to realize the desired composite structure, and the The optimum component content of C, Mn and Cr, which are hardenability enhancing elements, is defined.
  • the lower limit of Hel defined by Relation 2 may be limited to 1.2 in order to form a desired composite tissue. When the Hel value of Equation 2 is less than 1.2, martensite is not formed even by rapid cooling after annealing due to low hardenability, so that a desired composite structure cannot be formed.
  • the lower limit of the preferred Hel value may be 1.25, and the lower limit of the more preferred Hel value may be 1.5.
  • the present invention provides Hel value may be limited to 2.5.
  • the upper limit of the preferred Hel value may be 2.42, and the upper limit of the more preferred Hel value may be 2.0.
  • the cold-rolled steel sheet excellent in bake hardenability and room temperature aging resistance may have a composite structure in which ferrite is a matrix structure and a hard structure is a residual structure.
  • the hard tissue included as the remaining tissue may be martensite, and may include bainite and pearlite in part. However, it is preferable to minimize the amount of bainite and pearlite formation as much as possible.
  • the martensite of the present invention may be fine martensite having an average diameter of 1 ⁇ m or less. As martensite is refined, a large amount of sites (mobile potential) to which solid solution carbon (C) or nitrogen (N) are fixed are formed, so that the desired bake hardenability and aging resistance of the present invention can be more effectively secured.
  • the martensite fraction of the present invention may be 2 area% or less (excluding 0%).
  • the cold-rolled steel sheet excellent in bake hardenability and room temperature aging resistance may have a hard tissue occupation ratio (V) of a triple point at the grain boundary defined by the following relational expression (1) of 70% or more.
  • V(%) ⁇ Vtp / (Vgb + Vtp) ⁇ ⁇ 100
  • Vgb denotes the number of hard tissues observed at the ferrite grain boundary in the observation region
  • Vtp denotes the number of hard tissues observed at the ferrite grain boundary triple point in the observation region
  • Vgb the total number of martensite observed at the ferrite grain boundary in the observation area
  • Vtp the number of martensite observed at the ferrite grain boundary triple point within the same observation region
  • the total number of martensites means the total number of martensites observable at all ferrite grain boundaries in the observation area using a microscope, and the number of martensites at the grain boundary triple point (Vtp) is 3 or more within the observation area. It means the number of martensites occupying at least a part of the area after setting a region with a diameter of less than 50 nm based on a point where the ferrite grain boundaries meet.
  • the inventor of the present invention conducted an in-depth study in relation to the simultaneous securing of bake hardenability and room temperature aging resistance of the steel sheet, and as a result, it was found that the distribution of martensite as well as the fraction of the total martensite greatly affects the bake hardenability. could That is, the inventor of the present invention confirmed that it is possible to control the interaction frequency between the operating potential around martensite and the solid solution carbon (C) through controlling the distribution of martensite, and simultaneously secure bake hardenability and room temperature aging resistance. For this purpose, the present invention was derived from the idea of controlling the distribution of martensite to an optimal condition.
  • Martensite is formed during cooling of the steel sheet, and a large amount of movable dislocation is formed around the martensite by volume expansion.
  • As one method of improving bake hardenability there is a method of increasing the fraction of martensite, but in this case, the inferiority of room temperature aging resistance is necessarily accompanied, so it is very difficult to achieve the purpose of simultaneously securing bake hardenability and room temperature aging resistance.
  • a large amount of carbon (C) is concentrated at the grain boundary of ferrite compared to within the crystal grain of ferrite, and the triple point of the grain boundary of ferrite shows a high degree of carbon (C) concentration among ferrite grain boundaries.
  • ordinary baking heat treatment conditions (170 ° C, 20 minutes) are applied to the steel sheet, the diffusion of carbon (C) from the triple point of the grain boundary of ferrite occurs most actively, so carbon ( C) means that it can be fixed more easily.
  • artificial aging conditions 100° C., 1 hour
  • since the temperature is relatively low and carbon (C) diffusion from the grain boundary and martensite is limited, a significant difference according to the distribution of martensite does not occur. That is, when a large amount of martensite is distributed at the triple point of the grain boundary of ferrite, it means that bake hardenability can be further improved while maintaining the room temperature aging resistance of the steel sheet.
  • the present invention limits the hard tissue occupancy ratio (V) of the grain boundary triple point defined by Relation 2 to 70% or more, so that it is possible to effectively improve bake hardenability while maintaining room temperature aging resistance at a certain level.
  • the cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance has a bake hardening amount (BH, tensile test after heat treatment at 170° C. for 20 minutes) of 30 MPa or more, and elongation at yield (YP-El, 100° C.) Tensile test after 1 hour heat treatment) may be 0.2% or less.
  • BH bake hardening amount
  • YP-El elongation at yield
  • the plated steel sheet excellent in bake hardenability and room temperature aging resistance may include a plating layer or an alloy plating layer formed on at least one side of the above-described cold rolled steel.
  • the plating layer and the alloy plating layer may be a hot-dip galvanized layer and an alloyed hot-dip galvanized layer, but are not necessarily limited thereto, and may be interpreted as a concept including all plating layers and alloy plating layers suitable as materials for automobile exterior panels.
  • a method of manufacturing a cold-rolled steel sheet having excellent bake hardenability and room temperature aging resistance comprising: heating a slab having a predetermined alloy composition; providing a hot rolled steel sheet by hot rolling the slab; winding the hot-rolled steel sheet; providing a cold-rolled steel sheet by cold-rolling the hot-rolled steel sheet; and continuously annealing the cold-rolled steel sheet, wherein the continuous annealing is 30-240 after raising the temperature to a temperature range of (Ac1+5°C) to (Ac3-20°C) at a temperature increase rate of 1 to 10°C/s Can hold for seconds.
  • reheating of the slab may be performed. Since the slab of the present invention has an alloy composition corresponding to that of the cold-rolled steel sheet, the description of the alloy composition of the slab is replaced with the description of the alloy composition of the cold-rolled steel sheet.
  • the slab reheating of the present invention may be performed under normal conditions, and as an example, the slab reheating may be performed in a temperature range of 1100 to 1300°C.
  • the reheated slab After finishing rolling the reheated slab in a temperature range of 880 ° C or higher, it can be wound in a temperature range of 400 to 700 ° C.
  • the finish hot rolling is preferably performed in the austenite single-phase region. This is because, when the finish hot rolling is performed in the austenite single phase region, austenite in the form of a pancake and a deformation band are formed, which is more advantageous for the miniaturization of the final structure.
  • the finish hot rolling when the finish hot rolling is performed in the abnormal region of austenite and ferrite, it may cause material non-uniformity and may result in excessive rolling load.
  • the present invention may limit the temperature range of the finish annual rolling to 880° C. or higher so that the finish hot rolling is performed in the austenite single phase region.
  • the present invention does not particularly limit the upper limit of the finish rolling temperature. However, in order to prevent material imbalance due to abnormal coarse grain formation, the upper limit of the finish hot rolling temperature range may be limited to 950°C.
  • the hot-rolled steel sheet may be wound into a hot-rolled coil.
  • the coiling temperature does not reach a certain level, a large amount of hard phase such as martensite or bainite is formed, which may result in excessive increase in strength of the steel sheet. Therefore, the present invention can limit the coiling temperature to 400 °C or more in terms of reducing the rolling load and preventing shape defects in the cold rolling following after winding.
  • the present invention can limit the upper limit of the coiling temperature to 700 °C in order to secure the surface quality and plating quality of the steel sheet.
  • the wound hot-rolled steel sheet may be pickled under normal conditions, and then cold rolled may be applied to provide a cold-rolled steel sheet.
  • Cold rolling of the present invention is preferably carried out at a reduction ratio of 50 to 90%. If the reduction ratio of cold rolling is less than a certain level, it is difficult to secure the target thickness of the steel sheet, and there are problems in that it is difficult to correct the shape of the steel sheet. Therefore, the present invention limits the lower limit of the reduction ratio of cold rolling to 50%. can On the other hand, when the reduction ratio of cold rolling exceeds a certain level, cracks are highly likely to occur in the edge portion of the steel sheet, and excessive rolling load may be a problem.
  • the present invention sets the upper limit of the reduction ratio of cold rolling It can be limited to 90%.
  • Strict management of continuous annealing conditions is essential for controlling the microstructure of the present invention, particularly the fractions of ferrite and martensite and the distribution of martensite.
  • the cold-rolled cold-rolled steel sheet is heated to a temperature range of (Ac1+5°C) to (Ac3-20°C) at a temperature increase rate of 1 to 10°C/s, 30 to Continuous annealing can be carried out for 240 seconds.
  • the rate of temperature increase during continuous annealing is less than a certain level, the size non-uniformity between the structures is deepened due to the too slow temperature increase, and the initial ferrite size is formed to be coarser than necessary, which may cause a decrease in strength of the steel sheet.
  • the lower limit of the temperature increase rate may be limited to 1°C/s, and a more preferable upper limit of the temperature increase rate may be 2°C/s.
  • the present invention does not specifically prescribe the upper limit of the temperature increase rate during continuous annealing. However, when the temperature increase rate is excessively high, since it may cause an excessive burden on the field equipment, the present invention may limit the upper limit of the temperature increase rate to 10° C./s.
  • the annealing temperature is preferably in the range of (Ac1+5°C) to (Ac3-20°C).
  • the present invention is intended to control the fraction of ferrite and martensite and the distribution of martensite in the final steel sheet, so that continuous annealing can be carried out for a certain period of time in an abnormal temperature range.
  • the annealing temperature is excessively low, the austenite fraction at the ideal temperature is excessively lowered, and thus there is a problem that the martensite fraction of the desired level cannot be realized in the final steel sheet. Therefore, the present invention may limit the lower limit of the annealing temperature to (Ac1+5°C) in order to secure the desired martensite fraction.
  • a preferred lower limit of the annealing temperature may be (Ac1+10°C), and a more preferred lower limit of the annealing temperature may be (Ac1+15°C).
  • An increase in the austenite fraction at the ideal temperature means that the hardenable elements (typically C, Mn) present in the steel sheet diffuse into more austenite regions, and the lower the austenite fraction at the lower abnormal region temperature (a small fraction of the austenite in the ideal region) Meaning), it means that the concentration of hardenability elements in austenite is low. That is, when the annealing temperature is increased, the stability of austenite is lowered to facilitate transformation into ferrite during cooling after annealing, so that the finally produced martensite content is rather reduced, making it difficult to secure a target martensite content.
  • the hardenable elements typically C, Mn
  • the annealing temperature is excessively high in the low-strength composite steel of 490 MPa class or less, which is the object of the present invention, the stability of the ideal austenite is excessively lowered, so the final martensite fraction is lowered, and the bake hardenability of the desired level is lowered. There is a problem that cannot be secured.
  • the continuous annealing of the present invention aims to be carried out in an ideal temperature range, it is preferable to carry out the continuous annealing in a temperature range where ferrite formation is advantageous as much as possible. This is because, when continuous annealing is performed in a temperature range where ferrite formation is advantageous, it is possible to provide a more favorable environment for grain growth by promoting initial ferrite formation.
  • the concentration of carbon (C) and manganese (Mn) in austenite is increased, so that the martensite starting temperature (Ms) can be lowered, followed by a cooling process or plating In the post-cooling process, it is possible to induce a large amount of fine and uniform martensite to be distributed and formed in the ferrite grains. Therefore, in the present invention, the upper limit of the annealing temperature can be limited to (Ac3-20°C) in order to secure the desired martensite occupancy ratio (V) of the ferrite grain boundary triple point.
  • the upper limit of the preferred annealing temperature may be (Ac3-25 °C), and the upper limit of the more preferable annealing temperature may be (Ac3-30 °C).
  • the holding time after the temperature rise is also a major process variable in securing the microstructure desired by the present invention. If the holding time after the temperature rise is less than a certain level, carbon (C) and manganese (Mn) do not sufficiently diffuse into the austenite formed in the abnormal region, thus reducing the stability of austenite, and during cooling after annealing, austenite becomes the desired martens. The possibility of transformation into a microstructure other than the site increases. Accordingly, the present invention limits the lower limit of the holding time after the temperature rise to 30 seconds, and more preferably, the lower limit of the holding time after the temperature rise may be 60 seconds.
  • the present invention may limit the upper limit of the holding time after temperature increase to 240 seconds. More preferably, the upper limit of the holding time after the temperature rise may be 180 seconds.
  • the cold-rolled steel sheet manufactured through the above-mentioned manufacturing process may contain 95 area% or more of ferrite and the remainder martensite as a microstructure, and the occupancy ratio (V) of the hard structure of the grain boundary triple point defined by the following Relational Equation 1 is 70% more can be satisfied.
  • V(%) ⁇ Vtp / (Vgb + Vtp) ⁇ ⁇ 100
  • Vgb denotes the number of hard tissues observed at the ferrite grain boundary in the observation region
  • Vtp denotes the number of hard tissues observed at the ferrite grain boundary triple point in the observation region
  • the cold-rolled steel sheet manufactured through the above-described manufacturing process has a bake hardening amount of 30 MPa or more (BH, tensile test after heat treatment at 170° C. for 20 minutes) and a yield point elongation of 0.2% or less (YP-El, 100° C. for 1 hour Tensile test after heat treatment) can be satisfied.
  • the plated steel sheet excellent in bake hardenability and room temperature aging resistance may be provided by applying a plating process to the cold rolled steel sheet manufactured by the above-described manufacturing method.
  • the plating process may be a hot-dip galvanizing process or an alloying hot-dip galvanizing process, but is not necessarily limited thereto, and any plating process applied to a typical automotive exterior plate material may be interpreted as applicable.
  • the hot-dip galvanizing process in which the above-described cold-rolled steel sheet is immersed in a hot-dip galvanizing bath (Pot) of a typical temperature range of 440 to 480°C may be applied.
  • a hot-dip galvanizing bath Pot
  • the temperature range of 460 to 610°C is maintained for at least 20 seconds.
  • a hot-dip galvanizing process in which an alloying treatment is performed can be applied.
  • hot-dip galvanized steel sheets were manufactured by applying the process conditions of Table 2. For each specimen, a slab reheating temperature condition of 1200°C and a cold rolling reduction ratio of 70% were commonly applied. The microstructure observation results and physical property measurement results of each specimen are also listed in Table 2.
  • the hard tissue occupancy ratio (V) of the grain boundary triple point was measured using a scanning electron microscope (SEM, JEOL JSN-7001F, resolution: 1 nm). Specifically, after designating an observation area of 10,000 ⁇ m 2 at the 1/4t point in the thickness direction of each specimen, the number of martensite present at the grain boundary of ferrite within the observation area is measured to calculate the hard tissue occupancy ratio (V) of the grain boundary triple point did.
  • the total number of martensite means the total number of martensites observable at all ferrite grain boundaries in the observation region using a scanning electron microscope.
  • the number of martensites at the grain boundary triple point means the number of martensites occupying at least a part of the area after setting a region within 50 nm in diameter around the point where three or more ferrite grain boundaries meet in the observation region. .
  • Bake hardenability (BH 2 ) was measured by pre-straining each specimen by 2%, measuring the flow-stress at 2%, and performing a tensile test after heat-treating the specimen at 170° C. for 20 minutes.
  • Elongation at yield (YP-El) was measured by performing a tensile test after heat treatment at 100° C. for 1 hour. At this time, as the tensile test conditions, ASTM-e8/e8m-16a standards were applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr:1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 기지조직인 페라이트와 잔부 경질조직을 포함하며, 하기의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상일 수 있다. [관계식 1] V(%) = {Vtp / (Vgb + Vtp)} × 100 상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.

Description

소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법
본 발명은 소부경화성 및 상온내시효성이 우수하여 자동차의 외판용 소재로 특히 적합한 물성을 가지는 강판 및 그 제조방법에 관한 것이다.
자동차의 외판용 소재는 일정 수준의 소부경화성 및 내시효성을 가질 것이 요구된다. 소부경화 현상은 강판의 가공 중에 형성된 전위에 도장 소부 시 활성화된 고용 탄소 및 질소가 고착되어 강판의 항복강도가 증가하는 현상을 의미한다. 소부경화성이 우수한 강판은 도장 소부 전 강판의 성형이 용이하며, 최종 제품에서는 내 덴트성이 향상되는 특성을 가지므로, 자동차의 외판용 소재로서 매우 이상적인 소재로 평가된다.
다만, 강판의 소부경화성이 증가하는 경우, 역으로 강판의 내시효성이 열위해지는 경향성을 나타내므로, 강판의 소부경화성을 확보하더라도, 일정한 시간이 경과함에 따라 시효가 발생하고, 그에 따라 부품 가공 시 표면 결함 등이 발생할 가능성이 높아질 수 있다. 따라서, 자동차의 외판용 소재는 적정 수준 이상의 소부경화성을 확보함과 동시에 적정 수준 이상의 내시효성을 구비할 것이 요구된다.
특허문헌 1은 Sn을 첨가하여 소부경화성을 향상시키는 기술을 제안하지만, 소부경화성 상승에 따른 내시효성의 열화 문제에 대한 근본적이 해결책을 제시하지는 못하고 있다.
따라서, 적정 수준 이상의 소부경화성과 상온내시효성을 동시에 구비하여 자동차의 외판용 소재로 특히 적합한 물성을 가지는 강판의 공급이 필요한 실정이다.
(선행기술문헌)
(특허문헌 1) 일본 공개특허공보 1994-306531호(1994.11.01 공개)
본 발명의 한 가지 측면에 따르면 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판과 이들의 제조방법이 제공될 수 있다
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr: 1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 기지조직인 페라이트와 잔부 경질조직을 포함하며, 하기의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상일 수 있다.
[관계식 1]
V(%) = {Vtp / (Vgb + Vtp)} × 100
상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.
상기 페라이트의 분율은 95면적% 이상이며, 상기 경질조직은 마르텐사이트를 포함할 수 있다.
상기 냉연강판은 하기의 관계식 2에 의해 정의되는 Hel이 1.2~2.5의 범위를 만족할 수 있다.
[관계식 2] Hel = [C] + 0.5*[Mn] + 0.75*[Cr]
상기 관계식 2에서, [C], [Mn] 및 [Cr]은 각각 C, Mn 및 Cr 의 함량(중량%)를 의미한다.
상기 냉연강판은, 중량%로, 0.1% 이하(0% 포함)의 실리콘(Si)을 더 포함할 수 있다.
상기 냉연강판은, 소부경화량(BH, 170℃에서 20분간 열처리한 후 인장시험)이 30MPa 이상이고, 항복점연신(YP-El, 100℃에서 1시간 열처리 후 인장시험)이 0.2% 이하일 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 도금강판은, 상기 냉연강판; 및 상기 냉연강판의 적어도 일측에 형성된 도금층 또는 합금화도금층을 포함할 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법은, 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr: 1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 가열하는 단계; 상기 슬라브를 열간압연하여 열연강판을 제공하는 단계; 상기 열연강판을 권취하는 단계; 상기 열연강판을 냉간압연하여 냉연강판을 제공하는 단계; 및 상기 냉연강판을 연속소둔하는 단계를 포함하되, 상기 연속소둔은 1~10℃/s의 승온속도로 (Ac1+5℃)~(Ac3-20℃)의 온도범위까지 승온한 후 30~240초 동안 유지하여 실시될 수 있다.
상기 슬라브는 하기의 관계식 2에 의해 정의되는 Hel이 1.25~2.42의 범위를 만족할 수 있다.
[관계식 2] Hel = [C] + 0.5*[Mn] + 0.75*[Cr]
상기 슬라브는, 중량%로, 0.1% 이하(0% 포함)의 실리콘(Si)을 더 포함할 수 있다.
상기 관계식 2에서, [C], [Mn] 및 [Cr]은 각각 C, Mn 및 Cr 의 함량(중량%)를 의미한다.
상기 슬라브 가열 온도는 1100~1300℃이고, 상기 열간압연의 마무리 압연 온도는 880℃ 이상이고, 상기 권취 온도는 400~700℃이며, 상기 냉간압연의 압하율은 50~90%일 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 도금강판의 제조방법은, 상기 제조방법에 의해 제조된 냉연강판을 440~480℃의 용융아연도금욕에 침지하여 용융아연도금하는 단계; 및 선택적으로 상기 용융아연도금 후 460~610℃의 온도범위에서 20초 이상 유지하여 합금화 처리하는 단계를 더 포함할 수 있다.
상기 과제의 해결 수단은 본 발명의 특징을 모두 열거한 것은 아니며, 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 설명을 참조하여 보다 상세하게 이해될 수 있을 것이다.
본 발명의 바람직한 일 측면에 따르면, 소부경화성 및 상온내시효성이 우수하여 자동차의 외판용 소재로 특히 적합한 물성을 가지는 강판 및 그 제조방법을 제공할 수 있다.
도 1은 시편 1-1의 미세조직을 관찰한 사진이다.
본 발명은 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판과 이들의 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.
이하 본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr: 1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직으로 기지조직인 페라이트와 잔부 경질조직을 포함하며, 하기의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상일 수 있다.
[관계식 1]
V(%) = {Vtp / (Vgb + Vtp)} × 100
상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.
이하, 본 발명의 합금 조성에 대해 보다 상세히 설명한다. 이하, 특별히 달리 기재하지 않는단, 합금 조성의 함량과 관련된 % 및 ppm은 중량을 기준으로 한다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr: 1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함할 수 있다.
탄소(C): 0.002~0.015%
탄소(C)는 마르텐사이트의 형성에 효과적으로 기여하는 성분으로, 본 발명이 목적하는 복합조직강을 제조하기 위해서는 일정 수준 이상의 탄소(C)가 첨가되어야 한다. 따라서, 본 발명은 복합조직강 구현에 따른 소부경화성 및 상온내시효성 확보의 측면에서, 탄소(C) 함량의 하한을 0.002%로 제한할 수 있다. 바람직한 탄소(C) 함량의 하한은 0.003%일 수 있으며, 보다 바람직한 탄소(C) 함량의 하한은 0.004%일 수 있다. 다만, 탄소(C)가 과도하게 첨가되는 경우, 복합조직강의 형성에는 유리한 반면, 소재의 강도가 상승하고 연신율이 하락하여 고객사에서의 부품 가공 시 제품 표면에 굴곡 결함이 발생 가능성이 높아지는 문제점이 존재한다. 따라서, 본 발명은 탄소(C) 함량의 상한을 0.015%로 제한할 수 있다. 바람직한 탄소(C) 함량의 상한은 0.013%일 수 있으며, 보다 바람직한 탄소(C) 함량의 상한은 0.01%일 수 있다.
망간(Mn): 1.5~3.0%
망간(Mn)은 경화능 향상에 기여하는 성분일 뿐만 아니라, 탄소(C)와 같이 마르텐사이트의 형성에 효과적으로 기여하는 성분이다. 따라서, 본 발명은 복합조직강 구현에 따른 소부경화성 및 상온내시효성 확보의 측면에서, 망간(Mn) 함량의 하한을 1.5%로 제한할 수 있다. 바람직한 망간(Mn) 함량의 하한은 1.6%일 수 있으며, 보다 바람직한 망간(Mn) 함량의 하한은 1.8%일 수 있다. 반면, 망간(Mn)이 과다하게 첨가되는 경우, 연신율이 하락하여 가공성이 열위해지며, 조직 내에 밴드 형태의 망간(Mn) 산화물 띠를 형성하여 가공크랙 및 판파단 발생 위험성이 높아지는 문제점이 존재한다. 또한, 망간(Mn)이 과도하게 첨가되는 경우, 소둔 시 망간(Mn) 산화물이 강판의 표면에 용출되어 도금성을 크게 저해하는 문제점이 존재한다. 따라서, 본 발명은 망간(Mn) 함량의 상한을 3.0%로 제한할 수 있다. 바람직한 망간(Mn) 함량의 상한은 2.6%일 수 있으며, 보다 바람직한 망간(Mn) 함량의 상한은 2.3%일 수 있다.
인(P): 0.03% 이하
강 중 인(P)은 성형성을 크게 해치지 않으면서도 강도 확보에 가장 유리한 원소이다. 다만, 인(P)이 과도하게 첨가되는 경우, 취성파괴 가능성이 증가하여 열간압연 도중 슬라브의 판파단을 유발할 수 있을 뿐만 아니라, 도금강판의 표면 특성을 크게 저하시킬 수 있다. 따라서, 본 발명은 인(P) 함량의 상한을 0.03%로 제한할 수 있다. 다만, 불가피하게 유입되는 수준을 고려하여, 본 발명은 인(P) 함량의 하한에서 0%를 제외할 수 있다.
황(S): 0.01% 이하
황(S)은 강 중에 불가피하게 유입되는 불순물 원소로서, 가능한 한 그 함량을 낮게 관리하는 것이 바람직하다. 특히, 강 중 황(S)은 적열 취성을 유발할 수 있는바, 본 발명은 황(S) 함량의 상한을 0.01%로 제한할 수 있다. 다만, 불가피하게 유입되는 수준을 고려하여, 본 발명은 황(S) 함량의 하한에서 0%를 제외할 수 있다.
질소(N): 0.01% 이하
질소(N) 역시 강 중에 불가피하게 유입되는 불순물 원소이다. 따라서, 가능한 한 그 함량을 낮게 관리하는 것이 바람직하나, 제강 부하 및 조업조건을 고려하여, 본 발명은 질소(N) 함량의 상한을 0.01%로 제한할 수 있다. 다만, 불가피하게 유입되는 수준을 고려하여, 본 발명은 질소(N) 함량의 하한에서 0%를 제외할 수 있다.
산가용 알루미늄(sol.Al): 0.02~0.06%
알루미늄(Al)은 강의 입도 미세화와 탈산을 위해 첨가되는 성분이다. 본 발명은 안정된 상태의 알루미늄 킬드(Al-killed) 강을 제조하기 위하여, 산가용 알루미늄(sol.Al) 함량의 하한을 0.02%로 제한할 수 있다. 바람직한 산가용 알루미늄(sol.Al) 함량의 하한은 0.025%일 수 있다. 반면, 알루미늄(Al)이 과도하게 첨가되는 경우, 결정립 미세화에 의해 강도는 상승하는 반면, 제강 연주 조업 시 개재물이 과다 형성되어 강판의 표면 품질이 열위해질 뿐만 아니라, 제조 원가의 상승을 초래할 수 있다. 따라서, 본 발명은 산가용 알루미늄(sol.Al) 함량의 상한을 0.06%로 제한할 수 있으며, 보다 바람직한 산가용 알루미늄(sol.Al) 함량의 상한은 0.07%일 수 있다.
크롬(Cr): 1.2% 이하(0% 제외)
크롬(Cr)은 앞서 설명한 망간(Mn)과 유사한 특성을 가지므로, 강의 경화능을 향상시킬 뿐만 아니라, 마르텐사이트의 형성에 효과적으로 기여하는 성분이다. 강 중 크롬(Cr)이 첨가된 경우, 열간압연 중 Cr 23C 6와 같은 조대한 크롬(Cr)계 탄화물을 형성하여 강 중 고용 탄소(C)량을 적정 수준 이하로 제어하여 항복점연신(YP-El) 발생을 억제하므로, 항복비가 낮은 복합조직강을 제공할 수 있다. 또한, 크롬(Cr)은 강도 상승 대비 연신율 하락을 최소화하여 복합조직강의 연신율 확보에 효과적으로 기여하는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과 달성하기 위하여 크롬(Cr)을 필수적으로 첨가할 수 있다. 반면, 크롬(Cr)이 과량 첨가되는 경우 마르텐사이트의 형성 비율을 과도하게 증가시키므로, 연신율이 열위해질 뿐만 아니라, 내식성이 저하될 수 있다. 따라서, 본 발명은 크롬(Cr) 함량의 상한을 1.2%로 제한할 수 있으며, 보다 바람직한 크롬(Cr) 함량의 상한은 0.95%일 수 있다.
또한, 본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 중량 %로, 0.1% 이하의 실리콘(Si)을 더 포함할 수 있다.
실리콘(Si): 0.1% 이하
실리콘(Si)은 고용강화에 의해 강의 강도 상승에 기여하는 성분이기는 하나, 본 발명에서는 실리콘을 의도적으로 첨가하지는 않는다. 본 발명의 경우, 실리콘(Si)을 첨가하지 않더라도 목적하는 물성을 확보할 수 있다. 한편, 실리콘(Si) 함량이 일정 수준을 초과하는 경우, 열연 단계에서부터 형성된 Si 산화물에 의해 최종 도금재의 표면 특성을 열화시키는 문제점이 존재하므로, 본 발명은 실리콘(Si) 함량의 상한을 0.1%로 제한할 수 있다. 바람직한 실리콘(Si) 함량의 상한은 0.08%일 수 있다. 반면, 불가피하게 유입되는 수준을 고려하여, 본 발명은 실리콘(Si) 함량의 하한에서 0%를 제외할 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은 상기한 성분 이외에 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 전면적으로 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 아래의 관계식 2에 의해 정의되는 Hel이 1.2~2.5의 범위를 만족할 수 있다.
[관계식 2]
Hel = [C] + 0.5*[Mn] + 0.75*[Cr]
상기 관계식 2에서, [C], [Mn] 및 [Cr]은 각각 C, Mn 및 Cr 의 함량(중량%)를 의미한다.
본 발명은 탄소(C) 함량의 범위를 0.002~0.015%의 범위로 제한하므로, 목적하는 복합조직을 구현하기 위해서는 경화능 향상 원소인 Mn 및 Cr 등의 적정한 첨가기 필수적이며, 관계식 2의는 이들 경화능 향상 원소인 C, Mn 및 Cr의 최적의 성분 함량을 규정한다. 본 발명은 목적하는 복합조직을 형성하기 위하여 관계식 2에 의해 규정되는 Hel의 하한을 1.2로 제한할 수 있다. 관계식 2의 Hel 값이 1.2 미만인 경우, 낮은 경화능으로 인하여 소둔 후 급랭에 의하더라도 마르텐사이트가 형성되지 않아 목적하는 복합조직을 형성할 수 없다. 바람직한 Hel 값의 하한은 1.25일 수 있으며, 보다 바람직한 Hel 값의 하한은 1.5일 수 있다. 반면, Hel 값이 일정 수준을 초과하는 경우, 복합조직을 형성할 수는 있으나, 다량의 합금원소 첨가로 인해 항복강도 및 인장강도의 상승이 수단되고, 연신율 하락을 초래하므로, 본 발명은 Hel 값의 상한을 2.5로 제한할 수 있다. 바람직한 Hel 값의 상한은 2.42일 수 있으며, 보다 바람직한 Hel 값의 상한은 2.0일 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은 페라이트가 기지조직이며, 경질조직이 잔부조직인 복합조직을 구비할 수 있다. 페라이트의 분율이 적을수록 상대적으로 경질상의 분율이 증가하므로, 복합조직을 구현하는 데에는 다소 유리하지만, 항복강도 및 항복비의 상승이 필수적으로 수반되어 부품 가공 시 표면 굴곡 결함 발생 가능성이 높아지는 문제점이 존재한다. 따라서, 본 발명은 강판 전체 두께(t)를 기준으로, 페라이트의 분율을 95면적% 이상으로 제한할 수 있다.
잔부조직으로 포함되는 경질조직은 마르텐사이트일 수 있으며, 베이나이트 및 펄라이트를 일부 포함할 수도 있다. 다만, 베이나이트 및 펄라이트의 형성량은 가급적 최소화 하는 것이 바람직하다. 본 발명의 마르텐사이트는 평균직경이 1㎛ 이하인 미세 마르텐사이트일 수 있다. 마르텐사이트가 미세화될수록 고용 탄소(C) 또는 질소(N)가 고착될 사이트(가동 전위)가 다량 형성되므로, 본 발명이 목적하는 소부경화성 및 내시효성을 보다 효과적으로 확보할 수 있다. 반면, 마르텐사이트가 다량 형성되는 경우, 연신율이 저하될 뿐만 아니라, 부품 가공 시 표면 굴곡이 발생할 가능성이 존재하므로, 마르텐사이트의 분율을 일정 수준 이하로 제한함이 바람직하다. 따라서, 본 발명의 마르텐사이트 분율은 2면적% 이하(0% 제외)일 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 아래의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상일 수 있다.
[관계식 1]
V(%) = {Vtp / (Vgb + Vtp)} × 100
상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.
일 예로서, 광학 또는 전자현미경을 이용한 미세조직 관찰 시, 10,000㎛ 2 크기의 관찰영역을 지정하여 해당 관찰영역 내의 미세조직을 관찰하되, 해당 관찰영역 내의 페라이트 입계에서 관찰되는 전체 마르텐사이트의 개수를 Vgb로 규정하고, 동일한 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 마르텐사이트의 개수를 Vtp로 규정하여, 입계 삼중점의 경질조직 점유비(V)를 산출할 수 있다.
여기서, 전체 마르텐사이트의 개수(Vgb)는 현미경을 이용하여 관찰영역 내의 모든 페라이트 입계에서 관찰 가능한 마르텐사이트의 총 개수를 의미하며, 입계 삼중점의 마르텐사이트 개수(Vtp)는 관찰영역 내에서 3개 이상의 페라이트 입계가 만나는 점(point)을 중심으로 직경 50nm 이내의 영역을 설정한 후, 해당 영역을 일부라도 차지하는 마르텐사이트의 개수를 의미한다.
본 발명의 발명자는 강판의 소부경화성 및 상온내시효성의 동시 확보와 관련하여 심도 있는 연구를 수행하였으며, 그 결과, 전체 마르텐사이트의 분율 뿐만 아니라 마르텐사이트의 분포가 소부경화성에 지대한 영향을 미치는 것을 알 수 있었다. 즉, 본 발명의 발명자는 마르텐사이트의 분포를 제어를 통해 마르텐사이트 주변의 가동전위와 고용탄소(C) 사이의 상호작용 빈도를 제어할 수 있다는 것을 확인하고, 소부경화성 및 상온내시효성 동시 확보를 위하여 마르텐사이트의 분포를 최적의 조건으로 제어한다는 착안으로부터 본 발명을 도출하였다.
마르텐사이트는 강판의 냉각 중에 형성되며, 마르텐사이트 주변에는 부피팽창에 의해 다량의 가동전위가 형성된다. 소부경화성을 향상시키는 하나의 방안으로 마르텐사이트의 분율을 증가시키는 방안이 있으나, 이 경우 상온내시효성의 열위가 필수적으로 수반되므로, 소부경화성 및 상온내시효성의 동시 확보 목적을 달성하기 매우 어렵다.
페라이트의 입계에는 페라이트의 결정립내에 비해 다량의 탄소(C)가 농화되며, 페라이트의 입계 삼중점은 페라이트 입계 중에서도 높은 탄소(C) 농화도를 나타낸다. 강판에 통상의 소부 열처리 조건(170℃, 20분)을 적용하는 경우, 페라이트의 입계 삼중점으로부터의 탄소(C)의 확산이 가장 활발이 일어나므로, 페라이트의 입계 삼중점에 존재하는 가동전위에 탄소(C)가 보다 쉽게 고착될 수 있다는 것을 의미한다. 반면, 인공시효 조건(100℃, 1시간)에서는 상대적으로 온도가 낮아 입계 및 마르텐사이트로부터의 탄소(C) 확산이 제한되므로, 마르텐사이트의 분포도에 따른 큰 차이점은 발생하지 않는다. 즉, 페라이트의 입계 삼중점에 다량의 마르텐사이트를 분포시키는 경우, 강판의 상온내시효성을 유지하면서도 소부경화성을 더욱 향상시킬 수 있음을 의미한다.
따라서, 본 발명은 관계식 2에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)를 70% 이상으로 제한하므로, 상온내시효성을 일정 수준으로 유지하면서도, 소부경화성을 효과적으로 향상시킬 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판은, 소부경화량(BH, 170℃에서 20분간 열처리한 후 인장시험)이 30MPa 이상이고, 항복점연신(YP-El, 100℃에서 1시간 열처리 후 인장시험)이 0.2% 이하일 수 있다.
본 발명의 다른 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 도금강판은, 상술한 냉연강의 적어도 일측에 형성된 도금층 또는 합금화도금층을 포함할 수 있다. 상기 도금층 및 합금화도금층은 용융아연도금층 및 합금화용융아연도금층일 수 있으나, 반드시 이들에 국한되는 것은 아니며, 자동차 외판용 소재로서 적합한 모든 도금층 및 합금화 도금층을 포함하는 개념으로 해석될 수 있다.
이하, 본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법은, 소정의 합금조성으로 구비되는 슬라브를 가열하는 단계; 상기 슬라브를 열간압연하여 열연강판을 제공하는 단계; 상기 열연강판을 권취하는 단계; 상기 열연강판을 냉간압연하여 냉연강판을 제공하는 단계; 및 상기 냉연강판을 연속소둔하는 단계를 포함하되, 상기 연속소둔은 1~10℃/s의 승온속도로 (Ac1+5℃)~(Ac3-20℃)의 온도범위까지 승온한 후 30~240초 동안 유지할 수 있다.
슬라브 가열
소정의 합금조성으로 구비되는 슬라브를 준비한 후 슬라브 재가열을 실시할 수 있다. 본 발명의 슬라브는 전술한 냉연강판과 대응하는 합금조성을 가지므로, 슬라브의 합금조성에 대한 설명은 전술한 냉연강판의 합금조성에 대한 설명으로 대신한다.
슬라브 재가열은 후속하는 열간압연을 원활히 수행하고, 목표로 하는 강판의 물성을 충분히 얻기 위하여 행하여지므로, 본 발명에서는 이러한 슬라브 재가열 공정 조건에 대해 특별히 제한하지 않는다. 따라서, 본 발명의 슬라브 재가열은 통상의 조건이라면 무방하며, 일 예로서 1100~1300℃의 온도범위에서 슬라브 재가열을 실시할 수 있다.
열간압연 및 권취
재가열된 슬라브를 880℃ 이상의 온도범위에서 마무리 압연한 후, 400~700℃의 온도범위에서 권취할 수 있다.
마무리 열간압연은 오스테나이트 단상역에서 실시하는 것이 바람직하다. 마무리 열간압연을 오스테나이트 단상역에서 실시하는 경우, 팬케이크(pancake) 형태의 오스테나이트 및 변형대(deformation band)를 형성하므로, 최종 조직의 미세화에 보다 유리하기 때문이다. 또한, 오스테나이트와 페라이트의 이상역에서 마무리 열간압연이 실시되는 경우, 재질 불균일성을 유발하며, 과도한 압연 부하를 초래할 수 있다. 따라서, 본 발명은 오스테나이트 단상역에서 마무리 열간압연이 이루어지도록, 마무리 연간압연의 온도 범위를 880℃ 이상으로 제한할 수 있다. 본 발명은 마무리 압연 온도의 상한을 특별히 한정하지는 않는다. 다만, 이상 조대립 형성에 의한 재질불균형을 방지하기 위하여, 마무리 열간압연 온도 범위의 상한을 950℃로 제한할 수 있다.
이후 열간압연이 종료된 강판을 열연코일로 권취할 수 있다. 권취온도가 일정 수준에 미치지 않는 경우, 마르텐사이트 또는 베이나이트 등의 경질상이 다량 형성되어 강판의 과다한 강도 상승을 초래할 수 있다. 따라서, 본 발명은 권취 후 후속되는 냉간압연에서의 압연부하 저감 및 형상불량 방지 측면에서, 권취 온도를 400℃ 이상으로 제한할 수 있다. 반면, 권취온도가 일정 범위를 초과하는 경우, 강 중의 산화성 원소들의 표면농화가 심해지는 문제점이 존재한다. 따라서, 본 발명은 강판의 표면품질 및 도금품질 확보를 위해 권취 온도의 상한을 700℃로 제한할 수 있다.
냉간압연
권취된 열연강판은 통상의 조건으로 산세처리될 수 있으며, 이후 냉간압연을 적용하여 냉연강판을 제공할 수 있다. 본 발명의 냉간압연은 50~90%의 압하율로 실시함이 바람직하다. 만약, 냉간압연의 압하율이 일정 수준 미만이 경우, 목표로 하는 강판 두께를 확보하기 어렵고, 강판의 형상교정이 어려운 문제점이 존재하므로, 본 발명은 냉간압연의 압하율 하한을 50%로 제한할 수 있다. 반면, 냉간압연의 압하율이 일정 수준을 초과하는 경우, 강판 에지(edge) 부에서 크랙이 발생할 가능성이 높고, 과도한 압연부하가 문제될 수 있는바, 본 발명은 냉간압연의 압하율을 상한을 90%로 제한할 수 있다.
연속소둔
본 발명이 목적하는 미세조직, 특히 페라이트와 마르텐사이트의 분율 및 마르텐사이트의 분포도 제어를 위해, 연속소둔 조건의 엄격한 관리가 필수적이다. 본 발명의 목적하는 미세조직 확보를 위해, 냉간압연이 완료된 냉연강판을 1~10℃/s의 승온속도로 (Ac1+5℃)~(Ac3-20℃)의 온도범위까지 승온한 후 30~240초 동안 유지하는 연속소둔을 실시할 수 있다.
연속소둔 시 승온 속도가 일정 수준 미만인 경우, 너무 느린 승온으로 인하여 조직간의 크기 불균일성이 심화되고, 초기 페라이트 사이즈가 필요 이상으로 조대하게 형성되어 강판의 강도 하략을 유발할 수 있다. 즉, 페라이트의 결정립 크기가 증가함에 따라, 페라이트 결정립계 중 페라이트 입계 삼중점이 차지하는 비율이 감소하며, 목적하는 페라이트 입계 삼중점의 마르텐사이트 점유비(V)를 확보하더라도 마르텐사이트의 전체 함량이 낮아져 목표하는 물성 확보가 어려워질 수 있다. 따라서, 본 발명은 승온속도의 하한을 1℃/s로 제한할 수 있으며, 보다 바람직한 승온속도의 상한은 2℃/s일 수 있다. 반면, 본 발명은 연속소둔 시 승온 속도의 상한을 특별히 규정하지는 않는다. 다만, 승온 속도가 과도하게 높은 경우, 현장 설비에 과도한 부담을 초래할 수 있으므로, 본 발명은 승온속도의 상한을 10℃/s로 제한할 수 있다.
소둔온도는 (Ac1+5℃)~(Ac3-20℃)의 범위가 바람직하다. 본 발명은 최종 강판에서의 페라이트와 마르텐사이트의 분율 및 마르텐사이트의 분포를 제어하고자 하므로, 이상역 온도구간에서 일정 시간 유지하는 연속소둔을 실시할 수 있다. 소둔온도가 과도하게 낮은 경우, 이상역 온도에서의 오스테나이트 분율이 과도하게 낮아짐으로써, 최종 강판에서 목적하는 수준의 마르텐사이트 분율을 구현할 수 없는 문제점이 존재한다. 따라서, 본 발명은 목적하는 마르텐사이트 분율 확보를 위해, 소둔온도의 하한을 (Ac1+5℃)로 제한할 수 있다. 바람직한 소둔온도의 하한은 (Ac1+10℃)일 수 있으며, 보다 바람직한 소둔온도의 하한은 (Ac1+15℃)일 수 있다.
반면, 일반적인 590MPa급 이상조직강(DP)에서는 소둔온도가 높아질 경우, 이상역 온도에서의 오스테나이트 분율이 증가하며, 이에 따라 최종 강판에서 조대한 마르텐사이트가 다량 형성되는 문제점이 발생할 수 있다. 하지만, 490MPa급 이하의 저강도 이상조직 및 복합조직강에서는 소둔온도가 높아질 경우, 이상역 온도에서의 오스테나이트 분율이 증가하지만, 이것이 최종 강판에서 마르텐사이트 분율이 높음을 의미하지는 않는다. 이상역 온도에서 오스테나이트 분율이 많아진다는 것은 강판 내 존재하는 경화능 원소(대표적으로 C, Mn)들이 더 많은 오스테나이트 영역으로 확산한다는 것을 의미하며, 낮은 이상역 온도(적은 이상역 오스테나이트 분율을 의미) 대비 오스테나이트 내 경화능 원소의 농도가 낮다는 것을 의미한다. 즉, 소둔온도가 높아지는 경우 오스테나이트의 안정도를 낮게 하여 소둔 후 냉각 중 페라이트로의 변태가 용이하게 하므로, 최종적으로 생성되는 마르텐사이트 함량이 오히려 줄어들게 되어 목표하는 마르텐사이트 함량을 확보하기 어렵다. 즉, 본 발명이 목적하는 490MPa급 이하의 저강도 복합조직강에서는 소둔온도가 과도하게 높은 경우, 이상역 오스테나이트의 안정도가 과도하게 낮아지기 때문에, 최종 마르텐사이트 분율이 낮아져, 목적하는 수준의 소부경화성을 확보할 수 없는 문제점이 존재한다.
또한, 본 발명의 연속소둔은 이상역 온도구간에서 실시하는 것을 목표로 하나, 가급적 페라이트 형성이 유리한 온도구간에서 연속소둔을 실시하는 것이 바람직하다. 페라이트 형성이 유리한 온도구간에서 연속소둔을 실시하는 경우, 초기 페라이트 형성을 촉진하여 결정립 성장에 보다 유리한 환경을 제공할 수 있기 때문이다. 또한, 페라이트 형성이 유리한 온도구간에서 연속소둔을 실시하는 경우, 오스테나이트 내에 탄소(C) 및 망간(Mn) 농도를 증가시키므로 마르텐사이트 개시온도(Ms)를 낮출 수 있으며, 후속되는 냉각 공정 또는 도금 후 냉각 공정에서 미세하고 균일한 마르텐사이트가 페라이트의 결정립에 다량 분포되어 형성되도록 유도할 수 있다. 따라서, 본 발명은 목적하는 목적하는 페라이트 입계 삼중점의 마르텐사이트 점유비(V) 확보를 위해 소둔온도의 상한을 (Ac3-20℃)로 제한할 수 있다. 바람직한 소둔온도의 상한은 (Ac3-25℃)일 수 있으며, 보다 바람직한 소둔온도의 상한은 (Ac3-30℃)일 수 있다.
승온 후 유지시간 역시 본 발명이 목적하는 미세조직 확보에 있어서 주요한 공정변수이다. 승온 후 유지시간이 일정 수준 미만인 경우, 탄소(C) 및 망간(Mn)이 이상역 구간에서 형성된 오스테나이트로 충분히 확산되지 않으므로 오스테나이트의 안정도를 떨어뜨리며, 소둔 후의 냉각 중에 오스테나이트가 목적하는 마르텐사이트가 아닌 다른 미세조직으로 변태될 가능성이 높아지게 된다. 따라서, 본 발명은 승온 후 유지시간의 하한을 30초로 제한하며, 보다 바람직한 승온 후 유지시간의 하한은 60초일 수 있다. 반면, 승온 후 유지시간이 일정 수준을 초과하는 경우, 초기에 형성된 페라이트가 필요 이상으로 조대하게 형성되므로, 최종 냉각 후에 형성된 페라이트 및 기타 조직과의 조직 사이즈 불균형을 초래할 수 있다. 이와 같은 조직 사이즈 불균형은 인장 물성, 소부경화성 및 내시효성을 열위하게 만드는 원인이 되므로, 본 발명은 승온 후 유지시간의 상한을 240초로 제한할 수 있다. 보다 바람직한 승온 후 유지시간의 상한은 180초일 수 있다.
전술한 제조공정을 통해 제조된 냉연강판은, 미세조직으로 95면적% 이상의 페라이트와 잔부 마르텐사이트를 포함할 수 있으며, 하기의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상을 만족할 수 있다.
[관계식 1]
V(%) = {Vtp / (Vgb + Vtp)} × 100
상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.
또한, 전술한 제조공정을 통해 제조된 냉연강판은, 30MPa 이상의 소부경화량(BH, 170℃에서 20분간 열처리한 후 인장시험) 및 0.2% 이하의 항복점연신(YP-El, 100℃에서 1시간 열처리 후 인장시험)을 만족할 수 있다.
본 발명의 일 측면에 따른 소부경화성 및 상온내시효성이 우수한 도금강판은 전술한 제조방법에 의해 제조된 냉연강판에 대해 도금공정을 적용함으로써 제공될 수 있다. 도금공정의 용융아연도금공정 또는 합금화 용융아연도금공정일 수 있으나, 반드시 이에 국한되는 것은 아니며, 통상의 자동차 외판용 소재에 적용되는 도금공정은 모두 적용 가능한 것으로 해석될 수 있다.
도금 공정의 비 제한적인 예로서, 통상적인 온도범위인 440~480℃의 용융아연도금욕(Pot)에 상술한 냉연강판을 침지하는 용융아연도금공정이 적용될 수 있다. 또 다른 도금 공정의 비 제한 적인 예로서, 통상적인 온도범위인 440~480℃의 용융아연도금욕(Pot)에 상술한 냉연강판을 침지한 후, 460~610℃의 온도범위에서 20초 이상 유지하여 합금화 처리하는 합금화용융아연도금공정이 적용될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것은 아니라는 점에 유의할 필요가 있다.
(실시예)
표 1의 합금조성을 가지는 슬라브를 준비한 후, 표 2의 공정조건을 적용하여 용융아연도금강판을 제조하였다. 각각의 시편들은 1200℃의 슬라브 재가열 온도조건 및 70%의 냉간압연 압하율이 공통적으로 적용되었다. 각 시편들의 미세조직 관찰 결과 및 물성 측정 결과를 표 2에 함께 기재하였다.
입계 삼중점의 경질조직 점유비(V)는, 주사전자미경(SEM, JEOL JSN-7001F, 분해능: 1nm)을 이용하여 측정하였다. 구체적으로, 각 시편의 두께방향 1/4t지점에 10,000㎛ 2의 관찰영역을 지정한 후, 관찰영역 내에서 페라이트의 입계에 존재하는 마르텐사이트 개수를 측정하여 입계 삼중점의 경질조직 점유비(V)를 산출하였다. 여기서, 전체 마르텐사이트 개수는 주사전자현미경을 이용하여 관찰영역 내의 모든 페라이트 입계에서 관찰 가능한 마르텐사이트의 총 개수를 의미한다. 또한, 입계 삼중점의 마르텐사이트 개수는, 관찰영역 내에서 3개 이상의 페라이트 입계가 만나는 점(point)을 중심으로 직경 50nm 이내의 영역을 설정한 후 해당 영역을 일부라도 차지하는 마르텐사이트의 개수를 의미한다.
소부경화성(BH 2)은 각 시편을 2% pre-strain하여 2% 일때의 flow-stress를 측정하고, 동시편을 170℃에서 20분간 열처리한 후 인장시험을 실시하여 측정하였다. 항복점연신(YP-El)은 100℃에서 1시간 열처리한 후 인장시험을 실시하여 측정하였다. 이때, 인장시험 조건은 ASTM-e8/e8m-16a 규격을 적용하였다.
강종 합금조성
(wt%)
[관계식2]
H el
A c1 *
(℃)
A c3 **
(℃)
C Mn P S N Cr S-Al Si
1 0.0035 2.21 0.013 0.005 0.003 0.74 0.028 0.003 1.66 734 873
2 0.0071 2.49 0.011 0.004 0.003 0.91 0.032 0.004 1.93 734 868
3 0.0024 2.05 0.008 0.006 0.004 0.48 0.033 0.001 1.39 731 876
4 0.011 1.65 0.091 0.007 0.003 0.25 0.024 0.002 1.02 731 880
5 0.0097 1.98 0.013 0.003 0.002 0.62 0.031 0.003 1.46 734 875
6 0.0068 2.34 0.021 0.004 0.003 0.53 0.045 0.001 1.64 729 856
7 0.0014 2.45 0.018 0.005 0.004 0.63 0.033 0.002 1.70 731 872
8 0.0085 1.31 0.021 0.004 0.004 0.35 0.039 0.005 0.93 735 884
9 0.0021 4.15 0.016 0.006 0.002 0.65 0.033 0.002 2.56 719 853
10 0.0017 0.88 0.015 0.005 0.005 0.87 0.043 0.001 1.09 745 888
* A c1=739-22*[C]-7*[Mn]+2*[Si]+14*[Cr]+13*[Mo]-13*[Ni]
** A c3=902-255*[C]-11*[Mn]+19*[Si]-5*[Cr]+13*[Mo]-20*[Ni]+55*[V]
강종 시편
No
열연 연속소둔 [관계식1]
V
(%)
BH 2
(MPa)
YP-El
(%)
FDT
(℃)
CT
(℃)
소둔온도 (℃) 승온속도 (℃/s) 유지시간
(s)
1 1-1 927 642 785 2.8 124 78 42 0
1-2 931 613 805 7.6 68 81 38 0
2 2-1 915 519 718 3.5 52 0 39 0.65
2-2 941 581 820 5.2 49 90 51 0
3 3-1 921 667 797 6.2 168 85 47 0
3-2 916 629 822 0.3 205 62 28 0.11
4 4-1 909 558 815 8.1 187 57 28 0
4-2 935 228 864 4.9 109 76 32 0.28
5 5-1 924 670 825 5.7 39 83 43 0
5-2 921 561 895 3.3 64 54 38 0.34
6 6-1 932 553 828 9.2 384 38 27 0.41
6-2 911 605 782 6.8 221 73 57 0
7 7-1 908 646 785 1.5 194 77 25 0.08
8 8-1 910 635 824 6.0 143 83 42 0.75
9 9-1 915 579 835 2.5 89 87 38 0.51
10 10-1 922 622 831 3.4 75 92 22 0.81
본 발명이 제한하는 합금조성 및 공정조건을 모두 만족하는 시편들은 본 발명이 목적하는 소부경화성 및 상온내시효성을 모두 만족하는 반면, 본 발명이 제한하는 합금조성 또는 공정조건 중 어느 하나 이상을 만족하지 않는 시편들은 본 발명이 목적하는 소부경화성 및 상온내시효성을 동시에 만족하지는 않는 것을 확인할 수 있다.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (11)

  1. 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr:1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고,
    미세조직으로 기지조직인 페라이트와 잔부 경질조직을 포함하며,
    하기의 관계식 1에 의해 규정되는 입계 삼중점의 경질조직 점유비(V)가 70% 이상인, 소부경화성 및 상온내시효성이 우수한 냉연강판.
    [관계식 1]
    V(%) = {Vtp / (Vgb + Vtp)} × 100
    상기 관계식 1에서, Vgb는 관찰영역 내의 페라이트 입계에서 관찰되는 경질조직 개수를 의미하고, Vtp는 관찰영역 내의 페라이트 입계 삼중점에서 관찰되는 경질조직 개수를 의미한다.
  2. 제1항에 있어서,
    상기 페라이트의 분율은 95면적% 이상이며,
    상기 경질조직은 마르텐사이트를 포함하는, 소부경화성 및 상온내시효성이 우수한 냉연강판.
  3. 제1항에 있어서,
    상기 냉연강판은 하기의 관계식 2에 의해 정의되는 Hel이 1.2~2.5의 범위를 만족하는, 소부경화성 및 상온내시효성이 우수한 냉연강판.
    [관계식 2] Hel = [C] + 0.5*[Mn] + 0.75*[Cr]
    상기 관계식 2에서, [C], [Mn] 및 [Cr]은 각각 C, Mn 및 Cr 의 함량(중량%)를 의미한다.
  4. 제1항에 있어서,
    상기 냉연강판은, 중량%로, 0.1% 이하(0% 포함)의 실리콘(Si)을 더 포함하는, 소부경화성 및 상온내시효성이 우수한 냉연강판.
  5. 제1항에 있어서,
    상기 냉연강판은,
    소부경화량(BH, 170℃에서 20분간 열처리한 후 인장시험)이 30MPa 이상이고,
    항복점연신(YP-El, 100℃에서 1시간 열처리 후 인장시험)이 0.2% 이하인, 소부경화성 및 상온내시효성이 우수한 냉연강판.
  6. 제1항 내지 제5항 중 어느 한 항의 냉연강판; 및
    상기 냉연강판의 적어도 일측에 형성된 도금층 또는 합금화도금층을 포함하는, 소부경화성 및 상온내시효성이 우수한 도금강판.
  7. 중량%로, C: 0.002~0.015%, Mn: 1.5~3.0%, P: 0.03% 이하, S: 0.01% 이하, N: 0.01% 이하, sol.Al: 0.02~0.06%, Cr:1.2% 이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 가열하는 단계;
    상기 슬라브를 열간압연하여 열연강판을 제공하는 단계;
    상기 열연강판을 권취하는 단계;
    상기 열연강판을 냉간압연하여 냉연강판을 제공하는 단계; 및
    상기 냉연강판을 연속소둔하는 단계를 포함하되,
    상기 연속소둔은 1~10℃/s의 승온속도로 (Ac1+5℃)~(Ac3-20℃)의 온도범위까지 승온한 후 30~240초 동안 유지하는, 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법.
  8. 제7항에 있어서,
    상기 슬라브는 하기의 관계식 2에 의해 정의되는 Hel이 1.2~2.5의 범위를 만족하는, 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법.
    [관계식 2] Hel = [C] + 0.5*[Mn] + 0.75*[Cr]
    상기 관계식 2에서, [C], [Mn] 및 [Cr]은 각각 C, Mn 및 Cr 의 함량(중량%)를 의미한다.
  9. 제7항에 있어서,
    상기 슬라브는, 중량%로, 0.1% 이하(0% 포함)의 실리콘(Si)을 더 포함하는, 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법.
  10. 제7항에 있어서,
    상기 슬라브 가열 온도는 1100~1300℃이고,
    상기 열간압연의 마무리 압연 온도는 880℃ 이상이고,
    상기 권취 온도는 400~700℃이며,
    상기 냉간압연의 압하율은 50~90%인, 소부경화성 및 상온내시효성이 우수한 냉연강판의 제조방법.
  11. 제7항 내지 제10항 중 어느 한 항에 있어서,
    상기 냉연강판을 440~480℃의 용융아연도금욕에 침지하여 용융아연도금하는 단계; 및
    선택적으로 상기 용융아연도금 후 460~610℃의 온도범위에서 20초 이상 유지하여 합금화 처리하는 단계를 더 포함하는, 소부경화성 및 상온내시효성이 우수한 도금강판의 제조방법.
PCT/KR2020/017650 2019-12-20 2020-12-04 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법 WO2021125644A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022536684A JP2023507724A (ja) 2019-12-20 2020-12-04 焼付硬化性及び常温耐時効性に優れた冷延鋼板及びめっき鋼板、並びにこれらの製造方法
US17/787,020 US20230024446A1 (en) 2019-12-20 2020-12-04 Cold-rolled steel sheet and plated steel sheet having excellent bake hardenability and room-temperature aging resistance and method of manufacturing same
CN202080088901.4A CN114829664B (zh) 2019-12-20 2020-12-04 具有优异的烘烤硬化性和常温抗时效性的冷轧钢板和镀覆钢板以及它们的制造方法
EP20903585.6A EP4079915A4 (en) 2019-12-20 2020-12-04 COLD ROLLED STEEL SHEET AND CLAD STEEL SHEET EXHIBITING EXCELLENT BAKE HARDENABILITY AND ANTI-AGING PROPERTY AT ROOM TEMPERATURE, AND METHODS OF MAKING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0171888 2019-12-20
KR1020190171888A KR102326110B1 (ko) 2019-12-20 2019-12-20 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2021125644A1 true WO2021125644A1 (ko) 2021-06-24

Family

ID=76478448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017650 WO2021125644A1 (ko) 2019-12-20 2020-12-04 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법

Country Status (6)

Country Link
US (1) US20230024446A1 (ko)
EP (1) EP4079915A4 (ko)
JP (1) JP2023507724A (ko)
KR (1) KR102326110B1 (ko)
CN (1) CN114829664B (ko)
WO (1) WO2021125644A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496400A (en) * 1980-10-18 1985-01-29 Kawasaki Steel Corporation Thin steel sheet having improved baking hardenability and adapted for drawing and a method of producing the same
JPH06306531A (ja) 1993-04-21 1994-11-01 Nkk Corp 焼付硬化性に優れた加工用冷延鋼板及び表面処理鋼板
JPH07300623A (ja) * 1994-05-02 1995-11-14 Kawasaki Steel Corp 焼付硬化性および耐時効性に優れる加工用薄鋼板の製造方法
KR20050068358A (ko) * 2003-12-30 2005-07-05 주식회사 포스코 소부경화성과 상온 내시효성이 우수한 소부경화형냉연강판 및 그 제조방법
CN106244923A (zh) * 2016-08-30 2016-12-21 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法
KR20170012865A (ko) * 2015-07-24 2017-02-03 주식회사 포스코 내시효성 및 소부경화성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157146B2 (ja) * 2006-01-11 2013-03-06 Jfeスチール株式会社 溶融亜鉛めっき鋼板
JP2007077510A (ja) * 2006-11-16 2007-03-29 Jfe Steel Kk 耐時効性に優れた高強度高延性亜鉛めっき鋼板およびその製造方法
JP5549307B2 (ja) 2009-04-13 2014-07-16 Jfeスチール株式会社 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496400A (en) * 1980-10-18 1985-01-29 Kawasaki Steel Corporation Thin steel sheet having improved baking hardenability and adapted for drawing and a method of producing the same
JPH06306531A (ja) 1993-04-21 1994-11-01 Nkk Corp 焼付硬化性に優れた加工用冷延鋼板及び表面処理鋼板
JPH07300623A (ja) * 1994-05-02 1995-11-14 Kawasaki Steel Corp 焼付硬化性および耐時効性に優れる加工用薄鋼板の製造方法
KR20050068358A (ko) * 2003-12-30 2005-07-05 주식회사 포스코 소부경화성과 상온 내시효성이 우수한 소부경화형냉연강판 및 그 제조방법
KR20170012865A (ko) * 2015-07-24 2017-02-03 주식회사 포스코 내시효성 및 소부경화성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
CN106244923A (zh) * 2016-08-30 2016-12-21 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079915A4

Also Published As

Publication number Publication date
US20230024446A1 (en) 2023-01-26
KR20210079764A (ko) 2021-06-30
KR102326110B1 (ko) 2021-11-16
CN114829664B (zh) 2024-03-12
EP4079915A1 (en) 2022-10-26
CN114829664A (zh) 2022-07-29
JP2023507724A (ja) 2023-02-27
EP4079915A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2017105064A1 (ko) 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2018105904A1 (ko) 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2019124807A1 (ko) 소부경화성 및 내식성이 우수한 강판 및 그 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2021125644A1 (ko) 소부경화성 및 상온내시효성이 우수한 냉연강판 및 도금강판, 그리고 이들의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2021125724A2 (ko) 내열성과 성형성이 우수한 냉연강판 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2017018659A1 (ko) 내시효성 및 소부경화성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020903585

Country of ref document: EP

Effective date: 20220720