WO2021120148A1 - Measurement for hierarchical coverage - Google Patents

Measurement for hierarchical coverage Download PDF

Info

Publication number
WO2021120148A1
WO2021120148A1 PCT/CN2019/126872 CN2019126872W WO2021120148A1 WO 2021120148 A1 WO2021120148 A1 WO 2021120148A1 CN 2019126872 W CN2019126872 W CN 2019126872W WO 2021120148 A1 WO2021120148 A1 WO 2021120148A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
base station
power offset
transmitted
power
Prior art date
Application number
PCT/CN2019/126872
Other languages
French (fr)
Inventor
Chao Wei
Alberto Rico Alvarino
Hung Dinh LY
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/126872 priority Critical patent/WO2021120148A1/en
Publication of WO2021120148A1 publication Critical patent/WO2021120148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for measurement for hierarchical coverage.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipments (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include receiving, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and performing a measurement on the SSB based at least in part on the power offset.
  • SSB synchronization signal block
  • a method of wireless communication may include transmitting information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmitting the SSB in accordance with the power offset.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to receive, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and perform a measurement on the SSB based at least in part on the power offset.
  • a base station for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmit the SSB in accordance with the power offset.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: receive, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and perform a measurement on the SSB based at least in part on the power offset.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to: transmit information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmit the SSB in accordance with the power offset.
  • an apparatus for wireless communication may include means for receiving, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and means for performing a measurement on the SSB based at least in part on the power offset.
  • an apparatus for wireless communication may include means for transmitting information that indicates a power offset for a SSB transmitted by the apparatus, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the apparatus, and wherein the power offset is specific to the SSB; and means for transmitting the SSB in accordance with the power offset.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of radio resource management (RRM) or radio link monitoring (RLM) measurement for hierarchical coverage, in accordance with various aspects of the present disclosure.
  • RRM radio resource management
  • RLM radio link monitoring
  • Fig. 4 is a diagram illustrating an example of signaling a power offset for RLM or RRM of a neighbor cell associated with a power boosted or repetitious SSB, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with RLM or RRM for hierarchical coverage, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for receiving, from a base station, information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; means for performing a measurement on the SSB based at least in part on the power offset; means for receiving information indicating a power offset for an SSB transmitted by a second base station, wherein the power offset for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; means for performing a measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; means for transmitting the SSB in accordance with the power offset; means for transmitting information indicating a power offset to be used for an SSB transmitted by a second base station, wherein the power offset to be used for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a UE may acquire downlink synchronization and system information using a synchronization signal/physical broadcast channel (PBCH) block (SSB) .
  • PBCH synchronization signal/physical broadcast channel
  • An SSB may also be referred to as a synchronization signal block.
  • the SSB may include a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a PBCH.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a base station may use beam sweeping to enhance coverage. For example, the base station may transmit a respective SSB on each beam of a plurality of beams in a time division multiplexed (TDM) fashion.
  • TDM time division multiplexed
  • a UE covered by a single downlink beam may receive only a single SSB, and may be unaware of other SSBs transmitted by the base station on the cell.
  • a cell may be associated with a coverage hole.
  • a coverage hole may be caused by an obstruction or poor channel conditions between a base station and a UE.
  • a base station may perform various mitigation actions. For example, the base station may increase the transmit power of one or more SSBs (and one or more corresponding beams) associated with the coverage hole, which may improve SSB detection and measured reference signal received power (RSRP) .
  • the base station may implement a repetition configuration for the one or more SSBs associated with the coverage hole, which may improve SSB detection in the coverage hole.
  • the usage of a repetition configuration or a power boosting configuration may be referred to herein as hierarchical coverage.
  • a UE may perform measurements using an SSB to rank cells or beams for the purpose of cell reselection. For example, the UE may perform the measurements on one or more neighbor cells, and may trigger a cell reselection if the measured DL signal quality of the one or more neighbor cells is better than that of the serving cell of the UE.
  • a serving cell may signal a power offset for a neighbor cell relative to the serving cell.
  • the power offset may be referred to as Qoffset, and may be indicated per neighbor cell in a system information block (SIB) of the serving cell.
  • SIB system information block
  • the UE may use Qoffset as follows to determine cell rankings for cell reselection:
  • R s Qmeas , s + Q hyst –Qoffset temp
  • R n Q meas, n –Qoffset –Qoffset temp ,
  • Q meas is the measured RSRP (e.g. based at least in part on the detected SSB)
  • Q hyst is a parameter controlling the degree of hysteresis for the ranking
  • Qoffset temp is an additional offset to be temporarily used for cell reselection.
  • Cells may be ranked according to their R values (e.g., R s or R n ) and the UE or the base station may perform cell reselection or another action based at least in part on the ranked cells.
  • R values e.g., R s or R n
  • the serving cell may enable the UE to perform neighbor cell measurement without decoding a SIB of the neighbor cell.
  • the UE may not know whether and how a received SSB, of the neighbor cell, has been repeated or power boosted.
  • the measured reference signal received power (RSRP) based on the received SSB may not correctly reflect the level of repetition or power boosting. This may lead to distorted measurements, which may cause the UE to improperly reselect to the neighbor cell, thereby negatively impacting performance of the air interface and using computing resources inefficiently.
  • RSRP reference signal received power
  • Some techniques and apparatuses described herein provide for a serving cell to signal a power offset that is specific to one or more SSBs transmitted by the serving cell and/or a neighbor cell, indicating that the one or more SSBs are associated with a power boosting configuration or a repetition configuration.
  • the serving cell may signal information identifying a power offset between the serving cell and the one or more SSBs of the neighbor cell that are not repeated or power boosted, and may signal information identifying another power offset to be applied for a measurement of a repetitious SSB, and/or the like.
  • the serving cell By signaling the SSB specific power offset for the neighbor cell, the serving cell enables the UE to more accurately perform RLM or RRM measurements, thereby improving cell ranking and reselection.
  • the UE and the serving cell may improve utilization of network and computing resources.
  • Fig. 3 is a diagram illustrating an example 300 of radio resource management (RRM) or radio link monitoring (RLM) measurement for hierarchical coverage, in accordance with various aspects of the present disclosure.
  • example 300 includes a UE 120, a serving cell provided by a BS 110, and a neighbor cell provided by a BS 110.
  • the BS 110 that provides the serving cell may be referred to as a first base station
  • the BS 110 that provides the neighbor cell may be referred to as a second base station.
  • the serving cell may provide a SIB.
  • the SIB may identify a power offset that is specific to a directional SSB of the serving cell.
  • the SIB may identify a plurality of power offsets specific to respective directional SSBs of the serving cell.
  • a power offset for the directional SSB of the serving cell may be referred to as ⁇ offset .
  • ⁇ offset may be zero for an SSB that is not transmitted using a power boosting configuration or a repetition configuration.
  • ⁇ offset may be in a particular range, such as (for example) [-10 decibels (dB) , 12 dB].
  • ⁇ offset may be quantized, for example, to Q bits, where Q is less than 6.
  • the SIB may identify a power offset that is specific to a directional SSB of the neighbor cell.
  • the SIB may identify a plurality of power offsets specific to respective directional SSBs of the neighbor cell.
  • the SIB may identify a first power offset to be used for baseline SSBs transmitted by the neighbor cell, and may identify a second power offset to be used for SSBs associated with a power boosting configuration or a repetition configuration.
  • a power offset for the directional SSB of the neighbor cell may be referred to as Qoffset.
  • Qoffset may be different (e.g., zero or a different value) for an SSB that is not transmitted using a power boosting configuration or a repetition configuration than for an SSB is transmitted using a power boosting configuration or a repetition configuration.
  • the UE 120 may determine which value of Qoffset to use based at least in part on which SSB is received.
  • the value of Qoffset associated with the power boosting configuration or the repetition configuration may be in a particular range, such as (for example) [-24 dB, 24 dB] .
  • the value of Qoffset associated with the power boosting configuration or the repetition configuration may be quantized to Z bits, where Z is less than 6. In one aspect, Z may be 5.
  • the serving cell may transmit a directional SSB in the direction of the UE 120.
  • the directional SSB may be associated with a power boosting configuration or a repetition configuration.
  • the neighbor cell may transmit a directional SSB in the direction of the UE 120.
  • the directional SSB transmitted by the neighbor cell may be associated with a power boosting configuration or a repetition configuration. If an SSB is associated with a power boosting configuration, the SSB may be transmitted using a higher transmit power than an SSB that is not associated with a power boosting configuration. If an SSB is associated with a repetition configuration, the SSB may be transmitted using multiple repetitions.
  • the UE 120 may perform a measurement on the SSB transmitted by the serving cell based at least in part on the power offset for the serving cell (e.g., ⁇ offset ) .
  • the UE 120 may determine a reference signal received power (RSRP) , and may adjust the RSRP based at least in part on ⁇ offset and based at least in part on the SSB being associated with ⁇ offset .
  • the UE 120 may perform a measurement on the SSB transmitted by the neighbor cell based at least in part on the power offset for the neighbor cell (e.g., Qoffset) .
  • the UE 120 may apply the power offset to a measurement determined using the SSB transmitted by the neighbor cell.
  • the UE 120 may use a particular sequence for the SSB, to determine whether the SSB is associated with the power boosting configuration or the repetition configuration, and then use the associated power offset for the neighbor cell, to determine the measurement.
  • the UE 120 may use a particular resource element mapping order (e.g., a reversed mapping order and/or the like) for the SSB to determine whether the SSB is associated with the power boosting configuration or the repetition configuration.
  • Qoffset may be selected from a first value used for SSBs associated with power boosting configurations or repetition configurations and a second value used for SSBs not associated with power boosting configurations or repetition configurations.
  • the UE 120 may determine a measurement and/or an R value for an SSB of a serving cell and/or a neighbor cell based at least in part on whether the serving cell and/or the neighbor cell’s SSB is associated with a power boosting configuration or a repetition configuration.
  • the serving cell may improve the accuracy of cell measurement and reselection, thereby more efficiently utilizing network resources and computing resources.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of signaling a power offset for RLM or RRM of a neighbor cell associated with a power boosted or repetitious SSB, in accordance with various aspects of the present disclosure.
  • example 400 includes a UE (e.g., UE 120) , a serving cell provided by a first base station (e.g., BS 110) and a neighbor cell provided by a second base station (e.g., BS 110) .
  • the serving cell and the neighbor cell each transmit a respective plurality of beams (e.g., beams 0, 1, 2, and 3) .
  • the serving cell and the neighbor cell each have a beam that is associated with a power boosting configuration or a repetition configuration.
  • beam 2 transmitted by the serving cell is associated with a power boosting configuration or a repetition configuration.
  • beam 4 transmitted by the neighbor cell is associated with a power boosting configuration or a repetition configuration.
  • the UE is covered by beam 2 of the serving cell and beam 1 of the neighbor cell.
  • Each beam is associated with a respective directional SSB (SSB #0, SSB #1, SSB #2, and SSB #3) .
  • the table shown by reference number 430 shows power offsets for the serving cell (shown by ⁇ offset at reference number 440) and for the neighbor cell (shown by Qoffset at reference number 450) .
  • SSB #2 corresponding to the beam 2 shown by reference number 410, is associated with a ⁇ offset of 10 dB, since SSB #2 is associated with the power boosting configuration or the repetition configuration.
  • SSB #3 corresponding to the beam 3 shown by reference number 420, is associated with a Qoffset of -10 dB, since SSB #3 is associated with the power boosting configuration or the repetition configuration.
  • the UE 120 may perform SSB based radio link monitoring on the serving cell using the SSB on beam 2 shown by reference number 410.
  • the Layer 1 RSRP (L1-RSRP) obtained from the SSB may be scaled based at least in part on the power offset ( ⁇ offset ) before the L1-RSRP is compared with threshold values (e.g., Q in and Q out ) for the purpose of monitoring downlink radio quality on the serving cell.
  • threshold values e.g., Q in and Q out
  • the threshold Q in may be defined as the level at which the downlink radio link quality can be significantly more reliably received (e.g., the threshold for an in-sync indication and Q in may be derived based at least in part on a hypothetical physical downlink control channel (PDCCH) transmission) .
  • PDCCH physical downlink control channel
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the UE (e.g., UE 120, the UE shown in Fig. 4, and/or the like) performs operations associated with measurement for hierarchical coverage.
  • the UE e.g., UE 120, the UE shown in Fig. 4, and/or the like
  • process 500 may include receiving, from a base station, information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB (block 510) .
  • the UE may receive, from a base station (e.g., a serving base station) , information that indicates a power offset for an SSB transmitted by the base station, as described above.
  • a base station e.g., a serving base station
  • the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB.
  • the SSB is one of a plurality of SSBs transmitted by the base station.
  • the power offset is specific to the SSB.
  • process 500 may include performing a measurement on the SSB based at least in part on the power offset (block 520) .
  • the UE e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the base station is a first base station
  • the method further comprises receiving information indicating a power offset for an SSB transmitted by a second base station (e.g., the neighbor base station) , wherein the power offset for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; and performing a measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station.
  • a second base station e.g., the neighbor base station
  • performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises determining the measurement based at least in part on a sequence specific to SSBs associated with a power boosting configuration or a repetition configuration.
  • performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises determining the measurement based at least in part on a resource element mapping order, for a primary synchronization signal, that is specific to SSBs associated with a power boosting configuration or a repetition configuration.
  • the power offset for the SSB transmitted by the second base station is a Qoffset value indicated in a configuration of a neighbor cell list for cell reselection.
  • the power offset is zero.
  • the measurement on the SSB is for radio link monitoring.
  • the measurement on the SSB is for radio resource management.
  • the SSB is a first SSB
  • the method further comprises receiving, from the base station, a second SSB, wherein the second SSB is not associated with a corresponding power offset; and performing a measurement using the second SSB.
  • the SSB is a directional SSB of a plurality of directional SSBs transmitted by the base station, and the power offset is specific to the directional SSB.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the base station (e.g., BS 110, the serving cell of Fig. 3, the serving cell of Fig. 4, and/or the like) performs operations associated with measurement for hierarchical coverage.
  • the base station e.g., BS 110, the serving cell of Fig. 3, the serving cell of Fig. 4, and/or the like
  • performs operations associated with measurement for hierarchical coverage e.g., BS 110, the serving cell of Fig. 3, the serving cell of Fig. 4, and/or the like.
  • process 600 may include transmitting information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB (block 610) .
  • the base station e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like
  • the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB.
  • the SSB is one of a plurality of directional SSBs transmitted by the base station.
  • the power offset is specific to the SSB.
  • process 600 may include transmitting the SSB in accordance with the power offset (block 620) .
  • the base station may transmit the SSB in accordance with the power offset, as described above.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the base station is a first base station
  • the method further comprises transmitting information indicating a power offset to be used for an SSB transmitted by a second base station, wherein the power offset to be used for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station.
  • the power offset is zero.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and perform a measurement on the SSB based at least in part on the power offset. Numerous other aspects are provided.

Description

MEASUREMENT FOR HIERARCHICAL COVERAGE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for measurement for hierarchical coverage.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipments (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node  B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment, may include receiving, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs  transmitted by the base station, and wherein the power offset is specific to the SSB; and performing a measurement on the SSB based at least in part on the power offset.
In some aspects, a method of wireless communication, performed by a base station, may include transmitting information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmitting the SSB in accordance with the power offset.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to receive, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and perform a measurement on the SSB based at least in part on the power offset.
In some aspects, a base station for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmit the SSB in accordance with the power offset.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: receive, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and perform a measurement on the SSB based at least in part on the power offset.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to: transmit information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and transmit the SSB in accordance with the power offset.
In some aspects, an apparatus for wireless communication may include means for receiving, from a base station, information that indicates a power offset for a SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and means for performing a measurement on the SSB based at least in part on the power offset.
In some aspects, an apparatus for wireless communication may include means for transmitting information that indicates a power offset for a SSB transmitted by the apparatus, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the apparatus, and wherein the power offset is specific to the SSB; and means for transmitting the SSB in accordance with the power offset.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of radio resource management (RRM) or radio link monitoring (RLM) measurement for hierarchical coverage, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of signaling a power offset for RLM or RRM of a neighbor cell associated with a power boosted or repetitious SSB, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may  be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband  internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base  station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control  information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with RLM or RRM for hierarchical coverage, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for receiving, from a base station, information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; means for performing a measurement on the SSB based at least in  part on the power offset; means for receiving information indicating a power offset for an SSB transmitted by a second base station, wherein the power offset for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; means for performing a measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station; means for determining the measurement based at least in part on a sequence specific to SSBs associated with a power boosting configuration or a repetition configuration; means for determining the measurement based at least in part on a resource element mapping order, for a primary synchronization signal, that is specific to SSBs associated with a power boosting configuration or a repetition configuration; means for receiving, from the base station, a second SSB, wherein the second SSB is not associated with a corresponding power offset; means for performing a measurement using the second SSB; and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; means for transmitting the SSB in accordance with the power offset; means for  transmitting information indicating a power offset to be used for an SSB transmitted by a second base station, wherein the power offset to be used for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
A UE may acquire downlink synchronization and system information using a synchronization signal/physical broadcast channel (PBCH) block (SSB) . An SSB may also be referred to as a synchronization signal block. The SSB may include a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a PBCH. In some cases, a base station may use beam sweeping to enhance coverage. For example, the base station may transmit a respective SSB on each beam of a plurality of beams in a time division multiplexed (TDM) fashion. In this case, a UE covered by a single downlink beam may receive only a single SSB, and may be unaware of other SSBs transmitted by the base station on the cell.
In some cases, a cell may be associated with a coverage hole. A coverage hole may be caused by an obstruction or poor channel conditions between a base station and a UE. To reduce the severity of or eliminate a coverage hole, a base station may perform various mitigation actions. For example, the base station may increase the transmit power of one or more SSBs (and one or more corresponding beams) associated  with the coverage hole, which may improve SSB detection and measured reference signal received power (RSRP) . As another example, the base station may implement a repetition configuration for the one or more SSBs associated with the coverage hole, which may improve SSB detection in the coverage hole. The usage of a repetition configuration or a power boosting configuration may be referred to herein as hierarchical coverage.
A UE may perform measurements using an SSB to rank cells or beams for the purpose of cell reselection. For example, the UE may perform the measurements on one or more neighbor cells, and may trigger a cell reselection if the measured DL signal quality of the one or more neighbor cells is better than that of the serving cell of the UE. In some aspects, a serving cell may signal a power offset for a neighbor cell relative to the serving cell. For example, the power offset may be referred to as Qoffset, and may be indicated per neighbor cell in a system information block (SIB) of the serving cell. The UE may use Qoffset as follows to determine cell rankings for cell reselection:
a. For the serving cell: R s =Qmeas , s+ Q hyst –Qoffset temp
b. For the neighboring cell: R n = Q meas, n –Qoffset –Qoffset temp,
where Q meas is the measured RSRP (e.g. based at least in part on the detected SSB) , Q hyst is a parameter controlling the degree of hysteresis for the ranking, and Qoffset temp is an additional offset to be temporarily used for cell reselection. Cells may be ranked according to their R values (e.g., R s or R n) and the UE or the base station may perform cell reselection or another action based at least in part on the ranked cells. As mentioned above, “cell” may be used interchangeably with “base station” herein.
By signaling Qoffset (or other neighbor cell information) , the serving cell may enable the UE to perform neighbor cell measurement without decoding a SIB of the neighbor cell. However, if the neighbor cell has power boosted or repeated a  particular directional SSB to mitigate a coverage hole, then the UE may not know whether and how a received SSB, of the neighbor cell, has been repeated or power boosted. The measured reference signal received power (RSRP) based on the received SSB may not correctly reflect the level of repetition or power boosting. This may lead to distorted measurements, which may cause the UE to improperly reselect to the neighbor cell, thereby negatively impacting performance of the air interface and using computing resources inefficiently.
Some techniques and apparatuses described herein provide for a serving cell to signal a power offset that is specific to one or more SSBs transmitted by the serving cell and/or a neighbor cell, indicating that the one or more SSBs are associated with a power boosting configuration or a repetition configuration. For example, the serving cell may signal information identifying a power offset between the serving cell and the one or more SSBs of the neighbor cell that are not repeated or power boosted, and may signal information identifying another power offset to be applied for a measurement of a repetitious SSB, and/or the like. By signaling the SSB specific power offset for the neighbor cell, the serving cell enables the UE to more accurately perform RLM or RRM measurements, thereby improving cell ranking and reselection. Thus, the UE and the serving cell may improve utilization of network and computing resources.
Fig. 3 is a diagram illustrating an example 300 of radio resource management (RRM) or radio link monitoring (RLM) measurement for hierarchical coverage, in accordance with various aspects of the present disclosure. As shown, example 300 includes a UE 120, a serving cell provided by a BS 110, and a neighbor cell provided by a BS 110. In some aspects, the BS 110 that provides the serving cell may be referred to as a first base station, and the BS 110 that provides the neighbor cell may be referred to as a second base station.
As shown in Fig. 3, and by reference number 310, the serving cell may provide a SIB. As further shown, in some aspects, the SIB may identify a power offset that is specific to a directional SSB of the serving cell. In some aspects, the SIB may identify a plurality of power offsets specific to respective directional SSBs of the serving cell. In some aspects, a power offset for the directional SSB of the serving cell may be referred to as Δ offset. In some aspects, Δ offset may be zero for an SSB that is not transmitted using a power boosting configuration or a repetition configuration. In some aspects, Δ offset may be in a particular range, such as (for example) [-10 decibels (dB) , 12 dB]. In some aspects, Δ offset may be quantized, for example, to Q bits, where Q is less than 6.
As further shown, in some aspects, the SIB (e.g., a neighbor cell list of the SIB) may identify a power offset that is specific to a directional SSB of the neighbor cell. In some aspects, the SIB may identify a plurality of power offsets specific to respective directional SSBs of the neighbor cell. In some aspects, the SIB may identify a first power offset to be used for baseline SSBs transmitted by the neighbor cell, and may identify a second power offset to be used for SSBs associated with a power boosting configuration or a repetition configuration. In some aspects, a power offset for the directional SSB of the neighbor cell may be referred to as Qoffset. In some aspects, Qoffset may be different (e.g., zero or a different value) for an SSB that is not transmitted using a power boosting configuration or a repetition configuration than for an SSB is transmitted using a power boosting configuration or a repetition configuration. The UE 120 may determine which value of Qoffset to use based at least in part on which SSB is received. In some aspects, the value of Qoffset associated with the power boosting configuration or the repetition configuration may be in a particular range, such as (for example) [-24 dB, 24 dB] . In some aspects, the value of Qoffset  associated with the power boosting configuration or the repetition configuration may be quantized to Z bits, where Z is less than 6. In one aspect, Z may be 5.
As shown by reference number 320, the serving cell may transmit a directional SSB in the direction of the UE 120. As further shown, the directional SSB may be associated with a power boosting configuration or a repetition configuration. As shown by reference number 330, the neighbor cell may transmit a directional SSB in the direction of the UE 120. As further shown, the directional SSB transmitted by the neighbor cell may be associated with a power boosting configuration or a repetition configuration. If an SSB is associated with a power boosting configuration, the SSB may be transmitted using a higher transmit power than an SSB that is not associated with a power boosting configuration. If an SSB is associated with a repetition configuration, the SSB may be transmitted using multiple repetitions.
As shown by reference number 340, the UE 120 may perform a measurement on the SSB transmitted by the serving cell based at least in part on the power offset for the serving cell (e.g., Δ offset) . For example, the UE 120 may determine a reference signal received power (RSRP) , and may adjust the RSRP based at least in part on Δ offset and based at least in part on the SSB being associated with Δ offset. In some aspects, the UE 120 may determine an R value for the SSB transmitted by the serving cell as R s =Qmeas , s+ Q hyst + Δ offset–Qoffset temp. If the SSB is not associated with Δ offset (e.g., is not associated with a power boosting configuration or a repetition configuration) , then the UE 120 may use zero for Δ offset.
As shown by reference number 350, the UE 120 may perform a measurement on the SSB transmitted by the neighbor cell based at least in part on the power offset for the neighbor cell (e.g., Qoffset) . For example, the UE 120 may apply the power offset to a measurement determined using the SSB transmitted by the  neighbor cell. In some aspects, the UE 120 may use a particular sequence for the SSB, to determine whether the SSB is associated with the power boosting configuration or the repetition configuration, and then use the associated power offset for the neighbor cell, to determine the measurement. In some aspects, the UE 120 may use a particular resource element mapping order (e.g., a reversed mapping order and/or the like) for the SSB to determine whether the SSB is associated with the power boosting configuration or the repetition configuration. In some aspects, the UE 120 may determine an R value for the SSB transmitted by the neighbor cell using R n = Q meas, n –Qoffset –Qoffset temp. In this case, Qoffset may be selected from a first value used for SSBs associated with power boosting configurations or repetition configurations and a second value used for SSBs not associated with power boosting configurations or repetition configurations.
In this way, the UE 120 may determine a measurement and/or an R value for an SSB of a serving cell and/or a neighbor cell based at least in part on whether the serving cell and/or the neighbor cell’s SSB is associated with a power boosting configuration or a repetition configuration. By signaling a power offset for the serving cell and/or the neighbor cell to the UE 120, the serving cell may improve the accuracy of cell measurement and reselection, thereby more efficiently utilizing network resources and computing resources.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of signaling a power offset for RLM or RRM of a neighbor cell associated with a power boosted or repetitious SSB, in accordance with various aspects of the present disclosure. As shown, example 400 includes a UE (e.g., UE 120) , a serving cell provided by a first base station (e.g., BS 110) and a neighbor cell provided by a second base station (e.g., BS 110) .
As shown, the serving cell and the neighbor cell each transmit a respective plurality of beams (e.g., beams 0, 1, 2, and 3) . Furthermore, the serving cell and the neighbor cell each have a beam that is associated with a power boosting configuration or a repetition configuration. For example, as shown by reference number 410, beam 2 transmitted by the serving cell is associated with a power boosting configuration or a repetition configuration. As another example, as shown by reference number 420, beam 4 transmitted by the neighbor cell is associated with a power boosting configuration or a repetition configuration. As further shown, the UE is covered by beam 2 of the serving cell and beam 1 of the neighbor cell.
Each beam is associated with a respective directional SSB (SSB #0, SSB #1, SSB #2, and SSB #3) . The table shown by reference number 430 shows power offsets for the serving cell (shown by Δ offset at reference number 440) and for the neighbor cell (shown by Qoffset at reference number 450) . As shown, SSB #2, corresponding to the beam 2 shown by reference number 410, is associated with a Δ offset of 10 dB, since SSB #2 is associated with the power boosting configuration or the repetition configuration. As further shown, SSB #3, corresponding to the beam 3 shown by reference number 420, is associated with a Qoffset of -10 dB, since SSB #3 is associated with the power boosting configuration or the repetition configuration.
In some aspects, the UE 120 may perform SSB based radio link monitoring on the serving cell using the SSB on beam 2 shown by reference number 410. In this case, when the SSB is associated with a repetition configuration, the Layer 1 RSRP (L1-RSRP) obtained from the SSB may be scaled based at least in part on the power offset (Δ offset) before the L1-RSRP is compared with threshold values (e.g., Q in and Q out) for the purpose of monitoring downlink radio quality on the serving cell. For example, the threshold Q in may be defined as the level at which the downlink radio link quality can  be significantly more reliably received (e.g., the threshold for an in-sync indication and Q in may be derived based at least in part on a hypothetical physical downlink control channel (PDCCH) transmission) .
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 500 is an example where the UE (e.g., UE 120, the UE shown in Fig. 4, and/or the like) performs operations associated with measurement for hierarchical coverage.
As shown in Fig. 5, in some aspects, process 500 may include receiving, from a base station, information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB (block 510) . For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, and/or the like) may receive, from a base station (e.g., a serving base station) , information that indicates a power offset for an SSB transmitted by the base station, as described above. In some aspects, the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB. In some aspects, the SSB is one of a plurality of SSBs transmitted by the base station. In some aspects, the power offset is specific to the SSB.
As further shown in Fig. 5, in some aspects, process 500 may include performing a measurement on the SSB based at least in part on the power offset (block 520) . For example, the UE (e.g., using antenna 252, DEMOD 254, MIMO detector 256,  receive processor 258, controller/processor 280, and/or the like) may perform a measurement on the SSB based at least in part on the power offset, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the base station is a first base station, and the method further comprises receiving information indicating a power offset for an SSB transmitted by a second base station (e.g., the neighbor base station) , wherein the power offset for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; and performing a measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station.
In a second aspect, alone or in combination with the first aspect, performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises determining the measurement based at least in part on a sequence specific to SSBs associated with a power boosting configuration or a repetition configuration.
In a third aspect, alone or in combination with one or more of the first and second aspects, performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises determining the measurement based at least in part on a resource element mapping order, for a primary synchronization signal, that is specific to SSBs associated with a power boosting configuration or a repetition configuration.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the power offset for the SSB transmitted by the second base station is a Qoffset value indicated in a configuration of a neighbor cell list for cell reselection.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, when the SSB is not associated with a power boosting configuration or a repetition configuration, the power offset is zero.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the measurement on the SSB is for radio link monitoring.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the measurement on the SSB is for radio resource management.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the SSB is a first SSB, and the method further comprises receiving, from the base station, a second SSB, wherein the second SSB is not associated with a corresponding power offset; and performing a measurement using the second SSB.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the SSB is a directional SSB of a plurality of directional SSBs transmitted by the base station, and the power offset is specific to the directional SSB.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure.  Example process 600 is an example where the base station (e.g., BS 110, the serving cell of Fig. 3, the serving cell of Fig. 4, and/or the like) performs operations associated with measurement for hierarchical coverage.
As shown in Fig. 6, in some aspects, process 600 may include transmitting information that indicates a power offset for an SSB transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB (block 610) . For example, the base station (e.g., using controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like) may transmit information that indicates a power offset for an SSB transmitted by the base station, as described above. In some aspects, the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB. In some aspects, the SSB is one of a plurality of directional SSBs transmitted by the base station. In some aspects, the power offset is specific to the SSB.
As further shown in Fig. 6, in some aspects, process 600 may include transmitting the SSB in accordance with the power offset (block 620) . For example, the base station may transmit the SSB in accordance with the power offset, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the base station is a first base station, and the method further comprises transmitting information indicating a power offset to be used for an SSB transmitted by a second base station, wherein the power offset to be used for the SSB  transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station.
In a second aspect, alone or in combination with the first aspect, when the SSB is not associated with a power boosting configuration or a repetition configuration, the power offset is zero.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of  hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are  intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (19)

  1. A method of wireless communication performed by a user equipment, comprising:
    receiving, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    performing a measurement on the SSB based at least in part on the power offset.
  2. The method of claim 1, wherein the base station is a first base station, and wherein the method further comprises:
    receiving information indicating a power offset for an SSB transmitted by a second base station, wherein the power offset for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station; and
    performing a measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station.
  3. The method of claim 2, wherein performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises:
    determining the measurement based at least in part on a sequence specific to SSBs associated with a power boosting configuration or a repetition configuration.
  4. The method of claim 2, wherein performing the measurement on the SSB transmitted by the second base station based at least in part on the power offset for the SSB transmitted by the second base station further comprises:
    determining the measurement based at least in part on a resource element mapping order, for a primary synchronization signal, that is specific to SSBs associated with a power boosting configuration or a repetition configuration.
  5. The method of claim 2, wherein the power offset for the SSB transmitted by the second base station is a Qoffset value indicated in a configuration of a neighbor cell list for cell reselection.
  6. The method of claim 1, wherein, when the SSB is not associated with a power boosting configuration or a repetition configuration, the power offset is zero.
  7. The method of claim 1, wherein the measurement on the SSB is for radio link monitoring.
  8. The method of claim 1, wherein the measurement on the SSB is for radio resource management.
  9. The method of claim 1, wherein the SSB is a first SSB, and wherein the method further comprises:
    receiving, from the base station, a second SSB, wherein the second SSB is not transmitted using a power boosting configuration or a repetition configuration; and
    performing a measurement using the second SSB based on a power offset of zero value.
  10. The method of claim 1, wherein the SSB is a directional SSB of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the directional SSB.
  11. A method of wireless communication performed by a base station, comprising:
    transmitting information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    transmitting the SSB in accordance with the power offset.
  12. The method of claim 11, wherein the base station is a first base station, and wherein the method further comprises:
    transmitting information indicating a power offset to be used for an SSB transmitted by a second base station, wherein the power offset to be used for the SSB transmitted by the second base station is based at least in part on a power boosting configuration or a repetition configuration of the SSB transmitted by the second base station, and wherein the power offset is specific to the SSB transmitted by the second base station.
  13. The method of claim 11, wherein, when the SSB is not associated with a power boosting configuration or a repetition configuration, the power offset is zero.
  14. A user equipment for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    perform a measurement on the SSB based at least in part on the power offset.
  15. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional  SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    transmit the SSB in accordance with the power offset.
  16. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    receive, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    perform a measurement on the SSB based at least in part on the power offset.
  17. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional  SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    transmit the SSB in accordance with the power offset.
  18. An apparatus for wireless communication, comprising:
    means for receiving, from a base station, information that indicates a power offset for a synchronization signal block (SSB) transmitted by the base station, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of SSBs transmitted by the base station, and wherein the power offset is specific to the SSB; and
    means for performing a measurement on the SSB based at least in part on the power offset.
  19. An apparatus for wireless communication, comprising:
    means for transmitting information that indicates a power offset for a synchronization signal block (SSB) transmitted by the apparatus, wherein the power offset is based at least in part on a power boosting configuration or a repetition configuration of the SSB, wherein the SSB is one of a plurality of directional SSBs transmitted by the apparatus, and wherein the power offset is specific to the SSB; and
    means for transmitting the SSB in accordance with the power offset.
PCT/CN2019/126872 2019-12-20 2019-12-20 Measurement for hierarchical coverage WO2021120148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126872 WO2021120148A1 (en) 2019-12-20 2019-12-20 Measurement for hierarchical coverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126872 WO2021120148A1 (en) 2019-12-20 2019-12-20 Measurement for hierarchical coverage

Publications (1)

Publication Number Publication Date
WO2021120148A1 true WO2021120148A1 (en) 2021-06-24

Family

ID=76478151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126872 WO2021120148A1 (en) 2019-12-20 2019-12-20 Measurement for hierarchical coverage

Country Status (1)

Country Link
WO (1) WO2021120148A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044746A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Method for simultaneous reception of ssb and other signals
WO2024072268A1 (en) * 2022-09-30 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Measurement compensation due to radio power scaling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227554A1 (en) * 2017-06-16 2018-12-20 Motorola Mobility Llc Synchronization signal block transmission
CN110011766A (en) * 2018-01-05 2019-07-12 维沃移动通信有限公司 Wave beam failure detection method, terminal and the network equipment
WO2019192336A1 (en) * 2018-04-04 2019-10-10 华为技术有限公司 Power control method, apparatus, and system
US20190380052A1 (en) * 2018-06-08 2019-12-12 Qualcomm Incorporated Radio link monitoring and radio link failure recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227554A1 (en) * 2017-06-16 2018-12-20 Motorola Mobility Llc Synchronization signal block transmission
CN110011766A (en) * 2018-01-05 2019-07-12 维沃移动通信有限公司 Wave beam failure detection method, terminal and the network equipment
WO2019192336A1 (en) * 2018-04-04 2019-10-10 华为技术有限公司 Power control method, apparatus, and system
US20190380052A1 (en) * 2018-06-08 2019-12-12 Qualcomm Incorporated Radio link monitoring and radio link failure recovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Remaining issues on Synchronization Signal", 3GPP DRAFT; R1-1805031_REMAINING ISSUES ON SYNCHRONIZATION SIGNAL_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051427292 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044746A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Method for simultaneous reception of ssb and other signals
WO2024072268A1 (en) * 2022-09-30 2024-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Measurement compensation due to radio power scaling

Similar Documents

Publication Publication Date Title
EP3718344B1 (en) Techniques and apparatuses for providing system information updates in a system using bandwidth parts
WO2021168597A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
EP4122228B1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
EP4097858A1 (en) Techniques for set based beam reporting
WO2021073289A1 (en) Enhanced physical uplink control channel spatial relation information in mac ce
WO2021183483A1 (en) Layer 1 measurement reporting for neighbor cell
WO2021056010A1 (en) Techniques for scheduling a front-loaded sidelink channel state information reference signal
US11871422B2 (en) Frequency allocation for channel state information reference signals
US11652530B2 (en) Beam failure detection reference signal selection for secondary cells
WO2021120148A1 (en) Measurement for hierarchical coverage
US11758425B2 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
US20210235307A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
US10701602B2 (en) Cell reselection to high priority neighbor cells
EP4082243A1 (en) Multiple selected/deselected cells for layer 1/layer 2 based mobility
US11863488B2 (en) Single reference signal timing information for measurements of multiple reference signals of multiple cells
WO2022232970A1 (en) Techniques for excluding signal measurements from a measurement report
WO2022165744A1 (en) Signaling synchronization signal block transmission power of a non-serving cell
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
WO2021226983A1 (en) Hysteresis increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2022126405A1 (en) Techniques for measuring neighbor cells using prioritization of the neighbor cells that is based at least in part on associations of the neighbor cells with network operators
WO2022073165A1 (en) Techniques for indicating frequency band during blind handover
WO2021232262A1 (en) Measurement reporting to reduce ping-pong beam switching
WO2021232179A1 (en) Restoration of vehicle to everything service
WO2021151225A1 (en) Flexible channel state information reference signal and sounding reference signal association for uplink multiple-input multiple- output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956643

Country of ref document: EP

Kind code of ref document: A1