WO2021124943A1 - Layered body, molded article, and method for producing molded article - Google Patents

Layered body, molded article, and method for producing molded article Download PDF

Info

Publication number
WO2021124943A1
WO2021124943A1 PCT/JP2020/045376 JP2020045376W WO2021124943A1 WO 2021124943 A1 WO2021124943 A1 WO 2021124943A1 JP 2020045376 W JP2020045376 W JP 2020045376W WO 2021124943 A1 WO2021124943 A1 WO 2021124943A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
polypropylene
laminate
molding
Prior art date
Application number
PCT/JP2020/045376
Other languages
French (fr)
Japanese (ja)
Inventor
英祥 竹村
辰郎 松浦
要 近藤
亮祐 荒木
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Priority to JP2021565479A priority Critical patent/JPWO2021124943A1/ja
Publication of WO2021124943A1 publication Critical patent/WO2021124943A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the present invention relates to a laminate, a molded product, and a method for producing a molded product, which can suppress drawdown during molding and can produce a molded product having an excellent appearance.
  • Paint is used as a method for improving the design of appearance in various fields such as automobiles, home appliances, building materials, daily necessities, and information and communication equipment.
  • painting has a large environmental load such as discharging a large amount of VOC (volatile organic compounds).
  • VOC volatile organic compounds
  • Patent Documents 1 and 2 a technique has been proposed in which a decorative sheet is integrated with a molded body to form a decorative molded product.
  • Patent Documents 1 and 2 a technique has been proposed in which a decorative sheet is integrated with a molded body to form a decorative molded product.
  • polypropylene-based resins are attracting more attention as materials for decorative sheets than amorphous resins such as polystyrene and ABS (acrylonitrile, butadiene, and styrene copolymers).
  • Polypropylene resin which has been conventionally used for decorative sheets for vacuum pressure molding, has low melt tension, so that it cannot be said that the drawdown resistance is sufficient in the process of thermoforming the sheet, and it can be used as a molded body during large-scale molding. Wrinkles and molding unevenness caused by drawdown occurred.
  • coating molding which is a type of decorative molding method, the core material used for coating molding is often large, such as automobile parts, but there is no polypropylene decorative sheet with excellent draw-down resistance. Wrinkles and uneven molding were the main causes of lowering the non-defective rate.
  • the conventional transparent sheet containing a polypropylene resin has a problem that it is difficult to form a complicated shape and fine irregularities of a mold.
  • the coating molding apparatus usually has a smaller amount of heat during molding as compared with other decorative molding methods such as insert molding and in-mold molding. Therefore, for the decorative sheet used for coating molding, an adhesive that can strongly adhere to the core material even at a low temperature is used. However, since the adhesive has tackiness even at room temperature, it has a problem that it has poor handleability and foreign matter easily adheres to it. Further, in addition to the decorative sheet manufacturing process, adhesive laminating and coating processing and adhesive purchasing costs are required separately, which leads to an increase in the cost of the decorative molding process using a coating molding machine.
  • Patent Document 1 relates to a thermoforming sheet made of high melt tension polypropylene having a long chain branched structure.
  • polypropylene is a crystalline resin
  • the sheet in contact with the mold will crystallize rapidly and the stretchability will deteriorate.
  • the sheet crystallizes after heat molding to cause fine irregularities on the surface of the molded product to lose its luster, or to lose its transparency and impair the appearance of the sheet.
  • Patent Document 2 is that it is a coating substitute film and includes an adhesive layer having excellent adhesiveness to polypropylene.
  • the adhesive layer since the melting point of the adhesive layer is 130 ° C. or higher, the adhesive layer does not rise to the above temperature in coating molding or the like, and the adhesive strength may not be exhibited, or the laminated body may be damaged by overheating. is there.
  • polypropylene which is a base material of the laminated body can be presumed to be polypropylene which does not have a branched structure, the drawdown is large, and there is a concern that the molded product may have an appearance defect due to wrinkles or uneven molding.
  • An object of the present invention is to provide a laminate capable of suppressing drawdown during molding, having excellent adhesive strength with an adherend, and being able to produce a molded body having an excellent appearance.
  • the first resin layer and the second resin layer contain polypropylene, each of which has a long-chain branched structure and a crystallization rate at 130 ° C. of 2.5 min -1 or less.
  • the composition of the first resin layer and the second resin layer are different.
  • the third resin layer contains an adhesive having a melting point of 125 ° C. or lower. Laminated body. 2.
  • the adhesive of the third resin layer is one or more selected from the group consisting of an olefin adhesive, a styrene adhesive, an isocyanate adhesive, a urethane adhesive, and an acrylic adhesive.
  • the laminate described in. 3. 3. The laminate according to 1 or 2, wherein the second resin layer contains a pigment. 4.
  • Polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 1 J / g or more on the low temperature side of the maximum endothermic peak in the curve obtained by differential scanning calorimetry.
  • any one of 1 to 7 wherein the polypropylene branching index of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 0.50 or more and less than 1.00.
  • Laminated body 9. The laminate according to any one of 1 to 8, wherein the polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer has a melt tension of 4.0 g or more. 10. The laminate according to any one of 1 to 9, further comprising an easy-adhesion layer. 11. 10. The laminate according to 10, wherein the easy-adhesion layer contains one or more resins selected from the group consisting of urethane, acrylic, polyolefin and polyester. 12. 10.
  • a method for producing a molded product which comprises molding the laminate according to any one of 14.1 to 12 to obtain a molded product. 15.
  • the laminated body is shaped so as to match the mold, the shaped laminated body is mounted on the mold, a molding resin is supplied, and the molded laminated body is integrated with the shaped laminated body to perform the molding.
  • the core material is arranged in the chamber box, the laminated body is arranged above the core material, the laminated body is heated and softened, and the inside of the chamber box is depressurized to heat and soften the laminated body.
  • the present invention it is possible to provide a laminated body capable of suppressing drawdown during molding, having excellent adhesive strength with an adherend, and being able to manufacture a molded body having an excellent appearance.
  • x to y represents a numerical range of "x or more and y or less”.
  • the laminated body according to one aspect of the present invention is A laminate containing a first resin layer, a second resin layer, and a third resin layer in this order.
  • the first resin layer and the second resin layer contain polypropylene, each of which has a long-chain branched structure and a crystallization rate at 130 ° C. of 2.5 min -1 or less.
  • the polypropylene is also referred to as "polypropylene X" below
  • the composition of the first resin layer and the second resin layer are different.
  • the third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
  • the laminate contains polypropylene X in the first resin layer and the second resin layer, it has a high melt tension, so that it can be drawn during thermoforming (for example, vacuum forming, compressed air forming, or vacuum forming). Down can be suppressed. As a result, it is possible to manufacture a molded product in which wrinkles, unevenness, slack marks and the like caused by the drawdown are prevented or reduced. Further, since the melt tension is large, uneven thickness is unlikely to occur in the molded body even if the draw ratio is increased. Further, the laminate has high moldability because rapid crystallization is unlikely to occur due to the low crystallization rate of polypropylene contained in the first resin layer and the second resin layer.
  • the laminated body does not cure rapidly at the time of contact with the mold, it is possible to realize a desired shape with a high degree of freedom. Further, according to the above-mentioned laminated body, deterioration of the appearance (gloss and transparency) that tends to occur during thermoforming is suppressed, so that a beautiful molded body can be manufactured while maintaining the appearance.
  • the above effects are suitably exhibited even during large-scale molding (for example, one side is 1 meter or more).
  • the third resin layer can be used as an adhesive layer for adhering the laminated body to the adherend.
  • the third resin layer can exhibit adhesiveness at a low temperature of 125 ° C. or lower, excellent adhesion is achieved even when a molding method such as coating molding in which the temperature rise is relatively small (the amount of heat generated is small) is used. Strength is obtained. Further, since the adhesiveness can be exhibited at a low temperature of 125 ° C. or lower, the adhesive can be adhered by gentle heating, and the laminated body can be prevented from being damaged by overheating.
  • the first resin layer contains polypropylene X.
  • the first resin layer can be used as a translucent clear layer.
  • a branching index g' is given as an index that polypropylene X has a long-chain branched structure.
  • the definition of the branch index g' is as follows.
  • Branch index g' [ ⁇ ] br / [ ⁇ ] lin [ ⁇ ] br : Intrinsic viscosity of polymer (br) having a long-chain branched structure
  • [ ⁇ ] lin Intrinsic viscosity of linear polymer having the same molecular weight as polymer (br)
  • g' ⁇ 1 If this is the case, it is determined that the long-chain branched structure exists in the polymer X, and it can be said that the smaller the value of g', the more long-chain branched structures are present.
  • the intrinsic viscosity is a value measured at 140 ° C.
  • the divergence index g' is measured by the method described in the examples.
  • the branching index of polypropylene X contained in the first resin layer is preferably 0.50 or more and less than 1.00.
  • the melt tension of polypropylene X contained in the first resin layer is preferably 4.0 g or more, and more preferably 5.0 g or more.
  • the upper limit is not particularly limited, for example, 20 g or less.
  • the melt tension is measured by the method described in the examples.
  • the melt flow rate (MFR) of polypropylene X is preferably 1.0 to 10.0 g / 10 min (2.16 kg). Within this range, extrusion moldability is excellent, and flow such as drawdown is unlikely to occur during vacuum compressed air molding, which is preferable. MFR is measured by the method described in the examples.
  • Propylene X is a propylene homopolymer obtained by homopolymerizing propylene by single-stage polymerization or multi-stage polymerization of two or more stages, and copolymerizing propylene and ⁇ -olefin by single-stage polymerization or multi-stage polymerization of two or more stages.
  • It may be any propylene / ⁇ -olefin block copolymer obtained by polymerization including a copolymerization step of copolymerizing by multi-stage polymerization of steps or more to obtain a propylene / ⁇ -olefin random copolymer, but propylene.
  • a homopolymer and a propylene / ⁇ -olefin random copolymer are preferable.
  • the ⁇ -olefin is preferably ethylene or an ⁇ -olefin having 4 to 18 carbon atoms. Specifically, ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1st grade can be mentioned. Further, the ⁇ -olefin may be one kind or a combination of two or more kinds.
  • Polypropylene X can be obtained by, for example, a so-called macromer copolymerization method in which a propylene macromer having a terminal double bond is polymerized from a propylene monomer and the propylene macromer and the propylene monomer are copolymerized, but the polypropylene X is not limited thereto.
  • Polypropylene X contained in the first resin layer has a crystallization rate of 2.5 min -1 or less at 130 ° C., 2.4 min -1 or less, 2.3 min -1 or less, 2.2 min -1 or less, It can be 2.1 min -1 or less or 2.0 min -1 or less.
  • the lower limit is not particularly limited and is, for example, 0.05 min -1 or more.
  • the first resin layer contains little or no nucleating agent.
  • the content of the nucleating agent in the first resin layer is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less.
  • the nucleating agent include sorbitol-based nucleating agents, and commercially available products include Gelol MD (Nihon Rikagaku Co., Ltd.) and Rikemaster FC-1 (RIKEN Vitamin Co., Ltd.).
  • the first resin layer even if the content of the nucleating agent is low or not contained , whitening is prevented by setting the crystallization rate to 2.5 min -1 or less, and the design (appearance). ) Can be obtained. In addition, it is easy to attach a complicated shape or a fine uneven shape of a mold to the molded body.
  • the first resin layer preferably contains Smetica crystals.
  • Polypropylene is a crystalline resin and can take a crystalline form such as ⁇ crystal, ⁇ crystal, ⁇ crystal, and Smetica crystal. Of these crystalline forms, smetica crystals can be produced as intermediates between amorphous and crystalline by cooling polypropylene from a molten state at a rate of 80 ° C. or higher per second.
  • Smetica crystals are not stable structures having a regular structure like crystals, but metastable structures in which fine structures are gathered together. Therefore, the interaction between the molecular chains is weak, and it has a property of being easily softened when heated as compared with ⁇ crystals and the like having a stable structure.
  • the crystal structure of the first resin layer is measured by the method described in Examples.
  • the volume fraction of the spherulites in the first sheet is 20%. It is preferable that it is as follows.
  • the volume fraction of the spherulite may be 15% or less or 10% or less.
  • the volume fraction of spherulite is measured by the method described in Examples.
  • polypropylene spherulites may be composed of ⁇ -crystals. The description of spherulite and spherulite is also appropriately incorporated into the second resin layer.
  • the appearance and moldability of the molded product can be further improved.
  • the laminate is heated with an infrared heater or the like to form an attachment, the laminate is transferred to ⁇ crystals while maintaining the fine structure derived from Smetica crystals.
  • This transition prevents a decrease in gloss and a decrease in transparency due to molding, and thermoforming can be performed while maintaining a beautiful appearance.
  • this transition further improves the surface hardness and transparency as compared with the case where the above-mentioned nucleating agent is used.
  • the laminated body (decorative sheet) is obtained by cooling at 80 ° C./sec or more, or not. be able to. That is, it is possible to determine whether or not the laminated body (decorative sheet) has a fine structure derived from Smetica crystals by the above analysis.
  • the measurement is performed under the following conditions. An ultraX 18HF (manufactured by Rigaku Co., Ltd.) is used as an X-ray generator, and an imaging plate is used to detect scattering.
  • the first resin layer has an exothermic peak of 1 J / g or more, preferably 1.5 J / g or more on the low temperature side of the maximum endothermic peak in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement (“low temperature side”). It is preferable to have an exothermic peak (also referred to as).
  • the calorific value of the low temperature side exothermic peak is measured by the method described in Examples.
  • the isotactic pentad fraction of polypropylene X is preferably 85-99 mol%.
  • the isotactic pentad fraction is an isotactic fraction in a pentad unit (five consecutive isotactic bonds of five propylene monomers) in the molecular chain of the resin composition. A method for measuring this fraction is described in, for example, Macromolecules, Volume 8 (1975), p. 687, and can be measured by 13 C-NMR.
  • the isotactic pentad fraction of polypropylene X is preferably 90 mol% or more. The isotactic pentad fraction is measured by the method described in Examples.
  • the first resin layer may contain other components in addition to polypropylene X, and examples of the other components include one or more types of polypropylene having no long-chain branched structure, other resin components, and additives. And so on.
  • the content of components other than polypropylene X is, for example, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by weight of polypropylene X. Or it can be 10 parts by mass or less.
  • the polypropylene having no long-chain branched structure is not particularly limited, and is a polymer containing at least a structural unit derived from propylene. Specific examples thereof include copolymers of homopolypropylene and propylene with other olefins (ethylene, butylene, cycloolefin, etc.). It may be a mixture in which a polyolefin such as polyethylene (for example, linear low-density polyethylene) or a copolymer is mixed with polypropylene. These may be used individually by 1 type or in combination of 2 or more type.
  • the content of polypropylene having no long-chain branched structure in the first resin layer is, for example, 1 part by mass or more and, for example, 40 parts by mass or less with respect to 100 parts by mass of polypropylene.
  • thermoplastic elastomers such as olefin-based elastomers, styrene-based elastomers, polyvinyl chloride-based elastomers, urethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers.
  • the thermoplastic elastomer is an olefin-based elastomer.
  • a commercially available product such as "Engage 8200" manufactured by Dow Chemical Co., Ltd. may be used.
  • the content of the other resin component in the first resin layer is, for example, 1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
  • the additive examples include an antistatic agent and the like.
  • the content of the other additive in the first resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
  • the first resin layer may be made of polypropylene X only, or may be substantially made of polypropylene X only. In the latter case, the first resin layer may contain unavoidable impurities.
  • the first resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass, It may be polypropylene X, polypropylene X, and one or more components selected from each of the above optional components.
  • the thickness of the first resin layer is usually 30 ⁇ m to 180 ⁇ m.
  • the second resin layer contains polypropylene X having a long-chain branched structure and having a crystallization rate at 130 ° C. of 2.5 min- 1 or less.
  • polypropylene X contained in the second resin layer the description of polypropylene X contained in the first resin layer, including its crystal structure and the like, is incorporated.
  • the polypropylene X contained in the second resin layer may be the same as or different from the polypropylene X contained in the first resin layer, including its crystal structure and the like.
  • composition of the second resin layer is different from that of the first resin layer.
  • “different composition” may mean that the components contained in the resin layer are different (for example, one or more components are contained in one layer but not in the other component). , The amount of one or more components contained in the resin layer may be different.
  • the second resin layer preferably has a low temperature side heat generation peak of 1 J / g or more, preferably 1.5 J / g or more.
  • the second resin layer can be a colored layer.
  • the second resin layer can contain a colorant.
  • the second resin layer contains the same components as the first resin layer, except that it contains a colorant.
  • the first resin layer usually does not contain a colorant, but when the first resin layer contains a colorant, the second resin layer has a higher content than the first resin layer. May contain colorants.
  • the content of polypropylene X in the second resin layer is lower than the content of polypropylene X in the first resin layer.
  • Colorants are not particularly limited, and examples thereof include general colorants such as organic pigments, inorganic pigments, and dyes, but are not limited thereto.
  • the content of the colorant in the second resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
  • the second resin layer may contain a metal foil powder and a pearl-like pigment.
  • the metal leaf powder include crushed atypical flat pieces obtained by crushing a sheet in which both sides of the metal thin film layer are coated with the transparent thin film layer.
  • the pearl pigment include atypical flat pieces containing mica (mica) as a main component.
  • the content of the metal leaf powder or the pearl pigment in the second resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
  • the second resin layer can contain other components described for the first resin layer, for example, within the range of the content described for the first resin layer.
  • the first resin layer may contain the colorant, the metal leaf powder, and the pearl pigment described for the second resin layer, for example, within the range of the content described for the second resin layer.
  • the second resin layer may be made of polypropylene X only, or may be substantially made of polypropylene X only. In the latter case, the second resin layer may contain unavoidable impurities.
  • the second resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass, It may be polypropylene X, polypropylene X, and one or more components selected from each of the above optional components.
  • the thickness of the second resin layer is usually 100 ⁇ m to 250 ⁇ m.
  • the third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
  • Adhesives having a melting point of 125 ° C. or lower are not particularly limited, and examples thereof include olefin-based adhesives, styrene-based adhesives, isocyanate-based adhesives, urethane-based adhesives, and acrylic-based adhesives.
  • the olefin adhesive include a low melting point polypropylene resin having a melting point of 125 ° C. or lower.
  • the third resin layer can be an adhesive layer.
  • the third resin layer contains the above-mentioned adhesive having a melting point of 125 ° C. or lower (also referred to as “adhesive component”), so that the third resin layer has an arbitrary coating at a temperature of 125 ° C. or lower (and a temperature of the melting point or higher). It can exhibit adhesiveness to the body.
  • the third resin layer is used to bond the laminate to the adherend.
  • the material of the adherend is not particularly limited, and examples thereof include resin and the like.
  • the resin include polypropylene and ABS (acrylonitrile-butadiene-styrene copolymer).
  • the third resin layer contains an olefin-based adhesive having a melting point of 125 ° C. or lower because the adhesion strength is increased.
  • the peel strength of the laminate and the adherend in the 180 ° peel test or the breaking strength at which the laminate breaks in the 180 ° peel test is 18 N / 15 mm or more.
  • the 180 ° peeling test of the laminate and the adherend is performed by the method described in the examples.
  • the melting point of the adhesive contained in the third resin layer is 125 ° C. or lower, for example, 120 ° C. or lower, 118 ° C. or lower, 115 ° C. or lower, 112 ° C. or lower, 110 ° C. or lower, 105 ° C. or lower, 103 ° C. or lower, or It can be below 100 ° C.
  • the lower limit is not particularly limited and may be, for example, 60 ° C. or higher.
  • the adhesive contained in the third resin layer is a thermoplastic resin. In one embodiment, the adhesive contained in the third resin layer is a hot melt adhesive. In one embodiment, the adhesive contained in the third resin layer is not a pressure-sensitive adhesive having tackiness (adhesiveness) at room temperature (25 ° C.). The adhesive is one that adheres to the adherend by applying pressure by utilizing the tackiness of the surface, and is distinguished from the adhesive that exhibits peeling resistance by solidification. In one embodiment, the melt flow rate (MFR) of the adhesive contained in the third resin layer is 1.0 to 10.0 g / 10 min (2.16 kg). MFR is measured by the method described in the examples.
  • the melting enthalpy ( ⁇ H) of the adhesive having a melting point of 125 ° C. or lower contained in the third resin layer is preferably 80 j / g or less.
  • ⁇ H 80 j / g or less
  • the melt enthalpy ( ⁇ H) of the adhesive can be, for example, 70 j / g or less, 60 j / g or less, 50 j / g or less, 40 j / g or less, 30 j / g or less.
  • the lower limit is not particularly limited and may be, for example, 5 j / g or more.
  • the melt enthalpy ( ⁇ H) of the adhesive is measured by the method described in Examples.
  • the adhesive layer may contain components other than the adhesive having a melting point of 125 ° C. or lower.
  • components include a tackifier such as petroleum resin and a plasticizer.
  • the third resin layer may consist only of an adhesive having a melting point of 125 ° C. or lower, or may consist of only an adhesive having a melting point of 125 ° C. or lower. In the latter case, the third resin layer may contain unavoidable impurities.
  • the third resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass,
  • An adhesive having a melting point of 125 ° C. or lower, an adhesive having a melting point of 125 ° C. or lower, and one or more components selected from each of the above optional components may be used.
  • the thickness of the third resin layer is usually 10 ⁇ m to 100 ⁇ m.
  • the laminate further includes an easy-adhesion layer in addition to the first to third resin layers described above.
  • the easy-adhesion layer is provided for the purpose of laminating another layer (for example, a hard coat layer, a printing layer, a metal layer, etc.) on the first resin layer via the easy-adhesion layer. be able to.
  • the easy-adhesion layer can be provided, for example, on the surface of the first resin layer opposite to the second resin layer.
  • the easy-adhesion layer preferably contains one or more resins selected from the group consisting of urethane, acrylic, polyolefin and polyester.
  • the resin of the easy-adhesion layer is preferably a urethane resin in view of adhesion to a laminate (main body) including the first to third layers and a printing layer described later and moldability. As a result, a laminate having excellent ink adhesion can be obtained.
  • the urethane resin is preferably a reaction product of diisocyanate, high molecular weight polyol and chain extender. Examples of the high molecular weight polyol include a polyether polyol and a polycarbonate polyol.
  • the easy-adhesive layer follows the laminated body and good molding is realized. Further, even when the print layer described later is formed, cracks and peeling of the print layer can be prevented.
  • the thickness of the easy-adhesion layer is preferably 0.01 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less. If the thickness of the easy-adhesion layer is thinner than 0.01 ⁇ m, sufficient ink adhesion may not be obtained. On the other hand, if it is thicker than 3 ⁇ m, stickiness may occur and cause blocking.
  • the tensile elongation at break of the easy-adhesion layer is preferably 150% or more and 900% or less, more preferably 200% or more and 850% or less, and particularly preferably 300% 750% or less. If the tensile elongation at break of the easy-adhesive layer is less than 150%, the easy-adhesive layer cannot follow the elongation of the laminate during thermoforming, and cracks occur, causing cracks in the printed layer and metal layer. There is a risk of peeling. On the other hand, if the tensile elongation at break exceeds 900%, the water resistance may deteriorate.
  • the tensile elongation at break can be measured with a sample having a thickness of 150 ⁇ m, for example, by a method according to JIS K7311.
  • the softening temperature of the easy-adhesion layer is preferably 50 ° C. or higher and 180 ° C. or lower, more preferably 90 ° C. or higher and 170 ° C. or lower, and particularly preferably 100 ° C. or higher and 165 ° C. or lower.
  • the softening temperature of the easy-adhesion layer is 50 ° C. or higher, the strength of the easy-adhesion layer at room temperature is excellent, and cracks or peeling of the printing layer or the metal layer are prevented.
  • the temperature is 180 ° C.
  • the temperature is sufficiently softened during thermoforming, the easy-adhesion layer is less likely to crack, and the printing layer and the metal layer, which will be described later, are prevented from cracking or peeling.
  • the softening temperature can be determined, for example, by measuring the flow start temperature with an enhanced flow tester.
  • the laminate further includes a printed layer (also referred to as a printed matter) laminated on the surface of the easy-adhesive layer opposite to the first resin layer.
  • a printed layer also referred to as a printed matter laminated on the surface of the easy-adhesive layer opposite to the first resin layer.
  • the shape of the print layer is not particularly limited, and various shapes such as solid, carbon, and wood grain can be mentioned.
  • the thickness of the print layer is usually 1 to 50 ⁇ m.
  • the laminate further comprises a metal layer laminated on the surface of the easy-adhesive layer opposite to the first resin layer.
  • the metal layer is a layer containing a metal or a metal oxide.
  • the metal of the metal or the metal oxide is not particularly limited as long as it is a metal that can give a metallic design to the laminate, and for example, tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum, and zinc. , And alloys containing at least one of these. These may be used alone or in combination of two or more.
  • tin, indium and aluminum are preferably mentioned from the viewpoint of extensibility. As a result, cracks are less likely to occur when the laminated body is three-dimensionally molded.
  • the method for producing the laminate is not particularly limited, but it can be preferably obtained by, for example, quenching the resin composition for forming each layer co-extruded from the T-die into layers at a cooling rate of 80 ° C./sec or more. It will be described in detail below with reference to FIG.
  • FIG. 1 is a schematic configuration diagram of an example of a manufacturing apparatus for manufacturing the laminate of the present invention.
  • the manufacturing apparatus shown in FIG. 1 includes a T-die 12 of an extruder, a first cooling roll 13, a second cooling roll 14, a third cooling roll 15, a fourth cooling roll 16, and a metal endless belt 17.
  • An embodiment of a method for manufacturing the laminated body 11 by quenching using the manufacturing apparatus configured as described above will be described below.
  • the resin composition for forming each layer (first to third resin layers) extruded in layers from the T-die 12 of the extruder is placed on the first cooling roll 13 with the metal endless belt 17 and the fourth cooling roll. It is sandwiched between 16 and 16. In this state, the molten resin is pressure-welded and cooled by the first and fourth cooling rolls 13 and 16.
  • the temperature of the molten resin extruded from the T-die 12 is, for example, 200 ° C. or higher, and 350 ° C. or lower, for example.
  • the surface temperatures of the metal endless belt 17 and the fourth cooling roll 16 that come into direct contact with the extruded molten resin and cool the extruded molten resin are controlled to maintain a predetermined temperature.
  • the predetermined temperature is usually above the dew point, for example, 10 ° C. or higher, and for example, 40 ° C. or lower.
  • the temperature of the other cooling rolls 13, 14 and 15 can be appropriately controlled.
  • the cooling rate of the molten resin can be set to, for example, 80 ° C./sec or more, 90 ° C./sec or more, or 150 to 300 ° C./sec or more, whereby the extruded molten resin is rapidly cooled.
  • the crystal structure can be made into the above-mentioned Smetika crystal.
  • the rapidly cooled laminate 11 is planarly pressure-welded by the cooling rolls 13 and 16 at the portion where the elastic material 22 is elastically deformed, that is, the arc portion corresponding to the central angle ⁇ 1 of the first cooling roll 13. ..
  • the surface pressure at this time is usually 0.1 MPa or more and 20 MPa or less.
  • the laminate 11 which is pressure-welded as described above and sandwiched between the fourth cooling roll 16 and the metal endless belt 17 is subsequently subjected to the metal endless belt at an arc portion corresponding to substantially the lower half circumference of the fourth cooling roll 16. It is sandwiched between the 17 and the 4th cooling roll 16 and subjected to planar pressure contact.
  • the surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
  • the laminate in close contact with the metal endless belt 17 is moved onto the second cooling roll 14 with the rotation of the metal endless belt 17.
  • the laminated body 11 guided by the peeling roll 21 and pressed toward the second cooling roll 14 has a surface formed by a metal endless belt 17 at an arc portion corresponding to substantially the upper half circumference of the second cooling roll 14, as described above. It is pressure-welded and cooled again at a temperature of 30 ° C. or lower.
  • the surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
  • the laminate 11 cooled on the second cooling roll 14 is wound at a predetermined speed by a winding roll (not shown).
  • first to third resin layers are formed by coextrusion film formation
  • a separately formed third resin layer may be formed on the second resin layer by a known laminating method such as dry laminating or thermal laminating.
  • the third resin layer may be formed on the second resin layer by a printing method such as gravure printing or screen printing, or may be formed by coating such as roll coating.
  • the method for producing the laminate including the easy-adhesion layer is not particularly limited, and for example, the first to third resin layers and the easy-adhesion layer may be formed by coextrusion, or the first to third resin layers may be formed.
  • An easy-adhesive layer may be formed on the laminated body (main body) containing the resin layer by an arbitrary film forming method such as a coating method, or separately formed on the laminated body (main body) including the first to third resin layers.
  • the easy-adhesion layer may be laminated.
  • the molded product of the present invention is manufactured by using the laminated body according to the present invention.
  • the molding method for obtaining a molded product is not particularly limited, and examples thereof include in-mold molding, insert molding, coating molding, and vacuum compressed air molding.
  • the laminate according to the present invention is preferably used as a coating material in insert molding and coating molding, and more preferably as a coating material in coating molding, from the viewpoint of better exerting the effects of the present invention.
  • In-mold molding is a method in which a laminate is placed in a mold and molded into a desired shape by the pressure of a molding resin supplied into the mold to obtain a molded product.
  • the method for producing a molded product by in-mold molding includes mounting the laminate on a mold and supplying a molding resin to the mold to integrate the laminate and the molding resin. preferable.
  • the manufacturing method of the molded body by insert molding is to attach the laminated body to match the mold (preliminary molding), to attach the attached laminated body to the mold, and to mold the laminated body into the mold. It is preferable to supply the resin for molding and to integrate the laminate and the resin for molding. By insert molding, a more complicated shape can be given to the molded body.
  • the preliminary forming is preferably performed by, for example, vacuum forming, compressed air forming, vacuum forming, press forming, plug assist forming or the like.
  • the molding resin used for in-mold molding, insert molding and the like is preferably a moldable thermoplastic resin.
  • a thermoplastic resin include, but are not limited to, polypropylene, polyethylene, polycarbonate, acrylonitrile-styrene-butadiene copolymer, acrylic polymer and the like.
  • Inorganic fillers such as fiber and talc may be added to the thermoplastic resin.
  • the molding resin is preferably supplied by injection, preferably at a pressure of 5 MPa or more and 120 MPa or less.
  • the mold temperature is preferably 20 ° C. or higher and 90 ° C. or lower.
  • the method of manufacturing the molded body by coating molding is to dispose the core material in the chamber box, arrange the laminate above the core material in the chamber box, reduce the pressure in the chamber box, and heat the laminate. It is preferable to include softening and pressing the heat-softened laminate against the core material to cover the core material with the laminate. At this time, it is preferable to bring the laminate into contact with the upper surface of the core material after heat softening. For pressing, it is preferable to pressurize the opposite side of the core material of the laminate while reducing the pressure on the side of the laminate in contact with the core material in the chamber box.
  • the core material may be convex or concave, and examples thereof include resins, metals, and ceramics having a three-dimensional curved surface. Examples of the resin include those similar to those described as the molding resin.
  • the chamber box used for coating molding is preferably provided with, for example, two upper and lower molding chambers (upper molding chamber and lower molding chamber) that can be separated from each other.
  • An example of coating molding using such a chamber box will be described below.
  • the core material is placed on the table in the lower molding chamber and set.
  • the laminate which is the object to be molded, is fixed to the upper surface of the lower molding chamber with a clamp.
  • the pressure inside the upper and lower molding chambers is atmospheric pressure.
  • the upper molding chamber is lowered, the upper and lower molding chambers are joined, and the inside of the chamber box is closed. Both the upper and lower molding chambers are changed from the atmospheric pressure state to the vacuum suction state by the vacuum tank.
  • the heater is turned on to heat the laminate.
  • the table in the lower molding chamber is raised while keeping the vacuum state in the upper and lower molding chambers.
  • the laminate to be molded is pressed against the core material and overlaid (molded).
  • the heater can be turned off, the vacuum in the lower molding chamber can be released to return to the atmospheric pressure state, the upper molding chamber can be raised, and the core material (product) covered with the laminate can be taken out.
  • the method for producing a molded product by vacuum pressure air molding preferably includes heating and softening the laminate and shaping the heat-softened laminate into a predetermined mold shape by air pressure.
  • the first resin layer is a clear layer
  • the second resin layer is a colored layer
  • the third resin layer is an adhesive layer
  • the first to third resin layers may each have an arbitrary function depending on the purpose and application of the laminate.
  • Example 1 Material used in Examples and Comparative Examples (Polypropylene resin) PP-1: "FTX0983" manufactured by Japan Polypropylene Corporation (homopolypropylene having a long-chain branched structure, MFR: 6 g / 10 minutes, branching index 0.96, melt tension 5.4 g) -PP-2: Polypropylene Polypropylene with a lower isotactic pentad fraction than PP-1, MFR: 7.3 g / 10 minutes, branching index 0.96, melt tension 5.0 g) -PP-3: "Prime Polypro F133A" manufactured by Prime Polymer Co., Ltd.
  • MFR of the resin shown in (1) above is a value measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
  • Branch index g' was measured as a function of absolute molecular weight Mabs by using a GPC (gel permeation chromatography measuring device) equipped with a light scatterometer and a viscometer. Specifically, it was measured by the following measuring method and conditions.
  • a multi-angle laser light scattering detector (MALS) is used as the light scattering detector.
  • the detectors are connected in the order of MALS, RI, and Viscometer.
  • 1,2,4-trichlorobenzene is used as the mobile phase solvent.
  • the flow rate of the mobile phase solvent is 1 mL / min.
  • the temperature of the column, the sample injection part and each detector is maintained at 140 ° C.
  • the sample concentration is 1 mg / mL
  • the injection amount (sample loop volume) is 0.2175 mL.
  • the data processing software ASTRA (version 4.73.04) attached to MALS is used to obtain the absolute molecular weight (Mabs) obtained from MALS, the root mean square radius (Rg), and the limit viscosity ([ ⁇ ]) obtained from Viscometer. ..
  • the branching index g' is the ultimate viscosity ([ ⁇ ] br) of the long-chain branched polymer (measurement target polymer) obtained by measuring the sample with the above Viscometer and the limit viscosity ([ ⁇ ] br) separately obtained by measuring the linear polymer. It is calculated as a ratio to [ ⁇ ] lin) ([ ⁇ ] br / [ ⁇ ] lin).
  • the linear polymer for obtaining [ ⁇ ] lin commercially available homopolypropylene (Novatec (registered trademark) PP grade name: FY6 manufactured by Japan Polypropylene Corporation) is used. Since it is known as the Mark-Houwink-Sakurada formula that the logarithm of [ ⁇ ] lin of a linear polymer has a linear relationship with the logarithm of molecular weight, [ ⁇ ] lin is appropriately set on the low molecular weight side or the high molecular weight side. The numerical value can be obtained by extrapolation.
  • the branching index g' is a value when the absolute molecular weight (Mabs) is 1,000,000.
  • melt tension was measured as follows. That is, using a capillograph, polypropylene used in the first resin layer was placed in a cylinder having a diameter of 9.6 mm heated to a temperature of 230 ° C. The molten resin was extruded from an orifice having a diameter of 2.0 mm and a length of 40 mm at a pushing speed of 20 mm / min. The tension detected by the pulley when the extruded resin was taken up at a speed of 4.0 m / min was measured and used as the melt tension.
  • the isotactic pentad fraction was measured by evaluating the 13 C-NMR spectrum of the polypropylene used. Specifically, it was carried out under the following conditions according to the peak attribution proposed in "Macromopolymers, 8, 687 (1975)" by A. Zambali et al. (Measurement method / conditions) Equipment: JNM-EX400 type 13 C-NMR equipment manufactured by JEOL Ltd.
  • Crystal structure (crystal form) T The measurement was carried out with reference to the method used by Konishi et al. (Macropolymers, 38, 8749, 2005). In the analysis, the peaks of the amorphous phase, the intermediate phase, and the crystalline phase were separated from each other for the X-ray diffraction profile, and the abundance ratio was determined from the peak area assigned to each phase.
  • the "Smetica crystal” and " ⁇ crystal” shown in Table 1 are crystal forms showing the largest peak area.
  • the volume fraction of spherulite having a diameter of 1 ⁇ m to 10 ⁇ m in the resin layer is as follows. Calculated by the method. That is, after cutting only the resin layer (here, the first resin layer) to be measured on the sheet with "SAICAS (registered trademark) DN-20S" manufactured by Daipla Wintes Co., Ltd. by about 120 ⁇ m, this resin piece is cut into small angles. The average radius of spherulites in the first resin layer was calculated by measuring by a light scattering method.
  • the average volume of spherulite and the volume of the non-spherulite portion were calculated by measuring the number of spherulite in the cross section of the resin layer with a polarizing microscope, and the volume fraction of spherulite was calculated from these values.
  • a He-Ne gas laser (wavelength 632.8 nm, output 5 mW, manufactured by NEC Corporation) was used as irradiation light, and a sample (deposited resin layer) was irradiated through a polarizer.
  • the sample transmitted light was applied to an imaging plate (Neopan Preso400, manufactured by FUJIFILM Corporation) via an analyzer.
  • the average radius R of spherulites inside the sheet was calculated from the irradiation image.
  • R 4.09 / Q max (R: average radius of spherulites, Q max : scattering vector that maximizes scattering intensity)
  • Q 4 ⁇ n / ⁇ (Q: scattering vector, n: refractive index, ⁇ : incident light wavelength)
  • the cross section of the resin layer was prepared with a microtome (manufactured by Thermo Fisher Scientific Co., Ltd., HM340E) and sliced to a thickness of 10 ⁇ m to obtain a resin layer piece.
  • a resin layer piece was placed on the slide glass and covered with a cover glass.
  • the cross section of the resin layer was observed with a polarizing microscope (ECLIPSE LV100N manufactured by Nikon Corporation). Martese cloth is observed at the site where spherulites are formed.
  • the number of spherulites having a diameter of 1 ⁇ m to 10 ⁇ m is measured from a cross-sectional observation image (a square region defined by the thickness of the first resin layer ( ⁇ m) at the time of film formation ⁇ the thickness of the first resin layer ( ⁇ m) at the time of film formation). did.
  • the spherulites that are not exposed on the outermost surface can be observed by adjusting the focal position of the polarizing microscope in the thickness direction from the outermost surface of the resin layer.
  • the volume fraction of the spherulite having a diameter of 1 ⁇ m to 10 ⁇ m in the first resin layer is obtained from these volume ratios. It was.
  • Crystallization rate was measured using a differential scanning calorimetry device (DSC) (manufactured by PerkinElmer, product name "Diamond DSC”). Specifically, first, 5 mg of a sample was prepared using polypropylene used in each of the first resin layer and the second resin layer, and the sample was changed from 50 ° C. to 230 ° C. at 10 ° C./min. The temperature was raised, held at 230 ° C. for 5 minutes, cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then held at 130 ° C. for crystallization.
  • DSC differential scanning calorimetry device
  • the measurement of the change in calorific value was started from the time when the temperature reached 130 ° C., and the DSC curve was obtained. From the obtained DSC curve, the crystallization rate was determined by the following procedures (i) to (iv).
  • the baseline was the linear approximation of the change in calorific value from the time point 10 times the time from the start of measurement to the peak top to the time point 20 times.
  • the intersection of the tangent line having a slope at the inflection point of the peak and the baseline was obtained, and the crystallization start and end times were obtained.
  • the time from the obtained crystallization start time to the peak top was measured as the crystallization time.
  • the crystallization rate was determined from the reciprocal of the obtained crystallization time.
  • the melting point of the resin (adhesive raw material) used for the third resin layer was determined in accordance with JIS K7121: 2012 (transition temperature measurement method).
  • the melting enthalpy of the adhesive raw material used for the third resin layer was determined according to the method described in JIS K7122 (method for measuring transition heat).
  • the inside of the chamber box was evacuated by a vacuum pump.
  • the test sheet was heated by a heater (manufactured by HERAEUS, a medium wavelength band infrared heater (200 W, 115 V)) arranged in the upper molding chamber.
  • the heater was arranged so that the heater surface that radiates infrared rays in the middle wavelength band was parallel to the main surface of the test sheet.
  • Examples 2 and 3 A laminate was prepared and evaluated in the same manner as in Example 1 except that the components and compositions of each layer of the laminate were as shown in Table 1.
  • Comparative Examples 1 to 3 The components and compositions of each layer of the laminate are as shown in Table 1, and the surface temperature of the cooling roll and the metal endless belt is 80 ° C., and the cooling rate is 1,154 ° C./min. A laminate was prepared and evaluated in the same manner.
  • Comparative Example 4 A laminate was prepared and evaluated in the same manner as in Example 1 except that the components and compositions of each layer of the laminate were as shown in Table 1.
  • the molded product obtained from the laminate of the present invention can be used for a wide variety of applications, for example, a housing in a wide range of fields such as transportation equipment (automobiles, motorcycles, etc.), housing equipment, building materials, home appliances, and the like. It can be used as a decorative sheet to replace painting on the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

A layered body including a first resin layer, a second resin layer, and a third resin layer, in this order, wherein the first resin layer and the second resin layer each contain polypropylene, each polypropylene has a long-chain branching structure and a crystallization speed of 2.5 min-1 or slower at 130°C, the first resin layer and the second resin layer have different compositions, and the third resin layer contains an adhesive having a melting point of 125°C or lower.

Description

積層体、成形体及び成形体の製造方法Laminated body, molded body and manufacturing method of molded body
 本発明は、成形時のドローダウンを抑制でき、かつ優れた外観の成形体を製造できる積層体、成形体及び成形体の製造方法に関する。 The present invention relates to a laminate, a molded product, and a method for producing a molded product, which can suppress drawdown during molding and can produce a molded product having an excellent appearance.
 自動車や家電、建材、日用品、情報通信機器など様々な分野にて、外観の意匠性を向上させる方法として、塗装が用いられている。しかし、塗装は、大量のVOC(揮発性有機化合物)を排出するなど、環境負荷が大きい。
 塗装に代わる技術として、加飾シートを成形体と一体化して、加飾成形品を形成する技術が提案されている(特許文献1、2)。近年、環境問題に対する関心が高まり、加飾シートの材質として、ポリスチレンやABS(アクリロニトリル、ブタジエン、スチレン共重合体)等の非晶性樹脂よりもポリプロピレン系樹脂が注目されている。
Painting is used as a method for improving the design of appearance in various fields such as automobiles, home appliances, building materials, daily necessities, and information and communication equipment. However, painting has a large environmental load such as discharging a large amount of VOC (volatile organic compounds).
As an alternative technique to painting, a technique has been proposed in which a decorative sheet is integrated with a molded body to form a decorative molded product (Patent Documents 1 and 2). In recent years, there has been increasing interest in environmental issues, and polypropylene-based resins are attracting more attention as materials for decorative sheets than amorphous resins such as polystyrene and ABS (acrylonitrile, butadiene, and styrene copolymers).
特開2018-24246号公報Japanese Unexamined Patent Publication No. 2018-24246 特開2013-14027号公報Japanese Unexamined Patent Publication No. 2013-14027
 従来、真空圧空成形用の加飾シートに用いられているポリプロピレン系樹脂は、溶融張力が低いためシートを熱成形する工程において、耐ドローダウン性が十分とは言えず、大型成形時に成形体にドローダウンが原因の皺や成形ムラが発生していた。特に加飾成形方法の一種である被覆成形では、被覆成形に用いる芯材が、自動車パーツ等の大型であることが多い一方で、耐ドローダウン性に優れたポリプロピレン製加飾シートが無いため、皺や成形ムラが良品率を下げる主原因であった。 Polypropylene resin, which has been conventionally used for decorative sheets for vacuum pressure molding, has low melt tension, so that it cannot be said that the drawdown resistance is sufficient in the process of thermoforming the sheet, and it can be used as a molded body during large-scale molding. Wrinkles and molding unevenness caused by drawdown occurred. In particular, in coating molding, which is a type of decorative molding method, the core material used for coating molding is often large, such as automobile parts, but there is no polypropylene decorative sheet with excellent draw-down resistance. Wrinkles and uneven molding were the main causes of lowering the non-defective rate.
 また、ポリプロピレン系樹脂を用いたシートの多くは、溶融状態の樹脂を鏡面ロール同士の挟圧もしくは鏡面ロールに空気圧で押し付けることで、シート表面を平滑にして表面光沢度を高めている。しかし当該シートを加熱成形すると、球晶の成長などによってシート表面の光沢が失われたり、透明性が低下して外観が損なわれたりする課題があった。さらに、ポリプロピレン系樹脂を用いたシートに透明性を付与するためには、従来、造核剤(「結晶核剤」ともいう。)を用いているが、造核剤を用いたシートは結晶化速度が速いため、成形時に金型に触れたシートが急速に結晶化して延伸性が悪化する。そのため従来のポリプロピレン系樹脂を含む透明シートは、複雑な形状や微細な金型の凹凸を附形することが困難であるという課題があった。 In addition, most of the sheets using polypropylene-based resin smooth the surface of the sheet and increase the surface gloss by pressing the molten resin between the mirror rolls or pressing the resin against the mirror rolls with air pressure. However, when the sheet is heat-molded, there is a problem that the gloss of the sheet surface is lost due to the growth of spherulite or the like, or the transparency is lowered and the appearance is impaired. Further, in order to impart transparency to a sheet using a polypropylene resin, a nucleating agent (also referred to as "crystal nucleating agent") has been conventionally used, but a sheet using a nucleating agent is crystallized. Since the speed is high, the sheet that comes into contact with the mold during molding rapidly crystallizes and the stretchability deteriorates. Therefore, the conventional transparent sheet containing a polypropylene resin has a problem that it is difficult to form a complicated shape and fine irregularities of a mold.
 また、被覆成形装置は、通常、インサート成形やインモールド成形などの他の加飾成形方法と比較して成形時の熱量が少ない。そのため被覆成形に用いる加飾シートには、低温でも芯材と強く密着可能な粘着剤が用られる。しかし、粘着剤は常温でもタック性があるため、ハンドリング性が悪く、異物が付着しやすいという課題がある。さらに加飾シートの製造工程の他に、粘着剤のラミネート加工やコーティング加工、粘着剤の購入費が別途必要となり、被覆成形機を用いた加飾成形工程のコスト増加を招く。 In addition, the coating molding apparatus usually has a smaller amount of heat during molding as compared with other decorative molding methods such as insert molding and in-mold molding. Therefore, for the decorative sheet used for coating molding, an adhesive that can strongly adhere to the core material even at a low temperature is used. However, since the adhesive has tackiness even at room temperature, it has a problem that it has poor handleability and foreign matter easily adheres to it. Further, in addition to the decorative sheet manufacturing process, adhesive laminating and coating processing and adhesive purchasing costs are required separately, which leads to an increase in the cost of the decorative molding process using a coating molding machine.
 特許文献1の技術は、長鎖分岐構造を有する高溶融張力ポリプロピレンからなる熱成形用シートに関するものである。しかし、ポリプロピレンは結晶性樹脂であるため、金型に触れたシートが急速に結晶化して延伸性が悪化する懸念がある。また、加熱成形後にシートが結晶化することで成形体表面に微細な凹凸が発現して光沢が失われたり、透明性が失われてシートの外観が損なわれたりする懸念がある。 The technique of Patent Document 1 relates to a thermoforming sheet made of high melt tension polypropylene having a long chain branched structure. However, since polypropylene is a crystalline resin, there is a concern that the sheet in contact with the mold will crystallize rapidly and the stretchability will deteriorate. Further, there is a concern that the sheet crystallizes after heat molding to cause fine irregularities on the surface of the molded product to lose its luster, or to lose its transparency and impair the appearance of the sheet.
 特許文献2の技術は、塗装代替フィルムであって、ポリプロピレンに対する接着性に優れる接着層を備えているとある。しかし、当該接着層の融点は130℃以上であるため、被覆成形等においては、接着層が前記温度まで昇温せず、接着強度が発現しないか、あるいは過加熱によって積層体が損傷する虞がある。また、積層体の基材となるポリプロピレンは、分岐構造を有しないポリプロピレンであると推測できるため、ドローダウンが大きく、成形品に対して皺や成形ムラが原因の外観不良を生じる懸念がある。 The technique of Patent Document 2 is that it is a coating substitute film and includes an adhesive layer having excellent adhesiveness to polypropylene. However, since the melting point of the adhesive layer is 130 ° C. or higher, the adhesive layer does not rise to the above temperature in coating molding or the like, and the adhesive strength may not be exhibited, or the laminated body may be damaged by overheating. is there. Further, since polypropylene which is a base material of the laminated body can be presumed to be polypropylene which does not have a branched structure, the drawdown is large, and there is a concern that the molded product may have an appearance defect due to wrinkles or uneven molding.
 本発明の目的は、成形時のドローダウンを抑制でき、被着体との接着強度に優れ、かつ優れた外観の成形体を製造できる積層体を提供することである。 An object of the present invention is to provide a laminate capable of suppressing drawdown during molding, having excellent adhesive strength with an adherend, and being able to produce a molded body having an excellent appearance.
 本発明によれば、以下の積層体等が提供される。
1.第1の樹脂層、第2の樹脂層及び第3の樹脂層をこの順で含む積層体であって、
 前記第1の樹脂層及び前記第2の樹脂層はポリプロピレンを含み、前記ポリプロピレンは、それぞれ、長鎖分岐構造を有し、かつ、130℃での結晶化速度が2.5min-1以下であり、
 前記第1の樹脂層と前記第2の樹脂層とは組成が異なり、
 前記第3の樹脂層は、融点が125℃以下の接着剤を含む、
 積層体。
2.前記第3の樹脂層の前記接着剤が、オレフィン系接着剤、スチレン系接着剤、イソシアネート系接着剤、ウレタン系接着剤、及びアクリル系接着剤からなる群から選択される1以上である、1に記載の積層体。
3.前記第2の樹脂層が、顔料を含む、1又は2に記載の積層体。
4.前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンが、示差走査熱量測定で得られる曲線において、最大吸熱ピークの低温側に1J/g以上の発熱ピークを有する、1~3のいずれかに記載の積層体。
5.前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンが、スメチカ晶を含む、1~4のいずれかに記載の積層体。
6.前記スメチカ晶を含む1以上の前記樹脂層中に直径1μm~10μmの球晶が存在し、該樹脂層中における前記球晶の体積分率が20%以下である、5に記載の積層体。
7.前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンのアイソタクチックペンタッド分率が85~99モル%である、1~6のいずれかに記載の積層体。
8.前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンの分岐指数が0.50以上1.00未満である、1~7のいずれかに記載の積層体。
9.前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンの溶融張力が4.0g以上である、1~8のいずれかに記載の積層体。
10.さらに易接着層を含む、1~9のいずれかに記載の積層体。
11.前記易接着層が、ウレタン、アクリル、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む、10に記載の積層体。
12.前記易接着層における前記第1の樹脂層と反対側の面に積層された印刷層をさらに含む、10又は11に記載の積層体。
13.1~12のいずれかに記載の積層体を用いて製造された成形体。
14.1~12のいずれかに記載の積層体を成形して成形体を得ることを含む、成形体の製造方法。
15.前記積層体を金型に合致するよう賦形し、前記賦形した積層体を金型に装着し、成形用樹脂を供給して前記賦形した積層体と一体化して前記成形を行う、14に記載の成形体の製造方法。
16.チャンバーボックス内に芯材を配設し、前記芯材の上方に前記積層体を配置し、前記積層体を加熱軟化し、前記チャンバーボックス内を減圧して前記加熱軟化させた積層体を前記芯材に押圧して被覆させる、14に記載の成形体の製造方法。
According to the present invention, the following laminates and the like are provided.
1. 1. A laminate containing a first resin layer, a second resin layer, and a third resin layer in this order.
The first resin layer and the second resin layer contain polypropylene, each of which has a long-chain branched structure and a crystallization rate at 130 ° C. of 2.5 min -1 or less. ,
The composition of the first resin layer and the second resin layer are different.
The third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
Laminated body.
2. The adhesive of the third resin layer is one or more selected from the group consisting of an olefin adhesive, a styrene adhesive, an isocyanate adhesive, a urethane adhesive, and an acrylic adhesive. The laminate described in.
3. 3. The laminate according to 1 or 2, wherein the second resin layer contains a pigment.
4. Polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 1 J / g or more on the low temperature side of the maximum endothermic peak in the curve obtained by differential scanning calorimetry. The laminate according to any one of 1 to 3, which has an endothermic peak of.
5. The laminate according to any one of 1 to 4, wherein the polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer contains smetica crystals.
6. 5. The laminate according to 5, wherein spherulites having a diameter of 1 μm to 10 μm are present in one or more of the resin layers containing the smetika crystals, and the volume fraction of the spherulites in the resin layer is 20% or less.
7. Any of 1 to 6 in which the polypropylene isotactic pentad fraction of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 85 to 99 mol%. The laminate described in.
8. The description in any one of 1 to 7, wherein the polypropylene branching index of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 0.50 or more and less than 1.00. Laminated body.
9. The laminate according to any one of 1 to 8, wherein the polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer has a melt tension of 4.0 g or more.
10. The laminate according to any one of 1 to 9, further comprising an easy-adhesion layer.
11. 10. The laminate according to 10, wherein the easy-adhesion layer contains one or more resins selected from the group consisting of urethane, acrylic, polyolefin and polyester.
12. 10. The laminate according to 10 or 11, further comprising a print layer laminated on the surface of the easy-adhesion layer opposite to the first resin layer.
A molded product produced by using the laminate according to any one of 13.1 to 12.
A method for producing a molded product, which comprises molding the laminate according to any one of 14.1 to 12 to obtain a molded product.
15. The laminated body is shaped so as to match the mold, the shaped laminated body is mounted on the mold, a molding resin is supplied, and the molded laminated body is integrated with the shaped laminated body to perform the molding. The method for producing a molded product according to.
16. The core material is arranged in the chamber box, the laminated body is arranged above the core material, the laminated body is heated and softened, and the inside of the chamber box is depressurized to heat and soften the laminated body. The method for producing a molded body according to 14, wherein the material is pressed and covered.
 本発明によれば、成形時のドローダウンを抑制でき、被着体との接着強度に優れ、かつ優れた外観の成形体を製造できる積層体が提供できる。 According to the present invention, it is possible to provide a laminated body capable of suppressing drawdown during molding, having excellent adhesive strength with an adherend, and being able to manufacture a molded body having an excellent appearance.
本発明の積層体を製造するための製造装置の一例の概略構成図である。It is a schematic block diagram of an example of the manufacturing apparatus for manufacturing the laminated body of this invention. ドローダウン量の測定方法を説明するための図である。It is a figure for demonstrating the measurement method of the drawdown amount.
 以下、本発明に係る積層体、成形体、及び成形体の製造方法について説明する。本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。 Hereinafter, the laminated body, the molded body, and the manufacturing method of the molded body according to the present invention will be described. In the present specification, "x to y" represents a numerical range of "x or more and y or less".
1.積層体
 本発明の一態様に係る積層体は、
 第1の樹脂層、第2の樹脂層及び第3の樹脂層をこの順で含む積層体であって、
 前記第1の樹脂層及び前記第2の樹脂層はポリプロピレンを含み、前記ポリプロピレンは、それぞれ、長鎖分岐構造を有し、かつ、130℃での結晶化速度が2.5min-1以下であり(当該ポリプロピレンを、以下、「ポリプロピレンX」ともいう)、
 前記第1の樹脂層と前記第2の樹脂層とは組成が異なり、
 前記第3の樹脂層は、融点が125℃以下の接着剤を含む。
1. 1. Laminated body The laminated body according to one aspect of the present invention is
A laminate containing a first resin layer, a second resin layer, and a third resin layer in this order.
The first resin layer and the second resin layer contain polypropylene, each of which has a long-chain branched structure and a crystallization rate at 130 ° C. of 2.5 min -1 or less. (The polypropylene is also referred to as "polypropylene X" below),
The composition of the first resin layer and the second resin layer are different.
The third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
 上記積層体は、第1の樹脂層及び第2の樹脂層にポリプロピレンXを含むことで、高い溶融張力を有するため、熱成形(例えば、真空成形、圧空成形、又は真空圧空成形)時のドローダウンを抑制できる。これにより、当該ドローダウンに起因する皺、ムラ、たるみ痕等が防止又は低減された成形体を製造可能である。また、溶融張力が大きいため、延伸倍率を大きくしても成形体に偏肉が生じにくい。また、上記積層体は、第1の樹脂層及び第2の樹脂層に含まれるポリプロピレンの結晶化速度が小さいことに起因して急激な結晶化が起きにくいため、成形性が高い。即ち、例えば金型接触時に積層体が急速に硬化することがないため、自由度高く所望の形状を実現することが可能である。さらに、上記積層体によれば、熱成形時に生じやすい外観(光沢や透明性)の劣化が抑えられるため、外観を維持したまま美麗な成形体が製造可能となる。上記のような効果は、大型成形時(例えば1辺が1メートル以上)にも好適に発揮される。 Since the laminate contains polypropylene X in the first resin layer and the second resin layer, it has a high melt tension, so that it can be drawn during thermoforming (for example, vacuum forming, compressed air forming, or vacuum forming). Down can be suppressed. As a result, it is possible to manufacture a molded product in which wrinkles, unevenness, slack marks and the like caused by the drawdown are prevented or reduced. Further, since the melt tension is large, uneven thickness is unlikely to occur in the molded body even if the draw ratio is increased. Further, the laminate has high moldability because rapid crystallization is unlikely to occur due to the low crystallization rate of polypropylene contained in the first resin layer and the second resin layer. That is, for example, since the laminated body does not cure rapidly at the time of contact with the mold, it is possible to realize a desired shape with a high degree of freedom. Further, according to the above-mentioned laminated body, deterioration of the appearance (gloss and transparency) that tends to occur during thermoforming is suppressed, so that a beautiful molded body can be manufactured while maintaining the appearance. The above effects are suitably exhibited even during large-scale molding (for example, one side is 1 meter or more).
 また、上記積層体は、第3の樹脂層に融点125℃以下の接着剤を含有することで、第3の樹脂層を、積層体を被着体に接着するための接着層として使用できる。このとき、第3の樹脂層は、125℃以下という低温で接着性を発揮できるため、比較的温度上昇が小さい(発生熱量が小さい)被覆成形等の成形方法を用いる場合においても、優れた接着強度が得られる。また、125℃以下という低温で接着性を発揮できるため、穏やかな加熱によって接着が可能であり、過加熱により積層体が損壊することも防止できる。従来使用していた粘着剤やコーティングを省略して、大幅に費用を低減できる効果も得られる。また、常温においてタック性を示す粘着剤ではなく、接着剤を用いることによって、ハンドリング性を向上でき、異物付着のリスクを低減できる。 Further, in the above-mentioned laminated body, by containing an adhesive having a melting point of 125 ° C. or less in the third resin layer, the third resin layer can be used as an adhesive layer for adhering the laminated body to the adherend. At this time, since the third resin layer can exhibit adhesiveness at a low temperature of 125 ° C. or lower, excellent adhesion is achieved even when a molding method such as coating molding in which the temperature rise is relatively small (the amount of heat generated is small) is used. Strength is obtained. Further, since the adhesiveness can be exhibited at a low temperature of 125 ° C. or lower, the adhesive can be adhered by gentle heating, and the laminated body can be prevented from being damaged by overheating. It is also possible to obtain the effect of significantly reducing costs by omitting the adhesives and coatings that have been used in the past. Further, by using an adhesive instead of an adhesive that exhibits tackiness at room temperature, the handling property can be improved and the risk of foreign matter adhesion can be reduced.
(第1の樹脂層)
 第1の樹脂層はポリプロピレンXを含む。一実施形態において、第1の樹脂層は、透光性を有するクリア層として用いることができる。
(First resin layer)
The first resin layer contains polypropylene X. In one embodiment, the first resin layer can be used as a translucent clear layer.
 ポリプロピレンXが長鎖分岐構造を有することの指標として分岐指数g’が挙げられる。分岐指数g’の定義は以下の通りである。
分岐指数g’=[η]br/[η]lin
[η]br:長鎖分岐構造を有するポリマー(br)の固有粘度
[η]lin:ポリマー(br)と同一の分子量を有する線状ポリマーの固有粘度
 上記から明らかなように、g’<1であるとポリプロピレンX中に長鎖分岐構造が存在すると判断され、g’の値が小さいほどより多くの長鎖分岐構造を有するといえる。ここで、固有粘度は、140℃において測定される値である。分岐指数g’は、実施例に記載の方法によって測定する。
A branching index g'is given as an index that polypropylene X has a long-chain branched structure. The definition of the branch index g'is as follows.
Branch index g'= [η] br / [η] lin
[Η] br : Intrinsic viscosity of polymer (br) having a long-chain branched structure [η] lin : Intrinsic viscosity of linear polymer having the same molecular weight as polymer (br) As is clear from the above, g'<1 If this is the case, it is determined that the long-chain branched structure exists in the polymer X, and it can be said that the smaller the value of g', the more long-chain branched structures are present. Here, the intrinsic viscosity is a value measured at 140 ° C. The divergence index g'is measured by the method described in the examples.
 第1の樹脂層に含まれるポリプロピレンXの分岐指数は、0.50以上1.00未満であることが好ましい。 The branching index of polypropylene X contained in the first resin layer is preferably 0.50 or more and less than 1.00.
 第1の樹脂層に含まれるポリプロピレンXの溶融張力は、4.0g以上であることが好ましく、5.0g以上であるとより好ましい。上限は格別限定されず、例えば20g以下である。
 溶融張力は、実施例に記載の方法によって測定する。
The melt tension of polypropylene X contained in the first resin layer is preferably 4.0 g or more, and more preferably 5.0 g or more. The upper limit is not particularly limited, for example, 20 g or less.
The melt tension is measured by the method described in the examples.
 ポリプロピレンXのメルトフローレート(MFR)は、1.0~10.0g/10min(2.16kg)であることが好ましい。この範囲であると、押出成形性に優れ、真空圧空成形時にドローダウンなどの流動が起こり難いため好ましい。
 MFRは、実施例に記載の方法によって測定する。
The melt flow rate (MFR) of polypropylene X is preferably 1.0 to 10.0 g / 10 min (2.16 kg). Within this range, extrusion moldability is excellent, and flow such as drawdown is unlikely to occur during vacuum compressed air molding, which is preferable.
MFR is measured by the method described in the examples.
 ポリプロピレンXは、プロピレンを単段重合又は二段以上の多段重合で単独重合して得られるプロピレン単独重合体、プロピレンとα-オレフィンとを単段重合又は二段以上の多段重合で共重合して得られるプロピレン・α-オレフィンランダム共重合体、プロピレンを単段重合又は二段以上の多段重合で単独重合してプロピレン単独重合体を得る重合工程とプロピレンとα-オレフィンとを単段重合又は二段以上の多段重合で共重合してプロピレン・α-オレフィンランダム共重合体を得る共重合工程とを含む重合で得られるプロピレン・α-オレフィンブロック共重合体のいずれであってもよいが、プロピレン単独重合体、プロピレン・α-オレフィンランダム共重合体が好ましい。 Propylene X is a propylene homopolymer obtained by homopolymerizing propylene by single-stage polymerization or multi-stage polymerization of two or more stages, and copolymerizing propylene and α-olefin by single-stage polymerization or multi-stage polymerization of two or more stages. The obtained propylene / α-olefin random copolymer, a polymerization step of homopolymerizing propylene by single-stage polymerization or multi-stage polymerization of two or more stages to obtain a propylene homopolymer, and monostage polymerization or two-stage polymerization of propylene and α-olefin. It may be any propylene / α-olefin block copolymer obtained by polymerization including a copolymerization step of copolymerizing by multi-stage polymerization of steps or more to obtain a propylene / α-olefin random copolymer, but propylene. A homopolymer and a propylene / α-olefin random copolymer are preferable.
 α-オレフィンとしては、好ましくはエチレンまたは炭素数4~18のα-オレフィンである。具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-ヘプテン、4-メチル-ペンテン-1、4-メチル-ヘキセン-1、4,4-ジメチルペンテン-1等を挙げることができる。また、α-オレフィンとしては、1種または2種以上の組み合わせでもよい。 The α-olefin is preferably ethylene or an α-olefin having 4 to 18 carbon atoms. Specifically, ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1st grade can be mentioned. Further, the α-olefin may be one kind or a combination of two or more kinds.
 ポリプロピレンXは、例えばプロピレンモノマーから末端二重結合を有するプロピレンマクロマーを重合し、プロピレンマクロマーとプロピレンモノマーとを共重合する、いわゆるマクロマー共重合法によって得ることができるが、これに限定されない。 Polypropylene X can be obtained by, for example, a so-called macromer copolymerization method in which a propylene macromer having a terminal double bond is polymerized from a propylene monomer and the propylene macromer and the propylene monomer are copolymerized, but the polypropylene X is not limited thereto.
 第1の樹脂層に含まれるポリプロピレンXは、130℃での結晶化速度が2.5min-1以下であり、2.4min-1以下、2.3min-1以下、2.2min-1以下、2.1min-1以下又は2.0min-1以下であり得る。下限は格別限定されず、例えば、0.05min-1以上である。 Polypropylene X contained in the first resin layer has a crystallization rate of 2.5 min -1 or less at 130 ° C., 2.4 min -1 or less, 2.3 min -1 or less, 2.2 min -1 or less, It can be 2.1 min -1 or less or 2.0 min -1 or less. The lower limit is not particularly limited and is, for example, 0.05 min -1 or more.
 また、第1の樹脂層は造核剤の含量が少ないか、又は含まないと好ましい。第1の樹脂層の造核剤の含有量は、好ましくは1.0質量%以下であり、より好ましくは0.5質量%以下である。
 造核剤としては、例えば、ソルビトール系造核剤等が挙げられ、市販品としてはゲルオールMD(新日本理化学株式会社)やリケマスターFC-1(理研ビタミン株式会社)等が挙げられる。
Further, it is preferable that the first resin layer contains little or no nucleating agent. The content of the nucleating agent in the first resin layer is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less.
Examples of the nucleating agent include sorbitol-based nucleating agents, and commercially available products include Gelol MD (Nihon Rikagaku Co., Ltd.) and Rikemaster FC-1 (RIKEN Vitamin Co., Ltd.).
 結晶性樹脂であるポリプロピレンを透明にする方法として、造核剤の添加によって強制的に微細結晶を生成する方法がある。当該方法では、造核剤により結晶化速度を2.5min-1を超える速度まで速め、結晶を多数発生させて高充填状態とし、各結晶が物理的に成長するスペースを制限することで結晶を微細化する。しかしながら、造核剤には核となる物質が存在するため、透明性は得られるものの、通常、若干の白味を帯びるため意匠性は低くなる。また、結晶化速度が大きいため、加熱軟化された積層体を金型に接触させる際に、最初に金型に接触した部分が急速に硬化して伸び(延展性)が悪化し、無理矢理伸ばされた部分が白化して意匠性が低下する恐れがある。延展性の悪化により、複雑な形状や微細な金型の凹凸を附形することも困難になる場合がある。 As a method of making polypropylene, which is a crystalline resin, transparent, there is a method of forcibly producing fine crystals by adding a nucleating agent. In this method, the crystallization rate is increased to a rate exceeding 2.5 min -1 by a nucleating agent, a large number of crystals are generated to achieve a high filling state, and the space in which each crystal physically grows is limited to obtain crystals. Miniaturize. However, since the nucleating agent has a core substance, transparency can be obtained, but the design is usually low because it is slightly whitish. In addition, since the crystallization rate is high, when the heat-softened laminate is brought into contact with the mold, the portion that first comes into contact with the mold hardens rapidly and the elongation (ductility) deteriorates, and the laminate is forcibly stretched. There is a risk that the part will be whitened and the design will be reduced. Due to the deterioration of ductility, it may be difficult to form a complicated shape or fine irregularities of a mold.
 これに対して、第1の樹脂層は、造核剤の含量が少ないか又は含まなくても、結晶化速度を2.5min-1以下とすることによって、白化が防止され、意匠性(外観)に優れた成形体を得ることができる。また、成形体に複雑な形状や微細な金型の凹凸形状を附形することも容易である。 On the other hand, in the first resin layer, even if the content of the nucleating agent is low or not contained , whitening is prevented by setting the crystallization rate to 2.5 min -1 or less, and the design (appearance). ) Can be obtained. In addition, it is easy to attach a complicated shape or a fine uneven shape of a mold to the molded body.
 第1の樹脂層はスメチカ晶を含むと好ましい。
 ポリプロピレンは結晶性樹脂であり、α晶、β晶、γ晶、スメチカ晶等の結晶形をとることができる。これら結晶形のうち、スメチカ晶は、ポリプロピレンを溶融状態から毎秒80℃以上の速度で冷却することで、非晶質と結晶質の中間体として生成させることができる。スメチカ晶は、結晶のような規則的構造を有する安定構造ではなく、微細な構造が寄り集まった準安定的な構造である。そのため、分子鎖間の相互作用が弱く、安定構造であるα晶等と比較して、加熱すると軟化しやすい性質を有する。
 第1の樹脂層の結晶構造は実施例に記載の方法により測定する。
The first resin layer preferably contains Smetica crystals.
Polypropylene is a crystalline resin and can take a crystalline form such as α crystal, β crystal, γ crystal, and Smetica crystal. Of these crystalline forms, smetica crystals can be produced as intermediates between amorphous and crystalline by cooling polypropylene from a molten state at a rate of 80 ° C. or higher per second. Smetica crystals are not stable structures having a regular structure like crystals, but metastable structures in which fine structures are gathered together. Therefore, the interaction between the molecular chains is weak, and it has a property of being easily softened when heated as compared with α crystals and the like having a stable structure.
The crystal structure of the first resin layer is measured by the method described in Examples.
 また、第1の樹脂層がスメチカ晶を有する場合、該第1の樹脂層中に直径1μm~10μmの球晶が存在し、該第1のシート中における前記球晶の体積分率が20%以下であると好ましい。球晶の体積分率は15%以下又は10%以下であってもよい。
 球晶の体積分率は実施例に記載の方法により測定する。
 一実施形態において、ポリプロピレンの球晶は、α晶によって構成され得る。
 スメチカ晶及び球晶についての説明は、第2の樹脂層にも適宜援用される。
When the first resin layer has spherulite crystals, spherulites having a diameter of 1 μm to 10 μm are present in the first resin layer, and the volume fraction of the spherulites in the first sheet is 20%. It is preferable that it is as follows. The volume fraction of the spherulite may be 15% or less or 10% or less.
The volume fraction of spherulite is measured by the method described in Examples.
In one embodiment, polypropylene spherulites may be composed of α-crystals.
The description of spherulite and spherulite is also appropriately incorporated into the second resin layer.
 上記のような結晶条件を満たすことによって、成形体の外観と成形性をさらに向上することができる。また、赤外線ヒーター等で積層体を加熱して附形した場合は、スメチカ晶由来の微細構造が維持されたままα晶に転移する。この転移により、成形による光沢の低下や透明性の低下が防止され、美麗な外観を維持したまま熱成形できる。また、この転移により、上述した造核剤を使用する場合と比較して、表面硬度や透明性がさらに向上する。 By satisfying the above crystal conditions, the appearance and moldability of the molded product can be further improved. Further, when the laminate is heated with an infrared heater or the like to form an attachment, the laminate is transferred to α crystals while maintaining the fine structure derived from Smetica crystals. This transition prevents a decrease in gloss and a decrease in transparency due to molding, and thermoforming can be performed while maintaining a beautiful appearance. In addition, this transition further improves the surface hardness and transparency as compared with the case where the above-mentioned nucleating agent is used.
 また、小角X線散乱解析法により散乱強度分布と長周期を算出することにより、積層体(加飾シート)が80℃/秒以上で冷却して得られたものか、そうでないかを判断することができる。即ち、上記解析により積層体(加飾シート)がスメチカ晶由来の微細構造を有しているか否かを判断することが可能である。
 測定は以下の条件で行う。
 X線発生装置はultraX 18HF(株式会社リガク製)を用い、散乱の検出にはイメージングプレートを使用する。
・光源波長:0.154nm
・電圧/電流:50kV/250mA
・照射時間:60分
・カメラ長:1.085m
・試料厚み:1.5~2.0mmになるように積層体を重ねる。また、製膜(MD)方向がそろうように積層体を重ねる。
Further, by calculating the scattering intensity distribution and the long period by the small-angle X-ray scattering analysis method, it is determined whether the laminated body (decorative sheet) is obtained by cooling at 80 ° C./sec or more, or not. be able to. That is, it is possible to determine whether or not the laminated body (decorative sheet) has a fine structure derived from Smetica crystals by the above analysis.
The measurement is performed under the following conditions.
An ultraX 18HF (manufactured by Rigaku Co., Ltd.) is used as an X-ray generator, and an imaging plate is used to detect scattering.
-Light source wavelength: 0.154 nm
・ Voltage / current: 50kV / 250mA
・ Irradiation time: 60 minutes ・ Camera length: 1.085m
-Stack the laminates so that the sample thickness is 1.5 to 2.0 mm. In addition, the laminated bodies are stacked so that the film forming (MD) directions are aligned.
 第1の樹脂層は、示差走査熱量(DSC)測定で得られる曲線(DSC曲線)において最大吸熱ピークの低温側に1J/g以上、好ましくは1.5J/g以上の発熱ピーク(「低温側発熱ピーク」ともいう。)を有することが好ましい。
 低温側発熱ピークの発熱量は、実施例に記載の方法によって測定する。
The first resin layer has an exothermic peak of 1 J / g or more, preferably 1.5 J / g or more on the low temperature side of the maximum endothermic peak in the curve (DSC curve) obtained by differential scanning calorimetry (DSC) measurement (“low temperature side”). It is preferable to have an exothermic peak (also referred to as).
The calorific value of the low temperature side exothermic peak is measured by the method described in Examples.
 第1の樹脂層において、ポリプロピレンXのアイソタクチックペンタッド分率は85~99モル%であることが好ましい。アイソタクチックペンタッド分率が85モル%以上であることによって、表面硬度に優れ、表面損傷が防止されることによって外観が保持され易くなる。
 アイソタクチックペンタッド分率とは、樹脂組成の分子鎖中のペンタッド単位(プロピレンモノマーが5個連続してアイソタクチック結合したもの)でのアイソタクチック分率である。この分率の測定法は、例えばマクロモレキュールズ(Macromolecules)第8巻(1975年)687頁に記載されており、13C-NMRにより測定できる。
 ポリプロピレンXのアイソタクチックペンタッド分率は、好ましくは90モル%以上である。
 アイソタクチックペンタッド分率は実施例に記載の方法で測定する。
In the first resin layer, the isotactic pentad fraction of polypropylene X is preferably 85-99 mol%. When the isotactic pentad fraction is 85 mol% or more, the surface hardness is excellent, and the appearance is easily maintained by preventing surface damage.
The isotactic pentad fraction is an isotactic fraction in a pentad unit (five consecutive isotactic bonds of five propylene monomers) in the molecular chain of the resin composition. A method for measuring this fraction is described in, for example, Macromolecules, Volume 8 (1975), p. 687, and can be measured by 13 C-NMR.
The isotactic pentad fraction of polypropylene X is preferably 90 mol% or more.
The isotactic pentad fraction is measured by the method described in Examples.
 第1の樹脂層には、ポリプロピレンXの他に他の成分を含めてもよく、他の成分としては、長鎖分岐構造を有しない1種又は複数種のポリプロピレン、その他の樹脂成分、添加剤等が挙げられる。
 第1の樹脂層において、ポリプロピレンX以外の他の成分の含有量は、例えば、100重量部のポリプロピレンXに対して、50質量部以下、40質量部以下、30質量部以下、20質量部以下又は10質量部以下であり得る。
The first resin layer may contain other components in addition to polypropylene X, and examples of the other components include one or more types of polypropylene having no long-chain branched structure, other resin components, and additives. And so on.
In the first resin layer, the content of components other than polypropylene X is, for example, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by weight of polypropylene X. Or it can be 10 parts by mass or less.
 長鎖分岐構造を有しないポリプロピレン(分岐指数が1であるポリプロピレン)としては、特に制限はなく、少なくともプロピレンに由来する構造単位を含む重合体である。具体的には、ホモポリプロピレン、プロピレンと他のオレフィン(エチレン、ブチレン、シクロオレフィン等)との共重合体が挙げられる。ポリプロピレンにポリエチレン(例えば直鎖状低密度ポリエチレン)等のポリオレフィンや共重合体が混合された混合物としてもよい。これらは、1種単独で、又は2種以上を組み合わせて用いてもよい。
 第1の樹脂層における長鎖分岐構造を有しないポリプロピレンの含有量は、ポリプロピレンX100質量部に対して、例えば、1質量部以上であり、また、例えば、40質量部以下である。
The polypropylene having no long-chain branched structure (polypropylene having a branching index of 1) is not particularly limited, and is a polymer containing at least a structural unit derived from propylene. Specific examples thereof include copolymers of homopolypropylene and propylene with other olefins (ethylene, butylene, cycloolefin, etc.). It may be a mixture in which a polyolefin such as polyethylene (for example, linear low-density polyethylene) or a copolymer is mixed with polypropylene. These may be used individually by 1 type or in combination of 2 or more type.
The content of polypropylene having no long-chain branched structure in the first resin layer is, for example, 1 part by mass or more and, for example, 40 parts by mass or less with respect to 100 parts by mass of polypropylene.
 その他の樹脂成分としては、例えば、エラストマー等が挙げられる。エラストマーとしては、例えば、オレフィン系エラストマー、スチレン系エラストマー、ポリ塩化ビニル系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等のような熱可塑性エラストマーが挙げられる。一実施形態において、熱可塑性エラストマーはオレフィン系エラストマーである。オレフィン系エラストマーとしては、例えばダウケミカル株式会社製「エンゲージ8200」等のような市販品を用いてもよい。
 第1の樹脂層におけるその他の樹脂成分の含有量は、ポリプロピレンX100質量部に対して、例えば、1質量部以上であり、また、例えば、10質量部以下である。
Examples of other resin components include elastomers and the like. Examples of the elastomer include thermoplastic elastomers such as olefin-based elastomers, styrene-based elastomers, polyvinyl chloride-based elastomers, urethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers. In one embodiment, the thermoplastic elastomer is an olefin-based elastomer. As the olefin-based elastomer, a commercially available product such as "Engage 8200" manufactured by Dow Chemical Co., Ltd. may be used.
The content of the other resin component in the first resin layer is, for example, 1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
 添加剤としては、例えば、帯電防止剤等が挙げられる。
 第1の樹脂層におけるその他の添加剤の含有量は、ポリプロピレンX100質量部に対して、例えば、0.1質量部以上であり、また、例えば、10質量部以下である。
Examples of the additive include an antistatic agent and the like.
The content of the other additive in the first resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
 第1の樹脂層は、ポリプロピレンXのみからなってもよいし、実質的にポリプロピレンXのみからなってもよい。後者の場合、第1の樹脂層は不可避不純物を含んでもよい。
 第1の樹脂層は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、又は100質量%が、
ポリプロピレンX、又は
ポリプロピレンX、並びに、上記の各任意成分から選択される1以上の成分
であってもよい。
The first resin layer may be made of polypropylene X only, or may be substantially made of polypropylene X only. In the latter case, the first resin layer may contain unavoidable impurities.
The first resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass,
It may be polypropylene X, polypropylene X, and one or more components selected from each of the above optional components.
 第1の樹脂層の厚さは、通常、30μm~180μmである。 The thickness of the first resin layer is usually 30 μm to 180 μm.
(第2の樹脂層)
 第2の樹脂層は、長鎖分岐構造を有する、130℃での結晶化速度が2.5min-1以下であるポリプロピレンXを含む。第2の樹脂層に含まれるポリプロピレンXについては、その結晶構造等も含めて、第1の樹脂層に含まれるポリプロピレンXについてした説明が援用される。第2の樹脂層に含まれるポリプロピレンXは、その結晶構造等も含めて、第1の樹脂層に含まれるポリプロピレンXと同一でもよいし、異なってもよい。
(Second resin layer)
The second resin layer contains polypropylene X having a long-chain branched structure and having a crystallization rate at 130 ° C. of 2.5 min- 1 or less. Regarding polypropylene X contained in the second resin layer, the description of polypropylene X contained in the first resin layer, including its crystal structure and the like, is incorporated. The polypropylene X contained in the second resin layer may be the same as or different from the polypropylene X contained in the first resin layer, including its crystal structure and the like.
 第2の樹脂層は、第1の樹脂層とは組成が異なる。ここで、「組成が異なる」とは、樹脂層に含まれる成分が相違する(例えば、1以上の成分が一方の層に含まれるが他方の成分に含まれない)ことであってもよいし、樹脂層に含まれる1以上の成分の量が相違することであってもよい。 The composition of the second resin layer is different from that of the first resin layer. Here, "different composition" may mean that the components contained in the resin layer are different (for example, one or more components are contained in one layer but not in the other component). , The amount of one or more components contained in the resin layer may be different.
 第2の樹脂層は、第1の樹脂層と同様に、1J/g以上、好ましくは1.5J/g以上の低温側発熱ピークを有することが好ましい。 Like the first resin layer, the second resin layer preferably has a low temperature side heat generation peak of 1 J / g or more, preferably 1.5 J / g or more.
 第2の樹脂層は、着色層であり得る。この場合、第2の樹脂層は、着色剤を含有することができる。一実施形態において、第2の樹脂層は、着色剤を含有すること以外は、第1の樹脂層と同様の成分を含有する。一実施形態において、第1の樹脂層は、通常、着色剤を含有しないが、第1の樹脂層が着色剤を含有する場合、第2の樹脂層は第1の樹脂層よりも高い含有量で着色剤を含有し得る。一実施形態において、第2の樹脂層におけるポリプロピレンXの含有量は、第1の樹脂層におけるポリプロピレンXの含有量よりも低い。
 着色剤は格別限定されず、例えば、有機顔料、無機顔料、染料などの一般的な着色剤が挙げられるが、これらに限定されない。
 第2の樹脂層における着色剤の含有量は、ポリプロピレンX100質量部に対して、例えば、0.1質量部以上であり、また、例えば、10質量部以下である。
The second resin layer can be a colored layer. In this case, the second resin layer can contain a colorant. In one embodiment, the second resin layer contains the same components as the first resin layer, except that it contains a colorant. In one embodiment, the first resin layer usually does not contain a colorant, but when the first resin layer contains a colorant, the second resin layer has a higher content than the first resin layer. May contain colorants. In one embodiment, the content of polypropylene X in the second resin layer is lower than the content of polypropylene X in the first resin layer.
Colorants are not particularly limited, and examples thereof include general colorants such as organic pigments, inorganic pigments, and dyes, but are not limited thereto.
The content of the colorant in the second resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
 また、第2の樹脂層は、金属箔粉、パール調顔料を含んでもよい。金属箔粉としては、例えば、金属薄膜層の両面を透明薄膜層で被覆したシートを破砕して得られる破砕非定型偏平片等が挙げられる。パール調顔料としては、例えば、マイカ(雲母)を主成分とした非定型扁平片等が挙げられる。 Further, the second resin layer may contain a metal foil powder and a pearl-like pigment. Examples of the metal leaf powder include crushed atypical flat pieces obtained by crushing a sheet in which both sides of the metal thin film layer are coated with the transparent thin film layer. Examples of the pearl pigment include atypical flat pieces containing mica (mica) as a main component.
 第2の樹脂層における金属箔粉又はパール調顔料の含有量は、ポリプロピレンX100質量部に対して、例えば、0.1質量部以上であり、また、例えば、10質量部以下である。 The content of the metal leaf powder or the pearl pigment in the second resin layer is, for example, 0.1 part by mass or more and, for example, 10 parts by mass or less with respect to 100 parts by mass of polypropylene X.
 さらに、第2の樹脂層は、第1の樹脂層について説明した他の成分を、例えば第1の樹脂層について説明した含有量の範囲で、含むことができる。なお、第1の樹脂層が、第2の樹脂層について説明した着色剤、金属箔粉及びパール調顔料を、例えば第2の樹脂層について説明した含有量の範囲で、含むこともできる。 Further, the second resin layer can contain other components described for the first resin layer, for example, within the range of the content described for the first resin layer. The first resin layer may contain the colorant, the metal leaf powder, and the pearl pigment described for the second resin layer, for example, within the range of the content described for the second resin layer.
 第2の樹脂層は、ポリプロピレンXのみからなってもよいし、実質的にポリプロピレンXのみからなってもよい。後者の場合、第2の樹脂層は不可避不純物を含んでもよい。
 第2の樹脂層は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、又は100質量%が、
ポリプロピレンX、又は
ポリプロピレンX、並びに、上記の各任意成分から選択される1以上の成分
であってもよい。
The second resin layer may be made of polypropylene X only, or may be substantially made of polypropylene X only. In the latter case, the second resin layer may contain unavoidable impurities.
The second resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass,
It may be polypropylene X, polypropylene X, and one or more components selected from each of the above optional components.
 第2の樹脂層の厚さは、通常、100μm~250μmである。 The thickness of the second resin layer is usually 100 μm to 250 μm.
(第3の樹脂層)
 第3の樹脂層は、融点125℃以下の接着剤を含む。
 融点125℃以下の接着剤は格別限定されず、例えば、オレフィン系接着剤、スチレン系接着剤、イソシアネート系接着剤、ウレタン系接着剤、アクリル系接着剤等が挙げられる。オレフィン系接着剤としては、例えば、融点125℃以下の低融点ポリプロピレン系樹脂等が挙げられる。
(Third resin layer)
The third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
Adhesives having a melting point of 125 ° C. or lower are not particularly limited, and examples thereof include olefin-based adhesives, styrene-based adhesives, isocyanate-based adhesives, urethane-based adhesives, and acrylic-based adhesives. Examples of the olefin adhesive include a low melting point polypropylene resin having a melting point of 125 ° C. or lower.
 第3の樹脂層は、接着層であり得る。この場合、第3の樹脂層は、上述した融点125℃以下の接着剤(「接着成分」ともいう。)を含むことによって、125℃以下の温度(かつ融点以上の温度)で、任意の被着体に対する接着性を発揮し得る。 The third resin layer can be an adhesive layer. In this case, the third resin layer contains the above-mentioned adhesive having a melting point of 125 ° C. or lower (also referred to as “adhesive component”), so that the third resin layer has an arbitrary coating at a temperature of 125 ° C. or lower (and a temperature of the melting point or higher). It can exhibit adhesiveness to the body.
 一実施形態において、第3の樹脂層は、積層体を被着体に接着するために用いられる。この場合、被着体の材質は格別限定されず、例えば樹脂等が挙げられる。樹脂としては、例えば、ポリプロピレンやABS(アクリロニトリル-ブタジエン-スチレン共重合体)が挙げられる。特に被着体がポリプロピレン系樹脂製である場合は、第3の樹脂層が融点125℃以下のオレフィン系接着剤を含むことによって、密着強度が高くなるため好ましい。 In one embodiment, the third resin layer is used to bond the laminate to the adherend. In this case, the material of the adherend is not particularly limited, and examples thereof include resin and the like. Examples of the resin include polypropylene and ABS (acrylonitrile-butadiene-styrene copolymer). In particular, when the adherend is made of a polypropylene-based resin, it is preferable that the third resin layer contains an olefin-based adhesive having a melting point of 125 ° C. or lower because the adhesion strength is increased.
 積層体を第3の樹脂層によって被着体に接着した場合、第3の樹脂層と被着体との剥離、及び、第3の樹脂層と第2の樹脂層との剥離が実用上発生しないことが好ましい。具体的には、積層体と被着体との180°剥離試験における剥離強度、又は、該180°剥離試験において積層体が破断する破断強度が、18N/15mm以上であることが好ましい。積層体と被着体の180°剥離試験は、実施例に記載の方法により行う。 When the laminate is adhered to the adherend by the third resin layer, peeling between the third resin layer and the adherend and peeling between the third resin layer and the second resin layer occur practically. It is preferable not to do so. Specifically, it is preferable that the peel strength of the laminate and the adherend in the 180 ° peel test or the breaking strength at which the laminate breaks in the 180 ° peel test is 18 N / 15 mm or more. The 180 ° peeling test of the laminate and the adherend is performed by the method described in the examples.
 第3の樹脂層に含まれる接着剤の融点は、125℃以下であり、例えば、120℃以下、118℃以下、115℃以下、112℃以下、110℃以下、105℃以下、103℃以下又は100℃以下であり得る。下限は格別限定されず、例えば、60℃以上であり得る。 The melting point of the adhesive contained in the third resin layer is 125 ° C. or lower, for example, 120 ° C. or lower, 118 ° C. or lower, 115 ° C. or lower, 112 ° C. or lower, 110 ° C. or lower, 105 ° C. or lower, 103 ° C. or lower, or It can be below 100 ° C. The lower limit is not particularly limited and may be, for example, 60 ° C. or higher.
 一実施形態において、第3の樹脂層に含まれる接着剤は、熱可塑性樹脂である。
 一実施形態において、第3の樹脂層に含まれる接着剤は、ホットメルト接着剤である。
 一実施形態において、第3の樹脂層に含まれる接着剤は、常温(25℃)においてタック性(粘着性)を有する粘着剤ではない。なお、粘着剤は、表面のタック性を利用して圧力をかけて被着体に付着するものであり、固化により剥離抵抗力を発揮する接着剤とは区別される。
 一実施形態において、第3の樹脂層に含まれる接着剤のメルトフローレート(MFR)は、1.0~10.0g/10min(2.16kg)である。
 MFRは、実施例に記載の方法によって測定する。
In one embodiment, the adhesive contained in the third resin layer is a thermoplastic resin.
In one embodiment, the adhesive contained in the third resin layer is a hot melt adhesive.
In one embodiment, the adhesive contained in the third resin layer is not a pressure-sensitive adhesive having tackiness (adhesiveness) at room temperature (25 ° C.). The adhesive is one that adheres to the adherend by applying pressure by utilizing the tackiness of the surface, and is distinguished from the adhesive that exhibits peeling resistance by solidification.
In one embodiment, the melt flow rate (MFR) of the adhesive contained in the third resin layer is 1.0 to 10.0 g / 10 min (2.16 kg).
MFR is measured by the method described in the examples.
 第3の樹脂層に含まれる融点125℃以下の接着剤の融解エンタルピー(ΔH)は、80j/g以下が好ましい。ΔHが80j/g以下であると、接着原料を融解させるために必要な熱量が小さいため、比較的温度上昇が小さい(発生熱量が小さい)被覆成形等の成形方法においても優れた密着強度を発揮でき好ましい。接着剤の溶融エンタルピー(ΔH)は、例えば、70j/g以下、60j/g以下、50j/g以下、40j/g以下、30j/g以下であり得る。下限は格別限定されず、例えば5j/g以上であり得る。
 接着剤の溶融エンタルピー(ΔH)は、実施例に記載の方法により測定する。
The melting enthalpy (ΔH) of the adhesive having a melting point of 125 ° C. or lower contained in the third resin layer is preferably 80 j / g or less. When ΔH is 80 j / g or less, the amount of heat required to melt the adhesive raw material is small, so that excellent adhesion strength is exhibited even in a molding method such as coating molding in which the temperature rise is relatively small (the amount of heat generated is small). It is preferable. The melt enthalpy (ΔH) of the adhesive can be, for example, 70 j / g or less, 60 j / g or less, 50 j / g or less, 40 j / g or less, 30 j / g or less. The lower limit is not particularly limited and may be, for example, 5 j / g or more.
The melt enthalpy (ΔH) of the adhesive is measured by the method described in Examples.
 接着層には、融点125℃以下の接着剤以外の他の成分を含めてもよい。他の成分としては、例えば、石油樹脂等のような粘着付与剤や、可塑剤等が挙げられる。 The adhesive layer may contain components other than the adhesive having a melting point of 125 ° C. or lower. Examples of other components include a tackifier such as petroleum resin and a plasticizer.
 第3の樹脂層は、融点125℃以下の接着剤のみからなってもよいし、実質的に融点125℃以下の接着剤のみからなってもよい。後者の場合、第3の樹脂層は不可避不純物を含んでもよい。
 第3の樹脂層は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、又は100質量%が、
融点125℃以下の接着剤、又は
融点125℃以下の接着剤、並びに、上記の各任意成分から選択される1以上の成分
であってもよい。
The third resin layer may consist only of an adhesive having a melting point of 125 ° C. or lower, or may consist of only an adhesive having a melting point of 125 ° C. or lower. In the latter case, the third resin layer may contain unavoidable impurities.
The third resin layer is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99. .9% by mass or more, or 100% by mass,
An adhesive having a melting point of 125 ° C. or lower, an adhesive having a melting point of 125 ° C. or lower, and one or more components selected from each of the above optional components may be used.
 第3の樹脂層の厚さは、通常、10μm~100μmである。 The thickness of the third resin layer is usually 10 μm to 100 μm.
(易接着層)
 一実施形態において、積層体は、上述した第1~3の樹脂層の他に、さらに易接着層を含む。易接着層は、例えば、第1の樹脂層上に当該易接着層を介して他の層(例えばハードコート層、印刷層、金属層等であり得る)を積層する等の目的のために設けることができる。易接着層は、例えば、第1の樹脂層における第2の樹脂層の反対側の面上に設けることができる。
(Easy adhesive layer)
In one embodiment, the laminate further includes an easy-adhesion layer in addition to the first to third resin layers described above. The easy-adhesion layer is provided for the purpose of laminating another layer (for example, a hard coat layer, a printing layer, a metal layer, etc.) on the first resin layer via the easy-adhesion layer. be able to. The easy-adhesion layer can be provided, for example, on the surface of the first resin layer opposite to the second resin layer.
 易接着層は、ウレタン、アクリル、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含むことが好ましい。
 易接着層の樹脂は、第1~3の層を含む積層体(本体)や後述の印刷層との密着性や成形性に鑑みて、ウレタン樹脂が好ましい。これにより、インク密着性に優れた積層体が得られる。
 ウレタン樹脂は、ジイソシアネート、高分子量ポリオール及び鎖延長剤の反応物が好ましい。高分子量ポリオールとして、ポリエーテルポリオール、ポリカーボネートポリオール等が挙げられる。これにより、積層体が複雑な非平面状に成形される場合でも、積層体に易接着層が追従して良好な成形が実現される。また、後述の印刷層が形成される場合でも、印刷層のひび割れや剥離を防ぐことができる。
The easy-adhesion layer preferably contains one or more resins selected from the group consisting of urethane, acrylic, polyolefin and polyester.
The resin of the easy-adhesion layer is preferably a urethane resin in view of adhesion to a laminate (main body) including the first to third layers and a printing layer described later and moldability. As a result, a laminate having excellent ink adhesion can be obtained.
The urethane resin is preferably a reaction product of diisocyanate, high molecular weight polyol and chain extender. Examples of the high molecular weight polyol include a polyether polyol and a polycarbonate polyol. As a result, even when the laminated body is formed into a complicated non-planar shape, the easy-adhesive layer follows the laminated body and good molding is realized. Further, even when the print layer described later is formed, cracks and peeling of the print layer can be prevented.
 易接着層の厚さは、0.01μm以上3μm以下が好ましく、より好ましくは0.03μm以上0.5μm以下である。易接着層の厚さが0.01μmより薄い場合、十分なインキ密着性を得ることができないおそれがある。一方、3μmより厚い場合、べた付きが生じてブロッキングの原因となる虞がある。 The thickness of the easy-adhesion layer is preferably 0.01 μm or more and 3 μm or less, and more preferably 0.03 μm or more and 0.5 μm or less. If the thickness of the easy-adhesion layer is thinner than 0.01 μm, sufficient ink adhesion may not be obtained. On the other hand, if it is thicker than 3 μm, stickiness may occur and cause blocking.
 易接着層の引張破断伸度は、150%以上900%以下が好ましく、より好ましくは200%以上850%以下、特に好ましくは300%750%以下である。
 易接着層の引張破断伸度が150%未満である場合、熱成形時に積層体の伸びに易接着層が追従することができず、クラックが入り、印刷層や金属層にひび割れが生じたり、剥離したりするおそれがある。一方、引張破断伸度が900%を超える場合、耐水性が悪化するおそれがある。
 引張破断伸度は、例えばJIS K7311に準拠した方法で、厚み150μmの試料にて測定することができる。
The tensile elongation at break of the easy-adhesion layer is preferably 150% or more and 900% or less, more preferably 200% or more and 850% or less, and particularly preferably 300% 750% or less.
If the tensile elongation at break of the easy-adhesive layer is less than 150%, the easy-adhesive layer cannot follow the elongation of the laminate during thermoforming, and cracks occur, causing cracks in the printed layer and metal layer. There is a risk of peeling. On the other hand, if the tensile elongation at break exceeds 900%, the water resistance may deteriorate.
The tensile elongation at break can be measured with a sample having a thickness of 150 μm, for example, by a method according to JIS K7311.
 易接着層の軟化温度は、50℃以上180℃以下が好ましく、より好ましくは90℃以上170℃以下、特に好ましくは100℃以上165℃以下である。
 易接着層の軟化温度が50℃以上である場合、常温での易接着層の強度に優れ、印刷層や金属層のひび割れが生じたり剥離したりすることが防止される。一方、180℃以下である場合、熱成形時に十分軟化し、易接着層にクラックが入りにくく、後述する印刷層や金属層にひび割れが生じたり剥離したりすることが防止される。軟化温度は、例えば、高化式フローテスターによる流動開始温度を測定することで求めることができる。
The softening temperature of the easy-adhesion layer is preferably 50 ° C. or higher and 180 ° C. or lower, more preferably 90 ° C. or higher and 170 ° C. or lower, and particularly preferably 100 ° C. or higher and 165 ° C. or lower.
When the softening temperature of the easy-adhesion layer is 50 ° C. or higher, the strength of the easy-adhesion layer at room temperature is excellent, and cracks or peeling of the printing layer or the metal layer are prevented. On the other hand, when the temperature is 180 ° C. or lower, the temperature is sufficiently softened during thermoforming, the easy-adhesion layer is less likely to crack, and the printing layer and the metal layer, which will be described later, are prevented from cracking or peeling. The softening temperature can be determined, for example, by measuring the flow start temperature with an enhanced flow tester.
(易接着層、印刷層)
 一実施形態において、積層体は、易接着層における第1の樹脂層と反対側の面に積層された印刷層(印刷物ともいう。)をさらに含む。印刷層の形状としては、特に制限されず、ベタ状、カーボン調、木目調等の様々な形状が挙げられる。
 印刷層の厚さは、通常、1~50μmである。
(Easy adhesive layer, printing layer)
In one embodiment, the laminate further includes a printed layer (also referred to as a printed matter) laminated on the surface of the easy-adhesive layer opposite to the first resin layer. The shape of the print layer is not particularly limited, and various shapes such as solid, carbon, and wood grain can be mentioned.
The thickness of the print layer is usually 1 to 50 μm.
(易接着層、金属層)
 一実施形態において、積層体は、易接着層における第1の樹脂層と反対側の面に積層された金属層をさらに含む。
 金属層は、金属又は金属酸化物を含む層である。金属又は金属酸化物の金属としては、積層体に金属調の意匠を付与できる金属であれば特に限定されないが、例えば、スズ、インジウム、クロム、アルミニウム、ニッケル、銅、銀、金、白金、亜鉛、及びこれらのうち少なくとも1種を含む合金等が挙げられる。これらは、1種単独でも、2種以上を組み合わせてもよい。
 これらの中でも、伸展性の観点から、好ましくはスズ、インジウム及びアルミニウムが挙げられる。これにより、積層体を三次元成形した際にクラックが発生しにくくなる。
(Easy adhesive layer, metal layer)
In one embodiment, the laminate further comprises a metal layer laminated on the surface of the easy-adhesive layer opposite to the first resin layer.
The metal layer is a layer containing a metal or a metal oxide. The metal of the metal or the metal oxide is not particularly limited as long as it is a metal that can give a metallic design to the laminate, and for example, tin, indium, chromium, aluminum, nickel, copper, silver, gold, platinum, and zinc. , And alloys containing at least one of these. These may be used alone or in combination of two or more.
Among these, tin, indium and aluminum are preferably mentioned from the viewpoint of extensibility. As a result, cracks are less likely to occur when the laminated body is three-dimensionally molded.
(積層体の製造方法)
 積層体の製造方法は特に制限されないが、例えば、Tダイから層状に共押し出しされた各層形成用の樹脂組成物を、80℃/秒以上の冷却速度で急冷することによって好適に得られる。以下に図1を参照して詳しく説明する。
(Manufacturing method of laminated body)
The method for producing the laminate is not particularly limited, but it can be preferably obtained by, for example, quenching the resin composition for forming each layer co-extruded from the T-die into layers at a cooling rate of 80 ° C./sec or more. It will be described in detail below with reference to FIG.
 図1は、本発明の積層体を製造するための製造装置の一例の概略構成図である。図1に示す製造装置は、押出機のTダイ12、第1冷却ロール13、第2冷却ロール14、第3冷却ロール15、第4冷却ロール16、金属製エンドレスベルト17を備える。
 このように構成された製造装置を用いた急冷による積層体11の製造方法の一実施形態を以下に説明する。
 押出機のTダイ12より層状に共押し出しされた各層(第1~第3の樹脂層)形成用の樹脂組成物を、第1冷却ロール13上で金属製エンドレスベルト17と、第4冷却ロール16との間に挟み込む。この状態で、溶融樹脂を第1、第4冷却ロール13、16で圧接するとともに冷却する。
FIG. 1 is a schematic configuration diagram of an example of a manufacturing apparatus for manufacturing the laminate of the present invention. The manufacturing apparatus shown in FIG. 1 includes a T-die 12 of an extruder, a first cooling roll 13, a second cooling roll 14, a third cooling roll 15, a fourth cooling roll 16, and a metal endless belt 17.
An embodiment of a method for manufacturing the laminated body 11 by quenching using the manufacturing apparatus configured as described above will be described below.
The resin composition for forming each layer (first to third resin layers) extruded in layers from the T-die 12 of the extruder is placed on the first cooling roll 13 with the metal endless belt 17 and the fourth cooling roll. It is sandwiched between 16 and 16. In this state, the molten resin is pressure-welded and cooled by the first and fourth cooling rolls 13 and 16.
 Tダイ12から押し出される溶融樹脂の温度は、例えば、200℃以上であり、また、例えば、350℃以下である。
 一方、押し出された溶融樹脂と直接接触し、これを冷却する金属製エンドレスベルト17及び第4冷却ロール16の表面温度は、所定温度を保持するように制御されている。所定温度は、通常、露点以上であり、例えば、10℃以上であり、また、例えば、40℃以下である。他の冷却ロール13、14、15についても適宜温度制御を行うことができる。
 これにより、溶融樹脂の冷却速度は、例えば、80℃/秒以上、90℃/秒以上、又は150~300℃/秒とすることができ、これにより、押し出された溶融樹脂は急冷される。このような急冷を行うことで結晶構造を上述のスメチカ晶とすることができる。
The temperature of the molten resin extruded from the T-die 12 is, for example, 200 ° C. or higher, and 350 ° C. or lower, for example.
On the other hand, the surface temperatures of the metal endless belt 17 and the fourth cooling roll 16 that come into direct contact with the extruded molten resin and cool the extruded molten resin are controlled to maintain a predetermined temperature. The predetermined temperature is usually above the dew point, for example, 10 ° C. or higher, and for example, 40 ° C. or lower. The temperature of the other cooling rolls 13, 14 and 15 can be appropriately controlled.
Thereby, the cooling rate of the molten resin can be set to, for example, 80 ° C./sec or more, 90 ° C./sec or more, or 150 to 300 ° C./sec or more, whereby the extruded molten resin is rapidly cooled. By performing such quenching, the crystal structure can be made into the above-mentioned Smetika crystal.
 かかる急冷の間、第1冷却ロール13及び第4冷却ロール16間の押圧力で弾性材22が圧縮されて弾性変形する。この弾性材22が弾性変形している部分、即ち、第1冷却ロール13の中心角度θ1に対応する円弧部分で、急冷された積層体11は各冷却ロール13、16により面状圧接されている。この際の面圧は、通常0.1MPa以上20MPa以下である。 During the rapid cooling, the elastic material 22 is compressed and elastically deformed by the pressing force between the first cooling roll 13 and the fourth cooling roll 16. The rapidly cooled laminate 11 is planarly pressure-welded by the cooling rolls 13 and 16 at the portion where the elastic material 22 is elastically deformed, that is, the arc portion corresponding to the central angle θ1 of the first cooling roll 13. .. The surface pressure at this time is usually 0.1 MPa or more and 20 MPa or less.
 上述のように圧接され、第4冷却ロール16及び金属製エンドレスベルト17間に挟まれた積層体11は、続いて、第4冷却ロール16の略下半周に対応する円弧部分で金属製エンドレスベルト17と第4冷却ロール16とに挟まれて面状圧接される。この際の面圧は、通常0.01MPa以上0.5MPa以下である。 The laminate 11 which is pressure-welded as described above and sandwiched between the fourth cooling roll 16 and the metal endless belt 17 is subsequently subjected to the metal endless belt at an arc portion corresponding to substantially the lower half circumference of the fourth cooling roll 16. It is sandwiched between the 17 and the 4th cooling roll 16 and subjected to planar pressure contact. The surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
 このように第4冷却ロール16で面状圧接及び冷却された後、金属製エンドレスベルト17に密着した積層体は、金属製エンドレスベルト17の回動とともに第2冷却ロール14上に移動される。ここで、剥離ロール21によりガイドされて第2冷却ロール14側に押圧された積層体11は、前述同様、第2冷却ロール14の略上半周に対応する円弧部分で金属製エンドレスベルト17により面状圧接され、再び30℃以下の温度で冷却される。この際の面圧は、通常0.01MPa以上0.5MPa以下である。 After surface pressure welding and cooling with the fourth cooling roll 16 in this way, the laminate in close contact with the metal endless belt 17 is moved onto the second cooling roll 14 with the rotation of the metal endless belt 17. Here, the laminated body 11 guided by the peeling roll 21 and pressed toward the second cooling roll 14 has a surface formed by a metal endless belt 17 at an arc portion corresponding to substantially the upper half circumference of the second cooling roll 14, as described above. It is pressure-welded and cooled again at a temperature of 30 ° C. or lower. The surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
 第2冷却ロール14上で冷却された積層体11は、巻き取りロール(図示省略)により、所定の速度で巻き取られる。 The laminate 11 cooled on the second cooling roll 14 is wound at a predetermined speed by a winding roll (not shown).
 以上の説明では、第1~第3の樹脂層までを共押出し製膜により形成する場合について示したが、これに限定されない。例えば、別途成膜された第3の樹脂層を、第2の樹脂層上に、ドライラミネートや熱ラミネートなどの既知の貼り合せ方法にて形成してもよい。また、第2の樹脂層上に、第3の樹脂層を、グラビア印刷やスクリーン印刷などの印刷による方法で形成してもよいし、ロールコートなどのコーティングにより形成してもよい。易接着層を含む積層体を製造する方法は格別限定されず、例えば、第1~第3の樹脂層及び易接着層を共押出しにより形成してもよいし、第1~3の樹脂層を含む積層体(本体)上に塗布法等の任意の成膜方法によって易接着層を形成してもよいし、第1~3の樹脂層を含む積層体(本体)上に別途成膜された易接着層を積層してもよい。 In the above description, the case where the first to third resin layers are formed by coextrusion film formation is shown, but the present invention is not limited to this. For example, a separately formed third resin layer may be formed on the second resin layer by a known laminating method such as dry laminating or thermal laminating. Further, the third resin layer may be formed on the second resin layer by a printing method such as gravure printing or screen printing, or may be formed by coating such as roll coating. The method for producing the laminate including the easy-adhesion layer is not particularly limited, and for example, the first to third resin layers and the easy-adhesion layer may be formed by coextrusion, or the first to third resin layers may be formed. An easy-adhesive layer may be formed on the laminated body (main body) containing the resin layer by an arbitrary film forming method such as a coating method, or separately formed on the laminated body (main body) including the first to third resin layers. The easy-adhesion layer may be laminated.
(成形体及び成形体の製造方法)
 本発明の成形体は、本発明に係る積層体を用いて製造されたものである。成形体を得るための成形方法は格別限定されず、例えば、インモールド成形、インサート成形、被覆成形、真空圧空成形等が挙げられる。本発明に係る積層体は、本発明の効果をより良好に発揮する観点で、好ましくはインサート成形及び被覆成形における被覆材、より好ましくは被覆成形における被覆材として好適に用いられる。
(Molded body and manufacturing method of molded body)
The molded product of the present invention is manufactured by using the laminated body according to the present invention. The molding method for obtaining a molded product is not particularly limited, and examples thereof include in-mold molding, insert molding, coating molding, and vacuum compressed air molding. The laminate according to the present invention is preferably used as a coating material in insert molding and coating molding, and more preferably as a coating material in coating molding, from the viewpoint of better exerting the effects of the present invention.
(インモールド成形)
 インモールド成形は、金型内に積層体を設置して、金型内に供給される成形用樹脂の圧力で所望の形状に成形して成形体を得る方法である。
 インモールド成形による成形体の製造方法は、積層体を金型に装着すること、及び、金型に成形用樹脂を供給して、積層体と成形用樹脂とを一体化することを含むことが好ましい。
(In-mold molding)
In-mold molding is a method in which a laminate is placed in a mold and molded into a desired shape by the pressure of a molding resin supplied into the mold to obtain a molded product.
The method for producing a molded product by in-mold molding includes mounting the laminate on a mold and supplying a molding resin to the mold to integrate the laminate and the molding resin. preferable.
(インサート成形)
 インサート成形による成形体の製造方法は、積層体を金型に合致するように附形(予備附形)すること、附形された積層体を金型に装着すること、及び、金型に成形用樹脂を供給して、積層体と成形用樹脂とを一体化することを含むことが好ましい。インサート成形によって、成形体により複雑な形状を付与できる。
 予備附形は、例えば、真空成形、圧空成形、真空圧空成形、プレス成形、プラグアシスト成形等によって行うことが好ましい。
(Insert molding)
The manufacturing method of the molded body by insert molding is to attach the laminated body to match the mold (preliminary molding), to attach the attached laminated body to the mold, and to mold the laminated body into the mold. It is preferable to supply the resin for molding and to integrate the laminate and the resin for molding. By insert molding, a more complicated shape can be given to the molded body.
The preliminary forming is preferably performed by, for example, vacuum forming, compressed air forming, vacuum forming, press forming, plug assist forming or the like.
 インモールド成形及びインサート成形等に用いられる成形用樹脂は、成形可能な熱可塑性樹脂であることが好ましい。そのような熱可塑性樹脂として、具体的には、例えば、ポリプロピレン、ポリエチレン、ポリカーボネート、アクリロニトリル-スチレン-ブタジエン共重合体、アクリル重合体等が例示できるが、この限りではない。熱可塑性樹脂には、ファイバーやタルク等の無機フィラーを添加してもよい。
 成形用樹脂の供給は、射出で行うことが好ましく、圧力5MPa以上120MPa以下での射出が好ましい。
 金型温度は20℃以上90℃以下であることが好ましい。
The molding resin used for in-mold molding, insert molding and the like is preferably a moldable thermoplastic resin. Specific examples of such a thermoplastic resin include, but are not limited to, polypropylene, polyethylene, polycarbonate, acrylonitrile-styrene-butadiene copolymer, acrylic polymer and the like. Inorganic fillers such as fiber and talc may be added to the thermoplastic resin.
The molding resin is preferably supplied by injection, preferably at a pressure of 5 MPa or more and 120 MPa or less.
The mold temperature is preferably 20 ° C. or higher and 90 ° C. or lower.
(被覆成形)
 被覆成形による成形体の製造方法は、チャンバーボックス内に芯材を配設すること、チャンバーボックス内における芯材の上方に積層体を配置すること、チャンバーボックス内を減圧すること、積層体を加熱軟化させること、及び、加熱軟化させた積層体を芯材に押圧して、芯材を積層体によって被覆することを含むことが好ましい。
 このとき、加熱軟化後、芯材の上面に、積層体を接触させることが好ましい。
 押圧は、チャンバーボックス内において、積層体の、芯材と接する側を減圧したまま、積層体の、芯材の反対側を加圧することが好ましい。
 芯材は、凸状でも凹状であってもよく、例えば三次元曲面を有する樹脂、金属、セラミック等が挙げられる。樹脂としては、成形用樹脂として説明したものと同様のものが挙げられる。
(Coating molding)
The method of manufacturing the molded body by coating molding is to dispose the core material in the chamber box, arrange the laminate above the core material in the chamber box, reduce the pressure in the chamber box, and heat the laminate. It is preferable to include softening and pressing the heat-softened laminate against the core material to cover the core material with the laminate.
At this time, it is preferable to bring the laminate into contact with the upper surface of the core material after heat softening.
For pressing, it is preferable to pressurize the opposite side of the core material of the laminate while reducing the pressure on the side of the laminate in contact with the core material in the chamber box.
The core material may be convex or concave, and examples thereof include resins, metals, and ceramics having a three-dimensional curved surface. Examples of the resin include those similar to those described as the molding resin.
 被覆成形に用いるチャンバーボックスは、例えば、互いに分離可能な、上下2つの成型室(上成型室及び下成型室)を備えるものが好適である。以下に、そのようなチャンバーボックスを用いた被覆成形の一例を説明する。
 まず、下成型室内のテーブル上へ芯材を載せ、セットする。被成型物である積層体を下成型室上面にクランプで固定する。この際、上・下成型室内は大気圧である。
 次に上成型室を降下させ、上・下成型室を接合させ、チャンバーボックス内を閉塞状態にする。上・下成型室内の両方を大気圧状態から、真空タンクによって真空吸引状態とする。
 上・下成型室内を真空吸引状態にした後、ヒーターを点けて積層体の加熱を行なう。
 次に、上・下成型室内は真空状態のまま下成型室内のテーブルを上昇させる。
 次に、上成型室内の真空を開放し大気圧を入れることによって、被成型物である積層体は芯材へ押し付けられてオーバーレイ(成型)される。
 なお、上成型室内に圧縮空気を供給することで、より大きな力で積層体を芯材へ密着させることも可能である。オーバーレイが完了した後、ヒーターを消灯し、下成型室内の真空も開放して大気圧状態へ戻し、上成型室を上昇させ、積層体によって被覆された芯材(製品)を取り出すことができる。
The chamber box used for coating molding is preferably provided with, for example, two upper and lower molding chambers (upper molding chamber and lower molding chamber) that can be separated from each other. An example of coating molding using such a chamber box will be described below.
First, the core material is placed on the table in the lower molding chamber and set. The laminate, which is the object to be molded, is fixed to the upper surface of the lower molding chamber with a clamp. At this time, the pressure inside the upper and lower molding chambers is atmospheric pressure.
Next, the upper molding chamber is lowered, the upper and lower molding chambers are joined, and the inside of the chamber box is closed. Both the upper and lower molding chambers are changed from the atmospheric pressure state to the vacuum suction state by the vacuum tank.
After the upper and lower molding chambers are in a vacuum suction state, the heater is turned on to heat the laminate.
Next, the table in the lower molding chamber is raised while keeping the vacuum state in the upper and lower molding chambers.
Next, by releasing the vacuum in the upper molding chamber and applying atmospheric pressure, the laminate to be molded is pressed against the core material and overlaid (molded).
By supplying compressed air to the upper molding chamber, it is possible to bring the laminate into close contact with the core material with a larger force. After the overlay is completed, the heater can be turned off, the vacuum in the lower molding chamber can be released to return to the atmospheric pressure state, the upper molding chamber can be raised, and the core material (product) covered with the laminate can be taken out.
(真空圧空成形)
 真空圧空成形による成形体の製造方法は、積層体を加熱軟化させること、及び、加熱軟化させた積層体を、空気圧により所定の金型形状に附形することを含むことが好ましい。
(Vacuum compressed air molding)
The method for producing a molded product by vacuum pressure air molding preferably includes heating and softening the laminate and shaping the heat-softened laminate into a predetermined mold shape by air pressure.
 以上の説明では、第1の樹脂層がクリア層であり、第2の樹脂層が着色層であり、第3の樹脂層が接着層である場合について説明したが、これに限定されない。積層体の目的、用途に応じて、第1~第3の樹脂層はそれぞれ任意の機能を有し得る。 In the above description, the case where the first resin layer is a clear layer, the second resin layer is a colored layer, and the third resin layer is an adhesive layer has been described, but the present invention is not limited to this. The first to third resin layers may each have an arbitrary function depending on the purpose and application of the laminate.
 以下に本発明の実施例について説明するが、本発明はこれら実施例により限定されない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例1
(1)実施例及び比較例で用いた材料
(ポリプロピレン系樹脂)
・PP-1:日本ポリプロ株式会社製「FTX0983」(長鎖分岐構造を有するホモポリプロピレン、MFR:6g/10分、分岐指数0.96、溶融張力5.4g)
・PP-2:ポリプロピレンPP-1よりもアイソタクチックペンタッド分率が低いポリプロピレン、MFR:7.3g/10分、分岐指数0.96、溶融張力5.0g)
・PP-3:株式会社プライムポリマー製「プライムポリプロF133A」(長鎖分岐構造を有しないホモポリプロピレン、MFR:2.8g/10分)
(造核剤)
・造核剤-1:理研ビタミン株式会社製「リケマスターFC-1」(ソルビトール系造核剤)
(着色剤)
・黒色マスターバッチ(MB):東京インキ株式会社製「PPM 91291 BLACK AL#315」(MFR:4.0g/10分、ベース樹脂:ホモポリプロピレン、顔料:カーボンブラック)
(接着剤)
・ホットメルト-1:日本ポリプロ株式会社製の低融点オレフィン系接着剤(MFR:6g/10分、融点(Tm):118℃)
・ホットメルト-2:東洋アドレ株式会社製「トヨメルトER-6009D」(オレフィン系接着樹脂、MFR:6g/10分、融点(Tm):98℃)
・ホットメルト-3:日本ポリプロ株式会社製の低融点オレフィン系接着剤(MFR:6g/10分、融点(Tm):127℃)
Example 1
(1) Material used in Examples and Comparative Examples (Polypropylene resin)
PP-1: "FTX0983" manufactured by Japan Polypropylene Corporation (homopolypropylene having a long-chain branched structure, MFR: 6 g / 10 minutes, branching index 0.96, melt tension 5.4 g)
-PP-2: Polypropylene Polypropylene with a lower isotactic pentad fraction than PP-1, MFR: 7.3 g / 10 minutes, branching index 0.96, melt tension 5.0 g)
-PP-3: "Prime Polypro F133A" manufactured by Prime Polymer Co., Ltd. (Homopolypropylene without long-chain branched structure, MFR: 2.8 g / 10 minutes)
(Nucleating agent)
-Nucleating agent-1: "Rikemaster FC-1" manufactured by RIKEN Vitamin Co., Ltd. (sorbitol-based nucleating agent)
(Colorant)
-Black masterbatch (MB): "PPM 91291 BLACK AL # 315" manufactured by Tokyo Ink Co., Ltd. (MFR: 4.0 g / 10 minutes, base resin: homopolypropylene, pigment: carbon black)
(adhesive)
-Hot melt-1: Low melting point olefin adhesive manufactured by Japan Polypropylene Corporation (MFR: 6 g / 10 minutes, melting point (Tm): 118 ° C)
-Hot melt-2: "Toyomelt ER-6009D" manufactured by Toyo Adre Co., Ltd. (olefin adhesive resin, MFR: 6 g / 10 minutes, melting point (Tm): 98 ° C)
-Hot melt-3: Low melting point olefin adhesive manufactured by Japan Polypropylene Corporation (MFR: 6 g / 10 minutes, melting point (Tm): 127 ° C)
(2)MFR
 上記(1)に示した樹脂のMFRは、JIS K7210に準拠して、230℃、2.16kg荷重で測定した値である。
(2) MFR
The MFR of the resin shown in (1) above is a value measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
(3)分岐指数g’
 分岐指数g’は、光散乱計と粘度計を検出器に備えたGPC(ゲル浸透クロマトグラフィー測定装置)を使用することによって、絶対分子量Mabsの関数として測定した。具体的には、下記測定方法及び条件により測定した。
(測定条件)
・GPC:Alliance GPCV2000(Waters社製)
・検出器:接続順に記載
 多角度レーザー光散乱検出器(MALS):DAWN-E(Wyatt Technology社製)
 示差屈折計(RI):GPC付属
 粘度検出器(Viscometer):GPC付属
・移動相溶媒:1,2,4-トリクロロベンゼン(BASFジャパン株式会社製「Irganox1076」を0.5mg/mLの濃度で添加)
・移動相流量:1mL/分
・カラム:東ソー株式会社製 GMHHR-H(S) HTを2本連結
・試料注入部温度:140℃
・カラム温度:140℃
・検出器温度:全て140℃
・試料濃度:1mg/mL
・注入量(サンプルループ容量):0.2175mL
(測定方法)
 GPCには、示差屈折計および粘度検出器を装備したGPC装置を用いる。また、光散乱検出器として、多角度レーザー光散乱検出器(MALS)を用いる。検出器は、MALS、RI、Viscometerの順で接続する。移動相溶媒には、1,2,4-トリクロロベンゼンを用いる。
 移動相溶媒の流量は1mL/分とする。カラム、試料注入部および各検出器の温度は、140℃に保持する。試料濃度は1mg/mLとし、注入量(サンプルループ容量)は0.2175mLとする。MALSから得られる絶対分子量(Mabs)、二乗平均慣性半径(Rg)およびViscometerから得られる極限粘度([η])を求めるにあたっては、MALS付属のデータ処理ソフトASTRA(version4.73.04)を用いる。
 分岐指数g’は、サンプルを上記Viscometerで測定して得られる長鎖分岐ポリマー(測定対象ポリマー)の極限粘度([η]br)と、別途、線状ポリマーを測定して得られる極限粘度([η]lin)との比([η]br/[η]lin)として算出する。
 ここで、[η]linを得るための線状ポリマーとしては、市販のホモポリプロピレン(日本ポリプロ社製ノバテック(登録商標)PPグレード名:FY6)を用いる。線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark-Houwink-Sakurada式として公知であるから、[η]linは、低分子量側や高分子量側に適宜外挿して数値を得ることができる。分岐指数g’は、絶対分子量(Mabs)が1,000,000の時の値とする。
(3) Branch index g'
The branching index g'was measured as a function of absolute molecular weight Mabs by using a GPC (gel permeation chromatography measuring device) equipped with a light scatterometer and a viscometer. Specifically, it was measured by the following measuring method and conditions.
(Measurement condition)
-GPC: Alliance GPCV2000 (manufactured by Waters)
-Detector: Described in the order of connection Multi-angle laser light scattering detector (MALS): DAWN-E (manufactured by Waitt Technology)
Differential refractometer (RI): Attached to GPC Viscometer (Viscometer): Attached to GPC-Mobile phase solvent: 1,2,4-trichlorobenzene (BASF Japan Co., Ltd. "Irganox 1076" added at a concentration of 0.5 mg / mL )
・ Mobile phase flow rate: 1 mL / min ・ Column: Two GMHHR-H (S) HTs manufactured by Tosoh Corporation are connected. ・ Sample injection part temperature: 140 ° C.
-Column temperature: 140 ° C
・ Detector temperature: All 140 ℃
-Sample concentration: 1 mg / mL
-Injection volume (sample loop volume): 0.2175 mL
(Measuring method)
As the GPC, a GPC device equipped with a differential refractometer and a viscosity detector is used. Further, as the light scattering detector, a multi-angle laser light scattering detector (MALS) is used. The detectors are connected in the order of MALS, RI, and Viscometer. 1,2,4-trichlorobenzene is used as the mobile phase solvent.
The flow rate of the mobile phase solvent is 1 mL / min. The temperature of the column, the sample injection part and each detector is maintained at 140 ° C. The sample concentration is 1 mg / mL, and the injection amount (sample loop volume) is 0.2175 mL. The data processing software ASTRA (version 4.73.04) attached to MALS is used to obtain the absolute molecular weight (Mabs) obtained from MALS, the root mean square radius (Rg), and the limit viscosity ([η]) obtained from Viscometer. ..
The branching index g'is the ultimate viscosity ([η] br) of the long-chain branched polymer (measurement target polymer) obtained by measuring the sample with the above Viscometer and the limit viscosity ([η] br) separately obtained by measuring the linear polymer. It is calculated as a ratio to [η] lin) ([η] br / [η] lin).
Here, as the linear polymer for obtaining [η] lin, commercially available homopolypropylene (Novatec (registered trademark) PP grade name: FY6 manufactured by Japan Polypropylene Corporation) is used. Since it is known as the Mark-Houwink-Sakurada formula that the logarithm of [η] lin of a linear polymer has a linear relationship with the logarithm of molecular weight, [η] lin is appropriately set on the low molecular weight side or the high molecular weight side. The numerical value can be obtained by extrapolation. The branching index g'is a value when the absolute molecular weight (Mabs) is 1,000,000.
(4)溶融張力
 溶融張力は下記のように測定した。即ち、キャピログラフを使用し、温度230℃に加熱した直径9.6mmのシリンダーに第1の樹脂層で用いるポリプロピレンを入れた。溶融樹脂を、押し込み速度20mm/分で、直径2.0mm、長さ40mmのオリフィスから押し出した。押し出された樹脂を、4.0m/分の速度で引き取った際にプーリーに検出される張力を測定し、これを溶融張力とした。
(4) Melt tension The melt tension was measured as follows. That is, using a capillograph, polypropylene used in the first resin layer was placed in a cylinder having a diameter of 9.6 mm heated to a temperature of 230 ° C. The molten resin was extruded from an orifice having a diameter of 2.0 mm and a length of 40 mm at a pushing speed of 20 mm / min. The tension detected by the pulley when the extruded resin was taken up at a speed of 4.0 m / min was measured and used as the melt tension.
(5)アイソタクチックペンタッド分率の測定方法
 用いたポリプロピレンについて13C-NMRスペクトルを評価することでアイソタクチックペンタッド分率を測定した。具体的には、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案されたピークの帰属に従い、下記の条件にて行った。
(測定方法・条件)
装置:日本電子(株)製JNM-EX400型13C-NMR装置
方法:プロトン完全デカップリング法
濃度:220mg/ml
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
(計算式)
アイソタクチックペンタッド分率[mmmm]=m/S×100
ラセミペンタッド分率[rrrr]=γ/S×100
ラセミメソラセミメソペンタッド分率[rmrm]=Pββ+Pαβ+Pαγ
S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
Pββ:19.8~22.5ppm
Pαβ:18.0~17.5ppm
Pαγ:17.5~17.1ppm
γ:ラセミペンタッド連鎖:20.7~20.3ppm
m:メソペンタッド連鎖:21.7~22.5ppm
(5) Method for measuring isotactic pentad fraction The isotactic pentad fraction was measured by evaluating the 13 C-NMR spectrum of the polypropylene used. Specifically, it was carried out under the following conditions according to the peak attribution proposed in "Macromopolymers, 8, 687 (1975)" by A. Zambali et al.
(Measurement method / conditions)
Equipment: JNM-EX400 type 13 C-NMR equipment manufactured by JEOL Ltd. Method: Proton complete decoupling method Concentration: 220 mg / ml
Solvent: 90:10 (volume ratio) mixture of 1,2,4-trichlorobenzene and heavy benzene Solvent temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds integration: 10000 times (calculation formula)
Isotactic pentad fraction [mmmm] = m / S x 100
Racemic pentad fraction [rrrr] = γ / S × 100
Racemic racemic racemic mesopentad fraction [rmrm] = Pββ + Pαβ + Pαγ
S: Signal intensity of side chain methyl carbon atom of all propylene units Pββ: 19.8 to 22.5 ppm
Pαβ: 18.0 to 17.5 ppm
Pαγ: 17.5 to 17.1 ppm
γ: Racemic pentad chain: 20.7 to 20.3 ppm
m: Mesopentad chain: 21.7 to 22.5 ppm
(6)製膜条件
 図1に示したものと同様の製造装置を用い、第1の樹脂層(クリア層)/第2の樹脂層(着色層)/第3の樹脂層(接着層)の3層からなる積層体を共押出し法により製造した。
 積層体の製造条件は以下の通りである。
・積層方法:共押出積層(ディストリビューター法)
・積層体の各層の厚み:表1に記載の通り
・積層体の各層の成分及び配合:表1に記載の通り
・第1の樹脂層の押出機の直径:65mm
・第2の樹脂層の押出機の直径:75mm
・第3の樹脂層の押出機の直径:50mm
・Tダイの幅:900mm
・積層体の引取速度:5m/分
・冷却ロール及び金属製エンドレスベルトの表面温度:20℃
・冷却速度:10,800℃/分(180℃/秒)
(6) Film forming conditions Using the same manufacturing equipment as that shown in FIG. 1, the first resin layer (clear layer) / second resin layer (colored layer) / third resin layer (adhesive layer) A laminate consisting of three layers was produced by a coextrusion method.
The manufacturing conditions of the laminate are as follows.
-Laminating method: Coextrusion lamination (distributor method)
-Thickness of each layer of the laminate: as shown in Table 1.-Components and composition of each layer of the laminate: as shown in Table 1.-Diameter of the extruder of the first resin layer: 65 mm.
-Diameter of the extruder of the second resin layer: 75 mm
-Diameter of the extruder of the third resin layer: 50 mm
・ T-die width: 900 mm
・ Take-up speed of laminated body: 5 m / min ・ Surface temperature of cooling roll and metal endless belt: 20 ℃
-Cooling rate: 10,800 ° C / min (180 ° C / sec)
(7)結晶構造(結晶形)
 T.Konishiらの用いた方法(Macromolecules、38,8749,2005)を参考にして測定を行った。
 解析は、X線回折プロファイルについて非晶相、中間相、及び結晶相それぞれのピーク分離を行い、各相に帰属されるピーク面積から存在比率を求めた。表1に記載される「スメチカ晶」、「α晶」は、最も大きいピーク面積を示した結晶形である。
(7) Crystal structure (crystal form)
T. The measurement was carried out with reference to the method used by Konishi et al. (Macropolymers, 38, 8749, 2005).
In the analysis, the peaks of the amorphous phase, the intermediate phase, and the crystalline phase were separated from each other for the X-ray diffraction profile, and the abundance ratio was determined from the peak area assigned to each phase. The "Smetica crystal" and "α crystal" shown in Table 1 are crystal forms showing the largest peak area.
(8)球晶の体積分率
 (7)の測定により樹脂層がスメチカ晶を含むことが確認された場合は、該樹脂層中における直径1μm~10μmの球晶の体積分率を、以下の方法により算出した。
 即ち、シートにおける測定対象とする樹脂層(ここでは第1の樹脂層)のみをダイプラ・ウィンテス株式会社製「SAICAS(登録商標) DN-20S」にておよそ120μm切削した後、この樹脂片を小角光散乱法にて測定することによって、該第1の樹脂層中における球晶平均半径を算出した。さらに、偏光顕微鏡にて樹脂層の断面における球晶個数を測定することによって、球晶の平均体積と非球晶部の体積を算出し、これらの値から球晶の体積分率を算出した。
 小角光散乱法は、He-Neガスレーザー(波長632.8nm、出力5mW、日本電気株式会社製)を照射光とし、偏光子を通してサンプル(成膜された樹脂層)に照射した。サンプル透過光は、検光子を介してイメージングプレート(富士フイルム株式会社製、Neopan Presto400)に照射した。下記式に基づいて、照射像よりシート内部の球晶平均半径Rを算出した。
R=4.09/Qmax(R:球晶平均半径、Qmax:散乱強度が最大になる散乱ベクトル)
Q=4πn/λ(Q:散乱ベクトル、n:屈折率、λ:入射光波長)
 次に、樹脂層の断面をミクロトーム(サーモフィッシャーサイエンティフィック株式会社製、HM340E)にて整えて、厚さ10μmにスライスして樹脂層片を得た。スライドガラス上に樹脂層片を乗せて、カバーガラスを被せた。その後、偏光顕微鏡(ニコン株式会社製、ECLIPSE LV100N)にて樹脂層断面を観察した。球晶が生成した箇所はマルテーゼクロスが観察される。断面観察像(成膜時の第1の樹脂層厚み(μm)×成膜時の第1の樹脂層厚み(μm)によって画定される正方形領域)から直径1μm~10μmの球晶の個数を測定した。最表面に露出していない球晶は、偏光顕微鏡の焦点位置を樹脂層最表面から厚み方向に調節することによって観察することができる。
 球晶平均半径Rから算出される球晶平均体積(=4πR/3)と、直径1μm~10μmの球晶の個数との積を、直径1μm~10μmの球晶の平均体積とした。
 直径1μm~10μmの球晶の平均体積と、非球晶部の体積とを算出した後に、これらの体積比から、第1の樹脂層中における直径1μm~10μmの球晶の体積分率を求めた。
(8) Volume Fraction of Spherulite When it is confirmed by the measurement of (7) that the resin layer contains spherulite, the volume fraction of spherulite having a diameter of 1 μm to 10 μm in the resin layer is as follows. Calculated by the method.
That is, after cutting only the resin layer (here, the first resin layer) to be measured on the sheet with "SAICAS (registered trademark) DN-20S" manufactured by Daipla Wintes Co., Ltd. by about 120 μm, this resin piece is cut into small angles. The average radius of spherulites in the first resin layer was calculated by measuring by a light scattering method. Further, the average volume of spherulite and the volume of the non-spherulite portion were calculated by measuring the number of spherulite in the cross section of the resin layer with a polarizing microscope, and the volume fraction of spherulite was calculated from these values.
In the small-angle light scattering method, a He-Ne gas laser (wavelength 632.8 nm, output 5 mW, manufactured by NEC Corporation) was used as irradiation light, and a sample (deposited resin layer) was irradiated through a polarizer. The sample transmitted light was applied to an imaging plate (Neopan Preso400, manufactured by FUJIFILM Corporation) via an analyzer. Based on the following formula, the average radius R of spherulites inside the sheet was calculated from the irradiation image.
R = 4.09 / Q max (R: average radius of spherulites, Q max : scattering vector that maximizes scattering intensity)
Q = 4πn / λ (Q: scattering vector, n: refractive index, λ: incident light wavelength)
Next, the cross section of the resin layer was prepared with a microtome (manufactured by Thermo Fisher Scientific Co., Ltd., HM340E) and sliced to a thickness of 10 μm to obtain a resin layer piece. A resin layer piece was placed on the slide glass and covered with a cover glass. Then, the cross section of the resin layer was observed with a polarizing microscope (ECLIPSE LV100N manufactured by Nikon Corporation). Martese cloth is observed at the site where spherulites are formed. The number of spherulites having a diameter of 1 μm to 10 μm is measured from a cross-sectional observation image (a square region defined by the thickness of the first resin layer (μm) at the time of film formation × the thickness of the first resin layer (μm) at the time of film formation). did. The spherulites that are not exposed on the outermost surface can be observed by adjusting the focal position of the polarizing microscope in the thickness direction from the outermost surface of the resin layer.
And spherulites average volume (= 4πR 3/3) calculated from spherulite mean radius R, the product of the number of spherulites having a diameter of 1 [mu] m ~ 10 [mu] m, and the average volume of spherulite diameter 1 [mu] m ~ 10 [mu] m.
After calculating the average volume of spherulite having a diameter of 1 μm to 10 μm and the volume of the non-spherulite portion, the volume fraction of the spherulite having a diameter of 1 μm to 10 μm in the first resin layer is obtained from these volume ratios. It was.
(9)結晶化速度
 示差走査熱量測定器(DSC)(パーキンエルマー社製、製品名「DiamondDSC」)を用いて、結晶化速度を測定した。具体的には、先ず、第1の樹脂層、第2の樹脂層の各層で用いたポリプロピレンを用いて、それぞれ5mgの試料を作製し、試料を10℃/分にて50℃から230℃に昇温し、230℃にて5分間保持し、80℃/分で230℃から130℃に冷却し、その後130℃に保持して結晶化を行った。130℃になった時点から熱量変化について測定を開始して、DSC曲線を得た。
 得られたDSC曲線から、以下の手順(i)~(iv)により結晶化速度を求めた。
(i)測定開始からピークトップまでの時間の10倍の時点から、20倍の時点までの熱量変化を直線で近似したものをベースラインとした。
(ii)ピークの変曲点における傾きを有する接線とベースラインとの交点を求め、結晶化開始及び終了時間を求めた。
(iii)得られた結晶化開始時間から、ピークトップまでの時間を結晶化時間として測定した。
(iv)得られた結晶化時間の逆数から、結晶化速度を求めた。
(9) Crystallization rate The crystallization rate was measured using a differential scanning calorimetry device (DSC) (manufactured by PerkinElmer, product name "Diamond DSC"). Specifically, first, 5 mg of a sample was prepared using polypropylene used in each of the first resin layer and the second resin layer, and the sample was changed from 50 ° C. to 230 ° C. at 10 ° C./min. The temperature was raised, held at 230 ° C. for 5 minutes, cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then held at 130 ° C. for crystallization. The measurement of the change in calorific value was started from the time when the temperature reached 130 ° C., and the DSC curve was obtained.
From the obtained DSC curve, the crystallization rate was determined by the following procedures (i) to (iv).
(I) The baseline was the linear approximation of the change in calorific value from the time point 10 times the time from the start of measurement to the peak top to the time point 20 times.
(Ii) The intersection of the tangent line having a slope at the inflection point of the peak and the baseline was obtained, and the crystallization start and end times were obtained.
(Iii) The time from the obtained crystallization start time to the peak top was measured as the crystallization time.
(Iv) The crystallization rate was determined from the reciprocal of the obtained crystallization time.
(10)低温側発熱ピーク
 上記「(9)結晶化速度」のDSC曲線において、最大吸熱ピークの低温側における発熱ピーク(「低温側発熱ピーク」ともいう。)の有無を観察し、発熱ピークが観察された場合はその発熱量(J/g)を、JIS K7122:2012(転移熱測定方法)に記載の転移熱算出方法に準拠して算出した。
(10) Low temperature side exothermic peak In the DSC curve of the above "(9) Crystallization rate", the presence or absence of an exothermic peak (also referred to as "low temperature side exothermic peak") on the low temperature side of the maximum endothermic peak is observed, and the exothermic peak is When observed, the calorific value (J / g) was calculated according to the transition heat calculation method described in JIS K7122: 2012 (transition heat measurement method).
(11)接着原料の融点、融解エンタルピー測定
 第3の樹脂層に用いられる樹脂(接着原料)の融点を、JIS K7121:2012(転移温度測定方法)に準拠して決定した。第3の樹脂層に用いられる接着原料の融解エンタルピーは、JIS K7122(転移熱測定方法)に記載の方法に準拠して決定した。
(11) Measurement of melting point and melting enthalpy of adhesive raw material The melting point of the resin (adhesive raw material) used for the third resin layer was determined in accordance with JIS K7121: 2012 (transition temperature measurement method). The melting enthalpy of the adhesive raw material used for the third resin layer was determined according to the method described in JIS K7122 (method for measuring transition heat).
(12)ドローダウン量
 布施真空株式会社製被覆成形機「NGF-0611-S」を用いて、以下の方法で測定を行った。
 シートを1150mm×650mmに切断し、試験用シートとした。試験用シートを、1100mm×600mmの成形枠にクランプで固定した。成形枠には、ドローダウン時の垂れ下がり量を読み取るためのスケールが設けられている。
 試験用シートが固定された成形枠を上記被覆成形機のチャンバーボックス(上成形室及び下成形室を備える)内にセットした。セットされた状態において、試験用シートは、当該試験用シートの主面が水平になるように配向されている。また、スケールは、当該スケールの目盛り方向が鉛直方向になるように配向されている。
 次いで、チャンバーボックス内を真空ポンプにて真空状態にした。チャンバーボックス内の圧力が20kPaに到達した時点で、上成形室に配設されたヒーター(HERAEUS社製、中波長帯赤外線ヒーター(200W、115V))にて試験用シートを加熱した。ヒーターは、中波長帯赤外線を放射するヒーター面が、試験用シートの主面に対して平行になるように配置した。ヒーターの出力(出力%)は、試験用シートの13区分のそれぞれに対して、図2に示す値となるように設定した。例えば、図2において「80%」と示されている区分では、ヒーターの出力が200W×80%=160Wに設定される。
 真空ポンプによる減圧、及びヒーターによる加熱をさらに継続し、加熱によりシートがドローダウンして張り戻るまでの様子を上成形室の窓外に設置したビデオカメラにて記録した。このとき、チャンバーボックス内の最大真空度が0.1kPa未満に達するように真空ポンプを駆動させた。また、前記ビデオカメラにて成形枠に設置したスケールを撮影した。
 シートのドローダウン映像とスケール撮影映像とを比較し、シートの最大ドローダウン時の垂れ下がり量を読み取り、これをドローダウン量(最大ドローダウン量)とした。
(12) Drawdown amount The measurement was carried out by the following method using a coating molding machine "NGF-0611-S" manufactured by Fuse Vacuum Co., Ltd.
The sheet was cut into 1150 mm × 650 mm to obtain a test sheet. The test sheet was clamped to a 1100 mm × 600 mm molding frame. The molding frame is provided with a scale for reading the amount of sagging during drawdown.
The molding frame to which the test sheet was fixed was set in the chamber box (including the upper molding chamber and the lower molding chamber) of the coating molding machine. In the set state, the test sheet is oriented so that the main surface of the test sheet is horizontal. Further, the scale is oriented so that the scale direction of the scale is the vertical direction.
Next, the inside of the chamber box was evacuated by a vacuum pump. When the pressure in the chamber box reached 20 kPa, the test sheet was heated by a heater (manufactured by HERAEUS, a medium wavelength band infrared heater (200 W, 115 V)) arranged in the upper molding chamber. The heater was arranged so that the heater surface that radiates infrared rays in the middle wavelength band was parallel to the main surface of the test sheet. The output (output%) of the heater was set to be the value shown in FIG. 2 for each of the 13 categories of the test sheet. For example, in the category shown as "80%" in FIG. 2, the output of the heater is set to 200 W x 80% = 160 W.
The depressurization by the vacuum pump and the heating by the heater were further continued, and the state until the sheet was drawn down and re-tensioned by the heating was recorded by a video camera installed outside the window of the upper molding chamber. At this time, the vacuum pump was driven so that the maximum degree of vacuum in the chamber box reached less than 0.1 kPa. In addition, the scale installed on the molding frame was photographed by the video camera.
The drawdown image of the sheet was compared with the scale shot image, and the amount of sagging at the maximum drawdown of the sheet was read and used as the drawdown amount (maximum drawdown amount).
(13)皺防止性
 上記「(12)ドローダウン量」と同様の被覆成形機を用い、シートの表面温度が140℃に達した後、ハーフバンパー射出成形品(長さ95cm×幅26cm×高さ13cm)にシート(厚み0.3mm)を被覆成形して成形体を得た。ハーフバンパーに被覆成形したシートの表面性状を目視にて観察し、皺防止性を下記の評価基準で評価した。
[評価基準]
○:ハーフバンパーに被覆したシートに皺がない。
△:ハーフバンパーに被覆したシートに凹凸はないが、筋状の外観変化ある。
×:ハーフバンパーに被覆したシートに皺が発生し、筋状に凸部が形成されている。
(13) Wrinkle prevention property A half bumper injection molded product (length 95 cm x width 26 cm x height) after the surface temperature of the sheet reaches 140 ° C. using the same coating molding machine as in "(12) Drawdown amount" above. A sheet (thickness 0.3 mm) was coated and molded on (13 cm) to obtain a molded product. The surface texture of the sheet coated and molded on the half bumper was visually observed, and the wrinkle prevention property was evaluated according to the following evaluation criteria.
[Evaluation criteria]
◯: There are no wrinkles on the sheet covered with the half bumper.
Δ: The sheet coated on the half bumper has no unevenness, but has a streaky appearance change.
X: Wrinkles are generated on the sheet coated on the half bumper, and convex portions are formed in a streak pattern.
(14)深絞り性
 上記「(13)皺防止性」で得られた成形体について、シートが最も延伸されるハーフバンパーの最大深さ(13cm)部分における穴あきの有無及びシート厚みを観察し、深絞り性を下記の評価基準で評価した。
[評価基準]
○:シートに穴あきがなく、シート厚みが80μm以上である。
△:シートに穴あきがないが、シート厚みが80μm未満である。
×:シートに穴あきがある。
(14) Deep drawing property With respect to the molded product obtained in the above "(13) Wrinkle prevention property", the presence or absence of holes and the sheet thickness at the maximum depth (13 cm) of the half bumper where the sheet is most stretched were observed. The deep drawing property was evaluated according to the following evaluation criteria.
[Evaluation criteria]
◯: There are no holes in the sheet, and the sheet thickness is 80 μm or more.
Δ: There are no holes in the sheet, but the sheet thickness is less than 80 μm.
X: There is a hole in the sheet.
(15)白化防止性
 上記「(13)皺防止性」で得られた成形体について、ハーフバンパーに被覆成形したシートの表面性状を目視にて観察し、白化防止性を下記の評価基準で評価した。
[評価基準]
○:シートに延伸起因の白化が観察されない。
×:シートに延伸起因の白化が観察される。
(15) Anti-whitening property With respect to the molded product obtained in the above "(13) Anti-wrinkle property", the surface texture of the sheet coated and molded on the half bumper is visually observed, and the anti-whitening property is evaluated according to the following evaluation criteria. did.
[Evaluation criteria]
◯: No whitening due to stretching is observed on the sheet.
X: Whitening due to stretching is observed on the sheet.
(16)表面光沢変化
 上記「(12)ドローダウン量」と同様の被覆成形機を用いて、積層体を4倍延伸金型に被覆成形した。成形前後の積層体について、光沢計(日本電飾工業株式会社製「VG-2000」)を用いて、JIS-Z-8741:1997にある「方法3」に準拠した方法で表面光沢を測定した。成形前の表面光沢から成形後の表面光沢を減ずることで、表面光沢の変化を求めた。
(16) Change in surface gloss Using a coating molding machine similar to the above "(12) Drawdown amount", the laminate was coated and molded into a 4-fold stretched mold. The surface gloss of the laminate before and after molding was measured using a gloss meter (“VG-2000” manufactured by Nippon Denka Kogyo Co., Ltd.) by a method based on “Method 3” in JIS-Z-8741: 1997. .. The change in surface gloss was determined by reducing the surface gloss after molding from the surface gloss before molding.
(17)色差測定
 上記「(12)ドローダウン量」と同様の被覆成形機を用いて、シートを4倍延伸金型に被覆成形した。成形前後のシートについて、測色計(コニカミノルタ株式会社製「CM-2600d」)を用いて、JIS-Z-8730:2009の分光測色方法に準拠して色差ΔE(L表色系)を測定した。
(17) Color difference measurement Using the same coating molding machine as in the above "(12) Drawdown amount", the sheet was coated and molded into a 4-fold stretch mold. For the sheets before and after molding, using a colorimeter (“CM-2600d” manufactured by Konica Minolta Co., Ltd.), the color difference ΔE (L * a * b *) is based on the spectrophotometric method of JIS-Z-8730: 2009. Color system) was measured.
(18)密着強度測定
 上記「(12)ドローダウン量」と同様の被覆成形機を用いて、積層体を、ホモポリプロピレン製(プライムポリマー製J106G)射出成形平板(長さ150mm×幅70mm×厚さ3mm)に被覆成形した。被覆成形条件は以下の通りである。
・成形枠サイズ:1100mm×600mm
・積層体カットサイズ:1150mm×650mm
・成形時の積層体表面温度:140℃
・成形時のチャンバーボックス真空度:0.1kPa未満
・成形時の上成形室圧空圧力:210kPa
・圧空時間:15s
 その後、積層体へ15mm幅カッターにて切込みを入れて、手動で15mm切込みに掴みしろを作製した。プッシュプルゲージ(IMADA社製)の治具に掴みしろを固定した後、密着面に対して180°方向へ、積層体を射出成形体から50mm剥離させた。プッシュプルゲージに表示された値から密着強度(N/15mm)を決定した。
(18) Adhesion strength measurement Using a coating molding machine similar to the above "(12) Drawdown amount", the laminate was made of homopolypropylene (Prime Polymer J106G) injection molded flat plate (length 150 mm x width 70 mm x thickness). 3 mm) was coated and molded. The coating molding conditions are as follows.
-Molding frame size: 1100 mm x 600 mm
-Laminate cut size: 1150 mm x 650 mm
-Laminate body surface temperature during molding: 140 ° C
・ Chamber box vacuum during molding: less than 0.1 kPa ・ Upper molding chamber compressed air pressure during molding: 210 kPa
・ Compressed air time: 15s
Then, a notch was made in the laminate with a 15 mm wide cutter, and a grip margin was manually made in the 15 mm notch. After fixing the grip margin to a jig of a push-pull gauge (manufactured by IMADA), the laminate was peeled 50 mm from the injection molded product in the 180 ° direction with respect to the contact surface. The adhesion strength (N / 15 mm) was determined from the value displayed on the push-pull gauge.
実施例2及び3
 積層体の各層の成分及び組成を表1に示す通りとした以外は実施例1と同様に積層体を作成し、評価した。
Examples 2 and 3
A laminate was prepared and evaluated in the same manner as in Example 1 except that the components and compositions of each layer of the laminate were as shown in Table 1.
比較例1~3
 積層体の各層の成分及び組成を表1に示す通りとし、かつ、冷却ロール及び金属製エンドレスベルトの表面温度を80℃とし、冷却速度を1,154℃/分とした以外は実施例1と同様に積層体を作成し、評価した。
Comparative Examples 1 to 3
The components and compositions of each layer of the laminate are as shown in Table 1, and the surface temperature of the cooling roll and the metal endless belt is 80 ° C., and the cooling rate is 1,154 ° C./min. A laminate was prepared and evaluated in the same manner.
比較例4
 積層体の各層の成分及び組成を表1に示す通りとした以外は実施例1と同様に積層体を作成し、評価した。
Comparative Example 4
A laminate was prepared and evaluated in the same manner as in Example 1 except that the components and compositions of each layer of the laminate were as shown in Table 1.
 以上の結果を表1に示す。 The above results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体から得られる成形体は、多岐にわたる種々の用途に使用することができ、例えば、輸送機器(自動車や二輪車等)、住宅設備、建築材料、家電等の多岐に渡る分野の筐体にて、塗装を代替する加飾シートとして使用することができる。 The molded product obtained from the laminate of the present invention can be used for a wide variety of applications, for example, a housing in a wide range of fields such as transportation equipment (automobiles, motorcycles, etc.), housing equipment, building materials, home appliances, and the like. It can be used as a decorative sheet to replace painting on the body.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
Although some embodiments and / or embodiments of the present invention have been described above in detail, those skilled in the art will be able to demonstrate these embodiments and / or embodiments without substantial departure from the novel teachings and effects of the present invention. It is easy to make many changes to the examples. Therefore, many of these modifications are within the scope of the invention.
All the documents described in this specification and the contents of the application on which the priority under the Paris Convention of the present application is based are incorporated.

Claims (16)

  1.  第1の樹脂層、第2の樹脂層及び第3の樹脂層をこの順で含む積層体であって、
     前記第1の樹脂層及び前記第2の樹脂層はポリプロピレンを含み、前記ポリプロピレンは、それぞれ、長鎖分岐構造を有し、かつ、130℃での結晶化速度が2.5min-1以下であり、
     前記第1の樹脂層と前記第2の樹脂層とは組成が異なり、
     前記第3の樹脂層は、融点が125℃以下の接着剤を含む、
     積層体。
    A laminate containing a first resin layer, a second resin layer, and a third resin layer in this order.
    The first resin layer and the second resin layer contain polypropylene, each of which has a long-chain branched structure and a crystallization rate at 130 ° C. of 2.5 min -1 or less. ,
    The composition of the first resin layer and the second resin layer are different.
    The third resin layer contains an adhesive having a melting point of 125 ° C. or lower.
    Laminated body.
  2.  前記第3の樹脂層の前記接着剤が、オレフィン系接着剤、スチレン系接着剤、イソシアネート系接着剤、ウレタン系接着剤、及びアクリル系接着剤からなる群から選択される1以上である、請求項1に記載の積層体。 The adhesive of the third resin layer is one or more selected from the group consisting of an olefin-based adhesive, a styrene-based adhesive, an isocyanate-based adhesive, a urethane-based adhesive, and an acrylic-based adhesive. Item 1. The laminated body according to Item 1.
  3.  前記第2の樹脂層が、顔料を含む、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the second resin layer contains a pigment.
  4.  前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンが、示差走査熱量測定で得られる曲線において、最大吸熱ピークの低温側に1J/g以上の発熱ピークを有する、請求項1~3のいずれかに記載の積層体。 Polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 1 J / g or more on the low temperature side of the maximum endothermic peak in the curve obtained by differential scanning calorimetry. The laminate according to any one of claims 1 to 3, which has an endothermic peak.
  5.  前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンが、スメチカ晶を含む、請求項1~4のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the polypropylene of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer contains smetica crystals.
  6.  前記スメチカ晶を含む1以上の前記樹脂層中に直径1μm~10μmの球晶が存在し、該樹脂層中における前記球晶の体積分率が20%以下である、請求項5に記載の積層体。 The laminate according to claim 5, wherein spherulites having a diameter of 1 μm to 10 μm are present in one or more of the resin layers containing the smetika crystals, and the volume fraction of the spherulites in the resin layer is 20% or less. body.
  7.  前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンのアイソタクチックペンタッド分率が85~99モル%である、請求項1~6のいずれかに記載の積層体。 Claims 1 to 6, wherein the polypropylene isotactic pentad fraction of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 85 to 99 mol%. The laminate according to any one.
  8.  前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンの分岐指数が0.50以上1.00未満である、請求項1~7のいずれかに記載の積層体。 Any of claims 1 to 7, wherein the polypropylene branching index of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 0.50 or more and less than 1.00. The laminate described in.
  9.  前記第1の樹脂層及び前記第2の樹脂層からなる群から選択される1以上の樹脂層のポリプロピレンの溶融張力が4.0g以上である、請求項1~8のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the polypropylene melt tension of one or more resin layers selected from the group consisting of the first resin layer and the second resin layer is 4.0 g or more. body.
  10.  さらに易接着層を含む、請求項1~9のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 9, further comprising an easy-adhesion layer.
  11.  前記易接着層が、ウレタン、アクリル、ポリオレフィン及びポリエステルからなる群から選択される1以上の樹脂を含む、請求項10に記載の積層体。 The laminate according to claim 10, wherein the easy-adhesion layer contains one or more resins selected from the group consisting of urethane, acrylic, polyolefin, and polyester.
  12.  前記易接着層における前記第1の樹脂層と反対側の面に積層された印刷層をさらに含む、請求項10又は11に記載の積層体。 The laminate according to claim 10 or 11, further comprising a print layer laminated on the surface of the easy-adhesion layer opposite to the first resin layer.
  13.  請求項1~12のいずれかに記載の積層体を用いて製造された成形体。 A molded product manufactured by using the laminate according to any one of claims 1 to 12.
  14.  請求項1~12のいずれかに記載の積層体を成形して成形体を得ることを含む、成形体の製造方法。 A method for producing a molded body, which comprises molding the laminate according to any one of claims 1 to 12 to obtain a molded body.
  15.  前記積層体を金型に合致するよう賦形し、前記賦形した積層体を金型に装着し、成形用樹脂を供給して前記賦形した積層体と一体化して前記成形を行う、請求項14に記載の成形体の製造方法。 A claim that the laminated body is shaped so as to match a mold, the shaped laminated body is mounted on a mold, a molding resin is supplied, and the molded laminated body is integrated with the shaped laminated body to perform the molding. Item 14. The method for producing a molded product according to Item 14.
  16.  チャンバーボックス内に芯材を配設し、前記芯材の上方に前記積層体を配置し、前記積層体を加熱軟化し、前記チャンバーボックス内を減圧して前記加熱軟化させた積層体を前記芯材に押圧して被覆させる、請求項14に記載の成形体の製造方法。 The core material is arranged in the chamber box, the laminated body is arranged above the core material, the laminated body is heated and softened, and the inside of the chamber box is depressurized to heat and soften the laminated body. The method for producing a molded body according to claim 14, wherein the material is pressed and covered.
PCT/JP2020/045376 2019-12-16 2020-12-07 Layered body, molded article, and method for producing molded article WO2021124943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021565479A JPWO2021124943A1 (en) 2019-12-16 2020-12-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019226483 2019-12-16
JP2019-226483 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021124943A1 true WO2021124943A1 (en) 2021-06-24

Family

ID=76476579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045376 WO2021124943A1 (en) 2019-12-16 2020-12-07 Layered body, molded article, and method for producing molded article

Country Status (2)

Country Link
JP (1) JPWO2021124943A1 (en)
WO (1) WO2021124943A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141745A (en) * 2015-02-02 2016-08-08 出光ユニテック株式会社 Resin sheet, molded product, method for producing resin sheet and method for producing molded product
JP2017024345A (en) * 2015-07-27 2017-02-02 日本ポリプロ株式会社 Polypropylene-resin laminated body for thermoforming and molded body
JP2018065333A (en) * 2016-10-21 2018-04-26 出光ユニテック株式会社 Method for producing forming decorative sheet
WO2018151089A1 (en) * 2017-02-14 2018-08-23 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
JP2019137057A (en) * 2018-02-06 2019-08-22 日本ポリプロ株式会社 Decorative film and manufacturing method of decorative molded body using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141745A (en) * 2015-02-02 2016-08-08 出光ユニテック株式会社 Resin sheet, molded product, method for producing resin sheet and method for producing molded product
JP2017024345A (en) * 2015-07-27 2017-02-02 日本ポリプロ株式会社 Polypropylene-resin laminated body for thermoforming and molded body
JP2018065333A (en) * 2016-10-21 2018-04-26 出光ユニテック株式会社 Method for producing forming decorative sheet
WO2018151089A1 (en) * 2017-02-14 2018-08-23 出光ユニテック株式会社 Laminate, molded article, and method for producing molded article
JP2019137057A (en) * 2018-02-06 2019-08-22 日本ポリプロ株式会社 Decorative film and manufacturing method of decorative molded body using the same

Also Published As

Publication number Publication date
JPWO2021124943A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP7073282B2 (en) Laminated body, molded body and manufacturing method of molded body
US20190022911A1 (en) Laminate, molded article in which laminate is used, and method for manufacturing same
JP6947003B2 (en) Decorative molded product and its manufacturing method
WO2018030495A1 (en) Decorative film and method for producing decorative molded body in which same is used
JP6870525B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
WO2021124943A1 (en) Layered body, molded article, and method for producing molded article
JP7290163B2 (en) Resin composition for decorative film, decorative film and method for producing decorative molding
JP6963392B2 (en) Laminated body, molded body and manufacturing method of molded body
WO2021145331A1 (en) Laminate, molded body, and molded body manufacturing method
WO2021065999A1 (en) Sheet, laminate, shaped object, and method for producing shaped object
JP6950340B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6874621B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP2019136911A (en) Decorative molded body and method for producing same
JP7192543B2 (en) DECORATION FILM AND METHOD FOR MANUFACTURING DECORATION MOLDED PRODUCT USING IT
JP7297686B2 (en) RESIN SHEET, LAMINATED BODY, MOLDED BODY, AND METHOD FOR MANUFACTURING MOLDED BODY
JP6950341B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6933104B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6969353B2 (en) Decorative molded body and its manufacturing method
WO2019098379A1 (en) Decorative film and method for manufacturing decorative molded article using same
JP6958281B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6933103B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6879149B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6992461B2 (en) Decorative molded body and its manufacturing method
JP6874622B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.
JP6859894B2 (en) A decorative film and a method for manufacturing a decorative molded product using the decorative film.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901329

Country of ref document: EP

Kind code of ref document: A1