WO2021125195A1 - Spun yarn, and thread and fabric provided with same - Google Patents

Spun yarn, and thread and fabric provided with same Download PDF

Info

Publication number
WO2021125195A1
WO2021125195A1 PCT/JP2020/046842 JP2020046842W WO2021125195A1 WO 2021125195 A1 WO2021125195 A1 WO 2021125195A1 JP 2020046842 W JP2020046842 W JP 2020046842W WO 2021125195 A1 WO2021125195 A1 WO 2021125195A1
Authority
WO
WIPO (PCT)
Prior art keywords
spun yarn
short fiber
yarn
short
fiber
Prior art date
Application number
PCT/JP2020/046842
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 宅見
辻 雅之
英治 田口
智晴 木道
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021565602A priority Critical patent/JP7180792B2/en
Priority to CN202080048400.3A priority patent/CN114051543B/en
Publication of WO2021125195A1 publication Critical patent/WO2021125195A1/en
Priority to US17/653,000 priority patent/US20220267934A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/449Yarns or threads with antibacterial properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • D10B2331/041Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET] derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention relates to a spun yarn that generates an electric charge, and a yarn and a cloth provided with the spun yarn.
  • Patent Document 1 discloses a thread having antibacterial properties.
  • the yarn disclosed in Patent Document 1 includes a charge generating fiber that generates an electric charge by energy from the outside.
  • the yarn disclosed in Patent Document 1 exhibits an antibacterial effect among a plurality of charge generating fibers by including a plurality of charge generating fibers having different polarities of the generated charges.
  • an object of the present invention is to provide a spun yarn that efficiently exerts an antibacterial effect, and a yarn and a cloth provided with the spun yarn.
  • the spun yarn of the present invention includes short fibers that are piezoelectric fibers that generate an electric potential by external energy, and the short fibers include a plurality of short fibers, and the plurality of short fibers are twisted together. It is characterized by.
  • a plurality of short fibers are intricately intertwined with each other.
  • each of the short fibers is swirled along various directions. That is, each of the short fibers follows a random direction with respect to the axial direction of the spun yarn.
  • each short fiber in the spun yarn is subjected to external forces such as tension, twisting, and bending in various directions with respect to the axial direction of each short fiber.
  • Each short fiber generates charges of various sizes and polarities depending on the magnitude and direction of the applied external force. This allows the spun yarn to generate various and local electric fields between each short fiber. Therefore, the spun yarn according to the present invention can efficiently exert an antibacterial effect.
  • the antibacterial effect can be efficiently exhibited.
  • FIG. 1 (A) is a diagram showing a configuration of a spun yarn according to a first embodiment
  • FIG. 1 (B) is a cross-sectional view taken along the line II of FIG. 1 (A).
  • 2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film.
  • FIG. 3 illustrates the shear stress generated in each piezoelectric fiber when tension is applied to the spun yarn.
  • FIG. 4 is a cross-sectional view schematically showing a part of the spun yarn for explaining the antibacterial mechanism in the spun yarn.
  • FIG. 5 (A) is a diagram showing the configuration of the spun yarn according to the second embodiment
  • FIG. 5 (B) is a cross-sectional view taken along the line II-II of FIG. 5 (A).
  • FIG. 6 is a diagram showing the configuration of the spun yarn according to the third embodiment.
  • FIG. 7A is a partially exploded view showing the structure of the antibacterial thread
  • FIG. 7B is a cross-sectional view of the short fiber 111.
  • FIG. 8 is a diagram showing the structure of the antibacterial cloth.
  • FIG. 1 (A) is a diagram showing the configuration of the spun yarn 10 according to the first embodiment
  • FIG. 1 (B) is a cross-sectional view taken along the line II of FIG. 1 (A).
  • the cross section of 7 yarns is shown as an example in the cross section of the line I-I, but the number of yarns constituting the spun yarn 10 is this. It is not limited, and is actually set as appropriate in consideration of the application and the like.
  • FIG. 1B only the cut surface cut along the line II is shown.
  • the spun yarn 10 includes a plurality of short fibers 11.
  • the spun yarn 10 is formed by twisting a plurality of short fibers 11 together.
  • the short fiber 11 is an example of a piezoelectric fiber that generates an electric charge due to external energy, for example, expansion and contraction.
  • the short fiber 11 is made of a functional polymer, for example, a piezoelectric polymer.
  • Piezoelectric polymers include, for example, PVDF or polylactic acid (PLA).
  • polylactic acid (PLA) is a piezoelectric polymer that does not have pyroelectricity.
  • Polylactic acid is uniaxially stretched to produce piezoelectricity.
  • Polylactic acid includes PLLA in which an L-form monomer is polymerized and PDLA in which a D-form monomer is polymerized.
  • the short fiber 11 may further contain a fiber other than the functional polymer as long as it does not inhibit the function of the functional polymer.
  • Polylactic acid is a chiral polymer, and its main chain has a spiral structure. Polylactic acid exhibits piezoelectricity when it is uniaxially stretched and the molecules are oriented. Further heat treatment is applied to increase the crystallinity, thereby increasing the piezoelectric constant.
  • the stretching direction 900 is defined as the third axis, and the direction orthogonal to both the first axis and the third axis is defined as the second axis. It has tensor components of d 14 and d 25 as piezoelectric strain constants. Therefore, polylactic acid most efficiently generates electric charges when strain occurs in the direction of 45 degrees with respect to the uniaxially stretched direction.
  • 2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of the polylactic acid film 200, the electric field direction, and the deformation of the polylactic acid film 200.
  • 2 (A) and 2 (B) show a model case in which the short fiber 11 is assumed to have a film shape.
  • the polylactic acid film 200 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, so that the polylactic acid film 200 faces from the back side to the front side of the paper surface. Generates an electric field in. That is, the polylactic acid film 200 generates a negative charge on the front side of the paper surface.
  • the polylactic acid film 200 also generates an electric charge when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed, and the polylactic acid film 200 is on the paper surface.
  • An electric field is generated in the direction from the front side to the back side. That is, the polylactic acid film 200 generates a positive charge on the front side of the paper surface.
  • polylactic acid produces piezoelectricity by molecular orientation treatment by stretching, it is not necessary to perform polling treatment unlike other piezoelectric polymers such as PVDF or piezoelectric ceramics.
  • the piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not fluctuate with time and is extremely stable.
  • the short fiber 11 is a fiber having a circular cross section.
  • the short fiber 11 is, for example, a method of extruding a piezoelectric polymer into fibers and a method of melt-spinning a piezoelectric polymer into fibers (for example, a spinning / drawing method in which a spinning step and a drawing step are performed separately.
  • a straight drawing method that connects the spinning process and the drawing process a POY-DTY method that can also perform a false twisting process at the same time, or an ultra-high speed prevention method that aims to increase the speed
  • Dry or wet piezoelectric polymer Spinning for example, a phase separation method or a dry-wet spinning method in which a polymer as a raw material is dissolved in a solvent and extruded from a nozzle to form fibers
  • a gel spinning method in which fibers are uniformly fiberized in a gel state while containing a solvent.
  • the short fiber 11 is not limited to a circular shape.
  • a string-shaped object such as a fiber has the smallest cross-sectional area when cut perpendicularly to the axial direction, and the cross-sectional area increases as the cut surface approaches parallel to the axial direction.
  • the cross-sectional area of each short fiber 11 varies in the cross section perpendicular to the axial direction 101 of the spun yarn 10. This is because each short fiber 11 forms a random angle with respect to the axial direction 101 of the spun yarn 10.
  • the short fiber 11 is preferably 800 mm or less, more preferably 500 mm or less, or more preferably 300 mm or less, and further preferably 100 mm or less. As a result, as will be described in detail below, the short fibers 11 are easily exposed to the outside from the side surface of the spun yarn 10.
  • the fineness of the short fiber 11 is preferably 0.3 dtex or more and 10 dtex or less.
  • the cross-sectional shape of the short fiber 11 is not particularly limited, and may be, for example, a round cross section, a deformed cross section, a hollow, side-by-side, two or more layers, or a composite of these.
  • the spun yarn 10 is such a yarn formed by twisting a plurality of PLLA short fibers 11.
  • the spun yarn 10 is a right-handed swirl yarn (hereinafter, referred to as S yarn) twisted by swirling the short fiber 11 to the right.
  • the spun yarn 10 may be a left-handed swirl yarn (hereinafter, referred to as Z yarn) twisted by turning the short fiber 11 to the left.
  • the spun yarn 10, that is, the plurality of short fibers 11 includes, for example, short fibers 111, short fibers 112, and short fibers 113.
  • the short fiber 111 is an example of the first short fiber of the present invention
  • the short fiber 112 is an example of the second short fiber of the present invention
  • the short fiber 113 is an example of the third short fiber of the present invention. ..
  • the short fiber 111 is tilted 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the left with respect to the axial direction 101 of the spun yarn 10, and the short fiber 112 is 0 degrees to the left with respect to the axial direction 101 of the spun yarn 10.
  • the short fiber 113 is tilted by 80 degrees or more, preferably 20 degrees or more and 50 degrees or less, and the short fiber 113 is tilted by 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less with respect to the axial direction 101 of the spun yarn 10.
  • the angles of the short fibers 111, the short fibers 112, and the short fibers 113 with respect to the axial direction 101 of the spun yarn 10 may be different from each other.
  • the short fibers 111 shown in FIG. 1A are those of the plurality of short fibers 11 that are aligned in a certain direction in the carding process. Therefore, the spun yarn 10 contains the most short fibers 111.
  • the short fibers 111 may have different lengths in the range of 30 mm or more and 70 mm or less depending on the bias cut.
  • the short fiber 111, the short fiber 112, and the short fiber 113 each have a crimped portion 62.
  • FIG. 1A typically shows the crimped portion 62 of the short fiber 111.
  • the short fibers 111 are restrained by the crimped portion 62.
  • the first end 71 side of the short fiber 111 in the longitudinal direction is constrained by the short fiber 112
  • the second end 72 side of the short fiber 111 in the longitudinal direction is constrained by the short fiber 113.
  • the short fiber 111 can maintain a bundled state without being defibrated. This allows the user to efficiently transfer stress to the piezoelectric fibers.
  • the spun yarn 10 is manufactured by a method such as a ring, a compact, a silo ring, a silo compact, an air spinning, an air spinning, a mule, or a fryer, but the manufacturing method is not limited.
  • the short fibers 111, short fibers 112, and short fibers 113 are preferably 1st or higher and 500th or lower, respectively.
  • FIG. 3 illustrates the shear stress (shear stress) generated in each short fiber 11 when tension is applied to the axial direction 101 of the spun yarn 10.
  • the short fibers 111 are in the state shown in FIG. 2 (A), and a negative charge is generated on the surface. Generates a positive charge on the inside.
  • the short fibers 112 or 113 are in the state shown in FIG. 2A, and generate a negative charge on the surface and a positive charge on the inside.
  • the axial direction of the short fiber 112 or the short fiber 113 is 90 degrees different from the axial direction of the short fiber 111, the short fiber 112 or the short fiber 113 is in the state shown in FIG. 2 (B). As a result, a positive charge is generated on the surface and a negative charge is generated on the inside.
  • each short fiber 11 when an external force (tension) is applied to the spun yarn 10, the short fibers 111, the short fibers 112, and the short fibers 113 generate electric charges of different sizes on the surface. That is, since the orientation of each short fiber 11 is random, each short fiber 11 generates charges of various sizes and polarities. For example, when the short fibers 112 are oriented 90 degrees different from the axial direction of the short fibers 111, the first surface of the short fibers 111 faces the second surface of the short fibers 112 with the gap 41 interposed therebetween. Therefore, a strong electric field is locally generated in a narrow region between the short fibers 11 in the spun yarn 10. Further, even when the force for extending the spun yarn 10 in the axial direction 101 is small, electric fields can be generated because charges of various sizes and polarities are generated in the plurality of short fibers 11.
  • the plurality of short fibers 11 are each swirled along a random direction. Even if the plurality of short fibers 11 are strongly twisted, voids 41 are likely to occur between the plurality of short fibers 11. Further, since each short fiber 11 generates electric charges of various sizes and polarities, an electric field of various sizes is generated in the gap 41 between the short fibers 11. As a result, as described below, the antibacterial effect against the bacteria collected in the void 41 is improved.
  • FIG. 4 is a cross-sectional view schematically showing a part of the spun yarn 10 for explaining the antibacterial mechanism in the spun yarn 10.
  • the spun yarn 10 can absorb moisture 40 into the gaps 41 formed between the plurality of short fibers 11.
  • the fine particles 42 such as bacteria absorbed by the spinning yarn 10 together with the water content 40 are easily retained inside the spinning yarn 10. Further, as the void 41 inside the spun yarn 10 becomes larger, the amount of water 40 that can be absorbed increases, so that the fine particles 42 held inside the spun yarn 10 also increase. As described above, the spun yarn 10 is excellent in the collection performance of the fine particles 42.
  • the spun yarn 10 When the water content 40 in the spun yarn 10 evaporates after the spun yarn 10 collects the fine particles 42, the fine particles 42 remain in the voids 41 of the spun yarn 10.
  • the spun yarn 10 When the spun yarn 10 is stretched in the axial direction 101, the spun yarn 10 locally generates an electric field between the plurality of short fibers 11. Since the fine particles 42 are collected between the voids 41, that is, the plurality of short fibers 11, the fine particles 42 in the spun yarn 10 are exposed to a local and maximum electric field. Therefore, the spun yarn 10 can efficiently generate an antibacterial effect against bacteria and the like by the generated electric field.
  • the spun yarn 10 has many voids 41 between the plurality of short fibers 11, the electric field easily leaks to the outside of the spun yarn 10.
  • an electric field is generated between the spun yarn 10 and the object. In this way, the spun yarn 10 exerts an antibacterial effect even with other materials having a predetermined potential.
  • the spun yarn 10 exerts an antibacterial effect directly by the electric field formed inside the spun yarn 10 or by the electric field generated when the spun yarn 10 is close to an object having a predetermined potential such as a human body.
  • the spun yarn 10 passes an electric current through moisture such as sweat when it is close to an object having a predetermined potential such as another fiber inside or adjacent to the human body. This current may also directly exert an antibacterial effect.
  • reactive oxygen species in which oxygen contained in water is changed by the action of current or voltage, radical species generated by interaction or catalysis with additives contained in fibers, or other antibacterial chemical species (amines). Derivatives, etc. may indirectly exert an antibacterial effect.
  • oxygen radicals may be generated in the cells of the bacterium due to the stress environment due to the presence of an electric field or an electric current, whereby the spun yarn 10 may indirectly exert an antibacterial effect.
  • generation of superoxide anion radical (active oxygen) or hydroxyl radical can be considered.
  • antibacterial as used in the present embodiment is a concept including both an effect of suppressing the growth of bacteria and an effect of killing the bacteria.
  • the spun yarn 10 uses a piezoelectric fiber that generates an electric charge by expansion and contraction, a power source is not required and there is no risk of electric shock.
  • the life of the piezoelectric fiber lasts longer than the antibacterial effect of chemicals and the like. Also, piezoelectric fibers are less likely to cause an allergic reaction than drugs.
  • each short fiber 11 is interrupted in the spun yarn 10 in the middle of the axial direction 101 of the spun yarn 10.
  • the ends of the short fibers 11 (for example, the first end 71 and the second end 72 shown in FIGS. 1A and 1B) are exposed from the side surface of the spun yarn 10 to the periphery. Since the ends of a large number of short fibers 11 are exposed on the side surface of the spun yarn 10, the side surface of the spun yarn 10 has a so-called fluffy structure. Thereby, the spun yarn 10 can adjust the feel and appearance. Further, since the surface area of the spun yarn 10 increases due to fluffing, moisture and fine particles are easily adsorbed on the side surface of the spun yarn 10. As a result, the spun yarn 10 is excellent in collecting fine particles and can efficiently generate an antibacterial effect.
  • the short fiber 11 may be crimped over the entire longitudinal direction. Since the crimped short fibers 11 have a complicated shape, they tend to be intricately entangled with each other. Therefore, when an external force (tension) is applied to the spun yarn 10, pulling, twisting, and bending forces in various directions are applied to each short fiber 11. Therefore, since each short fiber 11 generates electric charges of various sizes, various electric fields can be generated between the short fibers 11.
  • the number of crimps of the short fiber 11 is preferably 0 pieces / inch or more and 20 pieces / inch or less, and the crimp size (crimp ratio) is preferably 0% or more and 20% or less.
  • the spun yarn 10 contains the plurality of crimped short fibers 11
  • the voids 41 generated between the plurality of short fibers 11 are formed in the spun yarn 10 as compared with the case where the spun yarn 10 contains the plurality of uncrimped short fibers 11. growing.
  • the antibacterial effect of the spun yarn 10 is improved as compared with the case where the plurality of short fibers 11 that are not crimped are included.
  • some of the short fibers 111 among the plurality of short fibers 11 are aligned in a certain direction.
  • the short fibers 111 aligned in a certain direction are twisted in the spinning process to rotate left at 45 degrees to the left with respect to the axial direction 101 of the spun yarn 10.
  • the spun yarn 10 has many short fibers 111 that are swiveled at an angle of 45 degrees to the left, a negative charge is generated on the surface of the spun yarn 10 as a whole. In this way, by changing the ratio of the short fibers 111 in the spun yarn 10 in the carding step, the polarity of the electric charge generated on the surface of the spun yarn 10 can be controlled.
  • the axial angle of the short fibers 111 with respect to the axial direction 101 of the spun yarn 10 can be changed by the number of twists of the spun yarn 10. As the number of twists of the spun yarn 10 increases, the angle of inclination of the short fiber 111 in the drawing direction 900 with respect to the axial direction 101 of the spun yarn 10 increases.
  • each short fiber 11 may be the same or different. Further, the thickness of each short fiber 11 does not necessarily have to be uniform.
  • the Z yarn using PDLA can be considered.
  • the S yarn using PDLA can be considered.
  • FIG. 5 (A) is a diagram showing the configuration of the spun yarn 50 according to the second embodiment
  • FIG. 5 (B) is a cross-sectional view of the spun yarn 50 in line II-II of FIG. 5 (A).
  • FIG. 5A shows the short fibers 11 by hatching.
  • the spun yarn 50 only the points different from those of the first embodiment will be described, and the same points will be omitted.
  • the spun yarn 50 includes a plurality of short fibers 11 which are piezoelectric fibers and a plurality of short fibers 51 which are ordinary fibers.
  • the short fiber 111 in the first embodiment is the short fiber 11
  • the short fiber 112 and the short fiber 113 in the first embodiment are the short fiber 51.
  • Ordinary fibers are non-piezoelectric threads. Examples of ordinary fibers include natural fibers such as cotton and linen, animal fibers such as animal hair or silk, chemical fibers such as polyester and polyurethane, regenerated fibers such as rayon and cupra, semi-synthetic fibers such as acetate, or these. Examples include twisted yarn that is twisted. The strength and the degree of expansion and contraction of the spun yarn 50 can be adjusted according to the usage mode by selecting the material of the short fiber 51.
  • the ordinary fiber which is the material of the short fiber 51, is preferably made of a material having higher hydrophilicity than the piezoelectric fiber, which is the short fiber 11. That is, the short fibers 112 and the short fibers 113 are made of a material having a higher hydrophilicity than the PLLA constituting the short fibers 111. Therefore, the spun yarn 50 is more hydrophilic than the spun yarn made of PLLA alone. When the hydrophilicity of the spun yarn 50 becomes high, moisture easily permeates into the inside of the spun yarn 50. Therefore, the collection performance of the spun yarn 50 is improved, and moisture and fine particles are easily adsorbed on the side surface of the spun yarn 50 and the voids 41.
  • the spun yarn 50 When moisture enters the void 41 of the spun yarn 50, the spun yarn 50 swells. On the contrary, when the water vaporizes and is discharged to the outside from the void 41 of the spun yarn 50, the spun yarn 50 contracts. When the spun yarn 10 swells or contracts, each short fiber 11 inside the spun yarn 50 expands and contracts. Since each short fiber 11 expands and contracts, a local electric field is generated inside the spun yarn 50. Bacteria taken into the inside of the spun yarn 50 are killed or inactivated by an electric field. Therefore, the spun yarn 50 has a larger specific surface area than a yarn made only of long fibers, is excellent in collecting fine particles, and has an efficient antibacterial effect against bacteria and the like due to the electric charge generated by each short fiber 11. Can be generated.
  • FIG. 6 is a diagram showing the configuration of the spun yarn 60.
  • the spun yarn 60 only the points different from the spun yarn 10 of the first embodiment will be described, and the same points will be omitted.
  • the spun yarn 60 includes short fibers 111 and short fibers 61.
  • the short fibers 61 are shorter than the short fibers 111.
  • the short fibers 111 and 61 are twisted together. Since the short fibers 111 are long, they are swiveled in a direction relatively identical to the axial direction 101 of the spun yarn 60. Since most of the short fibers 111 are tilted to the left with respect to the axial direction 101 of the spun yarn 60, most of the short fibers 111 are negative on the surface when stretched in the axial direction 101 of the spun yarn 60. Generates an electric charge.
  • the short fibers 61 are short, those that are swirled along a random direction with respect to the axial direction 101 of the spun yarn 60 are also included. Therefore, since the short fibers 61 include many fibers that are tilted to the right with respect to the axial direction 101 of the spun yarn 60 as compared with the short fibers 111, the short fibers 61 are stretched in the axial direction 101 of the spun yarn 60. 61 includes a part that generates a positive charge on the surface. Therefore, the spun yarn 60 can locally generate an electric field between the short fibers 111 and the short fibers 61. As the spun yarn 60, an example of two types of short fibers including short fibers 111 and short fibers 61 has been given, but the length of the short fibers is not limited to two types, and includes three or more types of short fibers. You may be.
  • FIG. 7A is a partially exploded view showing the structure of the antibacterial thread
  • FIG. 7B is a cross-sectional view of the short fiber 111.
  • the antibacterial yarn 70 includes a spun yarn 10 and a spun yarn 20.
  • the antibacterial yarn 70 is a yarn (Z yarn) in which the spun yarn 10 and the spun yarn 20 are twisted by turning left with each other.
  • the spun yarn 10 contains a large amount of short fibers 111 that are swirled at an angle of 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the left, and when stretched, the spun yarn 10 as a whole Generates a negative charge on the surface.
  • the spun yarn 20 is a left-handed swirl yarn (Z yarn) twisted by turning the short fiber 11 to the left.
  • the spun yarn 20 contains a large number of short fibers that are swirled at an angle of 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the right, and when stretched, the spun yarn 20 as a whole has a positive charge on the surface.
  • the inclination of the short fiber 11 in the drawing direction 900 with respect to the axial direction 101 can be adjusted by the number of twists of the spun yarn 10, the spun yarn 20, and the antibacterial yarn 70.
  • the number of twists of the antibacterial yarn 70 is preferably less than the number of twists of the spun yarn 10 and the spun yarn 20.
  • the drawing direction 900 of each short fiber 11 is finally adjusted so as to be tilted 45 degrees with respect to the axial direction 103 of the antibacterial thread 70.
  • the spun yarn 20 is a Z yarn using PLLA, but the spun yarn 20 may be an S yarn using PDLA. Since the spun yarn 10 and the spun yarn 20 are the same S yarn, the angle between the yarns can be easily adjusted when the antibacterial yarn 70 is manufactured.
  • the spun yarn 10 may be a Z yarn using PDLA. In this case, since the spun yarn 10 and the spun yarn 20 are the same Z yarn, the angle between the yarns can be easily adjusted when the antibacterial yarn 70 is manufactured.
  • the antibacterial yarn 70 since the spun yarn 10 that generates a negative charge on the surface and the spun yarn 20 that generates a positive charge on the surface are twisted together, a strong electric field can be generated by the antibacterial yarn 70 alone.
  • the electric field formed between the inside and the surface of the spun yarn 10 or the spun yarn 20 leaks into the air.
  • the electric fields generated by the spun yarn 10 and the spun yarn 20 are coupled to each other.
  • a strong electric field is formed in the vicinity of the spun yarn 10 and the spun yarn 20, and the antibacterial yarn 70 exerts an antibacterial effect.
  • the structure of the twisted yarn is complicated, and the proximity points of the spun yarn 10 and the spun yarn 20 are not uniform. Further, when tension is applied to the spun yarn 10 or the spun yarn 20, the proximity portion also changes. As a result, the strength of the electric field changes in each part, and an electric field in which the symmetry shape is broken is generated. Similarly, a yarn (S yarn) in which the spun yarn 10 and the spun yarn 20 are turned to the right and twisted can also generate an electric field by itself.
  • the number of twists of the spun yarn 10 and the number of twists of the spun yarn 20 or the number of twists of the antibacterial yarn 70 obtained by twisting these yarns are determined in consideration of the antibacterial effect.
  • the plurality of short fibers 11 constituting the spun yarn described above have a portion where the short fibers 11 come into contact with each other.
  • the coefficient of static friction of one short fiber 11 is designed to be higher than the coefficient of static friction of the other short fiber 11.
  • the coefficient of static friction of the short fibers 111 is higher than the coefficient of static friction of the short fibers 112 and 113.
  • the short fiber 111 of the short fibers 11 is a modified cross-section yarn. At least one of the short fibers 111, the short fibers 112, and the short fibers 113 that come into contact with each other may be irregular cross-section yarns, or all of them may be irregular cross-section yarns.
  • the irregular cross-section yarn is a yarn having a cross section such as a cross, a star polygon, or a concave polygon.
  • the deformed cross-section yarn has a groove or a protrusion extending in the longitudinal direction of the deformed cross-section yarn.
  • the deformed cross-section yarn may have both a groove portion and a convex protrusion portion.
  • the short fiber 111 has a groove portion 74 and a convex protrusion portion 75. This makes it easier for the short fibers 11 to be entangled with each other, and the short fibers 11 can efficiently apply shear stress to the spun yarn 10.
  • FIG. 8 is a diagram showing the configuration of the antibacterial cloth 80.
  • the antibacterial cloth 80 includes a plurality of spun yarns 10 and a plurality of spun yarns 20. Since the spun yarn 10 and the spun yarn 20 are the same as those described in the antibacterial yarn 70, the description thereof will be omitted.
  • the parts other than the spun yarn 10 and the spun yarn 20 are non-piezoelectric fibers.
  • the non-piezoelectric fiber includes a fiber which is made of a natural fiber such as cotton or wool or a synthetic fiber which is generally used as a yarn and does not generate an electric charge.
  • the non-piezoelectric fiber may include a fiber that generates a weaker electric charge as compared with the spun yarn 10 and the spun yarn 20.
  • the spun yarn 10 and the spun yarn 20 are woven together with the non-piezoelectric fibers in a state of being arranged side by side alternately in parallel.
  • the warp yarn is the spun yarn 10, the spun yarn 20, and the non-piezoelectric fiber
  • the weft is the non-piezoelectric fiber. It is not always necessary to weave non-piezoelectric fibers into the warp yarns, and only the spun yarn 10 and the spun yarn 20 may be used. Further, the weft yarn is not limited to the non-piezoelectric fiber, and may include a spun yarn 10 or a spun yarn 20.
  • the antibacterial cloth 80 When the antibacterial cloth 80 is stretched in the direction parallel to the warp yarn, electric charges are generated from the spun yarn 10 and the spun yarn 20. In each of the spun yarn 10 and the spun yarn 20, the electric field formed between the inside and the surface of the yarn leaks into the air. The electric fields generated by the spun yarn 10 and the spun yarn 20 are coupled to each other. A strong electric field is formed in the vicinity of the spun yarn 10 and the spun yarn 20. As a result, the antibacterial cloth 80 exerts an antibacterial effect.
  • the surfaces of the spun yarn 10 and the spun yarn 20 are fluffy.
  • the contact area between the spun yarn 10, the spun yarn 20, and the non-piezoelectric fibers is larger than that in the case where the spun yarn 10 and the spun yarn 20 are not fluffed. Therefore, when the antibacterial cloth 80 is stretched, even if the antibacterial cloth 80 is not fully stretched, the spun yarn 10 and the spun yarn 20 are pulled. Therefore, even when the load applied to the antibacterial cloth 80 is small, the antibacterial cloth 80 can generate an electric field.
  • the antibacterial cloth 80 is not limited to the woven fabric.
  • Examples of the antibacterial cloth 80 include a knitted fabric knitted using the spun yarn 10 and the spun yarn 20 as the knitting yarn, a non-woven fabric provided with the spun yarn 10 and the spun yarn 20 and the like.
  • the above-mentioned spun yarn 10, spun yarn 20, spun yarn 50, spun yarn 60, antibacterial yarn 70, or antibacterial cloth 80 can be applied to various clothing or products such as medical materials.
  • the spun yarn 10, the spun yarn 20, the spun yarn 50, the spun yarn 60, the antibacterial yarn 70, or the antibacterial cloth 80 is a mask, underwear (particularly socks), an inlay for towels, shoes, boots, etc., sportswear in general, and a hat.
  • Bedding including duvets, mattresses, sheets, pillows, pillowcases, etc.
  • toothbrushes floss
  • water purifiers air purifier filters
  • etc. stuffed animals, pet-related products (pet mats, pet clothes, pets, etc.) Inner clothes), various mats (feet, hands, toilet seats, etc.), curtains, kitchen utensils (sponge or cloth, etc.), seats (seats for cars, trains, airplanes, etc.), cushioning materials for motorcycle helmets and theirs.

Abstract

This spun yarn is provided with a short fiber which is a piezoelectric fiber that generates a potential due to external energy, the spun yarn being characterized in that the short fiber includes a plurality of short fibers and is formed by twisting the plurality of short fibers together.

Description

紡績糸、並びに紡績糸を備える糸及び布Spun yarn, and yarns and fabrics with spun yarn
 本発明は、電荷を発生する紡績糸、並びに該紡績糸を備える糸及び布に関する。 The present invention relates to a spun yarn that generates an electric charge, and a yarn and a cloth provided with the spun yarn.
 特許文献1には、抗菌性を有する糸について開示されている。特許文献1に開示された糸は、外部からのエネルギーにより電荷を発生する電荷発生繊維を備える。特許文献1に開示された糸は、発生する電荷の極性が異なる複数の電荷発生繊維を備えることにより、複数の電荷発生繊維間で、抗菌効果を発揮する。 Patent Document 1 discloses a thread having antibacterial properties. The yarn disclosed in Patent Document 1 includes a charge generating fiber that generates an electric charge by energy from the outside. The yarn disclosed in Patent Document 1 exhibits an antibacterial effect among a plurality of charge generating fibers by including a plurality of charge generating fibers having different polarities of the generated charges.
特開2018-090950号公報JP-A-2018-090950
 長繊維のみを強く撚った場合、長繊維同士の間の空隙は小さくなる。長繊維同士の間の空隙が小さくなると、電場が糸の外部に漏れにくくなるため、抗菌効果が低下する。 When only the long fibers are strongly twisted, the voids between the long fibers become small. When the gap between the long fibers becomes small, the electric field is less likely to leak to the outside of the yarn, so that the antibacterial effect is reduced.
 そこで、この発明は、効率よく抗菌効果を発揮する紡績糸、並びに該紡績糸を備える糸及び布を提供することを目的とする。 Therefore, an object of the present invention is to provide a spun yarn that efficiently exerts an antibacterial effect, and a yarn and a cloth provided with the spun yarn.
 本発明の紡績糸は、外部からのエネルギーにより電位を発生する圧電繊維である短繊維を備え、前記短繊維は、複数の短繊維を含み、前記複数の短繊維同士を互いに撚り合わせてなることを特徴とする。 The spun yarn of the present invention includes short fibers that are piezoelectric fibers that generate an electric potential by external energy, and the short fibers include a plurality of short fibers, and the plurality of short fibers are twisted together. It is characterized by.
 本発明に係る紡績糸において、複数の短繊維は、互いに複雑に絡み合う。複数の短繊維を互いに撚ると、短繊維はそれぞれ、様々な方向に沿った状態で旋回される。すなわち、短繊維はそれぞれ、紡績糸の軸方向に対してランダムな方向に沿っている。 In the spun yarn according to the present invention, a plurality of short fibers are intricately intertwined with each other. When a plurality of short fibers are twisted together, each of the short fibers is swirled along various directions. That is, each of the short fibers follows a random direction with respect to the axial direction of the spun yarn.
 紡績糸が軸方向に伸張されると、紡績糸中の各短繊維は、各短繊維の軸方向に対して様々な方向の引張、ねじり、曲げといった外力がかけられる。各短繊維は、かけられる外力の大きさや向きに応じて、様々な大きさ及び極性の電荷を発生する。これにより、紡績糸は、各短繊維の間で、様々かつ局所的な電場を発生することができる。従って、本発明に係る紡績糸は、効率よく抗菌効果を発揮することができる。 When the spun yarn is stretched in the axial direction, each short fiber in the spun yarn is subjected to external forces such as tension, twisting, and bending in various directions with respect to the axial direction of each short fiber. Each short fiber generates charges of various sizes and polarities depending on the magnitude and direction of the applied external force. This allows the spun yarn to generate various and local electric fields between each short fiber. Therefore, the spun yarn according to the present invention can efficiently exert an antibacterial effect.
 この発明によれば、効率よく抗菌効果を発揮することができる。 According to this invention, the antibacterial effect can be efficiently exhibited.
図1(A)は、第1実施形態に係る紡績糸の構成を示す図であり、図1(B)は、図1(A)のI-I線における断面図である。FIG. 1 (A) is a diagram showing a configuration of a spun yarn according to a first embodiment, and FIG. 1 (B) is a cross-sectional view taken along the line II of FIG. 1 (A). 図2(A)及び図2(B)は、ポリ乳酸のフィルムにおける一軸延伸方向と、電場方向と、ポリ乳酸フィルムの変形と、の関係を示す図である。2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film. 図3は、紡績糸に張力が加わった時に各圧電繊維に生じるずり応力(せん断応力)を図示したものである。FIG. 3 illustrates the shear stress generated in each piezoelectric fiber when tension is applied to the spun yarn. 図4は、紡績糸における抗菌メカニズムを説明するための紡績糸の一部を模式的に示した断面図である。FIG. 4 is a cross-sectional view schematically showing a part of the spun yarn for explaining the antibacterial mechanism in the spun yarn. 図5(A)は、第2実施形態に係る紡績糸の構成を示す図であり、図5(B)は、図5(A)のII-II線における断面図である。FIG. 5 (A) is a diagram showing the configuration of the spun yarn according to the second embodiment, and FIG. 5 (B) is a cross-sectional view taken along the line II-II of FIG. 5 (A). 図6は、第3実施形態に係る紡績糸の構成を示す図である。FIG. 6 is a diagram showing the configuration of the spun yarn according to the third embodiment. 図7(A)は、抗菌糸の構成を示す一部分解図であり、図7(B)は、短繊維111の断面図である。FIG. 7A is a partially exploded view showing the structure of the antibacterial thread, and FIG. 7B is a cross-sectional view of the short fiber 111. 図8は、抗菌布の構成を示す図である。FIG. 8 is a diagram showing the structure of the antibacterial cloth.
 図1(A)は、第1実施形態に係る紡績糸10の構成を示す図であり、図1(B)は、図1(A)のI-I線における断面図である。なお、図1(A)及び図1(B)においては、一例としてI-I線の断面において7本の糸の断面が示されているが、紡績糸10を構成する糸の本数はこれに限られず、実際には用途等を鑑みて、適宜設定される。また、図1(B)においてはI-I線で切断した切断面のみを示している。 FIG. 1 (A) is a diagram showing the configuration of the spun yarn 10 according to the first embodiment, and FIG. 1 (B) is a cross-sectional view taken along the line II of FIG. 1 (A). In addition, in FIG. 1 (A) and FIG. 1 (B), the cross section of 7 yarns is shown as an example in the cross section of the line I-I, but the number of yarns constituting the spun yarn 10 is this. It is not limited, and is actually set as appropriate in consideration of the application and the like. Further, in FIG. 1B, only the cut surface cut along the line II is shown.
 紡績糸10は、複数の短繊維11を備える。紡績糸10は、複数の短繊維11を互いに撚り合わせてなる。短繊維11は、外部からのエネルギー、例えば伸縮により電荷を発生する圧電繊維の一例である。 The spun yarn 10 includes a plurality of short fibers 11. The spun yarn 10 is formed by twisting a plurality of short fibers 11 together. The short fiber 11 is an example of a piezoelectric fiber that generates an electric charge due to external energy, for example, expansion and contraction.
 短繊維11は、機能性高分子、例えば圧電性ポリマーからなる。圧電性ポリマーとしては、例えばPVDF又はポリ乳酸(PLA)が挙げられる。また、ポリ乳酸(PLA)は、焦電性を有していない圧電性ポリマーである。ポリ乳酸は、一軸延伸されることで圧電性が生じる。ポリ乳酸には、L体モノマーが重合したPLLAと、D体モノマーが重合したPDLAと、がある。なお、短繊維11は、機能性高分子の機能を阻害しないものであれば、機能性高分子以外のものをさらに含んでいてもよい。 The short fiber 11 is made of a functional polymer, for example, a piezoelectric polymer. Piezoelectric polymers include, for example, PVDF or polylactic acid (PLA). In addition, polylactic acid (PLA) is a piezoelectric polymer that does not have pyroelectricity. Polylactic acid is uniaxially stretched to produce piezoelectricity. Polylactic acid includes PLLA in which an L-form monomer is polymerized and PDLA in which a D-form monomer is polymerized. The short fiber 11 may further contain a fiber other than the functional polymer as long as it does not inhibit the function of the functional polymer.
 ポリ乳酸は、キラル高分子であり、主鎖が螺旋構造を有する。ポリ乳酸は、一軸延伸されて分子が配向すると、圧電性を発現する。さらに熱処理を加えて結晶化度を高めると圧電定数が高くなる。一軸延伸されたポリ乳酸からなる短繊維11は、厚み方向を第1軸、延伸方向900を第3軸、第1軸及び第3軸の両方に直交する方向を第2軸と定義したとき、圧電歪み定数としてd14及びd25のテンソル成分を有する。従って、ポリ乳酸は、一軸延伸された方向に対して45度の方向に歪みが生じた場合に、最も効率よく電荷を発生する。 Polylactic acid is a chiral polymer, and its main chain has a spiral structure. Polylactic acid exhibits piezoelectricity when it is uniaxially stretched and the molecules are oriented. Further heat treatment is applied to increase the crystallinity, thereby increasing the piezoelectric constant. When the thickness direction of the uniaxially stretched short fiber 11 made of polylactic acid is defined as the first axis, the stretching direction 900 is defined as the third axis, and the direction orthogonal to both the first axis and the third axis is defined as the second axis. It has tensor components of d 14 and d 25 as piezoelectric strain constants. Therefore, polylactic acid most efficiently generates electric charges when strain occurs in the direction of 45 degrees with respect to the uniaxially stretched direction.
 図2(A)及び図2(B)は、ポリ乳酸フィルム200における一軸延伸方向と、電場方向と、ポリ乳酸フィルム200の変形と、の関係を示す図である。図2(A)及び図2(B)は、短繊維11をフィルム形状と仮定したモデルケースを示したものである。図2(A)に示すように、ポリ乳酸フィルム200は、第1対角線910Aの方向に縮み、第1対角線910Aに直交する第2対角線910Bの方向に伸びると、紙面の裏側から表側に向く方向に電場を生じる。すなわち、ポリ乳酸フィルム200は、紙面表側では、負の電荷が発生する。ポリ乳酸フィルム200は、図2(B)に示すように、第1対角線910Aの方向に伸び、第2対角線910Bの方向に縮む場合も、電荷を発生するが、極性が逆になり、紙面の表面から裏側に向く方向に電場を生じる。すなわち、ポリ乳酸フィルム200は、紙面表側では、正の電荷が発生する。 2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of the polylactic acid film 200, the electric field direction, and the deformation of the polylactic acid film 200. 2 (A) and 2 (B) show a model case in which the short fiber 11 is assumed to have a film shape. As shown in FIG. 2A, the polylactic acid film 200 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, so that the polylactic acid film 200 faces from the back side to the front side of the paper surface. Generates an electric field in. That is, the polylactic acid film 200 generates a negative charge on the front side of the paper surface. As shown in FIG. 2B, the polylactic acid film 200 also generates an electric charge when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed, and the polylactic acid film 200 is on the paper surface. An electric field is generated in the direction from the front side to the back side. That is, the polylactic acid film 200 generates a positive charge on the front side of the paper surface.
 ポリ乳酸は、延伸による分子の配向処理で圧電性が生じるため、PVDF等の他の圧電性ポリマー又は圧電セラミックスのように、ポーリング処理を行う必要がない。一軸延伸されたポリ乳酸の圧電定数は、5~30pC/N程度であり、高分子の中では非常に高い圧電定数を有する。さらに、ポリ乳酸の圧電定数は経時的に変動することがなく、極めて安定している。 Since polylactic acid produces piezoelectricity by molecular orientation treatment by stretching, it is not necessary to perform polling treatment unlike other piezoelectric polymers such as PVDF or piezoelectric ceramics. The piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not fluctuate with time and is extremely stable.
 短繊維11は、断面が円形状の繊維である。短繊維11は、例えば、圧電性高分子を押し出し成型して繊維化する手法、圧電性高分子を溶融紡糸して繊維化する手法(例えば、紡糸工程と延伸工程を分けて行う紡糸・延伸法、紡糸工程と延伸工程を連結した直延伸法、仮撚り工程も同時に行うことのできるPOY-DTY法、又は高速化を図った超高速防止法などを含む)、圧電性高分子を乾式あるいは湿式紡糸(例えば、溶媒に原料となるポリマーを溶解してノズルから押し出して繊維化するような相分離法もしくは乾湿紡糸法、溶媒を含んだままゲル状に均一に繊維化するようなゲル紡糸法、又は液晶溶液もしくは融体を用いて繊維化する液晶紡糸法、などを含む)により繊維化する手法、又は圧電性高分子を静電紡糸により繊維化する手法等により製造される。なお、短繊維11の断面形状は、円形に限るものではない。 The short fiber 11 is a fiber having a circular cross section. The short fiber 11 is, for example, a method of extruding a piezoelectric polymer into fibers and a method of melt-spinning a piezoelectric polymer into fibers (for example, a spinning / drawing method in which a spinning step and a drawing step are performed separately. , A straight drawing method that connects the spinning process and the drawing process, a POY-DTY method that can also perform a false twisting process at the same time, or an ultra-high speed prevention method that aims to increase the speed), Dry or wet piezoelectric polymer Spinning (for example, a phase separation method or a dry-wet spinning method in which a polymer as a raw material is dissolved in a solvent and extruded from a nozzle to form fibers, or a gel spinning method in which fibers are uniformly fiberized in a gel state while containing a solvent. Alternatively, it is produced by a method of fiberizing by a liquid crystal spinning method (including a liquid crystal spinning method of fiberizing using a liquid crystal solution or a melt), or a method of fiberizing a piezoelectric polymer by electrostatic spinning. The cross-sectional shape of the short fiber 11 is not limited to a circular shape.
 繊維のような紐状の物は、軸方向に垂直に切断された場合の断面積が最も小さく、切断面が軸方向に平行に近づくほど断面積が大きくなる。図1(B)に示すように、紡績糸10の軸方向101に垂直な断面において、各短繊維11の断面積は多様である。これは、各短繊維11が、紡績糸10の軸方向101に対してランダムな角度をなしているからである。 A string-shaped object such as a fiber has the smallest cross-sectional area when cut perpendicularly to the axial direction, and the cross-sectional area increases as the cut surface approaches parallel to the axial direction. As shown in FIG. 1B, the cross-sectional area of each short fiber 11 varies in the cross section perpendicular to the axial direction 101 of the spun yarn 10. This is because each short fiber 11 forms a random angle with respect to the axial direction 101 of the spun yarn 10.
 短繊維11は、800mm以下であることが好ましく、500mm以下、又は300mm以下であることがより好ましく、さらには100mm以下であることがより好ましい。これにより、以下で詳細に述べるように、短繊維11は、紡績糸10の側面から外部へ露出し易くなる。 The short fiber 11 is preferably 800 mm or less, more preferably 500 mm or less, or more preferably 300 mm or less, and further preferably 100 mm or less. As a result, as will be described in detail below, the short fibers 11 are easily exposed to the outside from the side surface of the spun yarn 10.
 短繊維11の繊度は、0.3dtex以上10dtex以下であることが好ましい。 The fineness of the short fiber 11 is preferably 0.3 dtex or more and 10 dtex or less.
 短繊維11の断面形状は、特に限定は無く、例えば丸断面、異形断面、中空、サイド・バイ・サイド、2層以上の複数層のいずれでもよく、また、これらの複合でもよい。 The cross-sectional shape of the short fiber 11 is not particularly limited, and may be, for example, a round cross section, a deformed cross section, a hollow, side-by-side, two or more layers, or a composite of these.
 紡績糸10は、このような、PLLAの短繊維11を複数撚ってなる糸である。紡績糸10は、短繊維11を右旋回して撚られた右旋回糸(以下、S糸と称する。)である。なお、紡績糸10は、短繊維11を左旋回して撚られた左旋回糸(以下、Z糸と称する。)であってもよい。 The spun yarn 10 is such a yarn formed by twisting a plurality of PLLA short fibers 11. The spun yarn 10 is a right-handed swirl yarn (hereinafter, referred to as S yarn) twisted by swirling the short fiber 11 to the right. The spun yarn 10 may be a left-handed swirl yarn (hereinafter, referred to as Z yarn) twisted by turning the short fiber 11 to the left.
 短繊維11は短いため、複数の短繊維11が撚られると、ランダムな方向に沿って旋回され易い。すなわち、図1(A)に示すように、それぞれの短繊維11の軸方向は、紡績糸10の軸方向101に対してランダムな角度をなしている。紡績糸10、すなわち複数の短繊維11は、例えば、短繊維111、短繊維112、及び短繊維113を備える。短繊維111は本発明の第1の短繊維の一例であり、短繊維112は本発明の第2の短繊維の一例であり、短繊維113は本発明の第3の短繊維の一例である。 Since the short fibers 11 are short, when a plurality of short fibers 11 are twisted, they are likely to be swiveled in random directions. That is, as shown in FIG. 1A, the axial direction of each short fiber 11 forms a random angle with respect to the axial direction 101 of the spun yarn 10. The spun yarn 10, that is, the plurality of short fibers 11, includes, for example, short fibers 111, short fibers 112, and short fibers 113. The short fiber 111 is an example of the first short fiber of the present invention, the short fiber 112 is an example of the second short fiber of the present invention, and the short fiber 113 is an example of the third short fiber of the present invention. ..
 短繊維111は紡績糸10の軸方向101に対して左0度以上80度以下、好ましくは20度以上~50度以下傾き、短繊維112は紡績糸10の軸方向101に対して左0度以上80度以下、好ましくは20度以上~50度以下度傾き、短繊維113は紡績糸10の軸方向101に対して左0度以上80度以下、好ましくは20度以上~50度以下傾く。短繊維111、短繊維112、及び短繊維113の紡績糸10の軸方向101に対する角度は、それぞれ異なっていても良い。 The short fiber 111 is tilted 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the left with respect to the axial direction 101 of the spun yarn 10, and the short fiber 112 is 0 degrees to the left with respect to the axial direction 101 of the spun yarn 10. The short fiber 113 is tilted by 80 degrees or more, preferably 20 degrees or more and 50 degrees or less, and the short fiber 113 is tilted by 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less with respect to the axial direction 101 of the spun yarn 10. The angles of the short fibers 111, the short fibers 112, and the short fibers 113 with respect to the axial direction 101 of the spun yarn 10 may be different from each other.
 図1(A)に示す短繊維111は、複数の短繊維11のうちカーディング工程で一定の方向へ揃えられたものである。従って、紡績糸10は、短繊維111を最も多く含む。短繊維111は、バイアスカットによって30mm以上70mm以下の範囲で異なる長さとされていても良い。 The short fibers 111 shown in FIG. 1A are those of the plurality of short fibers 11 that are aligned in a certain direction in the carding process. Therefore, the spun yarn 10 contains the most short fibers 111. The short fibers 111 may have different lengths in the range of 30 mm or more and 70 mm or less depending on the bias cut.
 短繊維111、短繊維112、及び短繊維113は、それぞれ捲縮部62を有する。なお、図1(A)は、代表して短繊維111の捲縮部62を示している。短繊維111は、捲縮部62で拘束されている。例えば、短繊維111の長手方向の第1端71側は短繊維112に拘束され、短繊維111の長手方向の第2端72側は短繊維113に拘束されている。短繊維111は、第1端71を短繊維112に、第2端72を短繊維113に拘束されることで、解繊されず束ねられた状態を維持できる。これにより、ユーザは、圧電繊維に対して応力を効率よく伝達することができる。 The short fiber 111, the short fiber 112, and the short fiber 113 each have a crimped portion 62. Note that FIG. 1A typically shows the crimped portion 62 of the short fiber 111. The short fibers 111 are restrained by the crimped portion 62. For example, the first end 71 side of the short fiber 111 in the longitudinal direction is constrained by the short fiber 112, and the second end 72 side of the short fiber 111 in the longitudinal direction is constrained by the short fiber 113. By restraining the first end 71 to the short fiber 112 and the second end 72 to the short fiber 113, the short fiber 111 can maintain a bundled state without being defibrated. This allows the user to efficiently transfer stress to the piezoelectric fibers.
 紡績糸10は、例えばリング、コンパクト、サイロリング、サイロコンパクト、空気精紡、エアスピニング、ミュール、フライヤーなどの方法で製造されるが、製法に限定は無い。 The spun yarn 10 is manufactured by a method such as a ring, a compact, a silo ring, a silo compact, an air spinning, an air spinning, a mule, or a fryer, but the manufacturing method is not limited.
 短繊維111、短繊維112、及び短繊維113は、それぞれ1番手以上500番手以下であることが好ましい。 The short fibers 111, short fibers 112, and short fibers 113 are preferably 1st or higher and 500th or lower, respectively.
 図3は、紡績糸10の軸方向101に張力が加わった時に各短繊維11に生じるずり応力(せん断応力)を図示したものである。 FIG. 3 illustrates the shear stress (shear stress) generated in each short fiber 11 when tension is applied to the axial direction 101 of the spun yarn 10.
 図3に示すように、紡績糸10の軸方向101に外力(張力)がかかると、短繊維111は、図2(A)に示した状態のようになり、表面に負の電荷を生じ、内側に正の電荷を生じる。また、同時に短繊維112又は短繊維113は、図2(A)に示した状態のようになり、表面に負の電荷を生じ、内側に正の電荷を生じる。なお、短繊維112又は短繊維113の軸方向が、短繊維111の軸方向と90度異なる向きに沿っている場合、短繊維112又は短繊維113は、図2(B)に示した状態のようになり、表面に正の電荷を生じ、内側に負の電荷を生じる。 As shown in FIG. 3, when an external force (tension) is applied to the axial direction 101 of the spun yarn 10, the short fibers 111 are in the state shown in FIG. 2 (A), and a negative charge is generated on the surface. Generates a positive charge on the inside. At the same time, the short fibers 112 or 113 are in the state shown in FIG. 2A, and generate a negative charge on the surface and a positive charge on the inside. When the axial direction of the short fiber 112 or the short fiber 113 is 90 degrees different from the axial direction of the short fiber 111, the short fiber 112 or the short fiber 113 is in the state shown in FIG. 2 (B). As a result, a positive charge is generated on the surface and a negative charge is generated on the inside.
 このように、紡績糸10に外力(張力)がかかると、短繊維111、短繊維112、及び短繊維113は表面に異なる大きさの電荷を発生する。すなわち、それぞれの短繊維11の向きはランダムであるため、それぞれの短繊維11は、様々な大きさ及び極性の電荷を発生する。例えば、短繊維112が短繊維111の軸方向と90度異なる向きに沿っている場合、短繊維111の第1表面は、空隙41を挟んで短繊維112の第2表面と対向する。このため、紡績糸10における短繊維11の間という狭い領域で局所的に強い電場が生じる。また、紡績糸10を軸方向101に伸張する力が小さい場合であっても、複数の短繊維11において様々な大きさ及び極性の電荷を発生するため、電場を生じることができる。 In this way, when an external force (tension) is applied to the spun yarn 10, the short fibers 111, the short fibers 112, and the short fibers 113 generate electric charges of different sizes on the surface. That is, since the orientation of each short fiber 11 is random, each short fiber 11 generates charges of various sizes and polarities. For example, when the short fibers 112 are oriented 90 degrees different from the axial direction of the short fibers 111, the first surface of the short fibers 111 faces the second surface of the short fibers 112 with the gap 41 interposed therebetween. Therefore, a strong electric field is locally generated in a narrow region between the short fibers 11 in the spun yarn 10. Further, even when the force for extending the spun yarn 10 in the axial direction 101 is small, electric fields can be generated because charges of various sizes and polarities are generated in the plurality of short fibers 11.
 紡績糸10において、複数の短繊維11はそれぞれランダムな方向に沿って旋回されている。複数の短繊維11が強く撚られていても、複数の短繊維11の間に空隙41が生じ易い。また、各短繊維11は、様々な大きさ及び極性の電荷を発生するため、各短繊維11間である空隙41において、様々な大きさの電場が生じる。これにより、以下に説明するように、空隙41で捕集した菌に対する抗菌効果が向上する。 In the spun yarn 10, the plurality of short fibers 11 are each swirled along a random direction. Even if the plurality of short fibers 11 are strongly twisted, voids 41 are likely to occur between the plurality of short fibers 11. Further, since each short fiber 11 generates electric charges of various sizes and polarities, an electric field of various sizes is generated in the gap 41 between the short fibers 11. As a result, as described below, the antibacterial effect against the bacteria collected in the void 41 is improved.
 図4は、紡績糸10における抗菌メカニズムを説明するための紡績糸10の一部を模式的に示した断面図である。図4に示すように紡績糸10は、複数の短繊維11間に生じる空隙41に、水分40を吸収することができる。水分40とともに紡績糸10に吸収された菌等の微粒子42は、紡績糸10の内部に保持されやすくなる。また、紡績糸10内部の空隙41がより大きくなるほど、吸収できる水分40の量が増加するため、紡績糸10の内部に保持される微粒子42も増加する。このように、紡績糸10は、微粒子42の捕集性能に優れる。 FIG. 4 is a cross-sectional view schematically showing a part of the spun yarn 10 for explaining the antibacterial mechanism in the spun yarn 10. As shown in FIG. 4, the spun yarn 10 can absorb moisture 40 into the gaps 41 formed between the plurality of short fibers 11. The fine particles 42 such as bacteria absorbed by the spinning yarn 10 together with the water content 40 are easily retained inside the spinning yarn 10. Further, as the void 41 inside the spun yarn 10 becomes larger, the amount of water 40 that can be absorbed increases, so that the fine particles 42 held inside the spun yarn 10 also increase. As described above, the spun yarn 10 is excellent in the collection performance of the fine particles 42.
 紡績糸10が微粒子42を捕集した後に、紡績糸10中の水分40が蒸発すると、紡績糸10の空隙41に微粒子42が残留する。紡績糸10が軸方向101に伸張されると、紡績糸10は、局所的に複数の短繊維11の間で電場を生じる。微粒子42は、空隙41、すなわち複数の短繊維11の間に捕集されているため、紡績糸10中の微粒子42は、局所的で極大な電場に曝される。従って、紡績糸10は、発生する電場によって菌等に対して効率よく抗菌効果を生じさせることができる。 When the water content 40 in the spun yarn 10 evaporates after the spun yarn 10 collects the fine particles 42, the fine particles 42 remain in the voids 41 of the spun yarn 10. When the spun yarn 10 is stretched in the axial direction 101, the spun yarn 10 locally generates an electric field between the plurality of short fibers 11. Since the fine particles 42 are collected between the voids 41, that is, the plurality of short fibers 11, the fine particles 42 in the spun yarn 10 are exposed to a local and maximum electric field. Therefore, the spun yarn 10 can efficiently generate an antibacterial effect against bacteria and the like by the generated electric field.
 また、紡績糸10は複数の短繊維11の間に空隙41を多く有するため、電場は紡績糸10の外部へ漏れ易くなる。紡績糸10は、近接する所定の電位、例えば人体等の所定の電位(グランド電位を含む。)を有する物に近接した場合に、紡績糸10と該物との間に電場を生じさせる。紡績糸10は、この様にして、他の所定の電位を有する物との間でも抗菌効果を発揮する。 Further, since the spun yarn 10 has many voids 41 between the plurality of short fibers 11, the electric field easily leaks to the outside of the spun yarn 10. When the spun yarn 10 is close to an object having a predetermined potential, for example, a human body or the like having a predetermined potential (including a ground potential), an electric field is generated between the spun yarn 10 and the object. In this way, the spun yarn 10 exerts an antibacterial effect even with other materials having a predetermined potential.
 従来から、電場により細菌及び真菌の増殖を抑制することができる旨が知られている(例えば、土戸哲明,高麗寛紀,松岡英明,小泉淳一著、講談社:微生物制御-科学と工学を参照。また、例えば、高木浩一,高電圧・プラズマ技術の農業・食品分野への応用,J.HTSJ,Vol.51,No.216を参照)。また、この電場を生じさせている電位により、湿気等で形成された電流経路、又は局部的なミクロな放電現象等で形成された回路を電流が流れることがある。この電流により菌が弱体化し菌の増殖を抑制することが考えられる。なお、本実施形態で言う菌とは、細菌、真菌又はダニやノミ等の微生物を含む。 It has long been known that electric fields can suppress the growth of bacteria and fungi (see, for example, Tetsuaki Doto, Hiroki Korai, Hideaki Matsuoka, Junichi Koizumi, Kodansha: Microbial Control-Science and Engineering. Also, see, for example, Koichi Takaki, Application of high-voltage / plasma technology to the agricultural / food field, J.HTSJ, Vol.51, No.216). Further, depending on the potential that generates this electric field, a current may flow through a current path formed by humidity or the like, or a circuit formed by a local micro discharge phenomenon or the like. It is considered that this current weakens the bacteria and suppresses the growth of the bacteria. The bacteria referred to in the present embodiment include bacteria, fungi, and microorganisms such as mites and fleas.
 従って、紡績糸10は、紡績糸10の内部に形成される電場によって、あるいは人体等の所定の電位を有する物に近接した場合に発生する電場によって、直接的に抗菌効果を発揮する。あるいは、紡績糸10は、汗等の水分を介して、内部又は近接する他の繊維若しくは人体等の所定の電位を有する物に近接した場合に電流を流す。この電流によっても、直接的に抗菌効果を発揮する場合がある。あるいは、電流又は電圧の作用により水分に含まれる酸素が変化した活性酸素種、さらに繊維中に含まれる添加材との相互作用又は触媒作用によって生じたラジカル種、又はその他の抗菌性化学種(アミン誘導体等)によって間接的に抗菌効果を発揮する場合がある。あるいは、電場又は電流の存在によるストレス環境により菌の細胞内に酸素ラジカルが生成される場合がある、これにより紡績糸10が、間接的に抗菌効果を発揮する場合がある。ラジカルとしては、スーパーオキシドアニオンラジカル(活性酸素)又はヒドロキシラジカルの発生が考えられる。なお、本実施形態で言う「抗菌」とは、菌の発生を抑制する効果、また菌を死滅する効果の両方を含む概念である。 Therefore, the spun yarn 10 exerts an antibacterial effect directly by the electric field formed inside the spun yarn 10 or by the electric field generated when the spun yarn 10 is close to an object having a predetermined potential such as a human body. Alternatively, the spun yarn 10 passes an electric current through moisture such as sweat when it is close to an object having a predetermined potential such as another fiber inside or adjacent to the human body. This current may also directly exert an antibacterial effect. Alternatively, reactive oxygen species in which oxygen contained in water is changed by the action of current or voltage, radical species generated by interaction or catalysis with additives contained in fibers, or other antibacterial chemical species (amines). Derivatives, etc.) may indirectly exert an antibacterial effect. Alternatively, oxygen radicals may be generated in the cells of the bacterium due to the stress environment due to the presence of an electric field or an electric current, whereby the spun yarn 10 may indirectly exert an antibacterial effect. As the radical, generation of superoxide anion radical (active oxygen) or hydroxyl radical can be considered. The term "antibacterial" as used in the present embodiment is a concept including both an effect of suppressing the growth of bacteria and an effect of killing the bacteria.
 紡績糸10は、伸縮により電荷を生じさせる圧電繊維を用いるため、電源が不要であり、感電のおそれもない。圧電繊維の寿命は、薬剤等による抗菌効果よりも長く持続する。また、圧電繊維は、薬剤よりもアレルギー反応が生じるおそれが低い。 Since the spun yarn 10 uses a piezoelectric fiber that generates an electric charge by expansion and contraction, a power source is not required and there is no risk of electric shock. The life of the piezoelectric fiber lasts longer than the antibacterial effect of chemicals and the like. Also, piezoelectric fibers are less likely to cause an allergic reaction than drugs.
 紡績糸10において、それぞれの短繊維11は、紡績糸10において紡績糸10の軸方向101の途中で途切れている。短繊維11の端部(例えば、図1(A)及び図1(B)に示す第1端71及び第2端72)は、紡績糸10の側面から周囲へ露出している。多数の短繊維11の端部が、紡績糸10の側面に露出しているため、紡績糸10の側面はいわゆる毛羽立った構造となる。これにより、紡績糸10は、肌触りや外観を調整することができる。また、紡績糸10は、毛羽立ちにより表面積が増えるため、紡績糸10の側面に水分や微粒子を吸着し易くなる。これにより、紡績糸10は、微粒子の捕集性能に優れ、効率よく抗菌効果を生じさせることができる。 In the spun yarn 10, each short fiber 11 is interrupted in the spun yarn 10 in the middle of the axial direction 101 of the spun yarn 10. The ends of the short fibers 11 (for example, the first end 71 and the second end 72 shown in FIGS. 1A and 1B) are exposed from the side surface of the spun yarn 10 to the periphery. Since the ends of a large number of short fibers 11 are exposed on the side surface of the spun yarn 10, the side surface of the spun yarn 10 has a so-called fluffy structure. Thereby, the spun yarn 10 can adjust the feel and appearance. Further, since the surface area of the spun yarn 10 increases due to fluffing, moisture and fine particles are easily adsorbed on the side surface of the spun yarn 10. As a result, the spun yarn 10 is excellent in collecting fine particles and can efficiently generate an antibacterial effect.
 短繊維11は、長手方向全体にわたって捲縮していてもよい。捲縮された短繊維11は、複雑な形状となるため、互いに複雑に絡み合いやすい。このため、紡績糸10に外力(張力)がかかると、様々な方向の引っ張り、ねじり、曲げの力が各短繊維11にかかる。従って各短繊維11は、様々な大きさの電荷を発生するため、各短繊維11の間で様々な電場を発生することができる。 The short fiber 11 may be crimped over the entire longitudinal direction. Since the crimped short fibers 11 have a complicated shape, they tend to be intricately entangled with each other. Therefore, when an external force (tension) is applied to the spun yarn 10, pulling, twisting, and bending forces in various directions are applied to each short fiber 11. Therefore, since each short fiber 11 generates electric charges of various sizes, various electric fields can be generated between the short fibers 11.
 短繊維11のクリンプ数は、0個/インチ以上20個/インチ以下が好ましく、クリンプの大きさ(捲縮率)は、0%以上20%以下であることが好ましい。 The number of crimps of the short fiber 11 is preferably 0 pieces / inch or more and 20 pieces / inch or less, and the crimp size (crimp ratio) is preferably 0% or more and 20% or less.
 また、紡績糸10は、捲縮された複数の短繊維11を含む方が、捲縮されていない複数の短繊維11を含む場合と比べて、複数の短繊維11の間に生じる空隙41が大きくなる。これにより、捲縮されていない複数の短繊維11を含む場合と比べて、紡績糸10の抗菌効果が向上する。 Further, when the spun yarn 10 contains the plurality of crimped short fibers 11, the voids 41 generated between the plurality of short fibers 11 are formed in the spun yarn 10 as compared with the case where the spun yarn 10 contains the plurality of uncrimped short fibers 11. growing. As a result, the antibacterial effect of the spun yarn 10 is improved as compared with the case where the plurality of short fibers 11 that are not crimped are included.
 前述のように、カーディング工程で、複数の短繊維11のうち一部の短繊維111は一定の方向へ揃えられる。一定の方向へ揃えられた短繊維111は、紡績工程で撚られることにより、紡績糸10の軸方向101に対して左に45度で旋回する。複数の短繊維11のうちカーディング工程で一定の方向へ揃えられた短繊維111の割合が多いほど、紡績糸10において同一の方向に沿う短繊維111の割合が増える。紡績糸10は左45度に傾いて旋回されている短繊維111が多い場合、紡績糸10全体として、表面に負の電荷を生じる。このように、カーディング工程で紡績糸10中の短繊維111の割合を変化させることにより、紡績糸10の表面に生じる電荷の極性をコントロールすることができる。 As described above, in the carding process, some of the short fibers 111 among the plurality of short fibers 11 are aligned in a certain direction. The short fibers 111 aligned in a certain direction are twisted in the spinning process to rotate left at 45 degrees to the left with respect to the axial direction 101 of the spun yarn 10. The greater the proportion of the short fibers 111 aligned in a certain direction in the carding process among the plurality of short fibers 11, the greater the proportion of the short fibers 111 along the same direction in the spun yarn 10. When the spun yarn 10 has many short fibers 111 that are swiveled at an angle of 45 degrees to the left, a negative charge is generated on the surface of the spun yarn 10 as a whole. In this way, by changing the ratio of the short fibers 111 in the spun yarn 10 in the carding step, the polarity of the electric charge generated on the surface of the spun yarn 10 can be controlled.
 紡績糸10の軸方向101に対する短繊維111の軸方向の角度は、紡績糸10の撚り回数によって変えることができる。紡績糸10の撚り回数が多くなるほど、紡績糸10の軸方向101に対する短繊維111の延伸方向900の傾きの角度が大きくなる。 The axial angle of the short fibers 111 with respect to the axial direction 101 of the spun yarn 10 can be changed by the number of twists of the spun yarn 10. As the number of twists of the spun yarn 10 increases, the angle of inclination of the short fiber 111 in the drawing direction 900 with respect to the axial direction 101 of the spun yarn 10 increases.
 なお、各短繊維11の太さは、それぞれ同一でもよく、異なっていてもよい。また、各短繊維11の太さは必ずしも均一である必要もない。 The thickness of each short fiber 11 may be the same or different. Further, the thickness of each short fiber 11 does not necessarily have to be uniform.
 なお、表面に負の電荷を生じる糸としては、PLLAを用いたS糸の他にも、PDLAを用いたZ糸も考えられる。また、表面に正の電荷を生じる糸としては、PLLAを用いたZ糸の他にも、PDLAを用いたS糸も考えられる。 As the yarn that generates a negative charge on the surface, in addition to the S yarn using PLLA, the Z yarn using PDLA can be considered. Further, as the yarn that generates a positive charge on the surface, in addition to the Z yarn using PLLA, the S yarn using PDLA can be considered.
 以下、第2実施形態に係る紡績糸50について説明する。図5(A)は、第2実施形態に係る紡績糸50の構成を示す図であり、図5(B)は、図5(A)のII-II線における紡績糸50の断面図である。図5(A)は、短繊維11をハッチングで示す。紡績糸50の説明においては、第1実施形態と異なる点についてのみ説明を行い、同様の点については説明を省略する。 Hereinafter, the spun yarn 50 according to the second embodiment will be described. FIG. 5 (A) is a diagram showing the configuration of the spun yarn 50 according to the second embodiment, and FIG. 5 (B) is a cross-sectional view of the spun yarn 50 in line II-II of FIG. 5 (A). .. FIG. 5A shows the short fibers 11 by hatching. In the description of the spun yarn 50, only the points different from those of the first embodiment will be described, and the same points will be omitted.
 紡績糸50は、圧電繊維である複数の短繊維11と、普通繊維である複数の短繊維51と、を含んでいる。この例においては、第1実施形態における短繊維111が短繊維11であり、第1実施形態における短繊維112及び短繊維113が短繊維51である。普通繊維は、圧電性のない糸である。普通繊維としては、例えば、綿又は麻等の天然繊維、獣毛又は絹等の動物繊維、ポリエステル、ポリウレタン等の化学繊維、レーヨン、キュプラ等の再生繊維、アセテート等の半合成繊維、又はこれらを撚ってなる撚糸が挙げられる。紡績糸50の強度や伸縮度合いは、短繊維51の素材の選択により使用態様に応じて調節することができる。 The spun yarn 50 includes a plurality of short fibers 11 which are piezoelectric fibers and a plurality of short fibers 51 which are ordinary fibers. In this example, the short fiber 111 in the first embodiment is the short fiber 11, and the short fiber 112 and the short fiber 113 in the first embodiment are the short fiber 51. Ordinary fibers are non-piezoelectric threads. Examples of ordinary fibers include natural fibers such as cotton and linen, animal fibers such as animal hair or silk, chemical fibers such as polyester and polyurethane, regenerated fibers such as rayon and cupra, semi-synthetic fibers such as acetate, or these. Examples include twisted yarn that is twisted. The strength and the degree of expansion and contraction of the spun yarn 50 can be adjusted according to the usage mode by selecting the material of the short fiber 51.
 短繊維51の素材である普通繊維は、短繊維11である圧電繊維よりも親水性が高い素材からなることが好ましい。すなわち、短繊維112及び短繊維113は、短繊維111を構成するPLLAより親水性が高い素材からなる。このため、紡績糸50は、PLLAのみからなる紡績糸よりも親水性が高くなる。紡績糸50の親水性が高くなると紡績糸50の内部に水分が染み込み易くなる。従って、紡績糸50の捕集性能が高くなり、紡績糸50の側面や空隙41に水分や微粒子を吸着し易くなる。 The ordinary fiber, which is the material of the short fiber 51, is preferably made of a material having higher hydrophilicity than the piezoelectric fiber, which is the short fiber 11. That is, the short fibers 112 and the short fibers 113 are made of a material having a higher hydrophilicity than the PLLA constituting the short fibers 111. Therefore, the spun yarn 50 is more hydrophilic than the spun yarn made of PLLA alone. When the hydrophilicity of the spun yarn 50 becomes high, moisture easily permeates into the inside of the spun yarn 50. Therefore, the collection performance of the spun yarn 50 is improved, and moisture and fine particles are easily adsorbed on the side surface of the spun yarn 50 and the voids 41.
 水分が紡績糸50の空隙41に入り込むと、紡績糸50は膨潤する。逆に、水分が気化して紡績糸50の空隙41から外部へ排出されるとき、紡績糸50は収縮する。紡績糸10が膨潤又は収縮すると、紡績糸50内部の各短繊維11が伸縮する。各短繊維11が伸縮するため、紡績糸50の内部に局所的な電場が発生する。紡績糸50の内部に取り込まれた菌は、電場によって死滅、又は失活する。従って、紡績糸50は、長繊維のみにより作製された糸に比べて比表面積が大きくなり、微粒子の捕集性能に優れ、各短繊維11が発生する電荷によって菌等に対して効率よく抗菌効果を生じさせることができる。 When moisture enters the void 41 of the spun yarn 50, the spun yarn 50 swells. On the contrary, when the water vaporizes and is discharged to the outside from the void 41 of the spun yarn 50, the spun yarn 50 contracts. When the spun yarn 10 swells or contracts, each short fiber 11 inside the spun yarn 50 expands and contracts. Since each short fiber 11 expands and contracts, a local electric field is generated inside the spun yarn 50. Bacteria taken into the inside of the spun yarn 50 are killed or inactivated by an electric field. Therefore, the spun yarn 50 has a larger specific surface area than a yarn made only of long fibers, is excellent in collecting fine particles, and has an efficient antibacterial effect against bacteria and the like due to the electric charge generated by each short fiber 11. Can be generated.
 以下、第3実施形態に係る紡績糸60について説明する。図6は、紡績糸60の構成を示す図である。紡績糸60の説明においては、第1実施形態の紡績糸10と異なる点についてのみ説明を行い、同様の点については説明を省略する。 Hereinafter, the spun yarn 60 according to the third embodiment will be described. FIG. 6 is a diagram showing the configuration of the spun yarn 60. In the description of the spun yarn 60, only the points different from the spun yarn 10 of the first embodiment will be described, and the same points will be omitted.
 図6に示すように、紡績糸60は、短繊維111及び短繊維61とを含む。短繊維61は、短繊維111よりも短い。短繊維111及び短繊維61は、共に撚られる。短繊維111は、長いため紡績糸60の軸方向101に対して比較的同一の方向に沿って旋回される。短繊維111の大部分は、紡績糸60の軸方向101に対して左に傾いた状態であるため、紡績糸60の軸方向101に伸張されると短繊維111の大部分は表面に負の電荷を生じる。これに対して、短繊維61は、短いため紡績糸60の軸方向101に対してランダムな方向に沿って旋回されるものも含まれる。このため、短繊維61は、短繊維111と比べて紡績糸60の軸方向101に対して右に傾いた状態のものを多く含むため、紡績糸60の軸方向101に伸張されると短繊維61は表面に正の電荷を生じるものを一部含む。従って、紡績糸60は、短繊維111と短繊維61との間に局所的に電場を生じさせることができる。なお、紡績糸60は、短繊維111と短繊維61とを備える短繊維2種類の例を挙げたが、短繊維の長さは2種類に限らず、3種類以上の長さの物を含んでいてもよい。 As shown in FIG. 6, the spun yarn 60 includes short fibers 111 and short fibers 61. The short fibers 61 are shorter than the short fibers 111. The short fibers 111 and 61 are twisted together. Since the short fibers 111 are long, they are swiveled in a direction relatively identical to the axial direction 101 of the spun yarn 60. Since most of the short fibers 111 are tilted to the left with respect to the axial direction 101 of the spun yarn 60, most of the short fibers 111 are negative on the surface when stretched in the axial direction 101 of the spun yarn 60. Generates an electric charge. On the other hand, since the short fibers 61 are short, those that are swirled along a random direction with respect to the axial direction 101 of the spun yarn 60 are also included. Therefore, since the short fibers 61 include many fibers that are tilted to the right with respect to the axial direction 101 of the spun yarn 60 as compared with the short fibers 111, the short fibers 61 are stretched in the axial direction 101 of the spun yarn 60. 61 includes a part that generates a positive charge on the surface. Therefore, the spun yarn 60 can locally generate an electric field between the short fibers 111 and the short fibers 61. As the spun yarn 60, an example of two types of short fibers including short fibers 111 and short fibers 61 has been given, but the length of the short fibers is not limited to two types, and includes three or more types of short fibers. You may be.
 以下、抗菌糸70について説明する。図7(A)は、抗菌糸の構成を示す一部分解図であり、図7(B)は、短繊維111の断面図である。 Hereinafter, the antibacterial thread 70 will be described. FIG. 7A is a partially exploded view showing the structure of the antibacterial thread, and FIG. 7B is a cross-sectional view of the short fiber 111.
 図7(A)に示すように、抗菌糸70は、紡績糸10及び紡績糸20を含む。抗菌糸70は、紡績糸10及び紡績糸20が互いに左旋回して撚られた糸(Z糸)である。 As shown in FIG. 7A, the antibacterial yarn 70 includes a spun yarn 10 and a spun yarn 20. The antibacterial yarn 70 is a yarn (Z yarn) in which the spun yarn 10 and the spun yarn 20 are twisted by turning left with each other.
 抗菌糸70において、紡績糸10は左0度以上80度以下、好ましくは20度以上~50度以下に傾いて旋回されている短繊維111を多く含み、伸張されると紡績糸10全体として、表面に負の電荷を生じる。紡績糸20は、短繊維11を左旋回して撚られた左旋回糸(Z糸)である。紡績糸20は、右0度以上80度以下、好ましくは20度以上~50度以下に傾いて旋回されている短繊維を多く含み、伸張されると紡績糸20全体として、表面に正の電荷を生じる。 In the antibacterial yarn 70, the spun yarn 10 contains a large amount of short fibers 111 that are swirled at an angle of 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the left, and when stretched, the spun yarn 10 as a whole Generates a negative charge on the surface. The spun yarn 20 is a left-handed swirl yarn (Z yarn) twisted by turning the short fiber 11 to the left. The spun yarn 20 contains a large number of short fibers that are swirled at an angle of 0 degrees or more and 80 degrees or less, preferably 20 degrees or more and 50 degrees or less to the right, and when stretched, the spun yarn 20 as a whole has a positive charge on the surface. Produces.
 紡績糸10及び紡績糸20において、短繊維11の延伸方向900はそれぞれの軸方向101に対する傾きは、紡績糸10、紡績糸20、及び抗菌糸70の撚り回数で調節できる。抗菌糸70の撚り回数は、紡績糸10及び紡績糸20の撚り回数よりも少ないことが好ましい。例えば、それぞれの短繊維11の延伸方向900は、最終的に抗菌糸70の軸方向103に対して45度傾くように調節されることが好ましい。これにより、抗菌糸70が抗菌糸70の軸方向103に対して伸張されたとき、各短繊維11が効果的に電荷を生じることができる。 In the spun yarn 10 and the spun yarn 20, the inclination of the short fiber 11 in the drawing direction 900 with respect to the axial direction 101 can be adjusted by the number of twists of the spun yarn 10, the spun yarn 20, and the antibacterial yarn 70. The number of twists of the antibacterial yarn 70 is preferably less than the number of twists of the spun yarn 10 and the spun yarn 20. For example, it is preferable that the drawing direction 900 of each short fiber 11 is finally adjusted so as to be tilted 45 degrees with respect to the axial direction 103 of the antibacterial thread 70. As a result, when the antibacterial thread 70 is stretched with respect to the axial direction 103 of the antibacterial thread 70, each short fiber 11 can effectively generate an electric charge.
 なお、紡績糸20はPLLAを用いたZ糸であるが、紡績糸20はPDLAを用いたS糸であってもよい。紡績糸10及び紡績糸20が同じS糸であるため、抗菌糸70を製造する際に糸同士の角度が調節し易くなる。なお、紡績糸10はPDLAを用いたZ糸であってもよい。この場合、紡績糸10及び紡績糸20が同じZ糸であるため、抗菌糸70を製造する際に糸同士の角度が調節し易くなる。 The spun yarn 20 is a Z yarn using PLLA, but the spun yarn 20 may be an S yarn using PDLA. Since the spun yarn 10 and the spun yarn 20 are the same S yarn, the angle between the yarns can be easily adjusted when the antibacterial yarn 70 is manufactured. The spun yarn 10 may be a Z yarn using PDLA. In this case, since the spun yarn 10 and the spun yarn 20 are the same Z yarn, the angle between the yarns can be easily adjusted when the antibacterial yarn 70 is manufactured.
 抗菌糸70は、表面に負の電荷を生じる紡績糸10と表面に正の電荷を生じる紡績糸20とが互いに撚られてなるため、抗菌糸70単体で強い電場を生じさせることができる。紡績糸10及び紡績糸20のそれぞれの糸において、紡績糸10又は紡績糸20の内部と表面との間に形成される電場は空気中に漏れ出る。紡績糸10及び紡績糸20が発生させる電場同士は結合する。紡績糸10及び紡績糸20の近接部分に強い電場が形成され、抗菌糸70は抗菌効果を奏する。 In the antibacterial yarn 70, since the spun yarn 10 that generates a negative charge on the surface and the spun yarn 20 that generates a positive charge on the surface are twisted together, a strong electric field can be generated by the antibacterial yarn 70 alone. In each of the spun yarn 10 and the spun yarn 20, the electric field formed between the inside and the surface of the spun yarn 10 or the spun yarn 20 leaks into the air. The electric fields generated by the spun yarn 10 and the spun yarn 20 are coupled to each other. A strong electric field is formed in the vicinity of the spun yarn 10 and the spun yarn 20, and the antibacterial yarn 70 exerts an antibacterial effect.
 撚糸の構造は複雑であり、紡績糸10及び紡績糸20の近接個所は一様ではない。また、紡績糸10又は紡績糸20に張力が加わると、近接個所も変化する。これにより、それぞれの部分において電場の強度には変化があり、対称形が崩された電場が生じることとなる。なお、紡績糸10及び紡績糸20が互いに右旋回して撚られた糸(S糸)も、同様に糸単体で電場を生じさせることができる。紡績糸10の撚り数、紡績糸20の撚り数、又はこれらの糸を撚り合わせた抗菌糸70の撚り数は、抗菌効果を鑑みて決定される。 The structure of the twisted yarn is complicated, and the proximity points of the spun yarn 10 and the spun yarn 20 are not uniform. Further, when tension is applied to the spun yarn 10 or the spun yarn 20, the proximity portion also changes. As a result, the strength of the electric field changes in each part, and an electric field in which the symmetry shape is broken is generated. Similarly, a yarn (S yarn) in which the spun yarn 10 and the spun yarn 20 are turned to the right and twisted can also generate an electric field by itself. The number of twists of the spun yarn 10 and the number of twists of the spun yarn 20 or the number of twists of the antibacterial yarn 70 obtained by twisting these yarns are determined in consideration of the antibacterial effect.
 上述した紡績糸を構成する複数の短繊維11は、短繊維11同士の接触する部分を有している。互いに接触する短繊維11において、一方の短繊維11の静摩擦係数は、他方の短繊維11の静摩擦係数より高くなるように設計されている。例えば、短繊維111の静摩擦係数は、短繊維112及び短繊維113の静摩擦係数より高い。これにより、接触する短繊維11同士の相対的な動きを抑制することができ、短繊維11は、紡績糸10に対して効率よくずり応力を加えることができる。 The plurality of short fibers 11 constituting the spun yarn described above have a portion where the short fibers 11 come into contact with each other. In the short fibers 11 that are in contact with each other, the coefficient of static friction of one short fiber 11 is designed to be higher than the coefficient of static friction of the other short fiber 11. For example, the coefficient of static friction of the short fibers 111 is higher than the coefficient of static friction of the short fibers 112 and 113. As a result, the relative movement of the short fibers 11 in contact with each other can be suppressed, and the short fibers 11 can efficiently apply shear stress to the spun yarn 10.
 また、図7(B)に示すように、短繊維11のうち短繊維111は異形断面糸である。なお、互いに接触する短繊維111、短繊維112、及び短繊維113のうち少なくとも一つが異形断面糸であってもよく、全てが異形断面糸であってもよい。異形断面糸とは、十字形、星形多角形又は凹多角形等の断面を有する糸である。いずれの例においても、異形断面糸は、異形断面糸の長手方向に伸びる溝部又は突起部を有している。ここで、異形断面糸は、溝部及び凸突起部の両方を有していてもよい。例えば、短繊維111は、溝部74及び凸突起部75を有している。これにより短繊維11同士が交絡し易くなり、短繊維11は、紡績糸10に対して効率よくずり応力を加えることができる。 Further, as shown in FIG. 7B, the short fiber 111 of the short fibers 11 is a modified cross-section yarn. At least one of the short fibers 111, the short fibers 112, and the short fibers 113 that come into contact with each other may be irregular cross-section yarns, or all of them may be irregular cross-section yarns. The irregular cross-section yarn is a yarn having a cross section such as a cross, a star polygon, or a concave polygon. In any of the examples, the deformed cross-section yarn has a groove or a protrusion extending in the longitudinal direction of the deformed cross-section yarn. Here, the deformed cross-section yarn may have both a groove portion and a convex protrusion portion. For example, the short fiber 111 has a groove portion 74 and a convex protrusion portion 75. This makes it easier for the short fibers 11 to be entangled with each other, and the short fibers 11 can efficiently apply shear stress to the spun yarn 10.
 以下、抗菌布80について説明する。図8は、抗菌布80の構成を示す図である。 The antibacterial cloth 80 will be described below. FIG. 8 is a diagram showing the configuration of the antibacterial cloth 80.
 図8に示すように、抗菌布80は、複数本の紡績糸10と複数本の紡績糸20とを備える。紡績糸10及び紡績糸20は、抗菌糸70で説明したものと同様であるため、説明を省略する。 As shown in FIG. 8, the antibacterial cloth 80 includes a plurality of spun yarns 10 and a plurality of spun yarns 20. Since the spun yarn 10 and the spun yarn 20 are the same as those described in the antibacterial yarn 70, the description thereof will be omitted.
 抗菌布80において、紡績糸10及び紡績糸20以外の部分は、非圧電繊維である。ここで、非圧電繊維とは、一般的に糸として使用される木綿や羊毛等の天然繊維又は合成繊維等から成る電荷を発生させないものを含む。なお、非圧電繊維は、紡績糸10及び紡績糸20と比べて微弱な電荷を発生させるものを含めていてもよい。抗菌布80において、紡績糸10及び紡績糸20は、平行に交互に並んで配置された状態で、非圧電繊維と共に織り込まれている。 In the antibacterial cloth 80, the parts other than the spun yarn 10 and the spun yarn 20 are non-piezoelectric fibers. Here, the non-piezoelectric fiber includes a fiber which is made of a natural fiber such as cotton or wool or a synthetic fiber which is generally used as a yarn and does not generate an electric charge. The non-piezoelectric fiber may include a fiber that generates a weaker electric charge as compared with the spun yarn 10 and the spun yarn 20. In the antibacterial cloth 80, the spun yarn 10 and the spun yarn 20 are woven together with the non-piezoelectric fibers in a state of being arranged side by side alternately in parallel.
 抗菌布80において、経糸が紡績糸10及び紡績糸20、及び非圧電繊維であり、緯糸が非圧電繊維である。なお、経糸には必ずしも非圧電繊維を織り込む必要はなく、紡績糸10及び紡績糸20のみであってもよい。また、緯糸は非圧電繊維に限られず、紡績糸10又は紡績糸20を含んでいてもよい。 In the antibacterial cloth 80, the warp yarn is the spun yarn 10, the spun yarn 20, and the non-piezoelectric fiber, and the weft is the non-piezoelectric fiber. It is not always necessary to weave non-piezoelectric fibers into the warp yarns, and only the spun yarn 10 and the spun yarn 20 may be used. Further, the weft yarn is not limited to the non-piezoelectric fiber, and may include a spun yarn 10 or a spun yarn 20.
 抗菌布80が経糸に平行な方向へ伸張されると、紡績糸10及び紡績糸20から電荷が発生する。紡績糸10及び紡績糸20のそれぞれの糸において、糸の内部と表面との間に形成される電場が空気中に漏れ出る。紡績糸10及び紡績糸20が発生させる電場同士は結合する。紡績糸10及び紡績糸20の近接部分に、強い電場が形成される。これにより、抗菌布80は抗菌効果を奏する。 When the antibacterial cloth 80 is stretched in the direction parallel to the warp yarn, electric charges are generated from the spun yarn 10 and the spun yarn 20. In each of the spun yarn 10 and the spun yarn 20, the electric field formed between the inside and the surface of the yarn leaks into the air. The electric fields generated by the spun yarn 10 and the spun yarn 20 are coupled to each other. A strong electric field is formed in the vicinity of the spun yarn 10 and the spun yarn 20. As a result, the antibacterial cloth 80 exerts an antibacterial effect.
 抗菌布80において、紡績糸10及び紡績糸20の表面は、毛羽立っている。紡績糸10、紡績糸20及び非圧電繊維同士の接触面積は、紡績糸10及び紡績糸20が毛羽立っていない場合と比べて大きい。このため、抗菌布80が伸張されるとき、抗菌布80が十分に伸びきっていない場合であっても、紡績糸10及び紡績糸20が引っ張られる状態が生じる。従って、抗菌布80に与えられる負荷が小さい場合であっても、抗菌布80は電場を発生させることができる。 In the antibacterial cloth 80, the surfaces of the spun yarn 10 and the spun yarn 20 are fluffy. The contact area between the spun yarn 10, the spun yarn 20, and the non-piezoelectric fibers is larger than that in the case where the spun yarn 10 and the spun yarn 20 are not fluffed. Therefore, when the antibacterial cloth 80 is stretched, even if the antibacterial cloth 80 is not fully stretched, the spun yarn 10 and the spun yarn 20 are pulled. Therefore, even when the load applied to the antibacterial cloth 80 is small, the antibacterial cloth 80 can generate an electric field.
 なお、抗菌布80としては、織物に限定されない。抗菌布80としては、例えば、紡績糸10及び紡績糸20を編糸として用いて編んだ編物、紡績糸10及び紡績糸20を備える不織布などが挙げられる。 The antibacterial cloth 80 is not limited to the woven fabric. Examples of the antibacterial cloth 80 include a knitted fabric knitted using the spun yarn 10 and the spun yarn 20 as the knitting yarn, a non-woven fabric provided with the spun yarn 10 and the spun yarn 20 and the like.
 以上の様な、紡績糸10、紡績糸20、紡績糸50、紡績糸60、抗菌糸70、又は抗菌布80は、各種の衣料、又は医療部材等の製品に適用可能である。例えば、紡績糸10、紡績糸20、紡績糸50、紡績糸60、抗菌糸70、又は抗菌布80は、マスク、肌着(特に靴下)、タオル、靴及びブーツ等の中敷き、スポーツウェア全般、帽子、寝具(布団、マットレス、シーツ、枕、枕カバー等を含む。)、歯ブラシ、フロス、浄水器、エアコン又は空気清浄器のフィルタ等、ぬいぐるみ、ペット関連商品(ペット用マット、ペット用服、ペット用服のインナー)、各種マット品(足、手、又は便座等)、カーテン、台所用品(スポンジ又は布巾等)、シート(車、電車又は飛行機等のシート)、オートバイ用ヘルメットの緩衝材及びその外装材、ソファ、包帯、ガーゼ、縫合糸、医者及び患者の服、サポーター、サニタリ用品、スポーツ用品(ウェア及びグローブのインナー、又は武道で使用する籠手等)、空調機若しくは空気清浄機等のフィルタ、あるいは包装資材、網戸等に適用することができる。 The above-mentioned spun yarn 10, spun yarn 20, spun yarn 50, spun yarn 60, antibacterial yarn 70, or antibacterial cloth 80 can be applied to various clothing or products such as medical materials. For example, the spun yarn 10, the spun yarn 20, the spun yarn 50, the spun yarn 60, the antibacterial yarn 70, or the antibacterial cloth 80 is a mask, underwear (particularly socks), an inlay for towels, shoes, boots, etc., sportswear in general, and a hat. , Bedding (including duvets, mattresses, sheets, pillows, pillowcases, etc.), toothbrushes, floss, water purifiers, air purifier filters, etc., stuffed animals, pet-related products (pet mats, pet clothes, pets, etc.) Inner clothes), various mats (feet, hands, toilet seats, etc.), curtains, kitchen utensils (sponge or cloth, etc.), seats (seats for cars, trains, airplanes, etc.), cushioning materials for motorcycle helmets and theirs. Exterior materials, sofas, bandages, gauze, sutures, clothes for doctors and patients, supporters, sanitary goods, sports goods (inners for clothing and gloves, baskets used in martial arts, etc.), air conditioners or air purifiers, etc. It can be applied to filters, packaging materials, net doors, etc.
 最後に、本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Finally, the description of this embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the claims.
10,20,50,60…紡績糸
11,51,61…短繊維
70…抗菌糸
80…抗菌布
111…第1の短繊維
112…第2の短繊維
113…第3の短繊維
10, 20, 50, 60 ... Spinned yarn 11, 51, 61 ... Short fiber 70 ... Antibacterial yarn 80 ... Antibacterial cloth 111 ... First short fiber 112 ... Second short fiber 113 ... Third short fiber

Claims (18)

  1.  外部からのエネルギーにより電位を発生する第1の短繊維を含む、
     紡績糸。
    Contains a first short fiber that generates an electric potential with external energy,
    Spinned yarn.
  2.  第2の短繊維と第3の短繊維とをさらに備え、
     前記第1の短繊維の長手方向の第1端側は前記第2の短繊維に拘束され、前記第1の短繊維の長手方向の第2端側は前記第3の短繊維に拘束される、
     請求項1に記載の紡績糸。
    Further equipped with a second short fiber and a third short fiber,
    The first end side of the first short fiber in the longitudinal direction is constrained by the second short fiber, and the second end side of the first short fiber in the longitudinal direction is constrained by the third short fiber. ,
    The spun yarn according to claim 1.
  3.  前記第2の短繊維または前記第3の短繊維は、前記第1の短繊維よりも静摩擦係数が高い、
     請求項2に記載の紡績糸。
    The second short fiber or the third short fiber has a higher coefficient of static friction than the first short fiber.
    The spun yarn according to claim 2.
  4.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維は、捲縮部を有し、
     前記第1の短繊維は、前記捲縮部で拘束されている、
     請求項2または3に記載の紡績糸。
    The first short fiber, the second short fiber, and the third short fiber have a crimped portion.
    The first short fiber is constrained by the crimped portion.
    The spun yarn according to claim 2 or 3.
  5.  前記第1の短繊維は、前記紡績糸の軸方向に対して傾いている、
     請求項1乃至請求項4のいずれかに記載の紡績糸。
    The first short fiber is inclined with respect to the axial direction of the spun yarn.
    The spun yarn according to any one of claims 1 to 4.
  6.  前記第1の短繊維の前記紡績糸の軸方向に対する角度は、0度以上80度以下である、
     請求項5に記載の紡績糸。
    The angle of the first short fiber with respect to the axial direction of the spun yarn is 0 degrees or more and 80 degrees or less.
    The spun yarn according to claim 5.
  7.  前記第1の短繊維の前記紡績糸の軸方向に対する角度は、20度以上50度以下である、
     請求項6に記載の紡績糸。
    The angle of the first short fiber with respect to the axial direction of the spun yarn is 20 degrees or more and 50 degrees or less.
    The spun yarn according to claim 6.
  8.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維の繊度は、0.3dtex以上10dtex以下である、
     請求項2乃至請求項7のいずれかに記載の紡績糸。
    The fineness of the first short fiber, the second short fiber, and the third short fiber is 0.3 dtex or more and 10 dtex or less.
    The spun yarn according to any one of claims 2 to 7.
  9.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維の長さは、10mm以上800mm以下である、
     請求項2乃至請求項8のいずれかに記載の紡績糸。
    The length of the first short fiber, the second short fiber, and the third short fiber is 10 mm or more and 800 mm or less.
    The spun yarn according to any one of claims 2 to 8.
  10.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維は、1番手以上500番手以下である、
     請求項2乃至請求項9のいずれかに記載の紡績糸。
    The first short fiber, the second short fiber, and the third short fiber are 1st to 500th.
    The spun yarn according to any one of claims 2 to 9.
  11.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維は、長さの異なる複数の短繊維を含む、
     請求項2乃至請求項10のいずれかに記載の紡績糸。
    The first short fiber, the second short fiber, and the third short fiber include a plurality of short fibers having different lengths.
    The spun yarn according to any one of claims 2 to 10.
  12.  前記第2の短繊維及び前記第3の短繊維は、普通繊維である、
     請求項2乃至請求項11のいずれかに記載の紡績糸。
    The second short fiber and the third short fiber are ordinary fibers.
    The spun yarn according to any one of claims 2 to 11.
  13.  前記第2の短繊維及び前記第3の短繊維は、前記第1の短繊維よりも親水性が高い素材からなる、
     請求項12に記載の紡績糸。
    The second short fiber and the third short fiber are made of a material having a higher hydrophilicity than the first short fiber.
    The spun yarn according to claim 12.
  14.  前記第1の短繊維は、圧電繊維であり、キラル高分子を含む、
     請求項1乃至請求項13のいずれかに記載の紡績糸。
    The first short fiber is a piezoelectric fiber and contains a chiral polymer.
    The spun yarn according to any one of claims 1 to 13.
  15.  前記キラル高分子はポリ乳酸である、
     請求項14に記載の紡績糸。
    The chiral polymer is polylactic acid,
    The spun yarn according to claim 14.
  16.  前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維のうちの少なくとも一つは、前記第1の短繊維、前記第2の短繊維、及び前記第3の短繊維の長手方向に伸びる溝部または突起部を有する、
     請求項2乃至請求項15のいずれかに記載の紡績糸。
    At least one of the first short fiber, the second short fiber, and the third short fiber is the first short fiber, the second short fiber, and the third short fiber. Has a groove or protrusion extending in the longitudinal direction of the
    The spun yarn according to any one of claims 2 to 15.
  17.  請求項1乃至請求項16のいずれかに記載の紡績糸を複数備え、
     前記紡績糸は、右撚り及び左撚りを含む、
     糸。
    A plurality of spun yarns according to any one of claims 1 to 16 are provided.
    The spun yarn includes right-twisted and left-twisted yarns.
    yarn.
  18.  請求項1乃至請求項16のいずれかに記載の紡績糸を備える、
     布。
    The spun yarn according to any one of claims 1 to 16.
    cloth.
PCT/JP2020/046842 2019-12-20 2020-12-16 Spun yarn, and thread and fabric provided with same WO2021125195A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565602A JP7180792B2 (en) 2019-12-20 2020-12-16 Spun yarns, and yarns and fabrics with spun yarns
CN202080048400.3A CN114051543B (en) 2019-12-20 2020-12-16 Spun yarn, yarn and cloth provided with spun yarn
US17/653,000 US20220267934A1 (en) 2019-12-20 2022-03-01 Spun yarn, and yarn and cloth including spun yarn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019230177 2019-12-20
JP2019-230177 2019-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/653,000 Continuation US20220267934A1 (en) 2019-12-20 2022-03-01 Spun yarn, and yarn and cloth including spun yarn

Publications (1)

Publication Number Publication Date
WO2021125195A1 true WO2021125195A1 (en) 2021-06-24

Family

ID=76478799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046842 WO2021125195A1 (en) 2019-12-20 2020-12-16 Spun yarn, and thread and fabric provided with same

Country Status (4)

Country Link
US (1) US20220267934A1 (en)
JP (1) JP7180792B2 (en)
CN (1) CN114051543B (en)
WO (1) WO2021125195A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959933B (en) * 2022-07-08 2023-08-15 北京大学口腔医学院 Electroactive antibacterial dental floss and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080531A (en) * 1998-06-25 2000-03-21 Kanebo Ltd Blended yarn containing polylactic acid fiber
JP2008274468A (en) * 2007-04-27 2008-11-13 Toray Ind Inc Spun yarn
WO2018153844A1 (en) * 2017-02-27 2018-08-30 Teijin Aramid Gmbh Textile fabric and workwear manufactured thereof
WO2020111049A1 (en) * 2018-11-26 2020-06-04 株式会社村田製作所 Antibacterial twisted yarn, and antibacterial yarn and antibacterial fabric provided with antibacterial twisted yarn

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067707A1 (en) * 2002-10-04 2004-04-08 Hamilton Lorne M. Stretch polyester and acrylic spun yarn
CN100370066C (en) * 2003-10-23 2008-02-20 黄争鸣 Coaxial composite continuous nano/micron fiber and its preparation method
JP2005307359A (en) * 2004-04-16 2005-11-04 Toray Ind Inc Polylactic acid staple fiber and staple fiber nonwoven fabric using the same fiber
CN101326312B (en) * 2005-12-15 2012-04-04 金伯利-克拉克环球有限公司 Biodegradable multicomponent fibre
CN103097595B (en) * 2010-04-20 2015-09-09 可乐丽贸易有限公司 The bulk yarn of woven fabric or knitted fabric manufacture and doff, woven fabric or knitted fabric and manufacture method thereof
WO2017212523A1 (en) * 2016-06-06 2017-12-14 株式会社村田製作所 Antibacterial piezoelectric thread, antibacterial fabric, clothing, medical member, bioactive piezoelectric, and piezoelectric thread for substance adsorption
CN207227650U (en) * 2017-02-17 2018-04-13 上海正家牛奶丝科技有限公司 A kind of polyester-cotton blend yarn of roving wrappings spun yarn
CN109908108B (en) * 2019-03-15 2022-05-03 深圳市光远生物材料有限责任公司 Drug-loaded nano composite fiber membrane system and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080531A (en) * 1998-06-25 2000-03-21 Kanebo Ltd Blended yarn containing polylactic acid fiber
JP2008274468A (en) * 2007-04-27 2008-11-13 Toray Ind Inc Spun yarn
WO2018153844A1 (en) * 2017-02-27 2018-08-30 Teijin Aramid Gmbh Textile fabric and workwear manufactured thereof
WO2020111049A1 (en) * 2018-11-26 2020-06-04 株式会社村田製作所 Antibacterial twisted yarn, and antibacterial yarn and antibacterial fabric provided with antibacterial twisted yarn

Also Published As

Publication number Publication date
CN114051543B (en) 2023-09-29
US20220267934A1 (en) 2022-08-25
JPWO2021125195A1 (en) 2021-06-24
JP7180792B2 (en) 2022-11-30
CN114051543A (en) 2022-02-15

Similar Documents

Publication Publication Date Title
JP7081630B2 (en) Antibacterial mask
CN109312500B (en) Charge-generating yarn for coping with bacteria, cloth, clothing, medical member, bioaffecting charge-generating yarn for coping with bacteria, and charge-generating yarn for substance adsorption
US11326279B2 (en) Antibacterial yarn and antibacterial fabric
JP6919736B2 (en) Thread and cloth
US20190281820A1 (en) Antibacterial fiber
JP7376328B2 (en) Antibacterial yarns and antibacterial fabrics comprising antibacterial yarns
JP2024045680A (en) Method for measuring surface potential of yarn containing potential-generating fibers
WO2020111049A1 (en) Antibacterial twisted yarn, and antibacterial yarn and antibacterial fabric provided with antibacterial twisted yarn
WO2021125195A1 (en) Spun yarn, and thread and fabric provided with same
JP6784334B2 (en) Antibacterial yarn and antibacterial textile products
WO2021200075A1 (en) Yarn and structure comprising same
WO2021106841A1 (en) Cylindrical structure
WO2021106842A1 (en) Thread
WO2021131926A1 (en) Woven fabric
WO2022071336A1 (en) Fabric, and fiber product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903803

Country of ref document: EP

Kind code of ref document: A1