WO2021125330A1 - Head-up display - Google Patents

Head-up display Download PDF

Info

Publication number
WO2021125330A1
WO2021125330A1 PCT/JP2020/047467 JP2020047467W WO2021125330A1 WO 2021125330 A1 WO2021125330 A1 WO 2021125330A1 JP 2020047467 W JP2020047467 W JP 2020047467W WO 2021125330 A1 WO2021125330 A1 WO 2021125330A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
scan
pattern
laser beam
rows
Prior art date
Application number
PCT/JP2020/047467
Other languages
French (fr)
Japanese (ja)
Inventor
野本 貴之
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2021565683A priority Critical patent/JPWO2021125330A1/ja
Priority to CN202080077785.6A priority patent/CN114730088A/en
Publication of WO2021125330A1 publication Critical patent/WO2021125330A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • This disclosure relates to a head-up display.
  • Laser light is incident on a plurality of optical elements regularly arranged at a predetermined pitch along a plane forming a scanning surface, and can be visually recognized by the driver based on the light emitted from the plurality of optical elements.
  • a technique for displaying a clear display image is known.
  • an object of the present disclosure is to generate the display image in an appropriate manner in a configuration in which the visible display image changes only by changing the viewpoint in the vertical direction.
  • Emission means that emits laser light and A plurality of optical elements that are regularly arranged in a plane defined by the orthogonal first and second directions and diffuse the incident laser beam, and It includes a scanning means capable of scanning the laser beam with the plane as a scanning surface so as to hit each of the plurality of optical elements with a spot diameter smaller than the size of the optical element.
  • the emitting means includes a first laser beam corresponding to the first image for the first viewpoint and a second laser light corresponding to the second image for the second viewpoint separated from the first viewpoint in the vertical direction.
  • the scanning means makes the display image related to the first image visible, and when viewed from the second viewpoint, the display image related to the second image is visible.
  • the first laser beam is scanned by the first scanning pattern and the second laser beam is scanned by the second scanning pattern on the scanning surface.
  • the first scanning pattern is a first linear pattern along the first direction, and is a row with respect to one or more rows of optical elements linearly arranged in the first direction among the plurality of optical elements. Each includes a first linear pattern in which the first laser beam is continuously incident.
  • the second scanning pattern is a second straight line pattern along the first direction, and is offset by a predetermined offset amount in the second direction with respect to the first straight line pattern, and the optical elements in one or more rows.
  • a head-up display is provided that includes a second linear pattern in which the second laser beam is continuously incident on each row.
  • the present disclosure it is possible to generate the display image in an appropriate manner in a configuration in which the visible display image changes only by changing the viewpoint in the vertical direction.
  • FIG. 1 is a diagram schematically showing a vehicle-mounted state of the head-up display 1 according to one embodiment in a vehicle side view.
  • FIG. 2 is a schematic view showing the configuration of the head-up display 1.
  • FIG. 3 is a schematic view showing an example of the arrangement of the microlenses 41 forming the screen 40.
  • the upper and lower eye boxes may be eye boxes that are continuous in the vertical direction, or may be separate eye boxes that are separated vertically.
  • the dotted arrows R0 to R4 schematically show the flow of electric signals.
  • the driver who drives the vehicle VC sees the display obtained by the irradiation in front of the windshield WS.
  • Image (virtual image display) VI can be seen.
  • the driver can visually recognize the display image VI by superimposing it on the front scenery. Therefore, the driver can grasp the vehicle information and the like in a mode in which the line-of-sight movement is less than when looking at the meter in the instrument panel 9, and the convenience and safety are improved.
  • a combiner or the like may be used instead of the windshield WS.
  • the head-up display 1 includes a laser unit 10, a dichroic mirror unit 20, a condenser lens 28, a MEMS (Micro Electro Mechanical Systems) scanner 30, and a screen 40 (an example of an optical element). , And the control device 50.
  • the laser unit 10 includes laser irradiation devices 11, 12, and 13 for each color of red, blue, and green.
  • the laser irradiation device 11 emits laser light in the red wavelength region.
  • the laser irradiation device 12 emits laser light in a blue wavelength region.
  • the laser irradiation device 13 emits laser light in the green wavelength region.
  • a full-color display image VI can be generated.
  • the variation of the displayable color may be small.
  • the dichroic mirror unit 20 has dichroic mirrors 21, 22, and 23 corresponding to the laser irradiation devices 11, 12, and 13, respectively.
  • the dichroic mirror 21 reflects only the red wavelength region. Therefore, the dichroic mirror 21 can reflect only the laser light incident from the laser irradiation device 11 toward the condenser lens 28.
  • the dichroic mirror 22 transmits the red wavelength region and reflects the blue wavelength region. Therefore, the dichroic mirror 22 can reflect the laser light incident from the laser irradiation device 12 toward the condenser lens 28 while transmitting the laser light incident from the dichroic mirror 21.
  • the dichroic mirror 23 transmits the red and blue wavelength regions and reflects the green wavelength region. Therefore, the dichroic mirror 23 can reflect the laser light incident from the laser irradiation device 13 toward the condenser lens 28 while transmitting the laser light incident from the dichroic mirror 22.
  • the condenser lens 28 collects the laser light (laser light of each color of red, blue, and green) incident from the dichroic mirror unit 20 and emits it toward the MEMS scanner 30.
  • the laser light incident from the dichroic mirror unit 20 is projected onto the screen 40 with a spot diameter (diameter) smaller than the size of each of the plurality of microlenses 41 (described later) forming the screen 40.
  • the spot diameter is adapted so that the following relational expression holds.
  • Spot diameter ⁇ lens pitch / number of viewpoints the lens pitch is the pitch of the arrangement of a plurality of microlenses 41 described later (see PT1 and PT2 in FIG. 3), and the number of viewpoints is the display image VI by changing the viewpoint. Corresponds to the number of appearances of the display image VI when the appearance of the image changes, and is "2" in this embodiment.
  • the MEMS scanner 30 projects the laser beam incident from the condenser lens 28 onto the screen 40.
  • the MEMS scanner 30 includes a MEMS mirror that can rotate around two orthogonal axes.
  • the projection position of the laser beam on the screen 40 changes according to the orientation of the MEMS mirror. Therefore, the MEMS scanner 30 can arbitrarily change the projection position of the laser beam on the screen 40.
  • the screen 40 extends in a plane.
  • the screen 40 extends in the horizontal plane, but may be arranged in a direction slightly inclined with respect to the horizontal plane.
  • the screen 40 includes a plurality of microlenses 41 that are regularly arranged in a plane, as shown in FIG. That is, the screen 40 includes a two-dimensional microlens array.
  • the plurality of microlenses 41 typically have the same form, and in this embodiment, as an example, when viewed in the direction perpendicular to the screen 40, the outer shape is rectangular (square), but the outer shape is hexagonal. It may have other outer shapes such as.
  • the screen 40 may have an incident surface in a convex shape relating to the plurality of microlenses 41, and an exit surface may be a flat surface (see FIG. 5).
  • the plurality of microlenses 41 are arranged in a plane including the X direction (an example of the first direction) and the Y direction (an example of the second direction), and the plurality of microlenses 41 are preferably arranged. , As shown in FIG. 3, are regularly arranged at a constant pitch. In FIG. 3, the pitches PT1 and PT2 in the X direction and the Y direction are the same, but may be different. In this embodiment, as an example, the plurality of microlenses 41 are arranged in 9 rows in the X direction and 8 rows in the Y direction, but the number of rows in the X direction and the Y direction is arbitrary. The X direction and the Y direction are also shown in FIG. 2 above in association with the screen 40.
  • the control device 50 may be realized by a computer such as an ECU (Electronic Control Unit).
  • the control device 50 includes a laser control unit 51 and a scanner control unit 52.
  • the laser control unit 51 cooperates with the above-mentioned laser unit 10 to form an example of the emitting means
  • the scanner control unit 52 cooperates with the above-mentioned MEMS scanner 30 to scan. Form an example of means.
  • the laser control unit 51 controls the laser unit 10 based on the image signal for generating the display image VI (see arrows R1 to R3 in FIG. 2).
  • the image signal is visually recognized from the upper image signal for generating a display image VI visible from the upper viewpoint (see P1 in FIG. 2) and the lower viewpoint (see P2 in FIG. 2).
  • the upper image signal and the lower image signal may be generated by an external ECU and given to the control device 50 (see arrow R0 in FIG. 2), or may be generated by the control device 50 by itself. ..
  • the display image VI that can be visually recognized from the upper viewpoint is also referred to as “display image VI1” and can be visually recognized from the lower viewpoint (see P2 in FIG. 2).
  • the display image VI is also referred to as "display image VI2".
  • the upper image signal and the lower image signal may be the same signal or different signals.
  • the upper image signal and the lower image signal are different signals.
  • display images VI1 and display images VI2 that are different from each other can be formed.
  • the display image VI1 may include navigation-related information
  • the display image VI2 may include meter-related information.
  • the driver has two types of natural line-of-sight movements in line with the relationship between the general meter position (meter position in the instrument panel 9) and the display position of the display image VI of the head-up display 1.
  • the displayed images VI1 and VI2 can be selectively viewed (see the upper side of FIG. 2).
  • the upper image signal is, for example, a signal representing a pixel value (luminance or color) of each pixel of an image having a predetermined size and a predetermined resolution.
  • the lower image signal is, for example, a signal representing a pixel value (luminance or color) of each pixel of an image having a predetermined size and a predetermined resolution.
  • the predetermined size and the predetermined resolution may be the same for the upper image signal and the lower image signal.
  • Each pixel of the image is associated with each position of the screen 40 (each position on the scanning surface).
  • each pixel of the image may be associated with each position of the screen 40 (each position on the scanning surface) in a one-to-one relationship.
  • Each position of the screen 40 is associated with each orientation of the MEMS mirror of the MEMS scanner 30.
  • each pixel from the laser unit 10 at a timing corresponding to each pixel based on the pixel value of each pixel included in the upper image signal.
  • the laser unit 10 is controlled so that the laser beam of the color corresponding to the value is emitted. The same applies to the lower image signal.
  • the scanner control unit 52 controls the MEMS scanner 30 (see arrow R4 in FIG. 2). That is, the scanner control unit 52 scans the laser beam on the screen 40 by controlling the orientation of the MEMS mirror of the MEMS scanner 30.
  • “scanning the laser beam on the screen 40” means changing the projection position of the laser beam on the plane of the screen 40 (the projection position when viewed perpendicular to the plane of the screen 40). Point to.
  • the “scanning pattern” refers to the locus of the projection position (the locus of the projection position of the laser beam on the plane of the screen 40).
  • the plane related to the screen 40 that is, the plane on which a plurality of microlenses 41 are arranged) is also referred to as a “scanning surface”.
  • the scanner control unit 52 cooperates with the laser control unit 51 to transmit the laser beam (an example of the first laser beam) corresponding to the upper image signal into the upper scanning pattern (an example of the first scanning pattern). ), And the laser beam corresponding to the lower image signal (an example of the second laser beam) is scanned by the lower scanning pattern (an example of the second scanning pattern). That is, when operating based on the upper image signal, the scanner control unit 52 sets the laser unit 10 at each position on the scanning surface corresponding to each pixel based on the pixel value of each pixel included in the upper image signal.
  • the MEMS scanner 30 is controlled so that the laser beam from the source is projected. The same applies to the lower image signal.
  • FIG. 4 is an explanatory view showing an upper scanning pattern and a lower scanning pattern according to one embodiment (Example 1), and is a diagram showing the screen 40 in a plan view.
  • FIG. 5 is an explanatory diagram of the principle that the display images VI1 and VI2 are generated by the upper scanning pattern and the lower scanning pattern.
  • the X1 side and the X2 side in the X direction are defined, and the Y1 side and the Y2 side in the Y direction are defined.
  • FIG. 5 with respect to the screen 40, only three microlenses 41 arranged in the Y direction are taken out and shown in a cross-sectional view.
  • one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S4 of the scanning surface, and is alternately shifted in the Y direction by predetermined pitches PT41 and PT42 along the X direction.
  • a reciprocating linear scan is performed for each row (row in the Y direction) and ends at the end position E4 of the scanning surface.
  • the scanner control unit 52 and the MEMS scanner 30 can maintain the output states of the display images VI1 and VI2 by repeatedly executing such a single scan continuously in time.
  • the linear scan that reciprocates along the X direction includes an outward scan L401 and a return scan L402.
  • the outward scanning L401 is offset to the center O of each microlens 41 in the Y direction Y1 by a predetermined amount ⁇
  • the returning scanning L402 is offset in the Y direction Y2 with respect to the center O of each microlens 41. Offset to the side by a predetermined amount ⁇ .
  • the position of the start position S4 in the Y direction is a position deviated from the center O of the microlens 41 toward the Y1 side in the Y direction by a predetermined amount ⁇ .
  • the upper scanning pattern consists of a straight line pattern along the X direction by the outward scanning L401 (an example of the first straight line pattern), and the lower scanning pattern is a straight line along the X direction by the returning scanning L402. It consists of a pattern (an example of a second straight line pattern).
  • the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern, and the lower scanning pattern.
  • the display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by.
  • the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position deviated by ⁇ (see arrow R51).
  • the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511).
  • FIG. 5 the laser beam scanned by the upper scanning pattern
  • the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is only a predetermined amount ⁇ on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a deviated position (see arrow R52).
  • the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R521).
  • the incident position related to the laser beam (laser beam corresponding to the lower image signal) scanned in is located on the opposite side in the Y direction with the center O of the microlens 41 interposed therebetween. Therefore, the emission direction of the laser beam from the microlens 41 and the emission direction (see arrow R511) related to the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern and the lower side.
  • the emission direction (see arrow R521) related to the laser beam (laser beam corresponding to the lower image signal) scanned by the scanning pattern is inclined (non-parallel) with respect to each other as schematically shown in FIG. Will be).
  • the regions R510 and R520 are offset in the vertical direction in the windshield WS.
  • the predetermined offset amount correlates with the distance between the upper viewpoint (the viewpoint where the display image VI1 can be seen) and the lower viewpoint (the viewpoint where the display image VI2 can be seen) in the vertical direction.
  • the predetermined amounts ⁇ and ⁇ may be adapted according to the desired positions of the regions R510 and R520 (and thus the desired positions of the displayed images VI1 and VI2).
  • one scan is realized by a scanning pattern in which the upper scanning pattern and the lower scanning pattern are combined, so that the display images VI1 and VI2 are substantially simultaneously displayed. Can be generated. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2.
  • the displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
  • the display images VI1 and VI2 are generated substantially at the same time regardless of the driver's current viewpoint without detecting the driver's viewpoint with a camera or the like. Therefore, even if the driver's viewpoint changes, the driver can visually recognize the display image VI1 or VI2 without delay.
  • Example 2 6A and 6B are explanatory views showing an upper scanning pattern and a lower scanning pattern according to another embodiment (Example 2).
  • a linear scan that reciprocates along the X direction while shifting the pitch in the Y direction is executed for each row (row in the Y direction), and ends at the end position E6A or E6B of the scanning surface.
  • the scanner control unit 52 and the MEMS scanner 30 display by repeatedly executing such one scan shown in FIG. 6A and one scan shown in FIG. 6B repeatedly in a timely manner.
  • the output state of the images VI1 and VI2 can be maintained.
  • the position of the start position S6A in the Y direction is a position deviated from the center O of the microlens 41 on the Y1 side in the Y direction by a predetermined amount ⁇
  • the position of the start position S6B in the Y direction is the microlens. It is a position shifted by a predetermined amount ⁇ from the center O of 41 to the Y2 side in the Y direction.
  • the upper scanning pattern consists of a straight line pattern along the X direction by scanning L601 shown in FIG. 6A (an example of the first straight line pattern), and the lower scanning pattern is in the X direction by scanning L602 shown in FIG. 6A. It consists of a straight line pattern along with (an example of a second straight line pattern).
  • the laser beam scanned by the upper scanning pattern is a predetermined amount ⁇ on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51).
  • the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511).
  • the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount ⁇ on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
  • the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern.
  • the display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
  • one scan is different from the scan pattern in which the upper scan pattern and the lower scan pattern are combined, and only the upper scan pattern or the lower scan pattern is used. Therefore, the pitch in the Y direction in one scan can be set to a relatively large constant pitch PT2. As a result, the resolution of the change in orientation of the MEMS scanner 30 (resolution of the change in orientation with respect to the pitch in the Y direction) required to realize such scanning can be made relatively small, so that the control of the MEMS scanner 30 is relatively easy. Become.
  • the display images VI1 and VI2 can be generated substantially at the same time by executing the one scan shown in FIG. 6A and the one scan shown in FIG. 6B in close time to each other. .. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2.
  • the displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
  • the one scan shown in FIG. 6A and the one scan shown in FIG. 6B are alternately executed each time, but when the one scan time is sufficiently short, the one scan is executed alternately. It may be executed alternately every multiple times.
  • Example 3 7A and 7B are explanatory views showing an upper scanning pattern and a lower scanning pattern according to still another embodiment (Example 3).
  • one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S7A of the scanning surface, and one end side (X1) along the X direction while shifting by a predetermined pitch PT2 in the Y direction.
  • a linear scan from the side) to the other end side (X2 side) is executed for each row (row in the Y direction), and ends at the end position E7A of the scanning surface.
  • one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S7B of the scanning surface, and the other end along the X direction while shifting by a predetermined pitch PT2 in the Y direction.
  • a linear scan from the side (X2 side) to one end side (X1 side) is executed for each row (row in the Y direction), and ends at the end position E7B of the scanning surface.
  • the scanner control unit 52 and the MEMS scanner 30 display by repeatedly executing such one scan shown in FIG. 7A and one scan shown in FIG. 7B repeatedly in a timely manner.
  • the output state of the images VI1 and VI2 can be maintained.
  • the start position S7A is located on the X1 side in the X direction
  • the position in the Y direction is a position deviated from the center O of the microlens 41 on the Y1 side in the Y direction by a predetermined amount ⁇ .
  • the start position S7B is located on the X2 side in the X direction, and the position in the Y direction is a position deviated from the center O of the microlens 41 on the Y2 side in the Y direction by a predetermined amount ⁇ .
  • the upper scanning pattern is realized by one scanning shown in FIG. 7A, and is composed of a linear pattern along the X direction by scanning L701 (an example of the first linear pattern).
  • the lower scanning pattern is realized by one scanning shown in FIG. 7B, and is composed of a linear pattern along the X direction by scanning L702 (an example of a second linear pattern).
  • the laser beam scanned by the upper scanning pattern is a predetermined amount ⁇ on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51).
  • the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511).
  • the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount ⁇ on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
  • the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern.
  • the display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
  • control content itself of the MEMS scanner 30 for realizing the scanning shown in FIGS. 7A and 7B can be the same as the example shown in FIG. In this case, the only difference is the control over the laser unit 10. If the scanning shown in FIG. 4 is a "progressive method", the scanning shown in FIGS. 7A and 7B can be said to be an "interlaced method".
  • one scan is different from the scan pattern in which the upper scan pattern and the lower scan pattern are combined, and only the upper scan pattern or the lower scan pattern is used. Therefore, the pitch in the Y direction in one scan can be set to a relatively large constant pitch PT2. Further, since the control content of the MEMS scanner 30 itself is the same between the one scan shown in FIG. 7A and the one scan shown in FIG. 7B (because the control for the laser unit 10 is different), the scans are performed. It is not necessary to switch the control content of the MEMS scanner 30 (that is, the movement pattern of the MEMS scanner 30) every time, and the processing load can be reduced.
  • the display images VI1 and VI2 can be generated substantially at the same time by executing the one scan shown in FIG. 7A and the one scan shown in FIG. 7B in close time to each other. .. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2.
  • the displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
  • the one scan shown in FIG. 7A and the one scan shown in FIG. 7B are alternately executed each time, but when the one scan time is sufficiently short, the one scan is executed alternately. It may be executed alternately every multiple times.
  • the control content itself of the MEMS scanner 30 is the same as that of the one scan shown in FIG. 7A and the one scan shown in FIG. 7B, but the present invention is not limited to this.
  • the start position of one scan shown in FIG. 7B may be the start position S6B shown in FIG. 6B.
  • one scan starts from the start position S6B of the scanning surface, and is a straight line from one end side (X1 side) to the other end side (X2 side) along the X direction while shifting the predetermined pitch PT2 in the Y direction. Scanning is performed for each row (row in the Y direction) and ends at the end position E7B'(see FIG. 7B) of the scanning surface.
  • Example 4 8A to 8C and 9 are explanatory views showing an upper scanning pattern and a lower scanning pattern according to still another embodiment (Example 4).
  • one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start positions S8A, S8B or S8C of the scanning surface, and shifts by a predetermined pitch PT8A or PT8B in the Y direction.
  • a linear scan reciprocating along the X direction is performed on some rows (rows in the Y direction) and ends at the end position E8A, E8B or E8C of the scanning surface.
  • the scanner control unit 52 and the MEMS scanner 30 temporally perform such one scan shown in FIG. 8A, one scan shown in FIG. 8B, and one scan shown in FIG. 8C.
  • the output states can be maintained (see FIG. 9).
  • the start positions S8A, S8B, and S8C are all located on the X1 side in the X direction, and the Y direction position of the start position S8A is on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is a position deviated by a predetermined amount ⁇ .
  • the start position S8C is offset to the Y2 side in the Y direction with respect to the start position S8B by a difference offset amount.
  • the upper scanning pattern is composed of a straight line pattern (an example of the first straight line pattern) along the X direction by scanning L801 shown in FIGS. 8A to 8C
  • the lower scanning pattern is shown in FIGS. 8A to 8C. It is composed of a linear pattern (an example of a second linear pattern) along the X direction by the scanning L802 shown. That is, both the upper scanning pattern and the lower scanning pattern are realized in cooperation by three scans shown in FIGS. 8A to 8C. Also in this case, as shown in FIG.
  • the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount ⁇ on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51).
  • the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511).
  • the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount ⁇ on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
  • the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern.
  • the display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
  • three scans are executed in order to generate the display images VI1 and VI2 corresponding to one frame, but the display images VI1 and VI2 corresponding to one frame are executed. May be performed by 4 or more scans to generate.
  • the display images VI1 and VI2 are generated by using all the microlenses 41 forming the screen 40, respectively. Therefore, in this embodiment, the display images VI1 and VI2 having a relatively large size can be generated (or the display images VI2) as compared with the case where a part of the microlenses 41 forming the screen 40 is used. If the sizes of the display images VI1 and VI2 are the same, the resolution of the display images VI1 and VI2 can be improved), which is advantageous.
  • the display image VI1 and / or the display image VI2 may be generated by utilizing a part of the microlens 41 forming the screen 40.
  • the upper scanning pattern and the lower scanning pattern may both be patterns that scan only a part of the rows of the microlens 41 in the Y direction.
  • both the upper scanning pattern and / or the lower scanning pattern may be a pattern that scans only a part of the row in the X direction of the microlens 41.
  • the display images VI1 and VI2, which are different from each other, can be visually recognized from the two viewpoints offset in the vertical direction, but the present invention is not limited to this.
  • a configuration may be realized in which different display images can be visually recognized from three or more different viewpoints along the vertical direction.
  • the feedback control is not executed for the projection position of the laser beam on the screen 40, but the configuration is not limited to this.
  • a scanning position detection plate in which light receiving elements are arranged may be provided, and feedback control may be performed on the projection position of the laser beam on the screen 40.
  • the viewer of the display image is the driver of the vehicle, but the display image is formed so that other occupants (for example, occupants in the passenger seat and the rear seat) are the viewers. It may be.

Abstract

In a configuration in which a visually recognizable display image is changed by changing viewpoint in a vertical direction, the present invention generates the display image in an appropriate mode. Disclosed is a head-up display comprising: an emission means for continuously emitting a first laser beam corresponding to a first image for a first viewpoint and a second laser beam corresponding to a second image that is for a second viewpoint and that is away in the vertical direction with respect to the first viewpoint; and a scanning means for scanning the first laser beam in a first scan pattern and scanning the second laser beam in a second scan pattern on a scan surface such that the display image relating to the first image when viewed from the first viewpoint becomes visually recognizable and the display image relating to the second image when viewed from the second viewpoint becomes visually recognizable. The first scan pattern includes a first straight line pattern where the first laser beam continuously enters, for each column, at least one column of optical elements linearly arranged in a first direction. The second scan pattern includes a second straight line pattern that is offset by a predetermined offset amount in a second direction with respect to the first straight line pattern.

Description

ヘッドアップディスプレイHead-up display
 本開示は、ヘッドアップディスプレイに関する。 This disclosure relates to a head-up display.
 走査面を形成する平面に沿って所定ピッチで規則的に配列された複数の光学素子に対して、レーザ光を入射させ、複数の光学素子から出射される光に基づいて、運転者により視認可能な表示像を表示する技術が知られている。 Laser light is incident on a plurality of optical elements regularly arranged at a predetermined pitch along a plane forming a scanning surface, and can be visually recognized by the driver based on the light emitted from the plurality of optical elements. A technique for displaying a clear display image is known.
特開2015-225216号公報Japanese Unexamined Patent Publication No. 2015-225216
 しかしながら、上記のような従来技術では、視点を上下方向に変えるだけで、視認可能な表示像が変化する構成において、当該表示像を適切な態様で生成することが難しい。 However, in the above-mentioned conventional technology, it is difficult to generate the display image in an appropriate manner in a configuration in which the visible display image changes only by changing the viewpoint in the vertical direction.
 そこで、本開示は、視点を上下方向に変えるだけで、視認可能な表示像が変化する構成において、当該表示像を適切な態様で生成することを目的とする。 Therefore, an object of the present disclosure is to generate the display image in an appropriate manner in a configuration in which the visible display image changes only by changing the viewpoint in the vertical direction.
 1つの側面では、乗員により視認可能な表示像を表示するヘッドアップディスプレイであって、
 レーザ光を出射する出射手段と、
 直交する第1方向及び第2方向で規定される平面内で規則的に配列され、入射する前記レーザ光を拡散する複数の光学素子と、
 一の前記光学素子のサイズよりも小さいスポット径で前記複数の光学素子のそれぞれに当たるように、前記平面を走査面として前記レーザ光を走査可能な走査手段とを含み、
 前記出射手段は、第1視点用の第1画像に応じた第1レーザ光と、前記第1視点に対して上下方向で離れた第2視点用の第2画像に応じた第2レーザ光とを連続的に出射し、
 前記走査手段は、前記第1視点から視たときは前記第1画像に係る前記表示像が視認可能となりかつ前記第2視点から視たときは前記第2画像に係る前記表示像が視認可能となるように、前記走査面上で、前記第1レーザ光を第1走査パターンで走査するとともに前記第2レーザ光を第2走査パターンで走査し、
 前記第1走査パターンは、前記第1方向に沿った第1直線パターンであって、前記複数の光学素子のうちの、前記第1方向に直線状に並ぶ1列以上の光学素子に対して列ごとに前記第1レーザ光が連続的に入射する第1直線パターンを含み、
 前記第2走査パターンは、前記第1方向に沿った第2直線パターンであって、前記第1直線パターンに対して前記第2方向で所定のオフセット量だけオフセットし、前記1列以上の光学素子に対して列ごとに前記第2レーザ光が連続的に入射する第2直線パターンを含む、ヘッドアップディスプレイが提供される。
On one side, it is a head-up display that displays a display image that is visible to the occupants.
Emission means that emits laser light and
A plurality of optical elements that are regularly arranged in a plane defined by the orthogonal first and second directions and diffuse the incident laser beam, and
It includes a scanning means capable of scanning the laser beam with the plane as a scanning surface so as to hit each of the plurality of optical elements with a spot diameter smaller than the size of the optical element.
The emitting means includes a first laser beam corresponding to the first image for the first viewpoint and a second laser light corresponding to the second image for the second viewpoint separated from the first viewpoint in the vertical direction. Is continuously emitted,
When viewed from the first viewpoint, the scanning means makes the display image related to the first image visible, and when viewed from the second viewpoint, the display image related to the second image is visible. The first laser beam is scanned by the first scanning pattern and the second laser beam is scanned by the second scanning pattern on the scanning surface.
The first scanning pattern is a first linear pattern along the first direction, and is a row with respect to one or more rows of optical elements linearly arranged in the first direction among the plurality of optical elements. Each includes a first linear pattern in which the first laser beam is continuously incident.
The second scanning pattern is a second straight line pattern along the first direction, and is offset by a predetermined offset amount in the second direction with respect to the first straight line pattern, and the optical elements in one or more rows. A head-up display is provided that includes a second linear pattern in which the second laser beam is continuously incident on each row.
 本開示によれば、視点を上下方向に変えるだけで、視認可能な表示像が変化する構成において、当該表示像を適切な態様で生成することが可能となる。 According to the present disclosure, it is possible to generate the display image in an appropriate manner in a configuration in which the visible display image changes only by changing the viewpoint in the vertical direction.
一実施例によるヘッドアップディスプレイの車両搭載状態を車両側方視で概略的に示す図である。It is a figure which shows roughly the vehicle-mounted state of the head-up display by one Example in the vehicle side view. ヘッドアップディスプレイの構成を示す概略図である。It is the schematic which shows the structure of the head-up display. スクリーンを形成するマイクロレンズの配列の一例を示す概略図である。It is the schematic which shows an example of the arrangement of microlenses forming a screen. 一実施例(実施例1)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scanning pattern for upper side and the scanning pattern for lower side by one Example (Example 1). 上側用走査パターン及び下側用走査パターンによって2種類の表示像が生成される原理の説明図である。It is explanatory drawing of the principle that two kinds of display images are generated by the upper scanning pattern and the lower scanning pattern. 他の一実施例(実施例2)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 2). 他の一実施例(実施例2)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 2). 他の一実施例(実施例3)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 3). 他の一実施例(実施例3)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 3). 他の一実施例(実施例4)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 4). 他の一実施例(実施例4)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 4). 他の一実施例(実施例4)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 4). 他の一実施例(実施例4)による上側用走査パターン及び下側用走査パターンを示す説明図である。It is explanatory drawing which shows the scan pattern for upper side and the scan pattern for lower side by another Example (Example 4).
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図3等では、見易さのために、複数存在する同一属性の部位や部分には、一部のみしか参照符号が付されていない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the attached drawings. In addition, in FIG. 3 and the like, for the sake of easy viewing, there are cases where a reference reference numeral is only partially attached to a plurality of parts or parts having the same attribute.
 [ヘッドアップディスプレイの構成]
 図1は、一実施例によるヘッドアップディスプレイ1の車両搭載状態を車両側方視で概略的に示す図である。図2は、ヘッドアップディスプレイ1の構成を示す概略図である。図3は、スクリーン40を形成するマイクロレンズ41の配列の一例を示す概略図である。図2には、視点が相対的に上側のアイボックス内の位置にあるときの運転者の顔P1と、視点が相対的に下側のアイボックス内の位置にあるときの運転者の顔P2が模式的に示される。なお、上側と下側のアイボックスは、上下方向で連続するアイボックスであってもよいし、上下に分離された別のアイボックスであってもよい。また、図2において、点線の矢印R0からR4は、電気信号の流れを模式的に示す。
[Head-up display configuration]
FIG. 1 is a diagram schematically showing a vehicle-mounted state of the head-up display 1 according to one embodiment in a vehicle side view. FIG. 2 is a schematic view showing the configuration of the head-up display 1. FIG. 3 is a schematic view showing an example of the arrangement of the microlenses 41 forming the screen 40. In FIG. 2, the driver's face P1 when the viewpoint is relatively in the upper eyebox and the driver's face P2 when the viewpoint is in the relatively lower eyebox. Is schematically shown. The upper and lower eye boxes may be eye boxes that are continuous in the vertical direction, or may be separate eye boxes that are separated vertically. Further, in FIG. 2, the dotted arrows R0 to R4 schematically show the flow of electric signals.
 ヘッドアップディスプレイ1では、図1に示すように、ウインドシールドWSに表示光が照射されると、車両VCを運転する運転者にとっては、ウインドシールドWSよりも前方に、当該照射によって得られた表示像(虚像表示)VIが見える。これにより、運転者は、前方風景と重畳させて表示像VIを視認できる。したがって、運転者は、インストルメントパネル9内のメータを見る場合に比べて視線移動の少ない態様で車両情報等を把握でき、利便性及び安全性が向上する。なお、変形例では、ウインドシールドWSに代えて、コンバイナ等が利用されてもよい。 In the head-up display 1, as shown in FIG. 1, when the windshield WS is irradiated with the display light, the driver who drives the vehicle VC sees the display obtained by the irradiation in front of the windshield WS. Image (virtual image display) VI can be seen. As a result, the driver can visually recognize the display image VI by superimposing it on the front scenery. Therefore, the driver can grasp the vehicle information and the like in a mode in which the line-of-sight movement is less than when looking at the meter in the instrument panel 9, and the convenience and safety are improved. In the modified example, a combiner or the like may be used instead of the windshield WS.
 ヘッドアップディスプレイ1は、図2に示すように、レーザユニット10と、ダイクロイックミラーユニット20と、集光レンズ28と、MEMS(Micro Electro Mechanical Systems)スキャナ30と、スクリーン40(光学素子の一例)と、制御装置50とを含む。 As shown in FIG. 2, the head-up display 1 includes a laser unit 10, a dichroic mirror unit 20, a condenser lens 28, a MEMS (Micro Electro Mechanical Systems) scanner 30, and a screen 40 (an example of an optical element). , And the control device 50.
 レーザユニット10は、赤、青、緑の各色のレーザ照射装置11、12、13を含む。レーザ照射装置11は、赤色の波長域のレーザ光を出射する。レーザ照射装置12は、青色の波長域のレーザ光を出射する。レーザ照射装置13は、緑色の波長域のレーザ光を出射する。なお、本実施例では、かかる3色のレーザ光を出射可能であるので、フルカラーの表示像VIを生成可能である。ただし、変形例では、表示可能な色のバリエーションは少なくてもよい。 The laser unit 10 includes laser irradiation devices 11, 12, and 13 for each color of red, blue, and green. The laser irradiation device 11 emits laser light in the red wavelength region. The laser irradiation device 12 emits laser light in a blue wavelength region. The laser irradiation device 13 emits laser light in the green wavelength region. In this embodiment, since the laser beams of these three colors can be emitted, a full-color display image VI can be generated. However, in the modified example, the variation of the displayable color may be small.
 ダイクロイックミラーユニット20は、レーザ照射装置11、12、13のそれぞれに対応するダイクロイックミラー21、22、23を有する。ダイクロイックミラー21は、赤色の波長域のみを反射する。従って、ダイクロイックミラー21は、レーザ照射装置11から入射するレーザ光のみを、集光レンズ28に向けて反射できる。ダイクロイックミラー22は、赤色の波長域を透過し、青色の波長域を反射する。従って、ダイクロイックミラー22は、ダイクロイックミラー21から入射するレーザ光を透過しつつ、レーザ照射装置12から入射するレーザ光を、集光レンズ28に向けて反射できる。同様に、ダイクロイックミラー23は、赤色及び青色の波長域を透過し、緑色の波長域を反射する。従って、ダイクロイックミラー23は、ダイクロイックミラー22から入射するレーザ光を透過しつつ、レーザ照射装置13から入射するレーザ光を、集光レンズ28に向けて反射できる。 The dichroic mirror unit 20 has dichroic mirrors 21, 22, and 23 corresponding to the laser irradiation devices 11, 12, and 13, respectively. The dichroic mirror 21 reflects only the red wavelength region. Therefore, the dichroic mirror 21 can reflect only the laser light incident from the laser irradiation device 11 toward the condenser lens 28. The dichroic mirror 22 transmits the red wavelength region and reflects the blue wavelength region. Therefore, the dichroic mirror 22 can reflect the laser light incident from the laser irradiation device 12 toward the condenser lens 28 while transmitting the laser light incident from the dichroic mirror 21. Similarly, the dichroic mirror 23 transmits the red and blue wavelength regions and reflects the green wavelength region. Therefore, the dichroic mirror 23 can reflect the laser light incident from the laser irradiation device 13 toward the condenser lens 28 while transmitting the laser light incident from the dichroic mirror 22.
 集光レンズ28は、上述したようにダイクロイックミラーユニット20から入射するレーザ光(赤、青、緑の各色のレーザ光)を集光して、MEMSスキャナ30に向けて出射する。 As described above, the condenser lens 28 collects the laser light (laser light of each color of red, blue, and green) incident from the dichroic mirror unit 20 and emits it toward the MEMS scanner 30.
 集光レンズ28は、ダイクロイックミラーユニット20から入射するレーザ光が、スクリーン40を形成する複数のマイクロレンズ41(後述)のそれぞれのサイズよりも小さいスポット径(直径)で、スクリーン40上に投射されるように構成・配置される。例えば、スポット径は、以下の関係式が成り立つように適合される。スポット径≦レンズピッチ/視点数ここで、レンズピッチは、後述する複数のマイクロレンズ41の配列のピッチ(図3のPT1、PT2参照)であり、視点数は、視点を変えることで表示像VIの見え方が変化する場合の、表示像VIの見え方の数に対応し、本実施例では、“2”である。 In the condenser lens 28, the laser light incident from the dichroic mirror unit 20 is projected onto the screen 40 with a spot diameter (diameter) smaller than the size of each of the plurality of microlenses 41 (described later) forming the screen 40. It is configured and arranged so as to. For example, the spot diameter is adapted so that the following relational expression holds. Spot diameter ≤ lens pitch / number of viewpoints Here, the lens pitch is the pitch of the arrangement of a plurality of microlenses 41 described later (see PT1 and PT2 in FIG. 3), and the number of viewpoints is the display image VI by changing the viewpoint. Corresponds to the number of appearances of the display image VI when the appearance of the image changes, and is "2" in this embodiment.
 MEMSスキャナ30は、集光レンズ28から入射するレーザ光を、スクリーン40上に投射する。MEMSスキャナ30は、直交する2軸まわりに回転可能なMEMSミラーを備える。スクリーン40上のレーザ光の投射位置は、MEMSミラーの向きに応じて変化する。従って、MEMSスキャナ30は、スクリーン40上のレーザ光の投射位置を任意に変化させることができる。 The MEMS scanner 30 projects the laser beam incident from the condenser lens 28 onto the screen 40. The MEMS scanner 30 includes a MEMS mirror that can rotate around two orthogonal axes. The projection position of the laser beam on the screen 40 changes according to the orientation of the MEMS mirror. Therefore, the MEMS scanner 30 can arbitrarily change the projection position of the laser beam on the screen 40.
 スクリーン40は、平面内に延在する。本実施例では、一例として、スクリーン40は、水平面内に延在するが、水平面に対して若干傾斜する向きで配置されてもよい。スクリーン40は、図3に示すように、平面内で規則的に配列される複数のマイクロレンズ41を含む。すなわち、スクリーン40は、2次元のマイクロレンズアレイを含む。複数のマイクロレンズ41は、典型的には、それぞれ同じ形態であり、本実施例では、一例として、スクリーン40に対して垂直方向に視て、矩形(正方形)の外形であるが、六角形のような他の外形であってもよい。スクリーン40は、入射面が、複数のマイクロレンズ41に係る凸状の形態であり、出射面が平面であってよい(図5参照)。 The screen 40 extends in a plane. In this embodiment, as an example, the screen 40 extends in the horizontal plane, but may be arranged in a direction slightly inclined with respect to the horizontal plane. The screen 40 includes a plurality of microlenses 41 that are regularly arranged in a plane, as shown in FIG. That is, the screen 40 includes a two-dimensional microlens array. The plurality of microlenses 41 typically have the same form, and in this embodiment, as an example, when viewed in the direction perpendicular to the screen 40, the outer shape is rectangular (square), but the outer shape is hexagonal. It may have other outer shapes such as. The screen 40 may have an incident surface in a convex shape relating to the plurality of microlenses 41, and an exit surface may be a flat surface (see FIG. 5).
 図3に示す例では、複数のマイクロレンズ41は、X方向(第1方向の一例)とY方向(第2方向の一例)を含む平面内に配置され、複数のマイクロレンズ41は、好ましくは、図3に示すように、一定のピッチで規則的に配列される。なお、図3では、X方向とY方向での各ピッチPT1、PT2は、同じであるが、異なってもよい。本実施例では、一例として、複数のマイクロレンズ41は、X方向に9列かつY方向に8列で配列されるが、X方向及びY方向における列の数は任意である。なお、X方向及びY方向は、前出の図2においてもスクリーン40に対応付けて図示されている。 In the example shown in FIG. 3, the plurality of microlenses 41 are arranged in a plane including the X direction (an example of the first direction) and the Y direction (an example of the second direction), and the plurality of microlenses 41 are preferably arranged. , As shown in FIG. 3, are regularly arranged at a constant pitch. In FIG. 3, the pitches PT1 and PT2 in the X direction and the Y direction are the same, but may be different. In this embodiment, as an example, the plurality of microlenses 41 are arranged in 9 rows in the X direction and 8 rows in the Y direction, but the number of rows in the X direction and the Y direction is arbitrary. The X direction and the Y direction are also shown in FIG. 2 above in association with the screen 40.
 制御装置50は、ECU(Electronic Control Unit)のようなコンピュータにより実現されてよい。制御装置50は、レーザ制御部51と、スキャナ制御部52とを含む。なお、本実施例では、レーザ制御部51は、上述したレーザユニット10と協動して、出射手段の一例を形成し、スキャナ制御部52は、上述したMEMSスキャナ30と協動して、走査手段の一例を形成する。 The control device 50 may be realized by a computer such as an ECU (Electronic Control Unit). The control device 50 includes a laser control unit 51 and a scanner control unit 52. In this embodiment, the laser control unit 51 cooperates with the above-mentioned laser unit 10 to form an example of the emitting means, and the scanner control unit 52 cooperates with the above-mentioned MEMS scanner 30 to scan. Form an example of means.
 レーザ制御部51は、表示像VIを生成するための画像信号に基づいて、レーザユニット10を制御する(図2の矢印R1からR3参照)。本実施例では、一例として、画像信号は、上側視点(図2のP1参照)から視認可能な表示像VIを生成するための上側画像信号と、下側視点(図2のP2参照)から視認可能な表示像VIを生成するための下側画像信号と、を含む。なお、上側画像信号及び下側画像信号は、外部のECUにより生成されて、制御装置50に与えられてもよいし(図2の矢印R0参照)、制御装置50が自身で生成してもよい。 The laser control unit 51 controls the laser unit 10 based on the image signal for generating the display image VI (see arrows R1 to R3 in FIG. 2). In this embodiment, as an example, the image signal is visually recognized from the upper image signal for generating a display image VI visible from the upper viewpoint (see P1 in FIG. 2) and the lower viewpoint (see P2 in FIG. 2). Includes a lower image signal for generating a possible display image VI. The upper image signal and the lower image signal may be generated by an external ECU and given to the control device 50 (see arrow R0 in FIG. 2), or may be generated by the control device 50 by itself. ..
 以下では、説明上、区別のため、上側視点(図2のP1参照)から視認可能な表示像VIを「表示像VI1」とも表記し、下側視点(図2のP2参照)から視認可能な表示像VIを「表示像VI2」とも表記する。 In the following, for the sake of distinction, the display image VI that can be visually recognized from the upper viewpoint (see P1 in FIG. 2) is also referred to as “display image VI1” and can be visually recognized from the lower viewpoint (see P2 in FIG. 2). The display image VI is also referred to as "display image VI2".
 上側画像信号と下側画像信号とは、同じ信号であってもよいし、異なる信号であってもよい。本実施例では、一例として、上側画像信号と下側画像信号とは、異なる信号である。この場合、互いに異なる表示像VI1及び表示像VI2を形成できる。 The upper image signal and the lower image signal may be the same signal or different signals. In this embodiment, as an example, the upper image signal and the lower image signal are different signals. In this case, display images VI1 and display images VI2 that are different from each other can be formed.
 例えば、表示像VI1は、ナビゲーション関連の情報を含み、表示像VI2は、メータ関連の情報を含んでもよい。この場合、運転者は、一般的なメータ位置(インストルメントパネル9内のメータ位置)とヘッドアップディスプレイ1の表示像VIの表示位置との関係に即した自然な視線の動きで、2種類の表示像VI1、VI2を選択的に見ることができる(図2の上側参照)。 For example, the display image VI1 may include navigation-related information, and the display image VI2 may include meter-related information. In this case, the driver has two types of natural line-of-sight movements in line with the relationship between the general meter position (meter position in the instrument panel 9) and the display position of the display image VI of the head-up display 1. The displayed images VI1 and VI2 can be selectively viewed (see the upper side of FIG. 2).
 上側画像信号は、例えば、所定のサイズ及び所定の分解能の画像の各画素の画素値(輝度や色)を表す信号である。また、下側画像信号は、例えば、所定のサイズ及び所定の分解能の画像の各画素の画素値(輝度や色)を表す信号である。この場合、所定のサイズ及び所定の分解能は、上側画像信号と下側画像信号とで同じであってよい。なお、画像の各画素は、スクリーン40の各位置(走査面上の各位置)と対応付けられる。例えば、画像の各画素は、スクリーン40の各位置(走査面上の各位置)と一対一の関係で対応付けられてよい。なお、スクリーン40の各位置は、MEMSスキャナ30のMEMSミラーの各向きと対応付けられる。 The upper image signal is, for example, a signal representing a pixel value (luminance or color) of each pixel of an image having a predetermined size and a predetermined resolution. The lower image signal is, for example, a signal representing a pixel value (luminance or color) of each pixel of an image having a predetermined size and a predetermined resolution. In this case, the predetermined size and the predetermined resolution may be the same for the upper image signal and the lower image signal. Each pixel of the image is associated with each position of the screen 40 (each position on the scanning surface). For example, each pixel of the image may be associated with each position of the screen 40 (each position on the scanning surface) in a one-to-one relationship. Each position of the screen 40 is associated with each orientation of the MEMS mirror of the MEMS scanner 30.
 レーザ制御部51は、上側画像信号に基づいて、レーザユニット10を制御するときは、上側画像信号に含まれる各画素の画素値に基づいて、レーザユニット10から各画素に応じたタイミングで各画素値に応じた色のレーザ光が出射されるように、レーザユニット10を制御する。下側画像信号の場合も同様である。 When the laser control unit 51 controls the laser unit 10 based on the upper image signal, each pixel from the laser unit 10 at a timing corresponding to each pixel based on the pixel value of each pixel included in the upper image signal. The laser unit 10 is controlled so that the laser beam of the color corresponding to the value is emitted. The same applies to the lower image signal.
 スキャナ制御部52は、MEMSスキャナ30を制御する(図2の矢印R4参照)。すなわち、スキャナ制御部52は、MEMSスキャナ30のMEMSミラーの向きを制御することで、レーザ光をスクリーン40上で走査する。ここで、「レーザ光をスクリーン40上で走査する」とは、スクリーン40に係る平面上のレーザ光の投射位置(スクリーン40に係る平面に垂直に視たときの、投射位置)を変化させることを指す。また、以下で「走査パターン」とは、投射位置の軌跡(スクリーン40に係る平面上での、レーザ光の投射位置の軌跡)を指す。また、スクリーン40に係る平面(すなわち、複数のマイクロレンズ41が配列される平面)を、「走査面」とも称する。 The scanner control unit 52 controls the MEMS scanner 30 (see arrow R4 in FIG. 2). That is, the scanner control unit 52 scans the laser beam on the screen 40 by controlling the orientation of the MEMS mirror of the MEMS scanner 30. Here, "scanning the laser beam on the screen 40" means changing the projection position of the laser beam on the plane of the screen 40 (the projection position when viewed perpendicular to the plane of the screen 40). Point to. Further, in the following, the “scanning pattern” refers to the locus of the projection position (the locus of the projection position of the laser beam on the plane of the screen 40). Further, the plane related to the screen 40 (that is, the plane on which a plurality of microlenses 41 are arranged) is also referred to as a “scanning surface”.
 具体的には、スキャナ制御部52は、レーザ制御部51と協動して、上側画像信号に応じたレーザ光(第1レーザ光の一例)を、上側用走査パターン(第1走査パターンの一例)で走査し、下側画像信号に応じたレーザ光(第2レーザ光の一例)を、下側用走査パターン(第2走査パターンの一例)で走査する。すなわち、上側画像信号に基づいて動作するときは、スキャナ制御部52は、上側画像信号に含まれる各画素の画素値に基づいて、各画素に対応した走査面上の各位置に、レーザユニット10からのレーザ光が投射されるように、MEMSスキャナ30を制御する。下側画像信号の場合も同様である。 Specifically, the scanner control unit 52 cooperates with the laser control unit 51 to transmit the laser beam (an example of the first laser beam) corresponding to the upper image signal into the upper scanning pattern (an example of the first scanning pattern). ), And the laser beam corresponding to the lower image signal (an example of the second laser beam) is scanned by the lower scanning pattern (an example of the second scanning pattern). That is, when operating based on the upper image signal, the scanner control unit 52 sets the laser unit 10 at each position on the scanning surface corresponding to each pixel based on the pixel value of each pixel included in the upper image signal. The MEMS scanner 30 is controlled so that the laser beam from the source is projected. The same applies to the lower image signal.
 次に、図4以降を参照して、上側用走査パターン及び下側用走査パターンの好ましい実施例について、いくつか説明する。 Next, with reference to FIGS. 4 and later, some preferable examples of the upper scanning pattern and the lower scanning pattern will be described.
 [実施例1]
 図4は、一実施例(実施例1)による上側用走査パターン及び下側用走査パターンを示す説明図であり、スクリーン40を平面視で示す図である。図5は、上側用走査パターン及び下側用走査パターンによって表示像VI1、VI2が生成される原理の説明図である。図4(後出の図6A等も同様)には、X方向のX1側とX2側が定義されるとともに、Y方向のY1側とY2側が定義される。図5では、スクリーン40については、Y方向に並んだ3つのマイクロレンズ41だけを取り出して断面視で示される。Y方向は、スクリーン40が水平面内に位置するとき車両前後方向に対応する。このとき、X方向は、車両横方向(車幅方向)に対応する。なお、図5では、紙面に直角な方向がX方向である。
[Example 1]
FIG. 4 is an explanatory view showing an upper scanning pattern and a lower scanning pattern according to one embodiment (Example 1), and is a diagram showing the screen 40 in a plan view. FIG. 5 is an explanatory diagram of the principle that the display images VI1 and VI2 are generated by the upper scanning pattern and the lower scanning pattern. In FIG. 4 (the same applies to FIG. 6A and the like described later), the X1 side and the X2 side in the X direction are defined, and the Y1 side and the Y2 side in the Y direction are defined. In FIG. 5, with respect to the screen 40, only three microlenses 41 arranged in the Y direction are taken out and shown in a cross-sectional view. The Y direction corresponds to the vehicle front-rear direction when the screen 40 is located in the horizontal plane. At this time, the X direction corresponds to the vehicle lateral direction (vehicle width direction). In FIG. 5, the direction perpendicular to the paper surface is the X direction.
 図4に示す例では、スキャナ制御部52及びMEMSスキャナ30による1回の走査は、走査面の開始位置S4から開始し、Y方向に所定ピッチPT41、PT42だけ交互にずらしながらX方向に沿って往復する直線状の走査を、それぞれの列(Y方向の列)に対して実行し、走査面の終了位置E4で終了する。なお、スキャナ制御部52及びMEMSスキャナ30は、このような1回の走査を、時間的に連続して繰り返し実行することで、表示像VI1、VI2の出力状態を維持できる。 In the example shown in FIG. 4, one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S4 of the scanning surface, and is alternately shifted in the Y direction by predetermined pitches PT41 and PT42 along the X direction. A reciprocating linear scan is performed for each row (row in the Y direction) and ends at the end position E4 of the scanning surface. The scanner control unit 52 and the MEMS scanner 30 can maintain the output states of the display images VI1 and VI2 by repeatedly executing such a single scan continuously in time.
 図4では、X方向に沿って往復する直線状の走査は、往路側走査L401と、復路側走査L402とからなる。往路側走査L401と、復路側走査L402とは、各マイクロレンズ41を通り、互いに対してY方向で所定のオフセット量(=α+β)だけオフセットされる。換言すると、往路側走査L401は、各マイクロレンズ41の中心Oに対してY方向Y1側に所定量αだけオフセットし、復路側走査L402は、各マイクロレンズ41の中心Oに対してY方向Y2側に所定量βだけオフセットする。 In FIG. 4, the linear scan that reciprocates along the X direction includes an outward scan L401 and a return scan L402. The outward scanning L401 and the inbound scanning L402 pass through each of the microlenses 41 and are offset by a predetermined offset amount (= α + β) with respect to each other in the Y direction. In other words, the outward scanning L401 is offset to the center O of each microlens 41 in the Y direction Y1 by a predetermined amount α, and the returning scanning L402 is offset in the Y direction Y2 with respect to the center O of each microlens 41. Offset to the side by a predetermined amount β.
 所定ピッチPT41は、往路側走査L401から復路側走査L402に移行するときのピッチであり、所定のオフセット量(=α+β)に一致する。所定ピッチPT42は、復路側走査L402から往路側走査L401に移行するときのピッチであり、マイクロレンズ41のY方向のサイズ(=Y方向のピッチPT2)から、所定のオフセット量(=α+β)を引いた長さ(以下、「差分オフセット量」とも称する)である。なお、開始位置S4のY方向の位置は、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置である。 The predetermined pitch PT41 is the pitch at the time of transition from the outward scanning L401 to the inbound scanning L402, and corresponds to a predetermined offset amount (= α + β). The predetermined pitch PT42 is the pitch at the time of transition from the return scan L402 to the outward scan L401, and a predetermined offset amount (= α + β) is obtained from the size of the microlens 41 in the Y direction (= pitch PT2 in the Y direction). It is the subtracted length (hereinafter, also referred to as "difference offset amount"). The position of the start position S4 in the Y direction is a position deviated from the center O of the microlens 41 toward the Y1 side in the Y direction by a predetermined amount α.
 この場合、上側用走査パターンは、往路側走査L401によるX方向に沿った直線パターン(第1直線パターンの一例)からなり、下側用走査パターンは、復路側走査L402によるX方向に沿った直線パターン(第2直線パターンの一例)からなる。 In this case, the upper scanning pattern consists of a straight line pattern along the X direction by the outward scanning L401 (an example of the first straight line pattern), and the lower scanning pattern is a straight line along the X direction by the returning scanning L402. It consists of a pattern (an example of a second straight line pattern).
 このような上側用走査パターン及び下側用走査パターンによれば、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)により表示像VI1を生成でき、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)により表示像VI2を生成できる。 According to such an upper scanning pattern and a lower scanning pattern, the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern, and the lower scanning pattern. The display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by.
 より具体的には、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)は、図5に示すように、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置に入射する(矢印R51参照)。この場合、マイクロレンズ41からは、マイクロレンズ41の入射面の形態(球形の形態)に応じた方向に出射する(矢印R511参照)。他方、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)は、図5に示すように、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置に入射する(矢印R52参照)。この場合、マイクロレンズ41からは、マイクロレンズ41の入射面の形態(球形の形態)に応じた方向に出射する(矢印R521参照)。このとき、一のマイクロレンズ41における入射位置(スポット位置)であって、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)に係る入射位置と、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)に係る入射位置とは、同マイクロレンズ41の中心Oを挟んでY方向の逆側に位置する。このため、マイクロレンズ41からのレーザ光の出射方向であって、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)に係る出射方向(矢印R511参照)と、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)に係る出射方向(矢印R521参照)とは、図5に模式的に示すように、互いに対して傾斜する(非平行となる)。すなわち、ウインドシールドWSにおけるマイクロレンズ41からのレーザ光が入射する領域であって、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)に係る領域R510と、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)に係る領域R520とは、互いに離間する。具体的には、領域R510、R520は、ウインドシールドWSにおける上下方向にオフセットする。この結果、図2に模式的に示すように、上下方向にオフセットした領域R510、R520から運転者側へとレーザ光を投射できるので、表示像VI1、VI2を生成できる。なお、なお、所定のオフセット量は、上下方向で上側の視点(表示像VI1が見える視点)と下側の視点(表示像VI2が見える視点)との間の距離に相関する。所定量α、βは、領域R510、R520の所望の位置(ひいては表示像VI1、VI2の所望の位置)に応じて適合されてよい。 More specifically, as shown in FIG. 5, the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position deviated by α (see arrow R51). In this case, the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511). On the other hand, as shown in FIG. 5, the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is only a predetermined amount β on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a deviated position (see arrow R52). In this case, the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R521). At this time, the incident position (spot position) in one microlens 41, the incident position related to the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern, and the lower scanning pattern. The incident position related to the laser beam (laser beam corresponding to the lower image signal) scanned in is located on the opposite side in the Y direction with the center O of the microlens 41 interposed therebetween. Therefore, the emission direction of the laser beam from the microlens 41 and the emission direction (see arrow R511) related to the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern and the lower side. The emission direction (see arrow R521) related to the laser beam (laser beam corresponding to the lower image signal) scanned by the scanning pattern is inclined (non-parallel) with respect to each other as schematically shown in FIG. Will be). That is, the region R510 in which the laser beam from the microlens 41 in the windshield WS is incident and is related to the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern and the lower region. It is separated from the region R520 related to the laser beam (laser beam corresponding to the lower image signal) scanned by the scanning pattern. Specifically, the regions R510 and R520 are offset in the vertical direction in the windshield WS. As a result, as schematically shown in FIG. 2, since the laser beam can be projected from the vertically offset regions R510 and R520 to the driver side, the display images VI1 and VI2 can be generated. The predetermined offset amount correlates with the distance between the upper viewpoint (the viewpoint where the display image VI1 can be seen) and the lower viewpoint (the viewpoint where the display image VI2 can be seen) in the vertical direction. The predetermined amounts α and β may be adapted according to the desired positions of the regions R510 and R520 (and thus the desired positions of the displayed images VI1 and VI2).
 ここで、本実施例では、上述したように、1回の走査が、上側用走査パターンと下側用走査パターンを組み合わせた走査パターンで実現されるので、表示像VI1、VI2を実質的に同時に生成できる。従って、運転者は、表示像VI1を見たいときは相対的に上側に視点を移し、表示像VI2を見たいときは相対的に下側に視点を移すといった具合に、視点を上下方向に移動させるだけで、表示像VI1、VI2を連続的に視認できる。このようにして、本実施例によれば、視点を上下方向に変えるだけで視認可能な表示像VI1、VI2が変化する構成において、当該表示像VI1、VI2を適切な態様で生成することが可能となる。 Here, in the present embodiment, as described above, one scan is realized by a scanning pattern in which the upper scanning pattern and the lower scanning pattern are combined, so that the display images VI1 and VI2 are substantially simultaneously displayed. Can be generated. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2. The displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
 また、本実施例では、運転者の視点をカメラ等で検出することなく、運転者の現在の視点の如何にかかわらず、表示像VI1、VI2を実質的に同時に生成する。従って、運転者の視点が変化した場合でも遅れなく、表示像VI1又はVI2を運転者が視認できる。 Further, in this embodiment, the display images VI1 and VI2 are generated substantially at the same time regardless of the driver's current viewpoint without detecting the driver's viewpoint with a camera or the like. Therefore, even if the driver's viewpoint changes, the driver can visually recognize the display image VI1 or VI2 without delay.
 [実施例2]
 図6A及び図6Bは、他の一実施例(実施例2)による上側用走査パターン及び下側用走査パターンを示す説明図である。
[Example 2]
6A and 6B are explanatory views showing an upper scanning pattern and a lower scanning pattern according to another embodiment (Example 2).
 図6A及び図6Bに示す例では、スキャナ制御部52及びMEMSスキャナ30による1回の走査は、走査面の開始位置S6A又はS6Bから開始し、Y方向に一定ピッチPT2(=マイクロレンズ41の配列のY方向のピッチ)だけずらしながらX方向に沿って往復する直線状の走査を、それぞれの列(Y方向の列)に対して実行し、走査面の終了位置E6A又はE6Bで終了する。なお、スキャナ制御部52及びMEMSスキャナ30は、このような、図6Aに示す1回の走査と、図6Bに示す1回の走査とを、時間的に連続して繰り返し実行することで、表示像VI1、VI2の出力状態を維持できる。 In the example shown in FIGS. 6A and 6B, one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S6A or S6B of the scanning surface, and has a constant pitch PT2 (= microlens 41 arrangement) in the Y direction. A linear scan that reciprocates along the X direction while shifting the pitch in the Y direction is executed for each row (row in the Y direction), and ends at the end position E6A or E6B of the scanning surface. The scanner control unit 52 and the MEMS scanner 30 display by repeatedly executing such one scan shown in FIG. 6A and one scan shown in FIG. 6B repeatedly in a timely manner. The output state of the images VI1 and VI2 can be maintained.
 図6A及び図6Bに示す例では、開始位置S6A及び開始位置S6Bは、互いに対してY方向で所定のオフセット量(=α+β)だけオフセットする。具体的には、開始位置S6AのY方向の位置は、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置であり、開始位置S6BのY方向の位置は、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置である。 In the examples shown in FIGS. 6A and 6B, the start position S6A and the start position S6B are offset from each other by a predetermined offset amount (= α + β) in the Y direction. Specifically, the position of the start position S6A in the Y direction is a position deviated from the center O of the microlens 41 on the Y1 side in the Y direction by a predetermined amount α, and the position of the start position S6B in the Y direction is the microlens. It is a position shifted by a predetermined amount β from the center O of 41 to the Y2 side in the Y direction.
 この場合、上側用走査パターンは、図6Aに示す走査L601によるX方向に沿った直線パターン(第1直線パターンの一例)からなり、下側用走査パターンは、図6Aに示す走査L602によるX方向に沿った直線パターン(第2直線パターンの一例)からなる。この場合も、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置に入射する(矢印R51参照)。この場合、マイクロレンズ41からは、マイクロレンズ41の入射面の形態(球形の形態)に応じた方向に出射する(矢印R511参照)。他方、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置に入射する(矢印R52参照)。 In this case, the upper scanning pattern consists of a straight line pattern along the X direction by scanning L601 shown in FIG. 6A (an example of the first straight line pattern), and the lower scanning pattern is in the X direction by scanning L602 shown in FIG. 6A. It consists of a straight line pattern along with (an example of a second straight line pattern). Also in this case, as shown in FIG. 5, the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount α on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51). In this case, the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511). On the other hand, as shown in FIG. 5, the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount β on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
 従って、図6A及び図6Bに示す上側用走査パターン及び下側用走査パターンによれば、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)により表示像VI1を生成でき、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)により表示像VI2を生成できる。 Therefore, according to the upper scanning pattern and the lower scanning pattern shown in FIGS. 6A and 6B, the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern. , The display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
 ここで、本実施例では、上述したように、1回の走査が、上側用走査パターンと下側用走査パターンを組み合わせた走査パターンとは異なり、上側用走査パターン又は下側用走査パターンのみからなるので、1回の走査におけるY方向のピッチを、比較的大きい一定ピッチPT2とすることができる。これにより、かかる走査を実現するために必要なMEMSスキャナ30の向きの変化の分解能(Y方向のピッチに関する向きの変化の分解能)を比較的小さくできるので、MEMSスキャナ30の制御が比較的容易となる。 Here, in the present embodiment, as described above, one scan is different from the scan pattern in which the upper scan pattern and the lower scan pattern are combined, and only the upper scan pattern or the lower scan pattern is used. Therefore, the pitch in the Y direction in one scan can be set to a relatively large constant pitch PT2. As a result, the resolution of the change in orientation of the MEMS scanner 30 (resolution of the change in orientation with respect to the pitch in the Y direction) required to realize such scanning can be made relatively small, so that the control of the MEMS scanner 30 is relatively easy. Become.
 なお、本実施例においても、図6Aに示す1回の走査と、図6Bに示す1回の走査とを、時間的に近接させて実行することで、表示像VI1、VI2を略同時に生成できる。従って、運転者は、表示像VI1を見たいときは相対的に上側に視点を移し、表示像VI2を見たいときは相対的に下側に視点を移すといった具合に、視点を上下方向に移動させるだけで、表示像VI1、VI2を連続的に視認できる。このようにして、本実施例によれば、視点を上下方向に変えるだけで視認可能な表示像VI1、VI2が変化する構成において、当該表示像VI1、VI2を適切な態様で生成することが可能となる。 Also in this embodiment, the display images VI1 and VI2 can be generated substantially at the same time by executing the one scan shown in FIG. 6A and the one scan shown in FIG. 6B in close time to each other. .. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2. The displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
 なお、本実施例では、図6Aに示す1回の走査と、図6Bに示す1回の走査とは、1回ごとに交互に実行されるが、1回の走査時間が十分短い場合は、複数回ごとに交互に実行されてもよい。 In this embodiment, the one scan shown in FIG. 6A and the one scan shown in FIG. 6B are alternately executed each time, but when the one scan time is sufficiently short, the one scan is executed alternately. It may be executed alternately every multiple times.
 [実施例3]
 図7A及び図7Bは、更なる他の一実施例(実施例3)による上側用走査パターン及び下側用走査パターンを示す説明図である。
[Example 3]
7A and 7B are explanatory views showing an upper scanning pattern and a lower scanning pattern according to still another embodiment (Example 3).
 図7Aに示す例では、スキャナ制御部52及びMEMSスキャナ30による1回の走査は、走査面の開始位置S7Aから開始し、Y方向に所定ピッチPT2だけずらしながらX方向に沿って一端側(X1側)から他端側(X2側)への直線状の走査を、それぞれの列(Y方向の列)に対して実行し、走査面の終了位置E7Aで終了する。また、図7Bに示す例では、スキャナ制御部52及びMEMSスキャナ30による1回の走査は、走査面の開始位置S7Bから開始し、Y方向に所定ピッチPT2だけずらしながらX方向に沿って他端側(X2側)から一端側(X1側)への直線状の走査を、それぞれの列(Y方向の列)に対して実行し、走査面の終了位置E7Bで終了する。なお、スキャナ制御部52及びMEMSスキャナ30は、このような、図7Aに示す1回の走査と、図7Bに示す1回の走査とを、時間的に連続して繰り返し実行することで、表示像VI1、VI2の出力状態を維持できる。 In the example shown in FIG. 7A, one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S7A of the scanning surface, and one end side (X1) along the X direction while shifting by a predetermined pitch PT2 in the Y direction. A linear scan from the side) to the other end side (X2 side) is executed for each row (row in the Y direction), and ends at the end position E7A of the scanning surface. Further, in the example shown in FIG. 7B, one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start position S7B of the scanning surface, and the other end along the X direction while shifting by a predetermined pitch PT2 in the Y direction. A linear scan from the side (X2 side) to one end side (X1 side) is executed for each row (row in the Y direction), and ends at the end position E7B of the scanning surface. The scanner control unit 52 and the MEMS scanner 30 display by repeatedly executing such one scan shown in FIG. 7A and one scan shown in FIG. 7B repeatedly in a timely manner. The output state of the images VI1 and VI2 can be maintained.
 図7A及び図7Bに示す例では、開始位置S7A及び開始位置S7Bは、互いに対してY方向で所定のオフセット量(=α+β)だけオフセットし、かつ、X方向で逆側である。具体的には、開始位置S7Aは、X方向X1側に位置し、そのY方向の位置は、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置である。他方、開始位置S7Bは、X方向X2側に位置し、そのY方向の位置は、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置である。 In the examples shown in FIGS. 7A and 7B, the start position S7A and the start position S7B are offset from each other by a predetermined offset amount (= α + β) in the Y direction and are opposite to each other in the X direction. Specifically, the start position S7A is located on the X1 side in the X direction, and the position in the Y direction is a position deviated from the center O of the microlens 41 on the Y1 side in the Y direction by a predetermined amount α. On the other hand, the start position S7B is located on the X2 side in the X direction, and the position in the Y direction is a position deviated from the center O of the microlens 41 on the Y2 side in the Y direction by a predetermined amount β.
 この場合、上側用走査パターンは、図7Aに示す1回の走査により実現され、走査L701によるX方向に沿った直線パターン(第1直線パターンの一例)からなる。また、下側用走査パターンは、図7Bに示す1回の走査により実現され、走査L702によるX方向に沿った直線パターン(第2直線パターンの一例)からなる。この場合も、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置に入射する(矢印R51参照)。この場合、マイクロレンズ41からは、マイクロレンズ41の入射面の形態(球形の形態)に応じた方向に出射する(矢印R511参照)。他方、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置に入射する(矢印R52参照)。 In this case, the upper scanning pattern is realized by one scanning shown in FIG. 7A, and is composed of a linear pattern along the X direction by scanning L701 (an example of the first linear pattern). Further, the lower scanning pattern is realized by one scanning shown in FIG. 7B, and is composed of a linear pattern along the X direction by scanning L702 (an example of a second linear pattern). Also in this case, as shown in FIG. 5, the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount α on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51). In this case, the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511). On the other hand, as shown in FIG. 5, the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount β on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
 従って、図7A及び図7Bに示す上側用走査パターン及び下側用走査パターンによれば、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)により表示像VI1を生成でき、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)により表示像VI2を生成できる。 Therefore, according to the upper scanning pattern and the lower scanning pattern shown in FIGS. 7A and 7B, the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern. , The display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
 なお、本実施例では、図7A及び図7Bに示す走査を実現するためのMEMSスキャナ30の制御内容自体は、図4に示した例と同じとすることができる。この場合、レーザユニット10に対する制御が異なるだけである。なお、図4に示した走査が“プログレッシブ方式”であれば、図7A及び図7Bに示す走査は、“インターレース方式”ということができる。 In this embodiment, the control content itself of the MEMS scanner 30 for realizing the scanning shown in FIGS. 7A and 7B can be the same as the example shown in FIG. In this case, the only difference is the control over the laser unit 10. If the scanning shown in FIG. 4 is a "progressive method", the scanning shown in FIGS. 7A and 7B can be said to be an "interlaced method".
 ここで、本実施例では、上述したように、1回の走査が、上側用走査パターンと下側用走査パターンを組み合わせた走査パターンとは異なり、上側用走査パターン又は下側用走査パターンのみからなるので、1回の走査におけるY方向のピッチを、比較的大きい一定ピッチPT2とすることができる。また、図7Aに示す1回の走査と、図7Bに示す1回の走査とは、MEMSスキャナ30の制御内容自体は同じであるので(レーザユニット10に対する制御が異なるだけであるので)、走査ごとにMEMSスキャナ30の制御内容(すなわち、MEMSスキャナ30の動きのパターン)を切り換える必要がなく、処理負荷を低減できる。 Here, in the present embodiment, as described above, one scan is different from the scan pattern in which the upper scan pattern and the lower scan pattern are combined, and only the upper scan pattern or the lower scan pattern is used. Therefore, the pitch in the Y direction in one scan can be set to a relatively large constant pitch PT2. Further, since the control content of the MEMS scanner 30 itself is the same between the one scan shown in FIG. 7A and the one scan shown in FIG. 7B (because the control for the laser unit 10 is different), the scans are performed. It is not necessary to switch the control content of the MEMS scanner 30 (that is, the movement pattern of the MEMS scanner 30) every time, and the processing load can be reduced.
 なお、本実施例においても、図7Aに示す1回の走査と、図7Bに示す1回の走査とを、時間的に近接させて実行することで、表示像VI1、VI2を略同時に生成できる。従って、運転者は、表示像VI1を見たいときは相対的に上側に視点を移し、表示像VI2を見たいときは相対的に下側に視点を移すといった具合に、視点を上下方向に移動させるだけで、表示像VI1、VI2を連続的に視認できる。このようにして、本実施例によれば、視点を上下方向に変えるだけで視認可能な表示像VI1、VI2が変化する構成において、当該表示像VI1、VI2を適切な態様で生成することが可能となる。 Also in this embodiment, the display images VI1 and VI2 can be generated substantially at the same time by executing the one scan shown in FIG. 7A and the one scan shown in FIG. 7B in close time to each other. .. Therefore, the driver moves the viewpoint in the vertical direction, such as moving the viewpoint relatively upward when he / she wants to see the display image VI1, and moving the viewpoint relatively downward when he / she wants to see the display image VI2. The displayed images VI1 and VI2 can be continuously visually recognized just by making the display images VI1 and VI2 visible. In this way, according to the present embodiment, it is possible to generate the display images VI1 and VI2 in an appropriate manner in a configuration in which the visible display images VI1 and VI2 are changed only by changing the viewpoint in the vertical direction. It becomes.
 なお、本実施例では、図7Aに示す1回の走査と、図7Bに示す1回の走査とは、1回ごとに交互に実行されるが、1回の走査時間が十分短い場合は、複数回ごとに交互に実行されてもよい。 In this embodiment, the one scan shown in FIG. 7A and the one scan shown in FIG. 7B are alternately executed each time, but when the one scan time is sufficiently short, the one scan is executed alternately. It may be executed alternately every multiple times.
 また、本実施例では、図7Aに示す1回の走査と、図7Bに示す1回の走査とは、MEMSスキャナ30の制御内容自体は同じとされるが、これに限られない。例えば、図7Bに示す1回の走査の開始位置は、図6Bに示す開始位置S6Bとされてもよい。この場合、1回の走査は、走査面の開始位置S6Bから開始し、Y方向に所定ピッチPT2だけずらしながらX方向に沿って一端側(X1側)から他端側(X2側)への直線状の走査を、それぞれの列(Y方向の列)に対して実行し、走査面の終了位置E7B’(図7B参照)で終了する。 Further, in this embodiment, the control content itself of the MEMS scanner 30 is the same as that of the one scan shown in FIG. 7A and the one scan shown in FIG. 7B, but the present invention is not limited to this. For example, the start position of one scan shown in FIG. 7B may be the start position S6B shown in FIG. 6B. In this case, one scan starts from the start position S6B of the scanning surface, and is a straight line from one end side (X1 side) to the other end side (X2 side) along the X direction while shifting the predetermined pitch PT2 in the Y direction. Scanning is performed for each row (row in the Y direction) and ends at the end position E7B'(see FIG. 7B) of the scanning surface.
 [実施例4]
 図8Aから図8C及び図9は、更なる他の一実施例(実施例4)による上側用走査パターン及び下側用走査パターンを示す説明図である。
[Example 4]
8A to 8C and 9 are explanatory views showing an upper scanning pattern and a lower scanning pattern according to still another embodiment (Example 4).
 図8Aから図8Cに示す例では、スキャナ制御部52及びMEMSスキャナ30による1回の走査は、走査面の開始位置S8A、S8B又はS8Cから開始し、Y方向に所定ピッチPT8A又はPT8BだけずらしながらX方向に沿って往復する直線状の走査を、一部の列(Y方向の列)に対して実行し、走査面の終了位置E8A、E8B又はE8Cで終了する。なお、スキャナ制御部52及びMEMSスキャナ30は、このような、図8Aに示す1回の走査と、図8Bに示す1回の走査と、図8Cに示す1回の走査とを、時間的に連続して繰り返し実行することで、表示像VI1、VI2の出力状態を維持できる(図9参照)。 In the example shown in FIGS. 8A to 8C, one scan by the scanner control unit 52 and the MEMS scanner 30 starts from the start positions S8A, S8B or S8C of the scanning surface, and shifts by a predetermined pitch PT8A or PT8B in the Y direction. A linear scan reciprocating along the X direction is performed on some rows (rows in the Y direction) and ends at the end position E8A, E8B or E8C of the scanning surface. The scanner control unit 52 and the MEMS scanner 30 temporally perform such one scan shown in FIG. 8A, one scan shown in FIG. 8B, and one scan shown in FIG. 8C. By continuously and repeatedly executing the display images VI1 and VI2, the output states can be maintained (see FIG. 9).
 所定ピッチPT8Aは、ピッチPT2(=マイクロレンズ41の配列のY方向のピッチ)よりも大きく、ピッチPT2に、所定のオフセット量(=α+β)を足した長さに一致する。所定ピッチPT8Bは、ピッチPT2(=マイクロレンズ41の配列のY方向のピッチ)よりも大きく、ピッチPT2に、差分オフセット量を足した長さに一致する。なお、差分オフセット量は、上述したように、マイクロレンズ41のY方向のサイズ(=Y方向のピッチPT2)から、所定のオフセット量(=α+β)を引いた長さである。従って、所定ピッチPT8Bは、マイクロレンズ41のY方向のサイズ(=Y方向のピッチPT2)の2倍から、所定のオフセット量(=α+β)を引いた長さである。 The predetermined pitch PT8A is larger than the pitch PT2 (= the pitch in the Y direction of the arrangement of the microlenses 41), and corresponds to the length obtained by adding the predetermined offset amount (= α + β) to the pitch PT2. The predetermined pitch PT8B is larger than the pitch PT2 (= the pitch in the Y direction of the arrangement of the microlenses 41), and corresponds to the length obtained by adding the difference offset amount to the pitch PT2. As described above, the difference offset amount is the length obtained by subtracting the predetermined offset amount (= α + β) from the size of the microlens 41 in the Y direction (= pitch PT2 in the Y direction). Therefore, the predetermined pitch PT8B is a length obtained by subtracting a predetermined offset amount (= α + β) from twice the size of the microlens 41 in the Y direction (= pitch PT2 in the Y direction).
 図8Aから図8Cに示す例では、開始位置S8A、S8B及びS8CはすべてX方向X1側に位置し、開始位置S8AのY方向の位置は、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置である。開始位置S8Bは、開始位置S8Aに対してY方向Y2側に所定のオフセット量(=α+β)だけオフセットされる。また、開始位置S8Cは、開始位置S8Bに対してY方向Y2側に、差分オフセット量だけオフセットされる。 In the example shown in FIGS. 8A to 8C, the start positions S8A, S8B, and S8C are all located on the X1 side in the X direction, and the Y direction position of the start position S8A is on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is a position deviated by a predetermined amount α. The start position S8B is offset to the Y2 side in the Y direction by a predetermined offset amount (= α + β) with respect to the start position S8A. Further, the start position S8C is offset to the Y2 side in the Y direction with respect to the start position S8B by a difference offset amount.
 この場合、上側用走査パターンは、図8Aから図8Cに示す走査L801によるX方向に沿った直線パターン(第1直線パターンの一例)からなり、下側用走査パターンは、図8Aから図8Cに示す走査L802によるX方向に沿った直線パターン(第2直線パターンの一例)からなる。すなわち、上側用走査パターン及び下側用走査パターンは、ともに、図8Aから図8Cに示す3回の走査により協動して実現される。この場合も、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y1側に所定量αだけずれた位置に入射する(矢印R51参照)。この場合、マイクロレンズ41からは、マイクロレンズ41の入射面の形態(球形の形態)に応じた方向に出射する(矢印R511参照)。他方、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)は、図5に示したように、マイクロレンズ41の中心OよりもY方向Y2側に所定量βだけずれた位置に入射する(矢印R52参照)。 In this case, the upper scanning pattern is composed of a straight line pattern (an example of the first straight line pattern) along the X direction by scanning L801 shown in FIGS. 8A to 8C, and the lower scanning pattern is shown in FIGS. 8A to 8C. It is composed of a linear pattern (an example of a second linear pattern) along the X direction by the scanning L802 shown. That is, both the upper scanning pattern and the lower scanning pattern are realized in cooperation by three scans shown in FIGS. 8A to 8C. Also in this case, as shown in FIG. 5, the laser beam scanned by the upper scanning pattern (laser beam corresponding to the upper image signal) is a predetermined amount α on the Y1 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R51). In this case, the microlens 41 emits light in a direction corresponding to the shape (spherical shape) of the incident surface of the microlens 41 (see arrow R511). On the other hand, as shown in FIG. 5, the laser beam scanned by the lower scanning pattern (laser beam corresponding to the lower image signal) is a predetermined amount β on the Y2 side in the Y direction with respect to the center O of the microlens 41. It is incident at a position shifted by a small amount (see arrow R52).
 従って、図8Aから図8Cに示す上側用走査パターン及び下側用走査パターンによれば、上側用走査パターンで走査されるレーザ光(上側画像信号に応じたレーザ光)により表示像VI1を生成でき、下側用走査パターンで走査されるレーザ光(下側画像信号に応じたレーザ光)により表示像VI2を生成できる。 Therefore, according to the upper scanning pattern and the lower scanning pattern shown in FIGS. 8A to 8C, the display image VI1 can be generated by the laser beam (laser beam corresponding to the upper image signal) scanned by the upper scanning pattern. , The display image VI2 can be generated by the laser beam (laser beam corresponding to the lower image signal) scanned by the lower scanning pattern.
 ここで、本実施例では、上述したように、1フレーム分に相当する表示像VI1、VI2を生成するために、3回の走査が実行されるので、1回の走査におけるY方向のピッチを、比較的大きい所定ピッチPT8A、PT8Bとすることができる。これにより、かかる走査を実現するために必要なMEMSスキャナ30の向きの変化の分解能を比較的小さくできるので、MEMSスキャナ30の制御が比較的容易となる。 Here, in this embodiment, as described above, three scans are executed in order to generate the display images VI1 and VI2 corresponding to one frame, so that the pitch in the Y direction in one scan is set. , The predetermined pitches PT8A and PT8B, which are relatively large, can be set. As a result, the resolution of the change in orientation of the MEMS scanner 30 required to realize such scanning can be made relatively small, so that the control of the MEMS scanner 30 becomes relatively easy.
 なお、本実施例では、上述したように、1フレーム分に相当する表示像VI1、VI2を生成するために、3回の走査が実行されるが、1フレーム分に相当する表示像VI1、VI2を生成するために、4回以上の走査により実行されてもよい。 In this embodiment, as described above, three scans are executed in order to generate the display images VI1 and VI2 corresponding to one frame, but the display images VI1 and VI2 corresponding to one frame are executed. May be performed by 4 or more scans to generate.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope of the claims. It is also possible to combine all or a plurality of the components of the above-described embodiment.
 例えば、上述した各実施例では、表示像VI1、VI2は、それぞれ、スクリーン40を形成するすべてのマイクロレンズ41を利用して生成される。従って、本実施例は、スクリーン40を形成するマイクロレンズ41のうちの、一部を利用して生成される場合に比べて、比較的サイズの大きい表示像VI1、VI2を生成できる点(あるいは、表示像VI1、VI2のサイズが同じであれば、表示像VI1、VI2の分解能を高めることができる点)で有利である。ただし、変形例では、表示像VI1及び/又は表示像VI2は、スクリーン40を形成するマイクロレンズ41のうちの、一部を利用して生成されてもよい。例えば、上側用走査パターン及び下側用走査パターンは、ともに、マイクロレンズ41のY方向の一部の列だけを走査するパターンであってもよい。また、同様に、上側用走査パターン及び/又は下側用走査パターンは、ともに、マイクロレンズ41のX方向の列の一部だけを走査するパターンであってもよい。 For example, in each of the above-described embodiments, the display images VI1 and VI2 are generated by using all the microlenses 41 forming the screen 40, respectively. Therefore, in this embodiment, the display images VI1 and VI2 having a relatively large size can be generated (or the display images VI2) as compared with the case where a part of the microlenses 41 forming the screen 40 is used. If the sizes of the display images VI1 and VI2 are the same, the resolution of the display images VI1 and VI2 can be improved), which is advantageous. However, in the modified example, the display image VI1 and / or the display image VI2 may be generated by utilizing a part of the microlens 41 forming the screen 40. For example, the upper scanning pattern and the lower scanning pattern may both be patterns that scan only a part of the rows of the microlens 41 in the Y direction. Similarly, both the upper scanning pattern and / or the lower scanning pattern may be a pattern that scans only a part of the row in the X direction of the microlens 41.
 また、上述した各実施例では、上下方向にオフセットした2つの視点でそれぞれ異なる表示像VI1、VI2が視認可能な構成であるが、これに限られない。例えば、上下方向に沿った異なる3つ以上の視点でそれぞれ異なる表示像が視認可能な構成が実現されてもよい。 Further, in each of the above-described embodiments, the display images VI1 and VI2, which are different from each other, can be visually recognized from the two viewpoints offset in the vertical direction, but the present invention is not limited to this. For example, a configuration may be realized in which different display images can be visually recognized from three or more different viewpoints along the vertical direction.
 また、上述した各実施例では、スクリーン40上のレーザ光の投射位置についてフィードバック制御を実行しない簡易な構成であるが、これに限られない。例えば、特許文献1に開示されるように、受光素子が配列された走査位置検出板を設け、スクリーン40上のレーザ光の投射位置についてフィードバック制御を実行してもよい。 Further, in each of the above-described embodiments, the feedback control is not executed for the projection position of the laser beam on the screen 40, but the configuration is not limited to this. For example, as disclosed in Patent Document 1, a scanning position detection plate in which light receiving elements are arranged may be provided, and feedback control may be performed on the projection position of the laser beam on the screen 40.
 また、上述した各実施例では、表示像の視認者は、車両の運転者であるが、他の乗員(例えば助手席や後部座席の乗員)が視認者となるように表示像を形成する構成であってもよい。 Further, in each of the above-described embodiments, the viewer of the display image is the driver of the vehicle, but the display image is formed so that other occupants (for example, occupants in the passenger seat and the rear seat) are the viewers. It may be.
1 ヘッドアップディスプレイ
10 レーザユニット
11 レーザ照射装置
12 レーザ照射装置
13 レーザ照射装置
20 ダイクロイックミラーユニット
21 ダイクロイックミラー
22 ダイクロイックミラー
23 ダイクロイックミラー
28 集光レンズ
30 MEMSスキャナ
40 スクリーン
41 マイクロレンズ
50 制御装置
51 レーザ制御部
52 スキャナ制御部
1 Head-up display 10 Laser unit 11 Laser irradiation device 12 Laser irradiation device 13 Laser irradiation device 20 Dichroic mirror unit 21 Dichroic mirror 22 Dichroic mirror 23 Dichroic mirror 28 Condensing lens 30 MEMS scanner 40 Screen 41 Micro lens 50 Control device 51 Laser control Unit 52 Scanner control unit

Claims (8)

  1.  乗員により視認可能な表示像を表示するヘッドアップディスプレイであって、
     レーザ光を出射する出射手段と、
     直交する第1方向及び第2方向で規定される平面内で規則的に配列され、入射する前記レーザ光を拡散する複数の光学素子と、
     一の前記光学素子のサイズよりも小さいスポット径で前記複数の光学素子のそれぞれに当たるように、前記平面を走査面として前記レーザ光を走査可能な走査手段とを含み、
     前記出射手段は、第1視点用の第1画像に応じた第1レーザ光と、前記第1視点に対して上下方向で離れた第2視点用の第2画像に応じた第2レーザ光とを連続的に出射し、
     前記走査手段は、前記第1視点から視たときは前記第1画像に係る前記表示像が視認可能となりかつ前記第2視点から視たときは前記第2画像に係る前記表示像が視認可能となるように、前記走査面上で、前記第1レーザ光を第1走査パターンで走査するとともに前記第2レーザ光を第2走査パターンで走査し、
     前記第1走査パターンは、前記第1方向に沿った第1直線パターンであって、前記複数の光学素子のうちの、前記第1方向に直線状に並ぶ1列以上の光学素子に対して列ごとに前記第1レーザ光が連続的に入射する第1直線パターンを含み、
     前記第2走査パターンは、前記第1方向に沿った第2直線パターンであって、前記第1直線パターンに対して前記第2方向で所定のオフセット量だけオフセットし、前記1列以上の光学素子に対して列ごとに前記第2レーザ光が連続的に入射する第2直線パターンを含む、ヘッドアップディスプレイ。
    A head-up display that displays a display image that can be seen by the occupants.
    Emission means that emits laser light and
    A plurality of optical elements that are regularly arranged in a plane defined by the orthogonal first and second directions and diffuse the incident laser beam, and
    It includes a scanning means capable of scanning the laser beam with the plane as a scanning surface so as to hit each of the plurality of optical elements with a spot diameter smaller than the size of the optical element.
    The emitting means includes a first laser beam corresponding to the first image for the first viewpoint and a second laser light corresponding to the second image for the second viewpoint separated from the first viewpoint in the vertical direction. Is continuously emitted,
    When viewed from the first viewpoint, the scanning means makes the display image related to the first image visible, and when viewed from the second viewpoint, the display image related to the second image is visible. The first laser beam is scanned by the first scanning pattern and the second laser beam is scanned by the second scanning pattern on the scanning surface.
    The first scanning pattern is a first linear pattern along the first direction, and is a row with respect to one or more rows of optical elements linearly arranged in the first direction among the plurality of optical elements. Each includes a first linear pattern in which the first laser beam is continuously incident.
    The second scanning pattern is a second straight line pattern along the first direction, and is offset by a predetermined offset amount in the second direction with respect to the first straight line pattern, and the optical elements in one or more rows. A head-up display including a second linear pattern in which the second laser beam is continuously incident on each row.
  2.  前記複数の光学素子は、前記第1方向にM列かつ前記第2方向にN列で配列され、
     前記1列以上の光学素子は、前記N列の光学素子であり、
     前記第1直線パターン及び前記第2直線パターンは、前記M列の端から端まで走査するパターンである、請求項1に記載のヘッドアップディスプレイ。
    The plurality of optical elements are arranged in M rows in the first direction and N rows in the second direction.
    The one or more rows of optical elements are the N rows of optical elements.
    The head-up display according to claim 1, wherein the first straight line pattern and the second straight line pattern are patterns that scan from end to end of the M row.
  3.  前記走査手段は、前記走査面の開始位置から一の走査を開始し、前記第2方向に所定ピッチだけずらしながら前記第1方向に沿って往復する直線状の走査を、前記N列のそれぞれの列に対して実行し、前記走査面の終了位置で前記一の走査を終了し、
     前記所定ピッチは、前記所定のオフセット量と、前記第2方向の前記N列間のピッチから前記所定のオフセット量を引いた長さとの間で変化し、
     前記一の走査に係る走査パターンは、前記N列のそれぞれに対する前記第1直線パターンと、前記N列のそれぞれに対する前記第2直線パターンとからなる、請求項2に記載のヘッドアップディスプレイ。
    The scanning means starts one scan from the start position of the scanning surface, and performs a linear scan reciprocating along the first direction while shifting the second direction by a predetermined pitch, in each of the N rows. Execute on the row, finish the one scan at the end position of the scan plane,
    The predetermined pitch varies between the predetermined offset amount and the length obtained by subtracting the predetermined offset amount from the pitch between the N rows in the second direction.
    The head-up display according to claim 2, wherein the scanning pattern according to the one scanning includes the first linear pattern for each of the N columns and the second linear pattern for each of the N columns.
  4.  前記走査手段は、前記走査面の開始位置から一の走査を開始し、前記第2方向に一定ピッチだけずらしながら前記第1方向に沿って往復する直線状の走査を、前記N列のそれぞれの列に対して実行し、前記走査面の終了位置で前記一の走査を終了し、
     前記一定ピッチは、前記第2方向の前記N列間のピッチに対応し、
     ある一の走査に係る走査パターンは、前記N列のそれぞれに対する前記第1直線パターンからなり、該一の走査に係る走査パターンに後続する一の走査であって、前記開始位置が前記第2方向で前記所定のオフセット量だけ変化する走査に係る走査パターンは、前記N列のそれぞれに対する前記第2直線パターンからなる、請求項2に記載のヘッドアップディスプレイ。
    The scanning means starts one scan from the start position of the scanning surface, and performs linear scanning reciprocating along the first direction while shifting the second direction by a constant pitch, in each of the N rows. Execute on the row, finish the one scan at the end position of the scan plane,
    The constant pitch corresponds to the pitch between the N rows in the second direction.
    The scanning pattern according to one scan comprises the first linear pattern for each of the N columns, and is one scan following the scan pattern related to the one scan, in which the start position is in the second direction. The head-up display according to claim 2, wherein the scanning pattern related to scanning that changes by the predetermined offset amount is the second linear pattern for each of the N columns.
  5.  前記走査手段は、前記走査面の開始位置から一の走査を開始し、前記第2方向に一定ピッチだけずらしながら前記第1方向に沿って前記第1方向一端側から前記第1方向他端側への直線状の走査、又は、前記第2方向に一定ピッチだけずらしながら前記第1方向に沿って前記第1方向他端側から前記第1方向一端側への直線状の走査を、前記N列に対して実行し、前記走査面の終了位置で前記一の走査を終了し、
     前記一定ピッチは、前記第2方向の前記N列間のピッチに対応し、
     前記第1方向他端側から前記第1方向一端側への直線状の走査による、ある一の走査に係る走査パターンは、前記N列のそれぞれに対する前記第1直線パターンからなり、該一の走査に係る走査パターンに後続する一の走査であって、前記第1方向一端側から前記第1方向他端側への直線状の走査による、走査に係る走査パターンは、前記N列のそれぞれに対する前記第2直線パターンからなる、請求項2に記載のヘッドアップディスプレイ。
    The scanning means starts one scanning from the start position of the scanning surface, and shifts the scanning surface in the second direction by a constant pitch from one end side in the first direction to the other end side in the first direction along the first direction. A linear scan to, or a linear scan from the other end side of the first direction to one end side of the first direction along the first direction while shifting by a constant pitch in the second direction is performed by the N. Execute on the row, finish the one scan at the end position of the scan plane,
    The constant pitch corresponds to the pitch between the N rows in the second direction.
    The scanning pattern according to a certain scan by the linear scan from the other end side of the first direction to the one end side of the first direction comprises the first linear pattern for each of the N rows, and the one scan. The scanning pattern related to scanning by linear scanning from one end side in the first direction to the other end side in the first direction, which is one scanning following the scanning pattern according to the above, is the scanning pattern for each of the N columns. The head-up display according to claim 2, which comprises a second linear pattern.
  6.  前記走査手段は、向きを電子制御可能なスキャナを含み、
     前記スキャナの動きは、前記ある一の走査と、該一の走査に係る走査パターンに後続する前記一の走査とで同じである、請求項5に記載のヘッドアップディスプレイ。
    The scanning means includes a scanner whose orientation can be electronically controlled.
    The head-up display according to claim 5, wherein the movement of the scanner is the same for the one scan and the one scan following the scan pattern according to the one scan.
  7.  前記走査手段は、前記走査面の開始位置から一の走査を開始し、前記第2方向に所定ピッチだけずらしながら前記第1方向に沿って往復する直線状の走査を、前記N列の一部の列に対して実行し、前記走査面の終了位置で前記一の走査を終了し、
     前記所定ピッチは、前記第2方向の前記N列間のピッチに前記所定のオフセット量を足した長さと、前記第2方向の前記N列間のピッチの2倍から前記所定のオフセット量を引いた長さとの間で変化し、
     前記開始位置は、一の走査ごとに、前記所定のオフセット量、又は、前記第2方向の前記N列間のピッチから前記所定のオフセット量を引いた長さだけ、前記第2方向に変化し、
     連続する3回の走査に係る走査パターンは、前記N列のそれぞれに対する前記第1直線パターンと、前記N列のそれぞれに対する前記第2直線パターンとからなる、請求項2に記載のヘッドアップディスプレイ。
    The scanning means starts one scan from the start position of the scanning surface, and performs a linear scan reciprocating along the first direction while shifting by a predetermined pitch in the second direction as a part of the N row. Is executed, and the one scan is finished at the end position of the scan surface.
    The predetermined pitch is obtained by subtracting the predetermined offset amount from the length obtained by adding the predetermined offset amount to the pitch between the N rows in the second direction and twice the pitch between the N rows in the second direction. Changes between the length and the length
    The start position changes in the second direction by the length obtained by subtracting the predetermined offset amount from the pitch between the N rows in the second direction or the predetermined offset amount for each scan. ,
    The head-up display according to claim 2, wherein the scanning pattern related to three consecutive scans includes the first straight line pattern for each of the N columns and the second straight line pattern for each of the N columns.
  8.  前記所定のオフセット量は、上下方向で前記第1視点と前記第2視点との間の距離に相関する、請求項1から7のうちのいずれか1項に記載のヘッドアップディスプレイ。 The head-up display according to any one of claims 1 to 7, wherein the predetermined offset amount correlates with the distance between the first viewpoint and the second viewpoint in the vertical direction.
PCT/JP2020/047467 2019-12-20 2020-12-18 Head-up display WO2021125330A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021565683A JPWO2021125330A1 (en) 2019-12-20 2020-12-18
CN202080077785.6A CN114730088A (en) 2019-12-20 2020-12-18 Head-up display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019230086 2019-12-20
JP2019-230086 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125330A1 true WO2021125330A1 (en) 2021-06-24

Family

ID=76478630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047467 WO2021125330A1 (en) 2019-12-20 2020-12-18 Head-up display

Country Status (3)

Country Link
JP (1) JPWO2021125330A1 (en)
CN (1) CN114730088A (en)
WO (1) WO2021125330A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161191A1 (en) * 2007-12-21 2009-06-25 Microvision, Inc. Scanned Beam Display Having High Uniformity and Diminished Coherent Artifacts
JP2015225216A (en) * 2014-05-28 2015-12-14 パイオニア株式会社 Image display device
WO2016072372A1 (en) * 2014-11-04 2016-05-12 日本精機株式会社 Head-up display device
JP2017097268A (en) * 2015-11-27 2017-06-01 株式会社リコー Image display unit and vehicle
WO2018180244A1 (en) * 2017-03-28 2018-10-04 パイオニア株式会社 Image display device and head-up display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161191A1 (en) * 2007-12-21 2009-06-25 Microvision, Inc. Scanned Beam Display Having High Uniformity and Diminished Coherent Artifacts
JP2015225216A (en) * 2014-05-28 2015-12-14 パイオニア株式会社 Image display device
WO2016072372A1 (en) * 2014-11-04 2016-05-12 日本精機株式会社 Head-up display device
JP2017097268A (en) * 2015-11-27 2017-06-01 株式会社リコー Image display unit and vehicle
WO2018180244A1 (en) * 2017-03-28 2018-10-04 パイオニア株式会社 Image display device and head-up display

Also Published As

Publication number Publication date
JPWO2021125330A1 (en) 2021-06-24
CN114730088A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
JP4561794B2 (en) Aerial image display device
JP5786916B2 (en) Switchable optical imaging system and related apparatus capable of switching 3D / 2D images
US9958694B2 (en) Minimized-thickness angular scanner of electromagnetic radiation
US6932476B2 (en) Stereoscopic image display apparatus and stereoscopic image display system
US7327410B2 (en) High resolution 3-D image display with liquid crystal shutter array
US20110122236A1 (en) Spatial image display apparatus
JP2005077437A (en) Video display device, stereoscopic video display device, and on-vehicle video display device
WO2016072372A1 (en) Head-up display device
CN104487877A (en) Directional display apparatus
JP2007519958A (en) 3D display
JP2014045466A (en) Stereoscopic video display system, setting method and observation position changing method of stereoscopic video data
JP3569522B2 (en) Display device
WO2021125330A1 (en) Head-up display
WO2021125331A1 (en) Head-up display
JP4504008B2 (en) Video display device
JP6737370B2 (en) Projection device
JP2021135411A (en) Head-up display
US11340450B2 (en) Device for generating three-dimensional images and associated heads-up display
JP7400605B2 (en) heads up display
WO2018168846A1 (en) Laser scanning display with luminance adjustment
JP3782773B2 (en) Stereoscopic image display device
JP5041258B2 (en) Aerial image display device
JP3579242B2 (en) 3D image display without glasses
Hirabayashi et al. Multi-view display module using MEMS projectors for an ultra-large screen autostereoscopic display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902909

Country of ref document: EP

Kind code of ref document: A1