WO2021120410A1 - 基于霍夫变换的绝对相位噪声去除方法、装置和存储介质 - Google Patents

基于霍夫变换的绝对相位噪声去除方法、装置和存储介质 Download PDF

Info

Publication number
WO2021120410A1
WO2021120410A1 PCT/CN2020/078283 CN2020078283W WO2021120410A1 WO 2021120410 A1 WO2021120410 A1 WO 2021120410A1 CN 2020078283 W CN2020078283 W CN 2020078283W WO 2021120410 A1 WO2021120410 A1 WO 2021120410A1
Authority
WO
WIPO (PCT)
Prior art keywords
absolute phase
point
noise
absolute
phase
Prior art date
Application number
PCT/CN2020/078283
Other languages
English (en)
French (fr)
Inventor
龙佳乐
陈富健
张建民
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021120410A1 publication Critical patent/WO2021120410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20061Hough transform
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the technical field of three-dimensional shape measurement, in particular to a method, device and storage medium for removing absolute phase noise based on Hough transform.
  • the structured light fringe projection uses the absolute phase information to recover the three-dimensional stereo.
  • the accuracy of the absolute phase affects the accuracy of the three-dimensional stereo reconstruction.
  • due to various factors such as the error of the measuring equipment, the interference of the external environment, the limitation of the algorithm, etc. This leads to interference that inevitably produces noise during the acquisition of the absolute phase, and it is impossible to obtain a noise-free 3D point cloud from the subsequent 3D reconstruction.
  • the existing noise removal method cannot filter out a large number of noise points, but can only perform partial
  • the denoising processing has high computational complexity and is difficult to apply in the industry.
  • the purpose of the present invention is to provide a method, device and storage medium for removing absolute phase noise based on Hough transform, which can quickly and accurately remove the noise points of the absolute phase to obtain a noise-free absolute phase.
  • the present invention provides an absolute phase noise removal method based on Hough transform, which includes the following steps:
  • the client obtains the first absolute phase that is not denoised, performs linear detection on the first absolute phase through Hough transform, and sets the longest linear segment detected as the second absolute phase;
  • the client acquires a first absolute phase point in the first absolute phase and a second absolute phase point in the second absolute phase, and the abscissas of the first absolute phase point and the second absolute phase point are the same , And calculate the phase difference between the first absolute phase point and the second absolute phase point, and if the absolute value of the phase difference is greater than ⁇ , then set the first absolute phase point as a noise point;
  • the client obtains the fringe order of the noise point according to the second absolute phase, and obtains the third absolute phase corresponding to the noise point according to the fringe order, and the third absolute phase is after denoising Absolute phase.
  • the longest straight line segment detected is a line segment converted into a rectangular coordinate system from a point with the largest polar coordinate response during straight line detection.
  • the method further includes: the client obtains the first end point coordinates and the second end point coordinates of the longest straight line segment, and according to the The first end point coordinates and the second end point coordinates are used to calculate the slope and intercept of the longest straight line segment.
  • the client sets the straight line calculated according to the abscissa and the slope and intercept of the longest straight line segment as the second absolute phase.
  • the present invention provides a device for performing a Hough transform-based absolute phase noise removal method, including a CPU unit, the CPU unit is configured to perform the following steps:
  • the client obtains the first absolute phase that is not denoised, performs linear detection on the first absolute phase through Hough transform, and sets the longest linear segment detected as the second absolute phase;
  • the client acquires a first absolute phase point in the first absolute phase and a second absolute phase point in the second absolute phase, and the abscissas of the first absolute phase point and the second absolute phase point are the same , And calculate the phase difference between the first absolute phase point and the second absolute phase point, and if the absolute value of the phase difference is greater than ⁇ , then set the first absolute phase point as a noise point;
  • the client obtains the fringe order of the noise point according to the second absolute phase, and obtains the third absolute phase corresponding to the noise point according to the fringe order, and the third absolute phase is after denoising Absolute phase.
  • the CPU unit is further configured to perform the following steps: the client obtains the coordinates of the first end point of the longest straight line segment and The second end point coordinates, and the slope and intercept of the longest straight line segment are calculated according to the first end point coordinates and the second end point coordinates.
  • CPU unit is also used to perform the following steps:
  • the client sets the straight line calculated according to the abscissa and the slope and intercept of the longest straight line segment as the second absolute phase.
  • the present invention provides a device for performing a Hough transform-based absolute phase noise removal method, which includes at least one control processor and a memory for communicating with the at least one control processor; the memory stores the An instruction executed by at least one control processor, and the instruction is executed by at least one control processor, so that the at least one control processor can execute the above-mentioned Hough transform-based absolute phase noise removal method.
  • the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the absolute phase noise removal based on the Hough transform as described above method.
  • the present invention also provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer , Let the computer execute the absolute phase noise removal method based on the Hough transform as described above.
  • the present invention uses the Hough transform to perform straight line detection on the first absolute phase before denoising, and set the longest straight line segment detected Is the second absolute phase. After finding the noise point based on the difference between the first absolute phase and the second absolute phase, the fringe order of the noise point in the second absolute phase is obtained. It is correct. Therefore, the third absolute phase in a noise-free environment is deduced from the noise point, that is, the noise-free absolute phase is obtained, and the absolute phase noise is removed.
  • the invention detects the global absolute phase, utilizes the simple and fast characteristics of the Hough transform to detect straight lines, realizes rapid and accurate denoising, and effectively reduces the amount of calculation.
  • FIG. 1 is a flowchart of a method for removing absolute phase noise based on Hough transform according to an embodiment of the present invention
  • FIG. 2 is a flowchart of obtaining a second absolute phase in a method for removing absolute phase noise based on Hough transform according to an embodiment of the present invention
  • Fig. 3 is a schematic diagram of an apparatus for performing a method for removing absolute phase noise based on Hough transform according to an embodiment of the present invention.
  • the first embodiment of the present invention provides a method for removing absolute phase noise based on Hough transform, which includes the following steps:
  • step S100 the client obtains the first absolute phase that is not denoised, performs linear detection on the first absolute phase through Hough transform, and sets the longest linear segment detected as the second absolute phase;
  • Step S200 the client obtains the first absolute phase point in the first absolute phase and the second absolute phase point in the second absolute phase, where the abscissas of the first absolute phase point and the second absolute phase point are the same, and calculate the first absolute phase point.
  • step S300 the client obtains the fringe order of the noise point according to the second absolute phase, and obtains the third absolute phase corresponding to the noise point according to the fringe order, where the third absolute phase is the absolute phase after denoising.
  • steps S100-S300 in this embodiment are only steps for removing one noise point. If there are multiple noise points, repeat the above steps, which will not be repeated here.
  • any type of algorithm can be used for straight line detection, and the longest straight line segment can be obtained.
  • This embodiment is preferably Hough transform.
  • the Hough transform is applied in In the field of image analysis and computer vision, feature detection can be performed, especially in the straight line detection, the calculation process is simple and the calculation result can be quickly obtained. Therefore, the Hough transform is adopted in this embodiment, which can reduce the noise in the presence of a large number of noise points. Computational complexity of phase noise removal, and high efficiency.
  • the abscissas of the first absolute phase point and the second absolute phase point are preferably positive integers. If higher accuracy is required, several digits after the decimal point can also be introduced. The specific accuracy is based on actual needs. Just adjust. It can be understood that the absolute value of the phase difference between the first absolute phase point and the second absolute phase point is greater than ⁇ in this embodiment, and it can also be adjusted to 2 ⁇ , 0.5 ⁇ , etc., to ensure that the accuracy meets actual requirements. , I won’t repeat it here.
  • the longest straight line segment detected is the line segment converted to the rectangular coordinate system from the point with the largest polar coordinate response during straight line detection.
  • polar coordinates can essentially use angle changes to express the changes in length. Therefore, the point with the largest response in polar coordinates is the line segment with the longest length.
  • the use of polar coordinates for judgment can simplify the measurement of the length of the line segment, thereby simplifying the calculation complexity.
  • the client obtains the first end point coordinates and the second end point coordinates of the longest straight line segment, and according to the first end point coordinates Calculate the slope and intercept of the longest straight line segment with the coordinates of the second end point.
  • the slope and intercept of the line segment are preferably calculated by the end point coordinates in this embodiment.
  • the second absolute phase is obtained by the following steps:
  • Step S110 the client obtains the abscissa of the first absolute phase point
  • step S120 the client sets the straight line calculated according to the abscissa and the slope and intercept of the longest straight line segment as the second absolute phase.
  • the third absolute phase corresponding to the noise point is obtained according to the fringe order.
  • the noise point is generated because the calculated fringe order m is wrong in the process of restoring the absolute phase. Therefore, the first absolute phase obtained is noisy, and the wrapped phase itself is correct. And the second absolute phase is obtained through the Hough change, and it does not include noise points, so use the second absolute phase without noise points to recalculate the fringe order, and then recalculate the absolute phase according to the new fringe order, then you can The third absolute phase after noise removal is obtained.
  • the present invention also provides a device for performing the absolute phase noise removal method based on Hough transform.
  • the device is a smart device, such as a smart phone, a computer, a tablet, etc., and is not in between.
  • a computer is used as an example to illustrate the third-party device.
  • the computer 3000 for performing the absolute phase noise removal method based on the Hough transform includes a CPU unit 3100, and the CPU unit 3100 is used to perform the following steps:
  • the client obtains the first absolute phase without denoising, performs linear detection on the first absolute phase through the Hough transform, and sets the longest linear segment detected as the second absolute phase;
  • the client obtains the first absolute phase point in the first absolute phase and the second absolute phase point in the second absolute phase.
  • the abscissas of the first absolute phase point and the second absolute phase point are the same, and the first absolute phase point is calculated
  • the phase difference with the second absolute phase point if the absolute value of the phase difference is greater than ⁇ , then the second absolute phase point is set as a noise point;
  • the client obtains the fringe order of the noise point according to the second absolute phase, and obtains the third absolute phase corresponding to the noise point according to the fringe order, where the third absolute phase is the absolute phase after denoising.
  • the smart device is installed with a client for executing the above-mentioned Hough transform-based absolute phase noise removal method, and the Hough transform-based absolute phase noise removal method does not require user operation in this embodiment. It is completed automatically when the computer 3000 is started and initialized by the CPU unit.
  • the CPU unit 3100 is further configured to perform the following steps:
  • the CPU unit Before setting the detected longest straight line segment as the second absolute phase, the CPU unit is also used to perform the following steps: the client obtains the coordinates of the first end point and the second end point of the longest straight line segment, and according to the first One endpoint coordinate and the second endpoint coordinate calculate the slope and intercept of the longest straight line segment.
  • the CPU unit 3100 is further configured to perform the following steps:
  • the client obtains the abscissa of the first absolute phase point
  • the client sets the straight line calculated according to the abscissa and the slope and intercept of the longest straight line segment as the second absolute phase.
  • the computer 3000 and the CPU unit 3100 can be connected by a bus or other means.
  • the computer 3000 also includes a memory.
  • the memory can be used to store non-transitory software programs and non-transitory Computer-executable programs and modules, such as program instructions/modules corresponding to the device for executing the Hough transform-based absolute phase noise removal method in the embodiment of the present invention.
  • the computer 3000 controls the CPU unit 3100 to execute various functional applications and data processing for performing the absolute phase noise removal method based on the Hough transform by running the non-transitory software programs, instructions, and modules stored in the memory, thereby realizing the above The absolute phase noise removal method based on the Hough transform of the method embodiment.
  • the memory may include a program storage area and a data storage area.
  • the program storage area can store an operating system and an application program required by at least one function; the data storage area can store data created according to the use of the CPU unit 3100 and the like.
  • the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory may optionally include a memory remotely provided with respect to the CPU unit 3100, and these remote memories may be connected to the computer 3000 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory, and when executed by the CPU unit 3100, the Hough transform-based absolute phase noise removal method in the foregoing method embodiment is executed.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by the CPU unit 3100 to implement the above-mentioned Hough transform-based Absolute phase noise removal method.
  • the device embodiments described above are merely illustrative, and the devices described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network devices. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform.
  • All or part of the processes in the methods of the foregoing embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer-readable storage medium.
  • the storage medium can be a magnetic disk, an optical disc, a read-only memory (Read Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

一种基于霍夫变换的绝对相位噪声去除方法、装置和存储介质,采用了霍夫变换对去噪前的第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位,根据第一绝对相位和第二绝对相位的差值找出噪声点后,获取第二绝对相位中噪声点的条纹阶数,由于第二绝对相位的包裹相位本身是正确的,因此通过噪声点反推出在无噪声环境下的第三绝对相位,即不包括噪声的绝对相位,实现了绝对相位噪声的去除。上述方法对绝对相位的全局进行检测,利用了霍夫变换检测直线简单且快速的特点,实现了快速准确去噪,并且有效降低了计算量。

Description

基于霍夫变换的绝对相位噪声去除方法、装置和存储介质 技术领域
本发明涉及三维形貌测量技术领域,特别是一种基于霍夫变换的绝对相位噪声去除方法、装置和存储介质。
背景技术
目前,基于结构光条纹投影的三维测量设备由于其具有测量精度高、实时性好、非接触性等优点,在生活以及工业各个领域都得到了广泛的应用。其中结构光条纹投影中利用绝对相位的信息进行三维立体的恢复,绝对相位的精度影响着三维立体的重建精度,但由于测量设备的误差、外界环境的干扰、算法的局限性等各种因素都会导致绝对相位的获取过程中产生不可避免地产生噪声的干扰,无法从后续的三维重建中得到无噪声的三维点云,现有的噪声去除方法无法进行大量噪声点的滤除,只能进行局部去噪处理,计算复杂度较高,难以在产业中应用。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种基于霍夫变换的绝对相位噪声去除方法、装置和存储介质,能够快速准确地去除绝对相位的噪声点,得到无噪声的绝对相位。
本发明解决其问题所采用的技术方案是:第一方面,本发明提供 了一种基于霍夫变换的绝对相位噪声去除方法,包括以下步骤:
客户端获取未去噪的第一绝对相位,通过霍夫变换对所述第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;
所述客户端获取所述第一绝对相位中的第一绝对相位点和所述第二绝对相位中的第二绝对相位点,所述第一绝对相位点和第二绝对相位点的横坐标相同,并计算所述第一绝对相位点和第二绝对相位点的相位差,若所述相位差的绝对值大于π,则将所述第一绝对相位点设置为噪声点;
所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数,根据所述条纹阶数获取所述噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
进一步,所述检测到的最长的直线段为直线检测时极坐标响应最大的点所转换到直角坐标系中的线段。
进一步,将检测到的最长的直线段设置为第二绝对相位之前,还包括:所述客户端获取构成所述最长的直线段的第一端点坐标和第二端点坐标,并根据所述第一端点坐标和第二端点坐标计算出所述最长的直线段的斜率和截距。
进一步,所述第二绝对相位由以下步骤获取:
所述客户端获取第一绝对相位点的横坐标;
所述客户端将根据所述横坐标和所述最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
进一步,所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数的计算公式为m=(Φ r-φ)/2π,其中Φ r为所述第二绝对相位,φ为与所述第二绝对相位所对应的包裹相位,m为所述条纹阶数,π为圆周率。
进一步,所述根据所述条纹阶数获取所述噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位的计算公式为Φ=2πm+φ,其中,Φ为所述第三绝对相位,m为所述条纹阶数,φ为所述包裹相位,π为圆周率。
第二方面,本发明提供了一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置,包括CPU单元,所述CPU单元用于执行以下步骤:
客户端获取未去噪的第一绝对相位,通过霍夫变换对所述第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;
所述客户端获取所述第一绝对相位中的第一绝对相位点和所述第二绝对相位中的第二绝对相位点,所述第一绝对相位点和第二绝对相位点的横坐标相同,并计算所述第一绝对相位点和第二绝对相位点的相位差,若所述相位差的绝对值大于π,则将所述第一绝对相位点设置为噪声点;
所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数,根据所述条纹阶数获取所述噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
进一步,将检测到的最长的直线段设置为第二绝对相位之前,所述CPU单元还用于执行以下步骤:所述客户端获取构成所述最长的直线段的第一端点坐标和第二端点坐标,并根据所述第一端点坐标和第二端点坐标计算出所述最长的直线段的斜率和截距。
进一步,所述CPU单元还用于执行以下步骤:
所述客户端获取第一绝对相位点的横坐标;
所述客户端将根据所述横坐标和所述最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
第三方面,本发明提供了一种用于执行基于霍夫变换的绝对相位噪声去除方法的设备,包括至少一个控制处理器和用于与至少一个控制处理器通信连接的存储器;存储器存储有可被至少一个控制处理器执行的指令,指令被至少一个控制处理器执行,以使至少一个控制处理器能够执行如上所述的基于霍夫变换的绝对相位噪声去除方法。
第四方面,本发明提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如上所述的基于霍夫变换的绝对相位噪声去除方法。
第五方面,本发明还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使计算机执行如上所述的基于霍夫变换的绝对相位噪声去除方法。
本发明实施例中提供的一个或多个技术方案,至少具有如下有益 效果:本发明采用了霍夫变换对去噪前的第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位,根据第一绝对相位和第二绝对相位的差值找出噪声点后,通过获取第二绝对相位中噪声点的条纹阶数,由于第二绝对相位的包过相位本身是正确的,因此通过噪声点反推出在无噪声环境下的第三绝对相位,即得出无噪声的绝对相位,实现了绝对相位噪声的去除。本发明对绝对相位的全局进行检测,利用了霍夫变换检测直线简单且快速的特点,实现了快速准确去噪,并且有效降低了计算量。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是本发明实施例提供的一种基于霍夫变换的绝对相位噪声去除方法的流程图;
图2是本发明实施例提供的一种基于霍夫变换的绝对相位噪声去除方法中获取第二绝对相位的流程图;
图3是本发明实施例提供的一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相 互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
参考图1,本发明的第一实施例提供了一种基于霍夫变换的绝对相位噪声去除方法,包括以下步骤:
步骤S100,客户端获取未去噪的第一绝对相位,通过霍夫变换对第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;
步骤S200,客户端获取第一绝对相位中的第一绝对相位点和第二绝对相位中的第二绝对相位点,第一绝对相位点和第二绝对相位点的横坐标相同,并计算第一绝对相位点和第二绝对相位点的相位差,若相位差的绝对值大于π,则将第二绝对相位点设置为噪声点;
步骤S300,客户端根据第二绝对相位获取噪声点的条纹阶数,根据条纹阶数获取噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
其中,需要说明的是,本实施例的步骤S100-S300仅为一个噪声点的去除步骤,若存在多个噪声点,重复执行上述步骤即可,在此不再赘述。
其中,需要说明的是,直线检测可以采用任意类型的算法,能够获取到最长的直线段即可,本实施例优选为霍夫变换,本领域技术人 员可以理解的是,霍夫变换应用在图像分析和计算机视觉领域中,能够进行特征检测,尤其是在直线检测时计算过程简便,能够快速得出计算结果,因此本实施例采用霍夫变换,能够在存在大量噪声点的情况下,降低相位噪声去除的计算复杂度,而且效率较高。
其中,需要说明的是,步骤S200中优选第一绝对相位点和第二绝对相位点的横坐标为正整数,若需要实现较高的精度,也可以引入小数点后若干位,具体精度根据实际需求调整即可。可以理解的是,第一绝对相位点和第二绝对相位点的相位差的绝对值大于π为本实施例的优选,也可以调整为2π、0.5π等,能够确保精度符合实际使用需求即可,在此不再赘述。
进一步,检测到的最长的直线段为直线检测时极坐标响应最大的点所转换到直角坐标系中的线段。
其中,本领域技术人员可以理解的是,在霍夫变换的过程中,极坐标从本质上能够用角度变化来表示长度的变化,因此在极坐标响应最大的点即为长度最长的线段,采用极坐标进行判断能够简化对线段长度的测量,从而简化计算复杂度。
进一步,将检测到的最长的直线段设置为第二绝对相位之前,还包括:客户端获取构成最长的直线段的第一端点坐标和第二端点坐标,并根据第一端点坐标和第二端点坐标计算出最长的直线段的斜率和截距。
其中,需要说明的是,由于线段由两个端点构成,因此本实施例 优选通过端点坐标计算出直线段的斜率和截距,本领域技术人员可以理解的是,在已知直线段的端点坐标为(x 1,y 1)和(x 2,y 2)的情况下,斜率k和截距b的计算方式为
Figure PCTCN2020078283-appb-000001
b=y 1-k×x 1
参考图2,进一步,第二绝对相位由以下步骤获取:
步骤S110,客户端获取第一绝对相位点的横坐标;
步骤S120,客户端将根据横坐标和最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
其中,本领域技术人员可知的是,本实施例中的第二绝对相位的计算方法优选为y=k×x+b,其中k为斜率,b为截距,有利于简化运算。
进一步,客户端根据第二绝对相位获取噪声点的条纹阶数的计算公式为m=(Φ r-φ)/2π,其中Φ r为第二绝对相位,φ为与第二绝对相位所对应的包裹相位,m为条纹阶数,π为圆周率。
进一步,根据条纹阶数获取噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位的计算公式为Φ=2πm+φ,其中,Φ为第三绝对相位,m为条纹阶数,φ为包裹相位,π为圆周率。
其中,需要说明的是,噪声点的产生是因为在恢复绝对相位过程中,计算得到的条纹阶数m发生了错误,因此得出的第一绝对相位存在噪声,而包裹相位本身是正确的,且第二绝对相位通过霍夫变化得出,本身也不包括噪声点,所以用没有噪声点的第二绝对相位去重新计算条纹阶数,再根据新的条纹阶数重新计算绝对相位,则能得到就 得出去除噪音后的第三绝对相位。
参照图3,本发明还提供了一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置,该装置为智能设备,例如智能手机、计算机和平板电脑等,并非介于二者之间的第三方装置,本实施例以计算机为例加以说明。
在该用于执行基于霍夫变换的绝对相位噪声去除方法的计算机3000中,包括CPU单元3100,CPU单元3100用于执行以下步骤:
客户端获取未去噪的第一绝对相位,通过霍夫变换对第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;
客户端获取第一绝对相位中的第一绝对相位点和第二绝对相位中的第二绝对相位点,第一绝对相位点和第二绝对相位点的横坐标相同,并计算第一绝对相位点和第二绝对相位点的相位差,若相位差的绝对值大于π,则将第二绝对相位点设置为噪声点;
客户端根据第二绝对相位获取噪声点的条纹阶数,根据条纹阶数获取噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
其中,在本实施例中,智能装置中安装有用于执行上述基于霍夫变换的绝对相位噪声去除方法的客户端,基于霍夫变换的绝对相位噪声去除方法在本实施例中不需要通过用户操作完成,而是在计算机3000启动时,通过CPU单元初始化时自动完成。
进一步,本发明的另一个实施例中,CPU单元3100还用于执行 以下步骤:
将检测到的最长的直线段设置为第二绝对相位之前,CPU单元还用于执行以下步骤:客户端获取构成最长的直线段的第一端点坐标和第二端点坐标,并根据第一端点坐标和第二端点坐标计算出最长的直线段的斜率和截距。
进一步,本发明的另一个实施例中,CPU单元3100还用于执行以下步骤:
客户端获取第一绝对相位点的横坐标;
客户端将根据横坐标和最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
计算机3000和CPU单元3100之间可以通过总线或者其他方式连接,计算机3000中还包括存储器,所述存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的用于执行基于霍夫变换的绝对相位噪声去除方法的设备对应的程序指令/模块。计算机3000通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而控制CPU单元3100执行用于执行基于霍夫变换的绝对相位噪声去除方法的各种功能应用以及数据处理,即实现上述方法实施例的基于霍夫变换的绝对相位噪声去除方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储 根据CPU单元3100的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于CPU单元3100远程设置的存储器,这些远程存储器可以通过网络连接至该计算机3000。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器中,当被所述CPU单元3100执行时,执行上述方法实施例中的基于霍夫变换的绝对相位噪声去除方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被CPU单元3100执行,实现上述所述的基于霍夫变换的绝对相位噪声去除方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的装置可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络装置上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
需要说明的是,由于本实施例中的用于执行基于霍夫变换的绝对相位噪声去除方法的装置与上述的基于霍夫变换的绝对相位噪声去除方法基于相同的发明构思,因此,方法实施例中的相应内容同样适用于本装置实施例,此处不再详述。
通过以上的实施方式的描述,本领域技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现。本领域技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ReadOnly Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种基于霍夫变换的绝对相位噪声去除方法,其特征在于,包括以下步骤:
    客户端获取未去噪的第一绝对相位,通过霍夫变换对所述第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;所述客户端获取所述第一绝对相位中的第一绝对相位点和所述第二绝对相位中的第二绝对相位点,所述第一绝对相位点和第二绝对相位点的横坐标相同,并计算所述第一绝对相位点和第二绝对相位点的相位差,若所述相位差的绝对值大于π,则将所述第一绝对相位点设置为噪声点;
    所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数,根据所述条纹阶数获取所述噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
  2. 根据权利要求1所述的一种基于霍夫变换的绝对相位噪声去除方法,其特征在于:所述检测到的最长的直线段为直线检测时极坐标响应最大的点所转换到直角坐标系中的线段。
  3. 根据权利要求1所述的一种基于霍夫变换的绝对相位噪声去除方法,其特征在于,将检测到的最长的直线段设置为第二绝对相位之前,还包括:所述客户端获取构成所述最长的直线段的第一端点坐标和第二端点坐标,并根据所述第一端点坐标和第二端点坐标计算出所述最长的直线段的斜率和截距。
  4. 根据权利要求3所述的一种基于霍夫变换的绝对相位噪声去除方法,其特征在于,所述第二绝对相位由以下步骤获取:
    所述客户端获取第一绝对相位点的横坐标;
    所述客户端将根据所述横坐标和所述最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
  5. 根据权利要求1所述的一种基于霍夫变换的绝对相位噪声去除方法,其特征在于:所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数的计算公式为m=(Φ r-φ)/2π,其中Φ r为所述第二绝对相位,φ为与所述第二绝对相位所对应的包裹相位,m为所述条纹阶数,π为圆周率。
  6. 根据权利要求5所述的一种基于霍夫变换的绝对相位噪声去除方法,其特征在于:所述根据所述条纹阶数获取所述噪声点所对应的第三绝对相位计算公式为Φ=2πm+φ,其中,Φ为所述第三绝对相位,m为所述条纹阶数,φ为所述包裹相位,π为圆周率。
  7. 一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置,其特征在于,包括CPU单元,所述CPU单元用于执行以下步骤:
    客户端获取未去噪的第一绝对相位,通过霍夫变换对所述第一绝对相位进行直线检测,将检测到的最长的直线段设置为第二绝对相位;所述客户端获取所述第一绝对相位中的第一绝对相位点和所述第二绝对相位中的第二绝对相位点,所述第一绝对相位点和第二绝对相位点的横坐标相同,并计算所述第一绝对相位点和第二绝对相位点的相 位差,若所述相位差的绝对值大于π,则将所述第一绝对相位点设置为噪声点;
    所述客户端根据所述第二绝对相位获取所述噪声点的条纹阶数,根据所述条纹阶数获取所述噪声点所对应的第三绝对相位,所述第三绝对相位为去噪后的绝对相位。
  8. 根据权利要求7所述的一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置,其特征在于,将检测到的最长的直线段设置为第二绝对相位之前,所述CPU单元还用于执行以下步骤:所述客户端获取构成所述最长的直线段的第一端点坐标和第二端点坐标,并根据所述第一端点坐标和第二端点坐标计算出所述最长的直线段的斜率和截距。
  9. 根据权利要求8所述的一种用于执行基于霍夫变换的绝对相位噪声去除方法的装置,其特征在于,所述CPU单元还用于执行以下步骤:所述客户端获取第一绝对相位点的横坐标;
    所述客户端将根据所述横坐标和所述最长的直线段的斜率和截距计算出的直线设置为第二绝对相位。
  10. 一种计算机可读存储介质,其特征在于:所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-6任一项所述的一种基于霍夫变换的绝对相位噪声去除方法。
PCT/CN2020/078283 2019-12-20 2020-03-06 基于霍夫变换的绝对相位噪声去除方法、装置和存储介质 WO2021120410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911306685.1 2019-12-20
CN201911306685.1A CN111161169B (zh) 2019-12-20 2019-12-20 基于霍夫变换的绝对相位噪声去除方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021120410A1 true WO2021120410A1 (zh) 2021-06-24

Family

ID=70557636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078283 WO2021120410A1 (zh) 2019-12-20 2020-03-06 基于霍夫变换的绝对相位噪声去除方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN111161169B (zh)
WO (1) WO2021120410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116385657A (zh) * 2023-04-17 2023-07-04 北京迁移科技有限公司 图像处理方法、点云生成方法、电子设备及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112529014B (zh) * 2020-12-14 2023-09-26 中国平安人寿保险股份有限公司 直线检测方法、信息提取方法、装置、设备及存储介质
CN112752093B (zh) * 2020-12-25 2022-08-16 浙江大华技术股份有限公司 视频条纹检测方法、装置、存储介质及电子装置
CN113029042B (zh) * 2021-05-25 2021-08-03 四川大学 一种高温熔融态金属表面形貌动态测量装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191053A (ja) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp 合成開口レーダ装置及び数値標高モデル作成方法
CN101650164A (zh) * 2009-09-07 2010-02-17 东南大学 三维扫描系统中基于错位条纹的相位展开方法
CN106032976A (zh) * 2015-03-20 2016-10-19 五邑大学 基于波长选择的三条纹投影相位展开方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354952B2 (en) * 2010-07-19 2013-01-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System and method for phase retrieval for radio telescope and antenna control
US20180096469A1 (en) * 2016-09-30 2018-04-05 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Fringe detection and mitigation based on hht2-fringe analysis and synthesis
CN109584256B (zh) * 2018-11-28 2022-04-12 北京师范大学 一种基于霍夫直线检测的脉冲星色散值估计方法
CN110188601B (zh) * 2019-04-16 2022-07-15 昆明理工大学 一种基于学习的机场遥感图像检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191053A (ja) * 2002-12-06 2004-07-08 Mitsubishi Electric Corp 合成開口レーダ装置及び数値標高モデル作成方法
CN101650164A (zh) * 2009-09-07 2010-02-17 东南大学 三维扫描系统中基于错位条纹的相位展开方法
CN106032976A (zh) * 2015-03-20 2016-10-19 五邑大学 基于波长选择的三条纹投影相位展开方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LONG JIALE, XI JIANGTAO, ZHANG JIANMIN, ZHU MING, CHENG WENQING, LI ZHONGWEI, SHI YUSHENG: "Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability", JOURNAL OF MODERN OPTICS, vol. 63, no. 17, 24 September 2016 (2016-09-24), LONDON, GB, pages 1695 - 1705, XP055822106, ISSN: 0950-0340, DOI: 10.1080/09500340.2016.1168493 *
ZHANG, JIANMIN; LONG, JIALE; XU, ZHIHUI; LUO, SHUNQI; FAN, ZHIHUI; CHEN, FUJIAN: "Development of Fast 3D Measurement System Based on Digital Fringe Projection", MODERN ELECTRONICS TECHNIQUE, vol. 41, no. 15, 1 August 2018 (2018-08-01), pages 119 - 123,128, XP009528531, ISSN: 1004-373X, DOI: 10.16652/j.issn.1004⁃373x.2018.15.027 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116385657A (zh) * 2023-04-17 2023-07-04 北京迁移科技有限公司 图像处理方法、点云生成方法、电子设备及可读存储介质
CN116385657B (zh) * 2023-04-17 2023-09-08 北京迁移科技有限公司 图像处理方法、点云生成方法、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN111161169B (zh) 2023-06-13
CN111161169A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021120410A1 (zh) 基于霍夫变换的绝对相位噪声去除方法、装置和存储介质
CN110458772B (zh) 一种基于图像处理的点云滤波方法、装置和存储介质
CN109523581B (zh) 一种三维点云对齐的方法和装置
US20140355899A1 (en) Video enhancement using related content
US9552662B2 (en) Method and apparatus for removing false intersection in ray tracing
CN112484738B (zh) 机器人建图方法、装置、计算机可读存储介质及机器人
Deshpande et al. A novel modified cepstral based technique for blind estimation of motion blur
KR20200067719A (ko) 스테레오-시간적 이미지 시퀀스들로부터 향상된 3-d 데이터 재구성을 위한 방법들 및 장치
CN111079893B (zh) 用于干涉条纹图滤波的生成器网络的获取方法和装置
CN113902652B (zh) 散斑图像校正方法、深度计算方法、装置、介质及设备
CN111340728B (zh) 基于3d点云分割的点云去噪方法、装置和存储介质
CN113435462B (zh) 定位方法、装置、电子设备和介质
KR102151127B1 (ko) 3차원 영상 생성 장치 및 방법
US20140355959A1 (en) Multi-frame patch correspondence identification in video
CN105719242A (zh) 一种基于查表法的图片快速旋转方法及系统
CN110942438B (zh) 基于条纹投影的绝对相位噪声去除方法和装置
KR102171203B1 (ko) 스테레오 영상의 정합 방법 및 이를 수행하는 장치
CN110634155A (zh) 一种基于深度学习的目标检测方法和装置
KR20200057929A (ko) 캘리브레이트된 카메라들에 의해 캡쳐된 스테레오 영상들의 렉티피케이션 방법과 컴퓨터 프로그램
CN115550190A (zh) 网络拓扑图的确定方法、装置、设备及存储介质
JP2015161529A (ja) 表面検査装置、表面検査方法およびプログラム
CN114743150A (zh) 目标跟踪方法、装置、电子设备及存储介质
CN111429450A (zh) 角点检测的方法、系统、设备及存储介质
CN111275629A (zh) 配置为执行保边平滑的图像处理设备及其图像处理方法
CN112184833B (zh) 一种双目立体匹配算法的硬件实现系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903018

Country of ref document: EP

Kind code of ref document: A1