WO2021120575A1 - Real-time simulation and test method for control system of autonomous driving vehicle - Google Patents

Real-time simulation and test method for control system of autonomous driving vehicle Download PDF

Info

Publication number
WO2021120575A1
WO2021120575A1 PCT/CN2020/098279 CN2020098279W WO2021120575A1 WO 2021120575 A1 WO2021120575 A1 WO 2021120575A1 CN 2020098279 W CN2020098279 W CN 2020098279W WO 2021120575 A1 WO2021120575 A1 WO 2021120575A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
vehicle
control system
simulation
control algorithm
Prior art date
Application number
PCT/CN2020/098279
Other languages
French (fr)
Inventor
Jiafeng CHAI
Pingliang HAN
Mingcong LI
Zhishan LI
Original Assignee
Suzhou Zhijia Science & Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Zhijia Science & Technologies Co., Ltd. filed Critical Suzhou Zhijia Science & Technologies Co., Ltd.
Publication of WO2021120575A1 publication Critical patent/WO2021120575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/3668Software testing
    • G06F11/3672Test management
    • G06F11/3688Test management for test execution, e.g. scheduling of test suites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Feedback Control In General (AREA)

Abstract

An example of the present disclosure includes a real-time simulation and test method for a control system of an autonomous driving vehicle. The example method comprises the following blocks. Providing a vehicle dynamics model (S100). Carrying out a simulation test and a field test (S200). Providing an input scenario library (S300). Providing a vehicle dynamics model library (S400). Designing a control algorithm and verifying a stability of the control algorithm (S500). Using a Monte Carlo method to carry out a traversal test and determining whether analysis simulation results of the automated traversal test meet robustness and stability requirements of the control system (S600).

Description

REAL-TIME SIMULATION AND TEST METHOD FOR CONTROL SYSTEM OF AUTONOMOUS DRIVING VEHICLE TECHNICAL FIELD
The present disclosure belongs to the field of autonomous driving of motor vehicles, and in particular to a real-time simulation and test method for a control system of an autonomous driving vehicle, such as a truck.
BACKGROUND
Autonomous driving may be implemented at various different levels of automation. The first level is driver assistance, which can achieve transverse (steering) or longitudinal (throttle brake) control. The second level is partially autonomous driving, which can achieve transverse and longitudinal controls. The third level is conditionally autonomous driving, which can realize autonomous driving under certain conditions. The fourth level is highly autonomous driving, which can realize autonomous driving on most road sections, but need a driver to take over driving in some special scenarios. The fifth level is completely driverless, that is, no manual takeover is needed.
As higher levels of autonomous driving are implemented, this places ever greater commands on the vehicle control system. For example, the design of advanced autonomous driving of L4 (level 4) or higher have higher requirements on the control system than the current L2 (level 2) assisted driving. The traditional assisted driving LKA (lane keeping assist) and ACC (full-speed adaptive cruise control) designs pay more attention to the comfort of passengers. Due to the limitation of the use scenarios, the need of a driver to take over driving and other factors, the design of the control system does not need to consider too much stability and robustness requirements. At some control system design boundaries, such as under operation conditions of emergency obstacle avoidance or wet roads, autonomous driving is not allowed. However, advanced autonomous driving which is to operate with limited or no driver assistance has to cover a more comprehensive range of scenarios and operation conditions. This puts ever higher requirements on the robustness and reliability of the design of the vehicle control system. It is a challenge to ensure that the control system is designed to be stable under different operation conditions and able to prevent the vehicle from losing control, especially as the vehicle ages and wears and the operating conditions change.
SUMMARY
Afirst aspect of the present disclosure provides a real-time simulation and test method for a control system of an autonomous driving vehicle, the method comprising the following blocks:
S100: providing a vehicle dynamics model;
S200: using a control algorithm to carry out a simulation test and a field test to determine whether the field test and the simulation test have reached the same performance, if yes, then proceeding to the next block S300; and if not, returning to the previous block S100;
S300: providing an input scenario library that covers a plurality of driving scenarios;
S400: providing a vehicle dynamics model library including the vehicle dynamics model established in S100;
S500: designing a control algorithm and verifying a stability of the control algorithm, wherein the design of the control algorithm and the verification of the stability of the control algorithm are performed according to a vehicle dynamics model under normal operation conditions;
S600: using a Monte Carlo shooting method to carry out an automated traversal test and determining whether analysis simulation results of the automated traversal test meet robustness and stability requirements of the control system, if yes, then proceeding to the next block S700; and if not, returning to block S500; and
S700: carrying out a field test, and if the design requirements are not met, then returning to block S500 to produce a new design for the control algorithm. However, if the design requirements are met, then the design of the control algorithm may be considered to be completed.
The above method helps to design a control system which may be stable under a large variety of operating conditions and may shorten the development cycle of the control system. Each block of the method may be executed by a computing device including a processor for example by executing machine readable instructions stored on a non-transitory computer readable storage medium.
A second aspect of the present disclosure provides a non-transitory computer readable storage medium storing machine readable instructions which are executable by a processor to perform the method of the first aspect of the present disclosure.
Further features and aspects of the present disclosure are provided in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic diagram of a real-time simulation and test method for a control system of an autonomous driving vehicle according to an example of the present disclosure.
Fig. 2 is a working flowchart of an embodiment of a real-time simulation and test method for a control system of an autonomous vehicle according to an example of the present disclosure.
Fig. 3 is a diagram of an inclusion relationship of a simulation scenario set of a real-time simulation and test method for a control system of an autonomous driving vehicle according to an example of the present disclosure.
Fig. 4 is a diagram of the inclusion relationship of vehicle models of a real-time simulation and test method for a control system of an autonomous driving vehicle according to an example of the present disclosure.
DETAILED DESCRIPTION OF PREFERRED IMPLEMENTATIONS
A real-time simulation and test method for a control system of an autonomous driving truck according to the present disclosure is illustrated below with reference to Figs. 1-4. It should be noted that the embodiments described below with reference to the drawings are exemplary and aim to explain the present invention, and cannot be interpreted as a restriction on the present disclosure.
The working principle of the present disclosure is shown in Fig. 1, which is mainly divided into several parts which may be implemented in parallel:
1. control input scenario library;
2. control algorithm node;
3. dynamics node;
4. Monte Carlo automated test evaluation tool.
The focus of the present disclosure is on how to efficiently verify the design, stability and robustness of an autonomous vehicle control system. The approach described below may help to verify the stability of the control algorithm throughout the life cycle of the vehicle, improve the stability and robustness of the design of the control algorithm, and shorten the algorithm development cycle. Further, the approach described below allows much of the design and verification to be carried out by computer simulation. By this approach, the number of field tests (collecting data from automated driving of the vehicle in the field) may be reduced, thus saving manpower and material resources and reducing the risk of accidents which may occur during such field tests.
First, a relatively accurate vehicle dynamics model may be established. The vehicle dynamics model may include an input error disturbance modeland an output error noise model. An input error disturbance model is a model which simulates unusual or abnormal inputs and thus can test the stability of the vehicle dynamics model over a wider range of inputs. An output error noise model may add noise to outputs from the vehicle dynamics model to simulate such noise in the real world.
A simulation platform may be verified and optimised to achieve a better consistency with the field test. Then, on this basis, a control input scenario library and a scenario library for the vehicle dynamics model are established. These libraries may be enhanced or perfected by incorporating a wide range of inputs or scenarios optimized such that it is enough to cover the changes of model parameters and the scenarios that can be experienced throughout the life cycle of the vehicle. Finally, the Monte Carlo automated test evaluation tool, that is, a Monte Carlo shooting method, may be used to carry out an automated test of the control algorithm covering all the combinations of the scenario libraries and the dynamics library, and the stability and robustness of the control algorithm are judged to determine whether the design requirements are met.
An example of a real-time simulation and test method for a control system of an autonomous driving vehicle, such as a truck, is as shown in Fig. 2. The real-time simulation and test method comprises the following blocks:
S100: providing a vehicle dynamics model; and modeling vehicle dynamics under normal operation conditions. To make the simulation more accurate, an error interference model at the input and a noise model at the output may be additionally provided.
S200: using a control algorithm to carry out a simulation test and a field test, and repeatedly performing iterative optimization to determine whether the field test and the simulation test have reached the same performance, if yes, then proceeding to the next block; and if not, returning to the previous block S100, and re-establishing a vehicle dynamics model (which may include an error interference model and a noise model) .
S300: establishing an input scenario library that covers a plurality of driving scenarios. The input scenario library may be enhanced to include sufficient driving scenarios to cover scenarios that may be experienced in the lifetime of the vehicle. The scope of the scenario library is shown in Fig. 3. In general, a simulation scenario set includes field scenarios, including but not limited to weather, operation condition, and function scenarios, for example:
1. different acceleration-cruise-deceleration scenarios;
2. vehicle following scenarios at different speeds;
3. AEB (Autonomous Emergency Braking System) scenarios;
4. vehicle following scenarios;
5. front vehicle emergency cut-in scenarios;
6. scenarios with different turning radii at different speeds; and
7. emergency obstacle avoidance scenarios.
S400: establishing a vehicle dynamics model library. An example scope of the model library is shown in Fig. 4. In general, the simulation scenario set may include scenarios where the parameters of the real vehicle are changed throughout the life cycle under different operation conditions. In general, the vehicle dynamics model library may include the following situations:
1. the dynamics model under normal operation conditions;
2. a dynamics model for wet roads with different adhesion coefficients;
3. boundaries of a tire dynamics model caused by tire wear, etc. under different loads; and
4. performance boundaries of dynamic models of a brake, a steering wheel wire control system, an engine, etc. throughout the life cycle of the vehicle.
S500: designing and verifying a control algorithm. The design of the control algorithm and the verifying of a stability margin of the control algorithm may be performed according to a dynamics model under normal operation conditions. In some examples, the control algorithm in S500 may be an amended version of the control algorithm of S200. Thus designing the control algorithm in S500 may comprise optimizing, refining or adjusting the control algorithm of S200. For instance the control algorithm may be optimized to make it more suitable for simulation.
S600: using a Monte Carlo shooting method to carry out an automated traversal test to determine whether analysis simulation results meet the robustness and stability requirements of the control system, if yes, then proceeding to the next block; and if not, returning to block S500. The idea of Monte Carlo shooting is used, and for various combinations of all the scenarios and the dynamics models, the control algorithm is used for automated simulation and verification.
S700: carrying out a field test, and if the design requirements are met, the design of the control algorithm is completed, otherwise, returning to block S500 where a new design of the control algorithm is generated. For example on returning to block S500, the control algorithm may be re-designed.
The real-time simulation and test method for a control system of an autonomous driving truck of the present invention can verify the stability of the control algorithm throughout the life cycle of the vehicle, improve the stability and robustness of the design of the control algorithm, and greatly shorten the algorithm development cycle. Moreover, most of the design and verification of the control algorithm are transplanted to simulation and are completed in the simulation, which can save a lot of manpower and material resources and reduce the risk of accidents in field tests.
The above described real-time simulation and test method may be implemented using one or more computing devices. The computing devices may include at least one processor and at least one memory and may have access to a non-transitory storage medium. For example the method may be implemented by a processor reading machine readable instructions stored on a non-transitory machine readable storage medium. The simulations may be implemented entirely on the computing device. The field tests may include a computer  system autonomously driving the vehicle and storing and processing data collected by sensors of the vehicle and/or other monitoring devices during the test driving of the autonomous vehicle.
The above method provides a real-time simulation and test method for a control system of an autonomous driving truck, which, may achieve a good consistency between the field test and the control simulation. This good consistency may be achieved by establishing a dynamics model, an interference model and a noise model with sufficiently high accuracies. A dynamics model library and an input scenario library may also be provided. In this way the test control system can cover many or all scenarios, consider many or all dynamics boundaries and incorporate a large number of factors into the design stage of a control algorithm so that the control algorithm can be thoroughly verified. This approach may shorten the development cycle and reduce the number of field tests required.
The above described system and method may, in certain implementations, impart one or more of the following beneficial effects:
1. The robustness of the control algorithm may be fully verified, and the stability of the design of the control system increased.
2. The research and development cycle may be shortened, and the cost reduced.
3. A large number of field tests may be omitted and the accident rate of field test reduced, saving a lot of manpower and material resources.
4. As most of the algorithm design is not affected by the test environment and region, the iteration efficiency may be improved.
The above embodiments are used to explain and describe the present disclosure, and do not to limit the present disclosure. Within the spirit of the present disclosure and the scope of protection of the claims, any modifications and changes made to the present invention shall fall within the scope of protection of the present disclosure.

Claims (10)

  1. A real-time simulation and test method for a control system of an autonomous driving vehicle, the method comprising the following blocks:
    S100: providing a vehicle dynamics model;
    S200: using a control algorithm to carry out a simulation test and a field test to determine whether the field test and the simulation test have reached the same performance, if yes, then proceeding to the next block S300; and if not, returning to the previous block S100;
    S300: providing an input scenario library that covers a plurality of driving scenarios;
    S400: providing a vehicle dynamics model library including the vehicle dynamics model established in S100;
    S500: designing a control algorithm and verifying a stability of the control algorithm, wherein the design of the control algorithm and the verification of the stability of the control algorithm are performed according to a vehicle dynamics model under normal operation conditions;
    S600: using a Monte Carlo shooting method to carry out an automated traversal test and determining whether analysis simulation results of the automated traversal test meet robustness and stability requirements of the control system, if yes, then proceeding to the next block S700; and if not, returning to block S500; and
    S700: carrying out a field test, and if the design requirements are not met, then returning to block S500 to produce a new design for the control algorithm.
  2. The real-time simulation and test method for a control system of an autonomous driving vehicle of claim 1, wherein block S100 further comprises establishing an error interference model and a noise model.
  3. The real-time simulation and test method for a control system of an autonomous driving vehicle of claim 1 or 2, wherein the scenario library in block S300 includes the following scenarios:
    1) different acceleration-cruise-deceleration scenarios;
    2) vehicle following scenarios at different speeds;
    3) AEB scenarios;
    4) vehicle following scenarios;
    5) front vehicle emergency cut-in scenarios;
    6) scenarios with different turning radii at different speeds; and
    7) emergency obstacle avoidance scenarios.
  4. The real-time simulation and test method for a control system of an autonomous driving vehicle of any one of claims 1-3, wherein the dynamics model library in block S400 includes:
    1) the dynamics model under normal operation conditions;
    2) a dynamics model for wet roads with different adhesion coefficients;
    3) boundaries of a tire dynamics model caused by tire wear, etc. under different loads; and
    4) performance boundaries of dynamic models of a brake, a steering wheel wire control system, an engine, etc. throughout the life cycle of the vehicle.
  5. The real-time simulation and test method for a control system of an autonomous driving vehicle according to any one of the above claims wherein block S200 comprises repeatedly performing iterative optimization to determine whether the field test and the simulation test have reached the same performance.
  6. The real-time simulation and test method of any one of the above claims wherein the control system is for an autonomous driving truck.
  7. The real-time simulation and test method for a control system of an autonomous driving vehicle according to any one of the above claims wherein the control algorithm in block S200 is to perform a simulation test of the vehicle dynamics model.
  8. The real-time simulation and test method of any one of the above claims wherein verifying the stability of the control algorithm comprises verifying that the stability of the control margin is within a stability margin.
  9. A non-transitory computer readable storage medium storing instructions which are executable by a processor to perform the real-time simulation and test method of any one of claims 1-8.
  10. A real-time simulation and test method for a control system of an autonomous driving truck, the method comprising the following steps:
    S100: establishing a vehicle dynamics model;
    S200: using a control algorithm to carry out a simulation test and a field test, and repeatedly performing iterative optimization to determine whether the field test and the simulation test have reached the same performance, if yes, then proceeding to the next step; and if not, returning to the previous step S100;
    S300: perfecting an input scenario library to ensure that the scenario library is able to cover sufficient driving scenarios;
    S400: perfecting a vehicle dynamics model library;
    S500: designing the control algorithm, and the design of the control algorithm and the verification of a stability margin being performed according to a dynamics model under normal operation conditions;
    S600: using a Monte Carlo shooting method to carry out an automated traversal test to determine whether analysis simulation results meet the robustness and stability requirements of the control system, if yes, then proceeding to the next step; and if not, returning to step S500; and
    S700: carrying out a field test, and if the design requirements are met, the design of the control algorithm is completed, otherwise, returning to step S500 for the next design of the control algorithm.
PCT/CN2020/098279 2019-12-16 2020-06-24 Real-time simulation and test method for control system of autonomous driving vehicle WO2021120575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911293262.0A CN110888417A (en) 2019-12-16 2019-12-16 Real-time simulation and test method for control system of automatic driving truck
CN201911293262.0 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021120575A1 true WO2021120575A1 (en) 2021-06-24

Family

ID=69752071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098279 WO2021120575A1 (en) 2019-12-16 2020-06-24 Real-time simulation and test method for control system of autonomous driving vehicle

Country Status (2)

Country Link
CN (1) CN110888417A (en)
WO (1) WO2021120575A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589796A (en) * 2021-08-03 2021-11-02 安徽江淮汽车集团股份有限公司 Constant-speed cruise test system and method based on hardware-in-the-loop
CN113608991A (en) * 2021-06-25 2021-11-05 浙江中控技术股份有限公司 Method and device for testing wagon balance flow management system
CN113799790A (en) * 2021-10-19 2021-12-17 中国第一汽车股份有限公司 Vehicle speed control performance test method and device, electronic equipment and medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888417A (en) * 2019-12-16 2020-03-17 苏州智加科技有限公司 Real-time simulation and test method for control system of automatic driving truck
CN114091223A (en) * 2020-08-24 2022-02-25 华为技术有限公司 Construction method of simulated traffic flow and simulation equipment
CN112327806B (en) * 2020-11-02 2022-02-15 东软睿驰汽车技术(沈阳)有限公司 Automatic driving test method and device, electronic equipment and storage medium
CN114460914A (en) * 2020-11-10 2022-05-10 陕西汽车集团有限责任公司 Hardware-in-loop test system and test method for new energy vehicle controller
CN112925221B (en) * 2021-01-20 2022-10-11 重庆长安汽车股份有限公司 Auxiliary driving closed loop test method based on data reinjection
CN115167182B (en) * 2022-09-07 2022-11-29 禾多科技(北京)有限公司 Automatic driving simulation test method, device, equipment and computer readable medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897240A (en) * 2018-08-13 2018-11-27 济南浪潮高新科技投资发展有限公司 Automatic Pilot emulation testing cloud platform and automatic Pilot emulation test method
CN109141929A (en) * 2018-10-19 2019-01-04 重庆西部汽车试验场管理有限公司 Intelligent network joins automobile emulation test system and method
WO2019065409A1 (en) * 2017-09-29 2019-04-04 日立オートモティブシステムズ株式会社 Automatic driving simulator and map generation method for automatic driving simulator
CN109656148A (en) * 2018-12-07 2019-04-19 清华大学苏州汽车研究院(吴江) The emulation mode of the Dynamic Traffic Flow scene of automatic Pilot
JP2019074885A (en) * 2017-10-13 2019-05-16 キャッツ株式会社 Operation simulator of automatic driving vehicle, operation confirmation method of automatic driving vehicle, control device of automatic driving vehicle and method for controlling automatic driving vehicle
CN110160804A (en) * 2019-05-31 2019-08-23 中国科学院深圳先进技术研究院 A kind of test method of automatic driving vehicle, apparatus and system
CN110333730A (en) * 2019-08-12 2019-10-15 安徽江淮汽车集团股份有限公司 Verification method, platform and the storage medium of automatic Pilot algorithm expectation function safety
CN110888417A (en) * 2019-12-16 2020-03-17 苏州智加科技有限公司 Real-time simulation and test method for control system of automatic driving truck

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107992016A (en) * 2016-10-26 2018-05-04 法乐第(北京)网络科技有限公司 A kind of automatic driving vehicle analog detection method
CN107544290B (en) * 2017-10-26 2021-06-29 南京越博电驱动系统有限公司 New energy automobile performance evaluation analysis and optimization system and method
US10935975B2 (en) * 2017-12-22 2021-03-02 Tusimple, Inc. Method and system for modeling autonomous vehicle behavior
CN108595901A (en) * 2018-07-09 2018-09-28 黄梓钥 A kind of autonomous driving vehicle normalized security simulating, verifying model data base system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065409A1 (en) * 2017-09-29 2019-04-04 日立オートモティブシステムズ株式会社 Automatic driving simulator and map generation method for automatic driving simulator
JP2019074885A (en) * 2017-10-13 2019-05-16 キャッツ株式会社 Operation simulator of automatic driving vehicle, operation confirmation method of automatic driving vehicle, control device of automatic driving vehicle and method for controlling automatic driving vehicle
CN108897240A (en) * 2018-08-13 2018-11-27 济南浪潮高新科技投资发展有限公司 Automatic Pilot emulation testing cloud platform and automatic Pilot emulation test method
CN109141929A (en) * 2018-10-19 2019-01-04 重庆西部汽车试验场管理有限公司 Intelligent network joins automobile emulation test system and method
CN109656148A (en) * 2018-12-07 2019-04-19 清华大学苏州汽车研究院(吴江) The emulation mode of the Dynamic Traffic Flow scene of automatic Pilot
CN110160804A (en) * 2019-05-31 2019-08-23 中国科学院深圳先进技术研究院 A kind of test method of automatic driving vehicle, apparatus and system
CN110333730A (en) * 2019-08-12 2019-10-15 安徽江淮汽车集团股份有限公司 Verification method, platform and the storage medium of automatic Pilot algorithm expectation function safety
CN110888417A (en) * 2019-12-16 2020-03-17 苏州智加科技有限公司 Real-time simulation and test method for control system of automatic driving truck

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608991A (en) * 2021-06-25 2021-11-05 浙江中控技术股份有限公司 Method and device for testing wagon balance flow management system
CN113589796A (en) * 2021-08-03 2021-11-02 安徽江淮汽车集团股份有限公司 Constant-speed cruise test system and method based on hardware-in-the-loop
CN113589796B (en) * 2021-08-03 2023-01-13 安徽江淮汽车集团股份有限公司 Constant-speed cruise test system and method based on hardware-in-the-loop
CN113799790A (en) * 2021-10-19 2021-12-17 中国第一汽车股份有限公司 Vehicle speed control performance test method and device, electronic equipment and medium

Also Published As

Publication number Publication date
CN110888417A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2021120575A1 (en) Real-time simulation and test method for control system of autonomous driving vehicle
JP7053147B2 (en) Systems and methods for analyzing the energy efficiency of automobiles, especially automobile equipment
CN110197027B (en) Automatic driving test method and device, intelligent equipment and server
JP6898101B2 (en) Systems and methods for analyzing vehicle energy efficiency
CN111123735A (en) Automatic driving simulation operation method and device
CN109739230B (en) Driving track generation method and device and storage medium
CN110096844B (en) Aerodynamic characteristic optimization design method of non-smooth vehicle surface automobile
WO2021036083A1 (en) Driver behavior model development method and device for automatic driving, and storage medium
CN102567581B (en) Design method of automobile control arm
CN113682312B (en) Autonomous channel switching method and system integrating deep reinforcement learning
KR20210073291A (en) System of evaluating vehicle performance
CN116108717B (en) Traffic transportation equipment operation prediction method and device based on digital twin
CN112009397B (en) Automatic driving drive test data analysis method and device
CN109357900B (en) Method and system for determining test system of mechanical electronic equipment
WO2022130019A1 (en) Vehicle operation safety model test system
CN113392573A (en) Method for creating a trained artificial neural network, method for predicting vehicle emissions data and method for determining calibration values
Wang et al. Research on driving behavior decision making system of autonomous driving vehicle based on benefit evaluation model.
Llopis-Albert et al. Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms
CN111123729A (en) Method and device for vehicle driving simulation optimization, storage medium and terminal equipment
Sankar et al. Data-driven leading vehicle speed forecast and its application to ecological predictive cruise control
Xiao et al. Accident liability determination of autonomous driving systems based on artificial intelligence technology and its impact on public mental health
US20230394896A1 (en) Method and a system for testing a driver assistance system for a vehicle
CN113479177B (en) Vehicle brake control method, system, computer device, and storage medium
CN114386176A (en) Method, device, equipment and medium for verifying passing of vehicle through deceleration strip
Zhang et al. Vehicle aerodynamic optimization: on a combination of adjoint method and efficient global optimization algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903855

Country of ref document: EP

Kind code of ref document: A1