WO2021120362A1 - 一种提高光利用率的植物照明系统及方法 - Google Patents

一种提高光利用率的植物照明系统及方法 Download PDF

Info

Publication number
WO2021120362A1
WO2021120362A1 PCT/CN2020/072429 CN2020072429W WO2021120362A1 WO 2021120362 A1 WO2021120362 A1 WO 2021120362A1 CN 2020072429 W CN2020072429 W CN 2020072429W WO 2021120362 A1 WO2021120362 A1 WO 2021120362A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
output
capacitor
pin
input
Prior art date
Application number
PCT/CN2020/072429
Other languages
English (en)
French (fr)
Inventor
伍婵娟
洪辉轮
Original Assignee
福建省中科生物股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省中科生物股份有限公司 filed Critical 福建省中科生物股份有限公司
Publication of WO2021120362A1 publication Critical patent/WO2021120362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/335Pulse-frequency modulation [PFM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits

Definitions

  • the invention relates to the field of plant lighting, in particular to a plant lighting system and method for improving light utilization.
  • LED in addition to the characteristics of environmental protection and energy saving, compared with artificial light sources such as fluorescent lamps or high-pressure sodium lamps commonly used in the agricultural field, it has the characteristics of adjustable light volume, adjustable light quality, low cooling load and allowing increased cultivation per unit area. It is a very suitable artificial light source for the closed and environmentally controlled agricultural production environment.
  • the existing technology mainly uses continuous light plants for lighting operations. On the one hand, it improves the light efficiency of the lamps, and on the other hand, it continuously increases the power of the lamps. In order to control costs and practical applications, it is often the basis for not improving the heat dissipation capacity. Pursue the use of greater power. The above situation has caused the plant lighting fixture to be too large in size and affect the natural lighting and site layout, or the size is moderate but cannot provide enough light for plants to absorb.
  • the present invention intends to effectively reduce the power of the lamp by improving the utilization rate of light, thereby indirectly reducing the demand for heat dissipation conditions.
  • the present invention provides a plant lighting system that improves light utilization, including an input rectifier filter, a switching device, an output filter circuit, an LED load, a signal sampling module, and a PWM control module.
  • the input rectifier filter input The output terminal of the input rectifier filter is connected with the input terminal of the switching device, the output terminal of the switching device is connected with the input terminal of the output filter circuit, and the output terminal of the output filter circuit is connected with the LED load.
  • the input terminal of the sampling module is connected to the LED load, the output terminal of the signal sampling module is connected to the input terminal of the PWM control module, and the output terminal of the PWM control module is connected to the switching device.
  • the output frequency is modulated above 100Hz, and the duty cycle is modulated to 20%-80%.
  • the input rectifier filter first uses common mode inductor LF1 and common mode inductor LF2 to filter high-frequency radiation, and then uses parallel line filter LF1 and safety capacitor CX1, parallel line filter LF2 and safety Capacitors CX2 respectively constitute two sets of low-pass filters, which effectively reduce high-frequency disturbances and effectively resist high-frequency disturbances.
  • industrial inductors L1, capacitors C1 and capacitors C2 are used to filter the current twice. .
  • the switching device includes a switching tube Q1 and a transformer T1
  • the PWM control module includes a PWM chip U1 with a model number of JW1758B or JW1600
  • the output current of the input rectifier filter is connected to the input winding of the transformer T1
  • the output of the transformer T1 The winding is connected to the output rectifier filter
  • the feedback winding of the transformer T1 is connected to a signal sampling module.
  • the signal sampling module includes a resistor R20 and a resistor R21 connected in series, and the current flowing out of the feedback winding of the transformer T1 at the common connection end of the resistor R20 and the resistor R21 Sampling is fed back to the FB pin of the PWM chip.
  • the signal adopting module also includes the use of resistors R12 and R11 to sample the current flowing through the switch tube Q1, and then feedback to the SNP pin of the PWM chip through resistor R18 and pass The resistance R13 is fed back to the control pin of the switch Q1 for signal feedback adjustment, which improves the stability of the circuit.
  • the PWM control module includes a PWM chip U1, a resistor R4, a resistor R5, a resistor R6, a resistor R26, a resistor R8, and a capacitor C7.
  • the output terminal positive current of the filter is output.
  • the VCC pin of the PWM chip U1 is introduced to provide working power for the entire PWM chip U1.
  • the resistor R6 and the resistor R26 are connected in series, one end is connected to the current output end of the industrial inductor L1 of the input rectifier filter to obtain the induced current.
  • the resistor R6 After the resistor R26 is connected in series, the other end is connected to the VREC pin of the PWM chip U1, and the induced current is introduced into the PWM chip U1.
  • the PWM chip U1 pin is connected to the parallel resistor R8 and the capacitor C7 and then grounded, and the COMP pin of the PWM chip U1 is connected in series
  • the capacitor C8 is connected to the ground, the GND pin of the PWM chip U1 is grounded, and the DPWM pin of the PWM chip U1 is left floating.
  • the switch device includes a transformer T1, a switch tube Q1, a resistor R15, a resistor R14, a capacitor C3, a diode D2, a diode D3, and a resistor R7.
  • a transformer T1 After the resistor R15, the resistor R14, and the capacitor C3 are connected in parallel, one end is connected to the output of the input rectifier filter.
  • the positive terminal is connected to the fifth pin of the input winding of the transformer.
  • the output current of the input rectifier filter is introduced into the fifth pin of the input winding of the transformer 1 through the resistor R15, the resistor 14 and the capacitor C3 connected in parallel.
  • the resistor R15 The other end connected in parallel with the resistor R14 and the capacitor C3 is connected to the cathode of the diode D2.
  • the anode of the diode D2 is connected to the third pin of the transformer input winding, and this end is also connected to the drain D of the switching tube Q1, and the gate of the switching tube G is connected to the anode of the diode D3, the cathode of the diode D3 is the gate drive pin, which is connected to the GATE pin of the PWM chip U1, the output winding A1 pin of the transformer T1 is connected to the anode of the output rectifier filter, and the output of the transformer The winding B1 pin is connected to the negative pole of the output rectifier filter and is floating.
  • the signal sampling module includes a resistor R18, a resistor R11, a resistor R12, a resistor R13, a resistor R20, a resistor R21, a capacitor C6, a resistor R9, a diode D4, a capacitor C4, and a capacitor C5.
  • the first pin of the feedback winding of the transformer T1 The resistor R20 and resistor R21 in series are connected to the ground.
  • the common connection end of resistor R21 and resistor R20 is connected to the FB pin of PWM chip U1.
  • the common connection end of resistor R20 and resistor R21 samples the current flowing out of the feedback winding of transformer T1.
  • the capacitor C6 is connected in parallel with the resistor R21
  • the first pin of the feedback winding of the transformer T1 is connected in series with the resistor R9 and then connected to the anode of the diode D4
  • the cathode of the diode is connected to the capacitor C4 and the capacitor C5 in series and then grounded
  • the second pin of the feedback winding of the transformer T1 is grounded
  • the resistor R12 and the resistor R11 are connected in parallel to the source S of the switch Q1, and this end is also connected to one end of the resistor R13 and one end of the resistor R18.
  • the other end is connected to the anode of the diode D3
  • the other end of the resistor R18 is connected to the SNP pin of the PWM chip U1
  • the resistor R12 and the resistor R11 sample the current flowing through the switch tube Q1, and then feedback to the PWM chip through the resistor R18
  • the SNP pin is fed back to the control pin of the switch Q1 through the resistor R13 for signal feedback adjustment.
  • the output filter circuit includes an adjustable size filter capacitor, so as to adjust the strobe depth without changing the effective value of the output.
  • the output filter circuit adjusts the duty cycle to 25%-50%.
  • the output filter circuit uses a diode D1 to connect the anode A1 of the output end of the switching device, a small capacitor C9, a resistor R16, and a resistor R17 are connected in parallel at both ends of the diode D1 for filtering, and then the cathode of the diode D1 and the cathode B1 of the output end of the switching device are connected in parallel.
  • a polar capacitor EC1 and a capacitor C10 are connected in parallel to the terminals for rectification, and finally the current is filtered by the common mode inductor LF3 and then the load is connected.
  • the output filter circuit includes a resistor R16, a resistor R17, a capacitor C9, a diode D1, a polarized capacitor EC1, a capacitor C10, a resistor R18, and a common mode inductor LF3.
  • the output winding A1 of the transformer T1 is connected to the anode of the diode D1
  • the cathode of the diode D1 is connected to the polarized capacitor CE1
  • the negative electrode of the polarized capacitor CE1 is connected to the B1 terminal of the transformer T1 output winding. This terminal is floating.
  • the floating terminal is connected to the capacitor CY1 in series and then grounded.
  • the resistor R16 and the resistor R17 are connected in parallel
  • the capacitor C9 is connected in series and connected in parallel to the two poles of the diode D1.
  • the input ends of the capacitor C10, the resistor R18 and the common mode inductor LF3 are all connected in parallel with the polarized capacitor EC1, and the output ends of the common mode inductor LF3 are connected to the LED load.
  • the present invention also provides a plant lighting method for improving light utilization efficiency, which includes the following steps:
  • the output filter circuit includes an adjustable size filter capacitor, so as to adjust the strobe depth without changing the effective value of the output.
  • the present invention improves the utilization rate of light, thereby effectively reducing the power of the lamp, and indirectly reducing the demand for heat dissipation conditions.
  • the output filter circuit of the present invention uses a parallel small capacitor C9 and resistors R16 and R17 to filter the output diode, EC1 and C10 to rectify and filter the current, and the common mode inductor LF3 to filter the current, which can achieve a good filter and rectification effect.
  • the output filter circuit includes an adjustable filter capacitor, so that the strobe depth can be adjusted without changing the effective value of the output.
  • the signal sampling module of the present invention uses 2 to 4 high-precision resistors R11 and R12 to sample the current flowing through the switch tube Q1, and then feedback to the chip control pin through R1 and feedback to the switch tube control pin through R13 for signal feedback Adjust to improve the stability of the circuit.
  • the PWM control module of the present invention adopts JW1758B and JW1600 chips to realize PWM control, and the critical conduction mode operation adopted by the chips can reduce switching losses and improve efficiency.
  • Fig. 1 is a schematic diagram of the circuit structure of the present invention.
  • Fig. 2 is a schematic diagram of a rectifier filter circuit according to an embodiment of the present invention.
  • Fig. 3 is a schematic circuit diagram of a switching device, a PWM control module, and a signal sampling module according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an output rectification filter circuit according to an embodiment of the present invention.
  • FIG. 5 is the experimental effect diagram I of the present invention.
  • Figure 6 shows the experimental effect diagram II of the present invention.
  • a plant lighting system that improves light utilization efficiency includes an input rectifier filter, a switching device, an output filter circuit, an LED load, a signal sampling module, and a PWM control module.
  • the input rectifier filter The input terminal is connected to an external power source, the output terminal of the input rectifier filter is connected to the input terminal of the switching device, the output terminal of the switching device is connected to the input terminal of the output filter circuit, and the output terminal of the output filter circuit is connected to the LED load.
  • the input terminal of the signal sampling module is connected with the LED load
  • the output terminal of the signal sampling module is connected with the input terminal of the PWM control module
  • the output terminal of the PWM control module is connected with the switching device
  • the output filter circuit does not change the instantaneous output power.
  • the output frequency is modulated above 100Hz
  • the duty cycle is modulated to 20%-80%.
  • the output filter circuit after the switching device circuit no longer performs filtering and flat wave modulation according to the conventional plant lighting scheme, but directly uses a capacitor to perform stroboscopic depth control, so as to obtain the required light output waveform.
  • the specific implementation is as follows: 220V AC current is input rectified and filtered, the rectified current is input to the switching device, and the current output by the switching device is input to the output filter circuit.
  • the output filter circuit will output the frequency without changing the instantaneous output power. For modulation above 100 Hz, the duty cycle is modulated to 20%-80%, or more preferably 25%-50%.
  • the input rectifier filter first uses common mode inductor LF1 and common mode inductor LF2 to filter high-frequency radiation, and then uses parallel line filter LF1 and safety capacitor CX1, parallel line filter LF2 It forms two sets of low-pass filters with safety capacitor CX2, which effectively reduces high-frequency disturbance and effectively resists high-frequency disturbance.
  • an industrial inductor L1 and capacitor C1 and capacitor C2 are used to conduct current After secondary filtering and rectification, it is input to the input terminal of the switching device.
  • the input rectifier filter includes a chip fuse F1, a varistor VR1, a common mode inductor LF1, a common mode inductor LF2, a safety capacitor CX1, a resistor R1, a resistor R2, a safety capacitor CX2, a rectifier bridge BD1, and an inductor L1 , Resistor RL1, diode DX1, adjustable resistor RX1, adjustable resistor RX2, adjustable capacitor EX1, capacitor C1 and capacitor C2, connect the live wire to the patch fuse F1 and then connect the positive electrode of the adjustable resistor VR1, and the negative electrode of the adjustable electrode VR1 to zero Line, the line filter LF1 is connected in parallel with the two ends of the adjustable resistor VR1, the line filter LF1 is also connected in parallel with the safety capacitor CX1, the resistance R1 and the resistance R2 are connected in series and then in parallel with the safety capacitor CX1, the line filter LF2 is connected in series The resistor R1 and the resistor R2 are connected in parallel, the safety capacitor CX2 is connected in parallel with
  • the high frequency radiation is filtered by LF1 and LF2, and LF1+CX1, LF2+CX2 respectively constitute a set of low-pass filters, which can effectively reduce high-frequency disturbance and also effectively resist high-frequency disturbance.
  • LF1 and LF2 After the bridge rectifier BD1, Then use the industrial inductor L1 and capacitors C1 and C2 for secondary filtering and rectification.
  • the switching device includes a switching tube Q1 and a transformer T1
  • the PWM control module includes a PWM chip U1 with a model number of JW1758B or JW1600, and the output current of the input rectifier filter is connected to the input winding of the transformer T1.
  • the output winding of T1 is connected to the output rectifier filter, and the feedback winding of the transformer T1 is connected to a signal sampling module.
  • the signal sampling module includes a resistor R20 and a resistor R21 connected in series, and the feedback winding of the transformer T1 is connected at the common connection end of the resistor R20 and the resistor R21 The outgoing current is sampled and fed back to the FB pin of the PWM chip.
  • the signal adopting module also includes the use of resistors R12 and R11 to sample the current flowing through the switching tube Q1, and then feedback to the SNP of the PWM chip through resistor R18.
  • the pin and the control pin of the switch tube Q1 are fed back to the control pin of the switch tube through the resistor R13 for signal feedback adjustment, and the stability of the circuit is improved.
  • the PWM control module includes a PWM chip U1, a resistor R4, a resistor R5, a resistor R6, a resistor R26, a resistor R8, and a capacitor C7. After the resistor R4 and the resistor R5 are connected in series, the output terminal positive current of the output filter is introduced into the PWM chip U1. The VCC pin provides working power for the entire PWM chip U1. After the resistor R6 and the resistor R26 are connected in series, one end is connected to the current output terminal of the industrial inductor L1 of the input rectifier filter to obtain the induced current.
  • the resistor R6 and the resistor R26 are connected in series Then the other end is connected to the VREC pin of the PWM chip U1, and the induced current is introduced into the PWM chip U1.
  • the PWM chip U1 pin is connected to the parallel resistor R8 and the capacitor C7 and then grounded.
  • the COMP pin of the PWM chip U1 is connected with the capacitor C8 in series. Ground, the GND pin of the PWM chip U1 is grounded, and the DPWM pin of the PWM chip U1 is left floating.
  • the switch device includes a transformer T1, a switch tube Q1, a resistor R15, a resistor R14, a capacitor C3, a diode D2, a diode D3, and a resistor R7.
  • a transformer T1 After the resistor R15, the resistor R14, and the capacitor C3 are connected in parallel, one end is connected to the output of the input rectifier filter.
  • the positive terminal is connected to the fifth pin of the input winding of the transformer.
  • the output current of the input rectifier filter is introduced into the fifth pin of the input winding of the transformer 1 through the resistor R15, the resistor 14 and the capacitor C3 connected in parallel.
  • the resistor R15 The other end connected in parallel with the resistor R14 and the capacitor C3 is connected to the cathode of the diode D2.
  • the anode of the diode D2 is connected to the third pin of the transformer input winding, and this end is also connected to the drain D of the switching tube Q1, and the gate of the switching tube G is connected to the anode of the diode D3, the cathode of the diode D3 is the gate drive pin, which is connected to the GATE pin of the PWM chip U1, the output winding A1 pin of the transformer T1 is connected to the anode of the output rectifier filter, and the output of the transformer The winding B1 pin is connected to the negative pole of the output rectifier filter and is floating.
  • the signal sampling module includes a resistor R18, a resistor R11, a resistor R12, a resistor R13, a resistor R20, a resistor R21, a capacitor C6, a resistor R9, a diode D4, a capacitor C4, and a capacitor C5.
  • the first pin of the feedback winding of the transformer T1 The resistor R20 and resistor R21 in series are connected to the ground.
  • the common connection end of resistor R21 and resistor R20 is connected to the FB pin of PWM chip U1.
  • the common connection end of resistor R20 and resistor R21 samples the current flowing out of the feedback winding of transformer T1.
  • the capacitor C6 is connected in parallel with the resistor R21
  • the first pin of the feedback winding of the transformer T1 is connected in series with the resistor R9 and then connected to the anode of the diode D4
  • the cathode of the diode is connected to the capacitor C4 and the capacitor C5 in series and then grounded
  • the second pin of the feedback winding of the transformer T1 is grounded
  • the resistor R12 and the resistor R11 are connected in parallel to the source S of the switch Q1, and this end is also connected to one end of the resistor R13 and one end of the resistor R18.
  • the other end is connected to the anode of the diode D3
  • the other end of the resistor R18 is connected to the SNP pin of the PWM chip U1
  • the resistor R12 and the resistor R11 sample the current flowing through the switch tube Q1, and then feedback to the PWM chip through the resistor R18
  • the SNP pin is fed back to the control pin of the switch Q1 through the resistor R13 for signal feedback adjustment.
  • the output filter circuit includes an adjustable size filter capacitor, so as to adjust the strobe depth without changing the effective value of the output.
  • the output filter circuit adjusts the duty cycle to 25%-50%.
  • the output filter circuit uses a diode D1 to connect the output terminal anode A1 of the switching device, a small capacitor C9, resistor R16, and resistor R17 are connected in parallel at both ends of the diode D1 for filtering, and then the cathode of the diode D1 and the output terminal cathode B1 of the switching device are connected in parallel.
  • the polar capacitor EC1 and the capacitor C10 are rectified, and finally the current is filtered by the common mode inductor LF3 and then the load is connected.
  • the output filter circuit includes a resistor R16, a resistor R17, a capacitor C9, a diode D1, a polarized capacitor EC1, a capacitor C10, a resistor R18, and a common mode inductor LF3.
  • the output winding A1 of the transformer T1 is connected to the anode of the diode D1, and the cathode of the diode D1 Connected to the polarized capacitor CE1, the negative pole of the polarized capacitor CE1 is connected to the B1 terminal of the transformer T1 output winding, which is floating, the floating terminal is connected to the capacitor CY1 and grounded, the resistor R16 and the resistor R17 are connected in parallel and then connected in series with the capacitor C9
  • the two poles of the diode D1 are connected in parallel, the input ends of the capacitor C10, the resistor R18 and the common mode inductor LF3 are all connected in parallel with the polarized capacitor EC1, and the output ends of the common mode inductor LF3 are connected to the LED load.
  • the output filter circuit includes an adjustable size filter capacitor, so as to adjust the stroboscopic depth without changing the effective value of the output.
  • the output filter circuit adjusts the duty cycle to 25%-50%.
  • the current modulated by the output filter circuit is input to the LED load to drive the LED to emit light, and the controlled signal is sampled in the LED load, and PWM pulse width modulation is performed according to the sampling result.
  • the current that completes the PWM pulse width modulation is input to the switching device.
  • FIGS 5 and 6 show the effect of the present invention.
  • the ordinate is the photosynthesis rate
  • the abscissa is the frequency node.
  • the E line (dotted line) is the photosynthesis rate under continuous light conditions. It can be seen that the frequency is in the 0.1-10 stage, and the proportion of the duty cycle seriously affects the photosynthesis rate, and when the frequency is greater than 100Hz, and the duty cycle is 20% -80%, the rate of photosynthesis tends to be the same. Based on the results of this verification, a reasonable drive power supply is designed. Under the condition that the output frequency is greater than 100Hz, the duty cycle is minimized and the output power of the drive power supply is reduced. The planting effect will be the same as that of the original continuous output lamp, which is visually displayed.
  • Figure 6 shows the product under the same power.
  • the output frequency is modulated above 100Hz.
  • the strobe depth can be increased without changing the effective value of the output, and different light output waveforms can be obtained.
  • the waveform 1 shown in the figure has a higher equivalent PPFD than the waveform 2, and a better planting effect has been achieved.
  • the PWM control module uses JW1758B and JW1600 chips to achieve PWM control.
  • the critical conduction mode operation adopted by the chip can reduce switching losses and improve efficiency.
  • Another embodiment of the present invention also provides a plant lighting method for improving light utilization efficiency, which is characterized in that it includes the following steps:
  • the output filter circuit includes an adjustable filter capacitor to adjust the strobe depth without changing the effective value of the output, and the output filter circuit adjusts the duty cycle to 25%-50%.
  • the present invention improves the utilization rate of light, thereby effectively reducing the power of the lamp, and indirectly reducing the demand for heat dissipation conditions.
  • the output filter circuit of the present invention uses a parallel small capacitor C9 and resistors R16 and R17 to filter the output diode, EC1 and C10 to rectify and filter the current, and the common mode inductor LF3 to filter the current, which can achieve a good filter and rectification effect.
  • the output filter circuit includes an adjustable filter capacitor, so that the strobe depth can be adjusted without changing the effective value of the output. 3.
  • the signal sampling module of the present invention uses 2 to 4 high-precision resistors R11 and R12 to sample the current flowing through the switch tube Q1, and then feedback to the chip control pin through R1 and feedback to the switch tube control pin through R13 for signal feedback Adjust to improve the stability of the circuit. 4.
  • the PWM control module of the present invention adopts JW1758B and JW1600 chips to realize PWM control, and the critical conduction mode operation adopted by the chips can reduce switching losses and improve efficiency.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及植物照明领域,具体涉及一种提高光利用率的植物照明系统及方法,包括输入整流滤波器、开关器件、输出滤波电路、LED负载、信号采样模块与PWM控制模块,所述输入整流滤波器输入端与外部电源连接,所述输入整流滤波器输出端与开关器件输入端连接,所述开关器件输出端与输出滤波电路输入端连接,所述输出滤波电路输出端与LED负载连接,所述信号采样模块输入端与LED负载连接,所述信号采样模块输出端与PWM控制模块输入端连接,PWM控制模块输出端与开关器件连接,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%。本发明的有益效果为提高了光照利用率,从而有效降低了灯具功率,间接减低对散热条件的需求。

Description

一种提高光利用率的植物照明系统及方法 技术领域
本发明涉及植物照明领域,具体涉及一种提高光利用率的植物照明系统及方法。
背景技术
随着现代化农业的不断发展,植物照明的需求和能耗在不断扩大,对传统植物照明灯具技术也提出了新的挑战。LED作为新一代光源,除了环保节能的特点外,较之传统农业领域常用荧光灯或高压钠灯等人工光源,具有光量可调整、光质可调整、冷却负荷低与允许提高单位面积栽培量等特点,对封闭有环控的农业生产环境是一种非常适合的人工光源。
目前现有技术主要采用连续光植物进行照明操作,一方面提高灯具的光效,另一方面则不停的提高灯具的功率,而为控制成本与实际应用,往往是在不提高散热能力的基础上追求更大功率的使用。上述情况导致了植物照明灯具体积过大影响自然光照及现场布局,或者体积适中却提供不了足够的光照给予植物吸收。
发明内容
基于现有技术的上述缺陷,本发明拟通过提高光照利用率,从而有效降低灯具功率,间接减低对散热条件的需求。
为实现上述目标,本发明提供一种提高光利用率的植物照明系统,包括输入整流滤波器、开关器件、输出滤波电路、LED负载、信号采样模块与PWM控制模块,所述输入整流滤波器输入端与外部电源连接,所述输入整流滤波器输出端与开关器件输入端连接,所述开关器件输出端与输出滤波电路输入端连接,所述输出滤波电路输出端与LED负载连接,所述信号采样模块输入端与LED负载连接,所述信号采样模块输出端与PWM控制模块输入端连接,PWM控制模块输出端与开关器件连接,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%。
进一步的,所述输入整流滤波器首先采用共模电感LF1和共模电感LF2对高频辐射进行滤波,再采用并联的线路滤波器LF1与安规电容CX1、并联的线路滤波器LF2与安规电容CX2分别构成两组低通滤波器,有效降低高频骚扰且有效抵抗高频骚扰,再经过桥式整流BD1整流后,再采用工型电感L1和电容器C1、电容器C2对电流进行二次滤波、整流后输入开关器件输入端。
进一步的,所述开关器件包括开关管Q1和变压器T1,所述PWM控制模块包括型号为JW1758B或JW1600的PWM芯片U1,输入整流滤波器的输出电流接入变压器T1的输入绕组, 变压器T1的输出绕组接入输出整流滤波器,变压器T1的反馈绕组接信号采样模块,所述信号采样模块包括采用电阻R20和电阻R21串联,在电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样反馈至PWM芯片的FB引脚端,所述信号采用模块还包括采用电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解,提高电路的稳定度。
更进一步的,所述PWM控制模块包括PWM芯片U1、电阻R4、电阻R5、电阻R6、电阻R26、电阻R8和电容C7,所述电阻R4和电阻R5串联后将输出滤波器的输出端正极电流引入PWM芯片U1的VCC引脚,为整个PWM芯片U1提供工作电源,所述电阻R6、电阻R26串联后一端与输入整流滤波器的工型电感L1电流输出端连接获取感应电流,所述电阻R6、电阻R26串联后另一端与PWM芯片U1的VREC引脚连接,将感应电流引入PWM芯片U1内,PWM芯片U1引脚接并联的电阻R8和电容C7后接地,PWM芯片U1的COMP引脚串联电容C8后与接地,PWM芯片U1的GND引脚接地,PWM芯片U1的DPWM引脚悬空。
所述开关器件包括变压器T1、开关管Q1、电阻R15、电阻R14、电容C3、二极管D2、二极管D3和电阻R7,所述电阻R15和电阻R14以及电容C3并联后一端与输入整流滤波器的输出端正极连接,该端还与变压器输入绕组第五引脚连接,通过并联的电阻R15、电阻14和电容C3将输入整流滤波器的输出电流引入变压器1输入绕组第五引脚,所述电阻R15和电阻R14以及电容C3并联后的另一端与二极管D2的阴极连接,二极管D2的阳极与变压器输入绕组第三引脚连接,该端还与开关管Q1的漏极D连接,开关管的栅极G与二极管D3的阳极连接,二极管D3的阴极为门极驱动脚,连接到PWM芯片U1的GATE引脚,变压器T1的输出绕组A1引脚与输出整流滤波器的正极连接,所述变压器的输出绕组B1引脚与输出整流滤波器的负极连接并浮地。
所述信号采样模块包括电阻R18、电阻R11、电阻R12、电阻R13、电阻R20、电阻R21、电容C6、电阻R9、二极管D4、电容C4和电容C5,所述变压器T1的反馈绕组第一引脚串联电阻R20、电阻R21后接地,电阻R21和电阻R20的共同连接端与PWM芯片U1的FB引脚连接,所述电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样并反馈至PWM芯片U1的FB引脚,电容C6与电阻R21并联,所述变压器T1的反馈绕组第一引脚串联电阻R9后与二极管D4阳极连接,二极管阴极分别串接电容C4和电容C5后接地,所述变压器T1的反馈绕组的第二引脚接地,电阻R12和电阻R11并联后与开关管Q1的源极S连接,该端还与电阻R13的一端、电阻R18的一端连接,电阻R13的另一端与 二极管D3的阳极连接,电阻R18的的另一端与PWM芯片U1的SNP引脚连接,电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解。
进一步的,所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。
进一步的,所述输出滤波电路将占空比调节到25%-50%。
进一步的,所述输出滤波电路采用二极管D1连接开关器件输出端正极A1,在二极管D1两端并联小电容C9和电阻R16、电阻R17进行滤波,再在二极管D1阴极和开关器件输出端负极B1两端并联有极性电容EC1、电容C10进行整流,最后通过共模电感LF3对电流进行滤波后接负载。
更进一步的,所述输出滤波电路包括电阻R16、电阻R17、电容C9、二极管D1、有极性电容EC1、电容C10、电阻R18和共模电感LF3,变压器T1输出绕组A1端与二极管D1阳极连接,二极管D1阴极与有极性电容CE1连接,有极性电容CE1负极接开变压器T1输出绕组B1端,该端浮地,浮地端串接电容CY1后接地,电阻R16和电阻R17并联再与电容C9串联后并联在二极管D1的两极,电容C10、电阻R18和共模电感LF3输入两端均与有极性电容EC1并联,共模电感LF3输出两端与LED负载连接。
本发明还提供了一种提高光利用率的植物照明方法,包括如下步骤:
(1)将电流输入整流滤波;
(2)将整流滤波输出的电流输入开关器件;
(3)将开关器件输出的电流输入输出滤波电路,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%;
(4)将输出滤波电路完成调制的电流输入LED负载以驱动LED发光;
(5)在LED负载中进行被控信号采样,并根据采样结果进行PWM脉冲宽度调制;
(6)将完成PWM脉冲宽度调制的电流输入开关器件,并继续进行步骤(3)。
8.如权利要求8所述提高光利用率的植物照明方法,其特征在于:所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。
9.如权利要求8所述提高光利用率的植物照明方法,其特征在于:所述输出滤波电路将占空比调节到25%-50%。
本发明的有益效果如下:
1.本发明提高了光照利用率,从而有效降低了灯具功率,间接减低对散热条件的需求。
2.本发明输出滤波电路采用对输出二极管并联小电容C9和电阻R16、R17进行滤波、EC1、C10进行整流和滤波,共模电感LF3对电流进行滤波,能够起到很好的滤波整流效果,且所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。
3.本发明信号采样模块采用2到4个高精度电阻R11、R12对开关管Q1流过的电流进行采样,再通过R1反馈到芯片控制脚和通过R13反馈到开关管控制脚位进行信号反馈调节,提高电路的稳定度。
4.本发明PWM控制模块采用JW1758B和JW1600芯片实现PWM控制,芯片所采用的临界导通模式操作可降低开关损耗并提高效率。
附图说明
图1为本发明的电路结构示意图。
图2为本发明实施例的入整整流滤波器电路原理图。
图3为本发明实施例的开关器件、PWM控制模块和信号采样模块电路原理图。
图4为本发明实施例的输出整流滤波电路原理图。
图5为本发明的实验效果图Ⅰ。
图6位本发明的实验效果图Ⅱ。
具体实施方式
下面结合附图和具体实施方式,对本发明做进一步说明。
本发明设计中,涉及对电路输出的频率、占空比、频闪深度以及脉冲宽度的处理问题。如图1-图6所示,一种提高光利用率的植物照明系统,包括输入整流滤波器、开关器件、输出滤波电路、LED负载、信号采样模块与PWM控制模块,所述输入整流滤波器输入端与外部电源连接,所述输入整流滤波器输出端与开关器件输入端连接,所述开关器件输出端与输出滤波电路输入端连接,所述输出滤波电路输出端与LED负载连接,所述信号采样模块输入端与LED负载连接,所述信号采样模块输出端与PWM控制模块输入端连接,PWM控制模块输出端与开关器件连接,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%。本发明在开关器件电路后的输出滤波电路上不再按常规植物照明方案进行滤波、平波调制,而直接采用电容进行频闪深度管控,从而取得所需光输出波形。具体实现方式如下:220V交流电流输入整流滤波,经过整流后的电流输入开关器件,将开关器件输出的电流输入输出滤波电路,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到 20%-80%,或者更优选25%-50%。
参考图2所示,所述输入整流滤波器首先采用共模电感LF1和共模电感LF2对高频辐射进行滤波,再采用并联的线路滤波器LF1与安规电容CX1、并联的线路滤波器LF2与安规电容CX2分别构成两组低通滤波器,有效降低高频骚扰且有效抵抗高频骚扰,再经过桥式整流BD1整流后,再采用工型电感L1和电容器C1、电容器C2对电流进行二次滤波、整流后输入开关器件输入端。所述输入整流滤波器包括贴片保险管F1、压敏电阻VR1、共模电感LF1、共模电感LF2、安规电容CX1、电阻R1、电阻R2、安规电容CX2、整流桥BD1、电感L1、电阻RL1、二极管DX1、可调电阻RX1、可调电阻RX2、可调电容EX1、电容C1和电容C2,火线接贴片保险管F1后连接可调电阻VR1正极,可调电极VR1负极接零线,线路滤波器LF1并联在可调电阻VR1两端,线路滤波器LF1还与安规电容CX1并联,电阻R1和电阻R2串联后再与安规电容CX1并联,线路滤波器LF2与串接后的电阻R1和电阻R2并联,安规电容CX2与线路滤波器LF2并联,整流桥BD1的第三端口和第二端口分别与安规电容CX2正负极两端相连,整流桥BD1的第四端口接地,整流桥BD1的第一端口与电感L1和电阻RL1一端连接,电感L1和电阻RL1的另一端与二极管DX1阳极连接,二极管DX1阴极与电解电容EX1阳极连接,电解电容EX1阴极接地,电阻RX1和RX2串接后并联在二极管DX1两极,电容C1和电容C2并联在开关器件输入端两极。通过LF1、LF2对高频辐射进行滤波,并且LF1+CX1,LF2+CX2分别构成一组低通滤波器,能有效降低高频骚扰也能有效抵抗高频骚扰,同过桥式整流BD1后,再采用工型电感L1和电容器C1、C2进行二次滤波,整流。
参考图3所示,所述开关器件包括开关管Q1和变压器T1,所述PWM控制模块包括型号为JW1758B或JW1600的PWM芯片U1,输入整流滤波器的输出电流接入变压器T1的输入绕组,变压器T1的输出绕组接入输出整流滤波器,变压器T1的反馈绕组接信号采样模块,所述信号采样模块包括采用电阻R20和电阻R21串联,在电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样反馈至PWM芯片的FB引脚端,所述信号采用模块还包括采用电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解,提高电路的稳定度。
所述PWM控制模块包括PWM芯片U1、电阻R4、电阻R5、电阻R6、电阻R26、电阻R8和电容C7,所述电阻R4和电阻R5串联后将输出滤波器的输出端正极电流引入PWM芯片U1的VCC引脚,为整个PWM芯片U1提供工作电源,所述电阻R6、电阻R26串联后一端与 输入整流滤波器的工型电感L1电流输出端连接获取感应电流,所述电阻R6、电阻R26串联后另一端与PWM芯片U1的VREC引脚连接,将感应电流引入PWM芯片U1内,PWM芯片U1引脚接并联的电阻R8和电容C7后接地,PWM芯片U1的COMP引脚串联电容C8后与接地,PWM芯片U1的GND引脚接地,PWM芯片U1的DPWM引脚悬空。
所述开关器件包括变压器T1、开关管Q1、电阻R15、电阻R14、电容C3、二极管D2、二极管D3和电阻R7,所述电阻R15和电阻R14以及电容C3并联后一端与输入整流滤波器的输出端正极连接,该端还与变压器输入绕组第五引脚连接,通过并联的电阻R15、电阻14和电容C3将输入整流滤波器的输出电流引入变压器1输入绕组第五引脚,所述电阻R15和电阻R14以及电容C3并联后的另一端与二极管D2的阴极连接,二极管D2的阳极与变压器输入绕组第三引脚连接,该端还与开关管Q1的漏极D连接,开关管的栅极G与二极管D3的阳极连接,二极管D3的阴极为门极驱动脚,连接到PWM芯片U1的GATE引脚,变压器T1的输出绕组A1引脚与输出整流滤波器的正极连接,所述变压器的输出绕组B1引脚与输出整流滤波器的负极连接并浮地。
所述信号采样模块包括电阻R18、电阻R11、电阻R12、电阻R13、电阻R20、电阻R21、电容C6、电阻R9、二极管D4、电容C4和电容C5,所述变压器T1的反馈绕组第一引脚串联电阻R20、电阻R21后接地,电阻R21和电阻R20的共同连接端与PWM芯片U1的FB引脚连接,所述电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样并反馈至PWM芯片U1的FB引脚,电容C6与电阻R21并联,所述变压器T1的反馈绕组第一引脚串联电阻R9后与二极管D4阳极连接,二极管阴极分别串接电容C4和电容C5后接地,所述变压器T1的反馈绕组的第二引脚接地,电阻R12和电阻R11并联后与开关管Q1的源极S连接,该端还与电阻R13的一端、电阻R18的一端连接,电阻R13的另一端与二极管D3的阳极连接,电阻R18的的另一端与PWM芯片U1的SNP引脚连接,电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解。
采用2到4个高精度电阻R11、R12对开关管Q1流过的电流进行采样,再通过R1反馈到芯片控制脚和通过R13反馈到开关管控制脚位进行信号反馈调节,提高电路的稳定度。
参考图4所示,所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。所述输出滤波电路将占空比调节到25%-50%。所述输出滤波电路采用二极管D1连接开关器件输出端正极A1,在二极管D1两端并联小电容C9和电阻R16、电阻R17进行滤波,再在二极管D1阴极和开关器件输出端负极B1两端并联有极性 电容EC1、电容C10进行整流,最后通过共模电感LF3对电流进行滤波后接负载。所述输出滤波电路包括电阻R16、电阻R17、电容C9、二极管D1、有极性电容EC1、电容C10、电阻R18和共模电感LF3,变压器T1输出绕组A1端与二极管D1阳极连接,二极管D1阴极与有极性电容CE1连接,有极性电容CE1负极接开变压器T1输出绕组B1端,该端浮地,浮地端串接电容CY1后接地,电阻R16和电阻R17并联再与电容C9串联后并联在二极管D1的两极,电容C10、电阻R18和共模电感LF3输入两端均与有极性电容EC1并联,共模电感LF3输出两端与LED负载连接。所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度,其中频闪深度越大,所对应的等效光合光子通量密度越大,从而种植效果越好。所述输出滤波电路将占空比调节到25%-50%。
将输出滤波电路完成调制的电流输入LED负载以驱动LED发光,并在LED负载中进行被控信号采样,根据采样结果进行PWM脉冲宽度调制。将完成PWM脉冲宽度调制的电流输入开关器件。
图5及图6展示了本发明的实施效果。
在图5中,纵坐标为光合作用速率,横坐标为频率节点。E线(虚线)为连续光情况下的光合作用速率,可以看出频率在0.1-10阶段,占空比的比重严重影响了光合作用速率,而在频率大于100Hz,且占空比在20%-80%之间时,其光合作用的速率趋于一致。在此验证结果下,设计合理的驱动电源,在确保输出频率大于100Hz的情况下,尽量缩小占空比,减小驱动电源输出功率,将获得和原先连续输出的灯具一样的种植效果,直观显示,当占空比为50%的时候,在确保同样种植效果情况下功率将减小一半,当占空比为25%时,功率将为原来灯具的功率的25%,该驱动方式将极大降低生产过程中所需的电力、及相匹配的散热装置、也降低对环境控制的严苛要求,在单体灯具和整体种植方面将大大降低了成本及种植体验。
图6则展示了同一个功率下的产品,把输出频率调制到100Hz以上,通过修改滤波电容的大小,从而在不改变输出有效值的基础上加大频闪深度,得到不同的光输出波形,特别是波峰值的变化,在种植方面,图中所示的波形1,因为比波形2具备更高的等效PPFD,取得了更好的种植效果。PWM控制模块采用JW1758B和JW1600芯片实现PWM控制,芯片所采用的临界导通模式操作可降低开关损耗并提高效率。
本发明另一实施例还提供了一种提高光利用率的植物照明方法,其特征在于包括如下步骤:
(1)将电流输入整流滤波;
(2)将整流滤波输出的电流输入开关器件;
(3)将开关器件输出的电流输入输出滤波电路,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%;
(4)将输出滤波电路完成调制的电流输入LED负载以驱动LED发光;
(5)在LED负载中进行被控信号采样,并根据采样结果进行PWM脉冲宽度调制;
(6)将完成PWM脉冲宽度调制的电流输入开关器件,并继续进行步骤(3)。
所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度,所述输出滤波电路将占空比调节到25%-50%。
本实施例的有益效果如下:
1.本发明提高了光照利用率,从而有效降低了灯具功率,间接减低对散热条件的需求。2.本发明输出滤波电路采用对输出二极管并联小电容C9和电阻R16、R17进行滤波、EC1、C10进行整流和滤波,共模电感LF3对电流进行滤波,能够起到很好的滤波整流效果,且所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。3.本发明信号采样模块采用2到4个高精度电阻R11、R12对开关管Q1流过的电流进行采样,再通过R1反馈到芯片控制脚和通过R13反馈到开关管控制脚位进行信号反馈调节,提高电路的稳定度。4.本发明PWM控制模块采用JW1758B和JW1600芯片实现PWM控制,芯片所采用的临界导通模式操作可降低开关损耗并提高效率。
本领域的技术人员将看到,可以在不背离其宽泛的实用新型概念的情况下对上述实施例进行更改。因此,应该理解本实用新型不限于所公开的特定实施例,而是意图涵盖由附加权利要求定义的本实用新型概念的精神和范围内的修改。

Claims (10)

  1. 一种提高光利用率的植物照明系统,其特征在于:包括输入整流滤波器、开关器件、输出滤波电路、LED负载、信号采样模块与PWM控制模块,所述输入整流滤波器输入端与外部电源连接,所述输入整流滤波器输出端与开关器件输入端连接,所述开关器件输出端与输出滤波电路输入端连接,所述输出滤波电路输出端与LED负载连接,所述信号采样模块输入端与LED负载连接,所述信号采样模块输出端与PWM控制模块输入端连接,PWM控制模块输出端与开关器件连接,所述输出滤波电路在不改变瞬时输出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%。
  2. 如权利要求1所述提高光利用率的植物照明系统,其特征在于:所述输入整流滤波器首先采用共模电感LF1和共模电感LF2对高频辐射进行滤波,再采用并联的线路滤波器LF1与安规电容CX1、并联的线路滤波器LF2与安规电容CX2分别构成两组低通滤波器,有效降低高频骚扰且有效抵抗高频骚扰,再经过桥式整流BD1整流后,再采用工型电感L1和电容器C1、电容器C2对电流进行二次滤波、整流后输入开关器件输入端。
  3. 如权利要求2所述提高光利用率的植物照明系统,其特征在于:所述开关器件包括开关管Q1和变压器T1,所述PWM控制模块包括型号为JW1758B或JW1600的PWM芯片U1,输入整流滤波器的输出电流接入变压器T1的输入绕组,变压器T1的输出绕组接入输出整流滤波器,变压器T1的反馈绕组接信号采样模块,所述信号采样模块包括采用电阻R20和电阻R21串联,在电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样反馈至PWM芯片的FB引脚端,所述信号采用模块还包括采用电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解,提高电路的稳定度。
  4. 如权利要求3所述提高光利用率的植物照明系统,其特征在于:所述PWM控制模块包括PWM芯片U1、电阻R4、电阻R5、电阻R6、电阻R26、电阻R8和电容C7,所述电阻R4和电阻R5串联后将输出滤波器的输出端正极电流引入PWM芯片U1的VCC引脚,为整个PWM芯片U1提供工作电源,所述电阻R6、电阻R26串联后一端与输入整流滤波器的工型电感L1电流输出端连接获取感应电流,所述电阻R6、电阻R26串联后另一端与PWM芯片U1的VREC引脚连接,将感应电流引入PWM芯片U1内,PWM芯片U1引脚接并联的电阻R8和电容C7后接地,PWM芯片U1的COMP引脚串联电容C8后与接地,PWM芯片U1的GND引脚接地,PWM芯片U1的DPWM引脚悬空;
    所述开关器件包括变压器T1、开关管Q1、电阻R15、电阻R14、电容C3、二极管D2、二极管D3和电阻R7,所述电阻R15和电阻R14以及电容C3并联后一端与输入整流滤波器 的输出端正极连接,该端还与变压器输入绕组第五引脚连接,通过并联的电阻R15、电阻14和电容C3将输入整流滤波器的输出电流引入变压器1输入绕组第五引脚,所述电阻R15和电阻R14以及电容C3并联后的另一端与二极管D2的阴极连接,二极管D2的阳极与变压器输入绕组第三引脚连接,该端还与开关管Q1的漏极D连接,开关管的栅极G与二极管D3的阳极连接,二极管D3的阴极为门极驱动脚,连接到PWM芯片U1的GATE引脚,变压器T1的输出绕组A1引脚与输出整流滤波器的正极连接,所述变压器的输出绕组B1引脚与输出整流滤波器的负极连接并浮地;
    所述信号采样模块包括电阻R18、电阻R11、电阻R12、电阻R13、电阻R20、电阻R21、电容C6、电阻R9、二极管D4、电容C4和电容C5,所述变压器T1的反馈绕组第一引脚串联电阻R20、电阻R21后接地,电阻R21和电阻R20的共同连接端与PWM芯片U1的FB引脚连接,所述电阻R20和电阻R21共同连接端将变压器T1的反馈绕组流出的电流进行采样并反馈至PWM芯片U1的FB引脚,电容C6与电阻R21并联,所述变压器T1的反馈绕组第一引脚串联电阻R9后与二极管D4阳极连接,二极管阴极分别串接电容C4和电容C5后接地,所述变压器T1的反馈绕组的第二引脚接地,电阻R12和电阻R11并联后与开关管Q1的源极S连接,该端还与电阻R13的一端、电阻R18的一端连接,电阻R13的另一端与二极管D3的阳极连接,电阻R18的的另一端与PWM芯片U1的SNP引脚连接,电阻R12和电阻R11对开关管Q1流过的电流进行采样,再通过电阻R18反馈至PWM芯片的SNP引脚和通过电阻R13反馈到开关管Q1的控制脚进行信号反馈调解。
  5. 如权利要求2所述提高光利用率的植物照明系统,其特征在于:所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。
  6. 如权利要求5所述提高光利用率的植物照明系统,其特征在于:所述输出滤波电路将占空比调节到25%-50%。
  7. 如权利要求2所述提高光利用率的植物照明系统,其特征在于:所述输出滤波电路采用二极管D1连接开关器件输出端正极A1,在二极管D1两端并联小电容C9和电阻R16、电阻R17进行滤波,再在二极管D1阴极和开关器件输出端负极B1两端并联有极性电容EC1、电容C10进行整流,最后通过共模电感LF3对电流进行滤波后接负载。
  8. 一种提高光利用率的植物照明方法,其特征在于包括如下步骤:
    (1)将电流输入整流滤波;
    (2)将整流滤波输出的电流输入开关器件;
    (3)将开关器件输出的电流输入输出滤波电路,所述输出滤波电路在不改变瞬时输 出功率的情况下,将输出频率调制到100Hz以上,将占空比调制到20%-80%;
    (4)将输出滤波电路完成调制的电流输入LED负载以驱动LED发光;
    (5)在LED负载中进行被控信号采样,并根据采样结果进行PWM脉冲宽度调制;
    (6)将完成PWM脉冲宽度调制的电流输入开关器件,并继续进行步骤(3)。
  9. 如权利要求8所述提高光利用率的植物照明方法,其特征在于:所述输出滤波电路中包括可调节大小的滤波电容,从而在不改变输出有效值的基础上调节频闪深度。
  10. 如权利要求8所述提高光利用率的植物照明方法,其特征在于:所述输出滤波电路将占空比调节到25%-50%。
PCT/CN2020/072429 2019-12-19 2020-01-16 一种提高光利用率的植物照明系统及方法 WO2021120362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911313544.2A CN110856316A (zh) 2019-12-19 2019-12-19 一种提高光利用率的植物照明系统及方法
CN201911313544.2 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021120362A1 true WO2021120362A1 (zh) 2021-06-24

Family

ID=69609868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072429 WO2021120362A1 (zh) 2019-12-19 2020-01-16 一种提高光利用率的植物照明系统及方法

Country Status (2)

Country Link
CN (1) CN110856316A (zh)
WO (1) WO2021120362A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805645A (zh) * 2005-11-29 2006-07-19 哈尔滨工业大学 适用于400v/600w农用高压钠灯的电子镇流器
CN204442772U (zh) * 2015-02-12 2015-07-01 重庆星联云科科技发展有限公司 一种植物生长灯恒流驱动电路
CN104869718A (zh) * 2015-06-01 2015-08-26 重庆星联云科科技发展有限公司 一种非隔离式led植物生长灯驱动电源
US20160007424A1 (en) * 2011-12-02 2016-01-07 Biological Illumination, Llc Illumination and grow light system and associated methods
CN109714865A (zh) * 2019-02-27 2019-05-03 东北林业大学 一种无频闪高功率因数的led驱动电路及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860237B (zh) * 2010-06-01 2014-01-29 海洋王照明科技股份有限公司 高功率因数恒流电路及电源
CN106231736B (zh) * 2016-09-12 2018-04-06 深圳市豪恩光电照明股份有限公司 一种led灯管电源驱动电路
CN106787799A (zh) * 2016-12-27 2017-05-31 广东百事泰电子商务股份有限公司 一种基于pfc正激半桥的智能型正弦波电压转换电路
CN207995453U (zh) * 2018-03-09 2018-10-19 广东欧曼科技股份有限公司 高压led灯带高效驱动电路
CN211557571U (zh) * 2019-12-19 2020-09-22 福建省中科生物股份有限公司 一种提高光利用率的植物照明系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805645A (zh) * 2005-11-29 2006-07-19 哈尔滨工业大学 适用于400v/600w农用高压钠灯的电子镇流器
US20160007424A1 (en) * 2011-12-02 2016-01-07 Biological Illumination, Llc Illumination and grow light system and associated methods
CN204442772U (zh) * 2015-02-12 2015-07-01 重庆星联云科科技发展有限公司 一种植物生长灯恒流驱动电路
CN104869718A (zh) * 2015-06-01 2015-08-26 重庆星联云科科技发展有限公司 一种非隔离式led植物生长灯驱动电源
CN109714865A (zh) * 2019-02-27 2019-05-03 东北林业大学 一种无频闪高功率因数的led驱动电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG SHIANG, YAO XIN, HUANG WEIFENG, MO JIANTIAN, HUANG JUNZHE: "Design of Adaptive Lighting Control System for Blueberry Planting Environment", AGRICULTURAL ENGINEERING, vol. 8, no. 1, 1 January 2018 (2018-01-01), pages 25 - 29, XP055822184, ISSN: 2095-1795 *

Also Published As

Publication number Publication date
CN110856316A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN101572972A (zh) 一种可调光led恒流驱动电路
CN101969727B (zh) 大功率led驱动电源
CN104703358B (zh) 宽电压led灯的开关调光驱动电路及led灯调光控制系统
CN211557571U (zh) 一种提高光利用率的植物照明系统
CN203233324U (zh) 一种宽电压输出范围的脉冲固体激光器电源
CN203761633U (zh) 节能长寿led交通信号灯
CN109152134A (zh) 多路调光驱动系统
CN203801118U (zh) 一种基于自适应控制的高效率线性led驱动器
CN102595739B (zh) Led驱动电源电路
CN104797062B (zh) 兼容相控调光器无频闪高效率led驱动方式
CN201210761Y (zh) 路灯控制器
CN204145795U (zh) 具有apfc功能的无工频纹波led路灯电源
WO2021120362A1 (zh) 一种提高光利用率的植物照明系统及方法
CN102438376B (zh) Led恒流驱动电源电路
CN104507238A (zh) 一种无电解电容的led驱动电源
CN202696960U (zh) 新型led灯驱动电源
CN202396031U (zh) 照明用led驱动器
CN201854484U (zh) 大功率led恒流驱动电源电路
CN204408690U (zh) 一种led驱动电路
CN209897309U (zh) 一种高压线性调光电路
CN201462724U (zh) 一种新型led路灯
CN104735837A (zh) 具有apfc功能的无工频纹波led路灯电源
CN201830527U (zh) 大功率led驱动电源
CN205029936U (zh) 一种可调控的led照明系统
CN202435663U (zh) 非隔离高功率因素led恒流驱动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901744

Country of ref document: EP

Kind code of ref document: A1