WO2021120531A1 - 一种吸波超材料、吸波结构件及移动载体 - Google Patents

一种吸波超材料、吸波结构件及移动载体 Download PDF

Info

Publication number
WO2021120531A1
WO2021120531A1 PCT/CN2020/093945 CN2020093945W WO2021120531A1 WO 2021120531 A1 WO2021120531 A1 WO 2021120531A1 CN 2020093945 W CN2020093945 W CN 2020093945W WO 2021120531 A1 WO2021120531 A1 WO 2021120531A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
absorbing
wave
metamaterial
metasurface
Prior art date
Application number
PCT/CN2020/093945
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
周添
黄星星
黄金国
Original Assignee
深圳光启尖端技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911324512.2A external-priority patent/CN113013629A/zh
Priority claimed from CN201922308389.7U external-priority patent/CN211907695U/zh
Application filed by 深圳光启尖端技术有限责任公司 filed Critical 深圳光启尖端技术有限责任公司
Publication of WO2021120531A1 publication Critical patent/WO2021120531A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to the field of materials, and more specifically, to a wave absorbing metamaterial, a wave absorbing structure and a mobile carrier.
  • the electromagnetic wave absorption coatings of traditional mobile carriers cannot change their own absorption frequency band after the carrier is moved, and cannot take preventive measures against new electromagnetic interference during the movement. .
  • the present invention provides a absorbing metamaterial, wherein the absorbing metamaterial includes an electromagnetic metasurface material and a first electromagnetic absorbing material superimposed on the front and back surfaces of the electromagnetic metasurface material Material and impedance matching material, the electromagnetic metasurface material is a series connection of capacitance and inductance in the equivalent circuit of the absorbing metamaterial, and the first electromagnetic absorbing material and the impedance matching material are connected in the absorbing metamaterial.
  • the equivalent circuit of wave metamaterials all show resistance;
  • one or more metal microstructures are respectively arranged in the electromagnetic supersurface periodic structure, a lumped element is embedded in each metal microstructure, and the absorption peak value and the absorption peak are achieved by changing the throw voltage on the lumped element.
  • the metal trace length of each metal microstructure is ⁇ /50 ⁇ /5, and ⁇ is the wavelength of the electromagnetic wave transmitted in the electromagnetic metasurface material.
  • the impedance matching material includes a glass fiber composite material, an aramid fiber composite material or a quartz fiber composite material
  • the first electromagnetic absorbing material includes a wave absorbing glass fiber composite material, a wave absorbing polyimide composite material, or Absorbing aramid fiber composite material.
  • the absorbing metamaterial further includes an electromagnetic reflective material superimposed on the first electromagnetic absorbing material, and the electromagnetic reflective material envelops a metal material and a carbon fiber composite material.
  • the absorbing metamaterial further includes a second electromagnetic absorbing material disposed between the electromagnetic supersurface material and the impedance matching material, and the second electromagnetic absorbing material includes a absorbing glass fiber composite material Or wave-absorbing polyimide fiber composite material.
  • the metal microstructure is arranged in the middle region of the electromagnetic supersurface periodic structure.
  • the electromagnetic supersurface periodic structure includes a plurality of metal microstructures
  • the plurality of metal microstructures are respectively arranged in the edge corner regions of the electromagnetic supersurface periodic structure.
  • the lumped element includes a switching diode or a varactor diode.
  • the present invention also provides a wave absorbing structure, wherein the wave absorbing structure includes any one of the above-mentioned wave absorbing metamaterials.
  • the present invention also provides a mobile carrier, wherein the mobile carrier comprises any one of the above-mentioned absorbing metamaterials.
  • the present invention also provides the application of any of the above-mentioned absorbing metamaterials in the field of electromagnetic compatibility.
  • the technical scheme provided by the present invention can adapt to the complex and changeable electromagnetic environment. Aiming at the complex frequency of electromagnetic interference frequency bands, the present invention combines electromagnetic supersurface materials and functional absorbing substrates to dynamically change the absorbing function in a targeted manner. The structure's absorption frequency effectively improves the anti-interference ability in a complex electromagnetic environment.
  • FIG. 1 is a schematic cross-sectional view of a multi-layer structure included in a microwave absorbing metamaterial in Embodiment 1 of the present invention.
  • Fig. 2 is an equivalent circuit diagram of the microwave absorbing metamaterial in the first embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of the multi-layer structure included in the microwave absorbing metamaterial in the second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the multi-layered structure included in the microwave absorbing metamaterial in the third embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the arrangement of a plurality of metal microstructures included in the periodic structure of the electromagnetic supersurface of the absorbing metamaterial in the embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram of the absorbing metamaterial after adding lumped elements to the electromagnetic metasurface material layer in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of simulation test results after applying multiple metal microstructures in the electromagnetic super-surface periodic structure shown in FIG. 5 to the multi-layered structure shown in FIG. 3 in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a second layout structure of a plurality of metal microstructures included in the electromagnetic supersurface periodic structure of the absorbing metamaterial in the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of simulation test results after applying multiple metal microstructures in the electromagnetic supersurface periodic structure shown in FIG. 8 to the multi-layered structure shown in FIG. 3 in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a third layout structure of a plurality of metal microstructures included in the electromagnetic supersurface periodic structure of the absorbing metamaterial in the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of simulation test results after applying multiple metal microstructures in the electromagnetic metasurface material layer shown in FIG. 10 to the multi-layered structure shown in FIG. 4 in an embodiment of the present invention.
  • Fig. 12 is a corresponding arc field reflection test curve in the embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a multi-layer structure included in a microwave absorbing metamaterial in Embodiment 1 of the present invention.
  • the absorbing metamaterial of the present invention adopts a multi-layer structure design.
  • the absorbing metamaterial includes an electromagnetic metasurface material 1 and a first electromagnetic absorbing material 2 and an impedance matching material superimposed on the front and back surfaces of the electromagnetic metasurface material. 3.
  • the electromagnetic metasurface material 1 is arranged in the middle layer of the multi-layered structure, and the first electromagnetic absorbing material 2 and the impedance matching material 3 are superimposed on the front and back surfaces of the electromagnetic metasurface material 1 respectively.
  • the electromagnetic metasurface material 1 is a series connection of capacitance and inductance in the equivalent circuit of the absorbing metamaterial, and the first electromagnetic absorbing material 2 and the impedance matching material 3 are both resistors in the equivalent circuit of the absorbing metamaterial. ,as shown in picture 2.
  • Fig. 2 is an equivalent circuit diagram of the microwave absorbing metamaterial in the first embodiment of the present invention.
  • the electromagnetic metasurface material 1 of the absorbing metamaterial is a series connection of capacitance and inductance in the equivalent circuit, and its function is to adjust the capacitance and inductance in the circuit.
  • the electromagnetic metasurface material The first electromagnetic absorbing material 2 and the impedance matching material 3 on both sides of 1 are resistors in the equivalent circuit, and their function is resistance.
  • the absorbing metamaterial in the first embodiment of the present invention adopts capacitance, inductance and The combination of resistors can achieve good absorption of the port's broadband signals.
  • the impedance matching material 3 can achieve the electromagnetic wave from free space into the absorbing structure of the absorbing metamaterial.
  • the electromagnetic metasurface material 1 can be customized to design the material to absorb the frequency band.
  • An electromagnetic wave absorbing material 2 can effectively reduce vertical incident, large-angle incident electromagnetic waves and surface traveling wave echoes.
  • Z1 is the equivalent impedance of the impedance matching material 3 in the equivalent circuit of the absorbing metamaterial, which is related to the material thickness and electromagnetic parameters.
  • Z2 is the value of the first electromagnetic absorbing material 2 in the absorbing metamaterial. The equivalent impedance in the equivalent circuit.
  • the impedance matching material 3 includes glass fiber composite materials (such as fiberglass composite materials) or quartz fiber composite materials, specifically including epoxy resin glass fiber prepreg, epoxy resin quartz fiber prepreg, etc.
  • the first electromagnetic absorbing material 2 includes absorbing composite materials, such as absorbing glass fiber composite materials, absorbing polyimide composite materials or absorbing aramid fiber composite materials, etc., specifically including modified epoxy resin glass fiber absorbing materials. Wave prepreg, modified epoxy resin polyimide fiber wave absorbing composite material, etc.
  • FIG 3 is a schematic cross-sectional view of the multi-layer structure included in the microwave absorbing metamaterial in the second embodiment of the present invention.
  • the absorbing metamaterial in the second embodiment of the present invention further includes an electromagnetic reflective material 4 superimposed on the first electromagnetic absorbing material 2 on the basis of FIG. 1.
  • the specific structure is that in the first electromagnetic absorbing material The front and back sides of the wave material 2 are superimposed on the electromagnetic supersurface material 1 on one side, and the electromagnetic reflective material 4 is superimposed on the other side.
  • the electromagnetic reflective material 4 envelops metal materials and carbon fiber composite materials.
  • FIG. 4 is a schematic cross-sectional view of the multi-layered structure included in the microwave absorbing metamaterial in the third embodiment of the present invention.
  • the absorbing metamaterial in the third embodiment of the present invention further includes a second electromagnetic absorbing material 5 arranged between the electromagnetic metasurface material 1 and the impedance matching material 3 on the basis of FIG. 3.
  • the specific structure For, on the front and back sides of the second electromagnetic absorbing material 5, the electromagnetic super-surface material 1 is superimposed on one side, and the impedance matching material 3 is superimposed on the other side, wherein the second electromagnetic absorbing material 5 is a absorbing composite material, such as glass fiber Wave absorbing composite materials or polyimide fiber absorbing composite materials, etc., specifically including modified epoxy resin glass fiber absorbing composite materials, modified epoxy resin polyimide fiber absorbing composite materials, etc.
  • the addition of the second electromagnetic wave absorbing material 5 in the third embodiment of the present invention can further expand the absorption bandwidth.
  • FIG. 5 is a schematic diagram of the arrangement of a plurality of metal microstructures included in the 1-layer periodic structure of the electromagnetic supersurface of the absorbing metamaterial in the embodiment of the present invention.
  • the 1-layer periodic structure of the electromagnetic supersurface material includes a plurality of metal microstructures, and each metal microstructure is respectively arranged in an edge corner area of the electromagnetic supersurface periodic structure, that is, in the embodiment of the present invention
  • the absorbing metamaterials are provided with four metal microstructures in the four corner regions of the periodic structure of the electromagnetic supersurface 1 and their shapes are not exactly the same.
  • the four metal microstructures respectively include the first metal microstructure 11 and the second metal microstructure.
  • the metal traces of the first metal microstructure 11 are L-shaped, and the first metal microstructure 11 is not connected to the edge of the electromagnetic supersurface material 1.
  • the metal traces of the second metal microstructure 12 are F-shaped, and the second metal microstructure 12 is not connected to the edge of the electromagnetic supersurface material 1.
  • the metal traces of the third metal microstructure 13 are roughly h-shaped, and the third metal microstructure 13 is connected to the edge of the electromagnetic supersurface material 1.
  • the metal traces of the fourth metal microstructure 14 are roughly h-shaped, and the fourth metal microstructure 14 is connected to the edge of the electromagnetic supersurface material 1.
  • the shape of the third metal microstructure 13 is the same as that of the fourth metal microstructure 14, and the positional relationship between the two is 90 degrees. That is, the third metal microstructure 13 is rotated 90 degrees clockwise to obtain the fourth metal microstructure 14.
  • first metal microstructure 11, the second metal microstructure 12, the third metal microstructure 13, and the fourth metal microstructure 14 can also have other shapes, as long as the metal trace length of each metal microstructure is ⁇ / 50 ⁇ /5 is sufficient, and ⁇ is the wavelength of the electromagnetic wave transmitted in the electromagnetic metasurface material 1.
  • a lumped element 15 is embedded in each metal microstructure, and the lumped element 15 includes a switching diode or a varactor diode.
  • the lumped element 15 is integrated with the four metal microstructures (11, 12, 13, 14) in the electromagnetic metasurface material 1 layer, and then combined with the absorbing structure (such as the first electromagnetic absorbing material 2 and the second electromagnetic absorbing material).
  • Material 5) Heterogeneous integration can change the electromagnetic response characteristics of the electromagnetic metasurface material 1 through signals, thereby changing the electromagnetic response characteristics of the overall absorbing structure.
  • the absorbing metamaterial adds a lumped volume to the electromagnetic metasurface material 1 layer.
  • the equivalent circuit diagram behind element 15 is shown in FIG. 6.
  • FIG. 6 is an equivalent circuit diagram of the absorbing metamaterial after adding lumped elements to the electromagnetic metasurface material layer in the embodiment of the present invention.
  • the lumped element 15 can adjust the capacitance and inductance values in the equivalent circuit of the absorbing metamaterial. By changing the throw voltage of the lumped element 15, the absorption peak and the shift of the absorption band can be realized.
  • FIG. 7 is a schematic diagram of simulation test results after applying multiple metal microstructures in the electromagnetic supersurface material layer shown in FIG. 5 to the multi-layered structure shown in FIG. 3 in an embodiment of the present invention.
  • the absorbing metamaterial includes four laminated structures, namely the electromagnetic metasurface material 1, the first An electromagnetic absorbing material 2, an impedance matching material 3, and an electromagnetic reflective material 4.
  • the specific structural dimensions include: the thickness of the electromagnetic supersurface material 1 is 0.2mm, the thickness of the first electromagnetic absorbing material 2 is 1mm, and the impedance matching material 3
  • the thickness of the electromagnetic reflective material 4 is 1.8mm, the thickness of the electromagnetic reflective material 4 is 0.2mm, and the total thickness of the absorbing metamaterial is 3.2mm.
  • the metal microstructures (11, 12, 13, 14) involved in the electromagnetic metasurface material 1 use metallic copper conductors with a conductivity of 5.8 ⁇ 10 ⁇ 7 S/m. Of course, other metals can also be used, which is not limited here.
  • the lumped element 15 in the electromagnetic metasurface material 1 is a varactor diode, and the capacitance of the varactor diode ranges from 0.1 to 5 pF.
  • the metal traces of the first metal microstructure 11 are L-shaped
  • the metal traces of the second metal microstructure 12 are F-shaped
  • the metal traces of the third metal microstructure 13 are roughly H-shaped
  • the metal traces of the fourth metal microstructure are roughly H-shaped.
  • the metal traces of 14 are roughly h-shaped.
  • the common feature of these shapes is that the size of each metal microstructure is related to the wavelength of electromagnetic waves, specifically 1/4 ⁇ 1/20 of the wavelength, and the distance between adjacent metal microstructures Affect the mutual capacitance and inductance, thereby affecting the electromagnetic response characteristics.
  • the parameters of the lumped element 15 are adjusted by external voltage and other signals.
  • the simulation result of the S11 parameter is shown in Fig. 7. It can be seen from Fig. 7 that the lumped element is changed in the embodiment of the present invention.
  • the throw voltage of 15 can realize the shift of absorption peak and absorption frequency band.
  • the absorption peak shifts from 10 GHz to 11 GHz.
  • the present invention combines the multi-layer absorption structure design and the functional layer structure design of the electromagnetic metasurface material. By adjusting the component parameters, the electromagnetic metasurface material 1 can have different electromagnetic response characteristics, thereby affecting the electromagnetic wave absorption. Frequency peaks can expand the absorbing bandwidth under low profile conditions by using multiple absorbing mechanisms. It can be seen that the present invention can dynamically adjust the frequency of electromagnetic wave absorption, and can achieve dynamic frequency adjustment in the X-band.
  • FIG. 8 is a schematic diagram of a second layout structure of a plurality of metal microstructures included in the electromagnetic metasurface material layer of the absorbing metamaterial in the embodiment of the present invention.
  • the electromagnetic metasurface material layer of the absorbing metamaterial in the embodiment of the present invention includes four metal microstructures (11, 12, 13, 14) and four lumped elements 15, four metal microstructures
  • the shapes of the structures are exactly the same, the metal traces of each metal microstructure are L-shaped, and each metal microstructure is not connected to the edge of the electromagnetic supersurface material 1.
  • a lumped element 15 is embedded in each metal microstructure, and the lumped element 15 includes a switching diode or a varactor diode.
  • the lumped element 15 is integrated with the four metal microstructures (11, 12, 13, 14) in the electromagnetic metasurface material 1 layer, and then combined with the absorbing structure (such as the first electromagnetic absorbing material 2 and the second electromagnetic absorbing material).
  • Heterogeneous integration can change the electromagnetic response characteristics of the electromagnetic metasurface material 1 through signals, thereby changing the electromagnetic response characteristics of the overall absorbing structure.
  • the lumped element 15 can control the equivalent circuit of the absorbing metamaterial.
  • the capacitance and inductance values, by changing the throw voltage of the lumped element 15, can realize the shift of the absorption peak value and the absorption frequency band.
  • FIG. 9 is a schematic diagram of simulation test results after applying multiple metal microstructures in the electromagnetic supersurface periodic structure shown in FIG. 8 to the multi-layered structure shown in FIG. 3 in an embodiment of the present invention.
  • the absorbing metamaterial includes four stacked structures, namely the electromagnetic supersurface material 1, the first An electromagnetic absorbing material 2, an impedance matching material 3, and an electromagnetic reflective material 4.
  • the specific structural dimensions include: the thickness of the electromagnetic supersurface material 1 is 0.2mm, the thickness of the first electromagnetic absorbing material 2 is 1mm, and the impedance matching material 3
  • the thickness of the electromagnetic reflective material 4 is 1.8mm, the thickness of the electromagnetic reflective material 4 is 0.2mm, and the total thickness of the absorbing metamaterial is 3.2mm.
  • the metal microstructures (11, 12, 13, 14) involved in the electromagnetic metasurface material 1 use metallic copper conductors with a conductivity of 5.8 ⁇ 10 ⁇ 7 S/m. Of course, other metals can also be used, which is not limited here.
  • the lumped element 15 in the electromagnetic metasurface material 1 is a varactor diode, and the capacitance of the varactor diode ranges from 0.1 to 5 pF. The lumped element 15 regulates the equivalent capacitance and inductance values.
  • the shapes of the first metal microstructure 11, the second metal microstructure 12, the third metal microstructure 13, and the fourth metal microstructure 14 are exactly the same.
  • the metal traces of each metal microstructure are L-shaped, and each metal microstructure is L-shaped.
  • the microstructure is not connected to the edge of the electromagnetic metasurface material 1.
  • the common feature of these shapes is that the size of each metal microstructure is related to the wavelength of the electromagnetic wave, specifically 1/4 ⁇ 1/20 of the wavelength.
  • the distance between adjacent metal microstructures affects the mutual capacitance and inductance, thereby affecting electromagnetic waves. Response characteristics.
  • the parameters of the lumped element 15 are adjusted by external voltage and other signals.
  • the simulation result of the S11 parameter is shown in Fig. 9.
  • the lumped element is changed
  • the throw voltage of 15 can realize the shift of absorption peak and absorption frequency band.
  • the absorption peak shifts from 10 GHz to 11 GHz.
  • the present invention combines the design of the absorbing multi-layer structure and the design of the functional layer structure of the electromagnetic metasurface material. By adjusting the component parameters, the electromagnetic metasurface material 1 can have different electromagnetic response characteristics, thereby affecting the radar wave. Absorbing frequency peaks, using multiple absorbing mechanisms to expand the absorbing bandwidth under low profile conditions, it can be seen that the present invention can dynamically adjust the frequency of electromagnetic wave absorption, and can achieve dynamic frequency adjustment in the X-band.
  • the above embodiment is that when the electromagnetic supersurface 1 periodic structure includes multiple metal microstructures, a lumped element is embedded in each metal microstructure, and the absorption peak value and the absorption peak are achieved by changing the throw voltage on the lumped element.
  • the shift of the absorption frequency band can dynamically adjust the frequency of electromagnetic wave absorption, and can realize the dynamic adjustment of the frequency in the X-band.
  • the frequency of electromagnetic wave absorption can be dynamically adjusted, and the frequency in the X-band can be dynamically adjusted, as described below.
  • FIG. 10 is a schematic diagram of a third layout structure of a plurality of metal microstructures included in the electromagnetic supersurface periodic structure of the absorbing metamaterial in the embodiment of the present invention.
  • the electromagnetic metasurface 1 periodic structure of the absorbing metamaterial in the embodiment of the present invention includes five metal microstructures (11, 12, 13, 14, 16) and a lumped element 15, four metal microstructures
  • the microstructures (11, 12, 13, 14) are respectively arranged in the four corner areas of the periodic structure of the electromagnetic supersurface 1 and have exactly the same shape, all of which are L-shaped.
  • the lumped elements 15 are embedded in the metal microstructure 16 and are arranged in common In the middle position of the periodic structure of the electromagnetic hypersurface 1, the metal microstructure 16 is in a spiral shape.
  • the addition of the spiral microstructure in the embodiment of the present invention can further improve the absorption capacity under the condition of large angle incidence.
  • the absorbing metamaterial includes five stacked structures, namely the electromagnetic supersurface material 1, the first An electromagnetic absorbing material 2, an impedance matching material 3, an electromagnetic reflective material 4, and a second electromagnetic absorbing material 5.
  • the specific structural dimensions include: the thickness of the electromagnetic supersurface material 1 is 0.2mm, and the thickness of the first electromagnetic absorbing material 2 The thickness is 1 mm, the thickness of the second electromagnetic absorbing material 5 is 1 mm, the thickness of the impedance matching material 3 is 1.3 mm, the thickness of the electromagnetic reflective material 4 is 0.1 mm, and the total thickness of the absorbing metamaterial is 3.6 mm.
  • the metal microstructures (11, 12, 13, 14) involved in the electromagnetic metasurface material 1 use metallic copper conductors with a conductivity of 5.8 ⁇ 10 ⁇ 7 S/m. Of course, other metals can also be used, which is not limited here.
  • the lumped element 15 in the electromagnetic metasurface material 1 is a varactor diode, and the capacitance of the varactor diode ranges from 0.1 to 5 pF. The lumped element 15 regulates the equivalent capacitance and inductance values.
  • the metal microstructure 16 is a spiral microstructure, and the lengths from the center are 1.125, 1.25, 2.25, 2.25, 3.25, 3.25, 4.125 mm, respectively.
  • the inductance of the spiral microstructure can be calculated by the following formula:
  • l is the perimeter of the spiral microstructure
  • w is the line width of the microstructure
  • the unit is m.
  • the parameters of the lumped element 15 are adjusted by external voltage and other signals.
  • the simulation result of the S11 parameter is shown in Figure 11. It can be seen from Figure 11 that the lumped element is changed in the embodiment of the present invention.
  • the throw voltage of 15 can realize the shift of absorption peak and absorption band, as well as the change of absorption peak. It can be seen from this that the present invention combines the multi-layer absorption structure design and the functional layer structure design of the electromagnetic metasurface material. By adjusting the component parameters, the electromagnetic metasurface material 1 can have different electromagnetic response characteristics, thereby affecting the electromagnetic wave absorption.
  • Frequency peak the use of multiple absorption mechanisms can expand the absorption bandwidth under low-profile conditions, and the absorption performance under large-angle incident conditions. It can be seen that the present invention can dynamically adjust the frequency of electromagnetic wave absorption, and can achieve dynamic frequency adjustment in the X-band.
  • Fig. 12 is a corresponding arc field reflection test curve in the embodiment of the present invention. The curve shows that through the selection of different variable capacitance values, the dynamic adjustment of the absorbing performance is realized.
  • the present invention also provides a wave absorbing structure, wherein the wave absorbing structure includes any one of the above-mentioned wave absorbing metamaterials.
  • the wave absorbing structure provided by the present invention can dynamically adjust the frequency of electromagnetic wave absorption, and can realize the dynamic adjustment of the frequency in the X-band.
  • the present invention also provides a mobile carrier, wherein the mobile carrier comprises any one of the above-mentioned absorbing metamaterials.
  • the mobile carrier provided by the invention can dynamically adjust the frequency of electromagnetic wave absorption, and can realize the dynamic adjustment of the frequency in the X-band.
  • the present invention also provides the application of any of the above-mentioned absorbing metamaterials in the field of electromagnetic compatibility.
  • the technical solution provided by the present invention can adapt to the complex and changeable outdoor electromagnetic environment. Aiming at the complex and changeable characteristics of the electromagnetic interference frequency of the outdoor environment, the present invention combines the electromagnetic supersurface material and the functional wave-absorbing substrate to achieve targeted dynamics. Changing the absorption frequency of the absorbing function structure effectively improves the anti-interference ability in a complex electromagnetic environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供了一种吸波超材料,包括电磁超表面材料以及叠加在电磁超表面材料的正反两个表面上的第一电磁吸波材料和阻抗匹配材料,电磁超表面材料在吸波超材料的等效电路中呈电容与电感的串联连接,第一电磁吸波材料和阻抗匹配材料在吸波超材料的等效电路中均呈电阻;其中,在电磁超表面材料的一个或者多个区域分别设置一个或者多个金属微结构。此外,本发明还提供一种吸波结构件和移动载体。本发明提供的技术方案能适应外界复杂电磁环境,本发明通过电磁超表面材料与功能吸波基材相结合的方式,针对电磁干扰频率动态变化,改变吸波功能结构的吸收频率,有效提升复杂电磁环境下电磁兼容抗扰性。

Description

一种吸波超材料、吸波结构件及移动载体 技术领域
本发明涉及材料领域,更具体地,涉及一种吸波超材料、吸波结构件及移动载体。
背景技术
在目前复杂电磁环境中,电磁兼容性能是一个非常重要的指标,如何实现对复杂动态电磁环境有良好抗干扰能力有着重要的意义。
传统移动载体的电磁波吸收涂料除了喷涂和维护等方面的困难外,实施在移动载体之后无法改变自身的吸收频段,无法对移动过程中新的电磁干扰做出防范措施。。
技术问题
传统电磁波吸收涂层无法适应复杂多变的电磁环境,尤其是产生干扰的电磁频谱日趋频密,无法有效应对,所以,在目前复杂电磁干扰环境中如何应对干扰源频率变化特点以设计出能动态应对电磁环境的吸波结构件是需解决的问题。
技术解决方案
针对以上问题,本发明提供了一种吸波超材料,其中,所述吸波超材料包括电磁超表面材料以及叠加在所述电磁超表面材料的正反两个表面上的第一电磁吸波材料和阻抗匹配材料,所述电磁超表面材料在所述吸波超材料的等效电路中呈电容与电感的串联连接,所述第一电磁吸波材料和所述阻抗匹配材料在所述吸波超材料的等效电路中均呈电阻;
其中,在所述电磁超表面周期结构中分别设置一个或者多个金属微结构,在每一个金属微结构中嵌入一个集总元件,通过改变所述集总元件上的偏掷电压实现吸收峰值和吸收频带的迁移,每一个金属微结构的金属走线长度为λ/50~λ/5,λ为电磁波在所述电磁超表面材料内传输的波长。
优选的,所述阻抗匹配材料包括玻璃纤维复合材料、芳纶纤维复合材料或者石英纤维复合材料,所述第一电磁吸波材料包括吸波玻璃纤维复合材料、吸波聚酰亚胺复合材料或者吸波芳纶纤维复合材料。
优选的,所述吸波超材料还包括叠加在所述第一电磁吸波材料上面的电磁反射材料,所述电磁反射材料包络金属材料以及碳纤维复合材料。
优选的,所述吸波超材料还包括设置在所述电磁超表面材料与所述阻抗匹配材料之间的第二电磁吸波材料,所述第二电磁吸波材料包括吸波玻璃纤维复合材料或者吸波聚酰亚胺纤维复合材料。
优选的,在所述电磁超表面周期结构中仅包括一个金属微结构时,所述金属微结构设置在所述电磁超表面周期结构的中间区域。
优选的,在所述电磁超表面周期结构中包括多个金属微结构时,所述多个金属微结构分别设置在所述电磁超表面周期结构中的边缘拐角区。
优选的,所述集总元件包括开关二极管或者变容二极管。
另外,本发明还提供了一种吸波结构件,其中,所述吸波结构件包括以上任一项所述的吸波超材料。
此外,本发明还提供了一种移动载体,其中,所述移动载体包括以上任一项所述的吸波超材料。
而且,本发明还提供了以上任一项所述的吸波超材料在电磁兼容领域的应用。
有益效果
本发明提供的技术方案能适应复杂多变的电磁环境,针对电磁干扰频段频率复杂的特点,本发明通过电磁超表面材料与功能吸波基材相结合的方式,针对性的动态改变吸波功能结构的吸收频率,有效提升复杂电磁环境下抗干扰能力。
附图说明
图1为本发明实施例一中吸波超材料所包括的多叠层结构的截面示意图。
图2为本发明实施例一中吸波超材料的等效电路图。
图3为本发明实施例二中吸波超材料所包括的多叠层结构的截面示意图。
图4为本发明实施例三中吸波超材料所包括的多叠层结构的截面示意图。
图5为本发明实施例中吸波超材料的电磁超表面周期结构中所包括的多个金属微结构的排布结构示意图。
图6为本发明实施例中在电磁超表面材料层中新增集总元件后的吸波超材料的等效电路图。
图7为本发明实施例中将图5所示的电磁超表面周期结构中的多个金属微结构应用到图3所示的多叠层结构之后的仿真测试结果示意图。
图8为本发明实施例中吸波超材料的电磁超表面周期结构中所包括的多个金属微结构的第二种布局结构示意图。
图9为本发明实施例中将图8所示的电磁超表面周期结构中的多个金属微结构应用到图3所示的多叠层结构之后的仿真测试结果示意图。
图10为本发明实施例中吸波超材料的电磁超表面周期结构中所包括的多个金属微结构的第三种布局结构示意图。
图11为本发明实施例中将图10所示的电磁超表面材料层中的多个金属微结构应用到图4所示的多叠层结构之后的仿真测试结果示意图。
图12为本发明实施例中对应的拱形场反射测试曲线。
本发明的实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
图1为本发明实施例一中吸波超材料所包括的多叠层结构的截面示意图。
本发明的吸波超材料采用多叠层结构设计,吸波超材料包括电磁超表面材料1以及叠加在电磁超表面材料的正反两个表面上的第一电磁吸波材料2和阻抗匹配材料3,电磁超表面材料1设置在多叠层结构中的中间层,第一电磁吸波材料2和阻抗匹配材料3分别叠加设置在电磁超表面材料1的正反两个表面上。其中,电磁超表面材料1在吸波超材料的等效电路中呈电容与电感的串联连接,第一电磁吸波材料2和阻抗匹配材料3在吸波超材料的等效电路中均呈电阻,如图2所示。
图2为本发明实施例一中吸波超材料的等效电路图。
如图2所示,吸波超材料的电磁超表面材料1在等效电路中呈电容与电感的串联连接,所起到的作用是调节作用,调节电路中的电容和电感,电磁超表面材料1两侧的第一电磁吸波材料2和阻抗匹配材料3在等效电路中均呈电阻,所起到的作用是电阻作用,本发明实施例一中的吸波超材料通过电容、电感和电阻的配合可以实现对于端口宽频信号的良好吸收,其中,阻抗匹配材料3可以实现电磁波从自由空间良好进入吸波超材料的吸波结构,电磁超表面材料1可以定制化设计材料吸收频段,第一电磁吸波材料2可以有效降低垂直入射、大角度入射电磁波和表面行波回波。如图2所示,Z1为阻抗匹配材料3在吸波超材料的等效电路中的等效阻抗,和材料厚度、电磁参数相关,Z2为第一电磁吸波材料2在吸波超材料的等效电路中的等效阻抗。
继续参阅图1,阻抗匹配材料3包括玻璃纤维复合材料(例如玻璃钢等复合材料)或者石英纤维复合材料,具体的包括环氧树脂玻璃纤维预浸料、环氧树脂石英纤维预浸料等等,第一电磁吸波材料2包括吸波复合材料,例如吸波玻璃纤维复合材料、吸波聚酰亚胺复合材料或者吸波芳纶纤维复合材料等,具体的包括改性环氧树脂玻璃纤维吸波预浸料、改性环氧树脂聚酰亚胺纤维吸波复合材料等。
图3为本发明实施例二中吸波超材料所包括的多叠层结构的截面示意图。
如图3所示,本发明实施例二中吸波超材料在图1的基础上还包括叠加在第一电磁吸波材料2上面的电磁反射材料4,具体的结构为,在第一电磁吸波材料2的正反两面上,一面叠加电磁超表面材料1,另一面叠加电磁反射材料4,其中,电磁反射材料4包络金属材料以及碳纤维复合材料等。
图4为本发明实施例三中吸波超材料所包括的多叠层结构的截面示意图。
如图4所示,本发明实施例三中吸波超材料在图3的基础上还包括设置在电磁超表面材料1与阻抗匹配材料3之间的第二电磁吸波材料5,具体的结构为,在第二电磁吸波材料5的正反两面上,一面叠加电磁超表面材料1,另一面叠加阻抗匹配材料3,其中,第二电磁吸波材料5为吸波复合材料,例如玻璃纤维吸波复合材料或者聚酰亚胺纤维吸波复合材料等,具体的包括改性环氧树脂玻璃纤维吸波复合材料、改性环氧树脂聚酰亚胺纤维吸波复合材料等。本发明实施例三中增加第二电磁吸波材料5可以进一步拓展吸收带宽。
图5为本发明实施例中吸波超材料的电磁超表面1层周期结构中所包括的多个金属微结构的排布结构示意图。
如图5所示,电磁超表面材料1层周期结构中包括多个金属微结构,每一个金属微结构分别设置在所述电磁超表面周期结构中的一个边缘拐角区域,即本发明实施例中吸波超材料在电磁超表面1周期结构中的四个拐角区域分别设置了四个金属微结构且形状不完全相同,其中,四个金属微结构分别包括第一金属微结构11、第二金属微结构12、第三金属微结构13、第四金属微结构14。其中,第一金属微结构11的金属走线呈L形,第一金属微结构11与电磁超表面材料1的边缘不相连。其中,第二金属微结构12的金属走线呈F形,第二金属微结构12与电磁超表面材料1的边缘不相连。其中,第三金属微结构13的金属走线大致呈h形,第三金属微结构13与电磁超表面材料1的边缘相连。其中,第四金属微结构14的金属走线大致呈h形,第四金属微结构14与电磁超表面材料1的边缘相连。其中,第三金属微结构13的形状与第四金属微结构14相同,二者的位置关系为相差90度,即将第三金属微结构13顺时针旋转90度就得到第四金属微结构14。此外,第一金属微结构11、第二金属微结构12、第三金属微结构13、第四金属微结构14还可以是其它形状,只要满足每一个金属微结构的金属走线长度为λ/50~λ/5即可,λ为电磁波在所述电磁超表面材料1内传输的波长。
如图5所示,在每一个金属微结构中嵌入一个集总元件15,集总元件15包括开关二极管或者变容二极管。通过集总元件15与电磁超表面材料1层中的四个金属微结构(11、12、13、14)集成,再与吸波结构(如第一电磁吸波材料2和第二电磁吸波材料5)异质集成,就可以通过信号改变电磁超表面材料1的电磁响应特性,从而改变整体吸波结构件的电磁响应特性,吸波超材料在电磁超表面材料1层中新增集总元件15后的等效电路示意如图6所示。
图6为本发明实施例中在电磁超表面材料层中新增集总元件后的吸波超材料的等效电路图。
如图6所示,集总元件15可以调控吸波超材料的等效电路中的电容、电感数值,通过改变集总元件15的偏掷电压,可以实现吸收峰值和吸收频带的迁移。
图7为本发明实施例中将图5所示的电磁超表面材料层中的多个金属微结构应用到图3所示的多叠层结构之后的仿真测试结果示意图。
将图5所示的电磁超表面材料层中的多个金属微结构应用到图3所示的多叠层结构之后,吸波超材料包括四个叠层结构,即电磁超表面材料1、第一电磁吸波材料2、阻抗匹配材料3以及电磁反射材料4,具体的结构尺寸包括:电磁超表面材料1的厚度为0.2mm,第一电磁吸波材料2的厚度为1mm,阻抗匹配材料3的厚度为1.8mm,电磁反射材料4的厚度为0.2mm,吸波超材料的总厚度为3.2mm。其中,阻抗匹配材料3在10GHz时的电磁参数为:Εr'= 3.3,tanδ=0.017。第一电磁吸波材料2在10GHz时的电磁参数为:Εr'= 7.8,tanδ=0.03。电磁超表面材料1中涉及的金属微结构(11、12、13、14)采用的是金属铜导体,导电率5.8×10^7 S/m,当然也可以采用其它的金属,在此不作限定,此外,电磁超表面材料1中的集总元件15为变容二极管,且变容二极管的电容变化范围为0.1~5pF。同时,第一金属微结构11的金属走线呈L形,第二金属微结构12的金属走线呈F形,第三金属微结构13的金属走线大致呈h形,第四金属微结构14的金属走线大致呈h形,这些形状的共同特点是每一个金属微结构的尺寸与电磁波的波长相关,具体为波长的1/4~1/20,相邻金属微结构之间的距离影响相互间的电容电感,从而影响电磁响应特性。当电磁波垂直入射吸波超材料时,通过外部电压等信号调节集总元件15参数,S11参数仿真结果如图7所示,从图7中可以看出,本发明实施例中通过改变集总元件15的偏掷电压,可以实现吸收峰值和吸收频带的迁移。吸收峰值从10GHz偏移至11GHz。由此可以看出,本发明结合吸收多叠层结构设计和电磁超表面材料的功能层结构设计,通过调节元器件参数,可以使电磁超表面材料1具有不同的电磁响应特征,进而影响电磁波吸收频率峰值,利用多种吸波机理可以在低剖面条件下拓展吸波带宽,可见,本发明可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。
图8为本发明实施例中吸波超材料的电磁超表面材料层中所包括的多个金属微结构的第二种布局结构示意图。
如图8所示,本发明实施例中吸波超材料的电磁超表面材料1层中包括四个金属微结构(11、12、13、14)以及四个集总元件15,四个金属微结构的形状完全相同,每一个金属微结构的金属走线呈L形,每一个金属微结构与电磁超表面材料1的边缘不相连。而且在每一个金属微结构中嵌入一个集总元件15,集总元件15包括开关二极管或者变容二极管。通过集总元件15与电磁超表面材料1层中的四个金属微结构(11、12、13、14)集成,再与吸波结构(如第一电磁吸波材料2和第二电磁吸波材料5)异质集成,就可以通过信号改变电磁超表面材料1的电磁响应特性,从而改变整体吸波结构件的电磁响应特性,集总元件15可以调控吸波超材料的等效电路中的电容、电感数值,通过改变集总元件15的偏掷电压,可以实现吸收峰值和吸收频带的迁移。
图9为本发明实施例中将图8所示的电磁超表面周期结构中的多个金属微结构应用到图3所示的多叠层结构之后的仿真测试结果示意图。
将图8所示的电磁超表面周期结构中的多个金属微结构应用到图3所示的多叠层结构之后,吸波超材料包括四个叠层结构,即电磁超表面材料1、第一电磁吸波材料2、阻抗匹配材料3以及电磁反射材料4,具体的结构尺寸包括:电磁超表面材料1的厚度为0.2mm,第一电磁吸波材料2的厚度为1mm,阻抗匹配材料3的厚度为1.8mm,电磁反射材料4的厚度为0.2mm,吸波超材料的总厚度为3.2mm。其中,阻抗匹配材料3在10GHz时的电磁参数为:Εr'= 3.3,tanδ=0.017。第一电磁吸波材料2在10GHz时的电磁参数为:Εr'= 7.8,tanδ=0.03。电磁超表面材料1中涉及的金属微结构(11、12、13、14)采用的是金属铜导体,导电率5.8×10^7 S/m,当然也可以采用其它的金属,在此不作限定,此外,电磁超表面材料1中的集总元件15为变容二极管,且变容二极管的电容变化范围为0.1~5pF,通过集总元件15调控等效电容、电感数值。同时,第一金属微结构11、第二金属微结构12、第三金属微结构13、第四金属微结构14的形状完全相同,每一个金属微结构的金属走线呈L形,每一个金属微结构与电磁超表面材料1的边缘不相连。这些形状的共同特点是每一个金属微结构的尺寸与电磁波的波长相关,具体为波长的1/4~1/20,相邻金属微结构之间的距离影响相互间的电容电感,从而影响电磁响应特性。当电磁波垂直入射吸波超材料时,通过外部电压等信号调节集总元件15参数,S11参数仿真结果如图9所示,从图9中可以看出,本发明实施例中通过改变集总元件15的偏掷电压,可以实现吸收峰值和吸收频带的迁移。吸收峰值从10GHz偏移至11GHz。由此可以看出,本发明结合吸收多叠层结构设计和电磁超表面材料的功能层结构设计,通过调节元器件参数,可以使电磁超表面材料1具有不同的电磁响应特征,进而影响雷达波吸收频率峰值,利用多种吸波机理可以在低剖面条件下拓展吸波带宽,可见,本发明可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。
以上实施例为当电磁超表面1周期结构中包括多个金属微结构时,利用在每一个金属微结构中嵌入一个集总元件,通过改变所述集总元件上的偏掷电压实现吸收峰值和吸收频带的迁移,可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。当电磁超表面1周期结构中仅包括一个金属微结构时也能实现可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节,如下所述。
图10为本发明实施例中吸波超材料的电磁超表面周期结构中所包括的多个金属微结构的第三种布局结构示意图。
如图10所示,本发明实施例中吸波超材料的电磁超表面1周期结构中包括五个金属微结构(11、12、13、14、16)以及一个集总元件15,四个金属微结构(11、12、13、14)分别设置在电磁超表面1周期结构中的四个拐角区域且形状完全相同,均呈L形,集总元件15嵌入金属微结构16中并共同设置在电磁超表面1周期结构中的中间位置,金属微结构16呈螺旋状,本发明实施例中增加螺旋型微结构可以进一步改善大角度入射条件下吸收能力。
将图10所示的电磁超表面周期结构中的多个金属微结构应用到图4所示的多叠层结构之后,吸波超材料包括五个叠层结构,即电磁超表面材料1、第一电磁吸波材料2、阻抗匹配材料3、电磁反射材料4以及第二电磁吸波材料5,具体的结构尺寸包括:电磁超表面材料1的厚度为0.2mm,第一电磁吸波材料2的厚度为1mm,第二电磁吸波材料5的厚度为1mm,阻抗匹配材料3的厚度为1.3mm,电磁反射材料4的厚度为0.1mm,吸波超材料的总厚度为3.6mm。其中,阻抗匹配材料3在10GHz时的电磁参数为:Εr'= 3.3,tanδ=0.017。第一电磁吸波材料2在10GHz时的电磁参数为:Εr'= 7.8,tanδ=0.03。电磁超表面材料1中涉及的金属微结构(11、12、13、14)采用的是金属铜导体,导电率5.8×10^7 S/m,当然也可以采用其它的金属,在此不作限定,此外,电磁超表面材料1中的集总元件15为变容二极管,且变容二极管的电容变化范围为0.1~5pF,通过集总元件15调控等效电容、电感数值。同时,金属微结构16为螺旋状微结构,从中心开始的长度分别为1.125、1.25、2.25、2.25、3.25、3.25、4.125mm。
螺旋状微结构的电感可以通过下面公式计算:
其中l是螺旋状微结构的周长,w是微结构的线宽,单位为m。
当电磁波垂直入射吸波超材料时,通过外部电压等信号调节集总元件15参数,S11参数仿真结果如图11所示,从图11中可以看出,本发明实施例中通过改变集总元件15的偏掷电压,可以实现吸收峰值和吸收频带的迁移,以及吸收峰值的改变。由此可以看出,本发明结合吸收多叠层结构设计和电磁超表面材料的功能层结构设计,通过调节元器件参数,可以使电磁超表面材料1具有不同的电磁响应特征,进而影响电磁波吸收频率峰值,利用多种吸波机理可以在低剖面条件下拓展吸波带宽,以及在大角度入射条件下吸波性能。可见,本发明可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。
图12为本发明实施例中对应的拱形场反射测试曲线。曲线显示通过不同可变电容值的选取,实现了对吸波性能的动态调节。
另外,本发明还提供了一种吸波结构件,其中,所述吸波结构件包括以上任一项所述的吸波超材料。本发明提供的吸波结构件可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。
此外,本发明还提供了一种移动载体,其中,所述移动载体包括以上任一项所述的吸波超材料。本发明提供的移动载体能可动态调节电磁波吸收的频率,可实现X波段内的频率动态调节。
而且,本发明还提供了以上任一项所述的吸波超材料在电磁兼容领域的应用。
本发明提供的技术方案能适应室外复杂多变的电磁环境,针对室外环境电磁干扰频率复杂多变的特点,本发明通过电磁超表面材料与功能吸波基材相结合的方式,针对性的动态改变吸波功能结构的吸收频率,有效提升复杂电磁环境下抗干扰能力。
工业实用性
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (10)

  1. 一种吸波超材料,其特征在于,所述吸波超材料包括电磁超表面材料以及叠加在所述电磁超表面材料的正反两个表面上的第一电磁吸波材料和阻抗匹配材料,所述电磁超表面材料在所述吸波超材料的等效电路中呈电容与电感的串联连接,所述第一电磁吸波材料和所述阻抗匹配材料在所述吸波超材料的等效电路中均呈电阻;
    其中,在所述电磁超表面材料的一个或者多个区域分别设置一个或者多个金属微结构,在每一个金属微结构中嵌入一个集总元件,通过改变所述集总元件上的偏掷电压实现吸收峰值和吸收频带的迁移,每一个金属微结构的周期长度为λ/50~λ/5,λ为电磁波在所述电磁超表面材料内传输的波长。
  2. 根据权利要求1所述的吸波超材料,其特征在于,所述阻抗匹配材料包括玻璃纤维复合材料,所述第一电磁吸波材料为吸波复合材料。
  3. 根据权利要求1所述的吸波超材料,其特征在于,所述吸波超材料还包括叠加在所述第一电磁吸波材料上面的电磁反射材料,所述电磁反射材料包括金属材料以及碳纤维复合材料。
  4. 根据权利要求3所述的吸波超材料,其特征在于,所述吸波超材料还包括设置在所述电磁超表面材料与所述阻抗匹配材料之间的第二电磁吸波材料,所述第二电磁吸波材料为吸波复合材料。
  5. 根据权利要求1所述的吸波超材料,其特征在于,在所述电磁超表面周期结构中仅包括一个金属微结构时,所述金属微结构设置在所述电磁超表面周期的中间区域。
  6. 根据权利要求1所述的吸波超材料,其特征在于,在所述电磁超表面周期结构中包括多个金属微结构时,所述多个金属微结构分别设置在所述电磁超表面周期结构的边缘拐角区域。
  7. 根据权利要求1所述的吸波超材料,其特征在于,所述集总元件包括开关二极管或者变容二极管。
  8. 一种吸波结构件,其特征在于,所述隐身结构件包括权利要求1-7任一项所述的吸波超材料。
  9. 一种移动载体,其特征在于,所述移动载体包括权利要求1-7任一项所述的吸波超材料。
  10. 权利要求1-7任一项所述的吸波超材料在电磁兼容领域的应用。
PCT/CN2020/093945 2019-12-20 2020-06-02 一种吸波超材料、吸波结构件及移动载体 WO2021120531A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911324512.2A CN113013629A (zh) 2019-12-20 2019-12-20 一种吸波超材料、吸波结构件及移动载体
CN201911324512.2 2019-12-20
CN201922308389.7 2019-12-20
CN201922308389.7U CN211907695U (zh) 2019-12-20 2019-12-20 一种吸波超材料、吸波结构件及移动载体

Publications (1)

Publication Number Publication Date
WO2021120531A1 true WO2021120531A1 (zh) 2021-06-24

Family

ID=76477050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093945 WO2021120531A1 (zh) 2019-12-20 2020-06-02 一种吸波超材料、吸波结构件及移动载体

Country Status (1)

Country Link
WO (1) WO2021120531A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170910A1 (en) * 2006-01-26 2007-07-26 Ming-Hoo Chang Spectral resistor, spectral capacitor, order-infinity resonant tank, EM wave absorbing material, and applications thereof
CN102843899A (zh) * 2012-08-03 2012-12-26 深圳光启创新技术有限公司 一种吸波超材料及吸波装置
CN103717046A (zh) * 2012-09-29 2014-04-09 深圳光启创新技术有限公司 一种吸波材料
CN105098374A (zh) * 2015-09-11 2015-11-25 西北工业大学 一种超宽带的电磁吸波结构
CN109713457A (zh) * 2019-01-23 2019-05-03 西北大学 基于氮化钽材料的吸波/透波超表面的设计方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170910A1 (en) * 2006-01-26 2007-07-26 Ming-Hoo Chang Spectral resistor, spectral capacitor, order-infinity resonant tank, EM wave absorbing material, and applications thereof
CN102843899A (zh) * 2012-08-03 2012-12-26 深圳光启创新技术有限公司 一种吸波超材料及吸波装置
CN103717046A (zh) * 2012-09-29 2014-04-09 深圳光启创新技术有限公司 一种吸波材料
CN105098374A (zh) * 2015-09-11 2015-11-25 西北工业大学 一种超宽带的电磁吸波结构
CN109713457A (zh) * 2019-01-23 2019-05-03 西北大学 基于氮化钽材料的吸波/透波超表面的设计方法及其应用

Similar Documents

Publication Publication Date Title
CN108270085B (zh) 吸透一体频率选择表面结构
US11417950B2 (en) Integrated wave-absorbing and wave-transparent apparatus and radome
CN111146596B (zh) 一种复合窗口吸收体的吸波/透波装置
CN107508017B (zh) 一种带吸型宽带频率选择结构及其应用
US11764449B2 (en) Metamaterial-based variable capacitor structure
CN107565218A (zh) 基于fss多层反射调制板的uhf雷达频谱搬移方法
CN112864633B (zh) 一种基于超表面的宽带微波吸收体
CN111817022B (zh) 一种用于飞行器可视窗的宽频超薄吸波超材料
CN112688084B (zh) 同时具有光学透明性和可调吸波频率的电磁吸收结构
CN114204279B (zh) 一种电阻加载方形环超宽带吸波结构
CN106329150B (zh) 一种吸波超材料
CN113314850B (zh) 一种2.5d多层频率选择表面
CN102811595A (zh) 一种宽频吸波材料
CN114336086A (zh) 一种用于天线rcs减缩的超宽带吸波结构
CN113097741B (zh) 一种光学透明的吸波幅度可调的宽带电磁吸收结构
WO2021120531A1 (zh) 一种吸波超材料、吸波结构件及移动载体
CN211907695U (zh) 一种吸波超材料、吸波结构件及移动载体
CN114122743B (zh) 一种单元小型化的吸波/透波装置
CN115473051B (zh) 一种电磁吸波结构
CN109037957B (zh) 三维新型宽带吸波式频率选择结构及其应用
CN110994188A (zh) 对入射电磁波全角不敏感的强耦合频率选择表面结构
CN113013629A (zh) 一种吸波超材料、吸波结构件及移动载体
CN116315730A (zh) 一种多层高性能超宽带吸波结构
US10573951B2 (en) Split resonator and printed circuit board including the same
CN211404744U (zh) 一种对入射电磁波全角不敏感的强耦合频率选择表面结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902856

Country of ref document: EP

Kind code of ref document: A1