WO2021120720A1 - 钻井工具及确定其参数的方法 - Google Patents

钻井工具及确定其参数的方法 Download PDF

Info

Publication number
WO2021120720A1
WO2021120720A1 PCT/CN2020/114857 CN2020114857W WO2021120720A1 WO 2021120720 A1 WO2021120720 A1 WO 2021120720A1 CN 2020114857 W CN2020114857 W CN 2020114857W WO 2021120720 A1 WO2021120720 A1 WO 2021120720A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact
rotating
sleeve
drilling tool
rod
Prior art date
Application number
PCT/CN2020/114857
Other languages
English (en)
French (fr)
Inventor
张海平
臧艳彬
马广军
王甲昌
孙明光
陶兴华
玄令超
刘晓丹
张仁龙
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油工程技术研究院 filed Critical 中国石油化工股份有限公司
Priority to AU2020409630A priority Critical patent/AU2020409630A1/en
Priority to US17/757,053 priority patent/US12031410B2/en
Priority to CA3163628A priority patent/CA3163628A1/en
Publication of WO2021120720A1 publication Critical patent/WO2021120720A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • E21B4/10Down-hole impacting means, e.g. hammers continuous unidirectional rotary motion of shaft or drilling pipe effecting consecutive impacts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • the invention relates to the field of drilling technology, in particular to a drilling tool.
  • the invention also relates to a method for determining the parameters of the drilling tool.
  • the drilling tool can be used to speed up drilling in oil and gas exploration and development, and can also be used to speed up drilling in mining, quarrying, geological exploration, water wells, geothermal and other fields.
  • Rotary percussive drilling technology is one of the effective methods of rapid drilling. It uses various percussive drilling tools to drive the hammer through the drilling fluid to generate high-frequency impact dynamic load, which causes the volume of the rock to be broken, thereby improving the efficiency of rock breaking. This type of technology has developed rapidly since its inception.
  • the present invention proposes a drilling tool.
  • the invention also proposes a method for determining the parameters of the drilling tool.
  • This drilling tool changes the speed-increasing mechanism of traditional percussion drilling tools, and combines the principles of rotary percussion drilling and elastic energy storage to make a major breakthrough in drilling technology. It is especially applied to deep and ultra-deep wells in the lower part of difficult-to-drill formations, and it has significant speed and efficiency improvements. Effect and good application prospects.
  • the drilling tool is more durable and has a long service life.
  • a drilling tool including: an upstream drilling tool; a downstream drill bit; and an impactor connected between the upstream drilling tool and the downstream drill bit; In the state, the impactor causes the upstream drilling tool to generate elastic compression, and in the second state, the upstream drilling tool releases the elastic compression, and the impact is applied to the downstream drill bit through the impactor.
  • the upstream drilling tool Under the action of the impactor, the upstream drilling tool can be elastically compressed.
  • the elastic compression of the upstream drilling tool will provide impact to the impactor when released.
  • the impact will be transmitted to the downstream drill bit, so that the downstream drill bit can impact the formation.
  • the drill bit can impact the formation while rotating and drilling, so as to break the formation more easily. Through this arrangement, it is more conducive to improve drilling efficiency and reduce drilling costs.
  • the impactor includes: a rotary driving part configured to rotate around its axis; a rotary working part, an upper end of the rotary working part and a lower end of the rotary driving part Engaged, the lower end of the rotary working part is connected with the downstream drill bit, the rotary working part can be driven by the rotary driving part to rotate around its axis, and can be axially relative to the rotary driving part
  • a rotary driving part configured to rotate around its axis
  • the rotary working part can be driven by the rotary driving part to rotate around its axis, and can be axially relative to the rotary driving part
  • an impact generating part the impact generating part is sleeved outside the rotating working part, the upper end of the impact generating part is against the upstream drilling tool, and the lower end of the impact generating part works with the rotation
  • the impact-generating portion moves upstream to make the upstream drilling tool elastically compressed
  • the upstream drilling tool releases the elastic compression, so that the impact-generating portion moves toward The
  • the rotation driving part includes a cylindrical driving rod, the upper end of the driving rod is engaged with a power source, the rotation working part includes a cylindrical rotating rod, and the upper end of the rotating rod is connected to the power source.
  • the lower end of the driving rod is engaged by a driving key, the lower end of the rotary rod is connected with the downstream drill bit, the upper end of the rotary rod is inserted into the lower end of the driving rod, and a flange is constructed outside the upper end of the rotary rod.
  • the driving key extending in the axial direction of the rotating rod is configured with a driving groove extending along the axial direction of the driving rod inside the lower end of the driving rod, and the driving key is fitted in the driving groove Inside, the rotating rod is fixed relative to the driving rod in the circumferential direction, and can move relative to the driving rod in the axial direction.
  • the impact generating portion includes an impact sleeve, the impact sleeve is sleeved on the outer side of the rotating rod, and the impact sleeve includes a first sleeve section with a smaller inner diameter and a larger inner diameter.
  • a large second sleeve section the second sleeve section is connected below the first sleeve section, at the connection point between the first sleeve section and the second sleeve section
  • the inner side of the impact sleeve is formed with an upper driven tooth;
  • the rotating rod includes a first rotating section with a smaller outer diameter and a second rotating section with a larger outer diameter.
  • the second rotating section is connected to the first rotating section.
  • a lower driving tooth is formed on the outer side of the rotating rod at the connection between the second rotating section and the first rotating section; the upper driven tooth matches the lower driving tooth
  • the upper driven tooth and the lower driving tooth are configured with an upward tooth section inclined upstream in a direction opposite to the rotation direction, and an upward tooth section connected to the upward tooth section along the opposite direction to the rotation direction.
  • the inclination of the ascending tooth segment is smaller than the inclination of the descending tooth segment for the descending tooth segment inclined downstream.
  • the rotating rod further includes a third rotating section connected to the lower end of the second rotating section, the outer diameter of the third rotating section is greater than the outer diameter of the second rotating section, and the An upstream impact step is formed between the second rotating section and the third rotating section.
  • the lower end of the impact sleeve is opposite to the impact step and can impact with the impact step. When the lower end is in contact with the impact step, there is a gap between the upper driven tooth and the lower driving tooth in the axial direction.
  • a cylindrical outer shell is sleeved on the outer side of the impact sleeve, and the outer shell and the impact sleeve are slidably engaged with each other through directional keys, and the upper end of the outer shell is connected to the The upstream drilling tool is connected, wherein the directional key extending in the axial direction is configured on the outer side of the impact sleeve, and the directional groove extending in the axial direction is configured on the inner side of the outer shell, the directional key Fitted into the directional groove, so that the impact sleeve is fixed relative to the outer shell in the circumferential direction and can move relative to the outer shell in the axial direction.
  • the outer shell includes an upper shell part connected with the upstream drilling tool and a lower shell part connected below the upper shell part, and at least a part of the drive rod sleeve is provided in In the upper housing part, a rotating bearing is provided between the upper housing part and the driving rod, allowing the driving rod to rotate relative to the upper housing part, and the lower housing part surrounds
  • the impact sleeve the lower end of the upper housing part is inserted into the upper end of the lower housing part, and a support sleeve is provided between the lower end of the upper housing part and the upper end of the impact sleeve, The impact sleeve applies force to the upper housing part through the support sleeve, thereby causing the upstream drilling tool to be elastically compressed.
  • a groove is configured on the side wall of the third rotating section of the rotating rod, and a limit protruding radially outward relative to the third rotating section is installed in the groove.
  • a cylindrical outer casing is sleeved on the outer side of the impact sleeve, the outer casing extends downward to surround the third rotating section, and the lower end of the outer casing is configured to extend radially inward
  • the clamping part, the limiting block is located upstream of the clamping part and is configured to abut the clamping part to limit the downstream movement of the rotating rod relative to the outer housing.
  • the upstream drilling tool includes a drill pipe and a drill collar connected under the drill pipe.
  • the method includes the following steps :
  • the minimum weight on bit required for drilling is determined through a formula
  • Drilling parameters include weight on bit, displacement, speed, or/and determine the structural parameters of the rotating rod and impact sleeve of the drilling tool according to the minimum weight on bit required for drilling.
  • the structural parameters include the lower driving teeth and the upper driven teeth. Number of teeth and tooth height.
  • the advantage of the present invention is that the drilling tool of the present application combines the principles of rotary percussion drilling and elastic energy storage, which changes the speed-up mechanism of traditional percussive drilling tools, and can achieve higher frequency and higher stroke. To impact the formation, which can make the formation easier to break. This can effectively improve drilling efficiency and reduce drilling costs.
  • the speed-up and efficiency-increasing effect is more significant.
  • Figure 1 shows a schematic diagram of a drilling tool according to an embodiment of the present invention
  • Figure 2 shows an embodiment of the drilling tool upstream of the drilling tool in Figure 1;
  • Figure 3 shows a partial schematic diagram of a part of the drilling tool in Figure 1;
  • Figure 4 shows a partial schematic diagram of another part of the drilling tool in Figure 1;
  • Figure 5 shows a partial schematic diagram of another part of the drilling tool in Figure 1;
  • Figure 6 shows a partial schematic diagram of the impact sleeve of the drilling tool in Figure 1;
  • Fig. 7 shows a partial schematic diagram of the rotating rod of the drilling tool in Fig. 1.
  • FIGS 1-7 show an embodiment of a drilling tool 1 according to the present invention.
  • the drilling tool 1 includes an upstream drilling tool 10, a driving mechanism 20, an impactor 30, and a downstream drill bit (not shown) arranged in order from top to bottom.
  • the upstream drilling tool 10 includes a drill rod 11, a drill collar 12 connected downstream of the drill rod 11, and a stabilizer 13 connected downstream of the drill collar 12.
  • the upstream drilling tool 10 itself has certain elasticity, and when a certain compressive force is applied to the upstream drilling tool 10 after the well depth reaches a certain depth, it will produce a certain displacement compression. This compression allows the upstream drill tool 10 to store a certain amount of energy. This application uses this energy to drive the downstream drill bit for impact rock breaking. The specific process is detailed below.
  • the driving mechanism 20 includes a cylindrical casing and a power source enclosed in the cylindrical casing.
  • the housing is connected downstream of the stabilizer 13.
  • the drive mechanism 20 can be a conventional screw power including a bypass valve assembly, an anti-drop assembly, a motor assembly, and a cardan shaft assembly.
  • the upper assembly of the drilling tool can also be a special high torque structural parameter screw power drilling tool upper assembly including a special bypass valve assembly, a special anti-drop assembly, a special motor assembly and a special cardan shaft assembly.
  • turbodrill upper assembly including a turbine section with an impeller set, a turbine cardan shaft and a turbine bearing section, and it can be specially made including a turbine section with a special impeller set, a special turbine cardan shaft and a special turbine bearing Section of the upper assembly of the turbodrill.
  • the power source may be a screw motor or a turbodrill.
  • the structure of the above-mentioned driving mechanism 20 is all existing, and will not be repeated here.
  • the impactor 30 includes a rotation driving part, which may be configured as a cylindrical driving rod 34 (FIG. 3 ), for example.
  • the drive rod 34 extends in the axial direction, and its upstream end is engaged with the power source, so that the drive rod can be driven by the power source to rotate.
  • the impactor 30 also includes an outer shell.
  • the outer shell includes an upper housing part 31 and a lower housing part 41 connected under the upper housing part 31.
  • the upstream end of the upper housing part 31 is connected to the cylindrical housing of the driving mechanism 20. Since the driving mechanism 20 can be configured in different forms, the upper end of the upper housing part 31 is connected to the upper end of the housing of the screw or turbodrill bearing assembly. match.
  • At least a part of the driving rod 34 extends in the upper housing part 31, and a rotating bearing is provided between the driving rod 34 and the upper housing part 31, which includes a bearing static which is arranged in the upper housing part 31 by means of clamping.
  • the sleeve 32 and the movable bearing sleeve 33 arranged between the static bearing sleeve 32 and the driving rod 34 and capable of rotating relative to the static bearing sleeve 32.
  • the driving rod 34 can freely rotate relative to the upper housing part 31.
  • the downstream end of the drive rod 34 extends into the lower housing portion 41 described above.
  • the upper end of the static bearing sleeve 32 abuts against the outer ring of the screw or turbine bearing string (the drive mechanism 20 itself includes the bearing string).
  • a second limiting step 321 facing downstream is provided on the outer wall of the static bearing sleeve 32.
  • a first limiting step 311 facing upstream is provided on the inner wall of the upper housing portion 31. After installation, the first limiting step 311 is provided.
  • the position step 311 cooperates with the second limit step 321 to achieve the purpose of axially limiting the bearing sleeve 32.
  • the above arrangement can ensure the effect of tightening the outer ring of the screw or turbine bearing string through the static bearing sleeve 32.
  • the bearing sleeve 33 is fixedly connected to the outer wall of the upper end of the drive rod 34 in the manner of interference fit, and its upper end surface abuts against the inner ring of the screw or turbine bearing string, and its lower end surface abuts the shoulder of the drive rod 34 for installation and positioning. 341.
  • the bearing sleeve 33 acts to push up the inner ring of the screw or turbine bearing string in the axial direction.
  • the setting of the rotating bearing plays a role in preventing the drive rod 34 and the upper housing part 31 from being worn.
  • a support sleeve 42 (described in detail below) is arranged opposite to the axial lower end of the static bearing sleeve 32, so that the static bearing sleeve 32 can play the role of supporting the upper, lower, tightening, and transmitting force.
  • a rotary working part is provided downstream of the driving rod 34, and the rotary working part may be configured as a cylindrical rotary rod 43, for example, and at least a part of the rotary rod 43 is surrounded by the lower housing part 41.
  • the rotating rod 43 includes a first rotating section 431, a second rotating section 432, a third rotating section 433, and a fourth rotating section 434 that are sequentially connected from upstream to downstream.
  • the inner diameters of these rotating segments 431, 432, 433, and 434 are the same.
  • the outer diameter of the first rotating section 431 is smaller than the outer diameter of the second rotating section 432, the outer diameter of the second rotating section 432 is smaller than the outer diameter of the third rotating section 433, and the outer diameter of the third rotating section 433 is smaller than the fourth rotating section 434 The outer diameter.
  • the upstream end of the rotating rod 43 ie, the upstream end of the first rotating section 431 as shown in FIG. 3 is inserted into the downstream end of the driving rod 34.
  • a driving key 431A extending in the axial direction is configured on the outer side wall of the first rotating section 431, and a driving groove extending in the axial direction is configured on the inner side wall of the driving rod 34.
  • the driving groove matches the driving key 431A, so that when the driving key 431A is inserted into the driving groove, the rotating rod 43 can rotate with the driving rod 34 and move in the axial direction relative to the driving rod 34.
  • the impactor 30 further includes an impact sleeve 44 sheathed outside at least a part of the rotating rod 43.
  • the impact sleeve 44 includes an upstream first sleeve section 441 and a second sleeve section 442 connected downstream of the first sleeve section 441.
  • the outer diameters of the first sleeve section 441 and the second sleeve section 442 are the same.
  • the inner diameter of the first sleeve section 441 is smaller than the inner diameter of the second sleeve section 422.
  • the first sleeve section 441 of the impact sleeve 44 is sleeved on the outside of the first rotating section 431 of the rotating rod 43, and the second sleeve section 442 is sleeved on the second The outer side of the rotating section 432.
  • the rotating rod 43 can rotate relative to the impact sleeve 44.
  • a lower driving tooth 432B is configured at the connection between the first rotating section 431 and the second rotating section 432 of the rotating rod 43, and the tooth surface of the lower driving tooth 432B is substantially facing upward.
  • an upper driven tooth 441B is configured at the connection between the first sleeve section 441 and the second sleeve section 442, and the tooth surface of the upper driven tooth 441B is generally facing downward.
  • the upper driven tooth 441B and the lower driving tooth 432B may be substantially configured in a wave-shaped form as shown in FIGS. 6 and 7.
  • the wave trough of the upper driven tooth 441B is opposite to the wave crest of the lower driving tooth 432B.
  • the rotating rod 43 moves upstream against the impact sleeve 44.
  • the wave crest of the upper driven tooth 441B is opposite to the wave crest of the lower driving tooth 432B
  • the wave trough of the upper driven tooth 441B is opposite to the wave trough of the lower driving tooth 432B.
  • the impact sleeve 44 moves downstream in the axial direction and impacts the rotating rod 43.
  • the downstream drill bit described above is installed at the downstream end of the rotating rod 43. The impact on the rotating rod 43 can thus be transmitted to the downstream drill bit, so that the downstream drill bit impacts the formation downward while rotating drilling.
  • the wave-like upper driven tooth 441B and the lower driving tooth 432B include an upward tooth segment and a downward tooth segment connected to the upward tooth segment.
  • the upward tooth section of the lower drive tooth 432B is inclined upward along the direction opposite to the direction of rotation of the rotating rod 43, while the downward tooth section of the lower drive tooth 432B is along the direction opposite to the direction of rotation of the rotating rod 43. Tilt down.
  • the inclination of the upward tooth section is relatively gentle, and the inclination of the downward tooth section is relatively steep, so that the impact sleeve 44 can have a greater speed when it impacts toward the rotating rod 43. That is, the impact sleeve 44 can move upstream with respect to the rotating rod 43 at a relatively slow speed, and can impact the rotating rod 43 downward at a relatively fast speed.
  • the lower housing part 41 is sleeved on the outside of the impact sleeve 44.
  • An directional key 441A extending in the axial direction is configured on the outer side wall of the impact sleeve 44, and a corresponding directional groove extending in the axial direction is configured on the inner side wall of the lower housing portion 41.
  • the impact sleeve 44 can move in the axial direction relative to the lower housing part 41 but cannot rotate relative to the lower housing part 41.
  • the rotation of the impact sleeve 44 can be effectively limited, so as to ensure that the impact sleeve 44 does not rotate together with the rotating rod 43, that is, the relative rotation of the rotating rod 43 with respect to the impact sleeve 44 can be ensured.
  • a step surface 433B facing upstream is formed between the second rotating section 432 and the third rotating section 433 of the rotating rod 43.
  • the lower end surface 442B of the impact sleeve 44 is opposite to the step surface 433B.
  • the lower end surface 442B of the impact sleeve 44 and the step surface 433B of the rotating rod 43 form an impact surface.
  • the lower end of the upper housing part 31 is inserted into the upper end of the lower housing part 41, for example, the two can be connected by a threaded drill pipe joint.
  • a cylindrical support sleeve 42 is provided between the lower end surface 31A of the upper housing portion 31 and the step 41A in the lower housing portion 41.
  • the support sleeve 42 extends radially inward, so that the upper end surface of the support sleeve 42 can be arranged opposite to the lower end surface of the bearing sleeve 32, and the lower end surface of the support sleeve 42 is arranged opposite to the upper end surface of the impact sleeve 44 .
  • the support sleeve 42 is affected by its own weight and falls on the step 41A in the lower housing part 41.
  • the impact sleeve 44 will press against and push the support sleeve 42, the upper housing portion 31, and the cylindrical housing of the drive mechanism 20 to move upstream together, and thereby push it up.
  • the drill rod 11 and the drill collar 12 in the upstream drill tool 10 are moved, so that they are elastically compressed in the axial direction. After that, the upstream drill tool 10 including the drill rod 11 and the drill collar 12 is released from compression, thereby pushing the impact sleeve 44 to move downstream to impact the rotating rod 43.
  • a wear-resistant joint 47 is also connected to the lower end of the lower housing part 41, for example, the two are fixed by a threaded connection.
  • the anti-wear joint 47 can improve the wear resistance between the lower housing part 41 and the rotating rod 43 to increase the service life of the entire drilling tool 1.
  • the anti-wear joint 47 surrounds the third rotating section 433 of the rotating rod 43 and a sliding seal 48 is provided between the anti-wear joint 47 and the third rotating section 433.
  • a sealed relative movement in the axial direction can occur between the third rotating section 433 and the anti-wear joint 47 to prevent the mud from leaking out.
  • the anti-wear joint 47 is preferably made of alloy steel inlaid with cemented carbide material, or metallurgical combination of alloy steel and S201 material, or metallurgical combination of alloy steel and DT30 material, so that it has sufficient wear resistance.
  • the fourth rotating section 434 of the rotating rod 43 is downstream of the anti-wear joint 47.
  • a step surface facing upstream is formed between the fourth rotating section 434 and the third rotating section 433.
  • a groove is configured on the outer side wall of the third rotating section 433, and a groove protruding radially outward relative to the third rotating section 433 is provided in the groove.
  • Limit block 45 In the radial direction, the limiting block 45 is sandwiched between the third rotating section 433 and the lower housing part 41.
  • the upper end of the anti-wear joint 47 is inserted into the lower end of the lower housing part 41.
  • the upper end surface of the anti-wear joint 47 is opposed to the stop block 45, and the axial movement range of the rotating rod 43 relative to the anti-wear joint 47 can be restricted.
  • the limiting block 45 may be configured as two semi-circular stop shoes. After installation, the two stop shoes are hug on the outer wall of the third rotating section 433 at the groove, and the stop shoes are fixed on the outer wall of the third rotating section 433 by the installation cord 46. In the process of tripping and drilling, the limit block 45 follows the rotating rod 43 and falls relative to the lower housing part 41, and sits on the anti-wear joint 47, and strikes the impact sleeve 44, the rotating rod 43 and the limit block 45. Anti-off effect.
  • the specific working process of the above-mentioned drilling tool 1 is as follows.
  • the above-mentioned drilling tool 1 is lowered into the well to be drilled.
  • the rotating rod 43 moves downward relative to the driving rod 34 to a position where the stop block 45 abuts against the upper end surface of the anti-wear joint 47.
  • the drilling tool 1 When the downstream drill bit of the drilling tool 1 touches the bottom of the well, the drilling tool 1 is continued to be lowered so that the rotating rod 43 moves upward relative to the driving rod 34 until the upper end surface of the impact sleeve 44 abuts the support sleeve 42.
  • drilling can be performed.
  • the downstream bit abuts the formation.
  • the rotating rod 43 and the downstream drill bit rotate together with the driving rod 34.
  • the impact sleeve 44 reciprocates up and down relative to the rotating rod 43.
  • the drill rod 11 and the drill collar 12 in the upstream drill tool 10 can be elastically compressed.
  • the impact sleeve 44 moves downstream relative to the rotating rod 43, the above-mentioned elastic compression is released, and the impact sleeve 44 is pushed by the upstream drill tool 10 to move rapidly downstream and impacts toward the rotating rod 43, thereby causing the downstream drill bit to impact To the strata.
  • the first step is to determine the value of the minimum impact energy W 0 required for drilling according to the rock compressive strength P resistance of the formation to be drilled.
  • the formation rock to be drilled can be sampled first, and the rock mechanics characteristics of the obtained sample can be analyzed. For example, the lithology, drillability, hardness, etc. of the sample can be determined here. Then, the compressive strength P resistance of the rock can be determined by the drillability and hardness of the rock, for example, according to the following table.
  • the relationship between the impact energy W 0 required to break the rock and the compressive strength of the rock is determined.
  • a regression curve of the relationship between the impact energy W 0 required to break the rock and the compressive strength of the rock can be established. Therefore, after the rock compressive strength of the formation is determined, the value of the minimum impact energy W 0 required to break the rock can be determined according to the above relationship curve.
  • W 0 0.0067P anti 2 +0.2196P anti +35.571.
  • the value of the preset impact energy W for drilling operations can be determined according to the value of the minimum impact energy W 0 required for breaking the rock.
  • the value of the preset impact energy W may be substantially equal to the value of the minimum impact energy W 0 or, as required, may be greater than the value of the minimum impact energy W 0.
  • the third step is to calculate the minimum weight-on-bit P 1 required for drilling according to the determined value of the preset impact work W.
  • the minimum weight-on-bit P 1 required for the drilling is the pressure applied by the drilling tool 1 on the surface phase by the operator during construction.
  • P 1 is the minimum weight on bit required for drilling
  • W is the preset impact energy
  • h is the stroke of the impactor
  • L p is the length of the drill rod
  • E p is the modulus of elasticity of the drill rod
  • L c is the length of the drill collar
  • a c is the cross-sectional area of the drill collar
  • E c is the elastic modulus of the drill collar.
  • the power source such as screw motor and turbodrill
  • the driving rod can be determined according to the minimum weight-on-bit P 1 34.
  • the torque value required for work and thereby determine the power source model and the parameters of the drive rod 34, and then select and determine all drilling parameters according to the power source design manual.
  • drilling parameters include weight on bit, displacement, rotational speed and so on.
  • the key structural parameters of the rotating rod 43 and the impact sleeve 44 of the core component of the tool are determined according to the minimum weight on bit P 1 and the stroke h.
  • the key structural parameters include the number of teeth and the tooth height of the lower driving tooth and the upper driven tooth.
  • the value of the minimum WOB P 1 can also be preset, and the value of the preset impact work W can be determined according to the value of the preset minimum WOB P 1. Then, the value of the preset impact energy W is compared with the value of the minimum impact energy W 0 . If the value of the preset impact energy W is substantially greater than or equal to the value of the minimum impact energy W 0 , then the value of the preset minimum WOB P 1 can be used in subsequent work. Otherwise, reset the value of the minimum weight on bit P 1 and/or the value of at least one of the above parameters, and recalculate until the value of the preset impact energy W is substantially greater than or equal to the value of the minimum impact energy W 0 Value.
  • the above-mentioned drilling tool 1 is particularly suitable for vertical well drilling in a hard formation environment with a depth of more than several kilometers.
  • the length of the drill rod is at least ten times the stroke h.
  • the rigidity of the drill pipe is relatively small, which can be considered as an elastic drill string.
  • the deformation is mainly caused by the drill pipe part. produce.
  • the increased thrust required to push up a certain stroke decreases rapidly with the increase of drill rods.
  • the calculation results show that only 100m drill rods need to be connected, and the required increased thrust rapidly drops from 17.92t to 4.38t. Then gradually tend to 0.
  • the drilling tool 1 of the present invention is based on the characteristics of composite dual-drive and the upstream drilling tool 10 for elastic energy storage.
  • the upstream drilling tool 10 can produce compression and rebound.
  • the potential energy causes the downstream drill bit to generate a countermeasure against the formation.
  • the impact of this reciprocation forming a comprehensive effect of high-speed rotation and high-frequency impact. Therefore, the drilling tool 1 of the present invention has the advantages of high rock breaking frequency, high strength, and high efficiency, and has a high speed-increasing effect.
  • the upstream drilling tool 10 can provide much greater elastic compression. As a result, the downstream drill bit is allowed to produce relatively large impacts both in frequency and amplitude. This is more conducive to accelerating the drilling speed and drilling efficiency of the drilling tool 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Abstract

一种钻井工具及确定其参数的方法,该钻井工具(1)包括:上游钻具(10);下游钻头;以及冲击器(30),所述冲击器(30)连接在所述上游钻具(10)和所述下游钻头之间;在第一状态下,所述冲击器(30)使所述上游钻具(10)产生弹性压缩,在第二状态下,所述上游钻具(10)释放弹性压缩,通过所述冲击器(30)而对所述下游钻头施加冲击。这种钻井工具寿命长,并能有效降低钻井成本。

Description

钻井工具及确定其参数的方法
相关申请的交叉引用
本申请要求享有于2019年12月16日提交的名称为“钻井工具及确定其参数的方法”的中国专利申请CN 201911295614.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及钻井技术领域,特别是涉及一种钻井工具。本发明还涉及一种用于确定该钻井工具的参数的方法。该钻井工具可以用于石油天然气勘探开发中钻井提速,亦可用于矿山、采石、地质勘探、水井、地热等领域钻井提速。
背景技术
随着陆地深井超深井钻井、深水海洋钻井、页岩油/气开采、干热岩地热资源开发,能源开发及科学钻探领域不断拓宽,钻遇地层更加古老,岩石可钻性差,钻进效率很低,直接导致钻进成本逐渐升高,对钻井提速的需求日趋强烈。旋冲钻井技术是快速钻进的有效方法之一,利用各种冲击钻井工具,通过钻井液驱动冲锤产生高频冲击动载,使岩石产生体积破碎,从而提高破岩效率。该类技术自诞生以来就得到了较快的发展。
我国近年来在各种钻井技术上广泛开展研究,已经在部分领域取得了突破;尤其冲击钻井领域,研制出多种冲击钻井工具,初步见到了良好的提速前景,但技术普遍不成熟,目前各类冲击钻井装置在石油钻井应用中的寿命问题始终是制约该技术发展的瓶颈问题。
因此,需要一种能改变上述的传统冲击钻井工具的提速机理的钻井工具。
发明内容
针对上述问题的部分或者全部,本发明提出了一种钻井工具。本发明还提出了一种用于确定该钻井工具的参数的方法。该钻井工具改变传统冲击钻井工具的提速机理,结合旋冲钻井和弹性储能原理,使钻井技术出现了重大突破,尤其 是应用于深井超深井下部难钻地层,更是具有显著的提速提效效果与良好的应用前景。该钻井工具更是使用耐用,使用寿命长。
根据本发明的第一方面,提出了一种钻井工具,包括:上游钻具;下游钻头;以及冲击器,所述冲击器连接在所述上游钻具和所述下游钻头之间;在第一状态下,所述冲击器使所述上游钻具产生弹性压缩,在第二状态下,所述上游钻具释放弹性压缩,通过所述冲击器而对所述下游钻头施加冲击。
在冲击器的作用下,上游钻具可发生弹性压缩。上游钻具的弹性压缩在释放时又会为冲击器提供冲击。该冲击会传递至下游钻头处,以使下游钻头能冲击向地层。由此,钻头可在旋转钻进的同时对地层产生冲击,以更加容易地破碎地层。通过这种设置,更有利于提高钻进效率,并降低钻进成本。
在一个实施例中,所述冲击器包括:旋转驱动部,所述旋转驱动部构造为能进行围绕其轴线的旋转;旋转工作部,所述旋转工作部的上端与所述旋转驱动部的下端相接合,所述旋转工作部的下端与所述下游钻头相连,所述旋转工作部能被所述旋转驱动部驱动着进行围绕其轴线的旋转,并能相对于所述旋转驱动部沿轴向移动;以及冲击发生部,所述冲击发生部套设在所述旋转工作部之外,所述冲击发生部的上端与所述上游钻具相抵,所述冲击发生部的下端与所述旋转工作部相抵;在第一状态下,所述冲击发生部向上游移动而使所述上游钻具发生弹性压缩,在第二状态下,所述上游钻具释放弹性压缩,使得所述冲击发生部向下游移动而向所述旋转工作部施加冲击。
在一个实施例中,所述旋转驱动部包括筒状的驱动杆,所述驱动杆的上端与动力源相接合,所述旋转工作部包括筒状的旋转杆,所述旋转杆的上端与所述驱动杆的下端通过驱动键接合,所述旋转杆的下端与所述下游钻头相连,所述旋转杆的上端插入到所述驱动杆的下端内,在所述旋转杆的上端外侧构造有沿着所述旋转杆的轴向方向延伸的所述驱动键,在所述驱动杆的下端内侧构造有沿着所述驱动杆的轴线方向延伸的驱动槽,所述驱动键配合在所述驱动槽内,使得所述旋转杆在周向上相对于所述驱动杆固定,并在轴向上能相对于所述驱动杆移动。
在一个实施例中,所述冲击发生部包括冲击套筒,所述冲击套筒套设在所述旋转杆的外侧,所述冲击套筒包括内径较小的第一套筒段,以及内径较大的第二套筒段,所述第二套筒段连接在所述第一套筒段之下,在所述第一套筒段和所述第二套筒段之间的连接处的所述冲击套筒的内侧形成上从动齿;所述旋转杆包 括外径较小的第一旋转段,以及外径较大的第二旋转段,所述第二旋转段连接在所述第一旋转段之下,在所述第二旋转段和所述第一旋转段之间的连接处的所述旋转杆的外侧形成下驱动齿;所述上从动齿和所述下驱动齿相匹配,在所述旋转杆相对于所述冲击套筒发生旋转时,在所述上从动齿和所述下驱动齿的配合下,所述冲击套筒相对于所述旋转杆而发生轴向的往复移动。
在一个实施例中,所述上从动齿和所述下驱动齿构造有沿与旋转方向相反的方向向上游倾斜的上行齿段,以及与所述上行齿段相连的沿与旋转方向相反的方向向下游倾斜的下行齿段,所述上行齿段的倾斜度小于所述下行齿段的倾斜度。
在一个实施例中,所述旋转杆还包括连接在所述第二旋转段下端的第三旋转段,所述第三旋转段的外径大于所述第二旋转段的外径,在所述第二旋转段和所述第三旋转段之间形成朝向上游的冲击台阶,所述冲击套筒的下端与所述冲击台阶相对并能与所述冲击台阶发生冲击,在所述冲击套筒的下端与所述冲击台阶相接触时,所述上从动齿与所述下驱动齿在轴向上存在间隙。
在一个实施例中,在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体与所述冲击套筒通过定向键而滑动式接合,所述外壳体的上端与所述上游钻具相连,其中,在所述冲击套筒的外侧构造有沿轴向方向延伸的所述定向键,在所述外壳体的内侧构造有沿轴向方向延伸的定向槽,所述定向键配合到所述定向槽内,使得所述冲击套筒在周向上相对于所述外壳体固定,并在轴向上能相对于所述外壳体移动。
在一个实施例中,所述外壳体包括与所述上游钻具相连的上壳体部分和连接在所述上壳体部分之下的下壳体部分,所述驱动杆套的至少一部分设在所述上壳体部分内,在所述上壳体部分和所述驱动杆之间设置有旋转轴承,允许所述驱动杆相对于所述上壳体部分发生转动,所述下壳体部分包围所述冲击套筒,所述上壳体部分的下端插入到所述下壳体部分的上端内,在所述上壳体部分的下端与所述冲击套筒的上端之间设置有支撑套,所述冲击套筒通过所述支撑套而向所述上壳体部分施加力,并由此使所述上游钻具产生弹性压缩。
在一个实施例中,在所述旋转杆的第三旋转段的侧壁上构造有凹槽,在所述凹槽中安装有相对于所述第三旋转段径向向外凸出的限位块,在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体向下延伸至包围所述第三旋转段,在所 述外壳体的下端处构造有径向向内延伸的卡接部,所述限位块位于所述卡接部的上游处并构造为能与所述卡接部相抵以限制所述旋转杆相对于所述外壳体向下游的移动。
根据本发明的第二方面,提出了一种用于确定上述钻井工具的参数的方法,所述上游钻具包括钻杆和连接在所述钻杆之下的钻铤,所述方法包括以下步骤:
根据要被钻进的地层的岩石抗压强度来确定钻进所需的最小冲击功的值;
根据所确定的最小冲击功的值来确定预设冲击功的值,所述预设冲击功的值不低于所述最小冲击功的值;
根据所述预设冲击功的值、通过公式来确定钻井所需的最小钻压,
根据钻井所需的最小钻压来确定动力源和驱动杆工作所需的扭矩值,并由此确定动力源的型号和驱动杆的参数,进而根据动力源手册,选取确定所需钻井参数,该钻井参数包括钻压、排量、转速,或/和根据钻井所需的最小钻压来确定钻井工具的旋转杆和冲击套筒的结构参数,该结构参数包括下驱动齿和上从动齿的齿数、齿高。
与现有技术相比,本发明的优点在于:通过本申请的钻井工具结合了旋冲钻井和弹性储能原理,改变了传统冲击钻井工具的提速机理,能够以较高的频率和较高冲程来对地层进行冲击,由此能够使地层更容易破碎。这能够有效提高钻进效率,并降低钻进成本。另外,该钻井工具应用于深井超深井下部难钻地层时,提速提效的效果更加显著。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1显示了根据本发明的一个实施方案的钻井工具的示意图;
图2显示了图1中的钻井工具的上游钻具的一个实施例;
图3显示了图1中的钻井工具的一部分的局部示意图;
图4显示了图1中的钻井工具的另一部分的局部示意图;
图5显示了图1中的钻井工具的又一部分的局部示意图;
图6显示了图1中的钻井工具的冲击套筒的局部示意图;
图7显示了图1中的钻井工具的旋转杆的局部示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
图1-7显示了根据本发明的钻井工具1的一个实施例。钻井工具1包括由上到下依次设置的上游钻具10、驱动机构20、冲击器30和下游钻头(未显示)。
如图2所示,上游钻具10包括钻杆11、连接在钻杆11下游的钻铤12,以及连接在钻铤12下游的稳定器13。该上游钻具10自身具有一定的弹性,在井深达到一定深度后,对上游钻具10施加一定的压缩力的时候,自身会产生一定位移量的压缩。而这种压缩使得上游钻具10存储有一定的能量,本申请正是利用了这种能量驱动下游的钻头进行冲击破岩,具体过程下文详述。
驱动机构20包括筒状壳体以及包围在筒状壳体之内的动力源。壳体连接在稳定器13的下游处。例如,根据施工所需钻压、排量、扭矩及转速等参数,该驱动机构20可以是常规的包括旁通阀总成、防掉总成、马达总成及万向轴总成的螺杆动力钻具上部总成,亦可以是特制包括特制旁通阀总成、特制防掉总成、特制马达总成及特制万向轴总成的大扭矩结构参数螺杆动力钻具上部总成,还可以是包括带有叶轮组的涡轮节、涡轮万向轴及涡轮轴承节的常规涡轮钻具上部总成,又可以是特制包括带有特制叶轮组的涡轮节、特制涡轮万向轴及特制涡轮轴承节的涡轮钻具上部总成。也就是说,动力源可以是螺杆马达或者涡轮钻具等。上述驱动机构20的结构都是现有的,在此不再赘述。
冲击器30包括旋转驱动部,该旋转驱动部例如可构造为筒状的驱动杆34(图3)。驱动杆34沿着轴向方向延伸,其上游端与动力源相接合,以使得驱动杆能在动力源驱动下转动。如图3所示,冲击器30还包括外壳体。该外壳体包括上壳体部分31和连接在该上壳体部分31之下的下壳体部分41。上壳体部分31的上游端与驱动机构20的筒状壳体相连,由于驱动机构20可以设置为不同的形式,则上壳体部分31的上端与螺杆或涡轮钻具轴承组外壳上端的结构匹配。驱动杆34的至少一部分在上壳体部分31内延伸,在驱动杆34与上壳体部分31之间设置有旋转轴承,其包括通过卡接的方式设置在上壳体部分31内的轴承静套32,以及设置在该轴承静套32与驱动杆34之间并能相对于轴承静套32转动的轴承动套33。由此,驱动杆34可相对于上壳体部分31自由地转动。驱动杆34的下游端延伸到上述下壳体部分41内。
具体地,轴承静套32的上端抵接螺杆或涡轮轴承串外圈(驱动机构20本身 包括轴承串)。同时,在轴承静套32的外壁上设置朝向下游的第二限位台阶321,相对地,在上壳体部分31的内壁上设置朝向上游的第一限位台阶311,安装后,第一限位台阶311与第二限位台阶321配合以达到为轴承静套32轴向限位的目的。上述设置能保证通过轴承静套32顶紧螺杆或涡轮轴承串外圈的效果。轴承动套33比如过盈配合的方式固定连接在驱动杆34的上端外壁上,其上端面抵接螺杆或涡轮轴承串内圈,其下端面抵接驱动杆34的用于安装定位的台肩341。由此,该轴承动套33起到了轴向上顶紧螺杆或涡轮轴承串内圈的作用。通过设置旋转轴承起到了防止驱动杆34和上壳体部分31磨损的作用。另外,轴承静套32的轴向下端相对式设置支撑套42(下文详述),以使得该轴承静套32能起到承上启下顶紧,以及传递力的作用。
在驱动杆34的下游处设置有旋转工作部,该旋转工作部例如可构造为筒状的旋转杆43,该旋转杆43的至少一部分被下壳体部分41所包围。如图1所示,旋转杆43包括从上游到下游依次连接的第一旋转段431、第二旋转段432、第三旋转段433和第四旋转段434。这些旋转段431、432、433和434的内径一致。第一旋转段431的外径小于第二旋转段432的外径,第二旋转段432的外径小于第三旋转段433的外径,第三旋转段433的外径小于第四旋转段434的外径。旋转杆43的上游端(即,如图3所示的第一旋转段431的上游端)插入到驱动杆34的下游端中。在第一旋转段431的外侧壁上构造有沿轴向方向延伸的驱动键431A,在驱动杆34的内侧壁上构造有沿轴向方向延伸的驱动槽。该驱动槽与驱动键431A相匹配,从而在驱动键431A插入到驱动槽内时,旋转杆43能随着驱动杆34一起转动,并且相对于驱动杆34而沿着轴向方向移动。
冲击器30还包括套设在旋转杆43的至少一部分之外的冲击套筒44。如图1和4所示,该冲击套筒44包括上游的第一套筒段441和连接在该第一套筒段441的下游处的第二套筒段442。第一套筒段441和第二套筒段442的外径相一致。第一套筒段441的内径小于第二套筒段422的内径。具体来说,如图1和图4所示,冲击套筒44的第一套筒段441套设在旋转杆43的第一旋转段431的外侧,第二套筒段442套设在第二旋转段432的外侧。旋转杆43可相对于冲击套筒44而发生转动。
如图7所示,在旋转杆43的第一旋转段431和第二旋转段432之间的连接处构造有下驱动齿432B,该下驱动齿432B的齿面大致朝向上方。相应地,如图 6所示,在第一套筒段441和第二套筒段442之间的连接处构造有上从动齿441B,该上从动齿441B的齿面大致朝向下方。在旋转杆43套设在冲击套筒44内时,上从动齿441B和下驱动齿432B相对并彼此配合。上从动齿441B和下驱动齿432B可大体上构造为如图6和7所示的波浪形的形式。随着旋转杆43的转动,在第一状态下,上从动齿441B的波谷与下驱动齿432B的波峰相对。此时,旋转杆43顶着冲击套筒44向上游移动。随着旋转杆43的继续转动,在第二状态下,上从动齿441B的波峰与下驱动齿432B的波峰相对,上从动齿441B的波谷与下驱动齿432B的波谷相对。此时,冲击套筒44沿着轴向方向朝向下游移动而冲击向旋转杆43。在旋转杆43的下游端处安装有上述下游钻头。对旋转杆43的冲击可由此而传递给下游钻头,使得下游钻头在旋转钻进的同时向下冲击地层。
在一个优选的实施例中,波浪式的上从动齿441B和下驱动齿432B包含上行齿段,和与上行齿段相连的下行齿段。如图7所示,下驱动齿432B的上行齿段沿着旋转杆43的与旋转方向相反的方向向上倾斜,而下驱动齿432B的下行齿段沿着旋转杆43的与旋转方向相反的方向向下倾斜。上行齿段的倾斜较为平缓,而下行齿段的倾斜较为陡峭,从而使得冲击套筒44朝向旋转杆43冲击时能具有较大的速度。也就是说,冲击套筒44能相对于旋转杆43以相对缓慢的速度而向上游移动,并能以相对较快的速度而向下冲击旋转杆43。
如图4所示,下壳体部分41套设在冲击套筒44的外侧。在冲击套筒44的外侧壁上构造有沿轴向方向延伸的定向键441A,在下壳体部分41的内侧壁上构造有相应的沿轴向方向延伸的定向槽。在定向键441A插入到定向槽内时,冲击套筒44可相对于下壳体部分41沿轴向方向移动而不能相对于下壳体部分41转动。由此,可有效地限定冲击套筒44的转动,从而能确保冲击套筒44不会随着旋转杆43一起转动,即,能确保旋转杆43相对于冲击套筒44的相对转动。
在一个优选的实施例中,如图4所示,在旋转杆43的第二旋转段432和第三旋转段433之间形成朝向上游的台阶面433B。冲击套筒44的下端面442B与台阶面433B相对。冲击套筒44的下端面442B与旋转杆43的台阶面433B形成冲击面。在冲击套筒44的下端面442B与旋转杆43的台阶面433B相接触时,下驱动齿432B与上从动齿441B之间能存在有间隙。由此,可有效避免下驱动齿432B与上从动齿441B之间发生直接的冲击,从而可避免它们的损坏。
如图3所示,上壳体部分31的下端插入到下壳体部分41的上端内,例如, 两者可以通过钻杆接头螺纹形式连接。轴向上,在上壳体部分31的下端面31A与下壳体部分41内的台阶41A之间设置有筒状的支撑套42。同时,该支撑套42径向向内延伸,以使得支撑套42的上端面能与轴承静套32的下端面相对式设置,支撑套42的下端面与冲击套筒44的上端面相对式设置。在起下钻过程中,支撑套42受到自重作用而落在下壳体部分41内的台阶41A上。在施加钻压,冲击套筒44向上游移动时,冲击套筒44会顶紧并推动支撑套42、上壳体部分31、驱动机构20的筒状壳体一起向上游移动,并由此顶动上游钻具10中的钻杆11和钻铤12,使它们产生沿轴向方向的弹性压缩。此后,包含钻杆11和钻铤12的上游钻具10释放压缩,由此推动冲击套筒44向下游移动以冲击向旋转杆43。
如图5所示,在下壳体部分41的下端还连接有防磨接头47,例如,两者通过螺纹连接的方式固定。该防磨接头47能提高下壳体部分41与旋转杆43之间的耐磨性,以提高整个钻具工具1的使用寿命。该防磨接头47包围旋转杆43的第三旋转段433在防磨接头47与第三旋转段433之间设置有滑动密封件48。由此,在第三旋转段433与防磨接头47之间可发生沿轴向方向的密封的相对移动,防止泥浆外泄。防磨接头47优选地由合金钢镶嵌硬质合金材料或合金钢与S201材料冶金结合或合金钢与DT30材料冶金结合制成,以使其具有足够的耐磨性。
旋转杆43的第四旋转段434处于防磨接头47的下游。在第四旋转段434与第三旋转段433之间形成了朝向上游的台阶面。在冲击套筒44的下端面422B与旋转杆43的台阶面433B相接触时,上述第四旋转段434与第三旋转段433之间的台阶面和防磨接头47的下游端面间隔开。
在一个优选的实施例中,如图5所示,在第三旋转段433的外侧壁上构造有凹槽,在该凹槽内设置有相对于第三旋转段433径向向外凸出的限位块45。径向上,限位块45被夹在第三旋转段433与下壳体部分41之间。防磨接头47的上端插入到下壳体部分41的下端内。由此,防磨接头47的上端面与限位块45相对,能限制旋转杆43相对于防磨接头47的轴向移动范围。
优选地,该限位块45可以构造为两个半圆状的挡瓦。在安装后,两个挡瓦抱在凹槽处的第三旋转段433的外壁上,并通过安装勒线46将挡瓦固定在第三旋转段433的外壁上。在起下钻的过程中,限位块45跟随旋转杆43一起相对于下壳体部分41下落,并坐落在防磨接头47上,对冲击套筒44、旋转杆43以及限位块45起防掉作用。
上述钻井工具1的具体工作过程如下。
首先,将上述钻井工具1下入到要被钻进的井内。在此过程中,旋转杆43相对于驱动杆34向下移动至限位块45与防磨接头47的上端面相抵的位置。
在钻井工具1的下游钻头接触到井底时,继续下放钻井工具1,使得旋转杆43相对于驱动杆34向上移动直到冲击套筒44的上端面抵住支撑套42为止。
然后,可进行钻井。在钻井过程中,下游钻头抵着地层。旋转杆43和下游钻头随着驱动杆34一同转动。同时,冲击套筒44相对于旋转杆43上下往复移动。在冲击套筒44相对于旋转杆43向上游移动时,可使上游钻具10中的钻杆11和钻铤12产生弹性压缩。在冲击套筒44相对于旋转杆43向下游移动时,上述弹性压缩得到释放,冲击套筒44被上游钻具10推动着向下游快速移动而冲击向旋转杆43,并由此使得下游钻头冲击向地层。
在对上述钻井工具1进行设计制造和使用的过程中,先需要计算钻井工具1的最小钻压P 1,再根据最小钻压P 1获取钻井工具的结构参数和钻井参数。
第一步,先根据要被钻进的地层的岩石抗压强度P 来确定钻进所需的最小冲击功W 0的值。
在此过程中,可首先对要进行钻进的地层岩石进行取样,并针对所取得的样品而分析器岩石力学特性。例如,这里可确定样品的岩性、可钻性、硬度等。然后,例如可根据下表而通过岩石的可钻性和硬度来确定岩石的抗压强度P
表1 岩石的硬度、可钻性和抗压强度之间的对应关系表
Figure PCTCN2020114857-appb-000001
另外,可针对要被钻进的地层岩石而进行不同抗压强度下的冲击破碎实验。根据实验结果,确定破碎岩石所需的冲击功W 0与岩石抗压强度之间的关系。例如,可建立破碎岩石所需的冲击功W 0与岩石抗压强度之间的关系回归曲线。由此,在确定了地层的岩石抗压强度之后,可根据上述关系曲线而确定破碎岩石所需的最小冲击功W 0的值。
例如,对于泥岩来说,W 0=0.0034P 2+0.325P +129.91。
例如,对于砂岩来说,W 0=0.0067P 2+0.2196P +35.571。
例如,对于灰岩来说,W 0=0.0081P 2-0.1702P +45.464。
第二步,根据上述破碎岩石所需的最小冲击功W 0的值可确定进行钻井作业的预设冲击功W的值。该预设冲击功W的值可大致上等于最小冲击功W 0的值,或者根据需要,可大于该最小冲击功W 0的值。
第三步,根据所确定的预设冲击功W的值,来计算钻井所需的最小钻压P 1。该钻井所需的最小钻压P 1为作业人员施工时,在地面相钻井工具1所施加的压力。
例如,可用于计算上述最小钻压P 1的公式如下:
Figure PCTCN2020114857-appb-000002
其中,P 1为钻井所需的最小钻压,
W为预设冲击功,
h为所述冲击器的冲程,
L p为所述钻杆的长度,
A p为所述钻杆的横截面积,
E p为所述钻杆的弹性模量,
L c为所述钻铤的长度,
A c为所述钻铤的横截面积,
E c为所述钻铤的弹性模量。
上述冲程h、钻杆长度L p、钻杆横截面积A p、钻杆弹性模量E p、钻铤长度 L c、钻铤横截面积A c、钻铤弹性模量E c等参数可预先设定一个值。如果上述最小钻压P 1的值不符合实际钻井的需要,那么可以重新确定上述参数中的至少一个,并重新进行计算。直到所计算得到的最小钻压P 1在钻井所适用的范围内为止。
第四步,在设计和制造钻井工具1的方法中,在计算得到上述最小钻压P 1之后,可根据该最小钻压P 1来确定动力源(例如螺杆马达和涡轮钻具)和驱动杆34工作所需的扭矩值,并由此确定动力源的型号和驱动杆34的参数,进而根据动力源设计手册,选取确定所有钻井参数。例如,钻井参数包括钻压、排量、转速等。
第五步,根据最小钻压P 1和冲程h来确定工具的核心部件旋转杆43和冲击套筒44的关键结构参数。例如,关键结构参数包括下驱动齿和上从动齿的齿数、齿高等。
作为替代,根据作业现场的需要,也可预设最小钻压P 1的值,并根据该预设的最小钻压P 1的值来确定预设冲击功W的值。然后,将该预设冲击功W的值与最小冲击功W 0的值进行比较。如果预设冲击功W的值基本上大于或等于最小冲击功W 0的值,那么该预设的最小钻压P 1的值就可用于后续的工作中。否则,就重新预设最小钻压P 1的值和/或上述参数中的至少一项的值,并重新进行计算,直到预设冲击功W的值基本上大于或等于最小冲击功W 0的值为止。
上述钻井工具1尤其适用于在深度超过数千米的硬地层环境下的垂直井钻进。钻杆的长度至少为冲程h的十倍。假设,钻柱下部为200m钻铤时,在大于200m加10倍冲程(h)长度的井深中,钻杆的刚度相对较小,可认为是弹性钻柱,此时,变形主要由钻杆部分产生。
例如,推高一定冲程(例如10mm)所需要增加的推力随着钻杆的增多迅速下降,计算结果显示只需要接入100m钻杆,所需增加的推力便由17.92t迅速降到4.38t,然后逐渐趋于0。
本发明的钻井工具1根据复合双驱和上游钻具10弹性蓄能特点,在工作中,上游钻具10能产生压缩和回弹,且在下行回弹过程时,势能使得下游钻头产生 对地层的冲击,如此往复,形成高速旋转加高频冲击的综合效果。由此,本发明的钻井工具1具有岩石破碎频率、强度和效率高等优点,具备较高的提速效果。相比于本领域常用的弹性件(例如,螺旋弹簧、碟簧等)而言,上游钻具10能够提供大得多的弹性压缩。由此,允许下游钻头产生频率和幅度都相对较大的冲击。这更加有利于加快钻井工具1的钻进速度和钻进效率。
另外,上述钻井工具1的结构不存在薄弱部分,由此有利于提高钻井工具1的结构稳定性,延长钻井工具1的使用寿命。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种钻井工具,包括:
    上游钻具;
    下游钻头;以及
    冲击器,所述冲击器连接在所述上游钻具和所述下游钻头之间;
    在第一状态下,所述冲击器使所述上游钻具产生弹性压缩,
    在第二状态下,所述上游钻具释放弹性压缩,通过所述冲击器而对所述下游钻头施加冲击。
  2. 根据权利要求1所述的钻井工具,其特征在于,所述冲击器包括:
    旋转驱动部,所述旋转驱动部构造为能进行围绕其轴线的旋转;
    旋转工作部,所述旋转工作部的上端与所述旋转驱动部的下端相接合,所述旋转工作部的下端与所述下游钻头相连,所述旋转工作部能被所述旋转驱动部驱动着进行围绕其轴线的旋转,并能相对于所述旋转驱动部沿轴向移动;以及
    冲击发生部,所述冲击发生部套设在所述旋转工作部之外,所述冲击发生部的上端与所述上游钻具相抵,所述冲击发生部的下端与所述旋转工作部相抵;
    在第一状态下,所述冲击发生部向上游移动而使所述上游钻具发生弹性压缩,
    在第二状态下,所述上游钻具释放弹性压缩,使得所述冲击发生部向下游移动而向所述旋转工作部施加冲击。
  3. 根据权利要求2所述的钻井工具,其特征在于,所述旋转驱动部包括筒状的驱动杆,所述驱动杆的上端与动力源相接合,
    所述旋转工作部包括筒状的旋转杆,所述旋转杆的上端与所述驱动杆的下端通过驱动键接合,所述旋转杆的下端与所述下游钻头相连,
    所述旋转杆的上端插入到所述驱动杆的下端内,在所述旋转杆的上端外侧构造有沿着所述旋转杆的轴向方向延伸的所述驱动键,在所述驱动杆的下端内侧构造有沿着所述驱动杆的轴线方向延伸的驱动槽,所述驱动键配合在所述驱动槽内,使得所述旋转杆在周向上相对于所述驱动杆固定,并在轴向上能相对于所述驱动杆移动。
  4. 根据权利要求3所述的钻井工具,其特征在于,所述冲击发生部包括冲击套筒,所述冲击套筒套设在所述旋转杆的外侧,所述冲击套筒包括内径较小的 第一套筒段,以及内径较大的第二套筒段,所述第二套筒段连接在所述第一套筒段之下,在所述第一套筒段和所述第二套筒段之间的连接处的所述冲击套筒的内侧形成上从动齿;
    所述旋转杆包括外径较小的第一旋转段,以及外径较大的第二旋转段,所述第二旋转段连接在所述第一旋转段之下,在所述第二旋转段和所述第一旋转段之间的连接处的所述旋转杆的外侧形成下驱动齿;
    所述下驱动齿和所述上从动齿相匹配,在所述旋转杆相对于所述冲击套筒发生旋转时,在所述下驱动齿和所述上从动齿的配合下,所述冲击套筒相对于所述旋转杆而发生轴向的往复移动。
  5. 根据权利要求4所述的钻井工具,其特征在于,所述上从动齿和所述下驱动齿构造有沿与旋转方向相反的方向向上游倾斜的上行齿段,以及与所述上行齿段相连的沿与旋转方向相反的方向向下游倾斜的下行齿段,所述上行齿段的倾斜度小于所述下行齿段的倾斜度。
  6. 根据权利要求4所述的钻井工具,其特征在于,所述旋转杆还包括连接在所述第二旋转段下端的第三旋转段,所述第三旋转段的外径大于所述第二旋转段的外径,在所述第二旋转段和所述第三旋转段之间形成朝向上游的冲击台阶,所述冲击套筒的下端与所述冲击台阶相对并能与所述冲击台阶发生冲击,
    在所述冲击套筒的下端与所述冲击台阶相接触时,所述上从动齿与所述下驱动齿在轴向上存在间隙。
  7. 根据权利要求4所述的钻井工具,其特征在于,在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体与所述冲击套筒通过定向键而滑动式接合,所述外壳体的上端与所述上游钻具相连,
    其中,在所述冲击套筒的外侧构造有沿轴向方向延伸的所述定向键,在所述外壳体的内侧构造有沿轴向方向延伸的定向槽,所述定向键配合到所述定向槽内,使得所述冲击套筒在周向上相对于所述外壳体固定,并在轴向上能相对于所述外壳体移动。
  8. 根据权利要求7所述的钻井工具,其特征在于,所述外壳体包括与所述上游钻具相连的上壳体部分和连接在所述上壳体部分之下的下壳体部分,所述驱动杆套的至少一部分设在所述上壳体部分内,在所述上壳体部分和所述驱动杆之间设置有旋转轴承,允许所述驱动杆相对于所述上壳体部分发生转动,
    所述下壳体部分包围所述冲击套筒,
    所述上壳体部分的下端插入到所述下壳体部分的上端内,在所述上壳体部分的下端与所述冲击套筒的上端之间设置有支撑套,所述冲击套筒通过所述支撑套而向所述上壳体部分施力,并由此使所述上游钻具产生弹性压缩。
  9. 根据权利要求6所述的钻井工具,其特征在于,在所述旋转杆的第三旋转段的侧壁上构造有凹槽,在所述凹槽中安装有相对于所述第三旋转段径向向外凸出的限位块,
    在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体向下延伸至包围所述第三旋转段,在所述外壳体的下端处构造有径向向内延伸的卡接部,所述限位块位于所述卡接部的上游处并构造为能与所述卡接部相抵以限制所述旋转杆相对于所述外壳体向下游的移动。
  10. 一种用于确定钻井工具的参数的方法,所述钻井工具包括上游钻具、下游钻头和冲击器,所述冲击器连接在所述上游钻具和所述下游钻头之间,在第一状态下,所述冲击器使所述上游钻具产生弹性压缩,在第二状态下,所述上游钻具释放弹性压缩,通过所述冲击器而对所述下游钻头施加冲击,
    所述上游钻具包括钻杆和连接在所述钻杆之下的钻铤,所述方法包括以下步骤:
    根据要被钻进的地层的岩石抗压强度来确定钻进所需的最小冲击功的值;
    根据所确定的最小冲击功的值来确定预设冲击功的值,所述预设冲击功的值不低于所述最小冲击功的值;
    根据所述预设冲击功的值来确定钻井所需的最小钻压,
    根据钻井所需的最小钻压来确定动力源和驱动杆工作所需的扭矩值,并由此确定动力源的型号和驱动杆的参数,进而根据动力源手册,选取确定所需钻井参数,该钻井参数包括钻压、排量、转速,或/和根据钻井所需的最小钻压来确定钻井工具的旋转杆和冲击套筒的结构参数,该结构参数包括下驱动齿和上从动齿的齿数、齿高。
  11. 根据权利要求10所述的方法,其特征在于,所述冲击器包括:
    旋转驱动部,所述旋转驱动部构造为能进行围绕其轴线的旋转;
    旋转工作部,所述旋转工作部的上端与所述旋转驱动部的下端相接合,所述旋转工作部的下端与所述下游钻头相连,所述旋转工作部能被所述旋转驱动部驱 动着进行围绕其轴线的旋转,并能相对于所述旋转驱动部沿轴向移动;以及
    冲击发生部,所述冲击发生部套设在所述旋转工作部之外,所述冲击发生部的上端与所述上游钻具相抵,所述冲击发生部的下端与所述旋转工作部相抵;
    在第一状态下,所述冲击发生部向上游移动而使所述上游钻具发生弹性压缩,
    在第二状态下,所述上游钻具释放弹性压缩,使得所述冲击发生部向下游移动而向所述旋转工作部施加冲击。
  12. 根据权利要求11所述的方法,其特征在于,所述旋转驱动部包括筒状的驱动杆,所述驱动杆的上端与动力源相接合,
    所述旋转工作部包括筒状的旋转杆,所述旋转杆的上端与所述驱动杆的下端通过驱动键接合,所述旋转杆的下端与所述下游钻头相连,
    所述旋转杆的上端插入到所述驱动杆的下端内,在所述旋转杆的上端外侧构造有沿着所述旋转杆的轴向方向延伸的所述驱动键,在所述驱动杆的下端内侧构造有沿着所述驱动杆的轴线方向延伸的驱动槽,所述驱动键配合在所述驱动槽内,使得所述旋转杆在周向上相对于所述驱动杆固定,并在轴向上能相对于所述驱动杆移动。
  13. 根据权利要求12所述的方法,其特征在于,所述冲击发生部包括冲击套筒,所述冲击套筒套设在所述旋转杆的外侧,所述冲击套筒包括内径较小的第一套筒段,以及内径较大的第二套筒段,所述第二套筒段连接在所述第一套筒段之下,在所述第一套筒段和所述第二套筒段之间的连接处的所述冲击套筒的内侧形成上从动齿;
    所述旋转杆包括外径较小的第一旋转段,以及外径较大的第二旋转段,所述第二旋转段连接在所述第一旋转段之下,在所述第二旋转段和所述第一旋转段之间的连接处的所述旋转杆的外侧形成下驱动齿;
    所述下驱动齿和所述上从动齿相匹配,在所述旋转杆相对于所述冲击套筒发生旋转时,在所述下驱动齿和所述上从动齿的配合下,所述冲击套筒相对于所述旋转杆而发生轴向的往复移动。
  14. 根据权利要求13所述的方法,其特征在于,所述上从动齿和所述下驱动齿构造有沿与旋转方向相反的方向向上游倾斜的上行齿段,以及与所述上行齿段相连的沿与旋转方向相反的方向向下游倾斜的下行齿段,所述上行齿段的倾斜 度小于所述下行齿段的倾斜度。
  15. 根据权利要求13所述的方法,其特征在于,所述旋转杆还包括连接在所述第二旋转段下端的第三旋转段,所述第三旋转段的外径大于所述第二旋转段的外径,在所述第二旋转段和所述第三旋转段之间形成朝向上游的冲击台阶,所述冲击套筒的下端与所述冲击台阶相对并能与所述冲击台阶发生冲击,
    在所述冲击套筒的下端与所述冲击台阶相接触时,所述上从动齿与所述下驱动齿在轴向上存在间隙。
  16. 根据权利要求13所述的方法,其特征在于,在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体与所述冲击套筒通过定向键而滑动式接合,所述外壳体的上端与所述上游钻具相连,
    其中,在所述冲击套筒的外侧构造有沿轴向方向延伸的所述定向键,在所述外壳体的内侧构造有沿轴向方向延伸的定向槽,所述定向键配合到所述定向槽内,使得所述冲击套筒在周向上相对于所述外壳体固定,并在轴向上能相对于所述外壳体移动。
  17. 根据权利要求16所述的方法,其特征在于,所述外壳体包括与所述上游钻具相连的上壳体部分和连接在所述上壳体部分之下的下壳体部分,所述驱动杆套的至少一部分设在所述上壳体部分内,在所述上壳体部分和所述驱动杆之间设置有旋转轴承,允许所述驱动杆相对于所述上壳体部分发生转动,
    所述下壳体部分包围所述冲击套筒,
    所述上壳体部分的下端插入到所述下壳体部分的上端内,在所述上壳体部分的下端与所述冲击套筒的上端之间设置有支撑套,所述冲击套筒通过所述支撑套而向所述上壳体部分施力,并由此使所述上游钻具产生弹性压缩。
  18. 根据权利要求15所述的方法,其特征在于,在所述旋转杆的第三旋转段的侧壁上构造有凹槽,在所述凹槽中安装有相对于所述第三旋转段径向向外凸出的限位块,
    在所述冲击套筒的外侧套设有筒状的外壳体,所述外壳体向下延伸至包围所述第三旋转段,在所述外壳体的下端处构造有径向向内延伸的卡接部,所述限位块位于所述卡接部的上游处并构造为能与所述卡接部相抵以限制所述旋转杆相对于所述外壳体向下游的移动。
PCT/CN2020/114857 2019-12-16 2020-09-11 钻井工具及确定其参数的方法 WO2021120720A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020409630A AU2020409630A1 (en) 2019-12-16 2020-09-11 Well drilling tool and method for determining parameter thereof
US17/757,053 US12031410B2 (en) 2019-12-16 2020-09-11 Well drilling tool and method for determining parameter thereof
CA3163628A CA3163628A1 (en) 2019-12-16 2020-09-11 Well drilling tool and method for determining parameter thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911295614.6A CN112983255B (zh) 2019-12-16 2019-12-16 钻井工具及确定其参数的方法
CN201911295614.6 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021120720A1 true WO2021120720A1 (zh) 2021-06-24

Family

ID=76343416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114857 WO2021120720A1 (zh) 2019-12-16 2020-09-11 钻井工具及确定其参数的方法

Country Status (4)

Country Link
CN (1) CN112983255B (zh)
AU (1) AU2020409630A1 (zh)
CA (1) CA3163628A1 (zh)
WO (1) WO2021120720A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222021A1 (en) * 2002-12-07 2004-11-11 Halliburton Energy Services, Inc. Rotary impact well drilling system and method
CN203201472U (zh) * 2013-04-22 2013-09-18 邵金安 入岩钻机及其旋切冲击钻进系统
CN105239929A (zh) * 2015-11-24 2016-01-13 西南石油大学 利用旋冲振荡加压实现高效破岩的井下工具
WO2016149795A1 (en) * 2015-03-25 2016-09-29 Dreco Energy Services Ulc Impact-driven downhole motors
CN106545304A (zh) * 2017-01-12 2017-03-29 长江大学 一种防蹩钻钻井装置
CN108798532A (zh) * 2018-05-31 2018-11-13 中国石油集团长城钻探工程有限公司 一种井下压扭平衡工具
CN208734274U (zh) * 2018-07-17 2019-04-12 中石化石油工程技术服务有限公司 一种旋冲螺杆传动轴总成
CN109695423A (zh) * 2018-12-28 2019-04-30 成都理工大学 抑制下部钻柱共振平稳钻压的钻具组合

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958691A (en) * 1989-06-16 1990-09-25 James Hipp Fluid operated vibratory jar with rotating bit
CN105275384B (zh) * 2014-06-26 2018-03-09 中国石油化工股份有限公司 一种冲击钻井装置
CN105525868B (zh) * 2014-09-28 2017-10-10 中国石油化工集团公司 一种脉动式双向冲击器
CN105672873B (zh) * 2016-04-22 2018-05-15 长江大学 一种高频扭转和轴向双向冲击器
CN110410000B (zh) * 2018-04-27 2020-10-20 中国石油化工股份有限公司 一种井下辅助钻井工具
CN109681114B (zh) * 2018-12-21 2023-09-01 武汉亿斯达工具有限公司 应用于pdc钻头提速的双向高频扭力冲击器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222021A1 (en) * 2002-12-07 2004-11-11 Halliburton Energy Services, Inc. Rotary impact well drilling system and method
CN203201472U (zh) * 2013-04-22 2013-09-18 邵金安 入岩钻机及其旋切冲击钻进系统
WO2016149795A1 (en) * 2015-03-25 2016-09-29 Dreco Energy Services Ulc Impact-driven downhole motors
CN105239929A (zh) * 2015-11-24 2016-01-13 西南石油大学 利用旋冲振荡加压实现高效破岩的井下工具
CN106545304A (zh) * 2017-01-12 2017-03-29 长江大学 一种防蹩钻钻井装置
CN108798532A (zh) * 2018-05-31 2018-11-13 中国石油集团长城钻探工程有限公司 一种井下压扭平衡工具
CN208734274U (zh) * 2018-07-17 2019-04-12 中石化石油工程技术服务有限公司 一种旋冲螺杆传动轴总成
CN109695423A (zh) * 2018-12-28 2019-04-30 成都理工大学 抑制下部钻柱共振平稳钻压的钻具组合

Also Published As

Publication number Publication date
CN112983255B (zh) 2022-02-01
US20230020998A1 (en) 2023-01-19
CA3163628A1 (en) 2021-06-24
CN112983255A (zh) 2021-06-18
AU2020409630A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
RU2126482C1 (ru) Система для бурения по криволинейному пути и используемое в ней роторное буровое долото
CN102705140B (zh) 钻井动力工具、钻井工具及形成井眼的钻井方法
CN105239929A (zh) 利用旋冲振荡加压实现高效破岩的井下工具
CN103174380B (zh) 一种弹簧蓄能激发式旋转冲击钻井装置
CN106121513A (zh) 一种复合冲击钻井工具
CN208010276U (zh) 一种井下基于磁力的旋转冲击工具
CN101581196B (zh) 具有冲击功能的螺杆钻具传动轴总成
US20030230430A1 (en) Pneumatic percussion hammer for generic rotary fluid motors
CN106958416B (zh) 一种冲击钻井工具
CN105735929A (zh) 利用冲击功能实现高效破岩的新型振荡器
CN106499340A (zh) 一种液力脉冲发生装置及其操作方法
CN206129207U (zh) 基于涡轮与凸轮的新型振荡冲击器
CN108661550B (zh) 基于涡轮与弹簧的单向式冲击器
CN201443299U (zh) 具有冲击功能的螺杆钻具传动轴总成
WO2021120721A1 (zh) 钻井提速工具
CN210460490U (zh) 一种高频周向冲击式螺杆钻具结构
WO2021120720A1 (zh) 钻井工具及确定其参数的方法
CN205445462U (zh) 液力击振步进式破岩装置
CN108442879B (zh) 具有轴向冲击功能的分体式钻头
CN108661551B (zh) 基于叶轮与弹簧的扭转振动工具
CN207485369U (zh) 一种大位移井减摩减扭组合钻柱
CN216240402U (zh) 一种水力复合振动冲击器
US12031410B2 (en) Well drilling tool and method for determining parameter thereof
RU2818266C1 (ru) Инструмент для бурения скважин и способ определения его параметров
CN209586273U (zh) 高频转矩振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163628

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020409630

Country of ref document: AU

Date of ref document: 20200911

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522432867

Country of ref document: SA