WO2021120184A1 - 光源模块、背光模块及显示设备 - Google Patents

光源模块、背光模块及显示设备 Download PDF

Info

Publication number
WO2021120184A1
WO2021120184A1 PCT/CN2019/127062 CN2019127062W WO2021120184A1 WO 2021120184 A1 WO2021120184 A1 WO 2021120184A1 CN 2019127062 W CN2019127062 W CN 2019127062W WO 2021120184 A1 WO2021120184 A1 WO 2021120184A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
side wall
angle
emitting unit
distance
Prior art date
Application number
PCT/CN2019/127062
Other languages
English (en)
French (fr)
Inventor
张智强
陈长趯
蔡雅茵
Original Assignee
瑞仪光电(苏州)有限公司
瑞仪光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪光电(苏州)有限公司, 瑞仪光电股份有限公司 filed Critical 瑞仪光电(苏州)有限公司
Priority to PCT/CN2019/127062 priority Critical patent/WO2021120184A1/zh
Priority to CN201980030495.3A priority patent/CN113287060A/zh
Priority to TW108147933A priority patent/TWI725687B/zh
Priority to US17/234,821 priority patent/US11391988B2/en
Publication of WO2021120184A1 publication Critical patent/WO2021120184A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present invention relates to a light source module, in particular to a light source module capable of generating uniform light, and the application of the light source module in a backlight module and a display device.
  • a light source module used for a direct type backlight module mainly includes a substrate and a plurality of light-emitting units arrayed at equal intervals on the substrate.
  • the light generated by these light-emitting units can be further mixed through an optical film to form a surface light source.
  • the number of light-emitting units is usually reduced, so that when the light-emitting unit close to the side wall of the backplane is too far from the side wall, the light generated by the light-emitting unit is not enough to be evenly distributed.
  • the side wall of the backplane reflects to the light-emitting surface of the backlight module, which causes the light-emitting surface to produce serious shadows near the edge of the side wall.
  • the number of light-emitting units is increased in order to solve the problem of dark shadows on the edges or corners of the side walls, this will increase the weight and cost of the overall light source module.
  • the purpose of the embodiments of the present disclosure is to provide a light source module with better light output uniformity, which can further improve the optical taste of the backlight module and the display device.
  • the light source module includes a back plate and a plurality of light emitting units.
  • the backboard includes a bottom plate and a side wall erected on the bottom plate. Among them, there is an included angle ⁇ slope between the outer surface of the side wall and the horizontal plane where the bottom plate is located, and the included angle ⁇ slope is an acute angle. There is an optical distance OD between the top of the side wall and the horizontal plane.
  • the light-emitting units are arranged in the back plate.
  • the light-emitting unit closest to the side wall among the light-emitting units is the target light-emitting unit
  • the target light-emitting unit has a light-emitting angle ⁇ LED
  • the target light-emitting unit has a distance d from the side wall.
  • the distance d is the difference between the first horizontal distance between the target light emitting unit and the predetermined position of the side wall and the second horizontal distance between the bottom edge of the side wall and the predetermined position of the side wall.
  • the first horizontal distance d1 is calculated according to the first function F1, and the first function F1 depends on the tangent function of the complementary angle of the light emitting angle ⁇ LED.
  • the second horizontal distance d2 is calculated according to the second function F2, and the second function F2 depends on the tangent function of the included angle ⁇ slope.
  • the above-mentioned light emitting angle ⁇ LED is the half viewing angle or half light-intensity angle of the target light-emitting unit.
  • the light emitted by the target light-emitting unit at a light-emitting angle ⁇ LED can be directed to a predetermined position on the side wall.
  • a part of the surface of the side wall close to the predetermined position to the top edge of the side wall can reflect more than 50% of the light generated by the target light emitting unit.
  • the above-mentioned predetermined position can reach the midpoint of the side wall or a position lower than the midpoint of the light emitted from the half-open angle or half-light intensity emission angle of the target light-emitting unit.
  • the above-mentioned first function F1 satisfies the following relationship:
  • the second function F2 satisfies the following relationship: Wherein, P is the vertical distance between the horizontal plane and the predetermined position of the side wall.
  • the vertical distance P between the horizontal plane and the predetermined position of the side wall is between 20% and 50% of the optical distance OD, including the endpoint value.
  • the relationship between the above-mentioned included angle ⁇ slope and the light-emitting angle ⁇ LED is: (90 ⁇ LED ) ⁇ slope ⁇ 90.
  • the relationship between the above-mentioned included angle ⁇ slope and the light-emitting angle ⁇ LED is:
  • the above-mentioned distance d is the difference between the first horizontal distance and the second horizontal distance, minus the third horizontal distance.
  • the third horizontal distance is the distance between the center of the target light-emitting unit and the edge of the target light-emitting unit, where the third horizontal distance is calculated according to the third function F3, and the third function F3 depends on the mutual complementary angle of the light-emitting angle ⁇ LED The tangent function.
  • the above-mentioned third function F3 satisfies the following relationship:
  • H is the height of the target light-emitting unit.
  • the height H, the optical distance OD, the included angle ⁇ slope of the target light-emitting unit, and the light-emitting angle ⁇ LED satisfy the following inequality, which is:
  • the height H, the optical distance OD, the included angle ⁇ slope of the target light-emitting unit, and the light-emitting angle ⁇ LED satisfy the following inequality, which is:
  • the height H of the above-mentioned target light emitting unit ranges from 0.5 mm to 1.5 mm.
  • the above-mentioned optical distance OD ranges from 3 mm to 10 mm.
  • a backlight module includes the aforementioned light source module and at least one optical film, and the optical film is arranged above the light source module.
  • a display device includes the aforementioned light source module, at least one optical film, and a display panel.
  • the optical film is arranged above the light source module.
  • the display panel is arranged above the optical film.
  • the present disclosure defines the inclination angle of the side wall of the back plate according to the light emitting angle of the light emitting unit, and further uses the light output of the light emitting unit and the light emitting angle to calculate the light emitting unit and the back plate with the first function and the second function.
  • the distance of the side wall is such that the light generated by the light-emitting unit can be reflected by the side wall of the back panel and then directly emit light, so that the amount of light emitted by the backlight module meets the usage requirements, and the part of the area close to the side wall emits uniform light.
  • FIG. 1 is a schematic diagram showing a device of a display device according to the first embodiment of the present disclosure
  • 2A is a simulation diagram of the optical trend of a light source module using the first embodiment
  • 2B is a graph showing the relationship between the luminance and the X-axis position generated by using the first embodiment
  • 3A is a simulation diagram of the optical trend of a light source module using the second embodiment
  • Fig. 3B is a graph showing the relationship between brightness and X-axis position generated by using the second embodiment
  • 4A is a simulation diagram of the optical trend of a light source module using the first comparative example
  • FIG. 4B is a graph showing the relationship between brightness and X-axis position generated by using the first comparative example
  • 5A is a simulation diagram of the optical trend of a light source module using a second comparative example
  • Fig. 5B is a graph showing the relationship between brightness and X-axis position produced by using the second comparative example
  • FIG. 6 is a schematic diagram showing a device of a display device according to the second embodiment of the present disclosure.
  • the display device 100 of this embodiment mainly includes a light source module 200, at least one optical film 300 disposed above the backlight module 200, and a display panel 400 disposed above the optical film 300.
  • the light source module 200 includes a back plate 210 and a plurality of light emitting units 220.
  • the back plate 210 includes a bottom plate 211 and a side wall 212 standing on the bottom plate 211, and the light-emitting units 220 are arranged in the back plate 210. In this way, the light generated by the light emitting unit 220 can be further mixed by the optical film 300 to form a surface light source, and then light is emitted from the display panel 400.
  • the light-emitting unit 220 closest to the side wall 212 is defined as the target light-emitting unit 220'.
  • the target light-emitting unit 220' When the light generated by the target light emitting unit 220' is directed toward the side wall 212, it will be reflected by the side wall 212 and emit light in the direction of the optical film 300.
  • the distance d between the target light-emitting unit 220' and the bottom edge of the side wall 212 needs to be designed.
  • the distance d between the target light emitting unit 220' and the bottom edge of the side wall 212 is the difference between the first horizontal distance d1 and the second horizontal distance d2.
  • the first horizontal distance d1 is the horizontal distance between the target light emitting unit 220' and the predetermined position A1 of the side wall 212.
  • the second horizontal distance d2 is the horizontal distance between the bottom edge of the side wall 212 and the predetermined position A1 of the side wall 212.
  • the predetermined position A1 may be determined according to the reflection amount of the light emitted by the light-emitting unit or the half viewing angle or half light-intensity angle of the light-emitting unit.
  • the predetermined position A1 referred to here refers to any position on the oblique side of the side wall 212, and the light emitted to the predetermined position A1 can be reflected by the side wall 212 and emit light from a position close to the edge of the side wall 212. Therefore, the design of the distance d between the target light-emitting unit 220' and the bottom edge of the side wall 212 is designed for the purpose that the light generated by the target light-emitting unit 220' can be directed to the predetermined position A1.
  • the back plate 210 in addition to the function of supporting the components required in the light-emitting unit 220 and the light source module 200, the back plate 210 also has the function of reflecting light on the side walls 212 of the back plate 210.
  • a part of the surface of the side wall 212 close to the predetermined position A1 to the top edge of the side wall can reflect at least 50% or more (preferably 90%).
  • the light generated by the light-emitting unit 220 then emits light upward. From this, it can be seen that as long as the demand for the amount of light required for reflection can be achieved, the predetermined position A1 referred to in the present disclosure can be defined.
  • the utilization efficiency of the light emitted by the light-emitting unit as long as the light emitted from the half-open angle or half-light intensity emission angle of the light-emitting unit, it must be able to reach at least the midpoint of the side wall 212 or lower than the midpoint. Position, and then light up upwards.
  • the first horizontal distance d1 is calculated according to the first function F1
  • the second horizontal distance d2 is calculated according to the second function F2.
  • the first function F1 depends on the tangent function of the light-emitting angle ⁇ LED of the target light-emitting unit 220'. In some examples, the first function F1 satisfies the following relationship (1):
  • P is the vertical distance P between the horizontal plane HP where the bottom plate 211 is located and the predetermined position A1 of the side wall 212
  • the light-emitting angle ⁇ LED is the half-open angle or half-light intensity emission angle of the target light-emitting unit 220'.
  • the light emitted by the target light emitting unit 220 ′ at the light emitting angle ⁇ LED will be directed to the predetermined position A1 of the side wall 212.
  • the second function F2 depends on the tangent function of the included angle ⁇ slope. In some examples, the second function F2 satisfies the following relationship (2):
  • the angle ⁇ slope between the known side wall 212 and the horizontal plane HP, the vertical distance P between the horizontal plane HP and the predetermined position A1 of the side wall 212, and the light-emitting angle ⁇ LED of the target light-emitting unit 220' can be
  • the distance d between the target light-emitting unit 220 ′ and the bottom edge of the side wall 212 is calculated by calculating the difference between the aforementioned relational expression (1) and relational expression (2).
  • the optical distance OD between the top end of the side wall 212 and the horizontal plane HP where the bottom plate 211 is located.
  • the optical distance OD referred to here may be the light mixing distance of the light emitting unit 220.
  • the vertical distance P in the first function F1 and the second function F2 is between 20% and 50% of the optical distance OD, inclusive.
  • the distance from the target light-emitting unit 220' to the bottom edge of the side wall 212 depends on the amount of light that the target light-emitting unit can reflect by the side wall.
  • the light emitted from the half-light intensity emission angle can reach the predetermined position A1 of the side wall 212 and then be emitted outward, and the light should at least be able to reach the midpoint of the side wall 212 or a position lower than the midpoint.
  • the vertical distance P between the predetermined position A1 of the side wall 212 and the bottom edge of the side wall 212 is 20%-50% of the optical distance OD.
  • FIG. 2A is a simulation diagram of the optical trend of a light source module using the first embodiment
  • FIG. 2B is the brightness and X-axis position generated by the first embodiment. Relationship graph.
  • the original images of the optical trend simulation diagrams shown in the present disclosure are color images.
  • the optical trend simulation diagram is presented in grayscale, its grayscale The degree from light to dark represents the trend change of the value from small to large.
  • the distance d between the target light emitting unit 220' and the bottom edge of the side wall 212 is 1.4 mm. It can be seen from the graph of FIG. 2B that the brightness of the light source module 200 near the center of the back plate 210 is different from the brightness of the back plate 210 near the side wall 212. In addition, the brightness curve of FIG. 2B is a relatively smooth curve, which conforms to General backlight module needs.
  • FIG. 3A is a simulation diagram of the optical trend of a light source module using the second embodiment
  • FIG. 3B is the brightness and X-axis position generated by the second embodiment. Relationship graph.
  • the optical distance OD is 10 mm and the vertical distance P is 50% of the optical distance OD
  • the distance d between the target light emitting unit 220' and the bottom edge of the side wall 212 is 4.9 mm.
  • the brightness curve of FIG. 3B is a relatively smoothly changing curve, which conforms to General backlight module requirements.
  • Figure 4A is a simulation diagram of the optical trend of a light source module using the first comparative example
  • Figure 4B is a graph of the luminance and X-axis position generated by the first comparative example. Relationship graph.
  • the first comparative example when the optical distance OD is 10 mm and the vertical distance P is 10% of the optical distance OD, the distance d between the target light emitting unit 220' and the bottom edge of the side wall 212 is 0.3 mm.
  • the brightness of the light source module 200 near the side wall 212 is partially bright, which does not meet the requirements of general backlight modules.
  • Figure 5A is a simulation diagram of the optical trend of a light source module using the second comparative example
  • Figure 5B is the brightness and X-axis position generated using the second comparative example Relationship graph.
  • the optical distance OD is 10 mm and the vertical distance P is 80% of the optical distance OD
  • the distance d between the target light emitting unit 220' and the bottom edge of the side wall 212 is 6.1 mm.
  • the brightness of the light source module 200 near the side wall 212 is too dark, which does not meet the requirements of a general backlight module.
  • the vertical distance P from the light emitted by the light emitting unit 220 to the predetermined position A1 and the bottom edge of the side wall 212 at a half-open angle or half-light intensity emission angle is set between 20% and 50% of the optical distance OD, including the endpoint value.
  • the light source module can generate light with relatively uniform brightness.
  • the optical distance OD ranges from 3 mm to 10 mm.
  • the relationship equation (3) or the relationship equation (4) can be used to calculate the inclination angle of the side wall 212 (that is, the included angle ⁇ slope ).
  • the light-emitting unit 220 in the light source module 200 shown in FIG. 1 is assumed to be a point light source, and therefore, the height of the light-emitting unit 220 does not need to be considered.
  • the light-emitting unit of the light source module may also use a light-emitting unit with a certain height instead of the aforementioned point light source form.
  • FIG. 6 it is a schematic diagram showing an apparatus of a display device according to the second embodiment of the present disclosure.
  • the structure of the display device 500 of this embodiment is substantially the same as that of the display device 100 shown in FIG. 1, and the only difference is that the light source module 600 of the display device 500 has a different design.
  • the back plate 610 includes a bottom plate 611 and a side wall 612 standing on the bottom plate 611, and the light-emitting units 620 are arranged in the back plate 610.
  • the light generated by the light-emitting unit 620 can be further mixed by the optical film 300 to form a surface light source, and then light is emitted from the display panel 400.
  • the light-emitting unit 620 closest to the side wall 612 is defined as the target light-emitting unit 620'.
  • the distance D is calculated by subtracting the second horizontal distance D2 from the first horizontal distance D1, and then further subtracting the third horizontal distance D3.
  • the first horizontal distance D1 is the horizontal distance between the target light emitting unit 620 ′ and the predetermined position A1 of the side wall 612.
  • the second horizontal distance D2 is the horizontal distance between the bottom edge of the side wall 612 and the predetermined position A1 of the side wall 612.
  • the third horizontal distance D3 is the distance between the center of the target light emitting unit 620' and the edge of the target light emitting unit 620'.
  • the first horizontal distance D1 is calculated according to the aforementioned first function F1, wherein the first function F1 satisfies the aforementioned relational expression (1).
  • the second horizontal distance D2 is calculated according to the aforementioned second function F2, wherein the second function F2 satisfies the aforementioned relational expression (2).
  • P in the relational expression (1) is the vertical distance P between the horizontal plane HP where the bottom plate 611 is located and the predetermined position A1 of the side wall 612
  • ⁇ LED is the light-emitting angle ⁇ LED of the target light-emitting unit 220', for example, the target light-emitting unit 220' half-open angle or half-light intensity emission angle.
  • the ⁇ slope in the relation (2) is the angle between the outer surface of the side wall 612 and the horizontal plane HP where the bottom plate 611 is located.
  • the third horizontal distance D3 is the distance between the center of the target light emitting unit 620' and the edge of the target light emitting unit 620'.
  • the third horizontal distance D3 may be half of the width of the target light emitting unit 620'.
  • the third horizontal distance D3 is calculated according to the third function F3, and the third horizontal distance D3 is calculated according to the third function F3.
  • the third function F3 depends on the tangent function of the light-emitting angle ⁇ LED of the target light-emitting unit 620'.
  • the third function F3 satisfies the following relationship (5):
  • H is the height H of the target light-emitting unit 620'.
  • the height H of the target light emitting unit 620' ranges from 0.5 mm to 1.5 mm.
  • the angle ⁇ slope and the light emitting angle ⁇ LED of the target light emitting unit 620 ′ satisfy an inequality.
  • the inequality can be expressed by the following relation (6) or relation (7):
  • Table 1 shows that the light emitting angle ⁇ LED of the target light emitting unit 620' is 60 degrees, the height H of the target light emitting unit 620' is 0.5 mm, and the outer surface of the side wall 612 and the bottom plate 611 The relationship between the optical distance OD and the distance D between the target light-emitting unit 620 ′ and the bottom edge of the side wall 212 under the condition that the included angle ⁇ slope between the horizontal plane HP is 60 degrees.
  • Table 2 shows that the light-emitting angle ⁇ LED of the target light-emitting unit 620' is 60 degrees, the height H of the target light-emitting unit 620' is 0.2 mm, and the outer surface of the side wall 612 and the bottom plate 611 The relationship between the optical distance OD and the distance D between the target light-emitting unit 620 ′ and the bottom edge of the side wall 212 under the condition that the included angle ⁇ slope between the horizontal plane HP is 60 degrees.
  • Table 3 shows that the light emitting angle ⁇ LED of the target light emitting unit 620' is 75 degrees, the height H of the target light emitting unit 620' is 0.5 mm, and the outer surface of the side wall 612 and the bottom plate 611 The relationship between the optical distance OD and the distance D between the target light emitting unit 620 ′ and the bottom edge of the side wall 212 under the condition that the included angle ⁇ slope between the horizontal plane HP is 52.5 degrees.
  • Table 4 shows that the light-emitting angle ⁇ LED of the target light-emitting unit 620' is 75 degrees, the height H of the target light-emitting unit 620' is 1mm, and the outer side of the side wall 612 and the bottom plate 611 are located Under the condition that the included angle ⁇ slope between the horizontal planes HP is 52.5 degrees, the relationship between the optical distance OD and the distance D between the target light emitting unit 620 ′ and the bottom edge of the side wall 212.
  • the angle ⁇ slope between the known side wall 612 and the horizontal plane HP, the light emitting angle ⁇ LED of the target light emitting unit 220', the height H of the target light emitting unit 620', and the height H of the side wall 612 The optical distance OD between the top end and the horizontal plane HP where the bottom plate 611 is located can be calculated by the aforementioned relational formula (1), relational formula (2) and relational formula (5) to obtain the distance between the target light emitting unit 620' and the bottom edge of the side wall 612 D.
  • the present disclosure defines the inclination angle of the side wall of the backplane according to the light-emitting angle of the light-emitting unit, and further uses the light output and the light-emitting angle of the light-emitting unit to calculate the light emission with the first function and the second function.
  • the distance between the unit and the side wall of the back panel is such that the light generated by the light-emitting unit can be reflected by the side wall of the back panel and then directly emit light, so that the light output of the backlight module meets the usage requirements, and the part of the area close to the side wall emits uniform light.

Abstract

一种光源模块(200)、背光模块及显示设备(100),光源模块(200)包括背板(210)及数个发光单元(220),背板(210)包括底板(211)及侧墙(212),侧墙(212)的外侧面与底板(211)所在的水平面间具有夹角(θ slope),夹角(θ slope)为锐角,侧墙(212)顶端与水平面间具有光学距离(OD),发光单元(220)排列于背板(210)中,且最靠近侧墙(212)的发光单元(220)为目标发光单元(220'),其具有发光角度(θ LED),目标发光单元(220')与侧墙(212)具有距离(d),距离(d)为目标发光单元(220')与侧墙(212)的预定位置(A1)间的第一水平距离(d1)及侧墙(212)的底缘与侧墙(212)的预定位置间(A1)的第二水平距离(d2)的差值,第一水平距离(d1)取决于发光角度(θ LED)的互余角的正切函数,第二水平距离(d2)取决于夹角(θ slope)的正切函数。

Description

光源模块、背光模块及显示设备 技术领域
本发明涉及一种光源模块,特别是涉及一种可产生均匀光线的光源模块、以及此光源模块在背光模块与显示设备的应用。
背景技术
一般用于直下式背光模块的光源模块主要包括基板以及数个等间距数组于基板上的发光单元,这些发光单元所产生的光线可进一步通过光学膜片混光而形成面光源。
然而,为了降低成本与整体光源模块的重量,通常会减少发光单元的数量,以致于靠近背板的侧墙的发光单元距离侧墙太远时,则发光单元所产生的光线不足以均匀地被背板的侧墙反射至背光模块出光面,而导致出光面在靠近侧墙边缘的地方产生严重的暗影。相反地,若为了解决侧墙边缘或角落的暗影问题,而增加发光单元的数量,这会导致整体的光源模块的重量增加且成本提高。
发明内容
因此,本公开的实施例的目的是提供一种具有较佳出光均齐度的光源模块,进而可提高背光模块与显示设备的光学品味。
根据本公开的实施例的上述目的,提出一种光源模块。此光源模块包括背板以及复数个发光单元。背板包括底板以及立设于底板上的侧墙。其中,侧墙的外侧面与底板所在的水平面之间具有夹角θ slope,此夹角θ slope为锐角。侧墙的顶端与水平面之间具有光学距离OD。发光单元排列于背板中。其中,发 光单元中最靠近侧墙的发光单元为目标发光单元,目标发光单元具有发光角度θ LED,且目标发光单元与侧墙具有距离d。其中,距离d为目标发光单元与侧墙的预定位置之间的第一水平距离以及侧墙的底缘与侧墙的预定位置之间的第二水平距离的差值。第一水平距离d1根据第一函数F1计算而得,且第一函数F1取决于发光角度θ LED的互余角的正切函数。第二水平距离d2根据第二函数F2计算而得,且第二函数F2取决于夹角θ slope的正切函数。
根据本公开的实施例,上述发光角度θ LED为目标发光单元的半开角(half viewing angle)或半光强度发射角(half light-intensity angle)。目标发光单元以发光角度θ LED发出的光线能指向到侧墙的预定位置。
根据本公开的实施例,其中侧墙的靠近预定位置至侧墙的顶缘的部分表面能够反射50%以上的目标发光单元产生的光线。
根据本公开的实施例,上述预定位置由目标发光单元的半开角或半光强度发射角出射的光线所能到达的侧墙中点或比中点更低的位置。
根据本公开的实施例,上述第一函数F1满足以下关系式:
Figure PCTCN2019127062-appb-000001
第二函数F2满足以下关系式:
Figure PCTCN2019127062-appb-000002
其中,P为该水平面与该侧墙的该预定位置之间的垂直距离。
根据本公开的实施例,上述水平面与侧墙的预定位置之间的垂直距离P介于光学距离OD的20%至50%之间,包括端点值。
根据本公开的实施例,上述夹角θslope与发光角度θ LED的关系为:(90–θ LED)<θ slope≦90。
根据本公开的实施例,上述夹角θ slope与该发光角度θ LED的关系为:
Figure PCTCN2019127062-appb-000003
根据本公开的实施例,上述距离d为第一水平距离与第二水平距离差值再进一步减去第三水平距离。第三水平距离为目标发光单元的中心与目标发光单元的边缘之间的距离,其中第三水平距离根据第三函数F3计算而得,且第三函数F3取决于发光角度θ LED的互余角的正切函数。
根据本公开的实施例,上述第三函数F3满足以下关系式:
Figure PCTCN2019127062-appb-000004
其中,H为目标发光单元的高度。
根据本公开的实施例,上述目标发光单元的高度H、光学距离OD、夹角θ slope、与发光角度θ LED满足以下不等式,此不等式为:
Figure PCTCN2019127062-appb-000005
根据本公开的实施例,上述目标发光单元的高度H、光学距离OD、夹角θ slope、与发光角度θ LED满足以下不等式,此不等式为:
Figure PCTCN2019127062-appb-000006
根据本公开的实施例,上述目标发光单元的高度H的范围从0.5mm至1.5mm。
根据本公开的实施例,上述光学距离OD的范围从3mm至10mm。
根据本公开的实施例的上述目的,提出一种背光模块。此背光模块包括前述光源模块以及至少一个光学膜片,光学膜片设置在光源模块上方。
根据本公开的实施例的上述目的,提出一种显示设备。此显示设备包括前述光源模块、至少一个光学膜片以及显示面板。光学膜片设置在光源模块上方。显示面板设置在光学膜片上方。
由上述可知,本公开是根据发光单元的发光角度来定义背板的侧墙的倾斜角度,并进一步利用发光单元的出光量、发光角度以第一函数与第二函数来计算发光单元与背板的侧墙的距离,以使得发光单元所产生的光线能够被背板的侧墙反射后直上出光,进而使背光模块出光量满足使用需求,且靠近侧墙的部分区域出光均匀。
附图说明
为了更完整了解实施例及其优点,现参照结合附图所做的下列描述,其中:
图1是示出根据本公开的第一实施方式的一种显示设备的装置示意图;
图2A为使用第一实施例的一种光源模块的光学趋势仿真图;
图2B为使用第一实施例所产生的辉度与X轴向位置的关系曲线图;
图3A为使用第二实施例的一种光源模块的光学趋势仿真图;
图3B为使用第二实施例所产生的辉度与X轴向位置的关系曲线图;
图4A为使用第一比较例的一种光源模块的光学趋势仿真图;
图4B为使用第一比较例所产生的辉度与X轴向位置的关系曲线图;
图5A为使用第二比较例的一种光源模块的光学趋势仿真图;
图5B为使用第二比较例所产生的辉度与X轴向位置的关系曲线图;
图6是示出根据本公开的第二实施方式的一种显示设备的装置示意图;
具体实施方式
参照图1,其是示出根据本公开的第一实施方式的一种显示设备的装置示意图。本实施方式的显示设备100主要包括光源模块200、设置在背光模块200上方的至少一个光学膜片300、以及设置在光学膜片300上方的显示面板400。光源模块200包括背板210以及复数个发光单元220。背板210包括底板211以及立设于底板211上的侧墙212,且发光单元220排列在背板210中。借此,发光单元220所产生的光线可进一步通过光学膜片300混光而形成面光源后,再从显示面板400出光。其中,在这些发光单元220中,最靠近侧墙212的发光单元220定义为目标发光单元220’。目标发光单元220’所产生的光线在射向侧墙212时,会被侧墙212反射而往光学膜片300的方向出光。为了避免从靠近侧墙212边缘的出光的光线过多或过少,需要设计目标发光单元220’与侧墙212底缘之间的距离d。
在本实施例中,如图1所示,目标发光单元220’与侧墙212底缘之间的距离d为第一水平距离d1与第二水平距离d2的差值。其中,第一水平距离d1为目标发光单元220’与侧墙212的预定位置A1之间水平距离。第二水平距离d2为侧墙212的底缘与侧墙212的预定位置A1之间的水平距离。在本实施例中,预定位置A1可根据发光单元所射出光线的反射量或者发光单元的半开角(half viewing angle)或半光强度发射角(half light-intensity angle)而定。其中,在此所指的预定位置A1是指侧墙212斜边上的任意位置,且射向预定位置A1的光线可被侧墙212反射,而从靠近侧墙212边缘的位置出光。因此,目标发光单元220’与侧墙212底缘的距离d的设计是以目标发光单元220’所产生的光线能够射向预定位置A1为目的。举例而言, 背板210除了具有支撑发光单元220与光源模块200中所需的组件的功能外,背板210的侧墙212亦具有反射光线的功能。故,基于提高整体显示设备的发光效率而言,以侧墙212的顶缘为基准,侧墙212靠近预定位置A1至侧墙顶缘的部分表面至少能反射50%以上(较佳为90%以上)发光单元220所产生的光线进而向上出光。由此可知,只要能达到反射所需光线量的需求,即可定义本公开所指的预定位置A1。另一方面,基于发光单元所发出光线的利用效率而言,只要由发光单元的半开角或半光强度发射角出射的光线,至少要能够到达侧墙212中点或比中点更低的位置,进而向上出光。
在一些实施例中,第一水平距离d1根据第一函数F1计算而得,第二水平距离d2根据第二函数F2计算而得。其中,第一函数F1取决于目标发光单元220’的发光角度θ LED的互余角的正切函数。在一些例子中,第一函数F1满足以下关系式(1):
Figure PCTCN2019127062-appb-000007
其中P为底板211所在的水平面HP与侧墙212的预定位置A1之间的垂直距离P,发光角度θ LED为目标发光单元220’的半开角或半光强度发射角。在本实施例中,目标发光单元220’以发光角度θ LED发出的光线会指向到侧墙212的预定位置A1。
在本实施例中,侧墙212的外侧面与底板211所在的水平面HP之间具有夹角θ slope,此夹角θ slope为锐角。在本实施例中,第二函数F2取决于该夹角θ slope的正切函数。在一些例子中,第二函数F2满足以下关系式(2):
Figure PCTCN2019127062-appb-000008
借此,在已知侧墙212与水平面HP之间的夹角θ slope、水平面HP与侧墙212的预定位置A1之间的垂直距离P、及目标发 光单元220’的发光角度θ LED,可以通过前述关系式(1)及关系式(2)的差值来计算以获得目标发光单元220’与侧墙212底缘的距离d。
如图1所示,侧墙212的顶端与底板211所在水平面HP之间具有光学距离OD。在此所指的光学距离OD可为发光单元220的混光距离。在一些实施例中,第一函数F1与第二函数F2中的垂直距离P介于光学距离OD的20%至50%之间,包括端点值。举例而言,基于发光单元所发出光线的利用效率而言,目标发光单元220’到侧墙212底缘的距离根据目标发光单元能被侧墙反射的光量而定,发光单元的半开角或半光强度发射角出射的光线能够到达侧墙212的预定位置A1后朝外射出,所述光线至少要能够到达侧墙212中点或比中点更低的位置。换言之,以侧墙212底缘为基准,所述光线可到达侧墙212的预定位置A1与侧墙212底缘的垂直距离P为光学距离OD的20%~50%。
同时参照图1、图2A及图2B,其中图2A为使用第一实施例的一种光源模块的光学趋势仿真图,图2B为使用第一实施例所产生的辉度与X轴向位置的关系曲线图。需特别说明的是,本公开的所示的光学趋势仿真图(例如图2A、图4A、及图5A)的原图为彩色图,当光学趋势仿真图以灰阶图呈现时,其灰阶度由浅至深代表数值由小到大的趋势变化。在第一实施例中,光学距离OD为10mm,且垂直距离P为20%的光学距离OD时,目标发光单元220’与侧墙212底缘的距离d为1.4mm。由图2B的曲线图可知,光源模块200在靠近背板210的中心的辉度与背板210靠近侧墙212的辉度差,此外,图2B的辉度曲线是较为平滑变化的曲线,符合一般的背光模块需求。
同时参照图1、图3A及图3B,其中图3A为使用第二实施例的一种光源模块的光学趋势仿真图,图3B为使用第二实施例所产生的辉度与X轴向位置的关系曲线图。在第二实施例中,光学距离OD为10mm,且垂直距离P为50%的光学距离OD时, 目标发光单元220’与侧墙212底缘的距离d为4.9mm。由图3B的曲线图可知,光源模块200在靠近背板210的中心的辉度与背板210靠近侧墙212的辉度差,此外,图3B的辉度曲线是较为平滑变化的曲线,符合一般背光模块需求。
另参照图1、图4A及图4B,其中图4A为使用第一比较例的一种光源模块的光学趋势仿真图,图4B为使用第一比较例所产生的辉度与X轴向位置的关系曲线图。在第一比较例中,光学距离OD为10mm,且垂直距离P为10%的光学距离OD时,目标发光单元220’与侧墙212底缘的距离d为0.3mm。然而,图4B的曲线图可知,光源模块200在靠近侧墙212的辉度有一部分突亮,这并不符合一般背光模块需求。
另参照图1、图5A及图5B,其中图5A为使用第二比较例的一种光源模块的光学趋势仿真图,图5B为使用第二比较例所产生的辉度与X轴向位置的关系曲线图。在第二比较例中,光学距离OD为10mm,且垂直距离P为80%的光学距离OD时,目标发光单元220’与侧墙212底缘的距离d为6.1mm。然而,图5B的曲线图可知,光源模块200在靠近侧墙212的辉度则过暗,这也不符合一般背光模块需求。因此,发光单元220以半开角或半光强度发射角出射的光线至预定位置A1到侧墙212底缘的垂直距离P定在光学距离OD的20%至50%之间,包括端点值,可使得光源模块能够产生辉度较均匀的光线。在一些例子中,光学距离OD的范围从3mm至10mm。
再次参照图1,在实施例中,侧墙212与水平面HP之间具有夹角θ slope。夹角θ slope与目标发光单元220’的发光角度θ LED的角度关系可利用关系式(3)或关系式(4)表示:
(90–θ LED)<θ slope≦90…(3);
Figure PCTCN2019127062-appb-000009
借此,在已知发光角度θ LED的条件下,可先利用关系式 (3)或关系式(4)可来计算侧墙212的倾斜角度(即夹角θ slope)。
更具体而言,图1所示的光源模块200中的发光单元220是假设为点光源的形态,因此,不需要考虑发光单元220的高度。在其他实施例中,光源模块的发光单元亦可使用具有一定高度的发光单元,而非前述的点光源的形态。参照图6,其是示出根据本公开的第二实施方式的一种显示设备的装置示意图。本实施方式的显示设备500的结构大致上与图1所示的显示设备100相同,差异仅在于显示设备500的光源模块600具有不同的设计。图6所示的光源模块600主要包括背板610以及发光单元620。背板610包括底板611以及立设于底板611上的侧墙612,且发光单元620排列在背板610中。借此,发光单元620所产生的光线可进一步通过光学膜片300混光而形成面光源后,再从显示面板400出光。在这些发光单元620中,最靠近侧墙612的发光单元620定义为目标发光单元620’。目标发光单元620’与侧墙612底缘之间具有距离D。
继续参照图6,在本实施例中,距离D的计算方式是将第一水平距离D1减去第二水平距离D2,再进一步减去第三水平距离D3。其中,第一水平距离D1为目标发光单元620’与侧墙612的预定位置A1之间的水平距离。第二水平距离D2为侧墙612的底缘与侧墙612的预定位置A1之间的水平距离。第三水平距离D3为目标发光单元620’的中心与目标发光单元620’的边缘之间的距离。也就是说,在发光单元620’具有高度H的情况下,在计算目标发光单元620’与侧墙212底缘的距离D时,尚须考虑发光单元620’的高度。在实施例中,第一水平距离D1根据前述第一函数F1计算而得,其中第一函数F1满足前述关系式(1)。此外,第二水平距离D2根据前述第二函数F2计算而得,其中第二函数F2满足前述关系式(2)。其中,关系式(1)中的P为底板611所在的水平面HP与侧墙612的预定位置A1之间的垂直距离P,θ LED为目标发光单元220’的发光角度θ LED, 例如目标发光单元220’的半开角或半光强度发射角。关系式(2)中的θ slope为侧墙612的外侧面与底板611所在的水平面HP之间的夹角。
如图6所示,第三水平距离D3为目标发光单元620’的中心与目标发光单元620’的边缘之间的距离。在一个例子中,第三水平距离D3可为目标发光单元620’的宽度的一半。第三水平距离D3根据第三函数F3计算而得,第三水平距离D3根据第三函数F3计算而得。其中,第三函数F3取决于目标发光单元620’的发光角度θ LED的互余角的正切函数。在一些例子中,第三函数F3满足以下关系式(5):
Figure PCTCN2019127062-appb-000010
其中,H为目标发光单元620’的高度H。在一些实施例中,目标发光单元620’的高度H的范围从0.5mm至1.5mm。
如图6所示,侧墙612的顶端与底板611所在水平面HP之间具有光学距离OD。在一些实施例中,目标发光单元620’的高度H、侧墙612的顶端与底板611所在水平面HP之间的光学距离OD、侧墙612的外侧面与底板611所在的水平面HP之间的夹角θ slope、与目标发光单元620’的发光角度θ LED满足一不等式。不等式可以以下关系式(6)或关系式(7)来表示:
Figure PCTCN2019127062-appb-000011
Figure PCTCN2019127062-appb-000012
另同时参照下表1及图6,表1表示在目标发光单元620’的发光角度θ LED为60度、目标发光单元620’的高度H为0.5mm、且侧墙612的外侧面与底板611所在的水平面HP之间的夹角θ slope为60度的条件下,光学距离OD与目标发光单元620’与侧墙212底缘的距离D的关系。
表1
Figure PCTCN2019127062-appb-000013
另同时参照下表2及图6,表2表示在目标发光单元620’的发光角度θ LED为60度、目标发光单元620’的高度H为0.2mm、且侧墙612的外侧面与底板611所在的水平面HP之间的夹角θ slope为60度的条件下,光学距离OD与目标发光单元620’与侧墙212底缘的距离D的关系。
表2
Figure PCTCN2019127062-appb-000014
另同时参照下表3及图6,表3表示在目标发光单元620’的发光角度θ LED为75度、目标发光单元620’的高度H为0.5mm、且侧墙612的外侧面与底板611所在的水平面HP之间的夹角θ slope为52.5度的条件下,光学距离OD与目标发光单元620’与侧墙212底缘的距离D的关系。
表3
Figure PCTCN2019127062-appb-000015
另同时参照下表4及图6,表4表示在目标发光单元620’的发光角度θ LED为75度、目标发光单元620’的高度H为1mm、且侧墙612的外侧面与底板611所在的水平面HP之间的夹角θ slope为52.5度的条件下,光学距离OD与目标发光单元620’与侧墙 212底缘的距离D的关系。
表4
Figure PCTCN2019127062-appb-000016
由表1至表4可知,在已知侧墙612与水平面HP之间的夹角θ slope、目标发光单元220’的发光角度θ LED、目标发光单元620’的高度H、及侧墙612的顶端与底板611所在水平面HP之间的光学距离OD,可通过前述关系式(1)、关系式(2)及关系式(5)来计算获得目标发光单元620’与侧墙612底缘的距离D。
由前述公开的实施方式可知,本公开是根据发光单元的发光角度来定义背板的侧墙的倾斜角度,并进一步利用发光单元的出光量、发光角度以第一函数与第二函数来计算发光单元与背板的侧墙的距离,以使得发光单元所产生的光线能够被背板的侧墙反射后直上出光,进而使背光模块出光量满足使用需求,且靠近侧墙的部分区域出光均匀。
虽然本公开的实施例已以实施例揭露如上,然其并非用以限定本公开的实施例,任何所属技术领域中技术人员在不脱离本公开的实施例的精神和范围内,当可作些许的更动与润饰,故本公开的实施例的保护范围当以权利要求限定的范围为准。
符号说明
100   显示设备
200   光源模块
210   背板
211   底板
212    侧墙
220    发光单元
220’  目标发光单元
300    光学膜片
400    显示面板
500    显示设备
600    光源模块
610    背板
611    底板
612    侧墙
620    发光单元
620’  目标发光单元
A1     预定位置
d      距离
d1     第一水平距离
d2     第二水平距离
D      距离
D1     第一水平距离
D2     第二水平距离
D3     第三水平距离
H      高度
HP     水平面
OD     光学距离
P      距离
θ LED  发光角度
θ slope 夹角

Claims (16)

  1. 一种光源模块,其特征在于包括:
    背板,包括底板以及立设于所述底板上的侧墙,其中所述侧墙的外侧面与所述底板所在的水平面之间具有夹角θ slope,所述夹角θ slope为锐角,且所述侧墙的顶端与所述水平面之间具有光学距离OD;以及
    复数个发光单元,排列于所述背板中,其中,所述发光单元中最靠近所述侧墙的发光单元为目标发光单元,所述目标发光单元具有发光角度θ LED,且所述目标发光单元与所述侧墙具有距离d;
    其中,所述距离d为所述目标发光单元与所述侧墙的预定位置之间的第一水平距离以及所述侧墙的底缘与所述侧墙的所述预定位置之间的第二水平距离的差值,其中所述第一水平距离根据第一函数F1计算而得,且所述第一函数F1取决于所述发光角度θ LED的互余角的正切函数,其中所述第二水平距离根据第二函数F2计算而得,且所述第二函数F2取决于所述夹角θ slope的正切函数。
  2. 根据权利要求1所述的光源模块,其特征在于,所述发光角度θ LED为所述目标发光单元的半开角(half viewing angle)或半光强度发射角(half light-intensity angle),所述目标发光单元以所述发光角度θ LED发出的光线能指向到所述侧墙的所述预定位置。
  3. 根据权利要求1所述的光源模块,其特征在于,所述侧墙的靠近所述预定位置至所述侧墙的顶缘的部分表面能够反射50%以上的所述目标发光单元产生的光线。
  4. 根据权利要求1所述的光源模块,其特征在于,所述预定位置由所述目标发光单元的半开角或半光强度发射角出射的光线所能到达的所述侧墙中点或比中点更低的位置。
  5. 根据权利要求1至4中任一项所述的光源模块,其特征在于,
    所述第一函数F1满足以下关系式:
    Figure PCTCN2019127062-appb-100001
    所述第二函数F2满足以下关系式:
    Figure PCTCN2019127062-appb-100002
    其中,P为所述水平面与所述侧墙的所述预定位置之间的垂直距离。
  6. 根据权利要求1至4中任一项所述的光源模块,其特征在于,所述水平面与所述侧墙的所述预定位置之间的垂直距离P介于所述光学距离OD的20%至50%之间,包括端点值。
  7. 根据权利要求1至4中任一项所述的光源模块,其特征在于,所述夹角θ slope与所述发光角度θ LED的关系为:
    (90–θ LED)<θ slope≦90。
  8. 根据权利要求1至4中任一项所述的光源模块,其特征在于,所述夹角θ slope与所述发光角度θ LED的关系为:
    Figure PCTCN2019127062-appb-100003
  9. 根据权利要求1至4中任一项所述的光源模块,其特征在于,
    所述距离d为所述第一水平距离与所述第二水平距离差值再进一步减去第三水平距离;以及
    所述第三水平距离为所述目标发光单元的中心与所述目标发光单元的边缘之间的距离,其中所述第三水平距离根据第三函数F3计算而得,且所述第三函数F3取决于所述发光角度θ LED的互余角的正切函数。
  10. 根据权利要求9所述的光源模块,其特征在于,
    所述第三函数F3满足以下关系式:
    Figure PCTCN2019127062-appb-100004
    其中,H为所述目标发光单元的高度。
  11. 根据权利要求9所述的光源模块,其特征在于,所述目标发光单元的高度H、所述光学距离OD、所述夹角θ slope、与所述发光角度θ LED满足以下不等式,所述不等式为:
    Figure PCTCN2019127062-appb-100005
  12. 根据权利要求9所述的光源模块,其特征在于,所述目标发光单元的高度H、所述光学距离OD、所述夹角θ slope、与所述发光角度θ LED满足以下不等式,所述不等式为:
    Figure PCTCN2019127062-appb-100006
  13. 根据权利要求9所述的光源模块,其特征在于,所述目标发光单元的高度H的范围从0.5mm至1.5mm。
  14. 根据权利要求1至4中任一项所述的光源模块,其特征在于,所述光学距离OD的范围从3mm至10mm。
  15. 一种背光模块,其特征在于包括:
    利用权利要求1至14中任一项所述的光源模块;以及
    至少一个光学膜片,设置在所述光源模块上方。
  16. 一种显示设备,其特征在于包括:
    利用权利要求1至14中任一项所述的光源模块;
    至少一个光学膜片,设置在所述光源模块上方;以及
    显示面板,设置在所述光学膜片上方。
PCT/CN2019/127062 2019-12-20 2019-12-20 光源模块、背光模块及显示设备 WO2021120184A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/127062 WO2021120184A1 (zh) 2019-12-20 2019-12-20 光源模块、背光模块及显示设备
CN201980030495.3A CN113287060A (zh) 2019-12-20 2019-12-20 光源模块、背光模块及显示设备
TW108147933A TWI725687B (zh) 2019-12-20 2019-12-26 光源模組、背光模組及顯示裝置
US17/234,821 US11391988B2 (en) 2019-12-20 2021-04-20 Light source module, backlight module and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127062 WO2021120184A1 (zh) 2019-12-20 2019-12-20 光源模块、背光模块及显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/234,821 Continuation US11391988B2 (en) 2019-12-20 2021-04-20 Light source module, backlight module and display device

Publications (1)

Publication Number Publication Date
WO2021120184A1 true WO2021120184A1 (zh) 2021-06-24

Family

ID=76476697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127062 WO2021120184A1 (zh) 2019-12-20 2019-12-20 光源模块、背光模块及显示设备

Country Status (4)

Country Link
US (1) US11391988B2 (zh)
CN (1) CN113287060A (zh)
TW (1) TWI725687B (zh)
WO (1) WO2021120184A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229347A1 (en) * 2020-05-13 2021-11-18 3M Innovative Properties Company Imaging device with illumination components
CN114630991A (zh) * 2020-10-10 2022-06-14 瑞仪(广州)光电子器件有限公司 反射结构、背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203731204U (zh) * 2013-12-27 2014-07-23 Tcl海外电子(惠州)有限公司 直下式入光的液晶显示装置及其背光模组
CN204576025U (zh) * 2015-04-21 2015-08-19 康佳集团股份有限公司 直下式液晶模组
US20150234232A1 (en) * 2014-02-14 2015-08-20 Shenyang Tongfang Multimedia Technology Co., Ltd. Led display device
CN106371245A (zh) * 2015-07-21 2017-02-01 乐金显示有限公司 背光单元和包括该背光单元的液晶显示装置
CN208297889U (zh) * 2017-09-26 2018-12-28 恩普乐股份有限公司 面光源装置以及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200812102A (en) 2006-08-16 2008-03-01 Gigno Technology Co Ltd Light emitting unit and light emitting diode module
JP5509154B2 (ja) * 2011-07-20 2014-06-04 シャープ株式会社 発光装置および表示装置
TWM437967U (en) * 2012-02-01 2012-09-21 Global Lighting Technologies Lighting emitting module and electronic apparatus
KR20160069161A (ko) * 2014-12-08 2016-06-16 엘지이노텍 주식회사 발광 모듈
US10247984B2 (en) * 2016-06-29 2019-04-02 Amtran Technology Co., Ltd. Backlight module
CN110231734A (zh) * 2018-03-06 2019-09-13 中强光电股份有限公司 光源模块及其面光源组件
US20190331965A1 (en) * 2018-04-26 2019-10-31 Wuhan China Star Optoelectronics Technology Co., Ltd. Light source module, backlight module, and lcd device
CN208521027U (zh) * 2018-08-07 2019-02-19 江西联同电子科技有限公司 一种距离可控制的侧入式led背光模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203731204U (zh) * 2013-12-27 2014-07-23 Tcl海外电子(惠州)有限公司 直下式入光的液晶显示装置及其背光模组
US20150234232A1 (en) * 2014-02-14 2015-08-20 Shenyang Tongfang Multimedia Technology Co., Ltd. Led display device
CN204576025U (zh) * 2015-04-21 2015-08-19 康佳集团股份有限公司 直下式液晶模组
CN106371245A (zh) * 2015-07-21 2017-02-01 乐金显示有限公司 背光单元和包括该背光单元的液晶显示装置
CN208297889U (zh) * 2017-09-26 2018-12-28 恩普乐股份有限公司 面光源装置以及显示装置

Also Published As

Publication number Publication date
CN113287060A (zh) 2021-08-20
TW202125008A (zh) 2021-07-01
US20210263380A1 (en) 2021-08-26
TWI725687B (zh) 2021-04-21
US11391988B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
US20100172152A1 (en) Illumination system, luminaire and backlighting unit
US8568013B2 (en) Backlight module
US20160077381A1 (en) Backlight Module with Light Uniform Design
WO2021120184A1 (zh) 光源模块、背光模块及显示设备
JP2009094086A (ja) 面照明装置及びそれを用いた液晶表示装置
CN103578360A (zh) 显示装置
WO2012060313A1 (ja) 照明装置および表示装置
TW200909930A (en) Backlight module and scattering module for same
TW201732188A (zh) 直下式發光裝置以及顯示器
JP6146032B2 (ja) 表示装置
CN210865433U (zh) 光源模块、背光模块及显示设备
US20160223864A1 (en) Backlight assembly and liquid crystal display device having improved luminance uniformity
EP3745188B1 (en) Liquid crystal display device
CN106681050A (zh) 显示装置及光源模块
JP2007504626A (ja) 照明系及び表示デバイス
US20110141744A1 (en) Illuminating device
TW201545384A (zh) 光學膜片及光源模組
TWI782721B (zh) 顯示裝置
KR102023457B1 (ko) 반사판 및 이를 포함하는 백라이트 유닛
TWI772923B (zh) 反射結構、背光模組及顯示裝置
TWI507781B (zh) 背光模組及液晶顯示裝置
CN212905551U (zh) 反射结构、背光模组及显示装置
JP2012124064A (ja) 導光板、面光源装置及び透過型画像表示装置
TWI608193B (zh) Reflective light emitting device
WO2018143432A1 (ja) 面光源装置および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956338

Country of ref document: EP

Kind code of ref document: A1