WO2021120373A1 - 应力传感器及其制备方法 - Google Patents

应力传感器及其制备方法 Download PDF

Info

Publication number
WO2021120373A1
WO2021120373A1 PCT/CN2020/074274 CN2020074274W WO2021120373A1 WO 2021120373 A1 WO2021120373 A1 WO 2021120373A1 CN 2020074274 W CN2020074274 W CN 2020074274W WO 2021120373 A1 WO2021120373 A1 WO 2021120373A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing
stress sensor
hole
test piece
fixed
Prior art date
Application number
PCT/CN2020/074274
Other languages
English (en)
French (fr)
Inventor
应鹏飞
陈文韬
葛宇龙
夏勇
周青
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021120373A1 publication Critical patent/WO2021120373A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports

Definitions

  • the application belongs to the field of measurement, and particularly relates to a stress sensor and a preparation method thereof.
  • the design of high strain rate dynamic measurement sensors only considers the low-order natural vibration frequency of the structure and the system damping ratio parameters. It is expected that simple sensor lightweight methods can be used to increase the intrinsic frequency of the sensor and prevent the structural ringing effect to achieve signal accuracy. Guarantee. However, with the further increase of the loading rate, the vibration response of the sensor structure is inevitable. In fact, the vibration of the sensor is often formed by the superposition of multiple modes, coupled with other interference components such as noise, and the obtained measurement signal is mixed with more vibration components. , It is difficult to analyze the signal. At a certain strain rate, it is basically impossible to obtain the mechanical response of the material.
  • a stress sensor comprising:
  • a fixed part of the test piece, the fixed part of the test piece has a cubic structure
  • the clamping part is vertically fixed to the center of a surface of the fixing part of the test piece, and
  • the strain gauge fixing position is located at one end of the holding part close to the fixing part of the test piece.
  • the DUT fixing portion has a central symmetry axis, the length of the clamping portion extends through the central symmetry axis, and the DUT fixing portion is provided with a fixing through hole and a connection with the An opening communicating with a fixed through hole, the fixed through hole and the opening are symmetrically arranged about the central symmetry axis, the axis of the fixed through hole is perpendicular to the central symmetry axis, and the opening is along the fixed through hole.
  • the extending direction of the axis of the hole penetrates the fixed part of the test piece.
  • the cross-sectional area of the opening is smaller than the cross-sectional area of the fixed through hole.
  • the fixing through hole and the opening are cubic structures.
  • a reinforcing beam is arranged in the fixing through hole, and the reinforcing beam is arranged offset from the central axis of symmetry.
  • the fixing through hole is provided on a side of the fixing portion of the DUT away from the clamping portion.
  • the clamping part is a cubic structure.
  • the fixing part of the test piece and the holding part are made of aluminum alloy material.
  • a method for preparing a stress sensor includes:
  • the S30 includes:
  • the fixing portion of the test piece has a central symmetry axis
  • the clamping portion is vertically fixed to the center of a surface of the fixing portion of the test piece.
  • the axis of the clamping part passes through the central symmetry axis. Therefore, the stress sensor as a whole constitutes an axisymmetric structure. Therefore, a single-mode vibration state can be guaranteed, so that when the strain gauge is fixed at the fixed position of the strain gauge to measure the signal, the vibration component in the measurement signal can be reduced, the noise interference can be reduced, the signal analysis can be facilitated, and the corresponding information of the mechanical characteristics can be easily obtained.
  • Fig. 1 is a front view of a stress sensor provided by an embodiment of the application
  • Figure 2 is a side view of a stress sensor provided by an embodiment of the application.
  • FIG. 3 is a three-dimensional view of a stress sensor provided by an embodiment of the application.
  • FIG. 4 is a diagram of the cooperation between the stress sensor and the test piece provided by an embodiment of the application.
  • Fig. 5 is a test curve diagram of the relationship between force signal and time provided by an embodiment of the application.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present application provides a stress sensor 10.
  • the stress sensor 10 includes a fixed part 100 of the test piece, a clamping part 200 and a fixing position 300 of a strain gauge.
  • the fixed part 100 of the DUT has an axisymmetric structure.
  • the clamping portion 200 is vertically fixed to the center of a surface of the fixing portion 100 of the DUT.
  • the axis of the clamping portion 200 passes through the central symmetry axis 130.
  • the strain gauge fixing position 300 is arranged at an end of the clamping portion 20 close to the fixing portion 100 of the DUT.
  • the device under test fixing portion 100 may be used for the device under test 500.
  • the fixed part 100 of the test piece may be a cubic structure.
  • the cubic structure may be a center symmetric structure.
  • the cross section of the cubic structure may be square or rectangular. It can be understood that the fixed part 100 of the DUT may also be a center symmetric mechanism such as a polygonal three-dimensional structure or a cylindrical structure.
  • the clamping part 200 can be used to connect the static end of the testing machine. Therefore, the stress sensor 10 can be used as a connecting piece between the test piece 500 and the testing machine, and can be used for tensile tests on materials with medium and high strain rates.
  • the testing machine has greater rigidity relative to the stress sensor 10, and the stress sensor 10 is clamped by the testing machine so that the contact surface does not slide relative to each other. It can avoid the influence of the non-linear contact and inertial force of the fixed structure on the validity of the signal in the tensile test of the medium and high strain rate materials.
  • the clamping portion 200 may be a cubic structure or a structure having two parallel planes. The two parallel planes can facilitate clamping.
  • the clamping portion 200 is vertically fixed to the center of a surface of the fixing portion 100 of the DUT.
  • the surface may be a centrally symmetrical figure.
  • the clamping portion 200 is vertically fixed to the center. That is, the axis of the clamping part 200 passes through the central symmetry axis 130 of the DUT fixing part 100.
  • the strain gauge may be an element for measuring strain composed of a sensitive grid or the like.
  • Material deformation measurement mainly uses the strain effect of the strain gauge.
  • the direct measurement signal is a voltage-time signal, so the strain gauge needs to be pasted on the elastic section to ensure that the voltage and deformation form a linear relationship.
  • the fixed part 100 of the test piece may have sufficient rigidity.
  • the stress sensor 10 should always be in the elastic section when deformed.
  • the cross-sectional area of the clamping portion 200 needs to be determined based on the maximum tensile force of the test piece 500 and the yield stress of the sensor material. In one embodiment, the product of the cross-sectional area of the clamping portion 200 and the yield stress of the selected material of the stress sensor 10 is twice the maximum load of the DUT 500.
  • the stress sensor 10 provided by the embodiment of the present application.
  • the DUT fixing portion 100 has a central symmetry axis 300, and one end of the clamping portion 200 is vertically fixed to the center of a surface of the DUT fixing portion 100.
  • the axis of the clamping portion 200 passes through the central symmetry axis 300. Therefore, the stress sensor 10 constitutes an axisymmetric structure as a whole. Therefore, the single-mode vibration state can be guaranteed.
  • the strain gauge is fixed to the strain gauge fixing position 300 to obtain the measurement signal, the vibration component in the measurement signal can be reduced, which is convenient for signal analysis, improves the accuracy of the test, and reduces The difficulty of signal analysis improves work efficiency.
  • the extension direction of the length of the clamping portion 200 passes through the central symmetry axis 130.
  • the DUT fixing portion 100 is provided with a fixing through hole 110 and an opening 120 communicating with the fixing through hole 110.
  • the fixing through hole 110 and the opening 120 are symmetrically arranged with respect to a plane passing through the central symmetry axis 130.
  • the opening 120 penetrates the DUT fixing portion 100 along the extending direction of the axis of the fixing through hole 110.
  • the test piece 500 is disposed in the fixing through hole 110 through the opening 120.
  • the design of the opening 120 can release the redundant degree of freedom of the test piece 500, and at the same time, it is convenient to install the test piece 500 without manually fastening other parts, and each test piece does not need to be individually attached to the strain. Film, thereby improving work efficiency.
  • the fixed part 100 of the DUT may be a symmetrical structure of the central axis.
  • the axis of the clamping portion 200 is on the extension line of the central axis of symmetry 130.
  • the fixing through hole 110 can be used to fix the DUT 500. Therefore, the stress sensor 10 has good symmetry.
  • the opening 120 penetrates the DUT fixing portion 100 along the extending direction of the axis of the fixing through hole 110. Both the fixing through hole 110 and the opening 120 may have a cubic structure.
  • the fixed part 100 of the DUT may be a cubic structure.
  • the plane passing through the central axis of symmetry 130 may be parallel to two opposite surfaces of the cubic structure.
  • test piece 500 may be fixed in the fixing through hole 110, and the other end of the test piece 500 extends to an end away from the fixing through hole 110 through the opening 120.
  • the tensile test of the test piece 500 can be performed by stretching the other end of the test piece 500.
  • the test piece 500 may have a "I"-shaped structure.
  • One end of the “I”-shaped structure may be fixed to the fixing through hole 110 through the opening 120. Since the fixing through hole 110 penetrates the DUT fixing portion 100, the part of the DUT 500 fixed in the fixing through hole 110 close to the two ends of the fixing through hole 110 is not connected to the fixing part 100.
  • the test piece fixing part 100 is in contact, so as to avoid excessive constraints on the test piece 500, causing unnecessary friction and the like to cause the problem that the load on the stress sensor 10 is not unidirectional, thereby reducing interference.
  • the opening 120 penetrates the DUT fixing portion 100 along the extending direction of the axis of the fixing through hole 110, so the DUT 500 can extend from one side of the fixing through hole 110 and the opening 120. Translate into the fixed through hole 110 and the opening 120 along a plane perpendicular to the axis of the fixed through hole 110.
  • the cross section of the fixing through hole 110 may be circular or rectangular.
  • the opening 120 may be a cubic hole extending from the surface of the DUT fixing portion 100 to the fixing through hole 110.
  • the cross-sectional area of the opening 120 is smaller than the cross-sectional area of the fixing through hole 110. Therefore, when the test piece 500 is moved into the fixing through hole 110 and the opening 120, the cross-sectional area of the two ends of the test piece 500 is larger than the cross-sectional area of the middle part. Therefore, the middle part of the test piece 500 can pass through the opening 120, and the end of the test piece 500 located at the fixing through hole 110 will be locked in the fixing through hole due to its large cross-sectional area. 110 is close to the surface of the opening 120. Thus, the purpose of fixing the test piece 500 is achieved.
  • the test piece 500 When the end of the test piece 500 away from the fixed through hole 110 is stretched, the test piece 500 is only supported by the inner wall of the fixed through hole 110 close to the opening 120, so the under test The component 500 receives less restraint force, which further avoids the problem that the load of the stress sensor 10 is not unidirectional.
  • the fixing through hole 110 and the opening 120 constitute a card slot design. This design can not only release the redundant degrees of freedom of the test piece 500 in the experiment, and suppress the multi-modal excitation caused by the load eccentricity, but also the installation is simple and quick, and the experiment efficiency can be improved.
  • the fixing through hole 110 and the opening 120 are cubic structures.
  • the fixing through hole 110 communicates with the opening 120.
  • the cubic structure is easy to manufacture and arrange.
  • a reinforcing beam 400 is provided in the fixing through hole 110.
  • the reinforcing beam 400 is offset from the central axis of symmetry 130. Since the card slot structure naturally forms a cantilever-like structure, this structure will weaken the equivalent rigidity of the front end of the structure head, and form a redundant sub-structure that vibrates face to face on the head. This will cause high frequency signals to be mixed in the measured signal. Therefore, by arranging the reinforcing beam 400 in the middle of the card slot, on the one hand, the vibration frequency of the fixed part 100 of the DUT can be significantly increased, and the structural vibration mode is further approached to be unitary, which is also effective for the DUT in the experiment. The installation of 500 plays a role in positioning.
  • the eccentric reinforcing beam 400 may theoretically cause the structural oscillation of the overall structure to exhibit non-axial vibration propagation, resulting in signal asymmetry and signal complexity at the attachment portion of the tail strain gauge. However, according to actual experimental results, simulation and signal processing results, the eccentric reinforced beam 400 has a weak degree of eccentricity and a low structural relative rigidity, which can not significantly affect the symmetry and unity of the strain signals on both sides of the tail measurement section. , Significantly reduce the high-order vibration frequency in the measurement signal.
  • the fixing through hole 110 is provided on the side of the DUT fixing part 100 away from the clamping part 200, so the fixing through hole 110 is close to the fixing part 500 of the DUT.
  • One end is provided to facilitate the fitting of the test piece 500, so that the length of the portion of the test piece 500 extending through the opening 120 is longer, which is convenient for clamping by the stretching device.
  • the clamping portion 200 has a cubic structure.
  • the cubic structure can increase the static friction when the clamping portion 200 is fixed, and prevent it from falling off during the stretching process.
  • the cubic structure has opposite parallel surfaces, which can be easily matched with the clamp of the stretching machine.
  • the fixing part 100 and the clamping part 200 of the DUT are made of aluminum alloy material.
  • the aluminum alloy material has a relatively high degree of lightness, and can withstand the loading of the test piece 500. At the same time, the aluminum alloy material has low strain rate effect, low cost, and low strength, which is convenient for cutting and manufacturing.
  • the embodiment of the present application also provides a method for preparing the stress sensor 10.
  • the method includes:
  • the matching model of the test piece 500 and the sensor can be established through computer software.
  • the response curve of the test piece 500 may be roughly estimated first, and then the response curve of the test piece 500 may be roughly estimated, and the test piece 500 may be set to a corresponding material.
  • the velocity boundary condition of the experimental target velocity is applied to one end of the test piece 500.
  • the other end of the test piece 500 is fixed and constrained.
  • a coda wave will be output after the test piece 500 is broken during the simulation process.
  • the shape and structure of the matching model can be continuously adjusted, and the best matching model can be determined according to the shape of the coda wave sine, so as to obtain the stress sensor 10.
  • the S30 includes:
  • A, B, ⁇ , ⁇ 0 , t 0 are all constants, and the measurement system usually has low damping. Improper design will cause excessive other vibration components to enter the measurement signal, causing the coda wave to deviate from this equation. Therefore, the above formula can be used to fit the coda wave.
  • the fitting result can be considered as the theoretically obtained coda signal, the fitted curve similarity R2 is used as the judgment standard, and the sensor model corresponding to the fitting curve with the highest similarity is obtained.
  • the stress sensor model may be produced according to conditions such as the shape, size, and material of the sensor model.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种应力传感器及其制备方法,其中应力传感器包括待测件固定部(100),该待测件固定部(100)具有中心对称轴(130);夹持部(200),该夹持部(200)一端垂直固定于待测件固定部(100)一表面的中心,夹持部(200)的轴线通过中心对称轴(130)。该应力传感器整体构成一个轴对称结构,因而能够保证单一模态振动状态,在将应变片固定在应变片固定位(300)获取测量信号时,能够减少测量信号中的振动成分,便于对信号分析,提高测试的准确性,减小了信号分析的难度,提高了工作效率。

Description

应力传感器及其制备方法
相关申请
本申请要求2019年12月20日申请的,申请号为201911324009.7,名称为“应力传感器及其制备方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请属于测量领域,特别是涉及一种应力传感器及其制备方法。
背景技术
在一些技术中,高应变率动态测量传感器设计仅考虑结构低阶固有振动频率和系统阻尼比参数,期望基于简单的传感器轻量化方法实现传感器本征频率的提高进而防止结构振铃效应实现信号精度的保证。但是随着加载速率的进一步提高,传感器结构振动响应不可避免,而实际上传感器的振动往往由多模态叠加形成,再加上噪声等其他干扰成分,得到的测量信号中混合得振动成分较多,难以对信号进行分析。在一定的应变率下,基本无法得到材料的力学特性响应。
发明内容
基于此,有必要针对上述问题,提供一种应力传感器及其制备方法。
一种应力传感器,所述应力传感器包括:
待测件固定部,所述待测件固定部为立方体结构;
夹持部,垂直固定于所述待测件固定部一表面的中心,以及
应变片固定位,位于所述加持部靠近所述待测件固定部的一端。
在一个实施例中,所述待测件固定部具有中心对称轴,所述夹持部长度的延伸方向通过所述中心对称轴,所述待测件固定部设置有固定通孔和与所述固定通孔连通的开口,所述固定通孔和所述开口关于所述中心对称轴对称设置,所述固定通孔的轴线与所述中心对称轴垂直设置,所述开口沿着所述固定通孔的轴线的延伸方向贯穿所述待测件固定部。
在一个实施例中,在垂直于所述中心对称轴的平面,所述开口的横截面积小于所述固定通孔的横截面积。
在一个实施例中,所述固定通孔和所述开口为立方体结构。
在一个实施例中,所述固定通孔内设置有加强梁,所述加强梁偏离所述中心对称轴设置。
在一个实施例中,所述固定通孔设置于所述待测件固定部远离所述夹持部的一侧。
在一个实施例中,所述夹持部为立方体结构。
在一个实施例中,所述待测件固定部和所述加持部由铝合金材料制成。
一种应力传感器的制备方法,包括:
S10,建立待测件和传感器的配合模型;
S20,基于所述配合模型,通过预设边界条件进行有限元模拟;
S30,根据所述有限元模拟结果中所述待测件断裂的尾波信号,得到应力传感器。
在一个实施例中,所述S30包括:
S31,获取所述有限元模拟结果中所述待测件断裂的尾波信号;
S32,通过一阶弹簧振子阻尼系统的自由振荡运动学描述方程对所述尾波信号进行拟合得到拟合曲线;
S33,获取相似度最高的所述拟合曲线对应的所述传感器模型;
S34,基于所述传感器模型制作得到所述应力传感器。
本申请实施例施例提供的所述应力传感器及其制备方法,所述待测件固定部具有中心对称轴,所述夹持部垂直固定于所述待测件固定部一表面的中心。所述夹持部的轴线通过所述中心对称轴。因此,所述应力传感器整体构成一个轴对称结构。因此能够保证单一模态振动状态,从而在将应变片固定在应变片固定位测量信号时,能够减少测量信号中的振动成分,减小噪声干扰,便于对信号分析,从而便于得到力学特性相应信息。
附图说明
图1为本申请一个实施例提供的应力传感器的正视图;
图2为本申请一个实施例提供的应力传感器的侧视图;
图3为本申请一个实施例提供的应力传感器立体图;
图4为本申请一个实施例提供的应力传感器与待测件配合图;
图5为本申请一个实施例提供的力信号和时间关系的测试曲线图。
附图标记说明:
应力传感器10
待测件固定部100
固定通孔110
开口120
中心对称轴130
夹持部200
应变片固定位300
加强梁400
待测件500
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请的应力传感器及其制备方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参见图1,本申请实施例提供一种应力传感器10。所述应力传感器10包括待测件固定部100、夹持部200和应变片固定位300。所述待测件固定部100为轴对称结构。所述夹持部200垂直固定于所述待测件固定部100一表面的中心。所述夹持部200的轴线通过所述中心对称轴130。所述应变片固定位300设置于所述夹持部20靠近所述待测件固定部100的一端。
请参见图2,在一个实施例中,所述待测件固定部100可以用于待测件500。所述待 测件固定部100可以为立方体结构。所述立方体结构可以为中心对称结构。所述立方体结构的截面可以为正方形,也可以为长方形。可以理解,所述待测件固定部100还可以为多边形立体结构、圆柱结构等中心对称机构。
所述夹持部200可以用于连接试验机的静端。因此所述应力传感器10可以作为所述待测件500和所述试验机的连接件,可以对中高应变率材料做拉伸试验。所述试验机相对于所述应力传感器10的刚度更大,且通过所述试验机夹紧所述应力传感器10,使得接触面不会产生相对滑动。可以避免由于固定结构的非线性接触和惯性力影响中高应变率材料拉伸试验中信号的有效性。
所述夹持部200可以为立方体结构,也可以为具备两个平行平面的结构体。所述两个平行平面可以便于夹持。所述夹持部200垂直固定于所述待测件固定部100一表面的中心。所述表面可以为中心对称图形。所述夹持部200垂直固定于所述中心。即所述夹持部200的轴线通过所述待测件固定部100的所述中心对称轴130。所述应变片可以是由敏感栅等构成用于测量应变的元件。
材料变形测量主要利用所述应变片的应变效应。导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,进而引起测量桥路的电压变化。直接测量信号为电压-时间信号,因此所述应变片需要粘贴在弹性段保证电压与变形成线性关系,通过比例系数即可得到应变-时间信号,如式所示:V(t)=kε(t)。将所述应变片设置于所述夹持部200靠近所述待测件固定部100的一端,能够保证所述应变片粘贴在弹性段,进而能够保证电压与变形成线性关系。因此,所述应变片固定位300位于所述夹持部200靠近所述待测件固定部100的一端。
所述待测件固定部100可以具有足够的刚度。所述应力传感器10变形时应始终处于弹性段。所述夹持部200的横截面积需要基于所述待测件500的最大拉伸力和感测器材料屈服应力确定。在一个实施例中,所述夹持部200的截面面积和所述应力传感器10选材的屈服应力乘积为两倍的所述待测件500最大载荷。
本申实施例提供的所述应力传感器10。所述待测件固定部100具有中心对称轴300,所述夹持部200一端垂直固定于所述待测件固定部100一表面的中心。所述夹持部200的轴线通过所述中心对称轴300。因此,所述应力传感器10整体构成一个轴对称结构。因此能够保证单一模态振动状态,在将应变片固定在应变片固定位300获取测量信号时,能够减少所述测量信号中的振动成分,便于对信号分析,提高测试的准确性,减小了信号分析的难度,提高工作效率。
请参见图3,在一个实施例中,所述夹持部200长度的延伸方向通过所述中心对称轴 130。所述待测件固定部100设置有固定通孔110和与所述固定通孔110连通的开口120。所述固定通孔110和所述开口120关于一通过所述中心对称轴130的平面对称设置。所述开口120沿着所述固定通孔110的轴线的延伸方向贯穿所述待测件固定部100。所述待测件500通过所述开口120设置于所述固定通孔110中。因此,通过所述开口120设计可以释放所述待测件500的冗余自由度,同时便于安装所述待测件500,而无需人工紧固其他部件,无需每个试件都单独黏贴应变片,从而提高了工作效率。
所述待测件固定部100可以为中心轴对称结构。所述夹持部200的轴线在所述中心对称轴130的延长线上。所述固定通孔110可以用于固定所述待测件500。因此,所述应力传感器10具有良好的对称性。所述开口120沿着所述固定通孔110的轴线的延伸方向贯穿所述待测件固定部100。所述固定通孔110和所述开口120均可以为立方体结构。在一个实施例中,所述待测件固定部100可以为立方体结构。所述通过所述中心对称轴130的平面可以关于所述立方体结构的两个相对的表面平行。
所述待测件500的一端可以固定于所述固定通孔110中,所述待测件500的另一端通过所述开口120向远离所述固定通孔110的一端延伸。通过拉伸所述待测件500的另一端可以对待测件500进行拉伸测试。
请参见图4,所述待测件500可以为“工”字形结构。所述“工”字形结构的一端可以通过所述开口120固定于所述固定通孔110。由于所述固定通孔110贯穿所述待测件固定部100,因此,所述待测件500固定在所述固定通孔110中靠近所述固定通孔110两端的部分并没有与所述待测件固定部100接触,从而避免对所述待测件500约束过多,使得多余的摩擦等造成所述应力传感器10所受载荷不单向的问题,减少干扰。所述开口120沿着所述固定通孔110的轴线的延伸方向贯穿所述待测件固定部100,因此所述待测件500可以从所述固定通孔110和所述开口120一侧沿着垂直于所述固定通孔110的轴线的平面平移进入所述固定通孔110和所述开口120。
可以理解,所述固定通孔110的横截面可以为圆形或者矩形。所述开口120可以为由所述待测件固定部100的表面伸向所述固定通孔110的立方体孔洞。
在一个实施例中,在垂直于所述中心对称轴130的平面,所述开口120的横截面积小于所述固定通孔110的横截面积。因此,当将所述待测件500移入所述固定通孔110和所述开口120后,由于所述待测件500两端的横截面积大于中间部分的横截面积。因此所述待测件500的中间部分可以穿过所述开口120,而所述待测件500位于所述固定通孔110的一端由于横截面积较大,会卡合在所述固定通孔110靠近所述开口120的表面。从而达到固定所述待测件500的目的。当拉伸所述待测件500远离所述固定通孔110的一端时, 所述待测件500只受到所述固定通孔110靠近所述开口120的内壁的支持力,因此所述待测件500受到的约束力少,进一步避免了所述应力传感器10载荷不单向的问题。并且,所述固定通孔110和所述开口120构成卡槽式设计。该设计不但可以释放所述待测件500在实验中的多余自由度,抑制载荷偏心所带来的多模态激发,同时安装简单快捷,可以提高实验效率。
在一个实施例中,所述固定通孔110和所述开口120为立方体结构。所述固定通孔110和所述开口120连通。所述立方体结构便于制作和布置。
在一个实施例中,所述固定通孔110内设置有加强梁400。所述加强梁400偏离所述中心对称轴130设置。由于卡槽结构天然形成类悬臂梁结构,该结构会弱化结构头部前端的等效刚度,并在头部形成面相振动的冗余子结构。这会导致被测信号中混杂高频信号。因此通过在卡槽中间设置所述加强梁400,一方面可以显著提高所述待测件固定部100的振动频率,使结构振动模式进一步趋近单一,也能有效对于实验中所述待测件500的安装起到定位作用。
所述偏心加强梁400理论上可能导致整体结构的结构振荡呈现非轴向的振动传播,造成尾部应变片粘贴部位的信号不对称和信号复杂化。但是根据实际实验结果、模拟以及信号处理结果,该偏心加强梁400由于偏心程度较弱,结构的相对刚度小,能在不显著影响尾部测量段两侧的应变信号对称性和单一性的前提下,显著减小测量信号中高阶振动频率。
在一个实施例中,所述固定通孔110设置于所述待测件固定部100远离所述夹持部200的一侧,因此所述固定通孔110靠近所述待测件固定部500的一端设置,可以便于配合所述待测件500,使得所述待测件500通过所述开口120伸出的部分长度更长,便于拉伸设备夹持。
在一个实施例中,所述夹持部200为立方体结构。立方体结构可以增加所述夹持部200被固定时的静摩擦力,防止在拉伸过程中脱落。且所述立方体结构具有相对的平行面,可以便于和拉伸机夹具匹配。
在一个实施例中,所述待测件固定部100和所述夹持部200由铝合金材料制成。铝合金材料具有较高的轻度,可以承受所述待测件500的载入。同时,所述铝合金材料应变率效应低,成本低,且强度较低,便于切削制作。
本申请实施例还提供一种应力传感器10的制备方法。所述方法包括:
S10,建立待测件500和感测器的配合模型;
S20,基于所述配合模型,通过预设边界条件进行有限元模拟;
S30,根据所述有限元模拟结果中所述待测件500断裂的尾波信号,得到应力传感器10。
所述S10中,可以通过电脑软件建立待测件500和传感器的配合模型。
所述S20中,可以先大致估计所述待测件500的响应曲线,然后大致估计所述待测件500的响应曲线,将所述待测件500设置成对应的材料。施加实验目标速度的速度边界条件于所述待测件500的一端。所述待测件500的另一端被固定约束。
请参见图5,所述S30中,针对每个配合模型,在模拟过程中都会在所述待测件500断裂后输出尾波。迭代过程中,可以不断调整所述配合模型的形态结构,根据尾波正弦性的形态确定最佳的配合模型,从而得到所述应力传感器10。
在一个实施例中,所述S30包括:
S31,获取所述有限元模拟结果中所述待测件500断裂的尾波信号;
S32,通过一阶弹簧振子阻尼系统的自由振荡运动学描述方程对所述尾波信号进行拟合得到拟合曲线;
S33,获取相似度最高的所述拟合曲线对应的所述传感器模型;
S34,基于所述传感器模型制作得到所述应力传感器。
所述S32中,所述一阶弹簧振子阻尼系统的自由振荡运动学描述方程为
Figure PCTCN2020074274-appb-000001
其中:A,B,ζ,ω 0,t 0均为常数,且测量系统通常阻尼较低。设计不当时,会造成其他振动成分过多的进入测量信号,使尾波偏离此方程。故可以用上式对尾波进行拟合。
所述S33中,可以认为拟合结果为理论上应该得到的尾波信号,将拟合的曲线相似度R2作为判断标准,并得到相似度最高的所述拟合曲线对应的所述传感器模型。
所述S34中,可以根据所述传感器模型的形态、尺寸和材质等条件制作所述应力传感器模型。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为本专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。 因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种应力传感器,其特征在于,包括:
    待测件固定部(100),所述待测件固定部(100)具有中心对称轴(130);
    夹持部(200),垂直固定于所述待测件固定部(100)一表面的中心,所述夹持部(200)的轴线通过所述中心对称轴(130),以及
    应变片固定位(300),位于所述夹持部(200)靠近所述待测件固定部(100)的一端。
  2. 如权利要求1所述的应力传感器,其特征在于,所述夹持部(200)长度的延伸方向通过所述中心对称轴(130),所述待测件固定部(100)设置有固定通孔(110)和与所述固定通孔(110)连通的开口(120),所述固定通孔(110)和所述开口(120)关于一通过所述中心对称轴(130)的平面对称设置,所述开口(120)沿着所述固定通孔(110)的轴线的延伸方向贯穿所述待测件固定部(100)。
  3. 如权利要求2所述的应力传感器,其特征在于,在垂直于所述中心对称轴(130)的平面,所述开口(120)的横截面积小于所述固定通孔(110)的横截面积。
  4. 如权利要求3所述的应力传感器,其特征在于,所述固定通孔(110)和所述开口(120)为立方体结构。
  5. 如权利要求4所述的应力传感器,其特征在于,所述固定通孔(110)内设置有加强梁(400),所述加强梁(400)偏离所述中心对称轴(130)设置。
  6. 如权利要求2所述的应力传感器,其特征在于,所述固定通孔(110)设置于所述待测件固定部(100)远离所述夹持部(200)的一侧。
  7. 如权利要求1所述的应力传感器,其特征在于,所述夹持部(200)为立方体结构。
  8. 如权利要求1所述的应力传感器,其特征在于,所述待测件固定部(100)和所述夹持部(200)由铝合金材料制成。
  9. 如权利要求1所述的应力传感器,其特征在于,所述待测件固定部(100)为立方体结构。
  10. 一种应力传感器的制备方法,其特征在于,包括:
    S10,建立待测件和传感器的配合模型;
    S20,基于所述配合模型,通过预设边界条件进行有限元模拟;
    S30,根据所述有限元模拟结果中所述待测件断裂的尾波信号,得到所述应力传感器(10)。
  11. 如权利要求10所述的应力传感器的制备方法,其特征在于,所述S30包括:
    S31,获取所述有限元模拟结果中所述待测件断裂的尾波信号;
    S32,通过一阶弹簧振子阻尼系统的自由振荡运动学描述方程对所述尾波信号进行拟合得到拟合曲线;
    S33,获取相似度最高的所述拟合曲线对应的所述传感器模型;
    S34,基于所述传感器模型制作得到所述应力传感器。
PCT/CN2020/074274 2019-12-20 2020-02-04 应力传感器及其制备方法 WO2021120373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911324009.7A CN111122028B (zh) 2019-12-20 2019-12-20 应力传感器及其制备方法
CN201911324009.7 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021120373A1 true WO2021120373A1 (zh) 2021-06-24

Family

ID=70500460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074274 WO2021120373A1 (zh) 2019-12-20 2020-02-04 应力传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN111122028B (zh)
WO (1) WO2021120373A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433116A (en) * 1994-02-24 1995-07-18 On Line, Inc. Apparatus for measuring prevailing instantaneous tension in an elongate strand
CN203069457U (zh) * 2013-03-09 2013-07-17 东北石油大学 复杂应力状态下材料力学性能测试装置
CN103512801A (zh) * 2013-09-23 2014-01-15 清华大学苏州汽车研究院(相城) 一种拉伸测力传感器
CN205749119U (zh) * 2016-05-06 2016-11-30 苏州中国汽车零部件产业基地发展有限公司 一种电池薄膜材料高速拉伸试验装置
CN206725140U (zh) * 2017-05-19 2017-12-08 西安科技大学 一种ct试样残余应力测试装置
CN109342181A (zh) * 2018-12-18 2019-02-15 中国工程物理研究院化工材料研究所 脆性材料三向拉应力试验方法及可更换式粘接拉伸工装
CN110426285A (zh) * 2019-09-11 2019-11-08 易瑞博科技(北京)有限公司 拉伸试验机及应力应变测试设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393265B (zh) * 2011-11-09 2014-08-20 中国航天员科研训练中心 电阻应变拉力传感器
CN106483019A (zh) * 2016-11-29 2017-03-08 华中科技大学 一种板状试样拉伸夹具及其使用方法
CN107192494A (zh) * 2017-05-14 2017-09-22 北京工业大学 一种考虑结合面特性的测定轴向螺栓松弛的装置及方法
CN109538682A (zh) * 2018-12-28 2019-03-29 上海大学 一种弹性结构振动抑制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433116A (en) * 1994-02-24 1995-07-18 On Line, Inc. Apparatus for measuring prevailing instantaneous tension in an elongate strand
CN203069457U (zh) * 2013-03-09 2013-07-17 东北石油大学 复杂应力状态下材料力学性能测试装置
CN103512801A (zh) * 2013-09-23 2014-01-15 清华大学苏州汽车研究院(相城) 一种拉伸测力传感器
CN205749119U (zh) * 2016-05-06 2016-11-30 苏州中国汽车零部件产业基地发展有限公司 一种电池薄膜材料高速拉伸试验装置
CN206725140U (zh) * 2017-05-19 2017-12-08 西安科技大学 一种ct试样残余应力测试装置
CN109342181A (zh) * 2018-12-18 2019-02-15 中国工程物理研究院化工材料研究所 脆性材料三向拉应力试验方法及可更换式粘接拉伸工装
CN110426285A (zh) * 2019-09-11 2019-11-08 易瑞博科技(北京)有限公司 拉伸试验机及应力应变测试设备

Also Published As

Publication number Publication date
CN111122028B (zh) 2021-03-26
CN111122028A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2014169540A1 (zh) 非等截面悬臂梁压电式加速度传感器
US7348788B2 (en) Probing card and inspection apparatus for microstructure
CN109782022A (zh) 一种基于压力敏感的石墨烯谐振式光纤加速度计
WO2021120373A1 (zh) 应力传感器及其制备方法
US20210140992A1 (en) Resonator including one or more mechanical beams with added mass
CN105403244A (zh) 传感器装置、应变传感器装置及压力传感器装置
CN109883603B (zh) 一种基于soi的硅微谐振式压力敏感芯片谐振器
US20040065152A1 (en) Inverse method to estimate the properties of a flexural beam and the corresponding boundary parameters
JP3864109B2 (ja) 亀裂開口変位測定器具およびその材料試験装置
Liu et al. A modified torsion pendulum for measuring the shear modulus of a single micro-sized filament
CN112230017B (zh) 弱耦合式mems加速度传感器
Xue et al. Development of a novel two axis piezoresistive micro accelerometer based on silicon
CN204789488U (zh) 一种用于测量材料弹性性能的试样固定装置
CN108986774B (zh) 固定器以及弦乐器
Xu et al. Analytical and finite element analysis of a new tri-axial piezoelectric accelerometer
Wang et al. A MEMS resonant tilt sensor with high sensitivity maintained in the whole 360 measurement range
CN214373378U (zh) 一种拉杆悬置侧方向性能测试装置
CN216349992U (zh) 一种散热模组用金属弹片拉拔力检测装置
US12111235B1 (en) Cantilevered test fixture for vibration testing
JP2006294892A (ja) 一軸半導体加速度センサ
TWM620080U (zh) 用於影像擷取裝置的檢測機構
WO2022088336A1 (zh) 一种测量薄膜不同方向应力梯度的方法
Ward Comparing steady state and impulse test methods to measure the damping of composites applied to homogeneous substrates
CN219141775U (zh) 一种精确测量弹性扭杆扭转角度的装置
JP2008170383A (ja) 一軸半導体加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902059

Country of ref document: EP

Kind code of ref document: A1