WO2021123968A1 - Optical fibre system - Google Patents

Optical fibre system Download PDF

Info

Publication number
WO2021123968A1
WO2021123968A1 PCT/IB2020/060984 IB2020060984W WO2021123968A1 WO 2021123968 A1 WO2021123968 A1 WO 2021123968A1 IB 2020060984 W IB2020060984 W IB 2020060984W WO 2021123968 A1 WO2021123968 A1 WO 2021123968A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
mmf
fiber optic
optical fiber
multimode
Prior art date
Application number
PCT/IB2020/060984
Other languages
Spanish (es)
French (fr)
Inventor
Victor Hugo Aristizábal Tique
Jorge Alberto GÓMEZ LÓPEZ
Jairo Camilo QUIJANO PÉREZ
Francisco Javier VÉLEZ HOYOS
Original Assignee
Politécnico Colombiano Jaime Isaza Cadavid
Universidad Cooperativa De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politécnico Colombiano Jaime Isaza Cadavid, Universidad Cooperativa De Colombia filed Critical Politécnico Colombiano Jaime Isaza Cadavid
Publication of WO2021123968A1 publication Critical patent/WO2021123968A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present invention relates to fiber optic structures related to fiber optic sensors, fiber optic modulators, but is not limited to these applications and uses.
  • optical fibers and fiber optic structures have received a lot of interest, for example, as sensors for a large number of mechanical, electrical and chemical parameters, among others. This has led to the development of many new types of fiber and applications for use as fiber optic sensors.
  • fiber optic sensors are disclosed, such as those disclosed by documents US6144790 A, US4843233 A or the article “Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure ”available online at https://www.ncbi.nlm.nih.gov/pubrned/180r7969 ⁇
  • Document US6144790 A discloses a fiber optic sensor comprising an optical source useful for detecting impact, vibration, temperature, pressure or other forces.
  • the sensor comprises an optical fiber with one terminal connected to a light source and with the other terminal connected to a detector.
  • the sensor has a measuring section, a particular embodiment of the invention comprises a light generated by an optical source that propagates through an optical fiber system such that a portion of the optical fiber is sensitive to external forces or disturbances that They affect the intensity of the light that propagates through the fiber optic system and the intensity of the light is received by a detector.
  • US6144790 A discloses that the speckle pattern changes according to disturbances of the sense fiber. Under the influence of an applied field, be it thermal, direct force or pressure, or other physical origin, the entire sensitive fiber, or parts thereof, or just a section of sensitive fiber, may undergo a deformation of an axial symmetry.
  • Document US6144790 A discloses that it solves a sensitivity problem of fiber optic sensors used to measure variables such as pressure and force in which long lengths of sensitive fiber coupled to mechanical devices are required, the solution is made using a single-mode optical fiber that maintains polarization.
  • the senor disclosed in document US6144790 A is not manufactured taking into account parameters of the fiber core diameter in relation to a speckle pattern, therefore, the sensor does not take into account physical alterations on the fiber segment that allow metrological parameters of the sensor to be varied, such as the sensitivity, dynamic range and operating threshold of the sensor, so the sensor's operation is limited to static values of said metrological parameters and its sensitivity is limited.
  • the article "Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single -multiple -single mode fiber structrance" discloses a fiber sensor to measure mechanical disturbances in a structure SMS (for the acronym in English of Single Mode Fiber - Multi Mode Fiber - Single Mode Fiber) of fiber optic, which has an optical fiber MMF (Multi-Mode Optical Fiber) of stepped index from which is spliced an SMF fiber (for the acronym in English of Single -Mode Optical Fiber) at each of its ends that correspond to an input fiber and an output fiber, an irradiator (Faser He-Ne) connected to the other end of the input fiber and a photodetector connected to the other end of the output fiber.
  • SMS for the acronym in English of Single Mode Fiber - Multi Mode Fiber - Single Mode Fiber
  • MMF Multi-Mode Optical Fiber
  • SMF fiber for the acronym in English of Single -Mode Optical Fiber
  • the sensitivity of the sensor could be improved by optimizing the diameter of the core of the output fiber by making it coincide with the size of the optical speckle pattern, since it functions as an aperture through which part of the fiber is captured. optical speckled pattern.
  • it does not disclose information on a relationship of the parameters of the fibers that allow varying the sensitivity, dynamic range and operating threshold of the sensor.
  • the present invention refers to an optical fiber structure, which comprises a first segment of Optical Fiber (2) with two ends; a second segment of MMF Multimode Fiber Optic (3) with two ends; where one end of the second segment Multimode Fiber Optic MMF (3) is connected to one of the ends of the first Fiber Optic segment (2); wherein said second segment has a disturbance region (8) in the cladding (3a) of the MMF Multimode Optical Fiber (3); and where the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) is exposed to a physical or chemical disturbance.
  • one of the ends of the first Optical Fiber segment (2) is connected to a photodetector (5) and at one end of the second MMF Multimode Optical Fiber segment (3) a coherent light emitter is connected (1).
  • one end of the first Fiber Optic segment (2) is connected to the second port of a three-port optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); a photodetector (5) is connected to the third port of the optical circulator (10); and a reflective film (9) is arranged at the end of the second MMF Multimode Fiber Optic segment (3), which is not connected to the first Optical Fiber segment (2).
  • the first Optical Fiber segment (2) is Single-mode (SMF).
  • the second segment of MMF Multimode Fiber Optic (3) there is a perturbation region (8) that is obtained by means of different methods as will be explained in detail later.
  • a perturbation region (8) that is obtained by means of different methods as will be explained in detail later.
  • the coating (3a) can generate the disturbance region (8) by wearing away a part of the coating (3a).
  • Another way of generating the region of disturbance (8) is by means of a narrowing (also known as tapering technique) by fusion and stretching of a part or all of the cladding (3a) of the second segment of MMF Multimode Optical Fiber.
  • the region of disturbance (8) must not necessarily consist of the modification of the cladding (3a) of the second segment of MMF Multimode Optical Fiber (3) (cladding), but that it may simply correspond to the exposure to a physical disturbance or chemistry directly from a zone or area of a part of the cladding (3a) of the second segment of MMF Multimode Optical Fiber (3).
  • FIG. 1 illustrates a longitudinal section of the fiber optic structure of an embodiment of the invention.
  • FIG. 2 illustrates a longitudinal section of an embodiment of the fiber optic structure of the invention to which a reflective film (9) is added.
  • FIG. 3 illustrates a longitudinal section of an embodiment of the invention, the optical fiber structure of the invention to which is added a reflective film (9) and an encapsulation (7) with an opening (A) of length L.
  • FIG. 3A illustrates a reflective modality that implements the fiber optic structure of the invention to which is added a reflective film and an encapsulation (7) with an aperture (A) of length L.
  • FIG. 4 illustrates a longitudinal section of the fiber optic structure of the invention indicating the contact plane (B-B) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3).
  • FIG. 4A illustrates a modality that implements the fiber optic structure of the invention where a photodetector (5) is connected at one of the ends of the first Optical Fiber segment (2) and where at the end of the second MMF Multimode Fiber Optic segment ( 3) is connected to a coherent light emitter (1).
  • FIG. 4B illustrates an example of a grain (11) of a Speckle Pattern (12) also called an optical speckled pattern that is observed in a front view of the contact plane (BB) between the first Optical Fiber segment (2) and the second MMF Multimode Fiber Optic segment (3).
  • FIG. 5 illustrates a cross section of the fiber optic structure of the invention indicating the contact plane (BB) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3) where the second segment of Fiber MMF Multimode Optics (3) is covered with an encapsulation (7) with an opening (A) forming a disturbance region (8).
  • FIG. 5A illustrates an embodiment that implements the fiber optic structure of the invention where the second segment of MMF Multimode Optical Fiber (3) is covered with an encapsulation (7) with an opening (A) forming a region of disturbance (8).
  • FIG. 5B illustrates an isometric section of the fiber optic structure of the invention indicating the contact plane (BB) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3) where the second segment of MMF Multimode Optical Fiber (3) is covered with an encapsulation (7) with an opening (A) forming a disturbance region (8).
  • FIG. 6 illustrates a cross section of the fiber optic structure of the invention where the region of disturbance is formed by melting and stretching tapering of part or all of the second fiber optic segment.
  • FIG. 7A illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3), where the region of disturbance (8) obtained by coating with an encapsulation (7) with an opening (A).
  • FIG. 7B illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3), with a region of disturbance (8) formed by wear, which is obtained by wear of a part of the cladding (3a) (cladding) and the cladding an encapsulation (7) with an opening (A).
  • FIG. 7C illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3) with a region of disturbance (8), which is obtained by wear of a part of the cladding (3a) (cladding).
  • FIG. 8 illustrates an example of voltage versus temperature response of a particular application of the invention implemented as a temperature sensor and with a 3 centimeter MMF fiber disturbance length.
  • FIG. 9 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 4.5 centimeters.
  • FIG. 10 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 8 centimeters.
  • FIG. 11 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 12 centimeters.
  • the present invention corresponds to an optical fiber structure, comprising:
  • the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) corresponds to an area of the second MMF Multimode Fiber Optic segment (3) which is exposed to a physical disturbance or chemistry.
  • all optical fiber segments have a core and a cladding (3a), which is also called cladding.
  • Fas physical disturbances can be mechanical disturbances such as forces, pressures, temperature, among others, and chemical disturbances are considered any material or chemical substance that interacts with the disturbance region (8) in the coating (3a) of the second segment of MMF Multimode Fiber Optic (3).
  • the first segment of Optical Fiber (2) has a core (2b) and a cladding (2a) and the second segment of MMF Multimode Optical Fiber (3), has a core (3b) and a cladding (3a).
  • the first segment of Optical Fiber (2) and second segment of MMF Multimode Optical Fiber (3) are connected for example by mechanical splices that for example is selected from the group formed by FC (for the acronym in English of Ferrule Connector), PC ( Physical Contact), APC UPC (Ultra Physical Contact), ST (Straight Tip), SC (Standard Connector), FC ( Lucent Connector), SMA (Sub Miniature A), MU (Miniature Unit), MTRJ (Mechanical Transfer-Registered Jack), MPO ( Multi-fiber Push-on), E2000 and combinations thereof or by means of splices that are selected for example from the group consisting of fusion splicing, mechanical splices such as splints with different polishes such as PC (for the acronym in English for Physical Contact), UPC n English for Ultra Physical Contact), APC (for the acronym in English of Angled Physical Contact).
  • FC for the acronym in English of Ferrule Connector
  • PC Physical Contact
  • APC UPC User Physical Contact
  • FIG. 4 and FIG. 4A shows an embodiment of the invention in which there is a first Optical Fiber segment (2) with two ends; a second segment of MMF Multimode Optical Fiber (3) with two ends, in which a disturbance region (8) is generated in the cladding (3a) of the Multimode Optical Fiber MMF (3).
  • the disturbance region (8) can be generated in different ways in such a way as to facilitate the exposure of the MMF fiber (3) to physical or chemical disturbances.
  • the first end of the MMF Multimode Optical Fiber (3) is connected to one of the ends of the first Optical Fiber segment (2), where the first Optical Fiber segment (2) connects a photodetector (5) and where at the end of the second MMF Multimode Fiber Optic segment (3) a coherent light emitter (1) is connected.
  • the second segment of MMF Multimode Fiber Optic (3) is connected to a coherent light emitter (1), such as a laser source, so that when the light propagates through the second segment of MMF Multimode Fiber Optic (3) it is generates a modal interference pattern, in this case a Speckle Pattern (12) in the contact plane (B-B), which is the contact plane where the first Fiber Optic segment (2) and the second segment are connected Multimode Fiber Optic MMF (3).
  • Speckle Pattern (12) also called optical speckle pattern
  • the first Fiber Optic segment (2) generates a Speckle Pattern (12) in the contact plane (B-B).
  • the first segment of Optical Fiber (2) functions as a modal filter, where it takes part of the modes or the intensity of the coherent light that propagates through the Optical Fiber (2), which is in the plane where the grain (11) of the Speckle Pattern (12) is formed and is taken to a photodetector (5) which will respond to the power of the Speckle Pattern (12).
  • a modal filter will be understood as that system or device that is capable of taking at least one mode or a group of modes that come from an optical fiber, capturing a part of the power of the Speckle Pattern (12).
  • the value of the metrological parameters of the fiber optic structure By changing the size of the area of the disturbance region (8), for example defined by the segment (L) along the axis of the second segment of MMF Multimode Optical Fiber (3), the value of the metrological parameters of the fiber optic structure. These metrological parameters are for example the sensitivity, the dynamic range or operating range and the detection threshold.
  • sensitivity will be understood as the level of variation of the output variable of the fiber optic structure, in this case measured as the voltage, before changes in the variable to be measured, for example, temperature; that is, in how many millivolts the output signal changes for every 0 C that the temperature of the system to be measured varies.
  • the detection threshold is understood to be the minimum value of the variable to be measured from which the optical fiber structure begins to show variations above the noise level of its output signal.
  • dynamic range also called operating range
  • This response may or may not be linear.
  • Each of these metrological parameters are affected by the region of disturbance (8), which in one embodiment of the invention is determined by the width of the aperture (A) and the length (L) of the region.
  • the perturbation region (8) has an area less than or equal to the area of the cladding (3a) of the second segment of the MMF Multimode Optical Fiber (3).
  • the region of disturbance (8) can be obtained in different ways, for example by referring to FIGS. 5, FIG. 5B and FIG, 7A in a particular example the perturbation region (8) can be obtained by coating with an encapsulation (7) with an opening (A) of the second segment of MMF Multimode Optical Fiber (3), said opening A can have various shapes for example circular shapes, regular or irregular shapes, or for example referring to FIG. 5B, the perturbation region (8) has a rectangular shape defined by the segment L along the axis of the fiber and a thickness A, which can be, for example, of the order of one to two millimeters of thickness A and length L it can for example reach up to 15 cm. In embodiments of the invention, the length L is in the range of 1 cm to 15 cm.
  • the MMF Multimode Optical Fiber (3) has a length less than or equal to 15 cm.
  • the encapsulation coating (7) with an opening (A) isolates the coating (3a) of the MMF Multimode Optical Fiber segment (3) from a physical or chemical disturbance and allows only the MMF Multimode Optical Fiber segment (3) to be disturbed exposed at opening (A).
  • the encapsulated coating (7) can be made with different materials such as plastics, epoxy resin, polyuria, ceramic, glass, among other materials.
  • the coating of the encapsulation (7) has among other functions, that of isolating the cladding (3a) (cladding) of the MMF Multimode Optical Fiber (3) from physical or chemical disturbances of the coated part of the second segment of MMF Multimode Optical Fiber ( 3).
  • the encapsulation (7) with an opening (A) functions as a thermal insulator allowing only the area exposed by the opening to be thermally disturbed ( TO).
  • the region of disturbance (8) can be obtained by coating with an encapsulation (7) around the coating (3a), where said encapsulation (7) has an opening (A).
  • Said opening can be covered with a material that allows, among other effects, to change the refractive index of the region of disturbance (8).
  • materials are polyvinyl alcohol; tetraethyl orthosilicate doped porous silica matrix membranes; Eriochromocyanin R, among other materials.
  • the materials lining the aperture (A) can also be magnetostrictive, or piezoelectric so that a magnetic or electrical disturbance becomes a mechanical disturbance in the disturbance region (8).
  • the disturbance region (8) can be obtained by wear of a part of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber (3), covering it with an encapsulation (7).
  • the region of disturbance (8) can be obtained by wear of a part of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber (3).
  • the region of disturbance (8) is obtained as the area of exposure to a physical or chemical disturbance directly from an area of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber
  • the perturbation region (8) is formed by a narrowing (tapering) by fusion and stretching of a part or all of the second segment of MMF Multimode Optical Fiber (3).
  • Fa region of disturbance (8) can generate an evanescent field and the change in the Speckle Pattern (12) can be related to said evanescent field, which occurs at the external border of the region of disturbance (8) in the coating. (3a).
  • the material that is around the worn fiber produces a modification of the Speckle Pattern (12) that will be registered by the first Optical Fiber segment (2) and that corresponds to a change in the optical power that reaches the photodetector ( 5) and on the photodetector output voltage.
  • the intensity of the change in power will depend on how strong the change is in the optical properties associated with the presence of the external environment.
  • the fiber optic structure comprises: a first segment of Optical Fiber (2), with two ends, a second segment of MMF Multimode Optical Fiber (3), with a disturbance region (8) in the cladding (3a), and with two ends, one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Optical Fiber segment (2) and where a reflective film (9) is added that is arranged in the second extreme, of the second segment of MMF Multimode Fiber Optic (3) said reflective film (9) is a reflective element such as a mirror, first surface, a polished surface such as a fine polishing type PC (for its acronym in English Phisical contact): where the level of return is around -40dB, UPC also called UltraPC Polishing , where the pickup level is further reduced than the PC by around -55dB.
  • a reflective film (9) is a reflective element such as a mirror, first surface, a polished surface such as a fine polishing type PC (for its acronym in English Phisical contact): where the level of return
  • APC APC Angled Physical Contact: where the reflection is reduced to around -70dB or a shiny layer, such as silver deposited by sputtering (sputtering) or dip-coating (dip coating) ) deposited on the end of the second segment of MMF Multimode Optical Fiber (3).
  • the fiber optic structure and the reflective film (9) and referring to FIG. 3A a second embodiment of the invention is made where the first segment of Optical Fiber (2) at its end is connected to the second port of the optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); a photodetector (5) is connected to the third port of the optical circulator (10).
  • the reflective film (9) is not in contact with the second segment of MMF Multimode Optical Fiber (3) but is approached by means of an optical line of sight of the light that leaves the second segment of MMF Multimode Fiber Optic (3) and returns the light to the same second segment of MMF Multimode Fiber Optic (3) through reflection.
  • the fiber optic structure comprising: a first segment of Optical Fiber (2), with two ends, a second segment of MMF Multimode Optical Fiber (3), with a disturbance region (8) in the cladding (3a) , and with two ends, in which the first end is connected to the second end of the first Optical Fiber segment (2); and where a reflective film (9) arranged at the second end of the second segment of MMF Multimode Optical Fiber (3) is added, said reflective film (9) is a reflective element such as a mirror, a polished surface or a glossy layer deposited on the end of the second segment of MMF Multimode Optical Fiber (3) and the perturbation region (8) can be obtained by coating with an encapsulation (7) with an opening (A) of the second MMF Multimode Optical Fiber segment ( 3), and an embodiment of the invention is made where one end of the first Fiber segment Optics (2) is connected to the second port of the optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circul
  • the second embodiment of the invention works by reflection, where the light from the coherent light emitter (1) enters through the second MMF Multimode Fiber Optic segment (3), propagating through the second MMF Multimode Optical Fiber segment (3), and then a reflection is generated in the reflective film (9). The reflected light is returned and re-enters again through the contact plane (BB), where the Speckle Pattern (12) is generated between the first Optical Fiber segment (2) and the second MMF Multimode Fiber Optic segment ( 3), which reaches the photodetector (5) through an optical circulator (10). The first Fiber Optic segment (2) takes part of the power from the Speckle Pattern (12) formed in the contact plane (B-B).
  • the power capture of the Speckle Pattern (12) formed in the contact plane (BB) is associated with the diameter of the core (2b) of the first Optical Fiber segment (2) and of the core (3b ) of the second MMF Multimode Fiber Optic segment (3).
  • the light that comes from the second MMF Multimode Fiber Optic segment (3) will be coupled to a greater or lesser extent in the first Fiber Optic segment (2) depending on the dimensions of the first Fiber Optic segment (2) and the second segment of MMF Multimode Fiber Optic (3).
  • each grain (11) of the Speckle Pattern (12) carries an amount of optical power. If the size of the core (2b) of the first Fiber Optic segment (2) is very similar to the average grain size (11) of the Speckle Pattern (12), it is equivalent to capturing the power of the grain (11) of the Speckle Pattern Speckle (12) and bring said power to the photodetector (5).
  • the grains (11) of the Pattern of Speckle (12), also called spots have a statistical size and correspond to a statistical distribution, with an average grain size (11) of the Speckle Pattern (12).
  • the first Fiber Optic segment (2) functions as a power filter, so that as the size of the core (2b) of the first Fiber Optic segment (2) changes compared to the average grain size (11 ) of the Speckle Pattern (12) the following situations may occur:
  • the diameter of the core (2b) of the first Optical Fiber segment (2) is very small compared to the statistical average grain size (11) of the Speckle Pattern (12), in this case if disturbances occur on the Speckle Pattern , the first Fiber Optic segment (2), when behaving as a power filter, it would not adequately capture the power of the Speckle Pattern disturbances (12).
  • the optical power of many grains (11) of the Speckle Pattern (12) would pass through the first segment of Optical Fiber (2), for example, in proportion 5 or 6 times the order of magnitude of the size of the grain (11), so that when there is a disturbance of the Speckle Pattern (12), the photodetector (5) would not adequately capture the changes in power associated with the Speckle Pattern disturbances (12).
  • the first Optical Fiber segment (2) has a core diameter (2b) approximately equal to the statistical average grain size (11) of the Speckle Pattern (12), then when there is a disturbance on that Speckle Pattern (12) the power of one of the grains (11) of the Speckle Pattern (12) passes through the first Optical Fiber segment (2) as well as the power of the Speckle Pattern (12) disturbances that will be recorded by the photodetector (5).
  • the second segment of MMF Multimode Fiber Optic (3) is irradiated by its second end with light from the coherent light emitter (1), comply with the following condition: 0.5 1.8 where L
  • (D s ) - -jy: is the average grain size (11) of the Speckle Pattern (12); d. is the diameter of the core (2b) of the first Optical Fiber segment (2); AN: the numerical aperture of the second MMF fiber optic segment (3); yl: the wavelength of the coherent light source (1).
  • the ratio of: the core diameters (2b) of the first Fiber Optic segment (2), the numerical aperture (3b) of the second MMF Multimode Fiber Optic segment (3); and the wavelength of the coherent light source (1), the average grain size (11) of the Speckle Pattern (12) allows calibrating the assemblies and modalities of the invention by organizing the relationships of the elements and metrological parameters such as previously described by means of test disturbances and corresponding voltage or power measurements in a photodetector (5) obtaining a direct response that correlates, for example, the change of a variable of interest with the voltage or power in the photodetector (5) corresponding to the optical power of a grain (11) of average size of the Speckle Pattern (12).
  • the invention is also possible to perform spectral analysis at the output of the photodetector (5), and at the end of the fiber segment (3) opposite the first end of the second MMF Multimode Fiber Optic segment (3) that is connected to the second end of the first Fiber Optic segment (2), an electronic image acquisition system with CCD devices (Charge - Coupled Device), CMOS (Complementary Metal-Oxide-Semiconductor), or equivalent.
  • CCD devices Charge - Coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the photodetector (5) is selected from the group consisting of: light detector, photodiode, PIN photodiode, avalanche photodiode, phototransistor, photoresistor, photocathode, phototube, photovalve, photomultiplier, CCD, CMOS sensor, cell photoelectric, photoelectrochemical cell, photocell, connectorized photodetector, connectorized photodiode and combinations thereof.
  • a connectorized element is one that includes at one end a connector for mechanical splicing to optical fiber.
  • the optical fiber structure comprising: A first segment of Optical Fiber (2) of 1 m in length, with a core diameter (2b) of 9 pm and a numerical aperture (AN) of 0.13, the first segment of Optical Fiber (2) with two ends, a second segment of MMF Multimode Optical Fiber (3) of 15 cm in length, with a core diameter (3b) of 50 pm and an aperture numerical value of 0.22, where the second MMF Multimode Fiber Optic segment (3) includes a disturbance region (8), and with two ends, where one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Fiber Optic segment (2) by fusion splicing and where a reflective silver film (9) deposited by sputtering (sputtering) is added and arranged at the second end of the second segment of MMF Multimode Optical Fiber (3.
  • the second segment of MMF Multimode Fiber Optic (3) has a region of disturbance (8) obtained by coating the MMF Multimode Optical Fiber (3) with
  • An embodiment of the invention is made where one end of the first Fiber Optic segment (2) is connected to the second port of the optical circulator (10) by means of a mechanical connection type FC / PC (Ferrule Connector / Physical Contact) - other alternatives of mechanical connection is through connectors type ST (Straight Tip), SC (Standard Connector), LC (Lucent Connector), MU (Miniature Unit), MTRJ (Mechanical Transfer Registered Jack), E2000 connector or any type of mechanical fiber optic connector- .
  • a coherent light emitter (1) is connected, which is a fiber-connectorized laser source, with emission wavelengths at 1310, 1490 and 1550 nm, and using the wavelength of 1550 nm.
  • a photodetector (5) connectorized to fiber is connected, which is a photodetector of point optical power (5) type photodiode with response in the range of wavelengths from 800 to 1700nm.
  • the laser source ensures that the second segment of MMF Multimode Fiber Optic (3) works in a multimodal regime.
  • the second segment of MMF Multimode Fiber Optic (3) has a disturbance region (8) obtained by coating with an encapsulation (7) with an aperture (A), MMF Multimode Optical Fiber (3), where the aperture (A) It is rectangular and runs along the length of the second MMF Multimode Fiber Optic segment (3) exposing the opening (A) in the second MMF Multimode Fiber Optic segment (3).
  • the longitudinal dimension L of the opening (A) is selected from 1 cm, 3 cm, 4.5 cm, 8 cm and 12 cm and the transverse dimension of this area is between 1 mm and 3 mm.
  • the region of disturbance (8) is brought into contact or approaches a body whose temperature is to be measured.
  • the output of the photodetector (5) which is a punctual optical power photodetector (5) type photodiode connectorized to fiber with response in the wavelength range of 800 to 1700nm, is connected to a voltage meter that allows characterization of the response of the assembly of this example when a certain temperature is applied; On the other hand, said temperature is also measured with a standard temperature sensor such as a thermocouple, an RTD sensor (Resistance Temperature Detector), a thermistor or a combination of the above, and in this way obtain the calibration curve of the assembly of this example.
  • a sensitivity, dynamic range and threshold analysis of the present invention can be carried out, in the same way as illustrated in Example 2.
  • the way to obtain the calibration curves is known to a person who is moderately versed in matter and the way to obtain said curves will be described in Example 2.
  • the first segment of Optical Fiber (2) Singlemode at its first end is connected by mechanical connection type FC / PC to a photodetector (5) which is a point photodetector (5) connectorized to fiber with response in the 800 wavelength range at 1700nm, additionally a coherent light emitter (1) which for this example is a fiber optic connectorized laser source with 1550 nm emission wavelengths
  • Said emitter is a coherent light emitter (1) that is connected by means of a mechanical connection type SC / APC (Square connector or standard connector / Angled phisical contact) to the second end of the second segment of MMF Multimode Fiber Optic (3 ).
  • SC / APC Square connector or standard connector / Angled phisical contact
  • the fiber optic connectorized laser source with emission wavelengths 1550 nm ensures that the second segment of MMF Multimode Fiber Optic (3) works in multimodal regimen.
  • the relationship is 0.8 between the core diameter (2b) of the first Optical Fiber segment (2) and the average grain diameter (11) of the Speckle Pattern (12) that is generated in the contact plane (BB) between the first segment of Optical Fiber (2) and second segment of MMF Multimode Optical Fiber (3) when it is irradiated with coherent light from the coherent light emitter (1).
  • the second segment of MMF Multimode Optical Fiber (3) has a disturbance region (8) obtained by coating the cladding (3a) of the MMF Multimode Optical Fiber (3) with an encapsulation (7) with an opening (A), where the aperture (A) is rectangular along the length of the second MMF Multimode Fiber Optic segment (3) exposing the second MMF Multimode Optical Fiber segment (3) in the aperture (A).
  • the longitudinal dimension L of the opening (A) is selected from 1cm, 3cm, 4.5cm, 8cm and 12cm and the transverse dimension of this area is between 1mm and 3mm.
  • the region of disturbance (8) is brought into contact or approaches a body whose temperature is to be measured.
  • the output of the photodetector (5) which is a point optical power photodetector (5) type photodiode connectorized to fiber with response in the range of wavelengths from 800 to 1700 nm is connected to a voltage meter that allows the characterization of the Response of the assembly of this example when the disturbance region (8) is brought into contact or approaches a body whose temperature is to be measured, on the other hand said temperature is also measured with a standard temperature sensor such as a thermocouple, an RTD (Resistance Temperature Detector) sensor, a thermistor or a combination of the above, in order to obtain the mounting calibration curve of this example.
  • a sensitivity, dynamic range and threshold analysis of the present invention can be performed as presented below.
  • the first Fiber Optic segment (2) has two ends; a second segment of MMF Multimode Fiber Optic (3) 15 cm long, with a diameter of 50 um and a numerical aperture of 0.22, with a perturbation region (8), and with two ends, where one end of the second segment Fiber Optic Multimode MMF
  • the third segment of Optical Fiber (2) Singlemode at its first end is connected by means of a mechanical connection type FC / PC to a photodetector (5) which is a point photodetector connectorized to fiber with response in the range of wavelengths from 800 to 1700nm, additionally a coherent light emitter
  • Said emitter is a coherent light emitter (1) that is connected by means of a mechanical connection type SC / APC (for its acronym in English Square connector or standard connector / Angled phisical contact) to the end of the second segment of MMF Multimode Fiber Optic (3) .
  • SC / APC for its acronym in English Square connector or standard connector / Angled phisical contact
  • the fiber optic connectorized laser source with emission wavelengths 1550 nm ensures that the second segment of MMF Multimode Fiber Optic (3) operates in a multimodal regime.
  • the relationship is 0.8 between the core diameter (2b) of the first Optical Fiber segment (2) and the average diameter of grains (11) of the Speckle Pattern (12) that is generated in the contact plane (BB) between the first Fiber Optic segment
  • the (3) has a disturbance region (8) that is obtained by wear of a part of the cladding (3a) (cladding) where for the worn area the longitudinal dimension of is selected between 1 cm, 3 cm, 4.5 cm, 8 cm and 12 cm and the transverse dimension is select between 1mm and 3mm.
  • the region of disturbance (8) is brought into contact with substances that are changing their chemical composition, such as, for example, a percentage by volume of propyl alcohol in distilled water.
  • the output of the optical power photodetector (5) is connected to a voltage meter that allows the characterization of the response of the assembly of example 3 when the percentage by volume of propyl alcohol in distilled water is changed, to obtain the calibration curve of the system proposed in this invention.

Abstract

The present invention relates to an optical fibre system, which comprises: a structure comprising a first optical fibre segment (2) with two ends; a second MMF multimode optical fibre segment (3) with two ends; wherein the first end of the second MMF multimode optical fibre segment (3) is connected to the first end of the first optical fibre segment (2); the second MMF multimode optical fibre segment (3) has a disturbance region (8) that is exposed to a physical or chemical disturbance.

Description

SISTEMA DE FIBRA ÓPTICA FIBER OPTIC SYSTEM
Campo técnico de la invención Technical field of the invention
La presente invención se refiere a estructuras de fibra óptica relacionadas con sensores de fibra óptica, moduladores de fibra óptica, pero sin limitarse a estas aplicaciones y usos. The present invention relates to fiber optic structures related to fiber optic sensors, fiber optic modulators, but is not limited to these applications and uses.
Descripción del estado de la técnica Description of the state of the art
Además de las comunicaciones, las fibras ópticas y las estructuras de fibra óptica han recibido mucho interés, por ejemplo, como sensores de una gran cantidad de parámetros mecánicos, eléctricos y químicos, entre otros. Esto ha llevado al desarrollo de muchos nuevos tipos de fibra y aplicaciones para su uso como sensores de fibra óptica. In addition to communications, optical fibers and fiber optic structures have received a lot of interest, for example, as sensors for a large number of mechanical, electrical and chemical parameters, among others. This has led to the development of many new types of fiber and applications for use as fiber optic sensors.
Así, en el estado del arte se divulgan sensores de fibra óptica, como los divulgados por los documentos US6144790 A, US4843233 A o el artículo “ Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure ” disponible en línea en https://www.ncbi.nlm.nih.gov/pubrned/180r7969· Thus, in the state of the art fiber optic sensors are disclosed, such as those disclosed by documents US6144790 A, US4843233 A or the article “Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure ”available online at https://www.ncbi.nlm.nih.gov/pubrned/180r7969·
El documento US6144790 A divulga un sensor de fibra óptica que comprende una fuente óptica útil para detectar impacto, vibración, temperatura, presión u otras fuerzas. El sensor comprende una fibra óptica con una terminal conectada a una fuente de luz y con la otra terminal conectada a un detector. El sensor tiene una sección de medición, una modalidad particular de la invención comprende una luz generada por una fuente óptica que se propaga a través de un sistema de fibra óptica de manera que una porción de la fibra óptica es sensible a fuerzas externas o perturbaciones que afectan la intensidad de la luz que se propaga por el sistema de fibra óptica y la intensidad de la luz es recibida por un detector. Document US6144790 A discloses a fiber optic sensor comprising an optical source useful for detecting impact, vibration, temperature, pressure or other forces. The sensor comprises an optical fiber with one terminal connected to a light source and with the other terminal connected to a detector. The sensor has a measuring section, a particular embodiment of the invention comprises a light generated by an optical source that propagates through an optical fiber system such that a portion of the optical fiber is sensitive to external forces or disturbances that They affect the intensity of the light that propagates through the fiber optic system and the intensity of the light is received by a detector.
El documento US6144790 A divulga que el patrón de moteado cambia de acuerdo a perturbaciones de la fibra sensible. Bajo la influencia de un campo aplicado, ya sea térmico, fuerza o presión directa u otro origen físico, la fibra sensible completa, o partes de la misma, o solo una sección de fibra sensible, puede experimentar una deformación de una simetría axial. El documento US6144790 A divulga que soluciona un problema de sensibilidad de los sensores de fibra óptica utilizados para medir variables como presión y fuerza en el cual se requieren largas longitudes de fibra sensible acopladas a dispositivos mecánicos, la solución se hace empleando una fibra óptica monomodo que mantiene la polarización. US6144790 A discloses that the speckle pattern changes according to disturbances of the sense fiber. Under the influence of an applied field, be it thermal, direct force or pressure, or other physical origin, the entire sensitive fiber, or parts thereof, or just a section of sensitive fiber, may undergo a deformation of an axial symmetry. Document US6144790 A discloses that it solves a sensitivity problem of fiber optic sensors used to measure variables such as pressure and force in which long lengths of sensitive fiber coupled to mechanical devices are required, the solution is made using a single-mode optical fiber that maintains polarization.
No obstante, el sensor divulgado en el documento US6144790 A, no se fabrica teniendo en cuenta parámetros del diámetro de núcleo de fibra en relación a un patrón de moteado, por lo tanto, el sensor no tiene en cuenta alteraciones físicas sobre el segmento de fibra que permitan variar parámetros metrológicos del sensor como la sensibilidad, rango dinámico y umbral de funcionamiento del sensor por lo que el funcionamiento del sensor se limita a valores estáticos de dichos parámetros metrológicos y su sensibilidad es limitada. However, the sensor disclosed in document US6144790 A, is not manufactured taking into account parameters of the fiber core diameter in relation to a speckle pattern, therefore, the sensor does not take into account physical alterations on the fiber segment that allow metrological parameters of the sensor to be varied, such as the sensitivity, dynamic range and operating threshold of the sensor, so the sensor's operation is limited to static values of said metrological parameters and its sensitivity is limited.
El artículo “ Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single -múltiple -single mode fiber structuré" divulga un sensor de fibra para medir perturbaciones mecánicas en una estructura SMS (por las siglas en inglés de Single Mode Fiber - Multi Mode Fiber - Single Mode Fiber) de fibra óptica, que tiene una fibra óptica MMF (por las siglas en inglés de Multi-Mode Optical Fiber) de índice escalonado de la cual se empalma una fibra SMF (por las siglas en inglés de Single-Mode Optical Fiber) en cada uno de sus extremos que corresponden a una fibra de entrada y a una fibra de salida un irradiador (Faser He-Ne) conectado en el otro extremo de la fibra de entrada y un fotodetector conectado al otro extremo de la fibra de salida. The article "Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single -multiple -single mode fiber structuré" discloses a fiber sensor to measure mechanical disturbances in a structure SMS (for the acronym in English of Single Mode Fiber - Multi Mode Fiber - Single Mode Fiber) of fiber optic, which has an optical fiber MMF (Multi-Mode Optical Fiber) of stepped index from which is spliced an SMF fiber (for the acronym in English of Single -Mode Optical Fiber) at each of its ends that correspond to an input fiber and an output fiber, an irradiator (Faser He-Ne) connected to the other end of the input fiber and a photodetector connected to the other end of the output fiber.
El documento del artículo divulga que la sensibilidad del sensor se podría mejorar optimizando el diámetro del núcleo de la fibra de salida haciendo que este coincida con el tamaño del patrón de moteado óptico, debido a que funciona como una apertura por la cual se capta parte del patrón de moteado óptico. No obstante, no divulga información de una relación de los parámetros de las fibras que permitan variar la sensibilidad, rango dinámico y umbral de funcionamiento del sensor. The document of the article discloses that the sensitivity of the sensor could be improved by optimizing the diameter of the core of the output fiber by making it coincide with the size of the optical speckle pattern, since it functions as an aperture through which part of the fiber is captured. optical speckled pattern. However, it does not disclose information on a relationship of the parameters of the fibers that allow varying the sensitivity, dynamic range and operating threshold of the sensor.
Breve descripción de la invención Brief description of the invention
Fa presente invención hace referencia a una estructura de fibra óptica, que comprende un primer segmento de Fibra Optica (2) con dos extremos; un segundo segmento de Fibra Optica Multimodo MMF (3) con dos extremos; donde un extremo del segundo segmento de Fibra Óptica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Óptica (2); donde dicho segundo segmento tiene una región de perturbación (8) en el revestimiento (3a) de la Fibra Óptica Multimodo MMF (3); y donde la región de perturbación (8) del segmento de Fibra Óptica Multimodo MMF (3) se expone a una perturbación física o química. The present invention refers to an optical fiber structure, which comprises a first segment of Optical Fiber (2) with two ends; a second segment of MMF Multimode Fiber Optic (3) with two ends; where one end of the second segment Multimode Fiber Optic MMF (3) is connected to one of the ends of the first Fiber Optic segment (2); wherein said second segment has a disturbance region (8) in the cladding (3a) of the MMF Multimode Optical Fiber (3); and where the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) is exposed to a physical or chemical disturbance.
En una modalidad de la invención, uno de los extremos del primer segmento de Fibra Óptica (2) se conecta a un fotodetector (5) y en un extremo del segundo segmento de Fibra Óptica Multimodo MMF (3) se conecta un emisor de luz coherente (1). In one embodiment of the invention, one of the ends of the first Optical Fiber segment (2) is connected to a photodetector (5) and at one end of the second MMF Multimode Optical Fiber segment (3) a coherent light emitter is connected (1).
En una modalidad adicional de la invención, un extremo del primer segmento de Fibra Óptica (2) se conecta al segundo puerto de un circulador óptico (10) de tres puertos; en el primer puerto del circulador óptico (10) se conecta un emisor de luz coherente (1); en el tercer puerto del circulador óptico (10) se conecta un fotodetector (5); y una película reflectiva (9) se dispone en el extremo del segundo segmento de Fibra Óptica Multimodo MMF (3), que no está conectado al primer segmento de Fibra Óptica (2). In a further embodiment of the invention, one end of the first Fiber Optic segment (2) is connected to the second port of a three-port optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); a photodetector (5) is connected to the third port of the optical circulator (10); and a reflective film (9) is arranged at the end of the second MMF Multimode Fiber Optic segment (3), which is not connected to the first Optical Fiber segment (2).
En un ejemplo particular de la invención, el primer segmento de Fibra Óptica (2) es Monomodo (SMF). In a particular example of the invention, the first Optical Fiber segment (2) is Single-mode (SMF).
En el segundo segmento de Fibra Óptica Multimodo MMF (3) se tiene una región de perturbación (8) que se obtiene mediante distintos métodos como se explicará en detalle más adelante. Por ejemplo, para lograr dicha región de perturbación (8) en el revestimiento (3a), también denominado cladding, del segmento de Fibra Óptica Multimodo MMF (3) se recubre con un encapsulado (7) que tiene una abertura (A). En otras modalidades del invento, el revestimiento (3a) puede generar la región de perturbación (8) mediante el desgaste de una parte del revestimiento (3a). In the second segment of MMF Multimode Fiber Optic (3) there is a perturbation region (8) that is obtained by means of different methods as will be explained in detail later. For example, to achieve said region of disturbance (8) in the cladding (3a), also called cladding, of the MMF Multimode Optical Fiber segment (3) it is covered with an encapsulation (7) having an opening (A). In other embodiments of the invention, the coating (3a) can generate the disturbance region (8) by wearing away a part of the coating (3a).
Otra forma de generar la región de perturbación (8) es mediante un estrechamiento (técnica conocida también como tapering) por fusión y estiramiento de una parte o de la totalidad del revestimiento (3a) del segundo segmento de Fibra Óptica Multimodo MMFAnother way of generating the region of disturbance (8) is by means of a narrowing (also known as tapering technique) by fusion and stretching of a part or all of the cladding (3a) of the second segment of MMF Multimode Optical Fiber.
(3). Se debe entender que la región de perturbación (8) no necesariamente debe consistir en la modificación del revestimiento (3a) del segundo segmento de Fibra Optica Multimodo MMF (3) ( cladding ), sino que puede simplemente corresponder con la exposición a una perturbación física o química directamente de una zona o área de una parte del revestimiento (3a) del segundo segmento de Fibra Optica Multimodo MMF (3). (3). It should be understood that the region of disturbance (8) must not necessarily consist of the modification of the cladding (3a) of the second segment of MMF Multimode Optical Fiber (3) (cladding), but that it may simply correspond to the exposure to a physical disturbance or chemistry directly from a zone or area of a part of the cladding (3a) of the second segment of MMF Multimode Optical Fiber (3).
Breve descripción de las figuras Brief description of the figures
La FIG. 1 ilustra un corte longitudinal de la estructura de fibra óptica de una modalidad de la invención. FIG. 1 illustrates a longitudinal section of the fiber optic structure of an embodiment of the invention.
La FIG. 2 ilustra un corte longitudinal de una modalidad de la estructura de fibra óptica de la invención a la que se le adiciona una película reflectiva (9). FIG. 2 illustrates a longitudinal section of an embodiment of the fiber optic structure of the invention to which a reflective film (9) is added.
La FIG. 3 ilustra un corte longitudinal de una modalidad de la invención, la estructura de fibra óptica de la invención a la que se le adiciona una película reflectiva (9) y un encapsulado (7) con una abertura (A) de longitud L. FIG. 3 illustrates a longitudinal section of an embodiment of the invention, the optical fiber structure of the invention to which is added a reflective film (9) and an encapsulation (7) with an opening (A) of length L.
La FIG. 3A ilustra una modalidad reflectiva que implementa la estructura de fibra óptica de la invención a la que se le adiciona una película reflectiva y un encapsulado (7) con una abertura (A) de longitud L. FIG. 3A illustrates a reflective modality that implements the fiber optic structure of the invention to which is added a reflective film and an encapsulation (7) with an aperture (A) of length L.
La FIG. 4 ilustra un corte longitudinal de la estructura de fibra óptica de la invención señalando el plano de contacto (B-B) entre un primer segmento de Fibra Optica (2) y un segundo segmento de Fibra Optica Multimodo MMF (3). FIG. 4 illustrates a longitudinal section of the fiber optic structure of the invention indicating the contact plane (B-B) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3).
La FIG. 4A ilustra una modalidad que implementa la estructura de fibra óptica de la invención donde en uno de los extremos del primer segmento de Fibra Optica (2) se conecta un fotodetector (5) y donde en el extremo del segundo segmento de Fibra Optica Multimodo MMF (3) se conecta a un emisor de luz coherente (1). FIG. 4A illustrates a modality that implements the fiber optic structure of the invention where a photodetector (5) is connected at one of the ends of the first Optical Fiber segment (2) and where at the end of the second MMF Multimode Fiber Optic segment ( 3) is connected to a coherent light emitter (1).
La FIG. 4B ilustra un ejemplo de un grano (11) de un Patrón de Speckle (12) también llamado patrón moteado óptico que se observa en una vista frontal del plano de contacto (B-B) entre el primer segmento de Fibra Optica (2) y el segundo segmento de Fibra Optica Multimodo MMF (3). La FIG. 5 ilustra un corte transversal de la estructura de fibra óptica de la invención señalando el plano de contacto (B-B) entre un primer segmento de Fibra Optica (2) y un segundo segmento de Fibra Optica Multimodo MMF (3) donde el segundo segmento de Fibra Optica Multimodo MMF (3) está recubierto con un encapsulado (7) con una abertura (A) formando una región de perturbación (8). FIG. 4B illustrates an example of a grain (11) of a Speckle Pattern (12) also called an optical speckled pattern that is observed in a front view of the contact plane (BB) between the first Optical Fiber segment (2) and the second MMF Multimode Fiber Optic segment (3). FIG. 5 illustrates a cross section of the fiber optic structure of the invention indicating the contact plane (BB) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3) where the second segment of Fiber MMF Multimode Optics (3) is covered with an encapsulation (7) with an opening (A) forming a disturbance region (8).
La FIG. 5A ilustra una modalidad que implementa la estructura de fibra óptica de la invención donde el segundo segmento de Fibra Optica Multimodo MMF (3) está recubierto con un encapsulado (7) con una abertura (A) formando una región de perturbación (8). FIG. 5A illustrates an embodiment that implements the fiber optic structure of the invention where the second segment of MMF Multimode Optical Fiber (3) is covered with an encapsulation (7) with an opening (A) forming a region of disturbance (8).
La FIG. 5B ilustra un corte en isométrico de la estructura de fibra óptica de la invención señalando el plano de contacto (B-B) entre un primer segmento de Fibra Optica (2) y un segundo segmento de Fibra Optica Multimodo MMF (3) donde el segundo segmento de Fibra Optica Multimodo MMF (3) está recubierto con un encapsulado (7) con una abertura (A) formando una región de perturbación (8). FIG. 5B illustrates an isometric section of the fiber optic structure of the invention indicating the contact plane (BB) between a first segment of Optical Fiber (2) and a second segment of MMF Multimode Optical Fiber (3) where the second segment of MMF Multimode Optical Fiber (3) is covered with an encapsulation (7) with an opening (A) forming a disturbance region (8).
La FIG. 6 ilustra un corte transversal de la estructura de fibra óptica de la invención dónde la región de perturbación está formada mediante un estrechamiento (tapering) por fusión y estiramiento de una parte o de la totalidad del segundo segmento de fibra óptica. FIG. 6 illustrates a cross section of the fiber optic structure of the invention where the region of disturbance is formed by melting and stretching tapering of part or all of the second fiber optic segment.
La FIG. 7A ilustra un corte transversal del segundo segmento de Fibra Optica Multimodo MMF (3), donde la región de perturbación (8) obtenida mediante el recubrimiento con un encapsulado (7) con una abertura (A). FIG. 7A illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3), where the region of disturbance (8) obtained by coating with an encapsulation (7) with an opening (A).
La FIG. 7B ilustra un corte transversal del segundo segmento de Fibra Optica Multimodo MMF (3), con una región de perturbación (8) formada por desgaste, la que es obtenida mediante desgaste de una parte del revestimiento (3a) ( cladding ) y el recubrimiento con un encapsulado (7) con una abertura (A). FIG. 7B illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3), with a region of disturbance (8) formed by wear, which is obtained by wear of a part of the cladding (3a) (cladding) and the cladding an encapsulation (7) with an opening (A).
La FIG. 7C ilustra un corte transversal del segundo segmento de Fibra Optica Multimodo MMF (3) con una región de perturbación (8), que es obtenida mediante desgaste de una parte del revestimiento (3a) (cladding). La FIG. 8 ilustra un ejemplo de respuesta de voltaje contra temperatura de una aplicación particular de la invención implementada como sensor de temperatura y con longitud de perturbación de fibra de MMF de 3 centímetros. FIG. 7C illustrates a cross section of the second segment of MMF Multimode Optical Fiber (3) with a region of disturbance (8), which is obtained by wear of a part of the cladding (3a) (cladding). FIG. 8 illustrates an example of voltage versus temperature response of a particular application of the invention implemented as a temperature sensor and with a 3 centimeter MMF fiber disturbance length.
La FIG. 9 ilustra un ejemplo de respuesta de voltaje contra temperatura de una aplicación particular de la invención usada como sensor de temperatura y con longitud de perturbación de fibra de MMF de 4.5 centímetros. FIG. 9 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 4.5 centimeters.
La FIG. 10 ilustra un ejemplo de respuesta de voltaje contra temperatura de una aplicación particular de la invención usada como sensor de temperatura y con longitud de perturbación de fibra de MMF de 8 centímetros. FIG. 10 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 8 centimeters.
La FIG. 11 ilustra un ejemplo de respuesta de voltaje contra temperatura de una aplicación particular de la invención usada como sensor de temperatura y con longitud de perturbación de fibra de MMF de 12 centímetros. FIG. 11 illustrates an example of voltage versus temperature response of a particular application of the invention used as a temperature sensor and with MMF fiber disturbance length of 12 centimeters.
Descripción detallada de la invención Detailed description of the invention
Haciendo referencia a la FIG. 1, la presente invención corresponde a una estructura de fibra óptica, que comprende: Referring to FIG. 1, the present invention corresponds to an optical fiber structure, comprising:
- un primer segmento de Fibra Optica (2) con dos extremos; - a first segment of Optical Fiber (2) with two ends;
- un segundo segmento de Fibra Optica Multimodo MMF (3) con dos extremos; donde un extremo del segundo segmento de Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2); donde dicho segundo segmento tiene una región de perturbación (8) en el revestimiento (3a) de la Fibra Optica Multimodo MMF (3); y donde la región de perturbación (8) del segmento de Fibra Optica Multimodo MMF (3) se expone a una perturbación física o química. En el presente invento, se debe entender que la región de perturbación (8) del segmento de Fibra Optica Multimodo MMF (3), corresponde con un área del segundo segmento de Fibra Optica Multimodo MMF (3) el cual se expone a una perturbación física o química. Así mismo, se debe entender en el presente invento que todos los segmentos de fibra óptica presentan un núcleo y un revestimiento (3a), que también se denomina cladding. - a second segment of MMF Multimode Fiber Optic (3) with two ends; where one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Optical Fiber segment (2); wherein said second segment has a disturbance region (8) in the cladding (3a) of the MMF Multimode Optical Fiber (3); and where the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) is exposed to a physical or chemical disturbance. In the present invention, it should be understood that the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) corresponds to an area of the second MMF Multimode Fiber Optic segment (3) which is exposed to a physical disturbance or chemistry. Likewise, it should be understood in the present invention that all optical fiber segments have a core and a cladding (3a), which is also called cladding.
Fas perturbaciones físicas pueden ser perturbaciones mecánicas como por ejemplo fuerzas, presiones, temperatura, entre otros, y las perturbaciones químicas son consideradas cualquier material o sustancia química que interactúe con la región de perturbación (8) en el revestimiento (3a) del segundo segmento de Fibra Optica Multimodo MMF (3). Fas physical disturbances can be mechanical disturbances such as forces, pressures, temperature, among others, and chemical disturbances are considered any material or chemical substance that interacts with the disturbance region (8) in the coating (3a) of the second segment of MMF Multimode Fiber Optic (3).
Haciendo referencia a la FIG. 1, el primer segmento de Fibra Optica (2) tiene un núcleo (2b) y un revestimiento (2a) y el segundo segmento de Fibra Optica Multimodo MMF (3), tiene un núcleo (3b) y un revestimiento (3a). Referring to FIG. 1, the first segment of Optical Fiber (2) has a core (2b) and a cladding (2a) and the second segment of MMF Multimode Optical Fiber (3), has a core (3b) and a cladding (3a).
El primer segmento de Fibra Optica (2) y segundo segmento de Fibra Optica Multimodo MMF (3) se conectan por ejemplo mediante empalmes mecánicos que por ejemplo se selecciona del grupo formado por FC (por las siglas en inglés de Ferrule Connector), PC (por las siglas en inglés de Physical Contact), APC UPC (por las siglas en inglés de Ultra Physical Contact), ST (por las siglas en inglés de Straight Tip), SC (por las siglas en inglés de Standard Connector), FC (por las siglas en inglés de Lucent Connector), SMA ( por sus siglas en inglés Sub Miniature A ), MU (por sus siglas en inglés Miniature Unit ), MTRJ (por las siglas en inglés de Mechanical Transfer-Registered Jack), MPO (por las siglas en inglés de Multi-fiber Push-on), E2000 y combinaciones de los mismos o mediante empalmes que se seleccionan por ejemplo del grupo conformado por empalme por fusión, empalmes mecánicos como férulas con diferentes pulidos como PC (por las siglas en inglés de Physical Contact), UPC (por las siglas en inglés de Ultra Physical Contact), APC (por las siglas en inglés de Angled Physical Contact). The first segment of Optical Fiber (2) and second segment of MMF Multimode Optical Fiber (3) are connected for example by mechanical splices that for example is selected from the group formed by FC (for the acronym in English of Ferrule Connector), PC ( Physical Contact), APC UPC (Ultra Physical Contact), ST (Straight Tip), SC (Standard Connector), FC ( Lucent Connector), SMA (Sub Miniature A), MU (Miniature Unit), MTRJ (Mechanical Transfer-Registered Jack), MPO ( Multi-fiber Push-on), E2000 and combinations thereof or by means of splices that are selected for example from the group consisting of fusion splicing, mechanical splices such as splints with different polishes such as PC (for the acronym in English for Physical Contact), UPC n English for Ultra Physical Contact), APC (for the acronym in English of Angled Physical Contact).
Haciendo referencia a la FIG. 4 y FIG. 4A se muestra una modalidad de la invención en la que se tiene un primer segmento de Fibra Optica (2) con dos extremos; un segundo segmento de Fibra Optica Multimodo MMF (3) con dos extremos, en la cual se genera una región de perturbación (8) en el revestimiento (3a) de la Fibra Optica Multimodo MMF (3). Como se indicó anteriormente, la región de perturbación (8) puede generarse de diferentes maneras de tal manera que se facilite la exposición de la fibra MMF (3) a las perturbaciones físicas o químicas. Siguiendo con las FIG. 4 y 4A, el primer extremo de la Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2), donde el primer segmento de Fibra Optica (2) se conecta un fotodetector (5) y donde en el extremo del segundo segmento de Fibra Optica Multimodo MMF (3) se conecta un emisor de luz coherente (1). Referring to FIG. 4 and FIG. 4A shows an embodiment of the invention in which there is a first Optical Fiber segment (2) with two ends; a second segment of MMF Multimode Optical Fiber (3) with two ends, in which a disturbance region (8) is generated in the cladding (3a) of the Multimode Optical Fiber MMF (3). As indicated above, the disturbance region (8) can be generated in different ways in such a way as to facilitate the exposure of the MMF fiber (3) to physical or chemical disturbances. Continuing with FIGS. 4 and 4A, the first end of the MMF Multimode Optical Fiber (3) is connected to one of the ends of the first Optical Fiber segment (2), where the first Optical Fiber segment (2) connects a photodetector (5) and where at the end of the second MMF Multimode Fiber Optic segment (3) a coherent light emitter (1) is connected.
El segundo segmento de Fibra Optica Multimodo MMF (3) se conecta a un emisor de luz coherente (1), como por ejemplo una fuente láser, de modo que al propagarse la luz por el segundo segmento de Fibra Optica Multimodo MMF (3) se genera un patrón de interferencia modal, en este caso un Patrón de Speckle (12) en el plano de contacto (B- B), que es el plano de contacto donde están conectados el primer segmento de Fibra Optica (2) y el segundo segmento de Fibra Optica Multimodo MMF (3). En el presente invento se debe entender por Patrón de Speckle (12) (también llamado patrón de moteado óptico), como un patrón que está constituido por una cantidad de pequeñas manchas o granos generados por distribuciones de intensidad óptica, producidos por la interferencia mutua entre frentes de onda coherentes que son sujetos a diferencias de fase, o fluctuaciones de intensidad, o producto de interferencia aleatoria. The second segment of MMF Multimode Fiber Optic (3) is connected to a coherent light emitter (1), such as a laser source, so that when the light propagates through the second segment of MMF Multimode Fiber Optic (3) it is generates a modal interference pattern, in this case a Speckle Pattern (12) in the contact plane (B-B), which is the contact plane where the first Fiber Optic segment (2) and the second segment are connected Multimode Fiber Optic MMF (3). In the present invention, Speckle Pattern (12) (also called optical speckle pattern) should be understood as a pattern that is made up of a number of small spots or grains generated by optical intensity distributions, produced by mutual interference between coherent wavefronts that are subject to phase differences, or intensity fluctuations, or a product of random interference.
Haciendo referencia a la FIG. 4 el primer segmento de Fibra Optica (2) genera un Patrón de Speckle (12) en el plano de contacto (B-B). En la modalidad ilustrada, el primer segmento de Fibra Optica (2) funciona como un filtro modal, donde toma parte de los modos o de la intensidad de la luz coherente que se propaga por la Fibra Optica (2), que está en el plano donde se forma el grano (11) del Patrón de Speckle (12) y es llevado a un fotodetector (5) el cual responderá a la potencia del Patrón de Speckle (12). Referring to FIG. 4 the first Fiber Optic segment (2) generates a Speckle Pattern (12) in the contact plane (B-B). In the illustrated modality, the first segment of Optical Fiber (2) functions as a modal filter, where it takes part of the modes or the intensity of the coherent light that propagates through the Optical Fiber (2), which is in the plane where the grain (11) of the Speckle Pattern (12) is formed and is taken to a photodetector (5) which will respond to the power of the Speckle Pattern (12).
Para la presente invención se entenderá por un filtro modal aquel sistema o dispositivo que es capaz de tomar al menos un modo o un grupo de modos que provienen de una fibra óptica, capturando una parte de la potencia del Patrón de Speckle (12). For the present invention, a modal filter will be understood as that system or device that is capable of taking at least one mode or a group of modes that come from an optical fiber, capturing a part of the power of the Speckle Pattern (12).
Al cambiar el tamaño del área de la región de perturbación (8) por ejemplo definida por el segmento (L) a lo largo del eje del segundo segmento de Fibra Optica Multimodo MMF (3), se modifican el valor de los parámetros metrológicos de la estructura de fibra óptica. Estos parámetros metrológicos son por ejemplo la sensibilidad, el rango dinámico o rango de funcionamiento y el umbral de detección. By changing the size of the area of the disturbance region (8), for example defined by the segment (L) along the axis of the second segment of MMF Multimode Optical Fiber (3), the value of the metrological parameters of the fiber optic structure. These metrological parameters are for example the sensitivity, the dynamic range or operating range and the detection threshold.
Para el entendimiento de la presente invención se entenderá la sensibilidad como el nivel de variación de la variable de salida de la estructura de fibra óptica, en este caso medido como el voltaje, ante cambios en la variable a medir, por ejemplo, la temperatura; esto es, en cuantos milivoltios cambia la señal de salida por cada 0 C que varíe la temperatura del sistema a medir. For the understanding of the present invention, sensitivity will be understood as the level of variation of the output variable of the fiber optic structure, in this case measured as the voltage, before changes in the variable to be measured, for example, temperature; that is, in how many millivolts the output signal changes for every 0 C that the temperature of the system to be measured varies.
Se entenderá por umbral de detección el valor mínimo de la variable a medir a partir del cual la estructura de fibra óptica empieza a presentar variaciones por encima del nivel de ruido de su señal de salida. The detection threshold is understood to be the minimum value of the variable to be measured from which the optical fiber structure begins to show variations above the noise level of its output signal.
Así mismo, se entenderá por rango dinámico (también llamado rango de funcionamiento) el intervalo de valores de la variable a medir en el cual la estructura de fibra óptica responde de manera continua, por encima de los niveles de ruido de la señal de salida. Esta respuesta puede ser o no de tipo lineal. Likewise, dynamic range (also called operating range) will be understood as the range of values of the variable to be measured in which the fiber optic structure responds continuously, above the noise levels of the output signal. This response may or may not be linear.
Cada uno de estos parámetros metrológicos se ven afectados por la región de perturbación (8), que en una modalidad de la invención está determinada por el ancho de la abertura (A) y la longitud (L) de la región. Each of these metrological parameters are affected by the region of disturbance (8), which in one embodiment of the invention is determined by the width of the aperture (A) and the length (L) of the region.
En la invención la región de perturbación (8) tiene un área menor o igual al área del revestimiento (3a) del segundo segmento de la Fibra Optica Multimodo MMF (3).In the invention the perturbation region (8) has an area less than or equal to the area of the cladding (3a) of the second segment of the MMF Multimode Optical Fiber (3).
La región de perturbación (8) puede ser obtenida mediante diferentes formas, por ejemplo haciendo referencia a las FIG. 5, FIG. 5B y FIG, 7A en un ejemplo particular la región de perturbación (8) puede ser obtenida mediante el recubrimiento con un encapsulado (7) con una abertura (A) del segundo segmento de Fibra Optica Multimodo MMF (3), dicha abertura A puede tener varias formas por ejemplo formas circulares, formas regulares o irregulares, o por ejemplo haciendo referencia a la FIG. 5B, la región de perturbación (8) tiene una forma rectangular definida por el segmento L a lo largo del eje de la fibra y un espesor A, que pueden ser por ejemplo del orden de uno a dos milímetros de espesor A y la longitud L puede por ejemplo llegar hasta 15 cm. En modalidades de la invención, la longitud L está en el rango de 1 cm hasta 15 cm. En algunos ejemplos de la invención la Fibra Optica Multimodo MMF (3) tiene una longitud inferior o igual a 15 cm. El recubrimiento del encapsulado (7) con una abertura (A) aísla el revestimiento (3a) del segmento de Fibra Optica Multimodo MMF (3) de una perturbación física o química y permite solo se perturbe del segmento de Fibra Optica Multimodo MMF (3) expuesto en la abertura (A). The region of disturbance (8) can be obtained in different ways, for example by referring to FIGS. 5, FIG. 5B and FIG, 7A in a particular example the perturbation region (8) can be obtained by coating with an encapsulation (7) with an opening (A) of the second segment of MMF Multimode Optical Fiber (3), said opening A can have various shapes for example circular shapes, regular or irregular shapes, or for example referring to FIG. 5B, the perturbation region (8) has a rectangular shape defined by the segment L along the axis of the fiber and a thickness A, which can be, for example, of the order of one to two millimeters of thickness A and length L it can for example reach up to 15 cm. In embodiments of the invention, the length L is in the range of 1 cm to 15 cm. In some examples of the invention, the MMF Multimode Optical Fiber (3) has a length less than or equal to 15 cm. The encapsulation coating (7) with an opening (A) isolates the coating (3a) of the MMF Multimode Optical Fiber segment (3) from a physical or chemical disturbance and allows only the MMF Multimode Optical Fiber segment (3) to be disturbed exposed at opening (A).
El recubrimiento encapsulado (7) puede ser realizado con diferentes materiales como por ejemplo plásticos, resina epóxica, poliuria, cerámico, vidrio, entre otros materiales. El recubrimiento del encapsulado (7) tiene entre otras funciones, la de aislar el revestimiento (3a) ( cladding ) de la Fibra Optica Multimodo MMF (3) de perturbaciones física o química de la parte recubierta del segundo segmento de Fibra Optica Multimodo MMF (3). The encapsulated coating (7) can be made with different materials such as plastics, epoxy resin, polyuria, ceramic, glass, among other materials. The coating of the encapsulation (7) has among other functions, that of isolating the cladding (3a) (cladding) of the MMF Multimode Optical Fiber (3) from physical or chemical disturbances of the coated part of the second segment of MMF Multimode Optical Fiber ( 3).
Así, por ejemplo, en aplicaciones particulares de la invención como, por ejemplo, como sensor de temperatura, el encapsulado (7) con una abertura (A) funciona como un aislador térmico permitiendo que solo se perturbe térmicamente el área expuesta por la abertura (A). Thus, for example, in particular applications of the invention such as, for example, as a temperature sensor, the encapsulation (7) with an opening (A) functions as a thermal insulator allowing only the area exposed by the opening to be thermally disturbed ( TO).
En una modalidad particular de la invención, la región de perturbación (8) puede ser obtenida mediante el recubrimiento con un encapsulado (7) alrededor del revestimiento (3a), donde dicha encapsulado (7) tiene una abertura (A). Dicha abertura puede estar recubierta con un material que permita, entre otros efectos, cambiar el índice de refracción de la región de perturbación (8). Ejemplos de dichos materiales son alcohol polivinílico; membranas de matriz de sílice porosa dopada con tetraetil ortosilicato; Eriocromocianina R , entre otros materiales. In a particular embodiment of the invention, the region of disturbance (8) can be obtained by coating with an encapsulation (7) around the coating (3a), where said encapsulation (7) has an opening (A). Said opening can be covered with a material that allows, among other effects, to change the refractive index of the region of disturbance (8). Examples of such materials are polyvinyl alcohol; tetraethyl orthosilicate doped porous silica matrix membranes; Eriochromocyanin R, among other materials.
Eos materiales que recubran la abertura (A) también pueden ser magnetostrictivos, o piezoeléctrico de manera que una perturbación magnética o eléctrica se convierta en perturbación mecánica en la región de perturbación (8). The materials lining the aperture (A) can also be magnetostrictive, or piezoelectric so that a magnetic or electrical disturbance becomes a mechanical disturbance in the disturbance region (8).
En otro ejemplo particular y haciendo referencia a las FIG. 7C la región de perturbación (8) puede ser obtenida mediante desgaste de una parte del revestimiento (3a) ( cladding ) del segundo segmento de Fibra Optica Multimodo MMF (3), recubriéndola con un encapsulado (7). En una modalidad adicional, y haciendo referencia a la FIG. 7B, la región de perturbación (8) puede ser obtenida mediante desgaste de una parte del revestimiento (3a) (cladding) del segundo segmento de Fibra Optica Multimodo MMF (3). In another particular example and referring to FIGS. 7C the disturbance region (8) can be obtained by wear of a part of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber (3), covering it with an encapsulation (7). In a further embodiment, and referring to FIG. 7B, the region of disturbance (8) can be obtained by wear of a part of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber (3).
En un cuarto ejemplo no ilustrado la región de perturbación (8) se obtiene cómo el área de exposición a una perturbación física o química directamente de una zona del revestimiento (3a) ( cladding ) del segundo segmento de Fibra Optica Multimodo MMFIn a fourth non-illustrated example, the region of disturbance (8) is obtained as the area of exposure to a physical or chemical disturbance directly from an area of the cladding (3a) (cladding) of the second segment of MMF Multimode Optical Fiber
(3). (3).
En otra modalidad de invención la región de perturbación (8) está formada mediante un estrechamiento (tapering) por fusión y estiramiento de una parte o de la totalidad del segundo segmento de Fibra Optica Multimodo MMF (3). In another embodiment of the invention, the perturbation region (8) is formed by a narrowing (tapering) by fusion and stretching of a part or all of the second segment of MMF Multimode Optical Fiber (3).
Fa región de perturbación (8) puede generar un campo evanescente y el cambio en el Patrón de Speckle (12) puede estar relacionado con dicho campo evanescente, el cual se presenta en la frontera extema de la región de perturbación (8) en el revestimiento (3a). Fa region of disturbance (8) can generate an evanescent field and the change in the Speckle Pattern (12) can be related to said evanescent field, which occurs at the external border of the region of disturbance (8) in the coating. (3a).
El material que se encuentre alrededor de la fibra desgastada produce una modificación del Patrón de Speckle (12) que va a ser registrada por el primer segmento de Fibra Optica (2) y que corresponde a un cambio en la potencia óptica que llega al fotodetector (5) y en el voltaje de salida del fotodetector. Fa intensidad del cambio en la potencia dependerá de qué tan fuerte sea el cambio en las propiedades ópticas asociadas a la presencia del medio exterior. The material that is around the worn fiber produces a modification of the Speckle Pattern (12) that will be registered by the first Optical Fiber segment (2) and that corresponds to a change in the optical power that reaches the photodetector ( 5) and on the photodetector output voltage. The intensity of the change in power will depend on how strong the change is in the optical properties associated with the presence of the external environment.
Así pues, cambios en el exterior afectarán al índice de refracción para el campo evanescente que se propaga, y esto se verá reflejado por medio de cambios en el Patrón de Speckle (12) registrado por el fotodetector. Thus, changes in the exterior will affect the refractive index for the evanescent field that propagates, and this will be reflected by means of changes in the Speckle Pattern (12) registered by the photodetector.
Haciendo referencia a la FIG. 2 la estructura de fibra óptica, comprende: un primer segmento de Fibra Optica (2), con dos extremos, un segundo segmento de Fibra Optica Multimodo MMF (3), con una región de perturbación (8) en el revestimiento (3a), y con dos extremos, un extremo del segundo segmento de Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2) y donde se agrega una película reflectiva (9) que se dispone en el segundo extremo, del segundo segmento de Fibra Optica Multimodo MMF (3) dicha película reflectiva (9) es un elemento reflector como por ejemplo un espejo, de primera superficie, una superficie pulida como por ejemplo un pulido fino tipo PC (por sus siglas en inglés Phisical contact ): donde el nivel de retomo es de alrededor de -40dB, UPC también llamado Pulido UltraPC, donde el nivel de retomo es reducida aún más que la PC alrededor de -55dB. o APC APC (por sus siglas en inglés Angled Phisical contact) : donde se reduce la reflexión a alrededor de -70dB o una capa brillante, como por ejemplo de plata depositada por sputtering (pulverización catódica) o por dip-coating (recubrimiento por inmersión) depositada sobre el extremo del del segundo segmento de Fibra Optica Multimodo MMF (3). Referring to FIG. 2 the fiber optic structure, comprises: a first segment of Optical Fiber (2), with two ends, a second segment of MMF Multimode Optical Fiber (3), with a disturbance region (8) in the cladding (3a), and with two ends, one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Optical Fiber segment (2) and where a reflective film (9) is added that is arranged in the second extreme, of the second segment of MMF Multimode Fiber Optic (3) said reflective film (9) is a reflective element such as a mirror, first surface, a polished surface such as a fine polishing type PC (for its acronym in English Phisical contact): where the level of return is around -40dB, UPC also called UltraPC Polishing , where the pickup level is further reduced than the PC by around -55dB. o APC APC (Angled Physical Contact): where the reflection is reduced to around -70dB or a shiny layer, such as silver deposited by sputtering (sputtering) or dip-coating (dip coating) ) deposited on the end of the second segment of MMF Multimode Optical Fiber (3).
Con esta modalidad de la invención, la estmctura de fibra óptica y la película reflectiva (9) y haciendo referencia a la FIG. 3A se realiza una segunda modalidad de la invención donde al primer segmento de Fibra Optica (2) en su extremo se conecta al segundo puerto del circulador óptico (10); en el primer puerto del circulador óptico (10) se conecta un emisor de luz coherente (1); en el tercer puerto del circulador óptico (10) se conecta un fotodetector (5). With this embodiment of the invention, the fiber optic structure and the reflective film (9) and referring to FIG. 3A a second embodiment of the invention is made where the first segment of Optical Fiber (2) at its end is connected to the second port of the optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); a photodetector (5) is connected to the third port of the optical circulator (10).
En un ejemplo no ilustrado de la invención la película reflectiva (9) no está en contacto con el segundo segmento de Fibra Optica Multimodo MMF (3) sino que se aproxima a este mediante línea de vista óptica de la luz que sale del segundo segmento de Fibra Optica Multimodo MMF (3) y retoma la luz a al mismo segundo segmento de Fibra Optica Multimodo MMF (3) mediante reflexión. In an unillustrated example of the invention, the reflective film (9) is not in contact with the second segment of MMF Multimode Optical Fiber (3) but is approached by means of an optical line of sight of the light that leaves the second segment of MMF Multimode Fiber Optic (3) and returns the light to the same second segment of MMF Multimode Fiber Optic (3) through reflection.
En otro ejemplo y haciendo referencia a la FIG. 3 la estmctura de fibra óptica que comprende: un primer segmento de Fibra Optica (2), con dos extremos, un segundo segmento de Fibra Optica Multimodo MMF (3), con una región de perturbación (8) en el del revestimiento (3a), y con dos extremos, en el que el primer extremo está conectado al segundo extremo del primer segmento de Fibra Optica (2); y donde se agrega una película reflectiva (9) dispuesta en el segundo extremo del segundo segmento de Fibra Optica Multimodo MMF (3), dicha película reflectiva (9) es un elemento reflector como por ejemplo un espejo, una superficie pulida o una capa brillante depositada sobre el extremo del segundo segmento de Fibra Optica Multimodo MMF (3) y la región de perturbación (8) puede ser obtenida mediante el recubrimiento con un encapsulado (7) con una abertura (A) del segundo segmento de Fibra Optica Multimodo MMF (3), y se realiza una modalidad de la invención donde un extremo del primer segmento de Fibra Óptica (2) se conecta al segundo puerto del circulador óptico (10); en el primer puerto del circulador óptico (10) se conecta un emisor de luz coherente (1); y en el tercer puerto del circulador óptico (10) se conecta un fotodetector (5). In another example and referring to FIG. 3 the fiber optic structure comprising: a first segment of Optical Fiber (2), with two ends, a second segment of MMF Multimode Optical Fiber (3), with a disturbance region (8) in the cladding (3a) , and with two ends, in which the first end is connected to the second end of the first Optical Fiber segment (2); and where a reflective film (9) arranged at the second end of the second segment of MMF Multimode Optical Fiber (3) is added, said reflective film (9) is a reflective element such as a mirror, a polished surface or a glossy layer deposited on the end of the second segment of MMF Multimode Optical Fiber (3) and the perturbation region (8) can be obtained by coating with an encapsulation (7) with an opening (A) of the second MMF Multimode Optical Fiber segment ( 3), and an embodiment of the invention is made where one end of the first Fiber segment Optics (2) is connected to the second port of the optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); and in the third port of the optical circulator (10) a photodetector (5) is connected.
La segunda modalidad de la invención funciona por reflexión, donde la luz del emisor de luz coherente (1) ingresa por el segundo segmento de Fibra Óptica Multimodo MMF (3), propagándose por el segundo segmento de Fibra Óptica Multimodo MMF (3), y luego se genera una reflexión en la película reflectiva (9). La luz reflejada se devuelve y vuelve a ingresar de nuevo por el plano de contacto (B-B), donde se genera el Patrón de Speckle (12) entre el primer segmento de Fibra Óptica (2) y el segundo segmento de Fibra Óptica Multimodo MMF (3), que llega a través de un circulador óptico (10) al fotodetector (5). El primer segmento de Fibra Óptica (2) toma parte de la potencia el Patrón de Speckle (12) formado en el plano de contacto (B-B). The second embodiment of the invention works by reflection, where the light from the coherent light emitter (1) enters through the second MMF Multimode Fiber Optic segment (3), propagating through the second MMF Multimode Optical Fiber segment (3), and then a reflection is generated in the reflective film (9). The reflected light is returned and re-enters again through the contact plane (BB), where the Speckle Pattern (12) is generated between the first Optical Fiber segment (2) and the second MMF Multimode Fiber Optic segment ( 3), which reaches the photodetector (5) through an optical circulator (10). The first Fiber Optic segment (2) takes part of the power from the Speckle Pattern (12) formed in the contact plane (B-B).
Para todas las modalidades de la invención la captura de potencia del Patrón de Speckle (12) formado en el plano de contacto (B-B) está asociada al diámetro del núcleo (2b) del primer segmento de Fibra Óptica (2) y del núcleo (3b) del segundo segmento de Fibra Óptica Multimodo MMF (3). La luz que proviene del segundo segmento de Fibra Óptica Multimodo MMF (3) se acoplará en mayor o menor medida en el primer segmento de Fibra Óptica (2) dependiendo de las dimensiones del primer segmento de Fibra Óptica (2) y del segundo segmento de Fibra Óptica Multimodo MMF (3). For all the embodiments of the invention, the power capture of the Speckle Pattern (12) formed in the contact plane (BB) is associated with the diameter of the core (2b) of the first Optical Fiber segment (2) and of the core (3b ) of the second MMF Multimode Fiber Optic segment (3). The light that comes from the second MMF Multimode Fiber Optic segment (3) will be coupled to a greater or lesser extent in the first Fiber Optic segment (2) depending on the dimensions of the first Fiber Optic segment (2) and the second segment of MMF Multimode Fiber Optic (3).
Haciendo referencia a la FIG.4B, cada grano (11) del Patrón de Speckle (12) lleva una cantidad de potencia óptica. Si el tamaño del núcleo (2b) del primer segmento de Fibra Óptica (2) es muy similar al tamaño promedio de grano (11) del Patrón de Speckle (12), es equivalente a capturar la potencia del grano (11) del Patrón de Speckle (12) y llevar dicha potencia al fotodetector (5). Referring to FIG. 4B, each grain (11) of the Speckle Pattern (12) carries an amount of optical power. If the size of the core (2b) of the first Fiber Optic segment (2) is very similar to the average grain size (11) of the Speckle Pattern (12), it is equivalent to capturing the power of the grain (11) of the Speckle Pattern Speckle (12) and bring said power to the photodetector (5).
Haciendo referencia a la FIG. 4, cuando se genera un Patrón de Speckle (12) en el plano de contacto (B-B) entre un primer segmento de Fibra Óptica (2) y un segundo segmento de Fibra Óptica Multimodo MMF (3), los granos (11) del Patrón de Speckle (12), también llamados manchas, tienen un tamaño estadístico y corresponden a una distribución estadística, con un tamaño promedio de grano (11) del Patrón de Speckle (12). El primer segmento de Fibra Óptica (2) funciona como un filtro de potencia, de manera que en la medida que el tamaño del núcleo (2b) delprimer segmento de Fibra Óptica (2) se modifique en comparación con el tamaño promedio de grano (11) del Patrón de Speckle (12) se pueden presentar las siguientes situaciones: Referring to FIG. 4, when a Speckle Pattern (12) is generated in the contact plane (BB) between a first Optical Fiber segment (2) and a second MMF Multimode Optical Fiber segment (3), the grains (11) of the Pattern of Speckle (12), also called spots, have a statistical size and correspond to a statistical distribution, with an average grain size (11) of the Speckle Pattern (12). The first Fiber Optic segment (2) functions as a power filter, so that as the size of the core (2b) of the first Fiber Optic segment (2) changes compared to the average grain size (11 ) of the Speckle Pattern (12) the following situations may occur:
Si el diámetro del núcleo (2b) del primer segmento de Fibra Óptica (2) es muy pequeña en comparación con el tamaño estadístico promedio de grano (11) del Patrón Speckle (12), en este caso si ocurren perturbaciones sobre el Patrón de Speckle, el primer segmento de Fibra Óptica (2), al comportarse como un filtro de potencia no capturaría adecuadamente la potencia de las perturbaciones de Patrón de Speckle (12). If the diameter of the core (2b) of the first Optical Fiber segment (2) is very small compared to the statistical average grain size (11) of the Speckle Pattern (12), in this case if disturbances occur on the Speckle Pattern , the first Fiber Optic segment (2), when behaving as a power filter, it would not adequately capture the power of the Speckle Pattern disturbances (12).
De igual manera, si el diámetro del núcleo (2b) del primer segmento de Fibra Óptica (2) es muy pequeño en comparación con el tamaño estadístico promedio de grano (11) del Patrón de Speckle (12), la potencia óptica de muchos granos (11) del Patrón de Speckle (12) pasaría por el primer segmento de Fibra Óptica (2), por ejemplo, en proporción 5 o 6 veces el orden de magnitud del tamaño del grano (11), de manera que cuando haya una perturbación del Patrón de Speckle (12), el fotodetector (5) no capturaría adecuadamente los cambios en la potencia asociados a las perturbaciones de Patrón de Speckle (12). Similarly, if the diameter of the core (2b) of the first Optical Fiber segment (2) is very small compared to the statistical average grain size (11) of the Speckle Pattern (12), the optical power of many grains (11) of the Speckle Pattern (12) would pass through the first segment of Optical Fiber (2), for example, in proportion 5 or 6 times the order of magnitude of the size of the grain (11), so that when there is a disturbance of the Speckle Pattern (12), the photodetector (5) would not adequately capture the changes in power associated with the Speckle Pattern disturbances (12).
Ahora bien, cuando el primer segmento de Fibra Óptica (2) tiene un diámetro de núcleo (2b) aproximadamente igual al tamaño promedio estadístico de grano (11) del Patrón de Speckle (12), entonces cuando hay una perturbación sobre ese Patrón de Speckle (12) la potencia de uno de los granos (11) del Patrón de Speckle (12) pasa por el primer segmento de Fibra Óptica (2) al igual que la potencia de las perturbaciones de Patrón de Speckle (12) que serán registradas por el fotodetector (5). Now, when the first Optical Fiber segment (2) has a core diameter (2b) approximately equal to the statistical average grain size (11) of the Speckle Pattern (12), then when there is a disturbance on that Speckle Pattern (12) the power of one of the grains (11) of the Speckle Pattern (12) passes through the first Optical Fiber segment (2) as well as the power of the Speckle Pattern (12) disturbances that will be recorded by the photodetector (5).
Es así que, para todas las modalidades de la invención es preferible que el diámetro de núcleo (2b) del primer segmento de Fibra Óptica (2) y el diámetro promedio de grano (11) del Patrón de Speckle (12), que se genera en el plano de contacto (B-B) entre el primer segmento de Fibra Óptica (2) y el segundo segmento de Fibra Óptica Multimodo MMF (3); cuando el segundo segmento de Fibra Óptica Multimodo MMF (3) se irradia por su segundo extremo con luz del emisor de luz coherente (1), cumpla con la siguiente condición: 0.5 1.8
Figure imgf000016_0001
donde: l
Thus, for all the embodiments of the invention it is preferable that the core diameter (2b) of the first Optical Fiber segment (2) and the average grain diameter (11) of the Speckle Pattern (12), which is generated in the contact plane (BB) between the first segment of Optical Fiber (2) and the second segment of MMF Multimode Optical Fiber (3); When the second segment of MMF Multimode Fiber Optic (3) is irradiated by its second end with light from the coherent light emitter (1), comply with the following condition: 0.5 1.8
Figure imgf000016_0001
where L
(Ds)= - -jy : es el tamaño promedio de grano (11) del Patrón de Speckle(12); d. es el diámetro del núcleo (2b) del primer segmento de Fibra Optica (2); A.N: la apertura numérica del segundo segmento de fibra óptica MMF (3); y l: la longitud de onda de la fuente de luz coherente (1). (D s ) = - -jy: is the average grain size (11) of the Speckle Pattern (12); d. is the diameter of the core (2b) of the first Optical Fiber segment (2); AN: the numerical aperture of the second MMF fiber optic segment (3); yl: the wavelength of the coherent light source (1).
La relación de: los diámetros del núcleo (2b) del primer segmento de Fibra Óptica (2), la apertura numérica (3b) del segundo segmento de Fibra Óptica Multimodo MMF (3); y la longitud de onda de la fuente de luz coherente (1), el tamaño promedio de grano (11) del Patrón de Speckle (12) permite calibrar los montajes y modalidades de la invención organizando las relaciones de los elementos y parámetros metrológicos como los anteriormente descritos mediante perturbaciones de prueba y medidas voltaje o de potencia correspondiente en un fotodetector (5) obteniendo una respuesta directa que correlaciona, por ejemplo, el cambio de una variable de interés con el voltaje o potencia en el fotodetector (5) que corresponde a la potencia óptica de un grano (11) de tamaño promedio del Patrón de Speckle (12). The ratio of: the core diameters (2b) of the first Fiber Optic segment (2), the numerical aperture (3b) of the second MMF Multimode Fiber Optic segment (3); and the wavelength of the coherent light source (1), the average grain size (11) of the Speckle Pattern (12) allows calibrating the assemblies and modalities of the invention by organizing the relationships of the elements and metrological parameters such as previously described by means of test disturbances and corresponding voltage or power measurements in a photodetector (5) obtaining a direct response that correlates, for example, the change of a variable of interest with the voltage or power in the photodetector (5) corresponding to the optical power of a grain (11) of average size of the Speckle Pattern (12).
Lo anterior sin la necesidad de usar medidas espectrales, ni método de post- procesamiento de señal, o sin necesidad de usar en la medición dispositivos CCD o dispositivos de carga acoplada (en inglés Charge-Coupled Device) como lo usan otros dispositivos de medición y sensores basados en specklegramas. Esto hace que la invención en su aplicación como sensor sea muy compacto al no necesitar hardware de procesamiento o dispositivos de medición complejos o costosos y la medida o detección de la variable de interés se pueda realizar, por ejemplo, usando como fotodetector (5) un fotodiodo conectorizado, es decir, con conectores para empalme mecánico a fibra The foregoing without the need to use spectral measurements, or signal post-processing method, or without the need to use CCD devices or Charge-Coupled Devices in the measurement as used by other measurement devices and specklegram-based sensors. This makes the invention in its application as a sensor very compact as it does not need complex or expensive processing hardware or measurement devices and the measurement or detection of the variable of interest can be carried out, for example, using a photodetector (5) connectorized photodiode, that is, with connectors for mechanical fiber splicing
Sin embargo, para todas las modalidades la invención es posible también realizar análisis espectrales a la salida del fotodetector (5), y en el extremo del segmento de fibra (3) opuesto al primer extremo del segundo segmento de Fibra Optica Multimodo MMF (3) que está conectado al segundo extremo del primer segmento de Fibra Optica (2) se puede ubicar un sistema electrónico de adquisición de imágenes con dispositivos CCD ( Charge - Coupled Device), CMOS (Complementary Metal-Oxide-Semiconductor), o equivalentes. Las imágenes obtenidas por el sistema electrónico de adquisición de imágenes son transferidas y almacenadas en un sistema cómputo, donde se pueden desarrollar cálculos de correlación entre la imagen capturada sin perturbación (Patrón de Speckle (12) no perturbado) y la imagen capturada que se genera después de realizar una perturbación sobre la región de perturbación (8). Estos resultados pueden ser visualizados en un dispositivo de visualización como por ejemplo una pantalla, o un reproductor de video, o video beam. Para todas las modalidades de la invención el fotodetector (5) se selecciona del grupo conformado por: detector de luz, fotodiodo, fotodiodo PIN, fotodiodo de avalancha, fototransistor, fotorresistencia, fotocátodo, fototubo, fotoválvula, fotomultiplicador, CCD, sensor CMOS, célula fotoeléctrica, célula fotoelectroquímica, fotocélula, fotodetector conectorizado, fotodiodo conectorizado y combinaciones de los mismos. However, for all the modalities the invention is also possible to perform spectral analysis at the output of the photodetector (5), and at the end of the fiber segment (3) opposite the first end of the second MMF Multimode Fiber Optic segment (3) that is connected to the second end of the first Fiber Optic segment (2), an electronic image acquisition system with CCD devices (Charge - Coupled Device), CMOS (Complementary Metal-Oxide-Semiconductor), or equivalent. The images obtained by the electronic image acquisition system are transferred and stored in a computer system, where correlation calculations can be developed between the image captured without disturbance (Speckle Pattern (12) undisturbed) and the captured image that is generated. after performing a disturbance on the disturbance region (8). These results can be displayed on a display device such as a screen, or a video player, or video beam. For all the modalities of the invention the photodetector (5) is selected from the group consisting of: light detector, photodiode, PIN photodiode, avalanche photodiode, phototransistor, photoresistor, photocathode, phototube, photovalve, photomultiplier, CCD, CMOS sensor, cell photoelectric, photoelectrochemical cell, photocell, connectorized photodetector, connectorized photodiode and combinations thereof.
Para el entendimiento de la presente invención se entiende en general que un elemento conectorizado es aquel que incluye en un extremo un conector para empalme mecánico a fibra óptica For the understanding of the present invention, it is generally understood that a connectorized element is one that includes at one end a connector for mechanical splicing to optical fiber.
EJEMPLO 1 EXAMPLE 1
Haciendo referencia a las FIG.2 FIG.3 y 3A la estructura de fibra óptica que comprende: Un primer segmento de Fibra Optica (2) de 1 m de longitud, con un diámetro de núcleo (2b) de 9 pm y una apertura numérica (A.N.) de 0.13, el primer segmento de Fibra Optica (2) con dos extremos, un segundo segmento de Fibra Optica Multimodo MMF (3) de 15 cm de longitud, con un diámetro de núcleo (3b) de 50 pm y una apertura numérica de 0.22, donde el segundo segmento de Fibra Optica Multimodo MMF (3) incluye una región de perturbación (8), y con dos extremos, donde un extremo del segundo segmento de Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2) mediante empalme por fusión y donde se agrega una película reflectiva (9) de plata depositada por sputtering (pulverización catódica) y dispuesta en el segundo extremo del segundo segmento de Fibra Optica Multimodo MMF (3. El segundo segmento de Fibra Optica Multimodo MMF (3) tiene una región de perturbación (8) obtenida mediante el recubrimiento de la Fibra Óptica Multimodo MMF (3) con un encapsulado (7) con una abertura (A). With reference to FIG. 2, FIG. 3 and 3A, the optical fiber structure comprising: A first segment of Optical Fiber (2) of 1 m in length, with a core diameter (2b) of 9 pm and a numerical aperture (AN) of 0.13, the first segment of Optical Fiber (2) with two ends, a second segment of MMF Multimode Optical Fiber (3) of 15 cm in length, with a core diameter (3b) of 50 pm and an aperture numerical value of 0.22, where the second MMF Multimode Fiber Optic segment (3) includes a disturbance region (8), and with two ends, where one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Fiber Optic segment (2) by fusion splicing and where a reflective silver film (9) deposited by sputtering (sputtering) is added and arranged at the second end of the second segment of MMF Multimode Optical Fiber (3. The second segment of MMF Multimode Fiber Optic (3) has a region of disturbance (8) obtained by coating the MMF Multimode Optical Fiber (3) with an encapsulation (7) with an opening (A).
Se realiza una modalidad de la invención donde un extremo del primer segmento de Fibra Óptica (2) se conecta al segundo puerto del circulador óptico (10) por medio de conexión mecánica tipo FC/PC (Ferrule Connector/Phisical Contact)- otras alternativas de conexión mecánica son mediante conectores tipo ST (Straight Tip), SC (Standard Connector), LC (Lucent Connector), MU (Miniature Unit), MTRJ (Mechanical Transfer Registered Jack), E2000 connector o cualquier tipo de conector mecánico de fibras ópticas-. En el primer puerto del circulador óptico (10) se conecta un emisor de luz coherente (1) que es una fuente láser conectorizada a fibra, con longitudes de onda de emisión en 1310, 1490 y 1550 nm, y usando la longitud de onda de 1550 nm. En el tercer puerto del circulador óptico (10) se conecta un fotodetector (5) conectorizado a fibra, el cual es un fotodetector de potencia óptica puntual (5) tipo fotodiodo con respuesta en el rango de longitudes de onda 800 a 1700nm. An embodiment of the invention is made where one end of the first Fiber Optic segment (2) is connected to the second port of the optical circulator (10) by means of a mechanical connection type FC / PC (Ferrule Connector / Physical Contact) - other alternatives of mechanical connection is through connectors type ST (Straight Tip), SC (Standard Connector), LC (Lucent Connector), MU (Miniature Unit), MTRJ (Mechanical Transfer Registered Jack), E2000 connector or any type of mechanical fiber optic connector- . In the first port of the optical circulator (10) a coherent light emitter (1) is connected, which is a fiber-connectorized laser source, with emission wavelengths at 1310, 1490 and 1550 nm, and using the wavelength of 1550 nm. In the third port of the optical circulator (10) a photodetector (5) connectorized to fiber is connected, which is a photodetector of point optical power (5) type photodiode with response in the range of wavelengths from 800 to 1700nm.
La fuente láser asegura que el segundo segmento de Fibra Óptica Multimodo MMF (3) funcione en régimen multimodal. Se tiene una relación de 0.8 entre el diámetro de núcleo (2b) del primer segmento de Fibra Óptica (2) y el diámetro promedio de grano (11) del Patrón de Speckle (12) que se genera en el plano de contacto (B-B) entre el primer segmento de Fibra Óptica (2) y el segundo segmento de Fibra Óptica Multimodo MMF (3) cuando éste se irradia con luz coherente del emisor de luz coherente (1). The laser source ensures that the second segment of MMF Multimode Fiber Optic (3) works in a multimodal regime. There is a relationship of 0.8 between the core diameter (2b) of the first Optical Fiber segment (2) and the average grain diameter (11) of the Speckle Pattern (12) that is generated in the contact plane (BB) between the first Fiber Optic segment (2) and the second MMF Multimode Fiber Optic segment (3) when it is irradiated with coherent light from the coherent light emitter (1).
El segundo segmento de Fibra Óptica Multimodo MMF (3) tiene una región de perturbación (8) obtenida mediante el recubrimiento con un encapsulado (7) con una abertura (A), Fibra Óptica Multimodo MMF (3), donde la abertura (A) es rectangular y va a lo largo de la longitud del segundo segmento de Fibra Óptica Multimodo MMF (3) dejando expuesta en la abertura (A) en el segundo segmento de Fibra Óptica Multimodo MMF (3). La dimensión longitudinal L de la abertura (A) es selecciona de 1 cm, 3 cm, 4.5 cm, 8 cm y 12 cm y la dimensión transversal de esta área tiene entre 1 mm y 3 mm. La región de perturbación (8) se pone en contacto o se aproxima a un cuerpo cuya temperatura se quiere medir. La salida del fotodetector (5), el cual es un fotodetector de potencia óptica puntual (5) tipo fotodiodo conectorizado a fibra con respuesta en el rango de longitudes de onda de 800 a 1700nm, se conecta a un medidor de voltaje que permite la caracterización de la respuesta del montaje de este ejemplo cuando se aplica una temperatura determinada; por otra parte dicha temperatura es medida también con un sensor de temperatura patrón como por ejemplo un termopar, un sensor RTD ( Resistance Temperature Detector), un termistor o la combinación de los anteriores, y de esta forma obtener la curva de calibración del montaje de este ejemplo. Con las curvas de calibración se puede realizar un análisis de sensibilidad, rango dinámico y umbral de la presente invención, de igual forma a como se ilustra en el ejemplo 2. La forma de obtener las curvas de calibración es conocida para una persona medianamente versada en la materia y se describirá la manera de obtener dichas curvas en el ejemplo 2. The second segment of MMF Multimode Fiber Optic (3) has a disturbance region (8) obtained by coating with an encapsulation (7) with an aperture (A), MMF Multimode Optical Fiber (3), where the aperture (A) It is rectangular and runs along the length of the second MMF Multimode Fiber Optic segment (3) exposing the opening (A) in the second MMF Multimode Fiber Optic segment (3). The longitudinal dimension L of the opening (A) is selected from 1 cm, 3 cm, 4.5 cm, 8 cm and 12 cm and the transverse dimension of this area is between 1 mm and 3 mm. The region of disturbance (8) is brought into contact or approaches a body whose temperature is to be measured. The output of the photodetector (5), which is a punctual optical power photodetector (5) type photodiode connectorized to fiber with response in the wavelength range of 800 to 1700nm, is connected to a voltage meter that allows characterization of the response of the assembly of this example when a certain temperature is applied; On the other hand, said temperature is also measured with a standard temperature sensor such as a thermocouple, an RTD sensor (Resistance Temperature Detector), a thermistor or a combination of the above, and in this way obtain the calibration curve of the assembly of this example. With the calibration curves, a sensitivity, dynamic range and threshold analysis of the present invention can be carried out, in the same way as illustrated in Example 2. The way to obtain the calibration curves is known to a person who is moderately versed in matter and the way to obtain said curves will be described in Example 2.
EJEMPLO 2 EXAMPLE 2
Haciendo referencia a la FIG. 4 y FIG. 4A, en una primera modalidad de la invención se tiene un primer segmento de Fibra Optica (2) Monomodo de 1 m de longitud, con un diámetro de núcleo (2b) de 9 pm y una apertura numérica de 0.13, y el primer segmento de Fibra Optica (2) tiene dos extremos; un segundo segmento de Fibra Optica Multimodo MMF (3) de 15 cm de longitud, con un diámetro de 50 pm y una apertura numérica de 0.22, con una región de perturbación (8), y con dos extremos, donde un extremo del segundo segmento de Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2) Monomodo mediante empalme por fusión; el primer segmento de Fibra Optica (2) Monomodo en su primer extremo se conecta mediante conexión mecánica tipo FC/PC a un fotodetector (5) que es un fotodetector puntual (5) conectorizado a fibra con respuesta en el rango de longitudes de onda 800 a 1700nm, adicionalmente un emisor de luz coherente (1) que para este ejemplo es una fuente láser conectorizada a fibra óptica con longitudes de onda de emisión 1550 nm. Dicho emisor es un emisor de luz coherente (1) que se conecta mediante conexión mecánica tipo SC/APC (por sus siglas en inglés Square connector o standard connector /Angled phisical contact) al segundo extremo del segundo segmento de Fibra Optica Multimodo MMF (3). Referring to FIG. 4 and FIG. 4A, in a first embodiment of the invention there is a first segment of Singlemode Fiber Optic (2) of 1 m in length, with a core diameter (2b) of 9 pm and a numerical aperture of 0.13, and the first segment of Fiber Optic (2) has two ends; a second segment of MMF Multimode Fiber Optic (3) 15 cm long, with a diameter of 50 pm and a numerical aperture of 0.22, with a region of disturbance (8), and with two ends, where one end of the second segment Multimode Fiber Optic MMF (3) is connected to one of the ends of the first Fiber Optic segment (2) Single-mode by fusion splicing; The first segment of Optical Fiber (2) Singlemode at its first end is connected by mechanical connection type FC / PC to a photodetector (5) which is a point photodetector (5) connectorized to fiber with response in the 800 wavelength range at 1700nm, additionally a coherent light emitter (1) which for this example is a fiber optic connectorized laser source with 1550 nm emission wavelengths. Said emitter is a coherent light emitter (1) that is connected by means of a mechanical connection type SC / APC (Square connector or standard connector / Angled phisical contact) to the second end of the second segment of MMF Multimode Fiber Optic (3 ).
La fuente láser conectorizada a fibra óptica con longitudes de onda de emisión 1550 nm asegura que el segundo segmento de Fibra Optica Multimodo MMF (3) funcione en régimen multimodal. La relación es de 0.8 entre el diámetro de núcleo (2b) del primer segmento de Fibra Optica (2) y el diámetro promedio de grano (11) del Patrón de Speckle (12) que se genera en el plano de contacto (B-B) entre el primer segmento de Fibra Optica (2) y segundo segmento de Fibra Optica Multimodo MMF (3) cuando éste se irradia con luz coherente del emisor de luz coherente (1). The fiber optic connectorized laser source with emission wavelengths 1550 nm ensures that the second segment of MMF Multimode Fiber Optic (3) works in multimodal regimen. The relationship is 0.8 between the core diameter (2b) of the first Optical Fiber segment (2) and the average grain diameter (11) of the Speckle Pattern (12) that is generated in the contact plane (BB) between the first segment of Optical Fiber (2) and second segment of MMF Multimode Optical Fiber (3) when it is irradiated with coherent light from the coherent light emitter (1).
El segundo segmento de Fibra Optica Multimodo MMF (3) tiene una región de perturbación (8) obtenida mediante el recubrimiento del revestimiento (3a) de la Fibra Optica Multimodo MMF (3) con un encapsulado (7) con una abertura (A), donde la abertura (A) es rectangular a lo largo de la longitud del segundo segmento de Fibra Optica Multimodo MMF (3) dejando expuesta en la abertura (A) el segundo segmento de Fibra Optica Multimodo MMF (3). La dimensión longitudinal L de la abertura (A) es selecciona de 1 cm, 3 cm, 4.5 cm, 8 cm y 12 cm y la dimensión transversal de esta área tiene entre 1 mm y 3mm. La región de perturbación (8) se pone en contacto o se aproxima a un cuerpo cuya temperatura se quiere medir. The second segment of MMF Multimode Optical Fiber (3) has a disturbance region (8) obtained by coating the cladding (3a) of the MMF Multimode Optical Fiber (3) with an encapsulation (7) with an opening (A), where the aperture (A) is rectangular along the length of the second MMF Multimode Fiber Optic segment (3) exposing the second MMF Multimode Optical Fiber segment (3) in the aperture (A). The longitudinal dimension L of the opening (A) is selected from 1cm, 3cm, 4.5cm, 8cm and 12cm and the transverse dimension of this area is between 1mm and 3mm. The region of disturbance (8) is brought into contact or approaches a body whose temperature is to be measured.
La salida del fotodetector (5) el cual es un fotodetector de potencia óptica puntual (5) tipo fotodiodo conectorizado a fibra con respuesta en el rango de longitudes de onda 800 a 1700 nm se conecta a un medidor de voltaje que permite la caracterización de la respuesta del montaje de este ejemplo cuando se pone en contacto o se aproxima la región de perturbación (8) a un cuerpo cuya temperatura se quiere medir, por otra parte dicha temperatura es medida también con un sensor de temperatura patrón como por ejemplo un termopar, un sensor RTD ( Resistance Temperature Detector), un termistor o la combinación de los anteriores, para de esta forma obtener la curva de calibración de montaje de este ejemplo. Con las curvas de calibración se puede realizar un análisis de sensibilidad, rango dinámico y umbral de la presente invención como se presenta a continuación. The output of the photodetector (5) which is a point optical power photodetector (5) type photodiode connectorized to fiber with response in the range of wavelengths from 800 to 1700 nm is connected to a voltage meter that allows the characterization of the Response of the assembly of this example when the disturbance region (8) is brought into contact or approaches a body whose temperature is to be measured, on the other hand said temperature is also measured with a standard temperature sensor such as a thermocouple, an RTD (Resistance Temperature Detector) sensor, a thermistor or a combination of the above, in order to obtain the mounting calibration curve of this example. With the calibration curves, a sensitivity, dynamic range and threshold analysis of the present invention can be performed as presented below.
Haciendo referencia a la FIG. 8 la respuesta de la estructura de la invención con el montaje del ejemplo 2 y donde la longitud de perturbación de segundo segmento de Fibra Optica Multimodo MMF (3) es de 3 cm proporciona una sensibilidad promedio de 1.4mV/°C, un rango dinámico de 87°C hasta 152°C, la temperatura umbral es de 87°C, la tendencia promedio es del 97% lineal y la ecuación de respuesta lineal que linealiza la curva de respuesta mediante mínimos cuadrados es y = 0,0014x + 2,0406 con un R2 = 0,9792 donde lay corresponde a la respuesta en voltaje del fotodetector (5) y la x corresponde a la temperatura de perturbación de la región de perturbación (8) del segmento de Fibra Óptica Multimodo MMF (3) Referring to FIG. 8 the response of the structure of the invention with the assembly of example 2 and where the disturbance length of the second segment of MMF Multimode Optical Fiber (3) is 3 cm provides an average sensitivity of 1.4mV / ° C, a dynamic range from 87 ° C to 152 ° C, the threshold temperature is 87 ° C, the average trend is 97% linear, and the linear response equation that linearizes the response curve using least squares is y = 0.0014x + 2.0406 with R 2 = 0.9792 where lay corresponds to the voltage response of the photodetector (5) and x corresponds to the disturbance temperature of the disturbance region (8) of the segment of MMF Multimode Fiber Optic (3)
Haciendo referencia a la FIG. 9 la respuesta de la estructura de la invención con el montaje del ejemplo 2 y donde la longitud de perturbación de segundo segmento de Fibra Óptica Multimodo MMF (3) es de 4.5 cm proporciona una sensibilidad promedio de 5.4mV/°C, un rango dinámico de 72°C hasta 132°C, la temperatura umbral es de 72°C, la tendencia promedio es del 97% lineal y la ecuación de respuesta lineal que linealiza la curva de respuesta mediante mínimos cuadrados es: y = 0,0054x + 1,7844 con un R2 = 0,9719 donde lay corresponde a la respuesta en voltaje del fotodetector (5) y la x corresponde a la temperatura de perturbación de la región de perturbación (8) del segmento de Fibra Óptica Multimodo MMF (3). Referring to FIG. 9 the response of the structure of the invention with the assembly of example 2 and where the disturbance length of the second segment of MMF Multimode Optical Fiber (3) is 4.5 cm provides an average sensitivity of 5.4mV / ° C, a dynamic range from 72 ° C to 132 ° C, the threshold temperature is 72 ° C, the average trend is 97% linear, and the linear response equation that linearizes the response curve using least squares is: y = 0.0054x + 1 , 7844 with R 2 = 0.9719 where lay corresponds to the voltage response of the photodetector (5) and x corresponds to the disturbance temperature of the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) .
Haciendo referencia a la FIG. 10 la respuesta de la estructura de la invención con el montaje del ejemplo 2 y donde la longitud de perturbación de segundo segmento de Fibra Óptica Multimodo MMF (3) es de 8 cm proporciona una sensibilidad promedio de 7.7mV/°C, un rango dinámico de 46°C hasta 104°C, la temperatura umbral es de 46°C, la tendencia promedio es del 96% lineal y la ecuación de respuesta lineal que linealiza la curva de respuesta mediante mínimos cuadrados es: y = 0,0077x + 1,8577 con un R2 = 0,9623 donde lay corresponde a la respuesta en voltaje del fotodetector (5) y la x corresponde a la temperatura de perturbación de la región de perturbación (8) del segmento de Fibra Óptica Multimodo MMF (3). Referring to FIG. 10 the response of the structure of the invention with the assembly of example 2 and where the disturbance length of the second segment of MMF Multimode Optical Fiber (3) is 8 cm provides an average sensitivity of 7.7mV / ° C, a dynamic range from 46 ° C to 104 ° C, the threshold temperature is 46 ° C, the average trend is 96% linear, and the linear response equation that linearizes the response curve using least squares is: y = 0.0077x + 1 , 8577 with R 2 = 0.9623 where lay corresponds to the voltage response of the photodetector (5) and x corresponds to the disturbance temperature of the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) .
Haciendo referencia a la FIG. 11 la respuesta de la estructura de la invención con el montaje del ejemplo 2 y donde la longitud de perturbación de segundo segmento de Fibra Óptica Multimodo MMF (3) es de 12 cm proporciona una sensibilidad promedio de 9.4mV/°C, un rango dinámico de 26°C hasta 79°C, la temperatura umbral es de 26°C, la tendencia promedio es del 97% lineal y la ecuación de respuesta lineal que linealiza la curva de respuesta mediante mínimos cuadrados es: y = 0,0094x + 1,9073 con un R2 = 0,9709 donde la corresponde a la respuesta en voltaje del fotodetector (5) y la x corresponde a la temperatura de perturbación de la región de perturbación (8) del segmento de Fibra Óptica Multimodo MMF (3). Referring to FIG. 11 the response of the structure of the invention with the assembly of example 2 and where the disturbance length of the second segment of MMF Multimode Optical Fiber (3) is 12 cm provides an average sensitivity of 9.4mV / ° C, a dynamic range from 26 ° C to 79 ° C, the threshold temperature is 26 ° C, the average trend is 97% linear, and the linear response equation that linearizes the response curve using least squares is: y = 0.0094x + 1 .9073 with R 2 = 0.9709 where the corresponds to the voltage response of the photodetector (5) and the x corresponds to the disturbance temperature of the disturbance region (8) of the MMF Multimode Fiber Optic segment (3).
EJEMPLO 3 EXAMPLE 3
En una primera modalidad de la invención se tiene un primer segmento de Fibra ÓpticaIn a first embodiment of the invention there is a first segment of Optical Fiber
(2) Monomodo de 1 m de longitud, con un diámetro de núcleo (2b) de 9 pm y una apertura numérica de 0.13, el primer segmento de Fibra Óptica (2) tiene dos extremos; un segundo segmento de Fibra Óptica Multimodo MMF (3) de 15 cm de longitud, con un diámetro de 50 um y una apertura numérica de 0.22, con una región de perturbación (8), y con dos extremos, donde un extremo del segundo segmento de Fibra Óptica Multimodo MMF(2) Singlemode 1 m long, with a core diameter (2b) of 9 pm and a numerical aperture of 0.13, the first Fiber Optic segment (2) has two ends; a second segment of MMF Multimode Fiber Optic (3) 15 cm long, with a diameter of 50 um and a numerical aperture of 0.22, with a perturbation region (8), and with two ends, where one end of the second segment Fiber Optic Multimode MMF
(3) está conectado a uno de los extremos del primer segmento de Fibra Óptica (2) Monomodo mediante empalme por fusión; el primer segmento de Fibra Óptica (2) Monomodo en su primer extremo se conecta mediante conexión mecánica tipo FC/PC a un fotodetector (5) que es un fotodetector puntual conectorizado a fibra con respuesta en el rango de longitudes de onda 800 a 1700nm, adicionalmente un emisor de luz coherente(3) is connected to one of the ends of the first Optical Fiber segment (2) Singlemode by fusion splicing; The first segment of Optical Fiber (2) Singlemode at its first end is connected by means of a mechanical connection type FC / PC to a photodetector (5) which is a point photodetector connectorized to fiber with response in the range of wavelengths from 800 to 1700nm, additionally a coherent light emitter
(1) que para este ejemplo es una fuente láser conectorizada a fibra óptica con longitudes de onda de emisión 1550 nm. Dicho emisor es un emisor de luz coherente (1) que se conecta mediante conexión mecánica tipo SC/APC (por sus siglas en inglés Square connector o standard connector /Angled phisical contact) al extremo del segundo segmento de Fibra Óptica Multimodo MMF (3). (1) which for this example is a fiber optic connectorized laser source with emission wavelengths 1550 nm. Said emitter is a coherent light emitter (1) that is connected by means of a mechanical connection type SC / APC (for its acronym in English Square connector or standard connector / Angled phisical contact) to the end of the second segment of MMF Multimode Fiber Optic (3) .
La fuente láser conectorizada a fibra óptica con longitudes de onda de emisión 1550 nm asegura que el segundo segmento de Fibra Óptica Multimodo MMF (3) funcione en régimen multimodal. La relación es de 0.8 entre el diámetro de núcleo (2b) del primer segmento de Fibra Óptica (2) y el diámetro promedio de granos (11) del Patrón de Speckle (12) que se genera en el plano de contacto (B-B) entre el primer segmento de Fibra ÓpticaThe fiber optic connectorized laser source with emission wavelengths 1550 nm ensures that the second segment of MMF Multimode Fiber Optic (3) operates in a multimodal regime. The relationship is 0.8 between the core diameter (2b) of the first Optical Fiber segment (2) and the average diameter of grains (11) of the Speckle Pattern (12) that is generated in the contact plane (BB) between the first Fiber Optic segment
(2) y segundo segmento de Fibra Óptica Multimodo MMF (3) cuando éste se irradia con luz coherente del emisor de luz coherente (1). (2) and second segment of MMF Multimode Fiber Optic (3) when it is irradiated with coherent light from the coherent light emitter (1).
Haciendo referencia a la FIG.7C el segundo segmento de Fibra Óptica Multimodo MMFReferring to FIG. 7C, the second MMF Multimode Fiber Optic segment
(3) tiene una región de perturbación (8) que es obtenida mediante desgaste de una parte del revestimiento (3a) ( cladding ) donde para el área desgatada la dimensión longitudinal de se selecciona entre 1 cm, 3 cm, 4.5 cm, 8 cm y 12 cm y la dimensión transversal se selecciona entre 1 mm y 3mm. La región de perturbación (8) se pone en contacto con sustancias que estén cambiando su composición química, como, por ejemplo, un porcentaje en volumen de alcohol propílico en agua destilada. La salida del fotodetector (5) de potencia óptica se conecta a un medidor de voltaje que permite la caracterización de la respuesta del montaje del ejemplo 3 cuando se cambia el porcentaje en volumen de alcohol propílico en agua destilada, para obtener la curva de calibración del sistema propuesto en este invento. Con esta curva de calibración se puede realizar análisis de sensibilidad, rango dinámico y umbral, de igual manera como se ilustra en el ejemplo 2. La presente invención no se halla limitada a las modalidades descritas e ilustradas, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, así mismo las aplicaciones de la invención se ilustran para medidas de variables y aplicaciones como sensor, pero la invención podría ser usada en otras aplicaciones como por ejemplo moduladores de fibra óptica donde la modulación de señales de luz se realiza mediante perturbación física o química región de perturbación (8) en el revestimiento (3a) del segundo segmento de Fibra Optica Multimodo MMF (3). (3) has a disturbance region (8) that is obtained by wear of a part of the cladding (3a) (cladding) where for the worn area the longitudinal dimension of is selected between 1 cm, 3 cm, 4.5 cm, 8 cm and 12 cm and the transverse dimension is select between 1mm and 3mm. The region of disturbance (8) is brought into contact with substances that are changing their chemical composition, such as, for example, a percentage by volume of propyl alcohol in distilled water. The output of the optical power photodetector (5) is connected to a voltage meter that allows the characterization of the response of the assembly of example 3 when the percentage by volume of propyl alcohol in distilled water is changed, to obtain the calibration curve of the system proposed in this invention. With this calibration curve, sensitivity, dynamic range and threshold analysis can be performed, in the same way as illustrated in Example 2. The present invention is not limited to the modalities described and illustrated, as it will be evident to a skilled person. In the art, there are variations and possible modifications that do not depart from the spirit of the invention, likewise the applications of the invention are illustrated for measurements of variables and applications as a sensor, but the invention could be used in other applications such as modulators. optical fiber where the modulation of light signals is carried out by means of physical or chemical disturbance disturbance region (8) in the cladding (3a) of the second segment of MMF Multimode Optical Fiber (3).

Claims

REIVINDICACIONES
1. Una estructura de fibra óptica, que comprende: 1. A fiber optic structure, comprising:
- un primer segmento de Fibra Optica (2) con dos extremos; - a first segment of Optical Fiber (2) with two ends;
- un segundo segmento de Fibra Optica Multimodo MMF (3) con dos extremos; donde un extremo del segundo segmento de Fibra Optica Multimodo MMF (3) está conectado a uno de los extremos del primer segmento de Fibra Optica (2); donde dicho segundo segmento tiene una región de perturbación (8) en el revestimiento (3a) de la Fibra Optica Multimodo MMF (3); y donde la región de perturbación (8) del segmento de Fibra Optica Multimodo MMF (3) se expone a una perturbación física o química. - a second segment of MMF Multimode Fiber Optic (3) with two ends; where one end of the second MMF Multimode Fiber Optic segment (3) is connected to one of the ends of the first Optical Fiber segment (2); wherein said second segment has a disturbance region (8) in the cladding (3a) of the MMF Multimode Optical Fiber (3); and where the disturbance region (8) of the MMF Multimode Fiber Optic segment (3) is exposed to a physical or chemical disturbance.
2. La estructura de fibra óptica de la Reivindicación 1, donde el otro extremo del primer segmento de Fibra Optica (2) se conecta a un fotodetector (5); y donde el otro extremo del segundo segmento de Fibra Optica Multimodo MMF (3) se conecta a un emisor de luz coherente (1). 2. The fiber optic structure of Claim 1, wherein the other end of the first Fiber Optic segment (2) is connected to a photodetector (5); and where the other end of the second MMF Multimode Fiber Optic segment (3) is connected to a coherent light emitter (1).
3. La estructura de fibra óptica de la Reivindicación 1, donde al primer segmento de Fibra Optica (2) en su otro extremo se conecta al segundo puerto de un circulador óptico (10) de tres puertos; en el primer puerto del circulador óptico (10) se conecta un emisor de luz coherente (1); en el tercer puerto del circulador óptico (10) se conecta un fotodetector (5); y una película reflectiva (9) se dispone en el otro extremo del segundo segmento de Fibra Optica Multimodo MMF (3). 3. The fiber optic structure of Claim 1, wherein the first Fiber Optic segment (2) at its other end is connected to the second port of a three-port optical circulator (10); a coherent light emitter (1) is connected to the first port of the optical circulator (10); a photodetector (5) is connected to the third port of the optical circulator (10); and a reflective film (9) is arranged at the other end of the second segment of MMF Multimode Optical Fiber (3).
4. La estructura de fibra óptica de cualquiera de las Reivindicaciones anteriores, en donde en el plano de contacto (B-B) entre el primer segmento de fibra óptica (2) y el segundo segmento de Fibra Optica Multimodo MMF (3), se genera un Patrón de Speckle (12) con un tamaño promedio de grano (11) del Patrón de Speckle (12); y en donde el diámetro de núcleo (2b) del primer segmento de Fibra Optica (2), la apertura numérica (A.N.) del segundo segmento de fibra óptica multimodo MMF (3) y la longitud de onda de la luz coherente (1), responden a la relación: (Ds) 4. The fiber optic structure of any of the preceding Claims, wherein in the contact plane (BB) between the first fiber optic segment (2) and the second MMF Multimode Fiber Optic segment (3), a Speckle Pattern (12) with an average grain size (11) from Speckle Pattern (12); and where the core diameter (2b) of the first Optical Fiber segment (2), the numerical aperture (AN) of the second MMF multimode optical fiber segment (3) and the wavelength of the coherent light (1), respond to the relationship: (D s )
0.5 < £ 1.8 d en donde: l 0.5 <£ 1.8 d where: l
(Ds)= - -jy : es el tamaño promedio de grano (11) del Patrón de Speckle (12), d. es el diámetro del núcleo (2b) del primer segmento de Fibra Optica (2),(D s ) = - -jy: is the average grain size (11) of the Speckle Pattern (12), d. is the diameter of the core (2b) of the first Fiber Optic segment (2),
A.N: la apertura numérica del segundo segmento de fibra óptica MMF (3), l: la longitud de onda de la fuente de luz coherente (1). A.N: the numerical aperture of the second MMF fiber optic segment (3), l: the wavelength of the coherent light source (1).
5. La estructura de fibra óptica de la Reivindicación 1, donde el primer segmento de Fibra Optica (2) es un segmento de Fibra Optica Monomodo (SMF). 5. The fiber optic structure of Claim 1, wherein the first Fiber Optic segment (2) is a Single Mode Fiber Optic (SMF) segment.
6. La estructura de fibra óptica de la Reivindicación 1, donde el segundo segmento de Fibra Optica Multimodo MMF (3) tiene una longitud inferior o igual a 15 cm. 6. The fiber optic structure of Claim 1, wherein the second MMF Multimode Fiber Optic segment (3) has a length less than or equal to 15 cm.
7. La estructura de fibra óptica de la Reivindicación 1, donde el segundo segmento de Fibra Optica Multimodo MMF (3) está recubierto con un encapsulado (7) con una abertura (A) formando la región de perturbación (8) definida por el segmento (L) y donde dicha región de perturbación (8) permite variar parámetros metrológicos. 7. The fiber optic structure of Claim 1, wherein the second MMF Multimode Optical Fiber segment (3) is covered with an encapsulation (7) with an aperture (A) forming the disturbance region (8) defined by the segment (L) and where said region of disturbance (8) allows metrological parameters to be varied.
8. La estructura de fibra óptica de la Reivindicación 7, donde el encapsulado (7) con una abertura (A) es rectangular y tiene una longitud L inferior al segundo segmento de Fibra Optica Multimodo MMF (3) formando la región de perturbación (8) 8. The fiber optic structure of Claim 7, wherein the package (7) with an opening (A) is rectangular and has a length L less than the second segment of MMF Multimode Optical Fiber (3) forming the disturbance region (8 )
9. La estructura de fibra óptica de la Reivindicación 1, donde el segundo segmento de Fibra Optica Multimodo MMF (3) presenta un estrechamiento del revestimiento (3a) ( cladding ) formando la región de perturbación (8). 9. The fiber optic structure of Claim 1, wherein the second segment of MMF Multimode Optical Fiber (3) presents a narrowing of the cladding (3a) (cladding) forming the disturbance region (8).
10. La estructura de fibra óptica de la Reivindicación 1, donde el segundo segmento de Fibra Optica Multimodo MMF (3) presenta un desgaste del revestimiento (3a) de la segunda Fibra Optica Multimodo MMF (3) paralelo al eje de la fibra formando la región de perturbación (8). 10. The fiber optic structure of Claim 1, wherein the second segment of MMF Multimode Optical Fiber (3) presents a wear of the cladding (3a) of the second MMF Multimode Optical Fiber (3) parallel to the axis of the fiber, forming the region of disturbance (8).
11. La estructura de fibra óptica de la Reivindicación 1, donde el primer segmento de Fibra Optica (2) y el primer extremo del segundo segmento de Fibra Optica Multimodo MMF (3) se conectan mediante empalme por fusión. The fiber optic structure of Claim 1, wherein the first Optical Fiber segment (2) and the first end of the second MMF Multimode Optical Fiber segment (3) are connected by fusion splicing.
12. La estructura de fibra óptica de la Reivindicación 1, donde el primer segmento de Fibra Optica (2) y el segundo segmento de Fibra Optica Multimodo MMF (3) se conectan mediante empalmes mecánicos que se seleccionan del grupo formado por FC, PC, APC, ST, SC, LC, MU, MTRJ, E2000 y combinaciones de los mismos. 12. The fiber optic structure of Claim 1, wherein the first segment of Optical Fiber (2) and the second segment of MMF Multimode Optical Fiber (3) are connected by mechanical splices that are selected from the group consisting of FC, PC, APC, ST, SC, LC, MU, MTRJ, E2000, and combinations thereof.
13. La estructura de fibra óptica de las Reivindicación 2 y 3, donde el fotodetector (5) se selecciona del grupo conformado por detector de luz, fotodiodo, fotodiodo PIN, fotodiodo de avalancha, fototransistor, fotorresistencia, fotocátodo, fototubo, fotoválvula, fotomultiplicador, CCD, sensor CMOS, célula fotoeléctrica, célula fotoelectroquímica, fotocélula, fotodetector conectorizado, fotodiodo conectorizado y combinaciones de los mismos. 13. The fiber optic structure of Claims 2 and 3, where the photodetector (5) is selected from the group consisting of light detector, photodiode, PIN photodiode, avalanche photodiode, phototransistor, photoresistor, photocathode, phototube, photovalve, photomultiplier , CCD, CMOS sensor, photoelectric cell, photoelectrochemical cell, photocell, connectorized photodetector, connectorized photodiode and combinations thereof.
PCT/IB2020/060984 2019-12-20 2020-11-20 Optical fibre system WO2021123968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2019/0014494A CO2019014494A1 (en) 2019-12-20 2019-12-20 Fiber optic structure
CONC2019/0014494 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021123968A1 true WO2021123968A1 (en) 2021-06-24

Family

ID=76377288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/060984 WO2021123968A1 (en) 2019-12-20 2020-11-20 Optical fibre system

Country Status (2)

Country Link
CO (1) CO2019014494A1 (en)
WO (1) WO2021123968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006071642A1 (en) * 2004-12-23 2006-07-06 Trustees Of Princeton University Cavity ring-down detection of surface plasmon resonance in an optical fiber resonator
WO2008003071A2 (en) * 2006-06-29 2008-01-03 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a bragg fiber
US8351029B2 (en) * 2007-12-06 2013-01-08 Mitsubishi Electric Corporation Optical fiber sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006071642A1 (en) * 2004-12-23 2006-07-06 Trustees Of Princeton University Cavity ring-down detection of surface plasmon resonance in an optical fiber resonator
WO2008003071A2 (en) * 2006-06-29 2008-01-03 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a bragg fiber
US8351029B2 (en) * 2007-12-06 2013-01-08 Mitsubishi Electric Corporation Optical fiber sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARISTIZABAL, V. ET AL.: "Numerical modeling of fiber specklegram sensors by using finite element method FEM", OPTICS EXPRESS, vol. 24, no. 24, November 2016 (2016-11-01), pages 27225 - 27238, XP055835774, Retrieved from the Internet <URL:https://www.researchgate.net/publication/310421281_Numerical_modeling_of_fiber_specklegram_sensors_by_using_finite_element_method_FEM> DOI: 10.1364/OE.24.027225 *
GOMEZ, N. ET AL.: "Effects of the speckle size on non-holographic fiber specklegram sensors", OPTICS AND LASERS IN ENGINEERING, vol. 51, no. 11, November 2013 (2013-11-01), pages 1291 - 1295, XP055835784, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0143816613001589> DOI: 10.1016/j.optlaseng.2013.05.007 *
GUTLÉRREZ, L. ET AL.: "Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes. Revista de la Academia Colombiana de Ciencias Exactas", FISICAS Y NATURALES JUNIO, vol. 42, no. 163, 2018, pages 182 - 188, XP055835771, Retrieved from the Internet <URL:https://raccefyn.co/index.php/raccefyn/article/view/608> DOI: 10.18257/raccefyn.608 *

Also Published As

Publication number Publication date
CO2019014494A1 (en) 2021-06-21

Similar Documents

Publication Publication Date Title
Lomer et al. Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor
Nath et al. All-fiber optic sensor for measurement of liquid refractive index
Westbrook et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays
Dutta et al. Evanescent wave coupled spectroscopic sensing using smartphone
Chaudhari et al. Multi-wavelength optical fiber liquid refractometry based on intensity modulation
JP2008190910A (en) Bending degree detection device and bending degree detecting method using it
WO2009156410A1 (en) Retro-reflective structures
Kong et al. High-sensitivity and fast-response fiber-optic micro-thermometer based on a plano-concave Fabry-Pérot cavity filled with PDMS
Ghaffar et al. An enlarge polymer optical fiber linear-displacement sensor based on constructive interference
WO2005043108A3 (en) Thermal imaging system and method
Krishnan et al. Liquid refractometer based mirrorless fiber optic displacement sensor
Sato et al. Reflectance imaging by graded-index short multimode fiber
Davenport et al. Method for producing angled optical fiber tips in the laboratory
CN110440840A (en) Balloon-dislocation type full-fiber sensor production method that is a kind of while measuring temperature and displacement
WO2021123968A1 (en) Optical fibre system
Fukano et al. High-sensitivity optical fiber refractive index sensor using multimode interference structure
Zhou et al. Fiber-optic refractometer based on a reflective aspheric prism rendering adjustable sensitivity
Selvas-Aguilar et al. Noncontact optical fiber sensor for measuring the refractive index of liquids
Kim et al. Feasibility study on fiber-optic goniometer for measuring knee joint angle
Chetia et al. Low-cost refractive index sensor with optical fibers attached to a U-shaped glass tube
Wolf et al. Direct core-selective inscription of Bragg grating structures in seven-core optical fibers by femtosecond laser pulses
Hammarling et al. Blood pH optrode based on evanescent waves and refractive index change
Kulkarni et al. Optically activated novel force sensor calibrated as weighing balance
CN106767959A (en) A kind of Demodulation System for Fiber Optic Fabry-Perot Sensors
KR100991516B1 (en) Optical fiber type interferometer sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902981

Country of ref document: EP

Kind code of ref document: A1