WO2021124781A1 - Automatic parking support system, automatic parking support program, and automatic parking support method - Google Patents

Automatic parking support system, automatic parking support program, and automatic parking support method Download PDF

Info

Publication number
WO2021124781A1
WO2021124781A1 PCT/JP2020/043093 JP2020043093W WO2021124781A1 WO 2021124781 A1 WO2021124781 A1 WO 2021124781A1 JP 2020043093 W JP2020043093 W JP 2020043093W WO 2021124781 A1 WO2021124781 A1 WO 2021124781A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
automatic parking
smartphone
operation unit
Prior art date
Application number
PCT/JP2020/043093
Other languages
French (fr)
Japanese (ja)
Inventor
慶悟 若菜
高井 大輔
順平 野口
Original Assignee
アルプスアルパイン株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社, 本田技研工業株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2021124781A1 publication Critical patent/WO2021124781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams

Definitions

  • the present invention relates to an automatic parking support system, an automatic parking support program, and an automatic parking support method.
  • a parking support control unit that assists parking of the vehicle and a guidance display based on an effective detection range by the first sensor are displayed in front of the vehicle by using the first sensor for parking support provided in the vehicle.
  • a parking support device including a guidance display control unit that displays on a display device in a state of being superimposed on a landscape (see, for example, Patent Document 1).
  • the conventional parking support device does not remotely control the movement of the vehicle.
  • the distance between the operation terminal and the vehicle may be limited.
  • an object of the present invention to provide an automatic parking support system, an automatic parking support program, and an automatic parking support method that can remotely move and operate a vehicle within a predetermined range of the vehicle.
  • the automatic parking support system includes an operation unit capable of moving and operating the vehicle from outside the vehicle by wireless communication, an action plan acquisition unit for acquiring the action plan of the vehicle, and the operation unit for the vehicle.
  • the operator of the operation unit within a predetermined range of the vehicle based on the position measurement unit that measures the position of the vehicle, the action plan acquired by the action plan acquisition unit, and the position measured by the position measurement unit. It includes a command generation unit that generates a command for urging the movement of the vehicle, and notifies the operator of the operation unit of the command via the operation unit.
  • FIG. 1 is a diagram showing an automatic parking support system 300 of the embodiment.
  • the automatic parking support system 300 includes an ECU (Electronic Control Unit) 100 mounted on the vehicle 10 and a smartphone 200.
  • the smartphone 200 is an example of an operation unit capable of moving and operating the vehicle 10 by wireless communication from outside the vehicle 10.
  • the automatic parking support system 300 performs parking processing in an automatic parking system in which the vehicle 10 autonomously parks in a parking position by remotely transmitting a command to the ECU 100 mounted on the vehicle 10 by wireless communication. It is a device to support.
  • the functions required for such an automatic parking system are installed in the ECU 100 and the smartphone 200 as an example, but detailed description thereof will be omitted here.
  • the vehicle 10 includes an ECU 100, an acceleration sensor 11A, a yaw rate sensor 11B, a steering angle sensor 11C, a speed sensor 12, a communication unit 13, and an automatic parking ECU 20 as components related to the automatic parking support system 300.
  • the automatic parking ECU 20 automatically parks the vehicle 10 in an empty parking space detected by a camera, an ultrasonic sensor, or the like (not shown) based on a command transmitted from the smartphone 200.
  • the acceleration sensor 11A may be any acceleration sensor capable of detecting acceleration in the front-rear direction and the lateral direction of the vehicle 10.
  • a capacitive acceleration sensor by MEMS Micro Electro Mechanical Systems
  • the yaw rate sensor 11B is a device for measuring the angular velocity (yaw rate) of the vehicle 10 around the vertical axis of the vehicle, and is, for example, a gyroscope device.
  • the steering angle sensor 11C is a sensor that detects the steering angle of the vehicle 10, and an encoder can be used, for example.
  • the speed sensor 12 is a sensor that detects the vehicle speed when the vehicle 10 is moving forward or backward.
  • the communication unit 13 is a communication unit for transmitting or receiving data such as a command to and from the smartphone 200, and is, for example, a Bluetooth (registered trademark) standard short-range wireless communication device.
  • a plurality of communication units 13 are provided in the vehicle 10.
  • Each communication unit 13 has a plurality of antennas.
  • the communication unit 13 is not limited to Bluetooth, and may be a communication device of WLAN (Wireless Local Area Network) or other standards.
  • a gear shift control detection sensor 14 that detects that gear shift control has been performed, and an R position detection sensor 15 that detects that the R (Reverse) position has been reached. May be provided.
  • the ECU 100 is an ECU used in the automatic parking support system 300.
  • various ECUs are mounted on the vehicle 10, and are connected to the ECU 100 so as to be able to communicate with each other via an in-vehicle network.
  • the acceleration sensor 11A, yaw rate sensor 11B, steering angle sensor 11C, speed sensor 12, and communication unit 13 are connected to an ECU other than the ECU 100, and are communicably connected to the ECU 100 via an ECU other than the ECU 100 and an in-vehicle network. It may be directly connected to the ECU 100 via an in-vehicle network.
  • the ECU 100 is realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
  • the ECU 100 includes a main control unit 110, an action plan acquisition unit 120, a position measurement unit 130, a command generation unit 140, and a memory 150.
  • the main control unit 110, the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140 show the function of the automatic parking support program executed by the ECU 100 as a functional block.
  • the memory 150 functionally represents the memory of the ECU 100.
  • the main control unit 110 is a processing unit that controls the control processing of the ECU 100, and executes processing other than the processing executed by the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140.
  • the action plan acquisition unit 120 acquires the trajectory of the vehicle 10 by a series of actions of the vehicle 10 in the automatic parking from the automatic parking ECU 20.
  • the track of the vehicle 10 represents the action plan of the vehicle 10, and the action plan represents how much the vehicle moves at what speed and steering angle in the front-rear and left-right directions.
  • the position measurement unit 130 positions the smartphone 200 in the AOA (Angle Of Arrival) format as an example, and obtains the position where the smartphone 200 exists around the vehicle 10.
  • the position measuring unit 130 indicates the direction in which the smartphone 200 is located with respect to one communication unit 13 from the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13. The angle is obtained, and the approximate position of the vehicle 10 is obtained based on the angle with respect to one communication unit 13 and the RSSI value. This is because the RSSI value indicates the approximate distance from the communication unit 13 to the smartphone 200.
  • the position measuring unit 130 obtains two angles representing the direction in which the smartphone 200 is located with respect to the two communication units 13 from the phase difference of the beacon signals detected by each of the two communication units 13, and two.
  • the position of the smartphone 200 is obtained by using the angle and the positional relationship between the two communication units 13 (distance between the two communication units 13).
  • the predetermined range is, for example, a range within 4 m from each communication unit 13.
  • the command data is an example of a command representing a message such as "Please approach the side of the vehicle" or "Please approach the rear of the vehicle".
  • the memory 150 stores automatic parking support programs, data, and the like necessary for the main control unit 110, the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140 to execute the above-mentioned processing.
  • the smartphone 200 includes a control device 210, a display 220, a speaker 230, a communication unit 240, and a vibrator 250 as components related to the automatic parking support system 300.
  • the control device 210 has a main control unit 211, a command notification unit 212, and a memory 213.
  • the main control unit 211 is a processing unit that controls the control processing of the control device 210, and executes processing other than the processing executed by the command notification unit 212.
  • the command notification unit 212 When the command notification unit 212 receives the command data from the vehicle 10 via the communication unit 240, the command notification unit 212 displays the message represented by the command data on the display 220 and notifies the operator of the smartphone 200 that the message has been displayed. Is output (notified) from the speaker 230.
  • the notification may be vibration by the vibrator 250 instead of the voice by the speaker 230.
  • the memory 213 stores programs, data, and the like necessary for the command notification unit 212 to execute the above-mentioned processing. Further, the command data received from the vehicle 10 via the communication unit 240 is temporarily stored.
  • the display 220 is, for example, a liquid crystal display panel and is integrated with a touch panel.
  • the display 220 accepts the operation of the smartphone 200 and displays an image or the like according to the operation content.
  • the display 220 also serves as an input unit for the operator to input an operation command in the automatic parking system.
  • the speaker 230 outputs voice or the like according to the operation content of the smartphone 200. Further, the speaker 230 outputs a notification sound for notifying the operator that the message represented by the command data is displayed on the display 220.
  • the communication unit 240 is a communication unit for transmitting or receiving data such as a command with the ECU 100 of the vehicle 10, and is, for example, a Bluetooth (registered trademark) standard short-range wireless communication device.
  • the communication unit 240 is not limited to Bluetooth, and may be a communication device of WLAN or other standards.
  • the vibrator 250 is a vibrating element that generates vibration in the housing of the smartphone 200.
  • the vibrator 250 is driven, for example, when notifying the user of an incoming call, receiving an e-mail, displaying the above-mentioned message, or the like by vibration.
  • FIG. 2 is a diagram showing a communication area 13A around the vehicle 10.
  • the communication area 13A is an area in which the RSSI (Received Signal Strength Indicator) value of the beacon signal output by the communication unit 13 of the vehicle 10 is equal to or higher than a predetermined value, and the vehicle 10 can detect the smartphone 200. Range.
  • the range of such a communication area 13A is defined by, for example, a law, and here, as an example, it is within the range of each communication unit 13 to 6 m.
  • FIG. 2 shows the communication areas 13A on the front side and the right side of the vehicle 10 for convenience of explanation.
  • a plurality of communication units 13 are provided at the four corners of the body of the vehicle 10.
  • FIG. 2 shows eight communication units 13 as an example.
  • One communication unit 13 is provided at the front left and right ends of the vehicle 10
  • one communication unit 13 is provided at each rear left and right end of the vehicle 10
  • one communication unit 13 is provided at the left front and rear ends of the vehicle 10. Is provided with one communication unit 13 at a time, and one communication unit 13 is provided at each of the front and rear ends on the right side of the vehicle 10.
  • the communication output of the communication unit 13 and the communication unit 240 of the smartphone 200 is predetermined, and since each communication area 13A extends from the communication unit 13 at a predetermined radiation angle, there is an area where the communication areas 13A overlap each other. To do.
  • the number of overlapping communication areas 13A is shown from 0 to 3, and the larger the number, the darker gray.
  • the area where the number of overlapping communication areas 13A is 0 is an area that is not included in any of the communication areas 13A.
  • FIG. 2 shows an XY coordinate system with the center of the vehicle 10 in a plan view as the origin O.
  • the position of the smartphone 200 is obtained as a value in such an XY coordinate system.
  • FIG. 3 is a sequence diagram showing a process executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300.
  • the process shown in FIG. 3 is a process executed by the ECU 100 and the smartphone 200 as the automatic parking support system 300 when the vehicle 10 is autonomously parked in the parking position by the automatic parking system.
  • the ECU 100 executes the automatic parking support program.
  • the automatic parking support method executed by the ECU 100 is realized.
  • the action plan acquisition unit 120 acquires the trajectory of the vehicle 10 from the automatic parking ECU 20 (step S1).
  • the smartphone 200 outputs a beacon signal (step S21).
  • the position measurement unit 130 causes each communication unit 13 to receive the beacon signal for measurement in the AOA format of the smartphone 200 (step S2).
  • the position measurement unit 130 selects the communication unit 13 whose RSSI value is equal to or greater than a predetermined value capable of measuring the angle and position in the AOA format from the reception result of the beacon signal (step S3).
  • the predetermined value in step S3 is a predetermined level RSSI value at which the angle and position can be calculated in the AOA format.
  • step S3 if there is no communication unit 13 capable of measuring the angle and position in the AOA format, the communication unit 13 is not selected. In other words, in step S3, if there is no communication unit 13 capable of measuring the angle or position in the AOA format, 0 (zero) communication units 13 are selected.
  • the position measuring unit 130 determines how many communication units 13 can measure the angle and position in the AOA format (step S4).
  • the position measuring unit 130 determines that there are two or more communication units 13 capable of measuring the angle and position in the AOA format, the position measuring unit 130 obtains the position of the smartphone 200 in the AOA format based on the reception results of the two communication units 13 ( Step S5A).
  • the position measuring unit 130 obtains two angles representing the direction in which the smartphone 200 is located with respect to the two communication units 13 from the phase difference of the beacon signals detected by each of the two communication units 13.
  • the position of the smartphone 200 is determined by using the two angles and the distance between the two communication units 13.
  • the position of the smartphone 200 may be obtained as a value in the XY coordinate system shown in FIG.
  • the command generation unit 140 determines whether or not the position of the smartphone 200 obtained in step S5A is 4 m or more away from the vehicle 10 (step S6A).
  • the command generation unit 140 determines whether or not the vehicle 10 moves away from the smartphone 200 based on the trajectory of the vehicle 10 acquired by the action plan acquisition unit 120. (Step S7A). Whether or not the vehicle 10 moves away from the smartphone 200 may be determined based on the position of the smartphone 200 obtained in step S5A and the trajectory of the vehicle 10 represented by the action plan.
  • the command generation unit 140 determines that the vehicle 10 moves away from the smartphone 200 (S7A: YES)
  • the command generation unit 140 sends a message according to the positional relationship between the vehicle 10 and the smartphone 200 when the vehicle 10 moves away from the smartphone 200.
  • the command data to be displayed on the 200 is generated and transmitted to the smartphone 200 via the communication unit 13 (step S8A).
  • the command generation unit 140 determines that the vehicle 10 does not leave the smartphone 200 (S7A: NO)
  • the command generation unit 140 generates command data for displaying a message guiding the operator to approach the vehicle 10 on the smartphone 200.
  • the direction in which the smartphone 200 can exist with respect to the vehicle 10 is divided into three directions, front, rear, and side, and the vehicle 10 moves.
  • the direction other than the direction means the rear or side when the vehicle 10 is moving forward, and the front or side when the vehicle 10 is moving backward. Forward and reverse includes the case where the vehicle 10 moves forward and backward with a steering angle.
  • command data for displaying a message for guiding the smartphone 200 to approach the rear or side of the vehicle 10 may be generated.
  • command data for displaying a message instructing the smartphone 200 to move to the side of the vehicle 10 may be generated.
  • command data for displaying a message for guiding the smartphone 200 to approach the side of the vehicle 10 may be generated.
  • the smartphone 200 is on the side of the vehicle 10 and the vehicle 10 is moving forward or backward, command data for displaying a message for guiding the smartphone 200 to approach the side of the vehicle 10 may be generated. .. The specific message will be described later with reference to FIGS. 5 to 12.
  • the command notification unit 212 displays a message on the display 220 and outputs a notification sound from the speaker 230 based on the received command data (step S22).
  • the main control unit 110 determines whether or not parking is completed based on the action plan of the vehicle 10 acquired by the action plan acquisition unit 120 (step S9).
  • the automatic parking ECU 20 sets a flag indicating that parking is completed in the data representing the action plan, so that the main control unit 110 is operated by the action plan acquisition unit 120. It may be determined whether or not parking is completed by determining whether or not a flag indicating that parking is completed is set in the acquired action plan.
  • the main control unit 110 determines that parking is completed (S9: YES)
  • the main control unit 110 ends a series of processes (end).
  • step S9 NO
  • the main control unit 110 determines that parking is not completed (S9: NO)
  • the main control unit 110 returns the flow to step S1. This is because the parking is not completed, and the process of step S1 is restarted.
  • the smartphone 200 finishes the process of step S22, the smartphone 200 ends a series of processes (end).
  • the process from the start to the end is repeatedly executed every control cycle of the ECU 100 and the smartphone 200.
  • the command data for displaying the message guiding the operator on the smartphone 200 may be data representing the type of the message or data representing the message.
  • the data indicating the message type and the data indicating the message and the notification sound are stored in the memory 213 of the smartphone 200, and the smartphone 200 stores the data corresponding to the data indicating the message type.
  • the data representing the above may be output from the display 220 and the speaker 230. Further, the display 220 may simply display a message without outputting the notification sound from the speaker 230.
  • step S4 when the position measuring unit 130 determines that there is one communication unit 13 that can be measured in the AOA format, the angle at which one communication unit 13 receives the beacon signal and the RSSI value of the beacon signal.
  • the position of the smartphone 200 is obtained by using and (step S5B).
  • the position measuring unit 130 obtains an angle representing the direction in which the smartphone 200 is located with respect to one communication unit 13 from the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13, and one unit.
  • the approximate position of the vehicle 10 is obtained based on the angle of the communication unit 13 with respect to the communication unit 13 and the RSSI value. This is because the RSSI value indicates the approximate distance from the communication unit 13 to the smartphone 200.
  • the position obtained in step S5B is less accurate than the position obtained in the AOA format in step S5A, but it is possible to roughly determine where the smartphone 200 is located.
  • the command generation unit 140 determines whether or not the vehicle 10 moves away from the smartphone 200 (step S6B).
  • the process of step S6B is the same as that of step S7A.
  • the command generation unit 140 determines that the vehicle 10 is moving away from the smartphone 200 (S6B: YES)
  • the command generation unit 140 determines that the vehicle 10 is moving away from the smartphone 200 (S6B: YES), based on the position of the smartphone 200 obtained in step S5B and the trajectory of the vehicle 10 represented by the action plan.
  • the communication unit 13 that can measure in the AOA format determines whether or not the position of the smartphone 200 is in the two communication areas 13A (step S7B).
  • step S9 Since the position of the smartphone 200 is placed in the two communication areas 13A by the communication unit 13 that can measure in the AOA format by moving the vehicle 10, it is not necessary to move the operator of the smartphone 200, so that the command data is not generated. It is decided that the flow proceeds to step S9.
  • the command generation unit 140 determines that the communication unit 13 does not enter the two communication areas 13A (S7B: NO), it is based on the position of the smartphone 200 obtained in step S5B and the track of the vehicle 10 represented by the action plan. Then, the communication unit 13 that can measure in the AOA format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the communication unit 13 generates command data via the communication unit 13. Is transmitted to the smartphone 200 (step S8C).
  • step S6B determines in step S6B that the vehicle 10 does not leave the smartphone 200 (S6B: NO)
  • the position of the smartphone 200 obtained in step S5B and the trajectory of the vehicle 10 represented by the action plan determines whether or not the position of the smartphone 200 enters the two communication areas 13A due to the movement of the vehicle 10 (step S7C).
  • step S9 Since the position of the smartphone 200 is placed in the two communication areas 13A by the communication unit 13 that can measure in the AOA format by moving the vehicle 10, it is not necessary to move the operator of the smartphone 200, so that the command data is not generated. It is decided that the flow proceeds to step S9.
  • the command generation unit 140 determines that the communication unit 13 does not enter the two communication areas 13A (S7C: NO), it is based on the position of the smartphone 200 obtained in step S5B and the track of the vehicle 10 represented by the action plan. Then, the communication unit 13 that can measure in the AOA format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the communication unit 13 generates command data via the communication unit 13. Is transmitted to the smartphone 200 (step S8D).
  • step S4 when the position measuring unit 130 determines that the number of communication units 13 capable of measuring the angle and position in the AOA format is 0, the main control unit 110 has an RSSI value equal to or higher than a predetermined threshold value. Whether or not it is determined (step S5C).
  • the predetermined threshold values in step S5C are the communication area 13A in which the communication unit 13 that can measure in the AOA format is 0 in the immediate vicinity of the vehicle 10 shown in FIG. 2, and the communication unit 13 that can measure in the AOA format far from the vehicle 10. Is an RSSI value that distinguishes from 0 communication areas 13A.
  • the command generation unit 140 When the main control unit 110 determines that the RSSI value is equal to or higher than a predetermined threshold value (S5C: YES), the command generation unit 140 has a smartphone 200 in the communication area 13A in which the communication unit 13 that can measure in the AOA format has two communication areas 13A. Command data for displaying a message for guiding the operator to enter the position of is generated on the smartphone 200 and transmitted to the smartphone 200 via the communication unit 13 (step S8E).
  • a predetermined threshold value S5C: YES
  • the command generation unit 140 has a communication unit 13 capable of measuring in the AOA format in two communication areas 13A.
  • Command data for displaying a message for guiding the operator to enter the position of the smartphone 200 on the smartphone 200 is generated and transmitted to the smartphone 200 via the communication unit 13 (step S8F).
  • steps S8E and S8F the directions for guiding the operator are different, so the steps are separated.
  • command data is transmitted from the ECU 100 to the smartphone 200 as shown by the broken line.
  • the smartphone 200 is located in the area where the RSSI value of the beacon signal output by the communication unit 13 of the vehicle 10 is equal to or higher than the predetermined value, and the distance between the vehicle 10 and the smartphone 200 is a predetermined value (example).
  • the distance between the vehicle 10 and the smartphone 200 is a predetermined value (example).
  • command data is generated based on the relationship between the position and moving direction of the vehicle 10 and the position of the smartphone 200 and transmitted to the smartphone 200.
  • the smartphone 200 displays a message guiding the operator on the display 220 and outputs a notification sound from the speaker 230 based on the received command data.
  • the operator of the smartphone 200 can be guided within a predetermined distance (4 m as an example) from the vehicle 10.
  • an automatic parking support system 300 capable of remotely moving and operating the vehicle 10 within a predetermined range of the vehicle 10.
  • command data is sent so that the communication unit 13 that can measure in the AOA format guides the operator to two or more communication areas 13A. Since it is generated, the communication unit 13 that can measure in the AOA format can guide the operator to two or more areas.
  • the acceleration sensor 11A, the yaw rate sensor 11B, and the steering angle sensor 11C detect the acceleration, yaw rate, steering angle, and speed sensor 12 in the front-rear direction and the lateral direction of the vehicle 10 from the ECU 100 of the vehicle 10 to the smartphone 200.
  • the movement direction, the position of the smartphone 200, and the command data may be generated.
  • Such an operation unit may be any electronic device capable of wireless communication, and for example, a dedicated terminal may be used.
  • the mode of generating the command data after obtaining the position of the smartphone 200 by using the AOA format has been described with reference to FIG.
  • the position of the smartphone 200 may be obtained in the TOA (Time Of Arrival) format and command data may be generated.
  • TOA is also referred to as TOF (Time Of Flight).
  • FIG. 4 is a sequence diagram showing a modified example of the processing executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300.
  • the coordinates of the smartphone 200 are obtained in the AOA format, but in FIG. 4, the position is obtained in the TOA format.
  • the same steps as the processes shown in FIG. 3 will be assigned the same step numbers, and the description thereof will be omitted.
  • the processing of the ECU 100 shown in FIG. 4 is performed by the ECU 100 executing the automatic parking support program, and as a result, the automatic parking support method is realized.
  • step S1A when the action plan acquisition unit 120 executes the process of step S1, the position measurement unit 130 of the ECU 100 outputs a beacon signal for measurement in the TOA format to each communication unit 13 (step S1A).
  • the main control unit 211 of the smartphone 200 receives the beacon signal for measurement in the TOA format (step S20A).
  • the main control unit 211 of the smartphone 200 When the main control unit 211 of the smartphone 200 receives the beacon signal for measurement in the TOA format, it outputs the beacon signal for measurement in the TOA format (step S20B).
  • the position measurement unit 130 of the ECU 100 causes each communication unit 13 to receive a beacon signal for measurement in the TOA format transmitted from the smartphone 200 (step S1B).
  • the main control unit 211 of the smartphone 200 When the main control unit 211 of the smartphone 200 outputs the beacon signal for measurement in the TOA format, it transmits the beacon signal for measurement in the AOA format (step S21).
  • the position measurement unit 130 of the EUC 100 causes each communication unit 13 to receive a beacon signal for measurement in the AOA format transmitted from the smartphone 200 (step S2).
  • the position measurement unit 130 selects the communication unit 13 whose RSSI value is equal to or greater than a predetermined value capable of measuring the position and angle in the TOA format and the AOA format from the reception result of the beacon signal (step S3M).
  • the predetermined value in step S3M is a predetermined level RSSI value at which the angle and position can be calculated in the AOA format.
  • step S3M if there is no communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, the communication unit 13 is not selected. In other words, in step S3M, if there is no communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, 0 (zero) communication units 13 are selected.
  • the position measuring unit 130 determines how many communication units 13 can measure the position and angle in the TOA format and the AOA format (step S4M).
  • the position measuring unit 130 determines that there are two or more communication units 13 capable of measuring the position and angle in the TOA format and the AOA format, the position measuring unit 130 obtains the position of the smartphone 200 in the TOA format (step S5AM).
  • the two communication units 13 and the communication unit 240 of the smartphone 200 transmit and receive signals, which is required for signal transmission and reception. This is because two sets of distances between the communication unit 13 and the communication unit 240 can be calculated from the round-trip time to obtain XY coordinates representing the position of the smartphone 200.
  • the position of the smartphone 200 is obtained as a value in the XY coordinate system shown in FIG.
  • step S6A following step S5AM it is determined whether or not the position of the smartphone 200 obtained in step S5AM is 4 m or more away from the vehicle 10.
  • step S6A the processes of steps S7A, S8A or S8B, and S9 shown in FIG. 3 are performed.
  • step S4M when the position measuring unit 130 of the ECU 100 determines that there is one communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, the communication unit 13 communicates with the smartphone 200.
  • the distance from the communication unit 13 to the smartphone 200 calculated from the round-trip time required for transmitting and receiving signals with the unit 240, and the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13.
  • the position of the smartphone 200 is obtained by using the angle of the smartphone 200 with respect to one communication unit 13 obtained from (step S5BM).
  • step S5BM the distance to the smartphone 200 is calculated in the TOA format, and the angle of the smartphone 200 is calculated in the AOA format.
  • the position obtained in step S5BM is less accurate than the position obtained in step S5A, but it is possible to roughly determine where the smartphone 200 is located.
  • step S5BM When the process of step S5BM is completed, the main control unit 110 advances the flow to step S6A.
  • step S4M when the position measuring unit 130 of the ECU 100 determines that there are no communication units 13 capable of measuring the position and angle in the TOA format and the AOA format, the command generating unit 140 determines the TOA format and the AOA.
  • the communication unit 13 that can measure in the format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the smartphone 200 is generated via the communication unit 13.
  • Step S8E When the process of step S8E is completed, the main control unit 110 advances the flow to step S9.
  • the operator of the smartphone 200 can be guided within a predetermined distance (4 m as an example) from the vehicle 10.
  • an automatic parking support system 300 capable of remotely moving and operating the vehicle 10 within a predetermined range of the vehicle 10 in a form using position measurement in the TOA format and the AOA format. Can be provided.
  • step S5BM the distance to the smartphone 200 is obtained in the TOA format, and the angle of the smartphone 200 is obtained in the AOA format.
  • the angle is not obtained in the AOA format, but in the TOA format. The operator may be guided based on the desired distance to the smartphone 200, the position and orientation of the communication unit 13 that has received the beacon signal, and the action plan.
  • 5 to 12 are diagrams for explaining how to guide the operator by the command data.
  • the total length of the vehicle 10 is 4 m to 5 m, and the distance that the vehicle 10 moves by the automatic parking ECU 20 is about 0.01 m to 0.1 m as an example in one cycle of the control cycle of the ECU 100.
  • the smartphone 200 is located at a distance of 4 m or more from the front and rear communication units 13 on the right side of the vehicle 10 and in the communication area 13A having two communication units 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
  • FIG. 5 shows a case where the process proceeds to step S8A in the flow of FIG.
  • the smartphone 200 is located within 4 m from the front and rear communication units 13 on the right side of the vehicle 10, and is located in the communication area 13A having two communication units 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
  • FIG. 6 shows a case where steps S6A to S9 proceed in the flow of FIG.
  • the smartphone 200 is located behind the vehicle 10 on the right side in the communication area 13A having one communication unit 13 that can measure in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
  • FIG. 6 shows a case where steps S7B to S9 proceed in the flow of FIG.
  • the smartphone 200 is located behind the vehicle 10 on the right side in the communication area 13A having one communication unit 13 that can measure in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
  • FIG. 8 shows a case where the process proceeds to step S8C in the flow of FIG.
  • the smartphone 200 is located within 4 m from the communication unit 13 in front of the vehicle 10 on the right side, and is located in the communication area 13A having one communication unit 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
  • FIG. 9 shows a case where the process proceeds to step S8D in the flow of FIG.
  • the smartphone 200 is located within 4 m from the communication unit 13 in front of the vehicle 10 on the right side, and is located in the communication area 13A having one communication unit 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
  • FIG. 10 shows a case where the process proceeds from step S7B to step S9 in the flow of FIG.
  • the smartphone 200 is near the right side of the vehicle 10, and the communication unit 13 that can measure in the AOA format is located in the communication area 13A where there are no. Further, the vehicle 10 is moving forward while steering to the right or left.
  • FIG. 11 shows a case where the process proceeds from step S5C to step S8E in the flow of FIG.
  • the smartphone 200 is located far away on the right side of the vehicle 10, and the communication unit 13 that can measure in the AOA format is located in the communication area 13A where there are no. Further, the vehicle 10 is moving forward while steering to the right or left.
  • the RSSI value of the beacon signal received by the front and rear communication units 13 on the right side of the vehicle 10 is not equal to or higher than a predetermined threshold value (S5C: NO), so the vehicle moves closer to the vehicle 10 as shown by the arrow.
  • a message prompting the user to do so may be displayed on the smartphone 200.
  • FIG. 12 shows a case where the process proceeds from step S5C to step S8F in the flow of FIG.

Abstract

Provided are an automatic parking support system, an automatic parking support program, and an automatic parking support method capable of remotely moving and operating a vehicle within a predetermined range of the vehicle. The automatic parking support system comprises: an operation unit which can move and operate the vehicle by wireless communication from outside the vehicle; an action plan acquisition unit which acquires the action plan of the vehicle; a position measurement unit which measures the position of the operation unit with respect to the vehicle; and a command generation unit which, on the basis of the action plan acquired by the action plan acquisition unit and the position measured by the position measurement unit, generates a command for prompting the operator of the operation unit to move within the predetermined range of the vehicle, wherein the operator of the operation unit is notified of the command via the operation unit.

Description

自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法Automatic parking support system, automatic parking support program, and automatic parking support method
 本発明は、自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法に関する。 The present invention relates to an automatic parking support system, an automatic parking support program, and an automatic parking support method.
 従来より、車両に設けられた駐車支援用の第1センサを用いて、前記車両の駐車支援を行う駐車支援制御部と、前記第1センサによる有効検出範囲に基づく誘導表示を、前記車両に対する前方風景に重畳された状態にて表示装置に表示させる誘導表示制御部と、を備える駐車支援装置がある(例えば、特許文献1参照)。 Conventionally, a parking support control unit that assists parking of the vehicle and a guidance display based on an effective detection range by the first sensor are displayed in front of the vehicle by using the first sensor for parking support provided in the vehicle. There is a parking support device including a guidance display control unit that displays on a display device in a state of being superimposed on a landscape (see, for example, Patent Document 1).
国際公開第2017/179198号International Publication No. 2017/179198
 ところで、従来の駐車支援装置は、遠隔的に車両を移動操作するものではない。スマートフォンのような操作端末で車両を遠隔的に操作して車両が自立的に駐車位置に駐車する自動駐車システムでは、操作端末と車両とが無線通信可能な距離が限られる場合がある。 By the way, the conventional parking support device does not remotely control the movement of the vehicle. In an automatic parking system in which a vehicle is autonomously parked in a parking position by remotely operating the vehicle with an operation terminal such as a smartphone, the distance between the operation terminal and the vehicle may be limited.
 そこで、車両の所定範囲内で遠隔的に車両を移動操作可能な自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法を提供することを目的とする。 Therefore, it is an object of the present invention to provide an automatic parking support system, an automatic parking support program, and an automatic parking support method that can remotely move and operate a vehicle within a predetermined range of the vehicle.
 本発明の実施の形態の自動駐車支援システムは、車両の外から無線通信によって車両を移動操作可能な操作部と、前記車両の行動計画を取得する行動計画取得部と、前記車両に対する前記操作部の位置を測定する位置測定部と、前記行動計画取得部によって取得される行動計画と、前記位置測定部によって測定される位置とに基づいて前記車両の所定範囲内への前記操作部の操作者の移動を促す指令を生成する指令生成部とを含み、前記操作部を介して前記指令を前記操作部の操作者に報知する。 The automatic parking support system according to the embodiment of the present invention includes an operation unit capable of moving and operating the vehicle from outside the vehicle by wireless communication, an action plan acquisition unit for acquiring the action plan of the vehicle, and the operation unit for the vehicle. The operator of the operation unit within a predetermined range of the vehicle based on the position measurement unit that measures the position of the vehicle, the action plan acquired by the action plan acquisition unit, and the position measured by the position measurement unit. It includes a command generation unit that generates a command for urging the movement of the vehicle, and notifies the operator of the operation unit of the command via the operation unit.
 車両の所定範囲内で遠隔的に車両を移動操作可能な自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法を提供することができる。 It is possible to provide an automatic parking support system, an automatic parking support program, and an automatic parking support method that can remotely move and operate the vehicle within a predetermined range of the vehicle.
実施の形態の自動駐車支援システム300を示す図である。It is a figure which shows the automatic parking support system 300 of embodiment. 車両10の周囲の通信領域13Aを示す図である。It is a figure which shows the communication area 13A around the vehicle 10. 自動駐車支援システム300においてECU100とスマートフォン200が実行する処理を示すシーケンス図である。It is a sequence diagram which shows the process executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300. 自動駐車支援システム300においてECU100とスマートフォン200が実行する処理の変形例を示すシーケンス図である。It is a sequence diagram which shows the modification of the process executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data. 指令データによる操作者の誘導の仕方を説明する図である。It is a figure explaining the method of guiding an operator by a command data.
 以下、本発明の自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法を適用した実施の形態について説明する。 Hereinafter, embodiments to which the automatic parking support system, the automatic parking support program, and the automatic parking support method of the present invention are applied will be described.
 <実施の形態>
 図1は、実施の形態の自動駐車支援システム300を示す図である。自動駐車支援システム300は、車両10に搭載されるECU(Electronic Control Unit:電子制御装置)100と、スマートフォン200とを含む。スマートフォン200は、車両10の外から無線通信によって車両10を移動操作可能な操作部の一例である。
<Embodiment>
FIG. 1 is a diagram showing an automatic parking support system 300 of the embodiment. The automatic parking support system 300 includes an ECU (Electronic Control Unit) 100 mounted on the vehicle 10 and a smartphone 200. The smartphone 200 is an example of an operation unit capable of moving and operating the vehicle 10 by wireless communication from outside the vehicle 10.
 自動駐車支援システム300は、スマートフォン200が車両10に搭載されたECU100に対して無線通信で遠隔的に指令を送信することによって車両10が自立的に駐車位置に駐車する自動駐車システムにおける駐車処理を支援する装置である。このような自動駐車システムに必要な機能は、一例としてECU100及びスマートフォン200に搭載されるが、ここでは詳細な説明を省略する。 The automatic parking support system 300 performs parking processing in an automatic parking system in which the vehicle 10 autonomously parks in a parking position by remotely transmitting a command to the ECU 100 mounted on the vehicle 10 by wireless communication. It is a device to support. The functions required for such an automatic parking system are installed in the ECU 100 and the smartphone 200 as an example, but detailed description thereof will be omitted here.
 車両10は、自動駐車支援システム300に関連する構成要素として、ECU100、加速度センサ11A、ヨーレートセンサ11B、ステアリング操舵角センサ11C、速度センサ12、通信部13、及び自動駐車ECU20を含む。自動駐車ECU20は、スマートフォン200から送信される指令に基づき、図示しないカメラや超音波センサ等で検出される空き駐車スペースに車両10を自動駐車する。 The vehicle 10 includes an ECU 100, an acceleration sensor 11A, a yaw rate sensor 11B, a steering angle sensor 11C, a speed sensor 12, a communication unit 13, and an automatic parking ECU 20 as components related to the automatic parking support system 300. The automatic parking ECU 20 automatically parks the vehicle 10 in an empty parking space detected by a camera, an ultrasonic sensor, or the like (not shown) based on a command transmitted from the smartphone 200.
 加速度センサ11Aは、車両10の前後方向及び横方向における加速度を検出できる加速度センサであればよい。加速度センサ11Aは、例えば、MEMS(Micro Electro Mechanical Systems)による容量型の加速度センサを用いることができる。 The acceleration sensor 11A may be any acceleration sensor capable of detecting acceleration in the front-rear direction and the lateral direction of the vehicle 10. As the acceleration sensor 11A, for example, a capacitive acceleration sensor by MEMS (Micro Electro Mechanical Systems) can be used.
 ヨーレートセンサ11Bは、車両10の車両の垂直軸の周りの角速度(ヨーレート)を測定する装置であり、例えばジャイロスコープ装置である。 The yaw rate sensor 11B is a device for measuring the angular velocity (yaw rate) of the vehicle 10 around the vertical axis of the vehicle, and is, for example, a gyroscope device.
 ステアリング操舵角センサ11Cは、車両10の操舵角を検出するセンサであり、例えばエンコーダを用いることができる。 The steering angle sensor 11C is a sensor that detects the steering angle of the vehicle 10, and an encoder can be used, for example.
 速度センサ12は、車両10の前進時又は後進時の車速を検出するセンサである。通信部13は、スマートフォン200との間で指令等のデータを送信又は受信するための通信部であり、一例としてBluetooth(登録商標)規格の近距離無線通信器である。通信部13は、車両10に複数設けられている。各通信部13は複数のアンテナを有する。なお、通信部13は、Bluetoothに限らず、WLAN(Wireless Local Area Network)やその他の規格の通信器等であってもよい。また進行方向の前進および後退を検出するために、ギアのシフト制御が行われたことを検知するギアシフト制御検知センサ14と、R(Reverse)ポジションになったことを検知するRポジション検知センサ15とを備えていてもよい。 The speed sensor 12 is a sensor that detects the vehicle speed when the vehicle 10 is moving forward or backward. The communication unit 13 is a communication unit for transmitting or receiving data such as a command to and from the smartphone 200, and is, for example, a Bluetooth (registered trademark) standard short-range wireless communication device. A plurality of communication units 13 are provided in the vehicle 10. Each communication unit 13 has a plurality of antennas. The communication unit 13 is not limited to Bluetooth, and may be a communication device of WLAN (Wireless Local Area Network) or other standards. Further, in order to detect forward and backward movements in the traveling direction, a gear shift control detection sensor 14 that detects that gear shift control has been performed, and an R position detection sensor 15 that detects that the R (Reverse) position has been reached. May be provided.
 ECU100は、自動駐車支援システム300に用いられるECUである。車両10にはECU100以外にも種々のECUが搭載されており、ECU100と車載ネットワークを介して通信可能に接続されている。加速度センサ11A、ヨーレートセンサ11B、ステアリング操舵角センサ11C、速度センサ12、及び通信部13は、ECU100以外のECUに接続されていて、ECU100以外のECU及び車載ネットワークを介してECU100と通信可能に接続されていてもよいし、車載ネットワークを介して直接的にECU100に接続されていてもよい。 The ECU 100 is an ECU used in the automatic parking support system 300. In addition to the ECU 100, various ECUs are mounted on the vehicle 10, and are connected to the ECU 100 so as to be able to communicate with each other via an in-vehicle network. The acceleration sensor 11A, yaw rate sensor 11B, steering angle sensor 11C, speed sensor 12, and communication unit 13 are connected to an ECU other than the ECU 100, and are communicably connected to the ECU 100 via an ECU other than the ECU 100 and an in-vehicle network. It may be directly connected to the ECU 100 via an in-vehicle network.
 ECU100は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び内部バス等を含むコンピュータによって実現される。ECU100は、主制御部110、行動計画取得部120、位置測定部130、指令生成部140、及びメモリ150を有する。主制御部110、行動計画取得部120、位置測定部130、指令生成部140は、ECU100が実行する自動駐車支援プログラムの機能(ファンクション)を機能ブロックとして示したものである。また、メモリ150は、ECU100のメモリを機能的に表したものである。 The ECU 100 is realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like. The ECU 100 includes a main control unit 110, an action plan acquisition unit 120, a position measurement unit 130, a command generation unit 140, and a memory 150. The main control unit 110, the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140 show the function of the automatic parking support program executed by the ECU 100 as a functional block. Further, the memory 150 functionally represents the memory of the ECU 100.
 主制御部110は、ECU100の制御処理を統括する処理部であり、行動計画取得部120、位置測定部130、及び指令生成部140が実行する処理以外の処理を実行する。 The main control unit 110 is a processing unit that controls the control processing of the ECU 100, and executes processing other than the processing executed by the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140.
 行動計画取得部120は、自動駐車ECU20から自動駐車における車両10の一連の行動による車両10の軌道を取得する。車両10の軌道は車両10の行動計画を表し、行動計画は、車両が前後左右のどのような速度や舵角でどれだけ移動するかを表す。 The action plan acquisition unit 120 acquires the trajectory of the vehicle 10 by a series of actions of the vehicle 10 in the automatic parking from the automatic parking ECU 20. The track of the vehicle 10 represents the action plan of the vehicle 10, and the action plan represents how much the vehicle moves at what speed and steering angle in the front-rear and left-right directions.
 位置測定部130は、一例としてAOA(Angle Of Arrival)形式でスマートフォン200の測位を行い、車両10の周囲でスマートフォン200が存在する位置を求める。AOA形式の場合は、位置測定部130は、1個の通信部13の複数のアンテナで受信されるビーコン信号の位相差から、1個の通信部13に対してスマートフォン200が位置する方向を表す角度を求め、1個の通信部13に対する角度と、RSSI値とに基づいて車両10の大凡の位置を求める。RSSI値によって通信部13からスマートフォン200までの大凡の距離が分かるからである。 The position measurement unit 130 positions the smartphone 200 in the AOA (Angle Of Arrival) format as an example, and obtains the position where the smartphone 200 exists around the vehicle 10. In the case of the AOA format, the position measuring unit 130 indicates the direction in which the smartphone 200 is located with respect to one communication unit 13 from the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13. The angle is obtained, and the approximate position of the vehicle 10 is obtained based on the angle with respect to one communication unit 13 and the RSSI value. This is because the RSSI value indicates the approximate distance from the communication unit 13 to the smartphone 200.
 また、位置測定部130は、2つの通信部13の各々によって検出されるビーコン信号の位相差から、2つの通信部13に対してスマートフォン200が位置する方向を表す2つの角度を求め、2つの角度と、2つの通信部13の位置関係(2つの通信部13の間の距離)とを用いて、スマートフォン200の位置を求める。 Further, the position measuring unit 130 obtains two angles representing the direction in which the smartphone 200 is located with respect to the two communication units 13 from the phase difference of the beacon signals detected by each of the two communication units 13, and two. The position of the smartphone 200 is obtained by using the angle and the positional relationship between the two communication units 13 (distance between the two communication units 13).
 指令生成部140は、行動計画取得部120によって算出される車両10の軌道と、位置測定部130によって測定されるスマートフォン200が存在する位置とに基づいて車両10の所定範囲内への操作者の移動を促す指令を表す指令データを生成する。所定範囲は、一例として各通信部13から4m以内の範囲である。また、指令データは、例えば「車両の側方に近づいて下さい」又は「車両の後方に近づいて下さい」等のメッセージを表す指令の一例である。 The command generation unit 140 of the operator within a predetermined range of the vehicle 10 based on the trajectory of the vehicle 10 calculated by the action plan acquisition unit 120 and the position where the smartphone 200 measured by the position measurement unit 130 exists. Generates command data that represents a command that encourages movement. The predetermined range is, for example, a range within 4 m from each communication unit 13. Further, the command data is an example of a command representing a message such as "Please approach the side of the vehicle" or "Please approach the rear of the vehicle".
 メモリ150は、主制御部110、行動計画取得部120、位置測定部130、指令生成部140が上述のような処理を実行するために必要な自動駐車支援プログラムやデータ等を格納する。 The memory 150 stores automatic parking support programs, data, and the like necessary for the main control unit 110, the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140 to execute the above-mentioned processing.
 スマートフォン200は、自動駐車支援システム300に関連する構成要素として、制御装置210、ディスプレイ220、スピーカ230、通信部240、及びバイブレータ250を含む。 The smartphone 200 includes a control device 210, a display 220, a speaker 230, a communication unit 240, and a vibrator 250 as components related to the automatic parking support system 300.
 制御装置210は、主制御部211、指令報知部212、及びメモリ213を有する。 The control device 210 has a main control unit 211, a command notification unit 212, and a memory 213.
 主制御部211は、制御装置210の制御処理を統括する処理部であり、指令報知部212が実行する処理以外の処理を実行する。 The main control unit 211 is a processing unit that controls the control processing of the control device 210, and executes processing other than the processing executed by the command notification unit 212.
 指令報知部212は、通信部240を介して車両10から指令データを受け取ると、ディスプレイ220に指令データが表すメッセージを表示させるとともに、メッセージを表示したことをスマートフォン200の操作者に通知する通知音をスピーカ230から出力(報知)させる。なお報知については、スピーカ230による音声に替えてバイブレータ250による振動であってもよい。 When the command notification unit 212 receives the command data from the vehicle 10 via the communication unit 240, the command notification unit 212 displays the message represented by the command data on the display 220 and notifies the operator of the smartphone 200 that the message has been displayed. Is output (notified) from the speaker 230. The notification may be vibration by the vibrator 250 instead of the voice by the speaker 230.
 メモリ213は、指令報知部212が上述のような処理を実行するために必要なプログラムやデータ等を格納する。また、通信部240を介して車両10から受信した指令データを一時的に格納する。 The memory 213 stores programs, data, and the like necessary for the command notification unit 212 to execute the above-mentioned processing. Further, the command data received from the vehicle 10 via the communication unit 240 is temporarily stored.
 ディスプレイ220は、例えば、液晶ディスプレイパネルであり、タッチパネルと一体化されている。ディスプレイ220は、スマートフォン200の操作を受け付けるとともに、操作内容に応じた画像等を表示する。また、ディスプレイ220は、自動駐車システムにおいて操作者が操作指令を入力する入力部としての役割も担う。 The display 220 is, for example, a liquid crystal display panel and is integrated with a touch panel. The display 220 accepts the operation of the smartphone 200 and displays an image or the like according to the operation content. The display 220 also serves as an input unit for the operator to input an operation command in the automatic parking system.
 スピーカ230は、スマートフォン200の操作内容に応じた音声等を出力する。また、スピーカ230は、ディスプレイ220に指令データが表すメッセージが表示されたことを操作者に通知する通知音を出力する。 The speaker 230 outputs voice or the like according to the operation content of the smartphone 200. Further, the speaker 230 outputs a notification sound for notifying the operator that the message represented by the command data is displayed on the display 220.
 通信部240は、車両10のECU100との間で指令等のデータを送信又は受信するための通信部であり、一例としてBluetooth(登録商標)規格の近距離無線通信器である。なお、通信部240は、Bluetoothに限らず、WLANやその他の規格の通信器等であってもよい。 The communication unit 240 is a communication unit for transmitting or receiving data such as a command with the ECU 100 of the vehicle 10, and is, for example, a Bluetooth (registered trademark) standard short-range wireless communication device. The communication unit 240 is not limited to Bluetooth, and may be a communication device of WLAN or other standards.
 バイブレータ250は、スマートフォン200の筐体に振動を発生させる振動素子である。バイブレータ250は、例えば、着信、メールの受信、上述のメッセージの表示等を振動で利用者に報知する場合に駆動される。 The vibrator 250 is a vibrating element that generates vibration in the housing of the smartphone 200. The vibrator 250 is driven, for example, when notifying the user of an incoming call, receiving an e-mail, displaying the above-mentioned message, or the like by vibration.
 図2は、車両10の周囲の通信領域13Aを示す図である。通信領域13Aは、車両10の通信部13がスマートフォン200が出力するビーコン信号のRSSI(Received Signal Strength Indicator:受信信号強度)値が所定値以上になる領域であり、車両10がスマートフォン200を検出可能な範囲である。このような通信領域13Aの範囲は、例えば法律等によって定められており、ここでは一例として各通信部13から6mの範囲内である。なお、図2には、説明の便宜上、車両10の前方と右側方の通信領域13Aを示す。 FIG. 2 is a diagram showing a communication area 13A around the vehicle 10. The communication area 13A is an area in which the RSSI (Received Signal Strength Indicator) value of the beacon signal output by the communication unit 13 of the vehicle 10 is equal to or higher than a predetermined value, and the vehicle 10 can detect the smartphone 200. Range. The range of such a communication area 13A is defined by, for example, a law, and here, as an example, it is within the range of each communication unit 13 to 6 m. Note that FIG. 2 shows the communication areas 13A on the front side and the right side of the vehicle 10 for convenience of explanation.
 車両10のボディの四隅には、複数の通信部13が設けられている。図2では、一例として8つの通信部13を示す。車両10の前方の左右端部には通信部13が1つずつ設けられ、車両10の後方の左右端部には通信部13が1つずつ設けられ、車両10の左側方の前後端部には通信部13が1つずつ設けられ、車両10の右側方の前後端部には通信部13が1つずつ設けられている。 A plurality of communication units 13 are provided at the four corners of the body of the vehicle 10. FIG. 2 shows eight communication units 13 as an example. One communication unit 13 is provided at the front left and right ends of the vehicle 10, one communication unit 13 is provided at each rear left and right end of the vehicle 10, and one communication unit 13 is provided at the left front and rear ends of the vehicle 10. Is provided with one communication unit 13 at a time, and one communication unit 13 is provided at each of the front and rear ends on the right side of the vehicle 10.
 通信部13とスマートフォン200の通信部240の通信出力は予め決められており、各通信領域13Aは、通信部13から所定の放射角度で広がっているため、通信領域13A同士が重複する領域が存在する。図2では、通信領域13Aが重なる数を0個から3個まで示し、数が多いほど濃いグレーで示す。通信領域13Aが重なる数が0個の領域は、いずれの通信領域13Aにも含まれない領域である。 The communication output of the communication unit 13 and the communication unit 240 of the smartphone 200 is predetermined, and since each communication area 13A extends from the communication unit 13 at a predetermined radiation angle, there is an area where the communication areas 13A overlap each other. To do. In FIG. 2, the number of overlapping communication areas 13A is shown from 0 to 3, and the larger the number, the darker gray. The area where the number of overlapping communication areas 13A is 0 is an area that is not included in any of the communication areas 13A.
 また、図2には、車両10の平面視における中心を原点OとしたXY座標系を示す。スマートフォン200の位置は、このようなXY座標系の値として求められる。 Further, FIG. 2 shows an XY coordinate system with the center of the vehicle 10 in a plan view as the origin O. The position of the smartphone 200 is obtained as a value in such an XY coordinate system.
 図3は、自動駐車支援システム300においてECU100とスマートフォン200が実行する処理を示すシーケンス図である。図3に示す処理は、自動駐車システムによって車両10が自立的に駐車位置に駐車する駐車処理が行われているときに、自動駐車支援システム300としてのECU100及びスマートフォン200が実行する処理である。このときにECU100は自動駐車支援プログラムを実行する。ECU100が自動駐車支援プログラムを実行することにより、ECU100によって実行される自動駐車支援方法が実現される。 FIG. 3 is a sequence diagram showing a process executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300. The process shown in FIG. 3 is a process executed by the ECU 100 and the smartphone 200 as the automatic parking support system 300 when the vehicle 10 is autonomously parked in the parking position by the automatic parking system. At this time, the ECU 100 executes the automatic parking support program. When the ECU 100 executes the automatic parking support program, the automatic parking support method executed by the ECU 100 is realized.
 まず、ECU100側において、行動計画取得部120は、自動駐車ECU20から車両10の軌道を取得する(ステップS1)。 First, on the ECU 100 side, the action plan acquisition unit 120 acquires the trajectory of the vehicle 10 from the automatic parking ECU 20 (step S1).
 次に、スマートフォン200はビーコン信号を出力する(ステップS21)。 Next, the smartphone 200 outputs a beacon signal (step S21).
 また、ECU100側において、位置測定部130は、各通信部13にスマートフォン200のAOA形式での測定用のビーコン信号を受信させる(ステップS2)。 Further, on the ECU 100 side, the position measurement unit 130 causes each communication unit 13 to receive the beacon signal for measurement in the AOA format of the smartphone 200 (step S2).
 位置測定部130は、ビーコン信号の受信結果から、RSSI値がAOA形式で角度や位置を測定可能な所定値以上の通信部13を選択する(ステップS3)。ステップS3における所定値は、AOA形式で角度や位置を計算可能な所定レベルのRSSI値である。 The position measurement unit 130 selects the communication unit 13 whose RSSI value is equal to or greater than a predetermined value capable of measuring the angle and position in the AOA format from the reception result of the beacon signal (step S3). The predetermined value in step S3 is a predetermined level RSSI value at which the angle and position can be calculated in the AOA format.
 なお、ステップS3では、AOA形式で角度や位置を測定可能な通信部13が存在しない場合には、通信部13の選択は行われない。換言すれば、ステップS3では、AOA形式で角度や位置を測定可能な通信部13が存在しない場合には、0(ゼロ)個の通信部13が選択される。 In step S3, if there is no communication unit 13 capable of measuring the angle and position in the AOA format, the communication unit 13 is not selected. In other words, in step S3, if there is no communication unit 13 capable of measuring the angle or position in the AOA format, 0 (zero) communication units 13 are selected.
 位置測定部130は、AOA形式で角度や位置を測定可能な通信部13が幾つあるかを判定する(ステップS4)。 The position measuring unit 130 determines how many communication units 13 can measure the angle and position in the AOA format (step S4).
 位置測定部130は、AOA形式で角度や位置を測定可能な通信部13が2個以上あると判定すると、2個の通信部13の受信結果に基づいてAOA形式でスマートフォン200の位置を求める(ステップS5A)。 When the position measuring unit 130 determines that there are two or more communication units 13 capable of measuring the angle and position in the AOA format, the position measuring unit 130 obtains the position of the smartphone 200 in the AOA format based on the reception results of the two communication units 13 ( Step S5A).
 より具体的には、位置測定部130は、2つの通信部13の各々によって検出されるビーコン信号の位相差から2つの通信部13に対してスマートフォン200が位置する方向を表す2つの角度を求め、2つの角度と、2つの通信部13の間の距離とを用いて、スマートフォン200の位置を求める。スマートフォン200の位置は、図2に示すXY座標系の値として求められればよい。 More specifically, the position measuring unit 130 obtains two angles representing the direction in which the smartphone 200 is located with respect to the two communication units 13 from the phase difference of the beacon signals detected by each of the two communication units 13. The position of the smartphone 200 is determined by using the two angles and the distance between the two communication units 13. The position of the smartphone 200 may be obtained as a value in the XY coordinate system shown in FIG.
 指令生成部140は、ステップS5Aで求めたスマートフォン200の位置が車両10から4m以上離れているかどうかを判定する(ステップS6A)。 The command generation unit 140 determines whether or not the position of the smartphone 200 obtained in step S5A is 4 m or more away from the vehicle 10 (step S6A).
 指令生成部140は、4m以上離れている(S6A:YES)と判定すると、行動計画取得部120によって取得される車両10の軌道に基づき、車両10がスマートフォン200から離れて行くかどうかを判定する(ステップS7A)。車両10がスマートフォン200から離れて行くかどうかは、ステップS5Aで求めたスマートフォン200の位置と、行動計画が表す車両10の軌道とに基づいて判定すればよい。 When the command generation unit 140 determines that the distance is 4 m or more (S6A: YES), the command generation unit 140 determines whether or not the vehicle 10 moves away from the smartphone 200 based on the trajectory of the vehicle 10 acquired by the action plan acquisition unit 120. (Step S7A). Whether or not the vehicle 10 moves away from the smartphone 200 may be determined based on the position of the smartphone 200 obtained in step S5A and the trajectory of the vehicle 10 represented by the action plan.
 指令生成部140は、車両10がスマートフォン200から離れて行く(S7A:YES)と判定すると、車両10がスマートフォン200から離れて行く場合の車両10とスマートフォン200との位置関係に応じたメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8A)。 When the command generation unit 140 determines that the vehicle 10 moves away from the smartphone 200 (S7A: YES), the command generation unit 140 sends a message according to the positional relationship between the vehicle 10 and the smartphone 200 when the vehicle 10 moves away from the smartphone 200. The command data to be displayed on the 200 is generated and transmitted to the smartphone 200 via the communication unit 13 (step S8A).
 また、指令生成部140は、車両10がスマートフォン200から離れて行かない(S7A:NO)と判定すると、車両10に近づくように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8B)。 Further, when the command generation unit 140 determines that the vehicle 10 does not leave the smartphone 200 (S7A: NO), the command generation unit 140 generates command data for displaying a message guiding the operator to approach the vehicle 10 on the smartphone 200. , Is transmitted to the smartphone 200 via the communication unit 13 (step S8B).
 ステップS8A及びS8Bで生成する指令データによってスマートフォン200に表示されるメッセージにおいては、車両10に対してスマートフォン200が存在しうる方向を前方、後方、及び側方の3つに分け、車両10の移動方向以外の方向とは、車両10が前進している場合には後方又は側方をいい、車両10が後進している場合には前方又は側方をいう。前進及び後進は、舵角が付いた状態で車両10が前進及び後進する場合を含む。 In the message displayed on the smartphone 200 by the command data generated in steps S8A and S8B, the direction in which the smartphone 200 can exist with respect to the vehicle 10 is divided into three directions, front, rear, and side, and the vehicle 10 moves. The direction other than the direction means the rear or side when the vehicle 10 is moving forward, and the front or side when the vehicle 10 is moving backward. Forward and reverse includes the case where the vehicle 10 moves forward and backward with a steering angle.
 例えば、車両10が前進していてスマートフォン200が車両10の後方にある場合は、車両10の後方又は側方に近づくように誘導するメッセージをスマートフォン200に表示させる指令データを生成すればよい。また、車両10が前進していてスマートフォン200が車両10の前方にある場合は、車両10の側方に移動するように誘導するメッセージをスマートフォン200に表示させる指令データを生成すればよい。また、スマートフォン200が車両10の側方にあって車両10が前進又は後進している場合は、車両10の側方に近づくように誘導するメッセージをスマートフォン200に表示させる指令データを生成すればよい。なお、具体的なメッセージについては、図5乃至図12を用いて後述する。 For example, when the vehicle 10 is moving forward and the smartphone 200 is behind the vehicle 10, command data for displaying a message for guiding the smartphone 200 to approach the rear or side of the vehicle 10 may be generated. Further, when the vehicle 10 is moving forward and the smartphone 200 is in front of the vehicle 10, command data for displaying a message instructing the smartphone 200 to move to the side of the vehicle 10 may be generated. Further, when the smartphone 200 is on the side of the vehicle 10 and the vehicle 10 is moving forward or backward, command data for displaying a message for guiding the smartphone 200 to approach the side of the vehicle 10 may be generated. .. The specific message will be described later with reference to FIGS. 5 to 12.
 この結果、スマートフォン200において、指令報知部212は、受信した指令データに基づき、ディスプレイ220にメッセージを表示するとともにスピーカ230から通知音を出力する(ステップS22)。 As a result, in the smartphone 200, the command notification unit 212 displays a message on the display 220 and outputs a notification sound from the speaker 230 based on the received command data (step S22).
 ステップS8A及びS8Bの処理が終了すると、主制御部110は、行動計画取得部120によって取得される車両10の行動計画に基づき、駐車が完了したかどうかを判定する(ステップS9)。車両10の駐車が完了した場合には、一例として自動駐車ECU20は駐車が完了したことを表すフラグを行動計画を表すデータの中に設定するため、主制御部110は、行動計画取得部120によって取得される行動計画の中に駐車が完了したことを表すフラグが設定されているかどうかを判別することによって、駐車が完了したかどうかを判定すればよい。 When the processing of steps S8A and S8B is completed, the main control unit 110 determines whether or not parking is completed based on the action plan of the vehicle 10 acquired by the action plan acquisition unit 120 (step S9). When the parking of the vehicle 10 is completed, as an example, the automatic parking ECU 20 sets a flag indicating that parking is completed in the data representing the action plan, so that the main control unit 110 is operated by the action plan acquisition unit 120. It may be determined whether or not parking is completed by determining whether or not a flag indicating that parking is completed is set in the acquired action plan.
 主制御部110は、駐車が完了した(S9:YES)と判定すると、一連の処理を終了する(エンド)。 When the main control unit 110 determines that parking is completed (S9: YES), the main control unit 110 ends a series of processes (end).
 また、主制御部110は、駐車が完了していない(S9:NO)と判定すると、フローをステップS1にリターンする。駐車が完了していないため、ステップS1の処理からやり直すためである。 Further, when the main control unit 110 determines that parking is not completed (S9: NO), the main control unit 110 returns the flow to step S1. This is because the parking is not completed, and the process of step S1 is restarted.
 また、スマートフォン200は、ステップS22の処理を終えると、一連の処理を終了する(エンド)。スタートからエンドまでの処理は、ECU100及びスマートフォン200の制御周期毎に繰り返し実行される。 Further, when the smartphone 200 finishes the process of step S22, the smartphone 200 ends a series of processes (end). The process from the start to the end is repeatedly executed every control cycle of the ECU 100 and the smartphone 200.
 なお、操作者を誘導するメッセージをスマートフォン200に表示させる指令データは、メッセージの種類を表すデータであってもよく、メッセージを表すデータであってもよい。前者の場合は、メッセージの種類を表すデータと、メッセージ及び通知音を表すデータとを関連付けたデータをスマートフォン200のメモリ213に格納しておき、スマートフォン200がメッセージの種類を表すデータに応じたメッセージを表すデータをディスプレイ220及びスピーカ230から出力すればよい。また、スピーカ230から通知音を出力せずに、ディスプレイ220にメッセージを表示させるだけでもよい。 Note that the command data for displaying the message guiding the operator on the smartphone 200 may be data representing the type of the message or data representing the message. In the former case, the data indicating the message type and the data indicating the message and the notification sound are stored in the memory 213 of the smartphone 200, and the smartphone 200 stores the data corresponding to the data indicating the message type. The data representing the above may be output from the display 220 and the speaker 230. Further, the display 220 may simply display a message without outputting the notification sound from the speaker 230.
 また、ステップS4において、位置測定部130は、AOA形式で測定可能な通信部13が1個であると判定すると、1個の通信部13がビーコン信号を受信する角度と、ビーコン信号のRSSI値とを用いて、スマートフォン200の位置を求める(ステップS5B)。位置測定部130は、1個の通信部13の複数のアンテナで受信されるビーコン信号の位相差から、1個の通信部13に対してスマートフォン200が位置する方向を表す角度を求め、1個の通信部13に対する角度と、RSSI値とに基づいて車両10の大凡の位置を求める。RSSI値によって通信部13からスマートフォン200までの大凡の距離が分かるからである。ステップS5Bで求まる位置は、ステップS5AでAOA形式で求まる位置に比べると精度が低いが、大凡どの辺りスマートフォン200があるかを求めることができる。 Further, in step S4, when the position measuring unit 130 determines that there is one communication unit 13 that can be measured in the AOA format, the angle at which one communication unit 13 receives the beacon signal and the RSSI value of the beacon signal. The position of the smartphone 200 is obtained by using and (step S5B). The position measuring unit 130 obtains an angle representing the direction in which the smartphone 200 is located with respect to one communication unit 13 from the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13, and one unit. The approximate position of the vehicle 10 is obtained based on the angle of the communication unit 13 with respect to the communication unit 13 and the RSSI value. This is because the RSSI value indicates the approximate distance from the communication unit 13 to the smartphone 200. The position obtained in step S5B is less accurate than the position obtained in the AOA format in step S5A, but it is possible to roughly determine where the smartphone 200 is located.
 指令生成部140は、車両10がスマートフォン200から離れて行くかどうかを判定する(ステップS6B)。ステップS6Bの処理は、ステップS7Aと同様である。 The command generation unit 140 determines whether or not the vehicle 10 moves away from the smartphone 200 (step S6B). The process of step S6B is the same as that of step S7A.
 指令生成部140は、車両10がスマートフォン200から離れて行く(S6B:YES)と判定すると、ステップS5Bで求めたスマートフォン200の位置と、行動計画が表す車両10の軌道とに基づいて、車両10の移動によってAOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るかどうかを判定する(ステップS7B)。 When the command generation unit 140 determines that the vehicle 10 is moving away from the smartphone 200 (S6B: YES), the command generation unit 140 determines that the vehicle 10 is moving away from the smartphone 200 (S6B: YES), based on the position of the smartphone 200 obtained in step S5B and the trajectory of the vehicle 10 represented by the action plan. The communication unit 13 that can measure in the AOA format determines whether or not the position of the smartphone 200 is in the two communication areas 13A (step S7B).
 指令生成部140によって通信部13が2個の通信領域13Aに入る(S7B:YES)と判定されると、主制御部110はフローをステップS9に進行させる。車両10の移動によってAOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るため、スマートフォン200の操作者を移動させる必要はないため、指令データを生成せずにフローをステップS9に進行させることとしたものである。 When the command generation unit 140 determines that the communication unit 13 enters the two communication areas 13A (S7B: YES), the main control unit 110 advances the flow to step S9. Since the position of the smartphone 200 is placed in the two communication areas 13A by the communication unit 13 that can measure in the AOA format by moving the vehicle 10, it is not necessary to move the operator of the smartphone 200, so that the command data is not generated. It is decided that the flow proceeds to step S9.
 指令生成部140は、通信部13が2個の通信領域13Aに入らない(S7B:NO)と判定すると、ステップS5Bで求めたスマートフォン200の位置と、行動計画が表す車両10の軌道とに基づいて、AOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8C)。 When the command generation unit 140 determines that the communication unit 13 does not enter the two communication areas 13A (S7B: NO), it is based on the position of the smartphone 200 obtained in step S5B and the track of the vehicle 10 represented by the action plan. Then, the communication unit 13 that can measure in the AOA format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the communication unit 13 generates command data via the communication unit 13. Is transmitted to the smartphone 200 (step S8C).
 また、指令生成部140は、ステップS6Bにおいて、車両10がスマートフォン200から離れて行かない(S6B:NO)と判定すると、ステップS5Bで求めたスマートフォン200の位置と、行動計画が表す車両10の軌道とに基づいて、車両10の移動によってAOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るかどうかを判定する(ステップS7C)。 Further, when the command generation unit 140 determines in step S6B that the vehicle 10 does not leave the smartphone 200 (S6B: NO), the position of the smartphone 200 obtained in step S5B and the trajectory of the vehicle 10 represented by the action plan. Based on the above, the communication unit 13 that can measure in the AOA format determines whether or not the position of the smartphone 200 enters the two communication areas 13A due to the movement of the vehicle 10 (step S7C).
 指令生成部140によって通信部13が2個の通信領域13Aに入る(S7C:YES)と判定されると、主制御部110はフローをステップS9に進行させる。車両10の移動によってAOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るため、スマートフォン200の操作者を移動させる必要はないため、指令データを生成せずにフローをステップS9に進行させることとしたものである。 When the command generation unit 140 determines that the communication unit 13 enters the two communication areas 13A (S7C: YES), the main control unit 110 advances the flow to step S9. Since the position of the smartphone 200 is placed in the two communication areas 13A by the communication unit 13 that can measure in the AOA format by moving the vehicle 10, it is not necessary to move the operator of the smartphone 200, so that the command data is not generated. It is decided that the flow proceeds to step S9.
 指令生成部140は、通信部13が2個の通信領域13Aに入らない(S7C:NO)と判定すると、ステップS5Bで求めたスマートフォン200の位置と、行動計画が表す車両10の軌道とに基づいて、AOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8D)。 When the command generation unit 140 determines that the communication unit 13 does not enter the two communication areas 13A (S7C: NO), it is based on the position of the smartphone 200 obtained in step S5B and the track of the vehicle 10 represented by the action plan. Then, the communication unit 13 that can measure in the AOA format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the communication unit 13 generates command data via the communication unit 13. Is transmitted to the smartphone 200 (step S8D).
 また、ステップS4において、位置測定部130によってAOA形式で角度や位置を測定可能な通信部13が0個であると判定されると、主制御部110は、RSSI値が所定の閾値以上であるかどうかを判定する(ステップS5C)。ステップS5Cにおける所定の閾値は、図2に示す車両10のすぐ近くでAOA形式で測定可能な通信部13が0個の通信領域13Aと、車両10から遠くでAOA形式で測定可能な通信部13が0個の通信領域13Aとを区別するRSSI値である。 Further, in step S4, when the position measuring unit 130 determines that the number of communication units 13 capable of measuring the angle and position in the AOA format is 0, the main control unit 110 has an RSSI value equal to or higher than a predetermined threshold value. Whether or not it is determined (step S5C). The predetermined threshold values in step S5C are the communication area 13A in which the communication unit 13 that can measure in the AOA format is 0 in the immediate vicinity of the vehicle 10 shown in FIG. 2, and the communication unit 13 that can measure in the AOA format far from the vehicle 10. Is an RSSI value that distinguishes from 0 communication areas 13A.
 主制御部110によってRSSI値が所定の閾値以上である(S5C:YES)と判定されると、指令生成部140は、AOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8E)。 When the main control unit 110 determines that the RSSI value is equal to or higher than a predetermined threshold value (S5C: YES), the command generation unit 140 has a smartphone 200 in the communication area 13A in which the communication unit 13 that can measure in the AOA format has two communication areas 13A. Command data for displaying a message for guiding the operator to enter the position of is generated on the smartphone 200 and transmitted to the smartphone 200 via the communication unit 13 (step S8E).
 また、主制御部110によってRSSI値が所定の閾値以上である(S5C:YES)と判定されると、指令生成部140は、AOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8F)。ステップS8EとS8Fでは、操作者を誘導する方向が異なるため、ステップを分けている。 Further, when the main control unit 110 determines that the RSSI value is equal to or higher than a predetermined threshold value (S5C: YES), the command generation unit 140 has a communication unit 13 capable of measuring in the AOA format in two communication areas 13A. Command data for displaying a message for guiding the operator to enter the position of the smartphone 200 on the smartphone 200 is generated and transmitted to the smartphone 200 via the communication unit 13 (step S8F). In steps S8E and S8F, the directions for guiding the operator are different, so the steps are separated.
 ステップS8A、S8B、S8C、S8D、S8E、S8Fの結果、破線で示すように指令データがECU100からスマートフォン200に送信される。 As a result of steps S8A, S8B, S8C, S8D, S8E, S8F, command data is transmitted from the ECU 100 to the smartphone 200 as shown by the broken line.
 以上のように、車両10の通信部13がスマートフォン200が出力するビーコン信号のRSSI値が所定値以上になる領域内にスマートフォン200が位置し、車両10とスマートフォン200との距離が所定値(一例として4m)以上である場合に、車両10の位置及び移動方向と、スマートフォン200の位置との関係に基づいて指令データを生成しスマートフォン200に送信する。 As described above, the smartphone 200 is located in the area where the RSSI value of the beacon signal output by the communication unit 13 of the vehicle 10 is equal to or higher than the predetermined value, and the distance between the vehicle 10 and the smartphone 200 is a predetermined value (example). When it is 4 m) or more, command data is generated based on the relationship between the position and moving direction of the vehicle 10 and the position of the smartphone 200 and transmitted to the smartphone 200.
 この結果、スマートフォン200には、受信した指令データに基づいて、ディスプレイ220に操作者を誘導するメッセージが表示されるとともにスピーカ230から通知音を出力される。 As a result, the smartphone 200 displays a message guiding the operator on the display 220 and outputs a notification sound from the speaker 230 based on the received command data.
 このため、スマートフォン200の操作者を車両10から所定距離(一例として4m)以内に誘導することができる。 Therefore, the operator of the smartphone 200 can be guided within a predetermined distance (4 m as an example) from the vehicle 10.
 したがって、車両10の所定範囲内で遠隔的に車両10を移動操作可能な自動駐車支援システム300を提供することができる。 Therefore, it is possible to provide an automatic parking support system 300 capable of remotely moving and operating the vehicle 10 within a predetermined range of the vehicle 10.
 また、AOA形式で測定可能な通信部13が1個又は0個の場合には、AOA形式で測定可能な通信部13が2個以上の通信領域13Aに操作者を誘導するように指令データを生成するので、AOA形式で測定可能な通信部13が2個以上の領域に操作者を誘導することができる。 When the number of communication units 13 that can be measured in the AOA format is one or zero, command data is sent so that the communication unit 13 that can measure in the AOA format guides the operator to two or more communication areas 13A. Since it is generated, the communication unit 13 that can measure in the AOA format can guide the operator to two or more areas.
 なお、以上では、車両10のECU100が行動計画取得部120、位置測定部130、指令生成部140を含み、車両10の移動方向、スマートフォン200の位置、指令データの生成を行う形態について説明した。しかしながら、車両10のECU100からスマートフォン200に、加速度センサ11A、ヨーレートセンサ11B、ステアリング操舵角センサ11Cによって検出される車両10の前後方向及び横方向における加速度、ヨーレート、操舵角、及び、速度センサ12によって検出される車両10の前進時又は後進時の車速を表すデータを送信し、スマートフォン200側に行動計画取得部120、位置測定部130、指令生成部140の機能を持たせることで、車両10の移動方向、スマートフォン200の位置、指令データの生成を行ってもよい。 In the above, the mode in which the ECU 100 of the vehicle 10 includes the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140 to generate the movement direction of the vehicle 10, the position of the smartphone 200, and the command data has been described. However, the acceleration sensor 11A, the yaw rate sensor 11B, and the steering angle sensor 11C detect the acceleration, yaw rate, steering angle, and speed sensor 12 in the front-rear direction and the lateral direction of the vehicle 10 from the ECU 100 of the vehicle 10 to the smartphone 200. By transmitting data indicating the detected vehicle speed at the time of forward movement or reverse movement of the vehicle 10 and providing the smartphone 200 with the functions of the action plan acquisition unit 120, the position measurement unit 130, and the command generation unit 140, the vehicle 10 The movement direction, the position of the smartphone 200, and the command data may be generated.
 以上では、車両10を遠隔操作する操作部としてスマートフォン200を用いる形態について説明したが、スマートフォン200に限られるものではない。このような操作部は、無線通信が可能な電子機器であればよく、例えば、専用の端末機を用いてもよい。 In the above, the mode in which the smartphone 200 is used as the operation unit for remotely controlling the vehicle 10 has been described, but the present invention is not limited to the smartphone 200. Such an operation unit may be any electronic device capable of wireless communication, and for example, a dedicated terminal may be used.
 また、以上では、図3を用いてAOA形式を利用してスマートフォン200の位置を求めた上で指令データを生成する形態について説明した。しかしながら、AOAではなく、TOA(Time Of Arrival)形式でスマートフォン200の位置を求めて指令データを生成してもよい。なお、TOAは、TOF(Time Of Flight)とも称されるものである。 Further, in the above, the mode of generating the command data after obtaining the position of the smartphone 200 by using the AOA format has been described with reference to FIG. However, instead of AOA, the position of the smartphone 200 may be obtained in the TOA (Time Of Arrival) format and command data may be generated. TOA is also referred to as TOF (Time Of Flight).
 図4は、自動駐車支援システム300においてECU100とスマートフォン200が実行する処理の変形例を示すシーケンス図である。図3に示す処理ではAOA形式でスマートフォン200の座標を求めたが、図4ではTOA形式で位置を求める点が異なる。以下、図3に示す処理と同様の処理には同一のステップ番号を付し、その説明を省略する。なお、図4に示すECU100の処理は、ECU100が自動駐車支援プログラムを実行することによって行われ、この結果、自動駐車支援方法が実現される。 FIG. 4 is a sequence diagram showing a modified example of the processing executed by the ECU 100 and the smartphone 200 in the automatic parking support system 300. In the process shown in FIG. 3, the coordinates of the smartphone 200 are obtained in the AOA format, but in FIG. 4, the position is obtained in the TOA format. Hereinafter, the same steps as the processes shown in FIG. 3 will be assigned the same step numbers, and the description thereof will be omitted. The processing of the ECU 100 shown in FIG. 4 is performed by the ECU 100 executing the automatic parking support program, and as a result, the automatic parking support method is realized.
 図4では、ECU100の位置測定部130は、行動計画取得部120によってステップS1の処理が実行されると、TOA形式での測定用のビーコン信号を各通信部13に出力させる(ステップS1A)。 In FIG. 4, when the action plan acquisition unit 120 executes the process of step S1, the position measurement unit 130 of the ECU 100 outputs a beacon signal for measurement in the TOA format to each communication unit 13 (step S1A).
 スマートフォン200の主制御部211は、TOA形式での測定用のビーコン信号を受信する(ステップS20A)。 The main control unit 211 of the smartphone 200 receives the beacon signal for measurement in the TOA format (step S20A).
 スマートフォン200の主制御部211は、TOA形式での測定用のビーコン信号を受信すると、TOA形式での測定用のビーコン信号を出力する(ステップS20B)。 When the main control unit 211 of the smartphone 200 receives the beacon signal for measurement in the TOA format, it outputs the beacon signal for measurement in the TOA format (step S20B).
 ECU100の位置測定部130は、スマートフォン200から送信されるTOA形式での測定用のビーコン信号を各通信部13に受信させる(ステップS1B)。 The position measurement unit 130 of the ECU 100 causes each communication unit 13 to receive a beacon signal for measurement in the TOA format transmitted from the smartphone 200 (step S1B).
 スマートフォン200の主制御部211は、TOA形式での測定用のビーコン信号を出力すると、AOA形式での測定用のビーコン信号を送信する(ステップS21)。 When the main control unit 211 of the smartphone 200 outputs the beacon signal for measurement in the TOA format, it transmits the beacon signal for measurement in the AOA format (step S21).
 EUC100の位置測定部130は、各通信部13にスマートフォン200から送信されるAOA形式での測定用のビーコン信号を受信させる(ステップS2)。 The position measurement unit 130 of the EUC 100 causes each communication unit 13 to receive a beacon signal for measurement in the AOA format transmitted from the smartphone 200 (step S2).
 位置測定部130は、ビーコン信号の受信結果から、RSSI値がTOA形式及びAOA形式で位置や角度を測定可能な所定値以上の通信部13を選択する(ステップS3M)。ステップS3Mにおける所定値は、AOA形式で角度や位置を計算可能な所定レベルのRSSI値である。 The position measurement unit 130 selects the communication unit 13 whose RSSI value is equal to or greater than a predetermined value capable of measuring the position and angle in the TOA format and the AOA format from the reception result of the beacon signal (step S3M). The predetermined value in step S3M is a predetermined level RSSI value at which the angle and position can be calculated in the AOA format.
 なお、ステップS3Mでは、TOA形式及びAOA形式で位置や角度を測定可能な通信部13が存在しない場合には、通信部13の選択は行われない。換言すれば、ステップS3Mでは、TOA形式及びAOA形式で位置や角度を測定可能な通信部13が存在しない場合には、0(ゼロ)個の通信部13が選択される。 In step S3M, if there is no communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, the communication unit 13 is not selected. In other words, in step S3M, if there is no communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, 0 (zero) communication units 13 are selected.
 位置測定部130は、TOA形式及びAOA形式で位置や角度を測定可能な通信部13が幾つあるかを判定する(ステップS4M)。 The position measuring unit 130 determines how many communication units 13 can measure the position and angle in the TOA format and the AOA format (step S4M).
 位置測定部130は、TOA形式及びAOA形式で位置や角度を測定可能な通信部13が2個以上あると判定すると、TOA形式でスマートフォン200の位置を求める(ステップS5AM)。 When the position measuring unit 130 determines that there are two or more communication units 13 capable of measuring the position and angle in the TOA format and the AOA format, the position measuring unit 130 obtains the position of the smartphone 200 in the TOA format (step S5AM).
 TOA形式では、ビーコン信号を受信しRSSI値が所定値以上の通信部13が2個あれば、2個の通信部13とスマートフォン200の通信部240とで信号を送受信し、信号の送受信に要する往復時間から通信部13と通信部240の距離を2組算出し、スマートフォン200の位置を表すXY座標を求めることができるからである。スマートフォン200の位置は、図2に示すXY座標系の値として求められる。 In the TOA format, if there are two communication units 13 that receive a beacon signal and have an RSSI value of a predetermined value or more, the two communication units 13 and the communication unit 240 of the smartphone 200 transmit and receive signals, which is required for signal transmission and reception. This is because two sets of distances between the communication unit 13 and the communication unit 240 can be calculated from the round-trip time to obtain XY coordinates representing the position of the smartphone 200. The position of the smartphone 200 is obtained as a value in the XY coordinate system shown in FIG.
 ステップS5AMに続くステップS6Aでは、ステップS5AMで求めたスマートフォン200の位置が車両10から4m以上離れているかどうかが判定される。 In step S6A following step S5AM, it is determined whether or not the position of the smartphone 200 obtained in step S5AM is 4 m or more away from the vehicle 10.
 ステップS6Aの後は、図3に示すステップS7A、S8A又はS8B、及びS9の処理が行われる。 After step S6A, the processes of steps S7A, S8A or S8B, and S9 shown in FIG. 3 are performed.
 また、ステップS4Mにおいて、ECU100の位置測定部130は、TOA形式及びAOA形式で位置や角度を測定可能な通信部13が1個であると判定すると、1個の通信部13とスマートフォン200の通信部240とで信号を送受信し、信号の送受信に要する往復時間から算出される通信部13からスマートフォン200までの距離と、1個の通信部13の複数のアンテナで受信されるビーコン信号の位相差から求まる1個の通信部13に対するスマートフォン200の角度とを用いて、スマートフォン200の位置を求める(ステップS5BM)。 Further, in step S4M, when the position measuring unit 130 of the ECU 100 determines that there is one communication unit 13 capable of measuring the position and angle in the TOA format and the AOA format, the communication unit 13 communicates with the smartphone 200. The distance from the communication unit 13 to the smartphone 200 calculated from the round-trip time required for transmitting and receiving signals with the unit 240, and the phase difference of the beacon signals received by the plurality of antennas of one communication unit 13. The position of the smartphone 200 is obtained by using the angle of the smartphone 200 with respect to one communication unit 13 obtained from (step S5BM).
 ステップS5BMでは、スマートフォン200までの距離はTOA形式で求められ、スマートフォン200の角度はAOA形式で求められる。ステップS5BMで求まる位置は、ステップS5Aで求まる位置に比べると精度が低いが、大凡どの辺りスマートフォン200があるかを求めることができる。 In step S5BM, the distance to the smartphone 200 is calculated in the TOA format, and the angle of the smartphone 200 is calculated in the AOA format. The position obtained in step S5BM is less accurate than the position obtained in step S5A, but it is possible to roughly determine where the smartphone 200 is located.
 ステップS5BMの処理が終了すると、主制御部110はフローをステップS6Aに進行させる。 When the process of step S5BM is completed, the main control unit 110 advances the flow to step S6A.
 また、ステップS4Mにおいて、ECU100の位置測定部130によってTOA形式及びAOA形式で位置や角度を測定可能な通信部13が0個であると判定されると、指令生成部140は、TOA形式及びAOA形式で測定可能な通信部13が2個の通信領域13Aにスマートフォン200の位置が入るように操作者を誘導するメッセージをスマートフォン200に表示させる指令データを生成し、通信部13を介してスマートフォン200に送信する(ステップS8E)。ステップS8Eの処理が終了すると、主制御部110は、フローをステップS9に進行させる。 Further, in step S4M, when the position measuring unit 130 of the ECU 100 determines that there are no communication units 13 capable of measuring the position and angle in the TOA format and the AOA format, the command generating unit 140 determines the TOA format and the AOA. The communication unit 13 that can measure in the format generates command data that causes the smartphone 200 to display a message that guides the operator so that the position of the smartphone 200 is placed in the two communication areas 13A, and the smartphone 200 is generated via the communication unit 13. (Step S8E). When the process of step S8E is completed, the main control unit 110 advances the flow to step S9.
 以上のような処理により、スマートフォン200の操作者を車両10から所定距離(一例として4m)以内に誘導することができる。 By the above processing, the operator of the smartphone 200 can be guided within a predetermined distance (4 m as an example) from the vehicle 10.
 したがって、TOA形式及びAOA形式による位置測定を利用した形態で、車両10の所定範囲内で遠隔的に車両10を移動操作可能な自動駐車支援システム300、自動駐車支援プログラム、及び自動駐車支援方法を提供することができる。 Therefore, an automatic parking support system 300, an automatic parking support program, and an automatic parking support method capable of remotely moving and operating the vehicle 10 within a predetermined range of the vehicle 10 in a form using position measurement in the TOA format and the AOA format. Can be provided.
 なお、以上では、ステップS5BMにおいて、スマートフォン200までの距離をTOA形式で求め、スマートフォン200の角度をAOA形式で求める形態について説明したが、ステップS5BMではAOA形式で角度を求めずに、TOA形式で求まるスマートフォン200までの距離と、ビーコン信号を受信した通信部13の位置及び向きと、行動計画とに基づいて操作者を誘導するようにしてもよい。 In the above, in step S5BM, the distance to the smartphone 200 is obtained in the TOA format, and the angle of the smartphone 200 is obtained in the AOA format. However, in step S5BM, the angle is not obtained in the AOA format, but in the TOA format. The operator may be guided based on the desired distance to the smartphone 200, the position and orientation of the communication unit 13 that has received the beacon signal, and the action plan.
 最後に、図5乃至図12を用いて、指令データによる操作者の誘導の仕方について説明する。図5乃至図12は、指令データによる操作者の誘導の仕方を説明する図である。ここでは、図3に対応するAOA形式で測定を行う場合について説明する。なお、車両10の全長は4mから5mであり、自動駐車ECU20によって車両10が移動する距離は、ECU100の制御周期の1周期において、一例として0.01m~0.1m程度である。 Finally, with reference to FIGS. 5 to 12, how to guide the operator by the command data will be described. 5 to 12 are diagrams for explaining how to guide the operator by the command data. Here, a case where the measurement is performed in the AOA format corresponding to FIG. 3 will be described. The total length of the vehicle 10 is 4 m to 5 m, and the distance that the vehicle 10 moves by the automatic parking ECU 20 is about 0.01 m to 0.1 m as an example in one cycle of the control cycle of the ECU 100.
 図5では、スマートフォン200は、車両10の右側の前後の通信部13から4m以上離れており、AOA形式で測定可能な通信部13が2個ある通信領域13A内に位置している。また、車両10は左に操舵しながら前進している。 In FIG. 5, the smartphone 200 is located at a distance of 4 m or more from the front and rear communication units 13 on the right side of the vehicle 10 and in the communication area 13A having two communication units 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
 このような場合は、車両10の右側に位置するスマートフォン200から車両10が離れて行くため、AOA形式で測定可能な通信部13が2個ある通信領域13A内において車両10との相対的な位置関係を保つように誘導するメッセージをスマートフォン200に表示させればよい。より具体的には、例えば、車両10の移動に沿って移動するように誘導するメッセージをスマートフォン200に表示させればよい。車両10の移動に沿って移動すれば、AOA形式で測定可能な通信部13が2個ある通信領域13A内にスマートフォン200が存在することになるからである。図5は、図3のフローでステップS8Aに進行する場合である。 In such a case, since the vehicle 10 moves away from the smartphone 200 located on the right side of the vehicle 10, the position relative to the vehicle 10 in the communication area 13A where there are two communication units 13 that can be measured in the AOA format. A message that induces the relationship to be maintained may be displayed on the smartphone 200. More specifically, for example, a message for inducing the vehicle to move along with the movement of the vehicle 10 may be displayed on the smartphone 200. This is because if the vehicle moves along with the movement of the vehicle 10, the smartphone 200 exists in the communication area 13A having two communication units 13 that can measure in the AOA format. FIG. 5 shows a case where the process proceeds to step S8A in the flow of FIG.
 図6では、スマートフォン200は、車両10の右側の前後の通信部13から4m以内の位置にあり、AOA形式で測定可能な通信部13が2個ある通信領域13A内に位置している。また、車両10は右に操舵しながら前進している。 In FIG. 6, the smartphone 200 is located within 4 m from the front and rear communication units 13 on the right side of the vehicle 10, and is located in the communication area 13A having two communication units 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
 このような場合は、車両10の右側に位置するスマートフォン200に車両10が近づいて来ており、車両10が移動してもAOA形式で測定可能な通信部13が2個ある通信領域13A内に位置すると考えられるため、誘導するメッセージは不要である。図6は、図3のフローでステップS6AからS9に進行する場合である。 In such a case, the vehicle 10 is approaching the smartphone 200 located on the right side of the vehicle 10, and even if the vehicle 10 moves, it is within the communication area 13A having two communication units 13 that can measure in the AOA format. No guiding message is needed as it is considered to be located. FIG. 6 shows a case where steps S6A to S9 proceed in the flow of FIG.
 図7では、スマートフォン200は、車両10の右側の後方でAOA形式で測定可能な通信部13が1個ある通信領域13A内に位置している。また、車両10は右に操舵しながら前進している。 In FIG. 7, the smartphone 200 is located behind the vehicle 10 on the right side in the communication area 13A having one communication unit 13 that can measure in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
 このような場合は、車両10の右側に位置するスマートフォン200に車両10が近づいて来ており、車両10が移動するとAOA形式で測定可能な通信部13が2個ある通信領域13A内に位置することになると考えられるため、誘導するメッセージは不要である。図6は、図3のフローでステップS7BからS9に進行する場合である。 In such a case, the vehicle 10 is approaching the smartphone 200 located on the right side of the vehicle 10, and when the vehicle 10 moves, it is located in the communication area 13A having two communication units 13 that can measure in the AOA format. There is no need for a guiding message, as this is likely to happen. FIG. 6 shows a case where steps S7B to S9 proceed in the flow of FIG.
 図8では、スマートフォン200は、車両10の右側の後方でAOA形式で測定可能な通信部13が1個ある通信領域13A内に位置している。また、車両10は左に操舵しながら前進している。 In FIG. 8, the smartphone 200 is located behind the vehicle 10 on the right side in the communication area 13A having one communication unit 13 that can measure in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
 このような場合は、操作者が矢印で示すように車両10の前方に向かって移動するとAOA形式で測定可能な通信部13が2個ある通信領域13A内に位置することになると考えられるため、車両10の前方に進むように誘導するメッセージをスマートフォン200に表示させればよい。図8は、図3のフローでステップS8Cに進行する場合である。 In such a case, if the operator moves toward the front of the vehicle 10 as indicated by the arrow, it is considered that the communication unit 13 that can be measured in the AOA format is located in the communication area 13A having two. The smartphone 200 may display a message inviting the user to move forward of the vehicle 10. FIG. 8 shows a case where the process proceeds to step S8C in the flow of FIG.
 図9では、スマートフォン200は、車両10の右側の前方の通信部13から4m以内の位置にあり、AOA形式で測定可能な通信部13が1個ある通信領域13A内に位置している。また、車両10は右に操舵しながら前進している。 In FIG. 9, the smartphone 200 is located within 4 m from the communication unit 13 in front of the vehicle 10 on the right side, and is located in the communication area 13A having one communication unit 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the right.
 このような場合は、車両10の右側に位置するスマートフォン200に車両10が近づいて来ており、車両10が移動したときに操作者が矢印で示すように右方に移動するとAOA形式で測定可能な通信部13が2個ある通信領域13A内に位置すると考えられるため、車両10の右方に誘導するメッセージをスマートフォン200に表示させればよい。図9は、図3のフローでステップS8Dに進行する場合である。 In such a case, the vehicle 10 is approaching the smartphone 200 located on the right side of the vehicle 10, and when the vehicle 10 moves, the operator can measure it in the AOA format by moving it to the right as indicated by the arrow. Since it is considered that the communication unit 13 is located in the communication area 13A having two communication units 13, a message for guiding the vehicle to the right side of the vehicle 10 may be displayed on the smartphone 200. FIG. 9 shows a case where the process proceeds to step S8D in the flow of FIG.
 図10では、スマートフォン200は、車両10の右側の前方の通信部13から4m以内の位置にあり、AOA形式で測定可能な通信部13が1個ある通信領域13A内に位置している。また、車両10は左に操舵しながら前進している。 In FIG. 10, the smartphone 200 is located within 4 m from the communication unit 13 in front of the vehicle 10 on the right side, and is located in the communication area 13A having one communication unit 13 that can be measured in the AOA format. Further, the vehicle 10 is moving forward while steering to the left.
 このような場合は、車両10の右側に位置するスマートフォン200から車両10が離れて行っており、車両10が移動したときに操作者が移動しなくてもAOA形式で測定可能な通信部13が2個ある通信領域13A内に入ると考えられるため、誘導するメッセージは不要である。図10は、図3のフローでステップS7BからステップS9に進行する場合である。 In such a case, the vehicle 10 is away from the smartphone 200 located on the right side of the vehicle 10, and when the vehicle 10 moves, the communication unit 13 capable of measuring in the AOA format even if the operator does not move is provided. Since it is considered that the vehicle falls within the two communication areas 13A, the guiding message is unnecessary. FIG. 10 shows a case where the process proceeds from step S7B to step S9 in the flow of FIG.
 図11では、スマートフォン200は、車両10の右側の近くにおり、AOA形式で測定可能な通信部13が0個の通信領域13A内に位置している。また、車両10は右又は左に操舵しながら前進している。 In FIG. 11, the smartphone 200 is near the right side of the vehicle 10, and the communication unit 13 that can measure in the AOA format is located in the communication area 13A where there are no. Further, the vehicle 10 is moving forward while steering to the right or left.
 このような場合は、車両10の右側の前後の通信部13で受信されるビーコン信号のRSSI値が所定の閾値以上である(S5C:YES)ため、矢印で示すように車両10から2m程度離れた位置に移動するように誘導するメッセージをスマートフォン200に表示させればよい。図11は、図3のフローでステップS5CからステップS8Eに進行する場合である。 In such a case, since the RSSI value of the beacon signal received by the front and rear communication units 13 on the right side of the vehicle 10 is equal to or higher than a predetermined threshold value (S5C: YES), the distance from the vehicle 10 is about 2 m as shown by the arrow. The smartphone 200 may display a message inviting the user to move to the threshold position. FIG. 11 shows a case where the process proceeds from step S5C to step S8E in the flow of FIG.
 図12では、スマートフォン200は、車両10の右側の遠く離れた位置におり、AOA形式で測定可能な通信部13が0個の通信領域13A内に位置している。また、車両10は右又は左に操舵しながら前進している。 In FIG. 12, the smartphone 200 is located far away on the right side of the vehicle 10, and the communication unit 13 that can measure in the AOA format is located in the communication area 13A where there are no. Further, the vehicle 10 is moving forward while steering to the right or left.
 このような場合は、車両10の右側の前後の通信部13で受信されるビーコン信号のRSSI値が所定の閾値以上ではない(S5C:NO)ため、矢印で示すように車両10の近くに移動するように誘導するメッセージをスマートフォン200に表示させればよい。図12は、図3のフローでステップS5CからステップS8Fに進行する場合である。 In such a case, the RSSI value of the beacon signal received by the front and rear communication units 13 on the right side of the vehicle 10 is not equal to or higher than a predetermined threshold value (S5C: NO), so the vehicle moves closer to the vehicle 10 as shown by the arrow. A message prompting the user to do so may be displayed on the smartphone 200. FIG. 12 shows a case where the process proceeds from step S5C to step S8F in the flow of FIG.
 以上、本発明の例示的な実施の形態の自動駐車支援システム、自動駐車支援プログラム、及び自動駐車支援方法について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the automatic parking support system, the automatic parking support program, and the automatic parking support method according to the exemplary embodiment of the present invention have been described above, the present invention is limited to the specifically disclosed embodiments. Instead, various modifications and changes can be made without departing from the scope of claims.
 なお、本国際出願は、2019年12月17日に出願した日本国特許出願2019-227709号に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application No. 2019-227709 filed on December 17, 2019, the entire contents of which are incorporated in this international application by reference here. Shall be.
 10 車両
 100 ECU
 110 主制御部
 120 行動計画取得部
 130 位置測定部
 140 指令生成部
 200 スマートフォン
 300 自動駐車支援システム
10 vehicle 100 ECU
110 Main control unit 120 Action plan acquisition unit 130 Position measurement unit 140 Command generation unit 200 Smartphone 300 Automatic parking support system

Claims (12)

  1.  車両の外から無線通信によって車両を移動操作可能な操作部と、
     前記車両の行動計画を取得する行動計画取得部と、
     前記車両に対する前記操作部の位置を測定する位置測定部と、
     前記行動計画取得部によって取得される行動計画と、前記位置測定部によって測定される位置とに基づいて前記車両の所定範囲内への前記操作部の操作者の移動を促す指令を生成する指令生成部と
     を含み、
     前記操作部を介して前記指令を前記操作部の操作者に報知する、自動駐車支援システム。
    An operation unit that allows the vehicle to be moved and operated by wireless communication from outside the vehicle,
    The action plan acquisition unit that acquires the action plan of the vehicle, and
    A position measuring unit that measures the position of the operating unit with respect to the vehicle, and a position measuring unit.
    A command generation that generates a command for prompting the operator of the operation unit to move within a predetermined range of the vehicle based on the action plan acquired by the action plan acquisition unit and the position measured by the position measurement unit. Including part
    An automatic parking support system that notifies an operator of the operation unit of the command via the operation unit.
  2.  前記車両に設けられ、前記指令生成部によって生成される指令を前記操作部に送信する通信部をさらに含み、
     前記行動計画取得部、前記位置測定部、及び前記指令生成部は、前記車両に設けられる、請求項1記載の自動駐車支援システム。
    Further including a communication unit provided in the vehicle and transmitting a command generated by the command generation unit to the operation unit.
    The automatic parking support system according to claim 1, wherein the action plan acquisition unit, the position measurement unit, and the command generation unit are provided in the vehicle.
  3.  前記行動計画取得部、前記位置測定部、及び前記指令生成部は、前記操作部に設けられる、請求項1記載の自動駐車支援システム。 The automatic parking support system according to claim 1, wherein the action plan acquisition unit, the position measurement unit, and the command generation unit are provided in the operation unit.
  4.  前記車両に設けられ、前記操作部が出力する信号を受信する複数の受信部をさらに含み、
     前記位置測定部は、2個の前記受信部によって信号強度が所定値以上の前記信号が受信されるときは、当該2個の受信部の一方に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度と、当該2個の受信部の他方に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度と、当該2個の受信部の位置関係とに基づいて、前記操作部の位置を求める、請求項1乃至3のいずれか一項記載の自動駐車支援システム。
    Further including a plurality of receiving units provided in the vehicle and receiving signals output by the operating unit.
    When the position measuring unit receives the signal having a signal strength of a predetermined value or more by the two receiving units, the position measuring unit receives the signal by a plurality of antennas included in one of the two receiving units. Based on the angle obtained from the phase difference, the angle obtained from the phase difference of the signals received by the plurality of antennas included in the other of the two receiving units, and the positional relationship between the two receiving units, the said The automatic parking support system according to any one of claims 1 to 3, which obtains the position of the operation unit.
  5.  前記指令生成部は、前記2個の受信部の一方に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度、前記2個の受信部の他方に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度、及び、前記2個の受信部の位置関係から求まる位置と、前記行動計画とに基づいて前記車両と前記操作部とが所定距離以上離れると判定すると、前記車両の周囲の領域のうち2個の受信部から前記信号を受信可能な領域の中で前記操作部の操作者に前記車両との相対的な位置関係を保つように移動を促す指令を生成する、請求項4記載の自動駐車支援システム。 The command generation unit is received by a plurality of antennas included in the other of the two receiving units and an angle obtained from the phase difference of the signals received by the plurality of antennas included in one of the two receiving units. When it is determined that the vehicle and the operation unit are separated by a predetermined distance or more based on the angle obtained from the phase difference of the signal, the position obtained from the positional relationship between the two receiving units, and the action plan, the said Generates a command to urge the operator of the operation unit to move so as to maintain a relative positional relationship with the vehicle in the area where the signal can be received from two receiving units in the area around the vehicle. , The automatic parking support system according to claim 4.
  6.  前記車両に設けられ、前記操作部が出力する信号を受信する複数の受信部をさらに含み、
     前記位置測定部は、1個の前記受信部によって信号強度が所定値以上の前記信号が受信されるときは、当該1個の受信部に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度と、当該1個の受信部によって受信される信号の受信強度とに基づいて前記車両の位置を求める、請求項1乃至3のいずれか一項記載の自動駐車支援システム。
    Further including a plurality of receiving units provided in the vehicle and receiving signals output by the operating unit.
    When the position measuring unit receives the signal having a signal strength of a predetermined value or more by the one receiving unit, the phase difference of the signals received by a plurality of antennas included in the one receiving unit. The automatic parking support system according to any one of claims 1 to 3, wherein the position of the vehicle is obtained based on the angle obtained from the above and the reception strength of the signal received by the one receiving unit.
  7.  前記指令生成部は、前記1個の受信部に含まれる複数のアンテナで受信される前記信号の位相差から求まる角度、及び、前記1個の受信部によって受信される信号の受信強度に基づいて求まる位置と、前記行動計画とに基づいて前記操作部が前記車両の周囲の領域のうち2個の受信部から前記信号を受信可能な領域に入らないと判定すると、前記操作部の操作者に前記車両の周囲の領域のうち2個の受信部から前記信号を受信可能な領域に入るように移動を促す指令を生成する、請求項6記載の自動駐車支援システム。 The command generation unit is based on an angle obtained from the phase difference of the signals received by a plurality of antennas included in the one receiving unit and the reception strength of the signal received by the one receiving unit. When it is determined that the operation unit does not enter the area where the signal can be received from two receiving units in the area around the vehicle based on the obtained position and the action plan, the operator of the operation unit is notified. The automatic parking support system according to claim 6, wherein a command for urging the movement to enter an area where the signal can be received is generated from two receiving units in the area around the vehicle.
  8.  前記車両に設けられ、前記操作部が出力する信号を受信する複数の受信部をさらに含み、
     前記指令生成部は、前記受信部によって信号強度が所定値以上の前記信号が受信されない場合は、前記操作部の操作者に前記車両の周囲の領域のうち2個の受信部から前記信号を受信可能な領域に入るように移動を促す指令を生成する、請求項1乃至3のいずれか一項記載の自動駐車支援システム。
    Further including a plurality of receiving units provided in the vehicle and receiving signals output by the operating unit.
    When the receiving unit does not receive the signal having a signal strength equal to or higher than a predetermined value, the command generating unit receives the signal from two receiving units in the area around the vehicle to the operator of the operating unit. The automatic parking support system according to any one of claims 1 to 3, which generates a command for urging the vehicle to move into a possible area.
  9.  前記車両に設けられ、前記操作部と信号の通信を行う複数の通信部をさらに含み、
     前記位置測定部は、2個の前記通信部によって信号強度が所定値以上の前記信号が受信されるときは、当該2個の通信部と前記操作部との間における前記信号の往復時間から求まる2つの距離に基づいて前記車両に対する前記操作部の位置を求める、請求項1乃至3のいずれか一項記載の自動駐車支援システム。
    Further including a plurality of communication units provided in the vehicle and communicating signals with the operation unit.
    When the signal having a signal strength of a predetermined value or more is received by the two communication units, the position measuring unit is obtained from the round-trip time of the signal between the two communication units and the operation unit. The automatic parking support system according to any one of claims 1 to 3, which obtains the position of the operation unit with respect to the vehicle based on two distances.
  10.  前記位置測定部は、1個の前記通信部によって前記信号強度が所定値以上の前記信号が受信されるときは、当該1個の通信部と前記操作部との間における前記信号の往復時間から求まる当該1個の通信部から前記操作部までの距離と、当該1個の通信部の複数のアンテナで受信される前記信号の位相差から求まる角度とに基づいて、前記車両の位置を求める、請求項9記載の自動駐車支援システム。 When the signal strength of the signal strength is equal to or higher than a predetermined value is received by one of the communication units, the position measuring unit starts from the round-trip time of the signal between the one communication unit and the operation unit. The position of the vehicle is obtained based on the obtained distance from the one communication unit to the operation unit and the angle obtained from the phase difference of the signals received by the plurality of antennas of the one communication unit. The automatic parking support system according to claim 9.
  11.  車両の行動計画を取得することと、
     前記車両の外から無線通信によって車両を移動操作可能な操作部の前記車両に対する位置を測定することと、
     前記取得される行動計画と、前記測定される位置とに基づいて前記車両の所定範囲内への前記操作部の操作者の移動を促す指令を生成することと
     前記指令を前記操作部に送信することと
     を含む処理をコンピュータに実行させる、自動駐車支援プログラム。
    Obtaining a vehicle action plan and
    Measuring the position of the operation unit that can move and operate the vehicle from outside the vehicle by wireless communication with respect to the vehicle, and
    Based on the acquired action plan and the measured position, a command for prompting the operator of the operation unit to move within a predetermined range of the vehicle is generated, and the command is transmitted to the operation unit. An automatic parking support program that lets a computer perform processing including things.
  12.  車両の行動計画を取得することと、
     前記車両の外から無線通信によって車両を移動操作可能な操作部の前記車両に対する位置を測定することと、
     前記取得される行動計画と、前記測定される位置とに基づいて前記車両の所定範囲内への前記操作部の操作者の移動を促す指令を生成することと
     前記指令を前記操作部に送信することと
     を含む処理をコンピュータが実行する、自動駐車支援方法。
    Obtaining a vehicle action plan and
    Measuring the position of the operation unit that can move and operate the vehicle from outside the vehicle by wireless communication with respect to the vehicle, and
    Based on the acquired action plan and the measured position, a command for prompting the operator of the operation unit to move within a predetermined range of the vehicle is generated, and the command is transmitted to the operation unit. An automatic parking assistance method in which a computer performs processing including that.
PCT/JP2020/043093 2019-12-17 2020-11-18 Automatic parking support system, automatic parking support program, and automatic parking support method WO2021124781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019227709A JP2023011957A (en) 2019-12-17 2019-12-17 Automatic parking support system, automatic parking support program, and automatic parking support method
JP2019-227709 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021124781A1 true WO2021124781A1 (en) 2021-06-24

Family

ID=76477224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043093 WO2021124781A1 (en) 2019-12-17 2020-11-18 Automatic parking support system, automatic parking support program, and automatic parking support method

Country Status (2)

Country Link
JP (1) JP2023011957A (en)
WO (1) WO2021124781A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177128A (en) * 2013-04-10 2013-09-09 Toyota Motor Corp Vehicle remote control system and on-vehicle machine
JP2019128659A (en) * 2018-01-22 2019-08-01 株式会社Subaru Vehicle call system
JP2019139322A (en) * 2018-02-06 2019-08-22 アイシン精機株式会社 Vehicle controller, parking lot controller, and automatic valley parking system
JP2019211279A (en) * 2018-06-01 2019-12-12 株式会社デンソー Rideshare information processing program and rideshare information processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177128A (en) * 2013-04-10 2013-09-09 Toyota Motor Corp Vehicle remote control system and on-vehicle machine
JP2019128659A (en) * 2018-01-22 2019-08-01 株式会社Subaru Vehicle call system
JP2019139322A (en) * 2018-02-06 2019-08-22 アイシン精機株式会社 Vehicle controller, parking lot controller, and automatic valley parking system
JP2019211279A (en) * 2018-06-01 2019-12-12 株式会社デンソー Rideshare information processing program and rideshare information processing device

Also Published As

Publication number Publication date
JP2023011957A (en) 2023-01-25

Similar Documents

Publication Publication Date Title
JP4569652B2 (en) Recognition system
EP3604064A1 (en) Method and apparatus for carrying out driving control on vehicle
KR101622028B1 (en) Apparatus and Method for controlling Vehicle using Vehicle Communication
US7379389B2 (en) Apparatus for monitoring surroundings of vehicle and sensor unit
CN107192983B (en) Device, method and system for observing relative position of underwater vehicle
JP2018106676A (en) Information processing device, operated vehicle, information processing method, and program
CN106846904B (en) The drive assistance device of vehicle
KR101426082B1 (en) Method for remote-controlling target apparatus using mobile communication terminal and remote control system thereof
EP2829844A1 (en) Navigation system
CN105008955A (en) Vehicular obstacle detection device, and vehicular obstacle detection system
KR20110131781A (en) Method for presuming accuracy of location information and apparatus for the same
EP3556625B1 (en) Vehicle control system, external electronic control unit, vehicle control method, and application
CN111591283A (en) Method, device and system for monitoring vehicle motion trail
JP2018101957A (en) Vehicle periphery monitoring device
CN113447899B (en) Method and system for mounting and testing vehicle-mounted millimeter wave radar
JP7094256B2 (en) Remote parking system
CN107709931B (en) Navigation system and navigation device
CN114630774A (en) Vehicle remote control method and vehicle remote control device
WO2021084978A1 (en) Automatic parking assistance system
JP6428214B2 (en) Relative position measuring device, program
WO2021124781A1 (en) Automatic parking support system, automatic parking support program, and automatic parking support method
JP4994264B2 (en) In-vehicle map display device, vehicle control system
JP2021049843A (en) Remote parking system
JP4857134B2 (en) In-vehicle map display device, vehicle map display system
JPWO2016002204A1 (en) In-vehicle electronic compass device, portable electronic compass calibration device, control program for portable electronic compass calibration device, in-vehicle electronic compass calibration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901919

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP