WO2021121319A1 - 图像显示方法、近眼显示设备和装置 - Google Patents

图像显示方法、近眼显示设备和装置 Download PDF

Info

Publication number
WO2021121319A1
WO2021121319A1 PCT/CN2020/137193 CN2020137193W WO2021121319A1 WO 2021121319 A1 WO2021121319 A1 WO 2021121319A1 CN 2020137193 W CN2020137193 W CN 2020137193W WO 2021121319 A1 WO2021121319 A1 WO 2021121319A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
optical waveguide
coupling
incident light
light
Prior art date
Application number
PCT/CN2020/137193
Other languages
English (en)
French (fr)
Inventor
江丽
于超
蔡宏
毛慧
浦世亮
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2021121319A1 publication Critical patent/WO2021121319A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present disclosure relates to the field of optical technology, in particular to an image display method, near-eye display equipment and device.
  • the near-eye display device can present a virtual image within the user's observation range.
  • the near-eye display device mainly includes an image source and a display module, where the image source is used to project the image source onto the display module.
  • the display module is used to display the image corresponding to the image source projected by the image source.
  • the FOV Field of view, field of view
  • FOV Field of view, field of view
  • the incident light will be diffracted through the grating component on the optical waveguide lens, and two images corresponding to the diffracted FOV will be output.
  • each optical waveguide lens corresponds to one FOV
  • the two FOVs corresponding to the two optical waveguide lenses are spliced together to form a large FOV, so that the user can receive a larger range of image sources.
  • the present disclosure provides an image display method, near-eye display device and device, which can expand the eye movement range of the near-eye display device.
  • the technical solutions are as follows:
  • an image display method includes:
  • the grating component For each optical waveguide lens, determine the grating parameters of the grating component on the optical waveguide lens according to the first FOV, the grating component including a coupling-in grating and a coupling-out grating;
  • the incident light corresponding to the image source is diffracted through the multiple optical waveguide lenses of the near-eye display device and the grating component on each optical waveguide lens to obtain multiple first images,
  • the angle of view of the image source is a second FOV, and the second FOV of the near-eye display device is composed of the first FOV of the plurality of optical waveguide lenses;
  • the multiple first images are spliced to obtain a second image corresponding to the image source.
  • a near-eye display device in another aspect, includes: an image source, a processor, a plurality of optical waveguide lenses and a plurality of grating components, and the number of the optical waveguide lenses and the grating components is the same;
  • the image source is connected to the processor
  • the plurality of optical waveguide lenses are stacked, and a gap is left between every two optical waveguide lenses;
  • the in-coupling grating of the grating component is arranged on the upper surface of the first end of the optical waveguide lens, and the out-coupling grating of the grating component is arranged on the optical waveguide lens
  • the structures of the coupling-in grating and the coupling-out grating are mirror-symmetrical;
  • the image source is arranged on the outer side of the plurality of optical waveguide lenses arranged in the stack, and is aligned with the positions of the plurality of coupling gratings.
  • an image processing device in another aspect, includes: an image source, a processor, a plurality of optical waveguide lenses and a plurality of grating components, the number of the optical waveguide lenses and the grating components is the same;
  • the image source is connected to the processor; the plurality of optical waveguide lenses are stacked, leaving a gap between every two optical waveguide lenses; for each grating component and each optical waveguide lens, the The coupling-in grating is arranged on the upper surface of the first end of the optical waveguide lens, the out-coupling grating of the grating assembly is arranged on the upper surface of the second end of the optical waveguide lens, and the coupling-in grating and the out-coupling grating are arranged on the upper surface of the second end of the optical waveguide lens.
  • the structure of the grating is mirror-symmetrical; the image source is arranged on the outer side of the plurality of optical waveguide lenses arranged in the stack, and is aligned with the positions of the plurality of
  • the processor is configured to determine the first field angle FOV corresponding to each optical waveguide lens of the multiple optical waveguide lenses of the near-eye display device; for each optical waveguide lens, determine the optical waveguide according to the first FOV Grating parameters of the grating component on the lens, the grating component including a coupling-in grating and a coupling-out grating;
  • the multiple grating components are set according to the grating parameters, and the multiple grating components are used to, in response to displaying the image source, diffract incident light corresponding to the image source to obtain multiple first An image, the field of view of the image source is a second FOV, and the second FOV of the near-eye display device is composed of the first FOV of the plurality of optical waveguide lenses;
  • the plurality of optical waveguide lenses are used to transmit incident light diffracted by the plurality of grating components
  • the processor is further configured to splice the multiple first images to obtain a second image corresponding to the image source.
  • an electronic device in another aspect, includes a processor and a memory, and at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor, so as to realize the implementation as in the present disclosure.
  • the method in the example The image display method described in the embodiment.
  • a computer-readable storage medium stores at least one instruction, and the at least one instruction is loaded and executed by a processor, so as to implement the method as in the embodiment of the present disclosure.
  • a computer program product is provided.
  • the program code in the computer program product is executed by the processor of the near-eye display device, the instructions of the image display method according to the embodiments of the present disclosure are realized.
  • the second FOV of the near-eye display device is determined by the second FOV of the multiple optical waveguide lenses.
  • a FOV composition for each optical waveguide lens, the grating parameter of the grating component of the optical waveguide lens is determined according to the first FOV; when the image source is displayed, the incident light corresponding to the image source is diffracted according to the grating parameter, Obtain multiple first images, the field of view of the image source is the second FOV; stitch the multiple first images to obtain the second image corresponding to the image source, and optimize the grating parameters to make the multiple first FOVs There is no overlap between them, which ensures that the second image has no ghosting, improves the uniformity of the second image, and expands the eye movement range of the near-eye display device.
  • Fig. 1 is a structural intention of a near-eye display device according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram showing a near-eye display device according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram of a near-eye display device according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing a near-eye display device according to an exemplary embodiment
  • Fig. 5 is a flowchart showing an image display method according to an exemplary embodiment
  • Fig. 6 is a flowchart showing an image display method according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram showing a near-eye display device according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram showing a near-eye display device according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram showing a near-eye display device according to an exemplary embodiment
  • Fig. 10 is a flow chart showing a direction of light according to an exemplary embodiment
  • Fig. 11 is a schematic structural diagram of an electronic device according to an exemplary embodiment.
  • FIG. 1 is a schematic structural diagram of a near-eye display device according to an exemplary embodiment.
  • the near-eye display device includes an image source 101, a processor 102, a plurality of optical waveguide lenses 103 and a plurality of grating components 104 , The number of the optical waveguide lens 103 and the grating assembly 104 is the same; the image source 101 is connected to the processor 102; the plurality of optical waveguide lenses 103 are stacked, leaving a gap between every two optical waveguide lenses 103;
  • Each grating component 104 and each optical waveguide lens 103, the in-coupling grating of the grating component 104 is arranged on the upper surface of the first end of the optical waveguide lens 103, and the out-coupling grating of the grating component 104 is arranged on the optical waveguide lens
  • the structures of the coupling-in grating and the coupling-out grating are mirror-symmetrical; the image source 101
  • the image source 101 is used to generate incident light, and project the incident light to the grating component 104.
  • the image source 101 passes LCOS (Liquid Crystal on Silicon), LCD (Liquid Crystal Display, liquid crystal display). Display), DLP (Digital Light Processing, digital light processing technology), and OLED (Organic Light-Emitting Diode, organic light-emitting diode) technologies, etc., project the acquired image source onto the grating component 104.
  • LCOS Liquid Crystal on Silicon
  • LCD Liquid Crystal Display, liquid crystal display. Display
  • DLP Digital Light Processing, digital light processing technology
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the grating component 104 is used to receive the incident light projected by the image source 101, diffract the incident light, and generate a second image corresponding to the image source; each optical waveguide lens 103 is provided with a grating component 104 that can transfer the image source The light projected by 101 is diffracted to the observation point, so that the receiving component can receive the image source.
  • the receiving component is a human eye or a detector. In the embodiment of the present disclosure, the receiving component is not specifically limited.
  • each grating component 104 includes an in-coupling grating and an out-coupling grating; the plurality of optical waveguide lenses 103 are stacked, leaving a gap between every two optical waveguide lenses 103;
  • Each grating component 104 and each optical waveguide lens 103, the in-coupling grating of the grating component 104 is arranged on the upper surface of the first end of the optical waveguide lens 103, and the out-coupling grating is arranged on the second end of the optical waveguide lens 103
  • the coupling-in grating and the coupling-out grating are mirror-symmetrical; the coupling-out grating on each optical waveguide lens 103 is misaligned with the coupling-out gratings on other adjacent optical waveguide lenses 103.
  • FIG. 2 is a near-eye display device according to an exemplary embodiment.
  • the near-eye display device includes N optical waveguide lenses 103 and N grating components 104.
  • the N optical waveguide lenses 103 Respectively from bottom to top are the first optical waveguide lens, the second optical waveguide lens, ... the Nth optical waveguide lens, each of the N optical waveguide lenses 103 is provided with a grating component 104, each The grating component 104 includes an in-coupling grating and an out-coupling grating.
  • the first optical waveguide lens is provided with a first grating component
  • the first grating component includes a first in-coupling grating and a first out-coupling grating
  • the second optical waveguide lens is provided with a first grating component.
  • Two grating components, the second grating component includes a second coupling-out grating and a second coupling-in grating, ..., an N-th grating component is arranged on the N-th optical waveguide lens, the N-th coupling-in grating and the N-th coupling-out grating are arranged.
  • the positions of the N coupling-in gratings are aligned with each other, between the N coupling-out gratings, and each two adjacent coupling-out gratings are arranged in a staggered manner.
  • the second out-coupling grating is arranged on one end of the upper surface of the second optical waveguide lens, wherein the misalignment distance between the second optical waveguide lens and the first optical waveguide lens is ⁇ L, so
  • the N-1th out-coupling grating is arranged on one end of the upper surface of the N-1th optical waveguide lens
  • the Nth out-coupling grating is arranged on one end of the upper surface of the Nth optical waveguide lens.
  • the misalignment distance between the N-1 optical waveguide lens and the Nth optical waveguide lens is ⁇ L.
  • the N-th out-coupling grating is on the inner side of the N-1th out-coupling grating; or, the N-th out-coupling grating is on the outer side of the N-1th out-coupling grating. In the embodiments of the present disclosure, this is not done. Specific restrictions. For example, continuing to refer to FIG. 2, as shown in FIG. 2, the N-th out-coupling grating is outside the N-1th out-coupling grating.
  • FIG. 3 shows a plurality of optical waveguide lenses 103 and a plurality of grating components 104 in a near-eye display device according to an exemplary embodiment.
  • the plurality of optical waveguide lenses 103 includes a first optical waveguide lens 103.
  • the plurality of grating components 104 includes a first grating component 104-1 and a second grating component 104-2, wherein the first grating component 104-1 includes a first coupled-in grating As with the first out-coupling grating, the second grating assembly 104-2 includes a second out-coupling grating and a second out-coupling grating.
  • the second optical waveguide lens 103-2 is superimposed on the first optical waveguide lens 103-1, and a gap is left between the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2;
  • the coupling grating is disposed on the upper surface of the first end of the first optical waveguide lens 102-1, the first coupling grating is disposed on the upper surface of the second end of the first optical waveguide lens 103-1, and the first coupling
  • the structures of the entrance grating and the first coupling-out grating are mirror-symmetrical; the second coupling-in grating is disposed on the upper surface of the first end of the second optical waveguide lens 103-2, and the second coupling-out grating is disposed on the first end of the second optical waveguide lens 103-2.
  • the structures of the second coupling-in grating and the first coupling-out grating are mirror-symmetrical; the first coupling-out grating and the second coupling-out grating are arranged in a misaligned manner.
  • the second optical waveguide lens 103-2 is superimposed on the first optical waveguide lens 103-1, and the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 pass through glass, rubber, and plastic.
  • adhesive glue and other materials to connect wherein the adhesive glue is UV (Ultraviolet Rays, ultraviolet) photosensitive glue or optical double-sided adhesive and other materials with viscosity.
  • the connection position of the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 can be set as required, and in the embodiment of the present disclosure, the connection position is not specifically limited.
  • connection position is arranged on the outer side of the first coupling-in grating, the first coupling-out grating, the second coupling-in grating, and the second coupling-out grating, so as to avoid hindering and absorbing the light propagating in the optical waveguide.
  • the gap between the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 should be slightly larger than the thickness of the first coupling-in grating and the first coupling-out grating.
  • the first optical waveguide The gap between the lens 103-1 and the second optical waveguide lens 103-2 is determined according to the thickness of the first coupling-in grating and the first coupling-out grating.
  • the first optical waveguide lens 103-1 is The width of the gap between the second optical waveguide lens 103-2 and the second optical waveguide lens 103-2 is not specifically limited. Continuing to refer to FIG. 3, the width of the gap between the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 is d. In addition, the width of the gap between the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 is generated by the connector connecting the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 Correspondingly, in response to the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 being connected by an adhesive, the thickness of the adhesive is the same as the width of the gap.
  • the lengths of the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 are the same, and the lengths of the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 are set as required. In the embodiments of the present disclosure, the lengths of the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 are not specifically limited.
  • the first out-coupling grating and the second out-coupling grating are arranged in a staggered manner, so that the light in the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2 passes through the first optical waveguide lens 103-2.
  • the diffracted outgoing light rays of the outgoing grating and the second outgoing grating are rays of similar diffraction levels. As shown in Fig. 4, the position difference between the first outgoing grating and the second outgoing grating is ⁇ L. .
  • the ⁇ L is the position difference obtained by moving the second out-coupling grating ⁇ L, or the ⁇ L is the position difference obtained by moving the first out-coupling grating ⁇ L. In the embodiments of the present disclosure, this is not specifically limited.
  • the positions of the first out-coupling grating and the second out-coupling grating are arranged in a staggered manner, so that the outgoing light rays of the same diffraction order of the first out-coupling grating and the second out-coupling grating are formed.
  • the brightness difference between the second images composed of the multiple first images is small, so that the brightness of the second image is uniform.
  • the material of the first coupling-in grating, the first coupling-out grating, the second coupling-in light, and the second coupling-out grating is a liquid crystal material.
  • the material of the first coupling-in grating, the first coupling-out grating, the second coupling-in grating, and the second coupling-out grating is a photopolymer material.
  • the first coupling-in grating, the first coupling-out grating, the second coupling-in grating, and the second coupling-out grating are made of photopolymer materials, which reduces the manufacturing cost of the diffraction grating, and through the exposure process Obtaining the diffraction grating simplifies the process of the diffraction grating and improves the production efficiency.
  • the materials of the first coupling-in grating, the first coupling-out grating, the second coupling-in grating, and the second coupling-out grating are photopolymer materials
  • the first coupling-in grating and the first coupling-out grating are made of photopolymer materials.
  • the second coupling-in grating and the second coupling-out grating can be obtained through an exposure process.
  • the diffraction efficiency of the first coupling-out grating and the second coupling-out grating can be adjusted through the exposure process, thereby improving the brightness uniformity of the field of view of the near-eye display device, and increasing the eye movement range (Eyebox).
  • the near-eye display device further includes: a display component; the display component is arranged on the outer side of the stacked optical waveguide lenses and aligned with the positions of the multiple out-coupling gratings.
  • the plurality of optical waveguide lenses and the grating component on each optical waveguide lens are also used to diffract the incident light corresponding to the image source to obtain multiple groups of first emergent light, and the multiple groups of first emergent light Projected onto a display component; the display component is used to receive the plurality of groups of first outgoing light, and display the plurality of first images corresponding to the plurality of groups of first outgoing light.
  • the near-eye display device includes a plurality of waveguide lenses 103 and a plurality of grating components 104; the plurality of optical waveguide lenses 103 includes a first optical waveguide lens 103-1 and a second optical waveguide lens 103-2;
  • the grating component 104 includes a first grating component 104-1 and a second grating component 104-2, wherein the first grating component 104-1 includes a first coupling-in grating and a first coupling-out grating, and the second grating component 104-2 includes The second coupling-in grating and the second coupling-out grating.
  • the second optical waveguide lens 103-2 is superimposed on the first optical waveguide lens 103-1, and a gap is left between the first optical waveguide lens 103-1 and the second optical waveguide lens 103-2;
  • the coupling grating is disposed on the upper surface of the first end of the first optical waveguide lens 102-1, the first coupling grating is disposed on the upper surface of the second end of the first optical waveguide lens 103-1, and the first coupling
  • the structures of the entrance grating and the first coupling-out grating are mirror-symmetrical; the second coupling-in grating is disposed on the upper surface of the first end of the second optical waveguide lens 103-2, and the second coupling-out grating is disposed on the first end of the second optical waveguide lens 103-2.
  • the structure of the second coupling-in grating and the first coupling-out grating are mirror-symmetrical; the first coupling-out grating and the second coupling-out grating are arranged in a misaligned manner, so that The first out-coupling grating and the second out-coupling grating have the same diffraction order of the outgoing light rays to form a first image corresponding to the same observation point, so that the brightness difference between the second images composed of multiple first images is small , So that the brightness of the second image is uniform.
  • Fig. 5 is a flowchart of an image display method according to an embodiment of the present disclosure. As shown in Fig. 5, the method includes:
  • step 501 the first field angle FOV corresponding to each of the multiple optical waveguide lenses of the near-eye display device is determined.
  • the grating parameters of the grating component on the optical waveguide lens are determined according to the first FOV, and the grating component includes an in-coupling grating and an out-coupling grating.
  • the grating component is arranged on the optical waveguide lens.
  • step 503 the grating component of the optical waveguide lens is set according to the grating parameter.
  • step 504 in response to displaying the image source, the incident light corresponding to the image source is diffracted through the multiple optical waveguide lenses of the near-eye display device and the grating component on each optical waveguide lens to obtain multiple first
  • the field angle of the image source is the second FOV
  • the second FOV of the near-eye display device is composed of the first FOVs of the plurality of optical waveguide lenses.
  • step 505 the multiple first images are spliced to obtain a second image corresponding to the image source.
  • the determining the grating parameter of the grating component on the optical waveguide lens according to the first FOV includes:
  • the grating parameters of the grating assembly are determined.
  • the determination of the grating parameters of the grating component according to the incident angle range of the incident light and the spectral range of the incident light includes:
  • the incident angle range of the incident light determine the minimum incident angle and the maximum incident angle of the incident light; and, according to the spectral range of the incident light, determine the minimum wavelength and the maximum wavelength of the incident light;
  • the implementation is as follows: determine the minimum angle of incidence and the maximum angle of incidence of the incident light according to the range of the incident angle of the incident light; and determine the minimum wavelength of the incident light according to the spectral range of the incident light And the maximum wavelength;
  • the incident light corresponding to the image source is diffracted through multiple optical waveguide lenses of the near-eye display device and a grating component on each optical waveguide lens to obtain multiple first images ,include:
  • each light guide lens of the near-eye display device determine the incident angle range of the incident light corresponding to the coupled grating of the grating component on the light guide lens;
  • the first incident light is diffracted by the coupling grating of the optical waveguide lens to obtain the second incident light;
  • the first image is generated based on the first emitted light.
  • the stitching the multiple first images to obtain the second image corresponding to the image source includes:
  • the multiple first images of the same observation point are spliced to obtain the second image.
  • the process of stitching multiple first images of the same observation point to obtain the second image is: determining multiple target images corresponding to the same observation point from the multiple first images; The multiple target images of the same observation point are spliced to obtain the second image.
  • the method further includes:
  • the relative position of the coupling grating in each optical waveguide lens is used to set a plurality of gratings according to the relative position.
  • the position of the coupling-out grating on the optical waveguide lens is used to set a plurality of gratings according to the relative position.
  • the method further includes:
  • the energy efficiency of the emitted light of each level determine the diffraction efficiency of the coupling-out grating when the difference in energy efficiency between the emitted light of each level is less than the preset threshold;
  • the grating parameters of the coupling-out grating are determined.
  • the process of determining the grating parameters of the out-coupling grating according to the diffraction efficiency of the out-coupling grating is:
  • the diffraction efficiency function determining the diffraction efficiency of the coupling-out grating when the difference in energy efficiency between each level of emitted light is less than the preset threshold
  • the grating parameters of the coupling-out grating are adjusted.
  • the grating component is a photopolymer material.
  • the incident light corresponding to the image source is diffracted through multiple optical waveguide lenses of the near-eye display device and a grating component on each optical waveguide lens to obtain multiple first images ,include:
  • the second FOV of the near-eye display device is determined by the second FOV of the multiple optical waveguide lenses.
  • a FOV composition for each optical waveguide lens, the grating parameter of the grating component of the optical waveguide lens is determined according to the first FOV; when the image source is displayed, the incident light corresponding to the image source is diffracted according to the grating parameter, Obtain multiple first images, the field of view of the image source is the second FOV; stitch the multiple first images to obtain the second image corresponding to the image source, and optimize the grating parameters to make the multiple first FOVs There is no overlap between them, which ensures that the second image has no ghosting, improves the uniformity of the second image, and expands the eye movement range of the near-eye display device.
  • the first FOV of each optical waveguide lens constituting the near-eye display device is determined, so as to determine the grating parameter of the grating component of the optical waveguide lens according to the first FOV of each optical waveguide lens
  • the near-eye display device is composed of multiple optical waveguide lenses, so that the second FOV of the near-eye display device is composed of the first FOV of multiple optical waveguide lenses; when the image source is displayed, the incident corresponding to the image source is based on the grating parameters The light is diffracted to obtain multiple first images.
  • the second FOV of the near-eye display device is composed of the first FOVs of multiple optical waveguide lenses, there is no overlap between the multiple first FOVs, which ensures that there is no second image. ghosting improves the uniformity of the second image and expands the eye movement range of the near-eye display device.
  • Fig. 6 is a flowchart of an image display method according to an embodiment of the present disclosure. As shown in Fig. 6, the method includes:
  • the near-eye display device determines the first field angle FOV corresponding to each of the multiple optical waveguide lenses of the near-eye display device.
  • the near-eye display device includes a plurality of optical waveguide lenses, and in the embodiment of the present disclosure, the number of the optical waveguide lenses is not specifically limited.
  • the number of optical waveguide lenses in the near-eye display device is 2, 3, 4, and so on.
  • the first FOV Field of view, field of view
  • the second FOV refers to the angular range of the image that the user can observe through the near-eye display device.
  • the second FOV is set as required, and in the embodiment of the present disclosure, the size of the second FOV is not specifically limited.
  • the second FOV is -25° to 25° or -10° to 20°, and so on.
  • the first FOV is determined according to the number of optical waveguide lenses and the size of the second FOV. For example, in response to the number of optical waveguide lenses being two, the size of the second FOV is -25° to 25°.
  • the first FOV of each optical waveguide lens is -25° to 0° and 0° to 25°, or -25° to 5° and 5° to 25°, etc.
  • the division manner of the second FOV is not specifically limited.
  • the first FOV is determined according to a preset division mode, or the first FOV is the first FOV input by the user.
  • the method for determining the first FOV is not specifically limited.
  • the near-eye display device determines the incident angle range of the incident light of the optical waveguide lens according to the first FOV.
  • the near-eye display device determines the incident angle of the light that can propagate in the optical waveguide lens according to the first FOV of each optical waveguide lens.
  • the incident angle range is the angle range corresponding to the first FOV. For example, in response to the first FOV being [- ⁇ 1b ,- ⁇ 1a ], the incident angle range is [- ⁇ 1b ,- ⁇ 1a ].
  • the near-eye display device determines the grating parameters of the grating component of the optical waveguide lens according to the incident angle range of the incident light and the spectral range of the incident light.
  • the grating component is used to be arranged on the optical waveguide lens.
  • the near-eye display device determines the spectral range of the incident light and the incident angle range of the incident light, and determines the grating parameters of the grating component corresponding to the optical waveguide lens when the spectral range and the incident angle range satisfy the Bragg condition.
  • the near-eye display device determines the grating parameters of the grating component of the optical waveguide lens through the following steps (1)-(5), including:
  • the near-eye display device determines the minimum incident angle and the maximum incident angle of the incident light according to the incident angle range of the incident light.
  • the near-eye display device respectively determines the maximum incident angle and the minimum incident angle allowed to pass through the coupling-in grating and the coupling-out grating.
  • the near-eye display device determines the minimum wavelength and maximum wavelength of the incident light according to the spectral range of the incident light.
  • the near-eye display device determines the maximum wavelength and minimum wavelength of the incident light allowed to pass through the coupling-in grating and the coupling-out grating, respectively.
  • the near-eye display device determines the grating parameters of the grating component of the optical waveguide lens when the minimum incident angle and the minimum wavelength, and the maximum incident angle and the maximum wavelength satisfy the Bragg condition.
  • the grating parameters include the inclination angle of the grating and the grating period.
  • the near-eye display device respectively determines the correspondence between the minimum incident angle and the minimum wavelength when the Bragg condition is satisfied, and the correspondence between the maximum incident angle and the maximum wavelength. According to the correspondence, it is determined that the correspondence is satisfied.
  • the near-eye display device uses the minimum incident angle and the minimum wavelength, as well as the maximum incident angle and the maximum wavelength as variables of the Bragg condition function, respectively, to determine the grating parameters of the grating component of the optical waveguide lens.
  • This process is achieved through the following steps (3-1)-(3-3), including:
  • the near-eye display device determines the first Bragg condition function with the minimum incident angle and the minimum wavelength as parameters and the grating parameter as a variable.
  • the near-eye display device determines the first Bragg condition function with the minimum incident angle and the minimum wavelength as parameters and the grating parameter as a variable.
  • the first Bragg condition function is the Bragg diffraction relationship between the minimum incident angle and the minimum wavelength.
  • the near-eye display device takes the minimum incident angle and the minimum wavelength into the Bragg diffraction formula with unknown parameters to obtain The first Prague condition function.
  • the grating parameters include the inclination angle of the grating and the grating period.
  • the near-eye display device determines the second Bragg condition function with the maximum incident angle and the maximum wavelength as parameters and the grating parameter as a variable.
  • step (3-1) This step is similar to step (3-1) and will not be repeated here.
  • the near-eye display device determines the inclination angle of the grating and the size of the grating period when both the first Bragg condition function and the second Bragg condition function are established according to the Bragg condition.
  • the inclination angle and the grating period of the grating when the spectral range and the incident angle range are fixed are determined by the Bragg condition, and then the grating parameters of the grating component are obtained, which simplifies the process of determining the grating parameters of the grating component.
  • step 604 in response to displaying the image source, for each optical waveguide lens of the near-eye display device, the near-eye display device determines the incident angle range of the incident light corresponding to the coupled grating of the grating component on the optical waveguide lens.
  • the grating component includes a coupling-in grating and a coupling-out grating; in this step, when the near-eye display device displays the image source, the incident angle range of the incident light allowed by each optical waveguide lens in the near-eye display device is determined.
  • the angle ranges of the incident light corresponding to each optical waveguide lens are [ ⁇ 1 , ⁇ 2 ] and [ ⁇ 2 , ⁇ 3 ], and the angle in response to the incident light is ⁇ 4 , and ⁇ 1 ⁇ 4 ⁇ 2 , as shown in Fig.
  • the incident light passes through the coupling grating of the optical waveguide lens with the incident angle range [ ⁇ 1 , ⁇ 2 ]; the angle in response to the incident light is ⁇ 5 , and ⁇ 2 ⁇ 5 ⁇ 3 , the incident light passes through the coupling grating of the optical waveguide lens with the incident angle range of [ ⁇ 2 , ⁇ 3 ].
  • step 605 for the first incident light within the range of the incident angle, the near-eye display device diffracts the first incident light through the coupling grating of the optical waveguide lens to obtain the second incident light.
  • the incident light corresponding to the image source For the incident light corresponding to the image source, the incident light first passes through the coupling grating corresponding to the upper optical waveguide lens, and the grating parameters of the coupling grating determine the angle range of the incident light that can be diffracted by the coupling grating.
  • the incident light not within the angle range directly enters the coupling grating of the next layer of optical waveguide lens through the coupling grating, and then is determined by the grating parameters of the coupling grating of the next layer of optical waveguide lens to pass through the coupling grating.
  • the incident light of the image source the incident light whose incident angle is within the incident angle range corresponding to the coupling grating of the optical waveguide lens is taken as the first incident light, and the first incident light can pass through the optical waveguide lens.
  • the coupled-in grating is diffracted to obtain the diffracted second incident light.
  • step 606 the near-eye display device transmits the second incident light through the optical waveguide lens until the second incident light is diffracted by the out-coupling grating of the optical waveguide lens to obtain the first outgoing light.
  • the second incident light is totally reflected in the optical waveguide lens, is transmitted from the in-coupling grating of the optical waveguide lens to the out-coupling grating of the optical waveguide lens, and is then diffracted through the out-coupling grating. , Exit from the coupling-out grating to obtain the first outgoing light.
  • the coupling-out grating The exit angle range of is mirror-symmetrical with the incident angle range of the coupled grating. For example, if the incident angle range of the coupled-in grating is [ ⁇ 1a , ⁇ 1b ], then the exit angle of the outgoing light corresponding to the coupled-out grating is [- ⁇ 1b ,- ⁇ 1a ].
  • the coupling-out gratings in the near-eye device are aligned, and outgoing light rays corresponding to the coupling-out gratings in different optical waveguide lenses may have different diffraction orders.
  • the coupling-out grating in the near-eye display device is arranged in a misaligned manner, so that the outgoing rays of the same number of diffractions correspond to the same observation point, thereby ensuring the distribution of the outgoing rays of the same observation point.
  • the same number of diffractions ensures that the energy of the light emitted from the same observation point is the same, the brightness of the light emitted from the same observation point is the same, the uniformity is ensured, and the eye movement range is expanded.
  • the near-eye display device determines the light emitted from the grating in each optical waveguide lens.
  • the near-eye display device determines the exit position of the exit light corresponding to each diffraction order in the exit light.
  • the near-eye display device determines the relative position of the coupling grating in each optical waveguide lens according to the position of the emitted light corresponding to each diffraction order.
  • the near-eye display device can also adjust the coupling out grating according to the relative position of the coupling out grating.
  • the process is: the near-eye display device adjusts the coupling-out grating in each optical waveguide lens according to the relative position of the out-coupling grating in each optical waveguide lens.
  • the near-eye display device adjusts the position of the out-coupling grating in the optical waveguide lens after determining the relative position of the out-coupling grating in each optical waveguide lens.
  • the near-eye display device can also adjust the position of the coupling out grating at other times. For example, the near-eye display device adjusts the position of the coupling-out grating only when the near-eye display device is used. Wherein, when the near-eye display device detects that the near-eye display device is worn, it determines that the near-eye display device is used; or, when the near-eye display device receives a power-on instruction, it determines that the near-eye display device is used.
  • the near-eye display device can also adjust the coupled-out grating when receiving a grating adjustment instruction.
  • the timing for adjusting the position of the coupling-out grating by the near-eye display device is not specifically limited.
  • the position of the coupling out grating on each light guide lens is determined, so as to prevent the outgoing light from overlapping, thereby preventing the first image from overlapping.
  • step 607 the near-eye display device generates the first image based on the first emitted light.
  • the near-eye display device composes the first image corresponding to each out-coupling grating according to the outgoing light corresponding to each out-coupling grating.
  • the near-eye display device also includes a display component. Accordingly, the near-eye display device diffracts incident light corresponding to the image source through a plurality of optical waveguide lenses of the near-eye display device and a grating component on each optical waveguide lens to obtain A plurality of groups of first outgoing rays; the plurality of groups of first outgoing rays are projected onto the display assembly to display a plurality of first images corresponding to the plurality of groups of first outgoing rays.
  • multiple groups of first outgoing light rays are obtained by multiple coupling out gratings on the near-eye display device, and a plurality of first images corresponding to the plurality of first outgoing rays are displayed through the first display component, so that The emitted light can be displayed on the same plane, which ensures that the brightness of the emitted light from the same observation point is the same, ensures uniformity, and at the same time, expands the eye movement range.
  • step 608 the near-eye display device stitches the multiple first images to obtain the second image corresponding to the image source.
  • the near-eye display device stitches the multiple first images according to the acquired multiple first images to obtain the second image corresponding to the image source.
  • This process is achieved through the following steps (A1)-(A2), including:
  • the near-eye display device determines multiple first images corresponding to the same observation point.
  • the near-eye display device determines multiple target images corresponding to the same observation point from the multiple first images.
  • the target image is the first image corresponding to the same observation point.
  • multiple observation points are set, and each observation point can observe the complete second image corresponding to the near-eye display device. It is composed of multiple target images corresponding to the observation point.
  • the first image can be observed from any observation point, and multiple images corresponding to the image source can be obtained.
  • the near-eye display device stitches the multiple first images of the same observation point to obtain the second image.
  • the near-eye display device stitches multiple target images at the same observation point to obtain the second image.
  • the near-eye display device can determine the position of each target image according to the angle range corresponding to the target image, and stitch the multiple first images according to the position of the first image to obtain the second image.
  • the energy efficiency of any order of diffraction is the product of the diffraction efficiency of the coupling-in grating of the order of diffraction and the diffraction efficiency of the coupling-out grating.
  • the coupling of the optical waveguide lens The energy efficiency of the first-order diffracted light out of the grating is ⁇ 1-1 , the energy efficiency of the second-order diffracted light is ⁇ 1-2 , and the energy efficiency of the third-order diffracted light is ⁇ 1-3 ,..., the Nth order
  • the energy efficiency of diffracted light is ⁇ 1-n .
  • the coupling grating of the optical waveguide lens is ⁇ 1-a and the diffraction efficiency of the coupling grating is ⁇ 1-b (all the above diffraction efficiencies and energy efficiencies are in the range of 0 to 1)
  • ⁇ 1-1 > ⁇ 1-2 > ⁇ 1-3 >...> ⁇ 1-n that is, the energy efficiency of the diffracted light coupled out of the grating attenuates as the number of diffractions increases.
  • ⁇ 1-1 is significantly greater than ⁇ 1-2 and ⁇ 1-2 is significantly greater than ⁇ 1-3 , the energy efficiency of diffracted light is greatly attenuated, making the optical waveguide lens The energy of high-order diffracted light in the outgoing light is weak.
  • the process of determining the diffraction efficiency of the coupled-out grating can be implemented through the following steps (B1)-(B2), including:
  • the near-eye display device determines the energy efficiency of the outgoing light from the grating in each optical waveguide lens.
  • the near-eye display device determines the diffraction efficiency of the coupling-out grating according to the energy efficiency of the coupling-out grating, so that the energy efficiency difference of the coupling-out light is within a preset threshold.
  • the near-eye display device determines a preset threshold value of the difference in energy efficiency between each level of emitted light, and determines the diffraction efficiency of the coupling out grating based on the preset threshold value. This process is achieved through the following steps (B2-1)-(B2-2), including:
  • the near-eye display device determines the preset threshold value of the energy efficiency difference between each level of emitted light.
  • the preset threshold can be set and changed as needed, and in the embodiments of the present disclosure, this is not specifically limited.
  • the near-eye display device determines that when the energy efficiency difference between the emitted light of each level is less than the preset threshold, the diffraction efficiency of the coupling-out grating is for any order of diffraction
  • the energy efficiency is the product of the diffraction efficiency of the coupling-in grating and the diffraction efficiency of the coupling-out grating of the order of diffraction.
  • the near-eye display device determines the diffraction efficiency of the coupling-out grating according to the energy efficiency of the coupling-out grating, so that the energy efficiency difference of the coupling-out light is within a preset threshold.
  • the preset threshold value is set as required, and in the embodiment of the present disclosure, the preset threshold value is not specifically limited.
  • the flow of light direction when the near-eye display device displays the image source is performed through the flow shown in FIG. 10, as shown in FIG. 10, taking the near-eye display device including two optical waveguide lenses as an example for description.
  • the image source is projected to the first light guide lens of the display module through the projection component.
  • the first coupling grating of the first light guide lens projects and diffracts the incident light.
  • the projected light passes through the second light guide lens, and the second light guide lens passes through the second light guide lens.
  • the coupled grating is diffracted, and then the two diffracted rays are respectively guided by the first optical waveguide lens and the second optical waveguide lens until they are diffracted and emitted by the first and second out-coupling gratings respectively, and then the second out-coupling
  • the light diffracted by the grating is projected by the second coupling-out grating, spliced with the exiting light of the first coupling-out grating, and enters the observation equipment.
  • the second FOV of the near-eye display device is determined by the second FOV of the multiple optical waveguide lenses.
  • a FOV composition for each optical waveguide lens, the grating parameter of the grating component of the optical waveguide lens is determined according to the first FOV; when the image source is displayed, the incident light corresponding to the image source is diffracted according to the grating parameter, Obtain multiple first images, the field of view of the image source is the second FOV; stitch the multiple first images to obtain the second image corresponding to the image source, and optimize the grating parameters to make the multiple first FOVs There is no overlap between them, which ensures that the second image has no ghosting, improves the uniformity of the second image, and expands the eye movement range of the near-eye display device.
  • the first FOV of each optical waveguide lens that composes the near-eye display device is determined, so that the first FOV of each optical waveguide lens is determined according to the first FOV of the optical waveguide lens.
  • the grating parameters of the grating component; the near-eye display device is composed of multiple optical waveguide lenses, so that the second FOV of the near-eye display device is composed of the first FOV of multiple optical waveguide lenses; when the image source is displayed, the grating parameters The incident light corresponding to the image source is diffracted to obtain multiple first images.
  • the second FOV of the near-eye display device is composed of the first FOVs of multiple optical waveguide lenses, there is no overlap between the multiple first FOVs.
  • the second image has no ghosting, the uniformity of the second image is improved, and the eye movement range of the near-eye display device is enlarged.
  • the embodiment of the present disclosure also discloses an image processing device.
  • the image processing device includes: an image source, a processor, a plurality of optical waveguide lenses, and a plurality of grating components.
  • the number of the optical waveguide lenses and the grating components are the same;
  • the image The source is connected to the processor;
  • the plurality of optical waveguide lenses are stacked, leaving a gap between every two optical waveguide lenses;
  • the coupling grating of the grating component is arranged in the The upper surface of the first end of the optical waveguide lens, the outgoing grating of the grating assembly is arranged on the upper surface of the second end of the optical waveguide lens, the structure of the in-coupling grating and the out-coupling grating are mirror symmetry;
  • the image source is arranged The outer sides of the plurality of optical waveguide lenses arranged in the stack are aligned with the positions of the plurality of coupling gratings;
  • the processor is used to determine the first field of view FOV corresponding to each optical waveguide lens in the multiple optical waveguide lenses of the near-eye display device; for each optical waveguide lens, determine the FOV on the optical waveguide lens according to the first FOV
  • the grating parameters of the grating component, the grating component includes a coupling-in grating and a coupling-out grating;
  • the multiple grating components are set according to the grating parameters, and the multiple grating components are used to, in response to displaying the image source, diffract incident light corresponding to the image source to obtain multiple first images, the image source
  • the angle of view is the second FOV
  • the second FOV of the near-eye display device is composed of the first FOV of the plurality of optical waveguide lenses
  • the plurality of optical waveguide lenses are used to transmit incident light diffracted by the plurality of grating components
  • the processor is also used for splicing the multiple first images to obtain a second image corresponding to the image source.
  • the processor is further configured to determine the incident angle range of the incident light of the optical waveguide lens according to the first FOV; according to the incident angle range of the incident light and the spectral range of the incident light , To determine the grating parameters of the grating component.
  • the processor is further configured to determine the minimum incident angle and the maximum incident angle of the incident light according to the incident angle range of the incident light; and, according to the spectral range of the incident light, determine The minimum wavelength and the maximum wavelength of the incident light; determine the grating parameters of the grating component when the minimum incident angle and the minimum wavelength, and the maximum incident angle and the maximum wavelength satisfy the Bragg condition.
  • the processor is further configured to determine the minimum and maximum incident angles of the incident light according to the range of the incident light; and, according to the spectral range of the incident light, determine the minimum and maximum wavelengths of the incident light.
  • Wavelength determine the first Bragg condition function with the minimum incident angle and the minimum wavelength as parameters and grating parameters as variables; and, determine the second Bragg condition function with the maximum incident angle and the maximum wavelength as parameters and grating parameters as variables Condition function; determining the grating parameters of the grating component when both the first Bragg condition function and the second Bragg condition function satisfy the Bragg condition.
  • the processor is further configured to send a projection instruction to the image source in response to displaying the image, and the projection instruction is used to instruct the image source to project the first incident image according to the image to be displayed.
  • the image source is used to receive the projection instruction, generate the first incident light according to the image to be displayed, and project the first incident light to the coupling grating of the grating assembly provided on the plurality of optical waveguide lenses, and the image source
  • the angle of view is the second FOV
  • the coupling grating is used to determine the incident angle range of the incident light corresponding to the coupling grating of the grating component on the optical waveguide lens. According to the incident angle range, the first incident light within the incident angle range passes through the optical waveguide The coupling grating of the lens diffracts the first incident light to obtain the second incident light;
  • the optical waveguide lens is used to transmit the second incident light until the second incident light is diffracted by the out-coupling grating of the optical waveguide lens;
  • the coupling out grating is used to diffract the second incident light to obtain the first outgoing light
  • the processor is further configured to generate the first image based on the first emitted light.
  • the processor is also used to determine the output light from the grating in each optical waveguide lens; determine the output position of the output light corresponding to each diffraction order in the output light, according to The position of the emitted light corresponding to each diffraction order is determined, and the relative position of the coupling grating in each optical waveguide lens is determined;
  • the positions of the multiple out-coupling gratings are set according to the relative positions of the out-coupling gratings in each optical waveguide lens, and the out-coupling gratings are also used to project the first outgoing light rays according to the relative positions of the out-coupling gratings to obtain First image
  • the processor is further configured to splice the first image according to the relative position of the coupling-out grating to obtain the second image.
  • the processor is also used to determine the energy efficiency of the emitted light corresponding to each order of diffraction of the grating in the grating assembly on each optical waveguide lens; and, determine the output of each order A preset threshold for the difference in energy efficiency between light rays; according to the energy efficiency of each level of emitted light, it is determined that when the energy efficiency difference between each level of emitted light is less than the preset threshold, the diffraction efficiency of the coupling-out grating; according to The diffraction efficiency of the coupling-out grating determines the grating parameters of the coupling-out grating;
  • the grating component is also used to diffract the incident light according to the diffraction efficiency to obtain the first image.
  • the processor is also used to determine the energy efficiency of the emitted light corresponding to each order of diffraction of the coupling grating in the grating assembly on each optical waveguide lens; and, determine the energy efficiency difference between each level of emitted light Preset threshold; determine that the energy efficiency of the emitted light of each level is a variable, and the preset threshold is the diffraction efficiency function of the parameter; according to the diffraction efficiency function, determine that the difference in energy efficiency between the emitted light of each level is less than At the preset threshold, the diffraction efficiency of the coupling-out grating; adjusting the grating parameters of the coupling-out grating according to the diffraction efficiency of the coupling-out grating;
  • the grating component is also used to diffract the incident light according to the diffraction efficiency to obtain the first image.
  • the grating component is a photopolymer material.
  • the second FOV of the near-eye display device is determined by the second FOV of the multiple optical waveguide lenses.
  • a FOV composition for each optical waveguide lens, the grating parameter of the grating component of the optical waveguide lens is determined according to the first FOV; when the image source is displayed, the incident light corresponding to the image source is diffracted according to the grating parameter, Obtain multiple first images, the field of view of the image source is the second FOV; stitch the multiple first images to obtain the second image corresponding to the image source, and optimize the grating parameters to make the multiple first FOVs There is no overlap between them, which ensures that the second image has no ghosting, improves the uniformity of the second image, and expands the eye movement range of the near-eye display device.
  • the device further includes a display component
  • the display assembly is arranged on the outer side of the plurality of optical waveguide lenses arranged in a stack, and is aligned with the positions of the plurality of out-coupling gratings;
  • the plurality of optical waveguide lenses and the grating component on each optical waveguide lens are also used to diffract the incident light corresponding to the image source to obtain multiple groups of first emergent rays, and project the multiple groups of first emergent rays to the display Component
  • the display component is used for receiving the plurality of groups of first outgoing light, and displaying the plurality of first images corresponding to the plurality of groups of first outgoing light.
  • the second FOV of the near-eye display device is determined by the second FOV of the multiple optical waveguide lenses.
  • a FOV composition for each optical waveguide lens, the grating parameter of the grating component of the optical waveguide lens is determined according to the first FOV; when the image source is displayed, the incident light corresponding to the image source is diffracted according to the grating parameter, Obtain multiple first images, the field of view of the image source is the second FOV; stitch the multiple first images to obtain the second image corresponding to the image source, and optimize the grating parameters to make the multiple first FOVs There is no overlap between them, which ensures that the second image has no ghosting, improves the uniformity of the second image, and expands the eye movement range of the near-eye display device.
  • the first FOV of each optical waveguide lens that composes the near-eye display device is determined, so that the first FOV of each optical waveguide lens is determined according to the first FOV of the optical waveguide lens.
  • the grating parameters of the grating component; the near-eye display device is composed of multiple optical waveguide lenses, so that the second FOV of the near-eye display device is composed of the first FOV of multiple optical waveguide lenses; when the image source is displayed, the grating parameters The incident light corresponding to the image source is diffracted to obtain multiple first images.
  • the second FOV of the near-eye display device is composed of the first FOVs of multiple optical waveguide lenses, there is no overlap between the multiple first FOVs.
  • the second image has no ghosting, the uniformity of the second image is improved, and the eye movement range of the near-eye display device is enlarged.
  • the image display device provided in the above embodiment displays images
  • only the division of the above-mentioned functional modules is used as an example.
  • the above-mentioned function allocation is completed by different functional modules as required, that is, the device The internal structure is divided into different functional modules to complete all or part of the functions described above.
  • the image display device provided in the foregoing embodiment and the image display method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • FIG. 11 shows a structural block diagram of a near-eye display device 1100 provided by an exemplary embodiment of the present invention.
  • the near-eye display device 1100 is: smart glasses, a smart projector, a VR (virtual reality, virtual reality) device, or an AR (Augmented Reality, augmented reality) device, etc.
  • the near-eye display device 1100 may also be called user equipment, portable terminal, and other names.
  • the near-eye display device 1100 includes a processor 1101 and a memory 1102.
  • the processor 1101 includes one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 1101 adopts at least one of DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array, Programmable Logic Array) Realize in the form of hardware.
  • the processor 1101 can also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor used to process data in the standby state.
  • the processor 1101 is integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing content that needs to be displayed on the display screen.
  • the processor 1101 further includes an AI (Artificial Intelligence) processor, and the AI processor is used to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • the memory 1102 includes one or more computer-readable storage media, which are non-transitory.
  • the memory 1102 also includes high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 1102 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 1101 to realize the image display provided by the method embodiment of the present application. method.
  • the near-eye display device 1100 may optionally further include: a peripheral device interface 1103 and at least one peripheral device.
  • the processor 1101, the memory 1102, and the peripheral device interface 1103 can be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 1103 through a bus, a signal line, or a circuit board.
  • the peripheral device includes: at least one of a radio frequency circuit 1104, a display screen 1105, a camera component 1106, an audio circuit 1107, a positioning component 1108, and a power supply 1109.
  • the peripheral device interface 1103 can be used to connect at least one peripheral device related to I/O (Input/Output) to the processor 1101 and the memory 1102.
  • the processor 1101, the memory 1102, and the peripheral device interface 1103 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 1101, the memory 1102, and the peripheral device interface 1103 or The two are implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the radio frequency circuit 1104 is used to receive and transmit RF (Radio Frequency, radio frequency) signals, also called electromagnetic signals.
  • the radio frequency circuit 1104 communicates with a communication network and other communication devices through electromagnetic signals.
  • the radio frequency circuit 1104 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the radio frequency circuit 1104 includes: an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a user identity module card, and so on.
  • the radio frequency circuit 1104 communicates with other terminals through at least one wireless communication protocol.
  • the wireless communication protocol includes, but is not limited to: metropolitan area networks, various generations of mobile communication networks (2G, 3G, 4G, and 5G), wireless local area networks, and/or WiFi (Wireless Fidelity, wireless fidelity) networks.
  • the radio frequency circuit 1104 further includes a circuit related to NFC (Near Field Communication), which is not limited in this application.
  • the display screen 1105 is used to display UI (User Interface, user interface).
  • the UI includes graphics, text, icons, videos, and any combination thereof.
  • the display screen 1105 also has the ability to collect touch signals on or above the surface of the display screen 1105.
  • the touch signal is input to the processor 1101 as a control signal for processing.
  • the display screen 1105 is also used to provide virtual buttons and/or virtual keyboards, also called soft buttons and/or soft keyboards.
  • the display screen 1105 there is one display screen 1105, and the front panel of the near-eye display device 1100 is provided; in other embodiments, there are at least two display screens 1105, which are respectively arranged on different surfaces of the near-eye display device 1100 or have a folding design.
  • the display screen 1105 is a flexible display screen, which is arranged on a curved surface or a folding surface of the near-eye display device 1100.
  • the display screen 1105 is also set as a non-rectangular irregular pattern, that is, a special-shaped screen.
  • the display screen 1105 is made of materials such as LCD (Liquid Crystal Display) and OLED (Organic Light-Emitting Diode).
  • the camera assembly 1106 is used to capture images or videos.
  • the camera assembly 1106 includes a front camera and a rear camera.
  • the front camera is set on the front panel of the terminal, and the rear camera is set on the back of the terminal.
  • the camera assembly 1106 also includes a flash.
  • the flash is a single-color temperature flash, or a dual-color temperature flash. Dual color temperature flash refers to a combination of warm light flash and cold light flash used for light compensation under different color temperatures.
  • the audio circuit 1107 includes a microphone and a speaker.
  • the microphone is used to collect sound waves of the user and the environment, and convert the sound waves into electrical signals and input them to the processor 1101 for processing, or input to the radio frequency circuit 1104 to implement voice communication.
  • the microphone is also an array microphone or an omnidirectional collection microphone.
  • the speaker is used to convert the electrical signal from the processor 1101 or the radio frequency circuit 1104 into sound waves.
  • the speaker is a traditional thin-film speaker or a piezoelectric ceramic speaker.
  • the audio circuit 1107 further includes a headphone jack.
  • the positioning component 1108 is used to locate the current geographic location of the near-eye display device 1100 to implement navigation or LBS (Location Based Service, location-based service).
  • LBS Location Based Service, location-based service
  • the positioning component 1108 is a positioning component based on the GPS (Global Positioning System, Global Positioning System) of the United States, the Beidou system of China, the Granus system of Russia, or the Galileo system of the European Union.
  • the power supply 1109 is used to supply power to various components in the near-eye display device 1100.
  • the power source 1109 is alternating current, direct current, disposable batteries, or rechargeable batteries.
  • the rechargeable battery supports wired charging or wireless charging.
  • the rechargeable battery can also be used to support fast charging technology.
  • the near-eye display device 1100 further includes one or more sensors 1110.
  • the one or more sensors 1110 include, but are not limited to: an acceleration sensor 1111, a gyroscope sensor 1112, a pressure sensor 1113, a fingerprint sensor 1114, an optical sensor 1115, and a proximity sensor 1116.
  • the acceleration sensor 1111 can detect the magnitude of acceleration on the three coordinate axes of the coordinate system established by the near-eye display device 1100. For example, the acceleration sensor 1111 is used to detect the components of gravitational acceleration on three coordinate axes.
  • the processor 1101 controls the display screen 1105 to display the user interface in a horizontal view or a vertical view according to the gravity acceleration signal collected by the acceleration sensor 1111.
  • the acceleration sensor 1111 is also used for the collection of game or user motion data.
  • the gyroscope sensor 1112 can detect the body direction and the rotation angle of the near-eye display device 1100, and the gyroscope sensor 1112 and the acceleration sensor 1111 cooperate to collect the user's 3D actions on the near-eye display device 1100.
  • the processor 1101 can implement the following functions based on the data collected by the gyroscope sensor 1112: motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
  • the pressure sensor 1113 is arranged on the side frame of the near-eye display device 1100 and/or the lower layer of the display screen 1105.
  • the processor 1101 performs left and right hand recognition or quick operation according to the holding signal collected by the pressure sensor 1113.
  • the processor 1101 controls the operability controls on the UI interface according to the user's pressure operation on the display screen 1105.
  • the operability control includes at least one of a button control, a scroll bar control, an icon control, and a menu control.
  • the fingerprint sensor 1114 is used to collect the user's fingerprint.
  • the processor 1101 can identify the user's identity based on the fingerprint collected by the fingerprint sensor 1114, or the fingerprint sensor 1114 can identify the user's identity based on the collected fingerprints. When it is recognized that the user's identity is a trusted identity, the processor 1101 authorizes the user to perform related sensitive operations, including unlocking the screen, viewing encrypted information, downloading software, paying, and changing settings.
  • the fingerprint sensor 1114 is arranged near the front, back or side of the eye display device 1100. In response to the physical buttons or the manufacturer logo provided on the near-eye display device 1100, the fingerprint sensor 1114 is integrated with the physical buttons or the manufacturer logo.
  • the optical sensor 1115 is used to collect the ambient light intensity.
  • the processor 1101 controls the display brightness of the display screen 1105 according to the ambient light intensity collected by the optical sensor 1115. Specifically, in response to the high ambient light intensity, the display brightness of the display screen 1105 is increased; in response to the low ambient light intensity, the display brightness of the display screen 1105 is decreased.
  • the processor 1101 also dynamically adjusts the shooting parameters of the camera assembly 1106 according to the ambient light intensity collected by the optical sensor 1115.
  • the proximity sensor 1116 also called a distance sensor, is usually arranged on the front panel of the near-eye display device 1100.
  • the proximity sensor 1116 is used to collect the distance between the user and the front of the near-eye display device 1100.
  • the processor 1101 controls the display screen 1105 to switch from the on-screen state to the off-screen state; in response to the sensor 1116 detects that the distance between the user and the front of the near-eye display device 1100 is gradually increasing, and the processor 1101 controls the display screen 1105 to switch from the rest screen state to the bright screen state.
  • FIG. 11 does not constitute a limitation on the near-eye display device 1100, and can include more or fewer components than shown, or combine certain components, or adopt different component arrangements. .
  • a computer-readable storage medium stores at least one instruction, and the at least one instruction is loaded and executed by the server to implement the image display method in the foregoing embodiment.
  • the computer-readable storage medium is a memory.
  • the computer-readable storage medium is ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the program skin is stored in a computer-readable storage medium, optionally ,
  • the storage medium mentioned above is read-only memory, magnetic disk or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供了图像显示方法、近眼显示设备和装置,涉及光学技术领域。包括:确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到图像源对应的第二图像,通过优化光栅参数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。

Description

图像显示方法、近眼显示设备和装置
本申请要求于2019年12月20日提交的、申请号为201911330772.0、发明名称为“图像显示方法、近眼显示设备和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光学技术领域,特别涉及一种图像显示方法、近眼显示设备和装置。
背景技术
随着光学技术的发展,投影显示技术也越来越成熟,促进了近眼显示设备的出现。近眼显示设备可以在用户的观测范围内呈现一个虚拟的图像。近眼显示设备主要包括图像源和显示模块,其中,图像源用于将图像源投影到显示模块上。显示模块用于将图像源投影的图像源对应的图像进行显示。
为了使用户可以观测到该图像源的较大范围,需要保证近眼显示设备的FOV(Field of view,视场角)足够大。为了满足近眼显示设备对FOV的需求,如果采用由两层光波导镜片叠加的方式组成的显示模块,通过光波导镜片上的光栅组件对入射光进行衍射,输出两个衍射后的FOV对应的图像,其中,每个光波导镜片对应一个FOV,将两个光波导镜片对应的两个FOV进行拼接,组成一个大的FOV,使得用户能够接收到的图像源的范围较大,那么,由于两层光波导镜片的对应的FOV角度完全不同,导致每个光波导镜片中光在衍射后的出射方向不同,且不同方向上的光的衍射次数不同,而衍射次数越多,光线的亮度越低,因此,在出瞳距离所在的平面上,输出的图像的亮度分布不均匀。
发明内容
本公开提供了一种图像显示方法、近眼显示设备和装置,能够扩大近眼显示设备的眼动范围。技术方案如下:
一方面,提供一种图像显示方法,所述方法包括:
确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角 FOV;
对于每个光波导镜片,根据所述第一FOV确定所述光波导镜片上的光栅组件的光栅参数,所述光栅组件包括耦入光栅和耦出光栅;
根据所述光栅参数,设置所述光波导镜片的光栅组件;
响应于对图像源进行显示,通过所述近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对所述图像源对应的入射光线进行衍射,得到多个第一图像,所述图像源的视场角为第二FOV,所述近眼显示设备的第二FOV由所述多个光波导镜片的第一FOV组成;
将所述多个第一图像进行拼接,得到所述图像源对应的第二图像。
另一方面,提供了一种近眼显示设备,所述近眼显示设备包括:图像源、处理器、多个光波导镜片和多个光栅组件,所述光波导镜片和所述光栅组件的数量相同;
所述图像源与所述处理器连接;
所述多个光波导镜片堆叠设置,每两个光波导镜片之间留有缝隙;
对于每个光栅组件和每个光波导镜片,所述光栅组件的耦入光栅设置于所述光波导镜片的第一端的上表面,所述光栅组件的耦出光栅设置于所述光波导镜片的第二端的上表面,所述耦入光栅和所述耦出光栅的结构呈镜像对称;
所述图像源设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦入光栅的位置对齐。
另一方面,提供了一种图像处理装置,所述图像处理装置包括:图像源、处理器、多个光波导镜片和多个光栅组件,所述光波导镜片和所述光栅组件的数量相同;所述图像源与所述处理器连接;所述多个光波导镜片堆叠设置,每两个光波导镜片之间留有缝隙;对于每个光栅组件和每个光波导镜片,所述光栅组件的耦入光栅设置于所述光波导镜片的第一端的上表面,所述光栅组件的耦出光栅设置于所述光波导镜片的第二端的上表面,所述耦入光栅和所述耦出光栅的结构呈镜像对称;所述图像源设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦入光栅的位置对齐;
所述处理器,用于确定近眼显示设备的多个光波导镜片中每个光波导镜片 对应的第一视场角FOV;对于每个光波导镜片,根据所述第一FOV确定所述光波导镜片上的光栅组件的光栅参数,所述光栅组件包括耦入光栅和耦出光栅;
所述多个光栅组件根据所述光栅参数进行设置,所述多个光栅组件用于,响应于对所述图像源进行显示,对所述图像源对应的入射光进行衍射,得到多个第一图像,所述图像源的视场角为第二FOV,所述近眼显示设备的第二FOV由所述多个光波导镜片的第一FOV组成;
所述多个光波导镜片,用于传导所述多个光栅组件衍射的入射光线;
所述处理器,还用于将所述多个第一图像进行拼接,得到所述图像源对应的第二图像。
另一方面,提供了一种电子设备,所述电子设备包括处理器和存储器,所述存储器中存储至少一条指令,所述至少一条指令由所述处理器加载并执行,以实现如本公开实施例中的方法实施例中所述图像显示方法。
另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储至少一条指令,所述至少一条指令由处理器加载并执行,以实现如本公开实施例中的方法实施例中所述图像显示方法。
另一方面,提供了一种计算机程序产品,当所述计算机程序产品中的程序代码由近眼显示设备的处理器执行时,以实现如本公开实施例所述的图像显示方法的指令。
本公开的实施例提供的技术方案包括以下有益效果:
在本公开实施例中,通过确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到该图像源对应的第二图像,通过优化光栅参数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了 第二图像的均匀度,扩大了近眼显示设备的眼动范围。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种近眼显示设备的结构意图;
图2是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图3是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图4是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图5是根据一示例性实施例示出的一种图像显示方法的流程图;
图6是根据一示例性实施例示出的一种图像显示方法的流程图;
图7是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图8是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图9是根据一示例性实施例示出的一种近眼显示设备的结构示意图;
图10是根据一示例性实施例示出的一种光的走向流程图;
图11是根据一示例性实施例示出的一种电子设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例执行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种近眼显示设备的结构示意图,如图1所示,近眼显示设备包括图像源101、处理器102、多个光波导镜片103和多个光栅组件104,该光波导镜片103和该光栅组件104的数量相同;该图像源101 与该处理器102连接;该多个光波导镜片103堆叠设置,每两个光波导镜片103之间留有缝隙;对于每个光栅组件104和每个光波导镜片103,该光栅组件104的耦入光栅设置于该光波导镜片103的第一端的上表面,该光栅组件104的耦出光栅设置于该光波导镜片103的第二端的上表面,该耦入光栅和该耦出光栅的结构呈镜像对称;该图像源101设置于该堆叠设置的该多个光波导镜片103的外侧,与该多个耦入光栅的位置对齐。
其中,图像源101用于生成入射光线,将该入射光线投射给该光栅组件104,可选地,该图像源101通过LCOS(Liquid Crystal on Silicon,液晶附硅)、LCD(Liquid Crystal Display,液晶显示器)、DLP(Digital Light Processing,数字光处理技术)和OLED(Organic Light-Emitting Diode,有机发光二极管)等技术将获取到的图像源投影到光栅组件104上。光栅组件104,用于接收该图像源101投射的入射光线,对该入射光线进行衍射,生成该图像源对应的第二图像;每个光波导镜片103上设有光栅组件104,能够将图像源101投射的光线衍射到观测点,以便接收组件对接收该图像源,可选地,该接收组件为人眼或探测器等,本公开实施例中,对该接收组件不作具体限定。
光波导镜片103和光栅组件104的数量相同,每个光栅组件104包括耦入光栅和耦出光栅;该多个光波导镜片103堆叠设置,每两个光波导镜片103之间留有缝隙;对于每个光栅组件104和每个光波导镜片103,该光栅组件104的耦入光栅设置于该光波导镜片103的第一端的上表面,该耦出光栅设置于该光波导镜片103的第二端的上表面,该耦入光栅和该耦出光栅的结构呈镜像对称;每个光波导镜片103上的耦出光栅与其他相邻光波导镜片103上的耦出光栅错位设置。参见图2,图2是根据示例性实施例示出的一种近眼显示设备,该近眼显示设备包括N个光波导镜片103和N个光栅组件104,继续参见图2,该N个光波导镜片103分别从下到上分别为第一光波导镜片、第二光波导镜片、……第N光波导镜片,该N个光波导镜片103中每个光波导镜片103上设置一个光栅组件104,每个光栅组件104包括耦入光栅和耦出光栅,则第一光波导镜片上设置第一光栅组件,第一光栅组件包括第一耦入光栅和第一耦出光栅,第二光波导镜片上设置第二光栅组件,第二光栅组件包括第二耦出光栅和第二耦入光栅,……,第N光波导镜片上设置第N光栅组件,第N耦入光栅和第N耦出光栅。其中,N个耦入光栅的位置相互对齐,N个耦出光栅之间,每两个相邻的 耦出光栅之间错位设置,继续参见图2,将该第一耦出光栅设置在第一光波导镜片的上表面的一端,将第二耦出光栅设置在第二光波导镜片的上表面的一端,其中,该第二光波导镜片与第一光波导镜片之间错位距离为ΔL,以此类推,将该第N-1耦出光栅设置在第N-1光波导镜片的上表面的一端,将第N耦出光栅设置在第N光波导镜片的上表面的一端,其中,该第N-1光波导镜片与第N光波导镜片之间错位距离为ΔL。
可选地,该第N耦出光栅在第N-1耦出光栅的内侧;或者,该第N耦出光栅在第N-1耦出光栅的外侧,在本公开实施例中,对此不作具体限定。例如,继续参见图2,如图2所示,该第N耦出光栅在第N-1耦出光栅的外侧。
在本公开实施例中,以该近眼显示设备中包括两个光波导镜片为例进行说明。如图3所示,图3是根据示例性实施例示出的一种近眼显示设备中的多个光波导镜片103和多个光栅组件104,该多个光波导镜片103包括第一光波导镜片103-1和第二光波导镜片103-2;该多个光栅组件104包括第一光栅组件104-1和第二光栅组件104-2,其中,第一光栅组件104-1包括第一耦入光栅和第一耦出光栅,第二光栅组件104-2包括第二耦入光栅和第二耦出光栅。该第二光波导镜片103-2叠加在该第一光波导镜片103-1上,该第一光波导镜片103-1和该第二光波导镜片103-2之间留有缝隙;该第一耦入光栅设置于该第一光波导镜片102-1的第一端的上表面,该第一耦出光栅设置于该第一光波导镜片103-1的第二端的上表面,该第一耦入光栅和该第一耦出光栅的结构呈镜像对称;该第二耦入光栅设置于该第二光波导镜片103-2的第一端的上表面,该第二耦出光栅设置于该第二光波导镜片103-2的第二端的上表面,该第二耦入光栅和该第一耦出光栅的结构呈镜像对称;该第一耦出光栅和该第二耦出光栅错位设置。
其中,该第二光波导镜片103-2叠加在该第一光波导镜片103-1上,该第一光波导镜片103-1和第二光波导镜片103-2之间通过玻璃、橡胶、塑料或粘贴胶等材料连接,其中,该粘贴胶为UV(Ultraviolet Rays,紫外线)光敏胶水或光学双面胶等具有粘性的材料。该第一光波导镜片103-1和第二光波导镜片103-2的连接位置根据需要进行设置,在本公开实施例中,对该连接位置不作具体限定。例如,该连接位置设置在第一耦入光栅、第一耦出光栅、第二耦入光栅和第二耦出光栅的外侧,避免了阻碍、吸收光波导中传播的光线。另外,该第一光波导镜片103-1和第二光波导镜片103-2之间的缝隙应稍大于该第一耦入光栅 和第一耦出光栅的厚度,相应的,该第一光波导镜片103-1和第二光波导镜片103-2之间的缝隙根据第一耦入光栅和第一耦出光栅的厚度确定,在本公开实施例中,对该第一光波导镜片103-1和第二光波导镜片103-2之间的缝隙的宽度不作具体限定。继续参见图3,该第一光波导镜片103-1和第二光波导镜片103-2之间的缝隙的宽度为d。另外,该第一光波导镜片103-1和第二光波导镜片103-2之间的缝隙的宽度由连接该第一光波导镜片103-1和第二光波导镜片103-2的连接物产生,相应的,响应于该第一光波导镜片103-1和第二光波导镜片103-2由粘贴胶连接,该粘贴胶的厚度与该缝隙的宽度相同。
该第一光波导镜片103-1和第二光波导镜片103-2的长度相同,并且,该第一光波导镜片103-1和第二光波导镜片103-2的长度根据需要进行设置,在本公开实施例中,对该第一光波导镜片103-1和第二光波导镜片103-2的长度不作具体限定。
在本公开实施例中,该第一耦出光栅和第二耦出光栅之间错位设置,使得该第一光波导镜片103-1和第二光波导镜片103-2中的光线经过第一耦出光栅和第二耦出光栅的衍射后的出射光线为相近的衍射级别的光线,如图4所示,该第一耦出光栅和第二耦出光栅之间错位设置相差为ΔL的位置差。可选地,该ΔL为通过将第二耦出光栅移动ΔL得到的位置差,或者,该ΔL为将第一耦出光栅移动ΔL得到的位置差。在本公开实施例中,对此不作具体限定。
在本实现方式中,通过将该第一耦出光栅和第二耦出光栅的位置进行错位设置,使得该第一耦出光栅和第二耦出光栅的出射光线的同一衍射级别出射光线来组成同一观测点对应的第一图像,使得多个第一图像组成的第二图像之间的亮度差较小,从而使第二图像的亮度均匀。
另外,在一种可能的实现方式中,该第一耦入光栅、第一耦出光栅、第二耦入光和第二耦出光栅的材料为液晶材料。在另一种可能的实现方式中,该第一耦入光栅、第一耦出光栅、第二耦入光栅和第二耦出光栅的材料为光致聚合物材料。
在本实现方式中,通过光致聚合物材料制作第一耦入光栅、第一耦出光栅、第二耦入光栅和第二耦出光栅,降低了衍射光栅的制作成本,并且,通过曝光工艺获取该衍射光栅,简化了衍射光栅的流程,提高了生产效率。
并且,由于该第一耦入光栅、第一耦出光栅、第二耦入光栅和第二耦出光 栅的材料为光致聚合物材料,因此,该第一耦入光栅、第一耦出光栅、第二耦入光栅和第二耦出光栅能够通过曝光工艺得到。并且,能够通过该曝光工艺调控该第一耦出光栅和第二耦出光栅的衍射效率,从而提高该近眼显示设备的视场亮度均匀性,增大眼动范围(Eyebox)。
在另一种可能的实现方式中,该近眼显示设备还包括:显示组件;该显示组件设置于该堆叠设置的该多个光波导镜片的外侧,与该多个耦出光栅的位置对齐。相应的,该多个光波导镜片和每个光波导镜片上的光栅组件,还用于对该图像源对应的入射光线进行衍射,得到多组第一出射光线,将该多组第一出射光线投影到显示组件上;该显示组件,用于接收该多组第一出射光线,显示该多组第一出射光线对应的多个第一图像。
在本实现方式中,该近眼显示设备包括多个波导镜片103和多个光栅组件104;多个光波导镜片103包括第一光波导镜片103-1和第二光波导镜片103-2;多个光栅组件104包括第一光栅组件104-1和第二光栅组件104-2,其中,第一光栅组件104-1包括第一耦入光栅和第一耦出光栅,第二光栅组件104-2包括第二耦入光栅和第二耦出光栅。该第二光波导镜片103-2叠加在该第一光波导镜片103-1上,该第一光波导镜片103-1和该第二光波导镜片103-2之间留有缝隙;该第一耦入光栅设置于该第一光波导镜片102-1的第一端的上表面,该第一耦出光栅设置于该第一光波导镜片103-1的第二端的上表面,该第一耦入光栅和该第一耦出光栅的结构呈镜像对称;该第二耦入光栅设置于该第二光波导镜片103-2的第一端的上表面,该第二耦出光栅设置于该第二光波导镜片103-2的第二端的上表面,该第二耦入光栅和该第一耦出光栅的结构呈镜像对称;该第一耦出光栅和该第二耦出光栅错位设置,使得该第一耦出光栅和第二耦出光栅的出射光线的同一衍射级别出射光线来组成同一观测点对应的第一图像,使得多个第一图像组成的第二图像之间的亮度差较小,从而使第二图像的亮度均匀。
图5是根据本公开实施例示出的一种图像显示方法的流程图,如图5所示,该方法包括:
在步骤501中,确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV。
在步骤502中,对于每个光波导镜片,根据该第一FOV确定该光波导镜片 上的光栅组件的光栅参数,该光栅组件包括耦入光栅和耦出光栅。
其中,该光栅组件设置于该光波导镜片上。
在步骤503中,根据该光栅参数,设置该光波导镜片的光栅组件。
在步骤504中,响应于对图像源进行显示,通过该近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成。
在步骤505中,将该多个第一图像进行拼接,得到该图像源对应的第二图像。
在一种可能的实现方式中,该根据该第一FOV确定该光波导镜片上的光栅组件的光栅参数,包括:
根据该第一FOV,确定该光波导镜片的入射光线的入射角范围;
根据该入射光线的入射角范围和该入射光线的光谱范围,确定该光栅组件的光栅参数。
在另一种可能的实现方式中,该根据该入射光线的入射角范围和该入射光线的光谱范围,确定该光栅组件的光栅参数,包括:
根据该入射光线的入射角范围,确定该入射光线的最小入射角和最大入射角;以及,根据该入射光线的光谱范围,确定该入射光线的最小波长和最大波长;
确定该最小入射角和该最小波长以及最大入射角和该最大波长满足布拉格条件时,该光栅组件的光栅参数。
在一些实施例中,本实现方式为:根据该入射光线的入射角范围,确定该入射光线的最小入射角和最大入射角;以及,根据该入射光线的光谱范围,确定该入射光线的最小波长和最大波长;
确定以该最小入射角和该最小波长为参数,以光栅参数为变量的第一布拉格条件函数;以及,确定以最大入射角和该最大波长为参数,以光栅参数为变量的第二布拉格条件函数;
确定该第一布拉格条件函数和第二布拉格条件函数均满足该布拉格条件时,该光栅组件的光栅参数。
在另一种可能的实现方式中,该通过该近眼显示设备的多个光波导镜片和 每个光波导镜片上的光栅组件,对该图像源对应的入射光线进行衍射,得到多个第一图像,包括:
对于该近眼显示设备的每个光波导镜片,确定该光波导镜片上光栅组件的耦入光栅对应的入射光线的入射角度范围;
对于该入射角度范围内的第一入射光线,通过该光波导镜片的耦入光栅对该第一入射光线进行衍射,得到第二入射光线;
通过该光波导镜片传导该第二入射光线,直到该第二入射光线被该光波导镜片的耦出光栅衍射,得到第一出射光线;
基于该第一出射光线生成该第一图像。
在另一种可能的实现方式中,该将该多个第一图像进行拼接,得到该图像源对应的第二图像,包括:
确定同一观测点对应的多个第一图像;
将该同一观测点的多个第一图像进行拼接,得到该第二图像。
在一些实现方式中,该将该同一观测点的多个第一图像进行拼接,得到该第二图像的过程为:从该多个第一图像中,确定同一观测点对应的多个目标图像;将该同一观测点的多个目标图像进行拼接,得到该第二图像。
在另一种可能的实现方式中,该方法还包括:
确定该每个光波导镜片中耦出光栅的出射光线;
确定该出射光线中每个衍射次数对应的出射光线的出射位置;
根据该每个衍射次数对应的出射光线的位置,确定该每个光波导镜片中耦出光栅的相对位置,该每个光波导镜片中耦出光栅的相对位置用于根据该相对位置设置多个耦出光栅在该光波导镜片上的位置。
在另一种可能的实现方式中,该方法还包括:
确定该每个光波导镜片上光栅组件中耦出光栅的每级衍射对应的出射光线的能量效率;以及,确定该每级出射光线之间能量效率之差的预设阈值;
根据该每级出射光线的能量效率,确定该每级出射光线之间能量效率之差小于该预设阈值时,该耦出光栅的衍射效率;
根据该耦出光栅的衍射效率,确定该耦出光栅的光栅参数。
在一些实现方式中,该根据该耦出光栅的衍射效率,确定该耦出光栅的光栅参数的过程为:
确定以该每级出射光线的能量效率为变量,以该预设阈值为参数的衍射效率函数;
根据该衍射效率函数,确定该每级出射光线之间能量效率之差小于该预设阈值时,该耦出光栅的衍射效率;
根据该耦出光栅的衍射效率,调整该耦出光栅的光栅参数。
在另一种可能的实现方式中,该光栅组件为光致聚合物材料。
在另一种可能的实现方式中,该通过该近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对该图像源对应的入射光线进行衍射,得到多个第一图像,包括:
通过该近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对该图像源对应的入射光线进行衍射,得到多组第一出射光线;
将该多组第一出射光线投影到该近眼显示设备的显示组件上,显示该多组第一出射光线对应的多个第一图像。
在本公开实施例中,通过确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到该图像源对应的第二图像,通过优化光栅参数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
其中,基于近眼显示设备的第二FOV,确定组成该近眼显示设备的每个光波导镜片的第一FOV,从而根据每个光波导镜片的第一FOV确定该光波导镜片的光栅组件的光栅参数;通过多个光波导镜片组成近眼显示设备,使得近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,由于近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成的,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
图6是根据本公开实施例示出的一种图像显示方法的流程图,如图6所示,该方法包括:
在步骤601中,近眼显示设备确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV。
该近眼显示设备中包括多个光波导镜片,在本公开实施例中,对该光波导镜片的数量也不作具体限定。例如,该近眼显示设备中的光波导镜片的数量为2、3、4等。
第一FOV(Field of view,视场角)指用户能够通过每个光波导镜片观测到的图像的角度范围。该第二FOV指用户能够通过该近眼显示设备观测到的图像的角度范围。其中,该第二FOV根据需要进行设置,在本公开实施例中,对该第二FOV的大小不作具体限定。例如,该第二FOV为-25°到25°或者-10°到20°等。该第一FOV根据光波导镜片的数量和第二FOV的大小确定。例如,响应于该光波导镜片的数量为2个,第二FOV的大小为-25°到25°,可选地,该每个光波导镜片的第一FOV分别为-25°到0°和0°到25度,或者,-25°到5°和5°到25°等。在本公开实施例中,对该第二FOV的分割方式不作具体限定。该第一FOV为根据事先设置的分割方式确定的,或者,该第一FOV为用户输入的第一FOV,在本公开实施例中,对该第一FOV的确定方式不作具体限定。
在步骤602中,对于每个光波导镜片,近眼显示设备根据该第一FOV,确定该光波导镜片的入射光线的入射角范围。
在本步骤中,近眼显示设备根据每个光波导镜片的第一FOV,确定能够在该光波导镜片中传播的光线的入射角度。该入射角范围为该第一FOV对应的角度范围。例如,响应于该第一FOV为[-θ 1b,-θ 1a],该入射角范围为[-θ 1b,-θ 1a]。
在步骤603中,近眼显示设备根据该入射光线的入射角范围和该入射光线的光谱范围,确定该光波导镜片的光栅组件的光栅参数。
其中,该光栅组件用于设置在该光波导镜片上。在本步骤中,近眼显示设备确定该入射光线的光谱范围和入射光线的入射角范围,根据该光谱范围和入射角范围满足布拉格条件时,确定该光波导镜片对应的光栅组件的光栅参数。该近眼显示设备根据该入射光线的入射角范围和该入射光线的光谱范围,确定该光波导镜片的光栅组件的光栅参数的步骤通过以下步骤(1)-(5)实现,包 括:
(1)近眼显示设备根据该入射光线的入射角范围,确定该入射光线的最小入射角和最大入射角。
在本步骤中,近眼显示设备分别确定该耦入光栅和耦出光栅中允许通过的最大入射角和最小入射角。
(2)近眼显示设备根据该入射光线的光谱范围,确定该入射光线的最小波长和最大波长。
在本步骤中,近眼显示设备分别确定该耦入光栅和耦出光栅中允许通过的入射光的最大波长和最小波长。
(3)近眼显示设备确定该最小入射角和该最小波长以及最大入射角和该最大波长满足布拉格条件时,该光波导镜片的光栅组件的光栅参数。
其中,该光栅参数包括光栅的倾斜角和光栅周期。在本步骤中,近眼显示设备根据布拉格条件,分别确定满足布拉格条件时,最小入射角和最小波长的对应关系,以及,最大入射角和最大波长的对应关系,根据该对应关系,确定满足该对应关系时,光栅的倾斜角和光栅周期的大小。
其中,近眼显示设备分别将最小入射角和最小波长,以及,最大入射角和最大波长作为布拉格条件函数的变量,以此来确定该光波导镜片的光栅组件的光栅参数。该过程通过以下步骤(3-1)-(3-3)实现,包括:
(3-1)近眼显示设备确定以该最小入射角和该最小波长为参数,以光栅参数为变量的第一布拉格条件函数。
近眼显示设备确定以该最小入射角和该最小波长为参数,以光栅参数为变量的第一布拉格条件函数。
其中,该第一布拉格条件函数为该最小入射角和最小波长的布拉格衍射关系,在本步骤中,近眼显示设备将该最小入射角和最小波长带入到含有未知参数的布拉格衍射公式中,得到该第一布拉格条件函数。其中,该光栅参数包括光栅的倾斜角和光栅周期。
(3-2)近眼显示设备确定以最大入射角和该最大波长为参数,以光栅参数为变量的第二布拉格条件函数。
本步骤与步骤(3-1)相似,在此不再赘述。
(3-3)近眼显示设备确定该第一布拉格条件函数和第二布拉格条件函数均 满足该布拉格条件时,该光波导镜片的光栅组件的光栅参数。
在本步骤中,近眼显示设备根据布拉格条件,将第一布拉格条件函数和第二布拉格条件函数均成立时,光栅的倾斜角和光栅周期的大小。
在本实现方式中,通过布拉格条件确定光谱范围和入射角范围一定时光栅的倾斜角和光栅周期,进而得到光栅组件的光栅参数,简化了确定光栅组件的光栅参数的过程。
在步骤604中,响应于对图像源进行显示,对于该近眼显示设备的每个光波导镜片,近眼显示设备确定该光波导镜片上光栅组件的耦入光栅对应的入射光线的入射角度范围。
其中,该光栅组件包括耦入光栅和耦出光栅;在本步骤中,近眼显示设备对图像源进行显示时,确定近眼显示设备中每个光波导镜片允许通过的入射光的入射角度范围。例如,该近眼显示设备中,每个光波导镜片对应的入射光的角度范围分别为[α 1,α 2]和[α 2,α 3],则响应于入射光的角度为α 4,且α 1<α 4<α 2,如图7所示,该入射光线通过入射角度范围为[α 1,α 2]的光波导镜片的耦入光栅;响应于入射光的角度为α 5,且α 2<α 5<α 3,该入射光通过入射角度范围为[α 2,α 3]的光波导镜片的耦入光栅。
在步骤605中,对于该入射角度范围内的第一入射光线,近眼显示设备通过该光波导镜片的耦入光栅对该第一入射光线进行衍射,得到第二入射光线。
对于该图像源对应的入射光线,该入射光线,先通过该上层光波导镜片对应的耦入光栅,由该耦入光栅的光栅参数确定能够通过该耦入光栅进行衍射的入射光线的角度范围,不在该角度范围内的入射光线,直接透过该耦入光栅进入下一层光波导镜片的耦入光栅,再由该下一层光波导镜片的耦入光栅的光栅参数确定能够通过该耦入光栅进行衍射的入射光线的角度范围,以此类推直到该图像源对应的入射光都被近眼显示设备的光波导镜片衍射。
相应的,将该图像源的入射光中入射角度在该光波导镜片的耦入光栅对应的入射角度范围之内的入射光作为第一入射光线,该第一入射光线能够通过该光波导镜片上的耦入光栅进行衍射,得到衍射后的第二入射光线。
在步骤606中,近眼显示设备通过该光波导镜片传导该第二入射光线,直到该第二入射光线被该光波导镜片的耦出光栅衍射,得到第一出射光线。
在本步骤中,该第二入射光线通过在该光波导镜片中进行全反射,从该光 波导镜片的耦入光栅处传导到该光波导镜片的耦出光栅处,之后经由耦出光栅进行衍射,从该耦出光栅处出射,得到第一出射光线。
需要说明的一点是,该第一出射光线中,不同出射位置的出射光线的衍射次数不同,但出射角度相同,并且,由于该耦入光栅和耦出光栅为镜像对称的结构,则耦出光栅的出射角度范围与耦入光栅的入射角度范围镜像对称。例如,该耦入光栅的入射角度范围为[θ 1a1b],则该耦出光栅对应的出射光线的出射角度为[-θ 1b,-θ 1a]。
另外,在一种可能的实现方式中,如图8所示,该近眼设备中的耦出光栅对齐设置,则不同光波导镜片中耦出光栅对应的出射光线中,不同衍射次数的出射光线可能对应同一观测点。由于不同衍射次数的出射光线对应的能量不同,可能导致同一观测点对应的出射光线的亮度不同。
在另一种可能的实现方式中,如图9所示,该近眼显示设备中的耦出光栅错位设置,使得相同衍射次数的出射光线对应同一观测点,从而保证了同一观测点的出射光线的衍射次数相同,进而保证同一观测点的出射光线的能量相同,保证了同一观测点的出射光线的亮度相同,保证了均匀度,同时,扩大了眼动范围。
相应的,在本步骤之前,需要确定该近眼显示设备中每个耦出光栅的相对位置。该确定不同耦出光栅的相对位置的过程通过以下步骤(1)-(3)实现,包括:
(1)近眼显示设备确定该每个光波导镜片中耦出光栅的出射光线。
(2)近眼显示设备确定该出射光线中每个衍射次数对应的出射光线的出射位置。
(3)近眼显示设备根据该每个衍射次数对应的出射光线的位置,确定该每个光波导镜片中耦出光栅的相对位置。
需要说明的一点是,近眼显示设备在确定出每个光波导镜片中耦出光栅的相对位置后,还能够根据该耦出光栅的相对位置对耦出光栅进行调整。该过程为:近眼显示设备根据该每个光波导镜片中耦出光栅的相对位置,调整该每个光波导镜片中的耦出光栅。
其中,近眼显示设备在确定出每个光波导镜片中的耦出光栅的的相对位置后就对光波导镜片中的耦出光栅的位置进行调整。近眼显示设备还能够在其他 时候调整该耦出光栅的位置。例如,近眼显示设备在该近眼显示设备被使用时,才调整该耦出光栅的位置。其中,近眼显示设备检测到该近眼显示设备穿戴时,确定该近眼显示设备被使用;或者,近眼显示设备接收到开机指令时,确定该近眼显示设备被使用。另外,近眼显示设备还能够在接收到光栅调整指令时,调整该耦出光栅。在本公开实施例中,对近眼显示设备调整该耦出光栅的位置的时机不作具体限定。
在本实现方式中,根据每个光波导镜片对应的出射光线的位置,确定每个光波导镜片上耦出光栅的位置,从而防止出射光线重叠,进而防止了第一图像出现重叠。
在步骤607中,近眼显示设备基于该第一出射光线生成该第一图像。
在本步骤中,近眼显示设备根据每个耦出光栅对应的出射光线分别组成每个耦出光栅对应的第一图像。
该近眼显示设备中还包括显示组件,相应的,近眼显示设备通过该近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对该图像源对应的入射光线进行衍射,得到多组第一出射光线;将该多组第一出射光线投影到显示组件上,显示该多组第一出射光线对应的多个第一图像。
在本实现方式中,通过将该近眼显示设备上的多个耦出光栅得到多组第一出射光线,通过该第一显示组件显示该多个第一出射光线对应的多个第一图像,使得出射光线能够显示在同一平面上,保证了同一观测点的出射光线的亮度相同,保证了均匀度,同时,扩大了眼动范围。
在步骤608中,近眼显示设备将该多个第一图像进行拼接,得到该图像源对应的第二图像。
在本步骤中,近眼显示设备根据获取到的多个第一图像,对该多个第一图像进行拼接,得到该图像源对应的第二图像。该过程通过以下步骤(A1)-(A2)实现,包括:
(A1)近眼显示设备确定同一观测点对应的多个第一图像。
其中,近眼显示设备从该多个第一图像中确定同一观测点对应的多个目标图像。
目标图像为同一观测点对应的第一图像。在该近眼显示设备对应的出瞳位置所在的平面上的眼动范围内,设置多个观测点,每个观测点都能够观测到该 近眼显示设备对应的完整的第二图像,该第二图像由该观测点对应的多个目标图像组成。继续参见图9,左中右三个观测点中,从任一观测点对该第一图像进行观测,都能够得到该图像源对应的多个图像。
(A2)近眼显示设备将该同一观测点的多个第一图像进行拼接,得到该第二图像。
其中,近眼显示设备将该同一观测点的多个目标图像进行拼接,得到该第二图像。
在本步骤中,近眼显示设备能够根据每个目标图像对应的角度范围,确定该目标图像的位置,根据该第一图像的位置对该多个第一图像进行拼接,得到第二图像。
另外,在本公开实施例中,还能够通过调整该耦出光栅的衍射效率,调整该出射光线的能量差值。
对于任一级衍射的能量效率,该能量效率为该级衍射的耦入光栅的衍射效率和耦出光栅的衍射效率的乘积,对于该近眼显示设备中的任一光波导镜片,该光波导镜片的耦出光栅的第一次衍射光的能量效率为η 1-1、第二次衍射光的能量效率为η 1-2、第三次衍射光的能量效率为η 1-3、…、第N次衍射光的能量效率为η 1-n。假设该光波导镜片的耦入光栅的衍射效率为η 1-a,耦出光栅的衍射效率为η 1-b(上述所有衍射效率、能量效率均在0~1范围内),则该耦出光栅的第一次衍射的能量效率为:η 1-1=η 1-a·η 1-b;第二次衍射的能量效率为:η 1-2=η 1-a·(1-η 1-b1-b;第三次衍射的能量效率为:η 1-3=η 1-a·(1-η 1-b) 2η 1-b;…;第N次衍射的能量效率为:η 1-N=η 1-a·(1-η 1-b) N-1η 1-b
从上式可知,η 1-11-21-3>…>η 1-n,即耦出光栅的衍射光的能量效率随着衍射次数的增加而衰减。响应于耦出光栅的衍射效率η 1-b较大,η 1-1明显大于η 1-2、η 1-2明显大于η 1-3,衍射光的能量效率大幅度衰减,使得光波导镜片出射光中的高阶次衍射光能量微弱。因此,在本公开实施例中,通过减小该耦出光栅的衍射效率η 1-b,使得衍射光的能量效率相近,进而使出射光的能量相近,进一步保证了第二图像的亮度均匀。其中,该确定耦出光栅的衍射效率的过程能够通过以下步骤(B1)-(B2)实现,包括:
(B1)近眼显示设备确定该每个光波导镜片中耦出光栅的出射光线的能量效率。
(B2)近眼显示设备根据该耦出光栅的能量效率,确定该耦出光栅的衍射效率,使得该耦出光线的能量效率相差在预设阈值之内。
其中,近眼显示设备确定每级出射光线之间能量效率之差的预设阈值,基于该预设阈值确定耦出光栅的衍射效率。该过程通过以下步骤(B2-1)-(B2-2)实现,包括:
(B2-1)近眼显示设备确定该每级出射光线之间能量效率之差的预设阈值。
其中,该预设阈值根据需要进行设置并更改,在本公开实施例中,对此不作具体限定。
(B2-2)近眼显示设备根据该每级出射光线的能量效率,确定该每级出射光线之间能量效率之差小于该预设阈值时,该耦出光栅的衍射效率,对于任一级衍射的能量效率,该能量效率为该级衍射的耦入光栅的衍射效率和耦出光栅的衍射效率的乘积。
在本步骤中,近眼显示设备根据该耦出光栅的能量效率,确定该耦出光栅的衍射效率,使得该耦出光线的能量效率相差在预设阈值之内。
其中,该预设阈值根据需要进行设置,在本公开实施例中,对该预设阈值不作具体限定。
可选地,上述近眼显示设备显示图像源时光线的走向流程通过图10所示的流程进行,如图10所示,以该近眼显示设备中包括两个光波导镜片为例进行说明。图像源通过投影组件投影至该显示组件的第一光波导镜片,第一光波导镜片的第一耦入光栅对该入射光线进行投射和衍射,投射光线经过该第二光波导镜片,由第二耦入光栅进行衍射,之后两束衍射光线分别由第一光波导镜片和第二光波导镜片传导,直到分别通过该第一耦出光栅和第二耦出光栅衍射射出,之后该第二耦出光栅衍射的光线由第二耦出光栅投射,与第一耦出光栅的出射光线拼接,进入观测设备。
在本公开实施例中,通过确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到该图像源对应的第二图像,通过优化光栅参 数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
在本公开实施例中,基于近眼显示设备的第二FOV,确定组成该近眼显示设备的每个光波导镜片的第一FOV,从而根据每个光波导镜片的第一FOV确定该光波导镜片的光栅组件的光栅参数;通过多个光波导镜片组成近眼显示设备,使得近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,由于近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成的,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
本公开实施例还公开了一种图像处理装置,该图像处理装置包括:图像源、处理器、多个光波导镜片和多个光栅组件,该光波导镜片和该光栅组件的数量相同;该图像源与该处理器连接;该多个光波导镜片堆叠设置,每两个光波导镜片之间留有缝隙;对于每个光栅组件和每个光波导镜片,该光栅组件的耦入光栅设置于该光波导镜片的第一端的上表面,该光栅组件的耦出光栅设置于该光波导镜片的第二端的上表面,该耦入光栅和该耦出光栅的结构呈镜像对称;该图像源设置于该堆叠设置的该多个光波导镜片的外侧,与该多个耦入光栅的位置对齐;
该处理器,用于确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV;对于每个光波导镜片,根据该第一FOV确定该光波导镜片上的光栅组件的光栅参数,该光栅组件包括耦入光栅和耦出光栅;
该多个光栅组件根据该光栅参数进行设置,该多个光栅组件用于,响应于对该图像源进行显示,对该图像源对应的入射光进行衍射,得到多个第一图像,该图像源的视场角为第二FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;
该多个光波导镜片,用于传导该多个光栅组件衍射的入射光线;
该处理器,还用于将该多个第一图像进行拼接,得到该图像源对应的第二图像。
在一种可能的实现方式中,该处理器,还用于根据该第一FOV,确定该光 波导镜片的入射光线的入射角范围;根据该入射光线的入射角范围和该入射光线的光谱范围,确定该光栅组件的光栅参数。
在另一种可能的实现方式中,该处理器,还用于根据该入射光线的入射角范围,确定该入射光线的最小入射角和最大入射角;以及,根据该入射光线的光谱范围,确定该入射光线的最小波长和最大波长;确定该最小入射角和该最小波长以及最大入射角和该最大波长满足布拉格条件时,该光栅组件的光栅参数。
其中,该处理器,还用于根据该入射光线的入射角范围,确定该入射光线的最小入射角和最大入射角;以及,根据该入射光线的光谱范围,确定该入射光线的最小波长和最大波长;确定以该最小入射角和该最小波长为参数,以光栅参数为变量的第一布拉格条件函数;以及,确定以最大入射角和该最大波长为参数,以光栅参数为变量的第二布拉格条件函数;确定该第一布拉格条件函数和第二布拉格条件函数均满足该布拉格条件时,该光栅组件的光栅参数。
在另一种可能的实现方式中,该处理器,还用于响应于对图像进行显示,向该图像源发送投影指令,该投影指令用于指示该图像源根据待显示的图像投射第一入射光线;
该图像源,用于接收该投影指令,根据待显示的图像生成第一入射光线,将该第一入射光线投射至该多个光波导镜片上设置的光栅组件的耦入光栅,该图像源的视场角为第二FOV;
该耦入光栅,用于确定该光波导镜片上光栅组件的耦入光栅对应的入射光线的入射角度范围,根据该入射角度范围,对于该入射角度范围内的第一入射光线,通过该光波导镜片的耦入光栅对该第一入射光线进行衍射,得到第二入射光线;
该光波导镜片,用于传导该第二入射光线,直到该第二入射光线被该光波导镜片的耦出光栅衍射;
该耦出光栅,用于对该第二入射光线进行衍射,得到第一出射光线;
该处理器,还用于基于该第一出射光线生成该第一图像。
在另一种可能的实现方式中,该处理器,还用于确定该每个光波导镜片中耦出光栅的出射光线;确定该出射光线中每个衍射次数对应的出射光线的出射位置,根据该每个衍射次数对应的出射光线的位置,确定该每个光波导镜片中 耦出光栅的相对位置;
该多个耦出光栅的位置根据该每个光波导镜片中耦出光栅的相对位置进行设置,该耦出光栅,还用于根据该耦出光栅的相对位置,投射该第一出射光线,得到第一图像;
该处理器,还用于根据该耦出光栅的相对位置,对该第一图像进行拼接,得到该第二图像。
在另一种可能的实现方式中,该处理器,还用于确定该每个光波导镜片上光栅组件中耦出光栅的每级衍射对应的出射光线的能量效率;以及,确定该每级出射光线之间能量效率之差的预设阈值;根据该每级出射光线的能量效率,确定该每级出射光线之间能量效率之差小于该预设阈值时,该耦出光栅的衍射效率;根据该耦出光栅的衍射效率,确定该耦出光栅的光栅参数;
该光栅组件,还用于根据该衍射效率对该入射光线进行衍射,得到该第一图像。
其中,该处理器,还用于确定该每个光波导镜片上光栅组件中耦出光栅的每级衍射对应的出射光线的能量效率;以及,确定该每级出射光线之间能量效率之差的预设阈值;确定以该每级出射光线的能量效率为变量,以所述预设阈值为参数的衍射效率函数;根据所述衍射效率函数,确定该每级出射光线之间能量效率之差小于该预设阈值时,该耦出光栅的衍射效率;根据该耦出光栅的衍射效率,调整该耦出光栅的光栅参数;
该光栅组件,还用于根据该衍射效率对该入射光线进行衍射,得到该第一图像。
在另一种可能的实现方式中,该光栅组件为光致聚合物材料。
在本公开实施例中,通过确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到该图像源对应的第二图像,通过优化光栅参数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
在另一种可能的实现方式中,该装置还包括显示组件;
该显示组件设置于该堆叠设置的该多个光波导镜片的外侧,与该多个耦出光栅的位置对齐;
该多个光波导镜片和每个光波导镜片上的光栅组件,还用于对该图像源对应的入射光线进行衍射,得到多组第一出射光线,将该多组第一出射光线投影到显示组件上;
该显示组件,用于接收该多组第一出射光线,显示该多组第一出射光线对应的多个第一图像。
在本公开实施例中,通过确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV,该近眼显示设备的第二FOV由该多个光波导镜片的第一FOV组成;对于每个光波导镜片,根据该第一FOV确定该光波导镜片的光栅组件的光栅参数;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,该图像源的视场角为第二FOV;将该多个第一图像进行拼接,得到该图像源对应的第二图像,通过优化光栅参数,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
在本公开实施例中,基于近眼显示设备的第二FOV,确定组成该近眼显示设备的每个光波导镜片的第一FOV,从而根据每个光波导镜片的第一FOV确定该光波导镜片的光栅组件的光栅参数;通过多个光波导镜片组成近眼显示设备,使得近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成;对图像源进行显示时,根据该光栅参数对该图像源对应的入射光线进行衍射,得到多个第一图像,由于近眼显示设备的第二FOV由多个光波导镜片的第一FOV组成的,使得多个第一FOV之间没有重叠部分,保证了第二图像没有重影,提高了第二图像的均匀度,扩大了近眼显示设备的眼动范围。
需要说明的是:上述实施例提供的图像显示装置在图像显示时,仅以上述各功能模块的划分进行举例说明,实际应用中,根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的图像显示装置与图像显示方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图11示出了本发明一个示例性实施例提供的近眼显示设备1100的结构框图。可选地,该近眼显示设备1100是:智能眼镜、智能投影仪、VR(virtual reality,虚拟现实)设备或AR(Augmented Reality,增强现实)设备等。近眼显示设备1100还可能被称为用户设备、便携式终端等其他名称。
通常,近眼显示设备1100包括有:处理器1101和存储器1102。
可选地,处理器1101包括一个或多个处理核心,比如4核心处理器、8核心处理器等。可选地,处理器1101采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器1101也能包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1101在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器1101还包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
可选地,存储器1102包括一个或多个计算机可读存储介质,该计算机可读存储介质是非暂态的。存储器1102还包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器1102中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器1101所执行以实现本申请中方法实施例提供的图像显示方法。
在一些实施例中,近眼显示设备1100还可选包括有:外围设备接口1103和至少一个外围设备。处理器1101、存储器1102和外围设备接口1103之间能够通过总线或信号线相连。各个外围设备能够通过总线、信号线或电路板与外围设备接口1103相连。具体地,外围设备包括:射频电路1104、显示屏1105、摄像头组件1106、音频电路1107、定位组件1108和电源1109中的至少一种。
外围设备接口1103能被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器1101和存储器1102。在一些实施例中,处理器1101、 存储器1102和外围设备接口1103被集成在同一芯片或电路板上;在一些其他实施例中,处理器1101、存储器1102和外围设备接口1103中的任意一个或两个在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路1104用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路1104通过电磁信号与通信网络以及其他通信设备进行通信。射频电路1104将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路1104包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。可选地,射频电路1104通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:城域网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路1104还包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏1105用于显示UI(User Interface,用户界面)。可选地,该UI包括图形、文本、图标、视频及其它们的任意组合。响应于显示屏1105是触摸显示屏,显示屏1105还具有采集在显示屏1105的表面或表面上方的触摸信号的能力。可选地,该触摸信号作为控制信号输入至处理器1101进行处理。此时,显示屏1105还用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏1105为一个,设置近眼显示设备1100的前面板;在另一些实施例中,显示屏1105为至少两个,分别设置在近眼显示设备1100的不同表面或呈折叠设计;在再一些实施例中,显示屏1105是柔性显示屏,设置在近眼显示设备1100的弯曲表面上或折叠面上。甚至,显示屏1105还设置成非矩形的不规则图形,也即异形屏。显示屏1105采用LCD(Liquid Crystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
摄像头组件1106用于采集图像或视频。可选地,摄像头组件1106包括前置摄像头和后置摄像头。通常,前置摄像头设置在终端的前面板,后置摄像头设置在终端的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄 以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件1106还包括闪光灯。可选地,闪光灯是单色温闪光灯,或者是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,用于不同色温下的光线补偿。
可选地,音频电路1107包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1101进行处理,或者输入至射频电路1104以实现语音通信。出于立体声采集或降噪的目的,麦克风为多个,分别设置在近眼显示设备1100的不同部位。可选地,麦克风还是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器1101或射频电路1104的电信号转换为声波。可选地,扬声器是传统的薄膜扬声器,或者,是压电陶瓷扬声器。响应于扬声器是压电陶瓷扬声器,不仅能够将电信号转换为人类可听见的声波,还能够将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路1107还包括耳机插孔。
定位组件1108用于定位近眼显示设备1100的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。可选地,定位组件1108是基于美国的GPS(Global Positioning System,全球定位系统)、中国的北斗系统、俄罗斯的格雷纳斯系统或欧盟的伽利略系统的定位组件。
电源1109用于为近眼显示设备1100中的各个组件进行供电。可选地,电源1109是交流电、直流电、一次性电池或可充电电池。响应于电源1109包括可充电电池,该可充电电池支持有线充电或无线充电。该可充电电池还能够用于支持快充技术。
在一些实施例中,近眼显示设备1100还包括有一个或多个传感器1110。该一个或多个传感器1110包括但不限于:加速度传感器1111、陀螺仪传感器1112、压力传感器1113、指纹传感器1114、光学传感器1115以及接近传感器1116。
加速度传感器1111能够检测以近眼显示设备1100建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器1111用于检测重力加速度在三个坐标轴上的分量。处理器1101根据加速度传感器1111采集的重力加速度信号,控制显示屏1105以横向视图或纵向视图进行用户界面的显示。加速度传感器1111还用于游戏或者用户的运动数据的采集。
陀螺仪传感器1112能够检测近眼显示设备1100的机体方向及转动角度,陀 螺仪传感器1112与加速度传感器1111协同采集用户对近眼显示设备1100的3D动作。处理器1101根据陀螺仪传感器1112采集的数据,能够实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
可选地,压力传感器1113设置在近眼显示设备1100的侧边框和/或显示屏1105的下层。响应于压力传感器1113设置在近眼显示设备1100的侧边框,能够检测用户对近眼显示设备1100的握持信号,由处理器1101根据压力传感器1113采集的握持信号进行左右手识别或快捷操作。响应于压力传感器1113设置在显示屏1105的下层,由处理器1101根据用户对显示屏1105的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。
指纹传感器1114用于采集用户的指纹,由处理器1101根据指纹传感器1114采集到的指纹识别用户的身份,或者,由指纹传感器1114根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器1101授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。可选地,指纹传感器1114被设置近眼显示设备1100的正面、背面或侧面。响应于近眼显示设备1100上设置有物理按键或厂商Logo,指纹传感器1114与物理按键或厂商Logo集成在一起。
光学传感器1115用于采集环境光强度。在一个实施例中,处理器1101根据光学传感器1115采集的环境光强度,控制显示屏1105的显示亮度。具体地,响应于环境光强度较高,调高显示屏1105的显示亮度;响应于环境光强度较低,调低显示屏1105的显示亮度。在另一个实施例中,处理器1101还根据光学传感器1115采集的环境光强度,动态调整摄像头组件1106的拍摄参数。
接近传感器1116,也称距离传感器,通常设置在近眼显示设备1100的前面板。接近传感器1116用于采集用户与近眼显示设备1100的正面之间的距离。在一个实施例中,响应于接近传感器1116检测到用户与近眼显示设备1100的正面之间的距离逐渐变小,由处理器1101控制显示屏1105从亮屏状态切换为息屏状态;响应于传感器1116检测到用户与近眼显示设备1100的正面之间的距离逐渐变大,由处理器1101控制显示屏1105从息屏状态切换为亮屏状态。
本领域技术人员能够理解,图11中示出的结构并不构成对近眼显示设备 1100的限定,能够包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
在示例性实施例中,还提供了一种计算机可读存储介质,计算机可读存储介质中存储至少一条指令,至少一条指令由服务器加载并执行,以实现上述实施例中图像显示方法。可选地,该计算机可读存储介质是存储器。例如,该计算机可读存储介质是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域普通技术人员能够理解实现上述实施例的全部或部分步骤能够通过硬件来完成,也能够通过程序来指令相关的硬件完成,程序蒙皮存储于一种计算机可读存储介质中,可选地,上述提到的存储介质是只读存储器,磁盘或光盘等。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中执行了详细描述,此处将不做详细阐述说明。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且能够在不脱离其范围执行各种修改和改变,本公开的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种图像显示方法,其特征在于,所述方法包括:
    确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV;
    对于每个光波导镜片,根据所述第一FOV确定所述光波导镜片上的光栅组件的光栅参数,所述光栅组件包括耦入光栅和耦出光栅;
    根据所述光栅参数,设置所述光波导镜片的光栅组件;
    响应于对图像源进行显示,通过所述近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对所述图像源对应的入射光线进行衍射,得到多个第一图像,所述图像源的视场角为第二FOV,所述近眼显示设备的第二FOV由所述多个光波导镜片的第一FOV组成;
    将所述多个第一图像进行拼接,得到所述图像源对应的第二图像。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一FOV确定所述光波导镜片上的光栅组件的光栅参数,包括:
    根据所述第一FOV,确定所述光波导镜片的入射光线的入射角范围;
    根据所述入射光线的入射角范围和所述入射光线的光谱范围,确定所述光栅组件的光栅参数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述入射光线的入射角范围和所述入射光线的光谱范围,确定所述光栅组件的光栅参数,包括:
    根据所述入射光线的入射角范围,确定所述入射光线的最小入射角和最大入射角;以及,根据所述入射光线的光谱范围,确定所述入射光线的最小波长和最大波长;
    确定所述最小入射角和所述最小波长以及最大入射角和所述最大波长满足布拉格条件时,所述光栅组件的光栅参数。
  4. 根据权利要求1所述的方法,其特征在于,所述通过所述近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对所述图像源对应的入射光线进行衍射,得到多个第一图像,包括:
    对于所述近眼显示设备的每个光波导镜片,确定所述光波导镜片上光栅组件的耦入光栅对应的入射光线的入射角度范围;
    对于所述入射角度范围内的第一入射光线,通过所述光波导镜片的耦入光栅对所述第一入射光线进行衍射,得到第二入射光线;
    通过所述光波导镜片传导所述第二入射光线,直到所述第二入射光线被所述光波导镜片的耦出光栅衍射,得到第一出射光线;
    基于所述第一出射光线生成所述第一图像。
  5. 根据权利要求1所述的方法,其特征在于,所述将所述多个第一图像进行拼接,得到所述图像源对应的第二图像,包括:
    从所述多个第一图像中,确定同一观测点对应的多个目标图像;
    将所述同一观测点的多个目标图像进行拼接,得到所述第二图像。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    确定所述每个光波导镜片中耦出光栅的出射光线;
    确定所述出射光线中每个衍射次数对应的出射光线的出射位置;
    根据所述每个衍射次数对应的出射光线的位置,确定所述每个光波导镜片中耦出光栅的相对位置,所述每个光波导镜片中耦出光栅的相对位置用于根据所述相对位置设置多个耦出光栅在所述光波导镜片上的位置。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    确定所述每个光波导镜片上光栅组件中耦出光栅的每级衍射对应的出射光线的能量效率;以及,确定所述每级出射光线之间能量效率之差的预设阈值;
    根据所述每级出射光线的能量效率,确定所述每级出射光线之间能量效率之差小于所述预设阈值时,所述耦出光栅的衍射效率;
    根据所述耦出光栅的衍射效率,确定所述耦出光栅的光栅参数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述光栅组件为光致聚合物材料。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述通过所述近眼 显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对所述图像源对应的入射光线进行衍射,得到多个第一图像,包括:
    通过所述近眼显示设备的多个光波导镜片和每个光波导镜片上的光栅组件,对所述图像源对应的入射光线进行衍射,得到多组第一出射光线;
    将所述多组第一出射光线投影到所述近眼显示设备的显示组件上,显示所述多组第一出射光线对应的多个第一图像。
  10. 一种近眼显示设备,其特征在于,所述近眼显示设备包括:图像源、处理器、多个光波导镜片和多个光栅组件,所述光波导镜片和所述光栅组件的数量相同;
    所述图像源与所述处理器连接;
    所述多个光波导镜片堆叠设置,每两个光波导镜片之间留有缝隙;
    对于每个光栅组件和每个光波导镜片,所述光栅组件的耦入光栅设置于所述光波导镜片的第一端的上表面,所述光栅组件的耦出光栅设置于所述光波导镜片的第二端的上表面,所述耦入光栅和所述耦出光栅的结构呈镜像对称;
    所述图像源设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦入光栅的位置对齐。
  11. 根据权利要求10所述的近眼显示设备,其特征在于,所述近眼显示设备还包括:显示组件;
    所述显示组件设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦出光栅的位置对齐。
  12. 根据权利要求10所述的近眼显示设备,其特征在于,所述每个光波导镜片上的耦出光栅与其他相邻光波导镜片上的耦出光栅错位设置。
  13. 根据权利要求10任一项所述的近眼显示设备,其特征在于,所述光栅组件为光致聚合物材料;
    所述光栅组件通过曝光工艺设置在所述光波导镜片上。
  14. 一种图像处理装置,其特征在于,所述图像处理装置包括:图像源、 处理器、多个光波导镜片和多个光栅组件,所述光波导镜片和所述光栅组件的数量相同;所述图像源与所述处理器连接;所述多个光波导镜片堆叠设置,每两个光波导镜片之间留有缝隙;对于每个光栅组件和每个光波导镜片,所述光栅组件的耦入光栅设置于所述光波导镜片的第一端的上表面,所述光栅组件的耦出光栅设置于所述光波导镜片的第二端的上表面,所述耦入光栅和所述耦出光栅的结构呈镜像对称;所述图像源设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦入光栅的位置对齐;
    所述处理器,用于确定近眼显示设备的多个光波导镜片中每个光波导镜片对应的第一视场角FOV;对于每个光波导镜片,根据所述第一FOV确定所述光波导镜片上的光栅组件的光栅参数,所述光栅组件包括耦入光栅和耦出光栅;
    所述多个光栅组件根据所述光栅参数进行设置,所述多个光栅组件用于,响应于对所述图像源进行显示,对所述图像源对应的入射光进行衍射,得到多个第一图像,所述图像源的视场角为第二FOV,所述近眼显示设备的第二FOV由所述多个光波导镜片的第一FOV组成;
    所述多个光波导镜片,用于传导所述多个光栅组件衍射的入射光线;
    所述处理器,还用于将所述多个第一图像进行拼接,得到所述图像源对应的第二图像。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器,还用于根据所述第一FOV,确定所述光波导镜片的入射光线的入射角范围;根据所述入射光线的入射角范围和所述入射光线的光谱范围,确定所述光栅组件的光栅参数。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器,还用于根据所述入射光线的入射角范围,确定所述入射光线的最小入射角和最大入射角;以及,根据所述入射光线的光谱范围,确定所述入射光线的最小波长和最大波长;确定所述最小入射角和所述最小波长以及最大入射角和所述最大波长满足布拉格条件时,所述光栅组件的光栅参数。
  17. 根据权利要求14所述的装置,其特征在于,所述处理器,还用于响应于对图像进行显示,向所述图像源发送投影指令,所述投影指令用于指示所述图像源根据待显示的图像投射第一入射光线;
    所述图像源,用于接收所述投影指令,根据待显示的图像生成第一入射光线,将所述第一入射光线投射至所述多个光波导镜片上设置的光栅组件的耦入光栅,所述图像源的视场角为第二FOV;
    所述耦入光栅,用于确定所述光波导镜片上光栅组件的耦入光栅对应的入射光线的入射角度范围,根据所述入射角度范围,对于所述入射角度范围内的第一入射光线,通过所述光波导镜片的耦入光栅对所述第一入射光线进行衍射,得到第二入射光线;
    所述光波导镜片,用于传导所述第二入射光线,直到所述第二入射光线被所述光波导镜片的耦出光栅衍射;
    所述耦出光栅,用于对所述第二入射光线进行衍射,得到第一出射光线;
    所述处理器,还用于基于所述第一出射光线生成所述第一图像。
  18. 根据权利要求14所述的装置,其特征在于,所述处理器,还用于确定所述每个光波导镜片中耦出光栅的出射光线;确定所述出射光线中每个衍射次数对应的出射光线的出射位置,根据所述每个衍射次数对应的出射光线的位置,确定所述每个光波导镜片中耦出光栅的相对位置;
    所述多个耦出光栅的位置根据所述每个光波导镜片中耦出光栅的相对位置进行设置,所述耦出光栅,还用于根据所述耦出光栅的相对位置,投射所述第一出射光线,得到第一图像;
    所述处理器,还用于根据所述耦出光栅的相对位置,对所述第一图像进行拼接,得到所述第二图像。
  19. 根据权利要求14-18任一项所述的装置,其特征在于,所述处理器,还用于确定所述每个光波导镜片上光栅组件中耦出光栅的每级衍射对应的出射光线的能量效率;以及,确定所述每级出射光线之间能量效率之差的预设阈值;根据所述每级出射光线的能量效率,确定所述每级出射光线之间能量效率之差小于所述预设阈值时,所述耦出光栅的衍射效率;根据所述耦出光栅的衍射效率,确定所述耦出光栅的光栅参数;
    所述光栅组件,还用于根据所述衍射效率对所述入射光线进行衍射,得到所述第一图像。
  20. 根据权利要求14-18任一项所述的装置,其特征在于,所述光栅组件为光致聚合物材料。
  21. 根据权利要求14-18任一项所述的装置,其特征在于,所述装置还包括显示组件;
    所述显示组件设置于所述堆叠设置的所述多个光波导镜片的外侧,与所述多个耦出光栅的位置对齐;
    所述多个光波导镜片和每个光波导镜片上的光栅组件,还用于对所述图像源对应的入射光线进行衍射,得到多组第一出射光线,将所述多组第一出射光线投影到显示组件上;
    所述显示组件,用于接收所述多组第一出射光线,显示所述多组第一出射光线对应的多个第一图像。
PCT/CN2020/137193 2019-12-20 2020-12-17 图像显示方法、近眼显示设备和装置 WO2021121319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911330772.0 2019-12-20
CN201911330772.0A CN113009690B (zh) 2019-12-20 2019-12-20 图像显示方法、近眼显示设备和装置

Publications (1)

Publication Number Publication Date
WO2021121319A1 true WO2021121319A1 (zh) 2021-06-24

Family

ID=76382143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137193 WO2021121319A1 (zh) 2019-12-20 2020-12-17 图像显示方法、近眼显示设备和装置

Country Status (2)

Country Link
CN (1) CN113009690B (zh)
WO (1) WO2021121319A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236666A (zh) * 2021-11-30 2022-03-25 歌尔股份有限公司 胶合导光件的制造方法和性能测试系统以及电子设备
CN114690428A (zh) * 2022-04-06 2022-07-01 杭州光粒科技有限公司 一种光栅波导显示系统
CN116125583A (zh) * 2021-11-15 2023-05-16 上海鲲游科技有限公司 一种调制光波导及其调制方法
CN117930424A (zh) * 2024-03-22 2024-04-26 宁波舜宇光电信息有限公司 一种ar衍射波导片及设计方法及ar装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625447B (zh) 2021-07-15 2022-11-01 嘉兴驭光光电科技有限公司 Ar光波导耦出光栅的设计方法及ar光波导的设计方法
CN113703091B (zh) * 2021-08-25 2023-08-08 宁波舜宇奥来技术有限公司 光波导系统和近眼显示器
CN114326151B (zh) * 2021-12-23 2024-04-02 北京灵犀微光科技有限公司 制作多焦点眼镜镜片的方法和多焦点眼镜
CN114397720B (zh) * 2021-12-23 2022-08-05 北京灵犀微光科技有限公司 制作多焦点镜片的方法和近眼显示设备
CN114280786B (zh) * 2021-12-24 2023-04-07 深圳珑璟光电科技有限公司 一种光波导元件及其构建方法、近眼显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919488A (zh) * 2018-07-06 2018-11-30 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
CN109445108A (zh) * 2018-12-26 2019-03-08 北京枭龙科技有限公司 一种大视场衍射波导元件及显示装置
CN109839746A (zh) * 2019-03-05 2019-06-04 京东方科技集团股份有限公司 一种近眼显示设备及其制作方法
CN110462487A (zh) * 2017-03-21 2019-11-15 奇跃公司 用于组合视场的具有不同衍射光栅的堆叠波导

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2225592B1 (en) * 2007-12-18 2015-04-22 Nokia Technologies OY Exit pupil expanders with wide field-of-view
CN104656259B (zh) * 2015-02-05 2017-04-05 上海理湃光晶技术有限公司 共轭窄带三基色交错的体全息光栅波导近眼光学显示器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462487A (zh) * 2017-03-21 2019-11-15 奇跃公司 用于组合视场的具有不同衍射光栅的堆叠波导
CN108919488A (zh) * 2018-07-06 2018-11-30 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
CN109445108A (zh) * 2018-12-26 2019-03-08 北京枭龙科技有限公司 一种大视场衍射波导元件及显示装置
CN109839746A (zh) * 2019-03-05 2019-06-04 京东方科技集团股份有限公司 一种近眼显示设备及其制作方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125583A (zh) * 2021-11-15 2023-05-16 上海鲲游科技有限公司 一种调制光波导及其调制方法
CN116125583B (zh) * 2021-11-15 2024-05-10 上海鲲游科技有限公司 一种调制光波导及其调制方法
CN114236666A (zh) * 2021-11-30 2022-03-25 歌尔股份有限公司 胶合导光件的制造方法和性能测试系统以及电子设备
CN114236666B (zh) * 2021-11-30 2024-03-29 歌尔股份有限公司 胶合导光件的制造方法和性能测试系统以及电子设备
CN114690428A (zh) * 2022-04-06 2022-07-01 杭州光粒科技有限公司 一种光栅波导显示系统
CN114690428B (zh) * 2022-04-06 2024-06-07 杭州光粒科技有限公司 一种光栅波导显示系统
CN117930424A (zh) * 2024-03-22 2024-04-26 宁波舜宇光电信息有限公司 一种ar衍射波导片及设计方法及ar装置
CN117930424B (zh) * 2024-03-22 2024-06-11 宁波舜宇光电信息有限公司 一种ar衍射波导片及设计方法及ar装置

Also Published As

Publication number Publication date
CN113009690A (zh) 2021-06-22
CN113009690B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2021121319A1 (zh) 图像显示方法、近眼显示设备和装置
CN105074537B (zh) 三件套棱镜目镜
US8400519B2 (en) Mobile terminal and method of controlling the operation of the mobile terminal
CN113302431A (zh) 用于近眼波导显示器的体布拉格光栅
WO2022134632A1 (zh) 作品处理方法及装置
CN112965683A (zh) 调节音量的方法、装置、电子设备及介质
CN111984222A (zh) 调节音量的方法、装置、电子设备及可读存储介质
US11733952B2 (en) Wearable electronic device including display, method for controlling display, and system including wearable electronic device and case
US10416333B2 (en) Magnetic tracker with dual-transmit frequency
US20230154368A1 (en) Method and device for controlling luminance of augmented reality (ar) image
EP3767359B1 (en) Liquid iris, optical device comprising same, and mobile terminal
CN113741069A (zh) 视角可控的模组、控制视角的方法及电子设备
US10823940B2 (en) Mobile terminal
KR20170017608A (ko) 헤드 마운티드 디스플레이
KR20220100143A (ko) 웨어러블 전자 장치 및 모션 센서를 이용한 입력 구조물
CN109275015B (zh) 显示虚拟物品的方法、装置及存储介质
KR20220035011A (ko) 메타 렌즈 어셈블리 및 이를 포함한 전자 장치
US20240192427A1 (en) Reflector orientation of geometrical and mixed waveguide for reducing grating conspicuity
US12026297B2 (en) Wearable electronic device and input structure using motion sensor in the same
US20230251362A1 (en) Method of removing interference and electronic device performing the method
US20240103289A1 (en) Wearable electronic device and method for controlling power path thereof
US20220214744A1 (en) Wearable electronic device and input structure using motion sensor in the same
US10514538B2 (en) Head-mounted display device
KR20240029489A (ko) 디스플레이 모듈 제어 방법 및 상기 방법을 수행하는 전자 장치
KR20240020629A (ko) Ar 장치에게 표시하도록 명령할 컨텐츠를 결정하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903614

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20903614

Country of ref document: EP

Kind code of ref document: A1