WO2021117681A1 - 静電気除去装置 - Google Patents

静電気除去装置 Download PDF

Info

Publication number
WO2021117681A1
WO2021117681A1 PCT/JP2020/045493 JP2020045493W WO2021117681A1 WO 2021117681 A1 WO2021117681 A1 WO 2021117681A1 JP 2020045493 W JP2020045493 W JP 2020045493W WO 2021117681 A1 WO2021117681 A1 WO 2021117681A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
static electricity
discharge
gas
conductor
Prior art date
Application number
PCT/JP2020/045493
Other languages
English (en)
French (fr)
Inventor
弘樹 渋谷
Original Assignee
弘樹 渋谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弘樹 渋谷 filed Critical 弘樹 渋谷
Priority to JP2021541186A priority Critical patent/JP6963346B1/ja
Priority to CN202080039209.2A priority patent/CN113874288A/zh
Priority to EP20897657.1A priority patent/EP3974325B1/en
Priority to US17/615,468 priority patent/US11839012B2/en
Publication of WO2021117681A1 publication Critical patent/WO2021117681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/02Lightning protectors; Static dischargers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for

Definitions

  • the present invention relates to an antistatic device.
  • Airplanes have a large number of static dischargers installed on their wings to reduce static electricity by self-discharge. In particular, it is effective for high-altitude airplanes with low atmospheric pressure because discharge is more likely to occur than on the ground according to the Paschen curve. On the other hand, in a helicopter, the rotor rotates at high speed, and it is difficult to install a static discharger with sharp protrusions because a person approaches the aircraft. In addition, it is recommended that the surface of artificial satellites and space probes be covered with metal, and if unavoidable, a conductive coating is applied to the dielectric to make the entire surface equipotential. If all surfaces are equipotential, creeping discharge does not occur, but dielectric breakdown of the dielectric between the surface and the internal electric circuit cannot be prevented.
  • a conductive panel a dielectric covering one surface of the panel, one end is electrically connected to the panel, and the other end is not in contact with the dielectric panel. It is provided with a discharge electrode overhanging the surface.
  • the entire spacecraft has a potential of several kV due to the inflow and outflow of space particles in orbit, but since the dielectric is suspended from the potential of the spacecraft, the spacecraft It has a potential different from the overall potential.
  • the potential difference between the space machine potential and the dielectric potential reaches 400 V or more, a discharge is generated between the dielectric and the fibrous discharge electrode in an attempt to eliminate the potential difference between the space machine potential and the dielectric potential.
  • the discharge device of Document 1 generates a creeping discharge on the surface and absorbs and relaxes the electric charge by the ejected plasma, and the surface is converted into plasma and destroyed, so that long-term operation may not be expected. ..
  • the ambient pressure Is greatly reduced. Therefore, the discharge start voltage becomes several thousand kV or more, the discharge is not substantially started, and if a discharge occurs, there is a risk of destruction due to the discharge voltage.
  • One aspect of the present invention is a first gas under a condition for reducing the discharge starting voltage between the first conductor electrically connected to at least a part of the object to be static-eliminated and the first conductor. It is a dielectric shell that forms a first space in which (first type gas) is sealed, and is an antistatic device having a dielectric shell that is exposed to an external space.
  • this static eliminator can maintain the discharge start voltage without being affected by the conditions in the external space. Therefore, it is possible to generate an electric discharge in the first space by using the surface potential of the object to be removed from static electricity and the electric field between the external space and the external space passing through the dielectric shell.
  • Discharge is a phenomenon in which energy such as heat, electromagnetic waves, and sound is released, and electrical energy is converted into other energy and released. Therefore, by generating an electric discharge in the first space, the static electricity of the static electricity removal object charged with static electricity can be removed and the surface potential thereof can be reduced.
  • the dielectric shell may be dome-shaped, spherical, or elliptical spherical. Easy to withstand the pressure difference with the external space.
  • the dielectric shell may cover at least 50% of the surface area of the first space.
  • the dielectric shell may be exposed in a state of protruding into the external space and in a non-contact state with other objects. The influence of the electric field in the external space can be easily reflected in the first space through the dielectric shell.
  • the exterior space is typically outer space or space on a planet or satellite without an atmosphere.
  • the dielectric shell may be translucent. Even in a vacuum where it is difficult to release energy such as heat and sound to the outside, it is easy to release energy due to electric discharge to the external space by electromagnetic waves (light).
  • the dielectric shell may form a first space centered on or contained within the first conductor, the first conductor covering a portion of the surface of the first space and the first space. A part may be formed. That is, the first conductor may or may not form a part of the container that seals the gas together with the dielectric shell.
  • the first conductor may be detachable from the static electricity removal target, and the first conductor may be a part of the static electricity removal target. Further, the static eliminator may have a discharge electrode installed in the first space and electrically connected to the first conductor. It is easy to further reduce the discharge start voltage.
  • a preferred example of a discharge electrode is one that includes a wire-shaped electrode formed in an upright arc.
  • the static electricity removal object may have a dielectric shell forming a first space in which a gas under the condition of reducing the discharge starting voltage is sealed between at least a part of the outer shell and the external space.
  • the object to be removed from static electricity may be any object whose surface potential may increase due to static electricity, and examples thereof include automobiles, ships, human bodies and their accessories, portable electric devices, and electronic circuits.
  • the most suitable example of an object for static electricity removal is an aerospace device that navigates in a space where it is difficult to release static electricity to an external space.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the apparatus shown in FIG.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a cross-sectional view showing a further different example of the static eliminator.
  • FIG. 5 is a perspective view showing a further different example of the static eliminator.
  • FIG. 5 is a cross-sectional view showing a further different example of the static eliminator.
  • FIG. 1 shows the appearance of an example of the static eliminator.
  • FIG. 2 shows a state in which the static eliminator is removed from the object
  • FIG. 3 shows a schematic configuration of the static eliminator in a cross-sectional view in a state of being attached to the object.
  • the static electricity removing device (removing device, static electricity removing device) 10 is a device attached to the outer shell (exterior, outer wall, outer wall surface, outer surface) 3 of the static electricity removing object 1 such as an artificial satellite, and is an electrostatic removing object (removal target).
  • At least a part of (object, static electricity elimination object) 1 in this example, a condition for reducing the discharge start voltage between the first conductor 11 electrically connected to the outer shell 3 and the first conductor 11.
  • the first gas (first type of gas) 12 has a dielectric shell 15 that forms a sealed first space 13.
  • the dielectric shell 15 is provided so as to be exposed in the space (external space) 9 outside the object 1 to be removed.
  • the gas 12 is formed by the plate-shaped first conductor 11 constituting the bottom portion (base plate) and the dome-shaped dielectric shell 15 mounted on the first conductor 11.
  • a closed container 16 is configured.
  • the removing device 10 attaches the first conductor 11 protruding around the dielectric shell 15 in a flange shape to the conductive outer shell 3 with a rivet 19, a mounting screw, a conductive adhesive, or the like, thereby removing the static electricity target 1.
  • the first conductor 11 is electrically connected to the outer shell 3 of the static electricity removal object 1.
  • the gas 12 sealed in the first space 13 of the static eliminator 10 is a rare gas such as argon, helium, neon, xenone, or krypton, an inert gas containing a rare gas, a nitrogen gas, or the like, or at least one of those gases. It is a mixture (mixed gas) containing one, and the pressure (internal pressure of the container 16) is adjusted to be, for example, 0.5 to 20 Torr (50 to 3000 Pa) and further 1 to 10 Torr (100 to 1500 Pa). It is a gas.
  • An example of a mixed gas is a penning gas containing a quench gas (buffer gas) in addition to a rare gas (luminous gas) as a main component.
  • the gas under these conditions is an example of the first gas 12 that reduces the discharge start voltage, and may contain other components, may be a gas composed of other components, and the pressure also depends on the gas component to start discharge. It suffices if the voltage is adjusted to be low.
  • FIG. 4 shows the Paschen curves of some gases.
  • the discharge start voltage V is shown to be a function f (pd) of the product of the gas pressure p and the electrode spacing (d).
  • FIG. 5 shows an example in which a plurality of static electricity removing devices 10 are provided with an artificial satellite as the static electricity removing object 1.
  • an electric discharge for example, lightning
  • electric discharge emits energy such as heat, electromagnetic waves, and sound.
  • the electrical energy specifically, the surface potential of an object charged with static electricity can be reduced.
  • an object that is difficult to touch down mainly aerospace equipment, especially an artificial satellite or a space probe in outer space, is used as the static electricity removal target 1, and the static electricity generated in the object 1 is derived by attaching the removal device 10. It is possible to generate an electric discharge in the gas 12 sealed in the closed space 13 by utilizing the surface potential. Therefore, the static electricity of the static electricity removal target object 1 can be reduced or removed by releasing the energy in the discharge of the removing device 10.
  • the dielectric shell 15 may be a wall body formed of a material in which the electric field of the surrounding (external space) 9 easily penetrates into the first space 13 in which the gas 12 is sealed, and is a container (pressure vessel, sealed container). ) May be all or part of.
  • an electric field (electric field) that has penetrated or passed through the dielectric shell 15 and has entered the first space 13 forms a space electric field (potential difference) with the first conductor 11. .. Therefore, in the removing device 10, self-discharge occurs in the first space 13, which is an environment in which self-discharge is likely to occur, with a potential difference much smaller than that in the external space 9.
  • the dielectric shell 15 is exposed in a state of protruding from the outer shell 3 of the static electricity removal object 1 into the external space 9 and in a non-contact state with other objects.
  • the discharge region 13 in which the discharge is formed projects outward from the outer shell (body surface) 3 of the object 1, the discharge is likely to occur.
  • the recess formed in the outer shell (metal surface) 3 a strong electric field is unlikely to be formed and an electric discharge is unlikely to occur.
  • the dielectric shell 15 may use a translucent member made of a dielectric, for example, a transparent resin or glass as a transparent member, in order to efficiently emit electromagnetic waves (light) generated by electric discharge.
  • a translucent member made of a dielectric
  • glass materials such as quartz glass and heat-resistant glass (borosilicate glass) do not deteriorate and have a small coefficient of thermal expansion, making them ideal for artificial satellites that are periodically exposed to high and low temperatures.
  • a material that easily transmits infrared rays such as germanium-containing glass and chalcogenide-containing glass, may be used, and is suitable for releasing heat generated in the first space 13 in which a discharge is formed to an external space 9.
  • the dielectric shell 15 may cover at least 50% of the surface area of the first space 13 forming a discharge, so that an external electric field can easily enter the first space 13.
  • the shape of the dielectric shell 15 is not particularly limited, but the shape of the upper part is hemispherical (dome-shaped), sphere, elliptical sphere, semi-elliptical sphere, etc. in order to withstand the pressure difference between the gas 12 enclosed inside and the outside world 9. It may be. Further, the thickness of the dielectric shell 15 may be selected in consideration of the pressure difference and the leakage of the gas 12. Further, the material and structure of the dielectric shell 15 may be selected in consideration of the heat generated by the electric discharge. Especially in outer space, heat is released only by radiation. Therefore, the dielectric shell 15 may be transparent to infrared rays.
  • the dielectric shell 15 has a diameter (major diameter, diagonal length, representative).
  • the typical length) may be several mm to several tens of cm, and the lower limit of the representative diameter (length) may be 5 mm, 10 mm, 20 mm, and the upper limit is It may be 500 mm, 300 mm, or 100 mm.
  • the size of the dielectric shell 15 and the removing device 10 may be larger or smaller than the above size depending on the size of the object to be removed 1.
  • the first conductor 11 of the static eliminator 10 and the dielectric shell 15 may be made of different materials, and a part of the integrated material, for example, a part of the dielectric shell 15 is subjected to conductive processing. It may be the conductor 11 of 1. As will be described later, the first conductor 11 may be a part of the object to be removed 1, for example, a part of the conductive outer shell 3. The first conductor 11 may be a metal or a transparent electrode such as graphene or indium tin oxide. A part of the static electricity removing object 1 to which the static electricity removing device 10 is connected is typically a conductive part or a part processed by a coating or the like so as to obtain conductivity.
  • the removal device 10 may be installed for each equipotential part. Charging The size of the removing device 10 and the number of installations can be appropriately selected according to the expected strength of static electricity and the amount of energy derived from the discharge.
  • the aerospace device 1 that cannot be grounded is charged with static electricity, the absolute value of the surface potential of the conductive outer surface 3 rises.
  • the absolute value of the surface potential reaches the discharge start voltage corresponding to the state of the gas 12 in the sealing cover (dielectric shell) 15, the gas 12 is discharged. Electric discharge emits energy such as heat, electromagnetic waves (light), and sound. From the viewpoint of the law of conservation of energy, the surface potential is lost in place of the released energy. As a result, the static electricity of the aerospace device 1 is removed.
  • the phenomenon called electric discharge in the removing device 10 refers to a phenomenon in which a gas exposed to a strong electric field turns into plasma.
  • the discharge generated in the removing device 10 may be a creeping discharge along the dielectric shell 15 or a single electrode discharge (also called a corona discharge or St. Elmo's fire), and is a self-discharge accompanied by gas plasma conversion. It may be.
  • a plurality of aerospace devices 1 approach each other, an electric field is formed in the external space 9 due to the difference in surface potential of each, and an electric discharge is generated in the first space 13 of the static electricity removing device 10 so as to eliminate the electric field. As a result, the possibility of electric discharge occurring between the plurality of aerospace devices 1 can be reduced.
  • FIG. 6 shows a schematic structure of a different example of the static eliminator 10 by a perspective view
  • FIG. 7 shows a schematic structure by a cross-sectional view.
  • a discharge electrode 17 is installed in a first space 13 in a sealing cover (dielectric shell) 15, and the discharge electrode 17 is installed in the first space 13 to be removed, for example, an aerospace device. It is connected to the conductive outer surface (conductive outer shell) 3 of the above.
  • the discharge electrode 17 may be attached to the outer surface (outer shell) 3 of the aerospace device 1.
  • FIGS. 8 to 10 show an example of the static eliminator 10 provided with the discharge electrodes 17 having different shapes.
  • the discharge occurs according to the density of the lines of electric force. Therefore, the protruding portion-shaped discharge electrode 17 as shown in FIGS. 6 and 7, the edge-shaped discharge electrode 17 as shown in FIG. 8, and the thin wire-shaped discharge electrode 17 as shown in FIGS. 9 and 10.
  • the static eliminator 10 provided with the above, the effect of increasing the density of the electric power lines in the first space 13 and lowering the discharge start voltage can be obtained. Therefore, even when the potential difference (electric field) in the external space 9 is small, a discharge can be formed in the first space 13 more easily, thereby lowering the surface potential of the aerospace device 1 as much as possible. be able to.
  • the thin wire-shaped discharge electrode 17 formed in an arc upright with respect to the substrate (first conductor) 11 generates the most discharge as compared with other electrode shapes according to experiments. It's easy to do. In this removing device 10, the electric lines of force are likely to be concentrated on the electrodes 17, and the discharge starting voltage can be lowered as much as possible, so that the static electricity removing ability is high.
  • An example of the discharge electrode 17 is a tungsten wire having a diameter of about 0.01 to 0.05 mm processed into a semicircle having a diameter of about 5 to 20 mm or about 8 to 15 mm.
  • the glass dielectric shell 15 is a semi-elliptical sphere having a major axis of about 30 to 50 mm and a minor axis of about 10 to 40 mm.
  • the size of the removal device 10 including the substrate (base, first conductor) 11 is about 60 to 80 mm on the long side, 25 to 55 mm on the short side, and 10 to 35 mm in height, and is a small satellite. Even if there is, it can be easily installed.
  • the shape of the discharge electrode 17 is not limited to these, and may be any shape that can increase the density of electric lines of force. In order to withstand wear and corrosion, the discharge electrode 17 may be used by plating tungsten having a high melting point with gold. In order to efficiently emit the generated electromagnetic waves, the bottom surface (first conductor) 11 in contact with the gas 12 other than the discharge electrode 17 may be a mirror surface. In the static eliminator 10 provided with the discharge electrode 17, the discharge electrode 17 functions as the first conductor 11. Therefore, it is sufficient that the discharge electrode 17 and the outer surface (outer shell) 3 of the aerospace device, which is the object to be removed 1, are electrically connected, and the portion forming the periphery of the first space 13 has conductivity. It does not have to be. That is, the first space 13 may be formed only by the dielectric shell 15.
  • FIG. 11 shows a further different example of the static eliminator 10.
  • the first conductor 11 is composed of a part of the static electricity removing object 1, and the static electricity removing device 10 is integrated with the static electricity removing object 1.
  • the flange-shaped mounting portion 15a provided around the dome-shaped dielectric shell 15 is attached to the conductive outer surface (outer shell) of the aerospace device which is the static electricity removing object 1. ) 3 with an annular packing 18 sandwiched between them and fixed with a rivet 19 or the like.
  • a discharge region (sealed space, first space) 13 is formed so as to protrude from the outer shell 3.
  • the mounting portion 15a is made of metal, it may be welded to the outer shell 3 without using the annular packing. Then, by an arbitrary method, the gas 12 is sealed in the first space 13 formed between the dielectric shell 15 which is a sealing cover and the outer shell 3 so as to have a pressure at which the discharge start voltage can be set to the minimum. ..
  • a method may be used in which a hole is formed in a part of the dielectric shell 15, a vacuum is drawn, a gas is sealed, and then the dielectric shell 15 is closed.
  • an inert gas such as neon or argon, which is considered to be less deteriorated by electric discharge or cosmic rays, may be used for long-term use.
  • the conductive outer surface (outer shell, exterior) 3 of the aerospace device, which is the object 1 is in contact with the gas 12 in the first space 13. Therefore, the static electricity removal object 1 having the dielectric shell 15 forming the first space 13 in which the gas 12 under the condition of reducing the discharge start voltage is sealed between at least a part of the outer shell 3 and the outer space 9. , Typically, can provide aerospace equipment.
  • the static electricity removing device 10 shown in FIG. 11 is integrated with the static electricity removing object 1 and cannot be attached or detached.
  • the type of static eliminator 10 in which the closed container (sealed container) 16 is formed by the dielectric shell 15 or the dielectric shell 15 and the first conductor 11 is different from the static eliminator object 1. It can be manufactured and provided in the manufacturing process, mass-produced, and can be provided at low cost. Further, since the static electricity removing device 10 can be attached to and detached from the object 1, even if the static electricity removing device 10 is damaged by over-discharging or cosmic dust, it can be easily replaced. In addition, the work of filling the gas 12 at the manufacturing site of the aerospace equipment becomes unnecessary.
  • the annular packing 18 is no longer required, and there is no risk of gas leakage due to deterioration of the packing. Since it is not necessary to attach it in consideration of sealing, the connection with the outer surface of the aerospace equipment is simplified. For example, it is possible to attach the static eliminator 10 by using a conductive magic tape (registered trademark), a conductive adhesive, or the like. If the structure of the static eliminator 10 is standardized, the design of aerospace equipment will be facilitated. There are several merits such as the ability to add the static eliminator 10 to the existing aerospace equipment.
  • FIG. 12 shows a further different example of the static eliminator 10.
  • the static eliminator 10 dislikes electromagnetic noise caused by electric discharge
  • the static eliminator 10 can be used as long as the static eliminator 10 and the static eliminator 1 are electrically connected by a pole 11a or a conductive wire. It can be installed away from the static electricity removal target 1, for example, the body of a space device.
  • FIG. 13 shows a further different example of the static eliminator 10.
  • a spherical dielectric shell 15 (dielectric shell only) forms a first space 13 around a first conductor 11 that also serves as a discharge electrode 17.
  • the discharge electrode 17 is connected to the static electricity removal target 1 by a conductive support column 11a, a conductive wire, or the like.
  • the static eliminator 10 having a dome-shaped or spherical appearance has been described above, the static eliminator 10 has a shape such as an elliptical sphere or a flatter shape that can form a first space 13 inside. All you need is.
  • the upper surface of the device 10 may be installed so as to be as flat as possible with the body as the static electricity removal object 1 so as not to affect the aerodynamics.
  • the static electricity removal object 1 may be a wall body itself such as an aerospace device, a mounting device, or the like.
  • the removal device 10 may be installed with a structure or a vehicle installed in a space on a satellite such as a planet or the moon where there is no atmosphere where it is difficult to remove static electricity as an object 1 for removing static electricity.
  • the static electricity removing device 10 described above can use the object 1 for static electricity removal as an artificial satellite or a space probe. Objects in outer space cannot reduce static electricity by self-discharge, but the static eliminator 10 makes this possible.
  • the static eliminator 10 also functions in vacuum space, reduces the surface potential of aerospace equipment, and can prevent the occurrence of failures in electrical equipment.
  • the static eliminator 10 can reduce the surface potential of the aerospace device and simplify the insulation between the surface and the internal electric circuit, which contributes to weight reduction.
  • the static eliminator 10 may be installed at each site to reduce the surface potential, and it is generated by the dielectric material between the conductive outer surfaces. It is possible to prevent creeping discharge and the resulting damage.
  • the static electricity removing device 10 does not depend on the polarity of the static electricity generated in the aerospace device, and further discharges automatically according to the strength of the static electricity, so that control and electric power are not required.
  • the static eliminator 10 can prevent an electric discharge from being generated when aerospace devices come into contact with each other or when they come into contact with a person or an object on the ground.
  • the target object for static electricity removal of the static electricity removing device 10 is not limited to aerospace equipment. Especially moving objects such as automobiles, ships, human bodies and their accessories, portable electric devices, electronic circuits, etc. are effective because it is often difficult to ground them. In an electronic circuit, the surge voltage can be removed by installing it on the circuit pattern. When saving lives by helicopter, the conductive rope is first touched to the ground to reduce static electricity, but if the grounding is incomplete, the rescuer will be shocked and fall or fall. There is a fear. Further, the static electricity removing device 10 is safe because it can remove static electricity without exposing dangerous parts such as protrusions and edges for self-discharge to the outside.
  • the static electricity removing device 10 disclosed above is a device having a closed space 13 in which a gas 12 is sealed and arranged so that the gas 12 is exposed to the surface potential of the static electricity removing object 1.
  • the structure including the first space 13 in which the gas 12 is sealed may be configured as a gas container that can be attached to and detached from the static electricity removal object 1.
  • the discharge electrode 17 may be installed in the closed space 13 and electrically connected to the conductive surface of the static electricity removal target 1.
  • a discharge is generated in the gas 12 in the closed space by the surface potential of the object 1 to be removed from static electricity, and the static electricity of the object to be removed by static electricity can be removed by releasing energy in this discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Elimination Of Static Electricity (AREA)
  • Cleaning In General (AREA)

Abstract

静電気除去装置(10)は、静電気除去対象物1の少なくとも一部に電気的に接続される第1の導電体(11)と、第1の導電体との間に放電開始電圧を低減する条件の気体(12)が密封された第1の空間(13)を形成する誘電体シェル(15)とを有する。誘電体シェルは、外部空間(9)に露出しており、例えば、ドーム状、球状、楕円球状、または半楕円球状であってもよく誘電体シェルは透光性であってもよい。

Description

静電気除去装置
 本発明は、静電気除去装置に関するものである。
 飛行機は翼に放電索を多数設置して、自己放電により静電気を減じている。特に、気圧の低い高空の飛行機では、パッシェン曲線によると地上より放電が発生しやすいため効果的である。一方、ヘリコプターはローターが高速で回転する上、機体に人が近づくために鋭い突起のある放電索の設置は困難である。また、人工衛星や宇宙探査機は、表面を金属で覆い、やむを得ない場合は誘電体に導電性コーティングを施して、全表面を等電位にすることが推奨されている。全表面が等電位であれば沿面放電は発生しないが、表面と内部電気回路間にある誘電体の絶縁破壊は依然として防止できない。
 日本国特開2005-267962号公報(文献1)には、従来の表面放電抑制技術では、帯電を避けるために導電性材料や導電性コーティングが用いられてきたが、衛星で利用される多くの導電性材料は高価であるばかりでなく、コーティング材の剥離や解離が起きやすいため、取扱性が悪く、かつ表面が一様でフラットな構造である部位にしか適用し難いという欠点があるのに対し、誘電体周囲に放電電極を設けることで、低コストで簡便的に表面放電の影響を抑止するものが開示されている。すなわち、文献1に開示されている放電装置は、導電性のパネルと、パネルの一面を被覆する誘電体と、一端がパネルに電気的に接続され、他端が誘電体のパネルと接していない面に張り出している放電電極とを備えるものである。
 接地が困難な物体、主に航空宇宙機器、特に宇宙空間の人工衛星や宇宙探査機(宇宙機)の静電気を除去し、静電気に由来する障害発生を防止することが要望されている。すなわち、航空宇宙機器は接地が不可能なため、機体が静電気を帯びやすく、通信などの電気機器が障害を被る。特に人工衛星や宇宙探査機は周囲が真空のため、自己放電(コロナ放電)により静電気を減じることが難しい。機体表面と内部電気回路に大きな電位差が生じると、その間にある誘電体に絶縁破壊が発生して損傷する。このために、予期せず運用を停止した人工衛星の例は多い。また、機体表面の導電部が分散している場合、それぞれの導電部間に電位差が生じると境界にある誘電体に沿面放電が発生し、機体がしだいに損傷する。また機体表面の誘電体が帯電すると、周囲との間に発生する放電により誘電体自身が絶縁破壊する。これらの現象が太陽電池パネルで発生すると運用期間が制限を受ける。
 上記の文献1の例では、軌道上において、宇宙粒子の流入出に伴い、宇宙機全体は数kVの電位を有するに至るが、誘電体は宇宙機の電位から浮遊しているため、宇宙機全体の電位とは別電位を有する。宇宙機電位と誘電体電位との電位差が400V以上に達すると誘電体と、繊維状放電電極の間において放電が発生することを用いて、宇宙機電位と誘電体電位との電位差を解消しようとしている。しかしながら、文献1の放電装置は、表面で沿面放電を発生させ、噴出したプラズマにより電荷を吸収・緩和すると考えられ、表面がプラズマ化して破壊されるので長期間の作動は期待できない可能性がある。また、軌道高度が数100km以上、例えば、低軌道(LEO、高度2000km以下)から中軌道(MEO、高度2000kmから地球同期軌道(35,786km))、およびそれ以上の軌道高度では、周囲の気圧が大幅に低下する。このため、放電開始電圧が数千kVあるいはそれ以上となり、実質的に放電が開始されず、万一、放電が発生したときは、その放電電圧による破壊が危惧される状況となる。
 本発明の一態様は、静電気除去対象物の少なくとも一部に電気的に接続される第1の導電体と、第1の導電体との間に放電開始電圧を低減する条件の第1の気体(第1のタイプの気体)が密封された第1の空間を形成する誘電体シェルであって、外部空間に露出する誘電体シェルとを有する静電気除去装置である。この静電気除去装置は、第1の空間に所定の条件の気体を密封することにより、外部空間の条件に影響されずに放電開始電圧を維持できる。したがって、静電気除去対象物の表面電位を利用し、誘電体シェルを透過する外部空間との間の電場により、第1の空間内に放電を発生させることができる。放電は熱・電磁波・音といったエネルギーを放出し、電気エネルギーを他のエネルギーに変換し放出する現象である。このため、第1の空間内に放電を発生させることにより、静電気を帯びた静電気除去対象物の静電気を除去し、その表面電位を減少させることができる。
 誘電体シェルは、ドーム状、球状、または楕円球状であってもよい。外部空間との圧力差に耐えやすい。誘電体シェルは、第1の空間の表面積の少なくとも50%を覆ってもよい。誘電体シェルは、外部空間に突き出た状態で、他の物体と非接触な状態で露出していてもよい。誘電体シェルを介して、外部空間の電場の影響を第1の空間に反映しやすい。
 外部空間は典型的には宇宙空間または大気のない惑星または衛星上の空間である。誘電体シェルは透光性であってもよい。熱、音といったエネルギーを外部に放出しにくい真空中であっても、電磁波(光)により放電によるエネルギーを外部空間に放出しやすい。誘電体シェルは第1の導電体を中心、または内部に含む第1の空間を形成してもよく、第1の導電体が第1の空間の表面の一部を覆い、第1の空間の一部を形成してもよい。すなわち、第1の導電体は、誘電体シェルとともに気体を密封する容器の一部を形成してもよく、形成しなくてもよい。
 第1の導電体は静電気除去対象物に対し着脱可能であってもよく、第1の導電体が静電気除去対象物の一部であってもよい。また、静電気除去装置は、第1の空間内に設置され、第1の導電体に電気的に接続された放電電極を有してもよい。放電開始電圧をさらに低減しやすい。放電電極の好適な一例は、直立した円弧に形成したワイヤー状の電極を含むものである。
 本発明の他の態様は、上記の静電気除去装置を有する静電気除去対象物である。静電気除去対象物は、その外郭の少なくとも一部と外部空間との間に放電開始電圧を低減する条件の気体が密封された第1の空間を形成する誘電体シェルを有するものであってもよい。静電気除去対象物は、静電気により表面電位が上昇する可能性がある物体であればよく、例えば、自動車、船舶、人体とその装身具、ポータブル電気機器、電子回路などが挙げられる。特に移動する物体は接地が難しい場合が多いので、静電気除去対象物として上記の静電気除去装置を備えることは効果的である。静電気除去対象物の最も好適な例は、外部空間に対して静電気を放出することが難しい空間内を航行する航空宇宙機器である。
静電気除去装置の概要を示す斜視図。 静電気除去装置の概要を示す、底面方向から見た斜視図。 静電気除去装置の概略構成を示す断面図。 パッシェン曲線のいくつかの例を示す図。 静電気除去装置が搭載された衛星の概要を示す図。 静電気除去装置の異なる例を示す斜視図。 図6に示す装置の概略構成を示す断面図。 静電気除去装置のさらに異なる例を示す斜視図。 静電気除去装置のさらに異なる例を示す斜視図。 静電気除去装置のさらに異なる例を示す斜視図。 静電気除去装置のさらに異なる例を示す断面図。 静電気除去装置のさらに異なる例を示す斜視図。 静電気除去装置のさらに異なる例を示す断面図。
発明の実施の形態
 図1に、静電気除去装置の一例の外観を示している。図2に、静電気除去装置を対象物から取り外した状態を示し、図3に、静電気除去装置の概略構成を対象物に取り付けた状態の断面図により示している。この静電気除去装置(除去装置、除電装置)10は、人工衛星などの静電気除去対象物1の外郭(外装、外壁、外壁面、外面)3に取り付けられる装置であり、静電気除去対象物(除去対象物、除電対象物)1の少なくとも一部、本例では外郭3に電気的に接続される第1の導電体11と、第1の導電体11との間に放電開始電圧を低減する条件の第1の気体(第1のタイプのガス)12が密封された第1の空間13を形成する誘電体シェル15とを有する。誘電体シェル15は、除去対象物1の外側の空間(外部空間)9に露出するように設けられている。
 この除去装置10においては、底部(ベースプレート)を構成する板状の第1の導電体11と、その第1の導電体11の上に取り付けられたドーム状の誘電体シェル15とにより、気体12を封入した密閉容器16が構成されている。除去装置10は、フランジ状に誘電体シェル15の周囲に突き出た第1の導電体11をリベット19、取り付けねじ、導電性接着剤などで導電性の外郭3に取り付けることにより静電気除去対象物1に固定され、同時に、第1の導電体11が静電気除去対象物1の外郭3と電気的に接続される。
 静電気除去装置10の第1の空間13に封入される気体12は、アルゴン、ヘリウム、ネオン、キセノン、クリプトンなどの希ガス、希ガスおよび窒素ガスなどを含む不活性ガス、またはそれらのガスの少なくとも1つを含む混合物(混合ガス)などであり、圧力(容器16の内圧)が、例えば0.5~20Torr(50~3000Pa)、さらに、1~10Torr(100~1500Pa)になるように調整されているガスである。混合ガスの一例は、主要成分の希ガス(発光ガス)に加えクエンチガス(緩衝ガス)を含むぺニングガスである。これらの条件の気体は、放電開始電圧を低減する第1の気体12の一例であり、他の成分を含んでもよく、他の成分からなる気体でもよく、圧力も、気体の成分により、放電開始電圧が低くなるように調整されていればよい。
 図4に、幾つかの気体のパッシェン曲線を示す。パッシェンの法則によると、放電開始電圧Vは、ガス圧pと、電極の間隔(d)の積の関数f(pd)であることが示されている。除去装置10の第1の空間13の内部でcm単位の放電を引き起こすことを考えると、不活性気体を含む第1のガス12を上記の圧力範囲で第1の空間13に封入しておくことが望ましい。
 図5に、人工衛星を静電気除去対象物1として、複数の静電気除去装置10を設けた一例を示している。放電(たとえば雷)は電流であるという常識が支配的である。一方で放電は熱・電磁波・音といったエネルギーを放出する。逆説的に、放電が発生すれば電気エネルギー、具体的には静電気を帯びた物体の表面電位を減少させることができると言える。このため、接地が困難な物体、主に航空宇宙機器、特に宇宙空間の人工衛星や宇宙探査機を静電気除去対象物1として、除去装置10を取り付けることにより、対象物1に発生する静電気に由来する表面電位を利用して、密閉空間13に封入した気体12に放電を発生させることができる。そのため、除去装置10の放電におけるエネルギーの放出により、除電対象物体1の静電気を低下または除去することができる。
 誘電体シェル15は、周囲(外部空間)9の電場が、気体12を封入した第1の空間13に容易に侵入する材料で形成された壁体であればよく、容器(圧力容器、密封容器)の全部あるいは一部を構成するものであればよい。除去装置10においては、誘電体シェル15を透過し、または通じて、第1の空間13に侵入した電場(電界)により第1の導電体11との間で空間電場(電位差)が形成される。このため、除去装置10においては、自己放電が発生しやすい環境となっている第1の空間13の内部において、外部空間9よりもはるかに小さな電位差で自己放電が生じる。
 誘電体シェル15は、静電気除去対象物1の外郭3より外部空間9に突き出た状態で、他の物体と非接触な状態で露出していることが望ましい。実験およびコンピュータシミュレーションによれば、放電が形成される第1の空間(放電領域)13は、対象物1の外郭(機体表面)3より外部に突出していると放電が発生しやすい。一方、外郭(金属表面)3に形成した凹部内であると、強い電界は形成されにくく、放電は発生しにくい。
 誘電体シェル15は、放電により発生した電磁波(光)を効率よく放出するために、誘電体から成る透光性の部材、例えば、透明な部材として透明樹脂やガラスを用いてもよい。特に、石英ガラス、耐熱ガラス(ホウ珪酸ガラス)などのガラス材は変質せず、熱膨張率も小さいので高温と低温に周期的にさらされる人工衛星に最適である。ゲルマニウム含有ガラス、カルコゲナイド含有ガラスなどの赤外線を透過しやすい材料であってもよく、放電が形成される第1の空間13で発生する熱を外部空間9に放出するために適している。また、誘電体シェル15は、放電を形成する第1の空間13の表面積の少なくとも50%を覆い、外部の電場が第1の空間13に侵入しやすくしてもよい。
 誘電体シェル15の形状は、特に限定されないが、内部に封入する気体12と外界9の気圧差に耐えるために、上部の形状は半球形(ドーム状)、球体、楕円球体、半楕円球状などであってもよい。また、誘電体シェル15の厚みは、気圧差や気体12の漏洩を考慮して選択してもよい。さらに、誘電体シェル15は、放電により発生する熱を考慮して素材や構造を選択してもよい。特に宇宙空間において、熱は輻射によってしか放出されない。このため、誘電体シェル15は、赤外線に対しても透過性を備えていてもよい。放電によるエネルギー放出量を確保するためには、放電が形成される第1の空間13として、ある程度の体積が確保されることが望ましく、誘電体シェル15は直径(長径、対角線の長さ、代表的な長さ)が数mmから数10cmであってもよく、代表径(長さ)の下限は、5mmであってもよく、10mmであってもよく、20mmであってもよく、上限は500mmであってもよく、300mmであってもよく、100mmであってもよい。誘電体シェル15および除去装置10のサイズは、除去対象物1の大きさにより、上記のサイズ以上であってもよく、以下であってもよい
 静電気除去装置10の第1の導電体11と誘電体シェル15とは別の素材であってもよく、一体の素材の一部、例えば、誘電体シェル15の一部に導電加工を施して第1の導電体11としてもよい。後述するように、第1の導電体11が除去対象物1の一部、例えば、導電性の外郭3の一部であってもよい。第1の導電体11は金属であってもよく、グラフェン、酸化インジウムスズのような透明電極であってもよい。静電気除去装置10が接続される静電気除去対象物1の一部は、典型的には導電性の部分、または、導電性が得られるようにコーティングなどにより加工された部分である。
 静電気除去対象物1である航空宇宙機器の全表面が等電位でない場合は、除去装置10を等電位の部分ごとに設置してもよい。帯電予想される静電気の強さや放電に由来するエネルギー量に応じて、除去装置10の大きさや、設置数は、適宜選択できる。接地が不可能な航空宇宙機器1が静電気を帯びると、導電性外表面3の表面電位の絶対値が上昇する。表面電位の絶対値が、密閉カバー(誘電体シェル)15内の気体12の状態に応じた放電開始電圧に達すると気体12が放電する。放電は熱・電磁波(光)・音といったエネルギーを放出する。エネルギー保存則の観点から、放出されたエネルギーの代わりに表面電位が失われる。結果として航空宇宙機器1の静電気を除去することになる。
 なお、除去装置10における放電と呼ぶ現象は、強い電場にさらされた気体がプラズマ化する現象を指す。除去装置10において発生する放電は、誘電体シェル15に沿った沿面放電でもよく、単電極の放電(コロナ放電、セントエルモの火とも呼ばれる)であってもよく、気体のプラズマ化を伴う自己放電であってもよい。複数の航空宇宙機器1が接近した場合、それぞれの表面電位の差異により外部空間9に電界が形成され、その電界を解消するように静電気除去装置10の第1の空間13で放電が発生する。その結果、複数の航空宇宙機器1の間で放電が発生する可能性を低減できる。
 図6に、静電気除去装置10の異なる例の概略構造を斜視図により示し、図7に、概略構造を断面図により示している。この静電気除去装置10は、上記の静電気除去装置に加え、密閉カバー(誘電体シェル)15内の第1の空間13に放電電極17を設置し、これを除去対象物1、例えば、航空宇宙機器の導電性外表面(導電性外郭)3に接続する。航空宇宙機器1の外表面(外郭)3に放電電極17を取り付けてもよい。
 図8から図10に、異なる形状の放電電極17を備えた静電気除去装置10の例を示している。放電は電気力線の密度に応じて発生する。このため、図6および図7に示すような突状部状の放電電極17、図8に示すようなエッジ状の放電電極17、図9および図10に示すような細いワイヤー状の放電電極17を備えた静電気除去装置10においては、第1の空間13の電気力線の密度を高め、放電開始電圧を下げる効果を得ることができる。このため、さらに容易に、外部空間9における電位差(電界)が小さい場合であっても第1の空間13に放電を形成でき、これにより、可及的に航空宇宙機器1の表面電位を低下させることができる。
 特に、図10に示す様な、基板(第1の導電体)11に対し直立した円弧に形成した細いワイヤー状の放電電極17は、実験によれば他の電極形状に比べて最も放電が発生しやすい。この除去装置10においては、電極17に電気力線が集中しやすく、可及的に放電開始電圧を下げることができるので静電気除去能力が高い。放電電極17の一例は、直径が0.01~0.05mm程度のタングステン線を、5~20mm程度、または8~15mm程度の直径の半円状に加工したものである。ガラス製の誘電体シェル15は、長径が30~50mm程度、短径が10~40mm程度の半楕円球である。この除去装置10の基板(ベース、第1の導電体)11を含めたサイズは、長辺が60~80mm、短辺が25~55mm、高さが10~35mm程度であり、小型の衛星であっても簡単に取り付けることができる。
 放電電極17の形状はこれらに限定されず、電気力線の密度を高めることができる形状であればよい。放電電極17は消耗や腐食に耐えるため、融点の高いタングステンに金メッキを施して使用してもよい。発生する電磁波を効率よく放出するために、放電電極17以外の気体12に接する底面(第1の導電体)11は鏡面であってもよい。放電電極17を備えた静電気除去装置10は、放電電極17が第1の導電体11として機能する。このため、放電電極17と除去対象物1である航空宇宙機器の外表面(外郭)3とが電気的に接続されていればよく、第1の空間13の周囲を形成する部分に導電性がなくてもよい。すなわち、第1の空間13は、誘電体シェル15のみで形成されてもよい。
 図11に、静電気除去装置10のさらに異なる例を示している。この静電気除去装置10では、第1の導電体11が静電気除去対象物1の一部で構成されており、静電気除去装置10が静電気除去対象物1と一体になっている。具体的には、この静電気除去装置10は、ドーム状の誘電体シェル15の周囲に設けられたフランジ状の取付部15aを、静電気除去対象物1である航空宇宙機器の導電性外表面(外郭)3に、円環状パッキン18を挟んでリベット19などにより固定する。他の物体と非接触で、外郭3から突き出るように誘電体シェル15を露出した状態で設置することにより、外郭3から突き出るように放電領域(密閉空間、第1の空間)13を形成している。取付部15aが金属であれば円環状パッキンを使用せずに、外郭3に溶接してもよい。その後、任意の方法で、密閉カバーである誘電体シェル15と外郭3との間に形成された第1の空間13に気体12を、放電開始電圧を最小に設定できる圧力となるように封入する。たとえば、誘電体シェル15の一部に穴をあけ、真空引き後、気体を封入してから閉じるといった方法を用いてもよい。気体12としては、長期間使用するために、放電や宇宙線による変質が少ないと考えられるネオン、アルゴンなどの不活性気体を用いてもよい。
 この静電気除去装置10では、対象物1である航空宇宙機器の導電性外表面(外郭、外装)3と、第1の空間13の気体12が接することになる。このため、外郭3の少なくとも一部と外部空間9との間に放電開始電圧を低減する条件の気体12が密封された第1の空間13を形成する誘電体シェル15を有する静電気除去対象物1、典型的には、航空宇宙機器を提供できる。
 図11に示した静電気除去装置10は、図1などに示した静電気除去装置10とは異なり、静電気除去対象物1に一体化されたものであり、着脱することはできない。誘電体シェル15により、あるいは誘電体シェル15および第1の導電体11により密閉容器(密封容器)16を構成するタイプの静電気除去装置10は、静電気除去対象物1とは別体で、別の製造工程で製造して提供でき、量産が可能で、低コストで提供できる。さらに、静電気除去装置10は対象物1に着脱が可能なので、過放電や、宇宙塵などにより静電気除去装置10が損傷した場合でも、簡単に交換することができる。また、航空宇宙機器の製造現場で気体12の封入作業が不要になる。円環状パッキン18が不要となり、パッキンの劣化による気体漏れの恐れがなくなる。密閉に配慮して取り付ける必要がないので航空宇宙機器の外表面との接続が簡易化される。たとえば導電性のマジックテープ(登録商標)、導電性接着剤などを使用して、静電気除去装置10を取り付けることも可能となる。静電気除去装置10の構造を規格化すれば航空宇宙機器の設計が容易になる。既存の航空宇宙機器に静電気除去装置10を追加できるなど、幾つかのメリットがある。
 図12に、静電気除去装置10のさらに異なる例を示している。静電気除去対象物1が、放電に伴う電磁ノイズを嫌う場合、静電気除去装置10と静電気除去対象物1とがポール11aまたは導電性ワイヤーなどにより電気的に接続さえすれば、静電気除去装置10は、静電気除去対象物1、例えば、宇宙機器の機体から離して設置できる。
 図13に、静電気除去装置10のさらに異なる例を示している。この静電気除去装置10では、球形の誘電体シェル15(誘電体シェルのみ)により、放電電極17を兼ねた第1の導電体11の周りに第1の空間13を形成している。放電電極17は、導電性の支柱11aあるいは導電性のワイヤーなどにより静電気除去対象物1に接続される。
 なお、上記では、外観がドーム型または球形の静電気除去装置10を説明しているが、静電気除去装置10は、楕円球状あるいはさらにフラットな形状など、内部に第1の空間13を形成できる形状であればよい。特に、大気のある環境で使用する場合は、空力に影響を及ぼさないように、装置10の上面が静電気除去対象物1である機体となるべくフラットになるように設置できるようにしてもよい。また、静電気除去対象物1は、航空宇宙機器などの壁体自体、搭載装置などであってもよい。静電気の除去が難しい、大気のない惑星または月などの衛星上の空間に設置される構造物あるいは車両などを静電気除去対象物1として、除去装置10を設置してもよい。
 以上に説明したように、上述した静電気除去装置10は、静電気除去の対象物体1を人工衛星、あるいは宇宙探査機とすることができる。宇宙空間の物体は自己放電により静電気を減じることができないが、静電気除去装置10によりそれを可能とする。静電気除去装置10は、真空の宇宙空間でも機能し、航空宇宙機器の表面電位を減少させ、電気機器の障害発生を防止できる。静電気除去装置10により、航空宇宙機器の表面電位を低下でき、表面と内部電気回路の絶縁が簡易化できるので、軽量化に寄与する。航空宇宙機器の導電性外表面が分散している場合、静電気除去装置10を、それぞれの部位に装置を設置して表面電位を減少させてもよく、導電性外表面間の誘電体で発生する沿面放電とそれに伴う破損を防止できる。また、この静電気除去装置10は、航空宇宙機器に発生する静電気の極性には依存せず、さらに静電気の強さに応じて自動的に放電が起きるため、制御や電力を必要としない。この静電気除去装置10により、航空宇宙機器同士の接触や、地上の人や物体との接触の際に放電が発生するのを防止できる。
 また、静電気除去装置10の静電気除去の対象物体は航空宇宙機器に限定されない。自動車、船舶、人体とその装身具、ポータブル電気機器、電子回路など、特に移動する物体は接地が難しい場合が多いので効果的である。電子回路では回路パターン上に設置することによりサージ電圧を除去することができる。ヘリコプターによる人命救助などの際は、先に導電性のロープを地面に触れさせて接地し静電気を減じているが、接地が不完全な場合は要救助者が電撃を受け、転倒や転落をする恐れがある。また、静電気除去装置10は、自己放電用の突状部やエッジなどの危険部位が外部に露出することなく、静電気を除去することができるので安全である。
 上記に開示された静電気除去装置10は、気体12を封入した密閉空間13を持ち、その気体12が静電気除去対象物1の表面電位にさらされるように配置した装置である。気体12を密封した第1の空間13を含む構造は、静電気除去対象物1に対して着脱可能な気体の容器として構成してもよい。また、密閉空間13内に放電電極17を設置し、これを静電気除去対象物1の導電性表面に電気的に接続してもよい。このような静電気除去装置10を用い、静電気除去対象物1の表面電位により、密閉空間内の気体12に放電を発生させ、この放電におけるエネルギーの放出により静電気除去対象の物体の静電気を除去できる。
 また、上記においては、本発明の特定の実施形態を説明したが、様々な他の実施形態および変形例は本発明の範囲および精神から逸脱することなく当業者が想到し得ることであり、そのような他の実施形態および変形は以下の請求の範囲の対象となり、本発明は以下の請求の範囲により規定されるものである。
 

Claims (17)

  1.  静電気除去対象物の少なくとも一部に電気的に接続される第1の導電体と、
     前記第1の導電体との間に放電開始電圧を低減する条件の第1の気体が密封された第1の空間を形成する誘電体シェルであって、外部空間に露出する誘電体シェルとを有する静電気除去装置。
  2.  請求項1において、
     前記誘電体シェルは、ドーム状、球状、楕円球状、または半楕円球状である、静電気除去装置。
  3.  請求項1または2において、
     前記誘電体シェルは、前記第1の空間の表面積の少なくとも50%を覆う、静電気除去装置。
  4.  請求項1ないし3のいずれかにおいて、
     前記誘電体シェルは透光性である、静電気除去装置。
  5.  請求項1ないし4のいずれかにおいて、
     前記誘電体シェルは、前記外部空間に突き出た状態で、他の物体と非接触な状態で露出している、静電気除去装置。
  6.  請求項1ないし5のいずれかにおいて、
     前記外部空間は、宇宙空間、または大気のない惑星または衛星上の空間である、静電気除去装置。
  7.  請求項1ないし6のいずれかにおいて、
     前記第1の導電体は前記第1の空間の表面の一部を覆う、静電気除去装置。
  8.  請求項1ないし7のいずれかにおいて、
     前記第1の空間内に設置され、前記第1の導電体に電気的に接続された放電電極を有する、静電気除去装置。
  9.  請求項8において、
     前記放電電極は、直立した円弧に形成したワイヤー状の電極を含む、静電気除去装置。
  10.  請求項1ないし9のいずれかにおいて、
     前記第1の導電体が前記静電気除去対象物に対し着脱可能である、静電気除去装置。
  11.  請求項1ないし10のいずれかにおいて、
     前記第1の導電体は前記静電気除去対象物の一部である、静電気除去装置。
  12.  請求項1ないし11のいずれかにおいて、
     前記第1の気体は、不活性ガス、希ガス、および、それらの少なくともいずれかのガスを含む混合ガスを含む、静電気除去装置。
  13.  請求項1ないし12のいずれかに記載の静電気除去装置を有する静電気除去対象物。
  14.  外郭の少なくとも一部と外部空間との間に放電開始電圧を低減する条件の気体が密封された第1の空間を形成する誘電体シェルを有する静電気除去対象物。
  15.  前記1ないし12のいずれかに記載の静電気除去装置を有する航空宇宙機器。
  16.  外郭の少なくとも一部と外部空間との間に放電開始電圧を低減する条件の第1の気体が密封された第1の空間を形成する誘電体シェルを有する航空宇宙機器。
  17.  請求項15において、
     前記誘電体シェルは、前記外郭に対し突き出ている、航空宇宙機器。
PCT/JP2020/045493 2019-12-12 2020-12-07 静電気除去装置 WO2021117681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021541186A JP6963346B1 (ja) 2019-12-12 2020-12-07 静電気除去装置
CN202080039209.2A CN113874288A (zh) 2019-12-12 2020-12-07 静电去除装置
EP20897657.1A EP3974325B1 (en) 2019-12-12 2020-12-07 Static electricity eliminating device
US17/615,468 US11839012B2 (en) 2019-12-12 2020-12-07 Static eliminator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224812 2019-12-12
JP2019224812 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117681A1 true WO2021117681A1 (ja) 2021-06-17

Family

ID=76330386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045493 WO2021117681A1 (ja) 2019-12-12 2020-12-07 静電気除去装置

Country Status (5)

Country Link
US (1) US11839012B2 (ja)
EP (1) EP3974325B1 (ja)
JP (1) JP6963346B1 (ja)
CN (1) CN113874288A (ja)
WO (1) WO2021117681A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011371A1 (en) * 2020-03-20 2022-01-13 The Regents Of The University Of Michigan Spacecraft electric potential monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018003473A (es) * 2018-03-21 2019-09-23 Gustavo Fernandez Del Castillo Y Simon Eliminador de cargas electrostaticas para personas.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166200A (ja) * 1986-01-16 1987-07-22 日本電気株式会社 帯電中和方法
JPS62195998U (ja) * 1986-06-03 1987-12-12
JPH01131772A (ja) * 1987-11-18 1989-05-24 Kazunobu Igarashi 電撃防止キー
JP2005267962A (ja) 2004-03-17 2005-09-29 Mitsubishi Electric Corp 放電装置及び、放電装置付きアンテナ
WO2007142133A1 (ja) * 2006-06-06 2007-12-13 Kyushu Institute Of Technology 放電対策装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889799A (ja) * 1981-11-21 1983-05-28 三菱鉱業セメント株式会社 放電装置
US4905931A (en) * 1988-02-18 1990-03-06 The Boeing Company Arc suppression around fasteners
US5987335A (en) * 1997-09-24 1999-11-16 Lucent Technologies Inc. Communication system comprising lightning protection
US6260808B1 (en) * 1998-10-23 2001-07-17 Hughes Electronics Corporation Passive electrical grounding of a spacecraft to the ambient plasma environment
CN1130958C (zh) * 1999-12-30 2003-12-10 中国科学院空间科学与应用研究中心 真空等离子体避雷方法和装置
JP3866988B2 (ja) 2002-02-21 2007-01-10 日本電信電話株式会社 硬化型インフレータブル装置
US6655637B1 (en) 2002-06-24 2003-12-02 The Aerospace Corporation Spacecraft for removal of space orbital debris
ITRM20050336A1 (it) * 2005-06-28 2006-12-29 Finmeccanica Spa Rivestimento antistatico per superfici costituite da materiali metallici e materiali dielettrici o solo da materiali dielettrici, in particolare superfici di antenne, e metodo per la sua applicazione.
DE102007044070A1 (de) * 2007-09-14 2009-04-02 Thales Electron Devices Gmbh Ionenbeschleunigeranordnung und dafür geeignete Hochspannungsisolatoranordnung
US12025669B2 (en) 2020-03-20 2024-07-02 The Regents Of The University Of Michigan Spacecraft electric potential monitoring
CN112319865A (zh) 2020-11-24 2021-02-05 许昌学院 一种用于卫星结构电位控制的防护装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166200A (ja) * 1986-01-16 1987-07-22 日本電気株式会社 帯電中和方法
JPS62195998U (ja) * 1986-06-03 1987-12-12
JPH01131772A (ja) * 1987-11-18 1989-05-24 Kazunobu Igarashi 電撃防止キー
JP2005267962A (ja) 2004-03-17 2005-09-29 Mitsubishi Electric Corp 放電装置及び、放電装置付きアンテナ
WO2007142133A1 (ja) * 2006-06-06 2007-12-13 Kyushu Institute Of Technology 放電対策装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974325A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011371A1 (en) * 2020-03-20 2022-01-13 The Regents Of The University Of Michigan Spacecraft electric potential monitoring
US12025669B2 (en) * 2020-03-20 2024-07-02 The Regents Of The University Of Michigan Spacecraft electric potential monitoring

Also Published As

Publication number Publication date
EP3974325A4 (en) 2023-06-07
US20220240363A1 (en) 2022-07-28
EP3974325C0 (en) 2024-07-03
JPWO2021117681A1 (ja) 2021-12-09
CN113874288A (zh) 2021-12-31
EP3974325A1 (en) 2022-03-30
EP3974325B1 (en) 2024-07-03
JP6963346B1 (ja) 2021-11-05
US11839012B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP6963346B1 (ja) 静電気除去装置
Garrett et al. Spacecraft charging, an update
Garrett et al. Guide to mitigating spacecraft charging effects
Purvis et al. Design guidelines for assessing and controlling spacecraft charging effects
Leach Failures and anomalies attributed to spacecraft charging
US6260808B1 (en) Passive electrical grounding of a spacecraft to the ambient plasma environment
WO2007142133A1 (ja) 放電対策装置
Ferguson et al. Low Earth orbit spacecraft charging design guidelines
Fennell et al. Internal charging: A preliminary environmental specification for satellites
Pierce Triggered lightning and some unsuspected lightning hazards
Ferguson et al. Space solar arrays and spacecraft charging
Bodeau et al. Effects of Space Radiation on Contemporary Space‐Based Systems II: Spacecraft Internal and External Charging and Discharging Effects
JP5433893B2 (ja) 一次電気アークのコンセントレータを有する太陽発電機
Katz et al. Mitigation techniques for spacecraft charging induced arcing on solar arrays
Li et al. Optimal attitude control for solar array orientation
Ferguson Charging of the International Space Station due to its High Voltage Solar Arrays
Vampola The nature of bulk charging and its mitigation in spacecraft design
Ferguson Space solar cell edge, interconnect, and coverglass designs and their effect on spacecraft charging and plasma interactions
Lakshminarayana et al. Impact of space weather on spacecraft
TOYODA High‐Voltage Power Generation on Spacecraft
Shaojie et al. Spacecraft Environment Impact Analysis
Shekoofa et al. EVALUATION OF ESD EFFECTS ON SOLAR ARRAY
Catani Electrostatic Discharges and Spacecraft Anomalies
Koontz et al. International Space Station Spacecraft Charging Environments: Modeling, Measurement and Implications for Future Human Space Flight Programs
Rulis SERT II-Design requirements for integrating electric propulsion into a spacecraft

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021541186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020897657

Country of ref document: EP

Effective date: 20211221

NENP Non-entry into the national phase

Ref country code: DE