WO2021117600A1 - Seal ring - Google Patents

Seal ring Download PDF

Info

Publication number
WO2021117600A1
WO2021117600A1 PCT/JP2020/045064 JP2020045064W WO2021117600A1 WO 2021117600 A1 WO2021117600 A1 WO 2021117600A1 JP 2020045064 W JP2020045064 W JP 2020045064W WO 2021117600 A1 WO2021117600 A1 WO 2021117600A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
ring
peripheral surface
resin
seal
Prior art date
Application number
PCT/JP2020/045064
Other languages
French (fr)
Japanese (ja)
Inventor
筧 幸三
真也 小田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019223370A external-priority patent/JP7365881B2/en
Priority claimed from JP2020116004A external-priority patent/JP2022013442A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021117600A1 publication Critical patent/WO2021117600A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/328Manufacturing methods specially adapted for elastic sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials

Definitions

  • the present invention is for sealing a fluid in a device using the fluid pressure of a fluid such as hydraulic fluid, such as an automatic transmission (hereinafter referred to as AT) and a continuously variable transmission (hereinafter referred to as CVT). Regarding the seal ring used.
  • a fluid such as hydraulic fluid, such as an automatic transmission (hereinafter referred to as AT) and a continuously variable transmission (hereinafter referred to as CVT).
  • AT automatic transmission
  • CVT continuously variable transmission
  • oil seal rings for sealing hydraulic oil are installed at key points.
  • the hydraulic oil supplied from the oil passage between the two annular grooves, which is attached to a pair of separated annular grooves provided on the rotating shaft inserted into the shaft hole of the housing is applied to the side surface and the inner peripheral surface of both seal rings.
  • the side wall on the opposite side and the outer peripheral surface seal the side wall of the annular groove and the inner peripheral surface of the housing.
  • Each sealing surface of the seal ring holds the hydraulic oil pressure between the two seal rings while sliding contact with the side wall of the annular groove and the inner peripheral surface of the housing.
  • a seal ring made of synthetic resin obtained by injection molding is known (see, for example, Patent Document 1).
  • This seal ring is an annular body having a substantially rectangular cross section, and has a joint at one position in the circumferential direction.
  • the abutment is composed of a pair of complementaryly fitted ends, for example, one abutment has a butt surface on the inner diameter side of the seal ring and a lip protruding from the butt surface on the outer diameter side and retracting.
  • the other abutment has a pocket, the abutment surface, the lip and the abutment surface formed to fit the pocket in a complementary manner, a composite step cut abutment having the pocket and the lip, and the like. It has been adopted.
  • Patent Document 1 describes a resin seal ring having excellent quality that reduces the amount of leakage and maintains stable sealing performance for a long period of time while reducing rotational sliding friction.
  • a linear contact portion that linearly abuts on the side wall of the annular groove on the unsealed fluid side is provided on the side surface of the ring continuously from one side to the other side of the abutment port.
  • the line contact portion provided on one side of the mouth and the line contact portion provided on the other side of the mating mouth are provided apart in the radial direction.
  • Patent Document 1 describes a seal ring in which a corner portion between an outer peripheral surface and a side surface of the ring is chamfered to form an inclined surface.
  • FIG. 12 shows a state when the rotating shaft 43 equipped with the conventional seal ring 41 is assembled in the housing 44.
  • the rotating shaft 43 is inserted from one end side of the housing 44 and assembled.
  • a tapered portion 44a is formed at the open end of the housing 44.
  • the outer peripheral surface of the seal ring 41 may be located radially outside the tapered portion 44a of the housing 44 due to eccentricity or the like. In such a case, the ring side surface 42 of the seal ring 41 may come into contact with the end surface 44b of the housing, which may cause a problem such as galling of the seal ring 41.
  • the present invention (the first invention below) has been made in view of such circumstances, and provides a seal ring capable of suppressing the occurrence of galling and the like at the time of assembling the housing and maintaining a low oil leak property.
  • the purpose The purpose.
  • FIG. 24 shows a process diagram of a seal ring molding die having an inclined surface on the outer peripheral surface.
  • FIG. 24 (a) shows the time when the resin is filled
  • FIG. 24 (b) shows the time when the mold is opened
  • FIG. 24 (c) shows the time when the product is taken out.
  • the molding die has a fixed-side mold 81, a movable-side mold 82, and a core pin 83, and these are abutted to form a cavity 84.
  • the molten resin composition is filled in the cavity 84, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 85.
  • An inclined surface 85a is formed from the outer peripheral surface of the molded body 85 to the side surface of the ring.
  • the movable side mold 82 and the core pin 83 are moved in the X direction with respect to the fixed side mold 81.
  • the molded body 85 also moves in the X direction in accordance with the movement of the core pins 83 and the like, but the molded body 85 may be attracted to and stick to the fixed side mold 81 (see FIG. 24 (b)). ).
  • the seal ring is easily deformed, for example, the flatness of the side surface of the ring is deteriorated, and oil leakage may increase.
  • the occurrence of sticking affects the subsequent removal of the product (see FIG. 24C), which may make continuous molding difficult.
  • Such sticking occurs more in the seal ring having an inclined surface than in the seal ring having no inclined surface because the contact area with the fixed side mold 81 increases due to the mold splitting of the mold. It's easy to do.
  • the present invention (the second invention below) has been made in view of such circumstances, and an object of the present invention is to provide a seal ring capable of suppressing the occurrence of sticking at the time of mold opening and maintaining low oil leak property. And.
  • the seal ring of the first invention of the present application is mounted on an annular groove provided in a rotating shaft inserted into a shaft hole of a housing, and slidably contacts a side wall surface on the unsealed fluid side of the annular groove.
  • the seal ring is an injection-molded body of a resin composition.
  • An inclined portion is provided on at least one end side of the outer peripheral surface, and the inclined portion has an inclined surface connected to the ring side surface and a stepped surface connected substantially perpendicular to the outer peripheral surface, and is described in the ring radial direction.
  • the width of the stepped surface is 0.1 mm or less.
  • the inclined portion is substantially perpendicular to the side surface of the ring and has a connecting surface connecting the inclined surface and the stepped surface. Further, the stepped surface is characterized in that it is located inside in the ring radial direction with respect to the virtual plane on which the inclined surface is extended.
  • the inclination angle of the inclined surface with respect to the outer peripheral surface is 20 to 60 degrees.
  • the seal ring is characterized by having a compound step cut opening in a part in the circumferential direction.
  • the base resin of the above resin composition is a polyetherketone (PEK) resin, a polyetheretherketone (PEEK) resin, a polyphenylene sulfide (PPS) resin, or a polyamide-imide (PAI) resin.
  • PEK polyetherketone
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PAI polyamide-imide
  • the seal ring of the second invention of the present application is mounted on an annular groove provided in a rotating shaft inserted into a shaft hole of a housing, and slidably contacts a side wall surface on the unsealed fluid side of the annular groove.
  • a seal ring that comes into contact with the inner peripheral surface of the shaft hole and seals an annular gap between the rotating shaft and the shaft hole.
  • the seal ring is an injection molded body of a resin composition.
  • a joint is provided in a part in the circumferential direction, and a recess is provided on the inner peripheral surface in the radial direction of the ring, and the depth of the recess is 1% to 10% of the radial length of the seal ring. It is a feature.
  • the seal ring is characterized by having an inclined portion on at least one end side of the outer peripheral surface, and the inclined portion has an inclined surface connected to the side surface of the ring.
  • the inclined portion has a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less.
  • the width of the recess in the ring axis direction is 2% to 60% of the axial length of the seal ring.
  • the recess is a concave groove continuously provided along the ring circumferential direction, and the formation range of the concave groove in the ring circumferential direction is 15% or more with respect to the inner circumference of the seal ring. And.
  • the seal ring of the first invention of the present application is an injection-molded body of a resin composition, and has an inclined portion on at least one end side of the outer peripheral surface, and the inclined portion has an inclined portion connected to a ring side surface and an outer peripheral surface. Since it has a stepped surface connected substantially vertically and the width of the stepped surface in the ring radial direction is 0.1 mm or less, when the seal ring is inserted into the housing and assembled, the stepped surface at the outer diameter side end is formed. , It is possible to suppress the contact with the end face of the housing and prevent the occurrence of galling. As a result, scratches such as dents are prevented on the sealing surface on the side surface of the ring, so that the low oil leak property of the sealing ring can be maintained.
  • the inclined portion is substantially perpendicular to the side surface of the ring and has a connecting surface connecting the inclined surface and the stepped surface. Therefore, when the inclined portion of the seal ring is applied to the tapered portion of the housing and inserted, the stepped surface is formed on the housing. It is possible to further suppress the contact with the end face. Further, since the stepped surface is located inside in the ring radial direction with respect to the virtual plane on which the inclined surface is extended, the boundary between the stepped surface and the outer peripheral surface does not protrude from the virtual plane, and even if the end surface of the housing hits, it is gnawing. Can be prevented.
  • the inclination angle of the inclined surface with respect to the outer peripheral surface is 20 to 60 degrees, so even if the eccentricity of the seal ring is large with respect to the rotating shaft or the end surface of the housing hits. The occurrence of galling can be suppressed.
  • the seal ring has a compound step-cut joint in a part of the circumferential direction, so the oil sealability is particularly excellent. Further, since the base resin of the resin composition is PEK resin, PEEK resin, PPS resin, or PAI resin, it has excellent flexural modulus, heat resistance, etc., and does not crack even if the diameter is increased when it is incorporated into the groove. , Can be used even when the temperature of the hydraulic oil to be sealed becomes high.
  • the seal ring of the second invention of the present application is an injection molded product of a resin composition, and has a recess in a part in the circumferential direction and a recess in the inner peripheral surface in the ring radial direction. Since the depth is 1% to 10% of the radial length of the seal ring, the followability of the molded product to the core pin or the like is improved when the mold is opened, and sticking to the fixed-side mold can be suppressed. Further, by setting the depth of the recess within a predetermined range, it is possible to ensure the ease of removal from the mold while preventing the seal ring from falling into the annular groove. As a result, deformation caused by sticking at the time of mold opening can be suppressed, and thus low oil leak property can be maintained.
  • the side surface of the ring comes into contact with the end surface of the housing, which may cause problems such as galling of the seal ring, which may affect the seal property.
  • the seal ring is provided with an inclined portion on at least one end side of the outer peripheral surface and the inclined portion has an inclined surface connected to the side surface of the ring, the corner portion is chamfered and the occurrence of galling can be suppressed.
  • the formation of the inclined surface there is more concern about sticking to the fixed-side mold when the mold is opened, but since the inner peripheral surface has the recess, sticking can be suppressed.
  • the inclined portion has a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less. It is possible to prevent the stepped surface from hitting the end surface of the housing and prevent the occurrence of galling. As a result, scratches such as dents are prevented on the sealing surface on the side surface of the ring, which is more effective in maintaining the low oil leakage property of the sealing ring. Further, by providing the stepped surface, the mold split surface can be set on the extension line thereof, and the variation in the outer diameter dimension of the seal ring can be suppressed.
  • the width of the concave portion in the ring axial direction is 2% to 60% of the axial length of the seal ring, it is possible to suitably prevent the seal ring from falling while exerting the anchor effect.
  • the recess is a concave groove continuously provided along the ring circumferential direction, and the forming range of the concave groove in the ring circumferential direction is 15% or more with respect to the inner circumference of the seal ring.
  • the anchor effect can be exerted almost as a whole.
  • FIG. 1 is a cross-sectional view and a partially enlarged view of the seal ring of FIG. It is a figure for demonstrating the positional relationship between an inclined surface and a stepped surface. It is sectional drawing and the partially enlarged view of another example of the seal ring of 1st invention of this application. It is a figure which shows the state at the time of assembling the seal ring of FIG. 1 to a housing. It is sectional drawing which shows the state which incorporated the seal ring of FIG. 1 into an annular groove. It is sectional drawing of the molding die at the time of injection molding. It is sectional drawing which shows the mold release process.
  • FIG. 2 is a cross-sectional view and a view taken along the line A of another example of the seal ring of the second invention of the present application. It is sectional drawing of another example of the seal ring of the 2nd invention of this application. It is sectional drawing and the partially enlarged view of another example of the seal ring of 2nd invention of this application. It is sectional drawing of the seal ring of Examples B1 to B3 and the like. It is sectional drawing of the seal ring of Comparative Examples B1 and B2. It is a figure for demonstrating the taking-out process of the comparative example B2. It is the schematic of the measurement test of the oil leak amount of a seal ring. It is a process drawing of the molding die of the conventional seal ring.
  • FIG. 1 is a plan view of the seal ring
  • FIG. 2A is a sectional view taken along line AA
  • FIG. 2B is a partially enlarged view thereof.
  • the seal ring 1 is an annular body having a substantially rectangular cross section formed by injection molding using a mold.
  • the seal ring 1 is a cut type ring having an opening 10 at one position in the circumferential direction, and is mounted in an annular groove by expanding its diameter by elastic deformation.
  • the abutment 10 is composed of a pair of ends. The shape of the pair of ends can be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 1 because of its excellent oil sealability.
  • the size of the seal ring (outer diameter ⁇ , inner diameter ⁇ , ring width (axial length), ring thickness (diameter length), etc.) is appropriately set depending on the application.
  • the inner diameter ⁇ of the seal ring is 9 mm to 75 mm
  • the outer diameter ⁇ is 13 mm to 80 mm.
  • the ring side surface 4 serves as a sliding surface with the side wall surface of the annular groove.
  • a step portion 5 which is a protruding portion from the mold at the time of injection molding is provided at a corner portion between the ring inner peripheral surface 2 and the ring side surface 4.
  • the step portions 5 are provided on both sides.
  • an inclined portion 6 is provided at a corner portion between the ring outer peripheral surface 3 and the ring side surface 4.
  • the inclined portion 6 is a non-contact portion with the side wall surface of the annular groove over the entire circumference of the ring.
  • a plurality of lubricating grooves formed of recesses may be formed at the inner diameter side end of the ring side surface 4 so as to be separated from each other in the circumferential direction.
  • the inclined portion 6 will be further described. As shown in FIG. 2B, the inclined portion 6 has an inclined surface 7 connected to the ring side surface 4, a stepped surface 8 connected perpendicularly to the ring outer peripheral surface 3, and a connecting surface 9. ..
  • the stepped surface 8 is a surface (also referred to as a mold split surface) formed by mold splitting of a mold.
  • the mold split surface of the mold is arranged on the extension line of the stepped surface 8 of the seal ring. On top of that, and with 0.1mm or less width W a of the stepped surface 8 of the ring radially.
  • the width W a is preferably 0.01mm ⁇ 0.05mm.
  • the seal ring 1 shown in FIG. 2 is provided with inclined portions on both sides of the outer peripheral surface 3 of the ring.
  • one inclined portion (inclined portion 6) has a stepped surface 8, and the other inclined portion is composed of only an inclined surface.
  • the stepped surface 8 may be formed on at least one inclined portion, but may be formed symmetrically on both inclined portions. In this case, the inclined portions on both sides have a stepped surface, and the dependence on the assembling direction is eliminated.
  • the inclination angle ⁇ (see FIG. 2A) of the inclined surface 7 with respect to the outer peripheral surface 3 of the ring is, for example, 20 degrees to 60 degrees.
  • the inclination angle ⁇ is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and further preferably 40 degrees to 45 degrees. If the inclination angle ⁇ is less than 20 degrees, it is easy to hit the end face of the housing when the eccentricity of the seal ring (protrusion from the annular groove) is large, and galling may occur. Further, if the inclination angle ⁇ exceeds 60 degrees, the seal ring does not smoothly line up when it hits the end surface of the housing, and it may be caught on the stepped surface 8 and minute galling may occur.
  • a connecting surface 9 perpendicular to the ring side surface 4 is provided between the inclined surface 7 and the stepped surface 8.
  • the connecting surface 9 may be a surface substantially perpendicular to the ring side surface 4, and may be formed of a flat surface or a curved surface.
  • the width W b of the connecting surface 9 in the ring axis direction is not particularly limited, but is preferably larger than the width W a of the stepped surface 8.
  • the width W b of the connecting surface 9 is preferably, for example, 0.05 mm to 0.3 mm. More preferably, it is 0.05 mm to 0.1 mm.
  • FIG. 3A describes the positional relationship between the inclined surface and the stepped surface.
  • the stepped surface 8 is located inside the virtual plane F in the ring radial direction.
  • the corner portion P which is the boundary between the outer peripheral surface 3 and the stepped surface 8
  • the corner portion P does not protrude outward in the radial direction from the virtual plane F.
  • FIG. 3B shows an example of deformation of the stepped surface of the inclined portion.
  • the stepped surface 8' is formed by a curved surface substantially perpendicular to the outer peripheral surface 3, and the boundary portion between the outer peripheral surface 3 and the stepped surface 8 is formed in an R shape.
  • the stepped surface 8' is obtained, for example, by polishing the corner portion P shown in FIG. 3A by barrel polishing or the like. By forming the boundary portion into an R shape, galling of the stepped surface 8'can be further prevented.
  • the stepped surface 8' is located inside the virtual plane F in the ring radial direction.
  • FIG. 4A is a cross-sectional view of the seal ring
  • FIG. 4B is a partially enlarged view thereof.
  • the seal ring 11 has a different structure of the inclined portion than the seal ring 1 of FIG.
  • the inclined portion 16 has an inclined surface 17 connected to the ring side surface 14 and a stepped surface 18 connected perpendicularly to the ring outer peripheral surface 13. .
  • the width W a of the stepped surface 18 of the ring radial direction is at 0.1mm or less, preferably 0.01 mm ⁇ 0.05 mm.
  • the preferable range of the inclination angle ⁇ of the inclined surface 17 is the same as the range of the inclined angle ⁇ of the inclined surface 7 described above.
  • FIG. 5 shows the state when the housing is assembled.
  • the seal ring 1 and the housing 22 show a cross section.
  • the seal ring 1 is first expanded in diameter using a jig (not shown) and mounted in the annular groove 21a of the rotating shaft 21. With the seal ring 1 attached, the rotating shaft 21 is inserted into the housing 22 and assembled.
  • the open end of the housing is provided with a tapered portion 22a formed of an inclined surface (for example, an inclined angle of 30 to 50 degrees).
  • the wall thickness of the housing is small, or if a sufficient taper cannot be formed so as not to interfere with the seal ring, the outer peripheral surface of the seal ring is located outside the taper of the housing due to eccentricity. Sometimes. In such a case, galling may occur when the ring side surface of the seal ring hits the end surface of the housing (see FIG. 12).
  • an inclined portion having the above-mentioned inclined surface 7 and stepped surface 8 is formed on one end side of the outer peripheral surface 3 of the ring. Therefore, even when the amount of eccentricity of the seal ring becomes large, the inclined angle portion 6a, which is the boundary portion between the ring side surface 4 and the inclined surface 7, can be easily accommodated in the tapered portion 22a of the housing 22. Become. That is, the inclined angle portion 6a can be easily positioned inside the tapered portion diameter R. Further, since the width of the stepped surface 8 is set to be small, it is possible to prevent the end surface 22b of the housing 22 from hitting the stepped surface 8 and prevent the occurrence of galling.
  • the inclined portion dimension W c of the seal ring 1 is set.
  • the inclined portion dimension W c is the distance from the ring outer peripheral surface 3 to the inclined angle portion 6a in the ring radial direction, and is the free outer diameter ⁇ of the seal ring 1, the ring thickness T, the depth h of the annular groove, and the housing. It is set by the taper diameter R and the maximum amount of eccentricity due to the drop during assembly.
  • the ring thickness T is the distance from the outer peripheral surface 3 of the ring to the inner peripheral surface 2 of the ring, and the depth h of the annular groove is the radial length from the outer peripheral end surface of the rotating shaft 21 to the bottom of the annular groove 21a.
  • the tapered portion diameter R of the housing is the outer peripheral diameter of the tapered portion 22a of the housing 22.
  • the maximum eccentricity amount is the maximum value of the distance at which the opposite portion protrudes from the annular groove when the seal ring falls into the annular groove.
  • the maximum eccentricity is the maximum value of the outer diameter ⁇ , the minimum value of the ring thickness T, and the minimum value of the annular groove depth h when each dimension (outer diameter ⁇ , T, h, R) changes.
  • the inclined angle portion 6a of the seal ring 1 can be positioned in the tapered portion 22a of the housing 22 even when the seal ring 1 is maximally eccentric, and the seal ring can be smoothly inserted. it can.
  • the seal ring 1 is mounted in an annular groove 21a provided in the rotating shaft 21 inserted into the shaft hole 22c of the housing.
  • the arrow in the figure is the direction in which the pressure from the hydraulic oil is applied, and the right side in the figure is the unsealed fluid side.
  • the seal ring 1 is slidably in contact with the side wall surface 21b on the unsealed fluid side of the annular groove 21a on the ring side surface 4. Further, the outer peripheral surface 3 is in contact with the inner peripheral surface of the shaft hole 22c.
  • This sealing structure seals an annular gap between the rotating shaft 21 and the shaft hole 22c.
  • the type of hydraulic oil is appropriately used according to the intended use. For example, it is used under the conditions that the oil temperature is about ⁇ 30 to 150 ° C., the oil pressure is about 0 to 3.0 MPa, and the rotation speed of the rotating shaft is about 0 to 7000 rpm.
  • the seal ring of the first invention of the present application is an injection molded product of a resin composition.
  • the base resin of the resin composition any synthetic resin that can be injection-molded can be used.
  • thermoplastic polyimide resin PEK resin, PEEK resin, PPS resin, PAI resin, polyamide (PA) resin, polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyethylene (PE) resin, polyacetal (POM).
  • PA polyamide
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene
  • POM polyacetal
  • resins and phenol (PF) resins examples may be used alone or as a polymer alloy in which two or more kinds are mixed.
  • PEK resin, PEEK resin, PPS resin, or PAI resin is preferably used as the base resin because it is excellent in frictional wear characteristics, flexural modulus, heat resistance, slidability, and the like.
  • These resins have a high elastic modulus, are hard to crack even if the diameter is increased when they are incorporated into the annular groove, can be used even when the oil temperature of the hydraulic oil to be sealed becomes high, and there is no concern about solvent cracks.
  • the above-mentioned base resin can be used as a fibrous reinforcing material such as carbon fiber, glass fiber, or aramid fiber, a spherical filler such as spherical silica or spherical carbon, a scale-like reinforcing material such as mica or talc, or potassium titanate whisker. Fine fiber reinforcing materials such as can be blended. Further, a polytetrafluoroethylene (PTFE) resin, a solid lubricant such as graphite and molybdenum disulfide, a sliding reinforcing material such as calcium phosphate and calcium sulfate, and a pigment such as carbon black can also be blended. These can be blended alone or in combination.
  • PTFE polytetrafluoroethylene
  • FIG. 7 shows a cross-sectional view of the molding die.
  • the molding die has a fixed side mold 23, a movable side mold 24, and a core pin 25.
  • the cavity 26 is formed by the fixed side mold 23 and the movable side mold 24, which are abutted by the abutting surface PL, and the core pin 25.
  • the molten resin composition is filled in the cavity 26, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 27.
  • the inclined portion of the molded body 27 including the stepped surface 27a is formed by the fixed-side mold 23.
  • the end portion of the fixed side mold 23 (PL surface on the outer peripheral direction side of the seal ring) is directed toward the cavity 26 rather than the end portion of the movable side mold 24 (PL surface on the outer peripheral direction side of the seal ring). Due to the difference in the position of the end portion, a mold split step (step surface 27a) is generated.
  • the mold removal process is shown step by step.
  • the fixed-side mold 23 and the movable-side mold 24 are molded at the abutting surface.
  • the core pin 25 advances toward the fixed-side mold 23, so that the molded body 27 is separated from the movable-side mold 24 (FIG. 8 (b)).
  • the step portion 25a of the core pin 25 forms a step portion of the inner diameter side end portion of the seal ring.
  • the molded body 27 is taken out from the molding die by further advancing the core pin 25.
  • the abutment of the taken-out molded body 27 has a pair of ends separated from each other, but is closed by heat fixing or the like to obtain a seal ring 1 as shown in FIG.
  • FIG. 13 is a plan view of the seal ring
  • FIG. 14 is a sectional view taken along line BB.
  • the seal ring 51 is an annular body formed by injection molding using a mold and having a substantially rectangular cross section.
  • the seal ring 51 is a cut type ring having an opening 60 at one position in the circumferential direction, and is mounted in an annular groove by expanding its diameter by elastic deformation.
  • the abutment 60 is composed of a pair of ends. The shape of the pair of ends can be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 13 because of its excellent oil sealability.
  • the size of the seal ring (outer diameter ⁇ , inner diameter ⁇ , ring width W (axial length), ring thickness T (diameter length), etc.) is appropriately set depending on the application and the like.
  • the inner diameter ⁇ of the seal ring is 9 mm to 75 mm
  • the outer diameter ⁇ is 13 mm to 80 mm.
  • the ring side surface 54 or 54' is a sliding surface with the side wall surface of the annular groove.
  • stepped portions 55, 55' which are protruding portions from the mold during injection molding, are provided.
  • the step portions 55 and 55' are provided at both ends in the ring axial direction and are recessed in the ring radial direction.
  • inclined portions 56, 56'composed of inclined surfaces are provided at the corners on both sides of the ring outer peripheral surface 53 and the ring side surfaces 54, 54'.
  • the inclined portions 56 and 56' are provided over the entire circumference of the ring and serve as non-contact portions with the side wall surface of the annular groove. It should be noted that a plurality of lubricating grooves formed of recesses may be formed at the inner diameter side ends of the ring side surfaces 54 and 54'distance in the circumferential direction.
  • the depth of the inclined surface at the inclined portions 56, 56'from the sliding surface (ring side surface 54 or 54') becomes deeper toward the outside in the ring radial direction and is constant in the ring axial direction.
  • the inclination angle ⁇ of the inclined surface with respect to the outer peripheral surface 53 of the ring is, for example, 20 degrees to 60 degrees.
  • the inclination angle ⁇ is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and further preferably 40 degrees to 45 degrees.
  • the inclination angle ⁇ is less than 20 degrees, when the seal ring is assembled to the housing, if the eccentricity of the seal ring (protruding from the annular groove) is large, it is likely to hit the end face of the housing, and galling may occur. Further, if the inclination angle ⁇ exceeds 60 degrees, the seal ring may not be smoothly guided when it hits the end face of the housing.
  • the seal ring 51 has a recess 57 recessed in the ring radial direction on the inner peripheral surface 52 of the ring between the pair of step portions 55 and 55'.
  • the recess 57 is an undercut portion when the molding die is opened, as shown in FIG. 15 described later.
  • the undercut portion is a portion that is engaged with the mold (for example, a core pin), that is, a portion that is hooked on the mold.
  • the recess 57 is an arc groove having an arcuate cross section formed continuously along the circumferential direction of the ring. This arc groove is not open to the step portions 55 and 55'on both sides, but is a concave groove closed in the inner peripheral surface of the ring.
  • the shape of the concave groove is not particularly limited, and may be, for example, a square groove having a rectangular cross section or a triangular groove having a triangular cross section.
  • the depth W d of the recess 57 of the seal ring 51 is 1% to 10% of the ring thickness T.
  • the ring thickness T refers to the maximum thickness in the ring radial direction of the seal ring 1, and is the length between the inner peripheral surface of the ring 52 and the outer peripheral surface of the ring 53 in FIG.
  • the depth W d of the recess 57 refers to the length of a perpendicular line drawn from the most recessed point of the recess to the virtual surface f of the inner peripheral surface of the ring assuming that the recess is not formed. If the depth W d is less than 1% of the ring thickness T, it is difficult to obtain the anchor effect when the mold is opened, and sticking may occur.
  • the depth W d is preferably 3% to 5% of the ring thickness T.
  • the depth W d of the recess 57 is shallower than the depth (diameter length) of the step portions 55 and 55'. Further, specific values of the depth W d of the recess 57 is about 0.05 mm ⁇ 0.2 mm.
  • the stepped portions 55 and 55' are protruding from the mold, and the depth (diameter length) of the stepped portion exceeds 10% of the ring thickness T in order to prevent deformation of the seal ring at the time of protrusion. It is provided.
  • Width W e in the ring axial direction of the recess 57 is not particularly limited. However, if the width W e is small, there is a possibility that sticking difficult to obtain anchor effect at the time of mold opening occurs, if the short shot occurs in the case of using the width W e is large, for example, a high melt viscosity material There is. Therefore, the width W e of the concave portion 57 is preferably from 2% to 60% of the ring width W, and more preferably 5% to 40%.
  • the ring width W refers to the maximum width in the ring axis direction of the seal ring 1, and in FIG. 14, it is the length between one ring side surface 54 and the other ring side surface 54'.
  • Width W e is a ring axial width of a portion open to the ring inner peripheral surface 52. Further, it is desirable that the product of the ratio (%) of the depth W d to the ring thickness T and the ratio (%) of the width W e to the ring width W of the recess 57 is in the range of 10 or more and 500 or less. If it is less than 10, the anchor effect is difficult to obtain at the time of mold opening and sticking may occur, and if it exceeds 500, a short shot may occur when a material having a high melt viscosity is used.
  • the formation range of the recess 57 in the ring circumferential direction is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51.
  • Anchor effect can be easily obtained by setting the forming range of the recess 57 to 15% or more.
  • the upper limit of the forming range of the recess 57 in the ring circumferential direction is, for example, 90%, preferably 80%.
  • a concave groove continuously formed along the circumferential direction is shown as the concave portion, but even if the concave portion is composed of a plurality of (for example, two) concave grooves divided in the circumferential direction of the ring. Good.
  • the formation range (total of each concave groove) in the ring circumferential direction of the plurality of concave grooves is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51.
  • the upper limit is, for example, 90%, preferably 80%.
  • the concave portion of the seal ring of the second invention of the present application is not limited to the concave groove, and may be composed of holes.
  • a plurality of holes can be arranged so as to be separated from each other in the circumferential direction of the ring.
  • Each of the above numerical ranges can be adopted for the hole depth, the width in the ring axis direction, and the formation range in the ring circumferential direction (in the case of a plurality of holes, the total).
  • the seal ring of the second invention of the present application is an injection molded product of a resin composition.
  • the base resin of the resin composition any synthetic resin that can be injection-molded can be used.
  • thermoplastic polyimide resin, PEK resin, PEEK resin, PPS resin, PAI resin, PA resin, PBT resin, PET resin, PE resin, POM resin, PF resin and the like can be mentioned.
  • These resins may be used alone or as a polymer alloy in which two or more kinds are mixed.
  • PEK resin, PEEK resin, PPS resin, or PAI resin is preferably used as the base resin because it is excellent in frictional wear characteristics, flexural modulus, heat resistance, slidability, and the like.
  • These resins have a high elastic modulus, are hard to crack even if the diameter is increased when they are incorporated into the annular groove, can be used even when the oil temperature of the hydraulic oil to be sealed becomes high, and there is no concern about solvent cracks.
  • the above-mentioned base resin can be used as a fibrous reinforcing material such as carbon fiber, glass fiber, or aramid fiber, a spherical filler such as spherical silica or spherical carbon, a scale-like reinforcing material such as mica or talc, or potassium titanate whisker. Fine fiber reinforcing materials such as can be blended. Further, a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, a sliding reinforcing material such as calcium phosphate and calcium sulfate, and a pigment such as carbon black can also be blended. These can be blended alone or in combination.
  • FIG. 15 shows a process diagram of the molding die.
  • the molding die has a fixed-side mold 61, a movable-side mold 62, and a core pin 63, and these are abutted to form a cavity 64.
  • the molten resin composition is filled in the cavity 64, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 65.
  • a concave portion 65a is provided on the inner peripheral surface of the molded body 65, and a convex portion 63a is formed on the core pin 63 corresponding to the concave portion of the concave portion 65a.
  • the movable side mold 62 and the core pin 63 are moved in the X direction with respect to the fixed side mold 61.
  • the concave portion 65a is caught by the convex portion 63a of the core pin 63, the molded body 65 also moves in the X direction following the movement of the core pin 63.
  • the recess 65a serves as an undercut portion, and the molded body 65 is physically fixed, so that sticking to the fixed-side mold 61 is suppressed.
  • the molded body 65 is separated from the movable mold 62 by advancing the core pin 63 toward the fixed mold 61 in the Y direction. Then, as shown in FIG. 15 (d), the engaging portion 66a of the take-out hand 66 is engaged with a part of the ring side surface 65b of the molded body 65 and moved in the Z direction, whereby the molded body 65 becomes a core pin. Taken out of 63.
  • the abutment of the taken-out molded body 65 has a pair of ends separated from each other, but is closed by heat fixing or the like to obtain the seal ring 51 shown in FIG.
  • the seal ring 51 is mounted in an annular groove 71a provided in the rotating shaft 71 inserted into the shaft hole 72a of the housing 72.
  • the arrow in the figure is the direction in which the pressure from the hydraulic oil is applied, and the right side in the figure is the unsealed fluid side.
  • the seal ring 51 is slidably in contact with the side wall surface 71b on the unsealed fluid side of the annular groove 71a on the ring side surface 54 thereof. Further, the outer peripheral surface 53 of the ring is in contact with the inner peripheral surface of the shaft hole 72a. This sealing structure seals an annular gap between the rotating shaft 71 and the shaft hole 72a.
  • the type of hydraulic oil is appropriately used according to the intended use. For example, it is used under the conditions that the oil temperature is about ⁇ 30 to 150 ° C., the oil pressure is about 0 to 3.0 MPa, and the rotation speed of the rotating shaft is about 0 to 7000 rpm.
  • the outer peripheral surface 53 of the ring and the side surface 54 of the ring related to the oil leak are not formed with a recess to be an undercut portion, and the recess 57 is formed on the inner peripheral surface 52 of the ring. Therefore, low oil leak property can be maintained. Further, since the recess 57 suppresses sticking to the fixed-side mold when the mold is opened, deformation due to sticking, for example, deterioration of flatness of the ring side surface 54 can be suppressed, and as a result, low oil leak property is maintained. It leads to.
  • the seal ring 51 shown in FIG. 17 has a different recessed structure from the seal ring 51 shown in FIG.
  • FIG. 17A is a cross-sectional view of the seal ring
  • FIG. 17B is a view taken along the arrow C. The description of the configuration other than the concave portion will be omitted.
  • the recess 57A is a recess formed on the inner peripheral surface 52 of the ring from one step 55 to the other step 55'.
  • the depth W d of the recess 57A is constant and is represented as the length of a perpendicular line drawn from the bottom surface of the recess to the virtual surface f.
  • Depth W d of the concave portion 57A in this configuration satisfies the 1% to 10% of the ring thickness T.
  • the recess 57A has a trapezoidal shape, and its circumferential width becomes smaller toward one side in the ring axial direction.
  • a circumferential width L a opening into one of the step portion 55 is smaller than the circumferential width L b which is open to the other stepped portion 55 '.
  • the circumferential width L b, to the circumferential width L a It is preferably 1.05 times to 1.2 times.
  • the recesses 57A may be formed at a plurality of locations on the inner peripheral surface 52 of the ring. For example, 3 to 5 locations are formed at equal intervals in the circumferential direction of the ring. By forming it at a plurality of places, the anchor effect can be exerted on almost the entire ring.
  • the seal ring 51 shown in FIG. 18 has a different recessed structure from that of the seal ring 51 shown in FIG. The description of the configuration other than the concave portion will be omitted.
  • the recess 57B is a recess that is inclined from the step 55 to the step 55'on the inner peripheral surface of the ring.
  • the depth of the recess 57B from the virtual surface f becomes deeper as it approaches the step portion 55'.
  • the depth W d of the recess 57B is expressed as the length of a perpendicular line drawn from the most recessed point of the recess 57B to the virtual surface f.
  • Depth W d of the concave portion 57B in this configuration satisfies the 1% to 10% of the ring thickness T.
  • the movable die and the core pin are moved toward the side where the depth of the recess 57B is shallow, that is, in the X direction.
  • the highly formed portion of the convex portion of the core pin is caught in the concave portion 57B, so that the sticking to the fixed side mold can be suppressed.
  • the recess 57B is continuously provided along the circumferential direction of the ring, and the forming range thereof is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51.
  • FIG. 19 is different from the seal ring 51 of FIG. 14 in the configuration of the inclined portion provided on the outer peripheral surface.
  • FIG. 19A is a cross-sectional view of the seal ring
  • FIG. 19B is a partially enlarged view thereof. The description of the configuration other than the inclined portion will be omitted.
  • the inclined portion 56 is perpendicular to the inclined surface 56a connected to the ring side surface 54 and the ring outer peripheral surface 53, similarly to the seal ring 1 (see FIG. 2) of the first invention of the present application. It has a stepped surface 58 connected to the surface and a connecting surface 59.
  • the stepped surface 58 is a surface formed by the mold splitting of the mold (also referred to as a mold splitting surface), and in this configuration, the mold split surface of the fixed side mold and the movable side mold is the stepped surface 58 of the seal ring 51. It is placed on the extension line of.
  • the width W f of the step surface 58 in the ring radial direction is 0.1 mm.
  • the following is preferable, and 0.01 mm to 0.05 mm is more preferable.
  • the seal ring 51 shown in FIG. 19 is provided with inclined portions on both sides of the ring outer peripheral surface 53.
  • one inclined portion has a stepped surface 58, and the other inclined portion is composed of only an inclined surface.
  • the stepped surface 58 is preferably formed on at least one inclined portion, and may be formed symmetrically on both inclined portions. In this case, the inclined portions on both sides have a stepped surface, and the dependence on the assembling direction is eliminated.
  • a connecting surface 59 perpendicular to the ring side surface 54 is provided between the inclined surface 56a and the stepped surface 58.
  • the connecting surface 59 may be a surface substantially perpendicular to the ring side surface 54, and may be formed of a flat surface or a curved surface.
  • the width W g of the connecting surface 59 in the ring axis direction is not particularly limited, but is preferably larger than the width W f of the stepped surface 58.
  • the width W g of the connection surface 59 is preferably, for example, 0.05 mm ⁇ 0.3 mm. More preferably, it is 0.05 mm to 0.1 mm.
  • FIGS. 13 to 19 the seal ring having an inclined portion on the outer peripheral surface of the ring is shown, but the seal ring of the second invention of the present application is not limited to this, and the seal ring having no inclined portion, that is, the corner portion. It can also be applied to seal rings that are not chamfered. Further, in FIGS. 13 to 19, a seal ring having a pair of stepped portions recessed in the ring radial direction at both ends in the ring axis direction is shown, but the seal ring of the second invention of the present application is not limited to this. It can also be applied to a seal ring that does not have the above-mentioned step portion.
  • Example A1 to Example A4 Using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin, seal rings having the respective shapes shown in FIG. 9 were produced by injection molding.
  • the dimensions of the seal rings of Examples A1 to A4 are an outer diameter of ⁇ 32 mm, an inner diameter of ⁇ 28 mm, a ring width (axial length) of 2.3 mm, and a ring thickness (radial length) of 2 mm.
  • the seal ring of each example are inclined portion forming with a connecting surface 9 and the inclined surface 7 and the stepped surface 8, the width W a of the stepped surface (see FIG. 2) is 0.05 mm, connection surface The width W b (see FIG. 2) is 0.08 mm.
  • Example A1 is 40 degrees
  • Example A2 is 30 degrees
  • Example A3 is 60 degrees
  • Example A4 is 20 degrees.
  • the inclined portion dimension W c (see FIG. 5) of each seal ring is 0.4 mm.
  • Comparative Example A1 A seal ring having the shape shown in FIG. 10 was produced by injection molding using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin.
  • the dimensions of this seal ring are an outer diameter of ⁇ 32 mm, an inner diameter of ⁇ 28 mm, a ring width of 2.3 mm, and a ring thickness of 2 mm.
  • Comparative Example A2 A seal ring having the shape shown in FIG. 10 was produced by injection molding using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin.
  • the dimensions of this seal ring are an outer diameter of ⁇ 32 mm, an inner diameter of ⁇ 28 mm, a ring width of 2.3 mm, and a ring thickness of 2 mm.
  • the seal ring of Comparative Example A2 has inclined portions formed on both sides of the outer peripheral surface.
  • the inclined portion has a shape in which a surface connected perpendicularly to the side surface of the ring and a surface connected perpendicularly to the outer peripheral surface of the ring are connected by an inclined surface.
  • the inclined portion dimension W c is 0.4 mm, and the width W a of the surface corresponding to the stepped surface of the embodiment is 0.2 mm.
  • each seal ring was inserted into the housing (tapered portion diameter R34.5 mm, tapered portion inclination angle 45 degrees) in a state of being mounted in the annular groove (depth h2.2 mm) of the rotating shaft.
  • the amount of eccentricity was changed and the ease of incorporation was evaluated in 4 stages (A to D).
  • the case where there was no galling was evaluated as A, the case where the galling was minute was evaluated as B, the case where the galling was small was evaluated as C, and the case where the galling was large was evaluated as D.
  • the results are shown in Table 1.
  • Comparative Example A2 is inclined portions are formed, the inclined angle portion Q is located in the tapered portion of the housing, but since the width W a of the stepped surface including the corner portion P is large, galling occurred.
  • FIG. 11 is a schematic view of the testing machine.
  • Seal rings 30 and 30' are attached to the annular groove of the mating shaft 28.
  • As the seal ring a seal ring before the above-mentioned assembly test was performed and a seal ring after the above-mentioned assembly test (eccentricity 0.7 mm) were used. Due to the rotation of the motor 31, the seal rings 30 and 30'are in sliding contact with the annular groove side wall of the mating shaft 28 and the inner peripheral surface of the shaft hole of the housing 29. Oil was pumped from the hydraulic unit 32 and supplied to the annular gap between the seal rings 30 and 30'.
  • the conditions of the oil leak test were a hydraulic pressure of 800 kPa, a rotation speed of 2000 rpm, an oil temperature of 80 ° C., and ATF was used as the oil.
  • the amount of oil leak (ml / min) was measured by this tester. The amount of oil leak is based on the value measured 5 minutes after the start of the test. The results are shown in Table 2.
  • Example B1 to Example B3 Using PEEK resin, seal rings of each shape shown in FIG. 20 were manufactured by injection molding.
  • the dimensions of the seal rings of Examples B1 to B3 are an outer diameter of ⁇ 43 mm, a ring width (axial length) of 2.3 mm, and a ring thickness (radial length) of 2 mm.
  • An inclined portion is formed on the outer peripheral surface of the seal ring of each embodiment, and a concave portion is formed on the inner peripheral surface.
  • the recess of Example B1 is an arc groove having a depth W d of 0.06 mm (3%) and a width W e of 0.5 mm (22%).
  • Recess of Example B2 is trapezoidal in C arrow view, the depth W d is 0.1 mm (5%), the circumferential length L a is 5.5 mm, the circumferential length L b is 6mm Is.
  • the recesses were formed at four locations separated in the ring circumferential direction.
  • the recess of Example B3 is an arc groove having a depth W d of 0.06 mm (3%) and a width W e of 0.9 mm (39%).
  • the ratio in parentheses indicates the ratio to the ring thickness or the ring width.
  • the product of the ratios is 66 in Example B1 and 117 in Example B3.
  • Comparative Example B1 to Comparative Example B2 Using PEEK resin, seal rings of each shape shown in FIG. 21 were manufactured by injection molding. The dimensions of the seal rings of Comparative Examples B1 to B2 are the same as those of Examples B1 to B3. Further, an inclined portion is formed on the outer peripheral surface of the seal rings of Comparative Examples B1 and B2. Comparative Example B1 does not have a recess serving as an undercut portion. Comparative Example B2 has a concave portion of a rectangular groove on the inner peripheral surface, the depth W d of which is 0.3 mm (15%), and the width W e is 0.5 mm (22%).
  • the position of the concave portion to be the undercut portion may be the ring side surface or the ring outer peripheral surface in addition to the inner peripheral surface of the ring, but in the case of the ring side surface, the anchor effect is strong even when protruding, and it is difficult to take out. Further, in the case of the outer peripheral surface of the ring, the molded body is restrained by the mold at the time of protrusion, so that the molded body does not protrude and continuous molding is difficult. Therefore, by forming the concave portion on the inner peripheral surface of the ring, as shown in FIG. 15, the molded body is not restrained at the time of taking out, and the taking out can be easily performed.
  • FIG. 23 is a schematic view of the testing machine.
  • Seal rings 75 and 75'in the shape corresponding to each test example were attached to the annular groove of the mating shaft 73.
  • Each dimension of this seal ring has an outer diameter of ⁇ 48 mm, a ring width (axial length) of 1.6 mm, and a ring thickness (radial length) of 1.5 mm, and is heat-fixed with the abutment closed after injection molding. Was done.
  • the above dimensions are the dimensions after heat fixing. With the mating shaft 73 fixed, the housing 74 was rotated by a motor (not shown).
  • the seal rings 75 and 75' are in sliding contact with the annular groove side wall of the mating shaft 73 and the inner peripheral surface of the shaft hole of the housing 74.
  • Oil was pumped from the hydraulic unit 76 and supplied to the annular gap between the seal rings 75 and 75'.
  • the conditions of the oil leak test were a hydraulic pressure of 2.0 MPa, a rotation speed of 2000 rpm, an oil temperature of 120 ° C., and ATF was used as the oil.
  • the amount of oil leak (ml / min) was measured by this tester. The results are shown in Table 4.
  • the seal rings of Examples B1 to B3 had a low oil leak amount, and there was almost no difference in the oil leak amount. As described above, since there is no sticking to the fixed side mold and it is easy to take out from the mold, deformation of the seal ring can be suppressed and low oil leak property is maintained. On the other hand, in Comparative Example B2, the amount of oil leak was large. It is considered that this seal ring was deformed when the product was taken out, so that the sealability with the side wall surface and the inner peripheral surface of the shaft hole was deteriorated. In addition, Comparative Example B1 shown in Table 4 was tested using a seal ring in which sticking occurred. It is probable that the sticking occurred, which caused the flatness of the side surface of the ring to deteriorate, leading to an increase in the amount of oil leak.
  • the seal rings according to Examples B1 to B3 are sealed by forming recesses on the inner peripheral surface of the seal ring and setting the depth of the recesses to 1% to 10% of the ring thickness. It is possible to easily remove the seal ring from the mold while ensuring the same performance and depression of the ring as the conventional seal ring, and to prevent sticking to the fixed side mold and deformation accompanying it. The result is a seal ring that maintains low oil leakage.
  • the seal rings of the first invention and the second invention of the present application can suppress the occurrence of galling at the time of assembling the housing or the occurrence of sticking at the time of opening the mold, and can maintain low oil leakage. It can be used as a seal ring that requires low oil leakage. In particular, it can be suitably used for improving fuel efficiency in hydraulic equipment such as ATs and CVTs in automobiles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Devices (AREA)

Abstract

Provided is a seal ring with which the generation of galling can be suppressed when incorporated in a housing, and which maintains a low-oil-leakage property. The seal ring 1 is mounted in an annular groove provided on a rotary shaft inserted into a shaft hole of a housing, makes sliding contact with a side wall surface of the annular groove on the non-sealed-fluid side, and contacts an inner circumferential surface of the shaft hole, thereby sealing an annular gap between the rotary shaft and the shaft hole. The seal ring is an injection-molded body of a resin composition, and is provided with a slanted section 6 on at least one end of an outer circumferential surface 3. The slanted section 6 has a slanted surface 7 connected to a ring side surface 4, and a step surface 8 connected in a substantially perpendicular manner to the outer circumferential surface 3, and the width Wa of the step surface 8 in the ring diameter direction is 0.1 mm or less.

Description

シールリングSeal ring
 本発明は、オートマチックトランスミッション(以下、ATと記す)や無段変速機(以下、CVTと記す)など、油圧作動油などの流体の流体圧を利用した機器において、該流体を封止するために使用されるシールリングに関する。 The present invention is for sealing a fluid in a device using the fluid pressure of a fluid such as hydraulic fluid, such as an automatic transmission (hereinafter referred to as AT) and a continuously variable transmission (hereinafter referred to as CVT). Regarding the seal ring used.
 AT、CVTなどの機器では、作動油を密封するためのオイルシールリングが要所に取り付けられている。例えば、ハウジングの軸孔に挿通される回転軸に設けられた対の離間した環状溝に取り付けられ、両環状溝間にある油路から供給される作動油を両シールリングの側面と内周面で受け、反対側の側面と外周面とで環状溝の側壁とハウジング内周面とをシールする。シールリングにおける各シール面は、環状溝の側壁、ハウジング内周面とそれぞれ摺動接触しつつ、両シールリング間の作動油の油圧を保持している。 In devices such as ATs and CVTs, oil seal rings for sealing hydraulic oil are installed at key points. For example, the hydraulic oil supplied from the oil passage between the two annular grooves, which is attached to a pair of separated annular grooves provided on the rotating shaft inserted into the shaft hole of the housing, is applied to the side surface and the inner peripheral surface of both seal rings. The side wall on the opposite side and the outer peripheral surface seal the side wall of the annular groove and the inner peripheral surface of the housing. Each sealing surface of the seal ring holds the hydraulic oil pressure between the two seal rings while sliding contact with the side wall of the annular groove and the inner peripheral surface of the housing.
 従来、このようなシールリングとして、射出成形によって得られる合成樹脂製のシールリングが知られている(例えば、特許文献1参照)。このシールリングは略矩形断面の環状体であり、周方向の一箇所に合い口を有する。合い口は、相補的に嵌合する一対の端部で構成され、例えば、一方の合い口は、シールリング内径面側に突き合わせ面と、外径面側に突き合わせ面から突出したリップおよび後退したポケットとを有し、他方の合い口は、上記突き合わせ面、上記リップおよびポケットと、相補的に嵌合するように形成された突き合わせ面、ポケットおよびリップとを有する複合ステップカットの合い口などが採用されている。 Conventionally, as such a seal ring, a seal ring made of synthetic resin obtained by injection molding is known (see, for example, Patent Document 1). This seal ring is an annular body having a substantially rectangular cross section, and has a joint at one position in the circumferential direction. The abutment is composed of a pair of complementaryly fitted ends, for example, one abutment has a butt surface on the inner diameter side of the seal ring and a lip protruding from the butt surface on the outer diameter side and retracting. The other abutment has a pocket, the abutment surface, the lip and the abutment surface formed to fit the pocket in a complementary manner, a composite step cut abutment having the pocket and the lip, and the like. It has been adopted.
 また、近年、環境問題などを背景として、自動車業界は低燃費車の開発を加速させている。その一環でアイドリングストップの需要増加に伴って低オイルリークのニーズが高まっている。例えば、特許文献1には、回転摺動フリクションの低減を図りつつ、リーク量の低減を図り、長期にわたって安定したシール性能を維持する品質性に優れる樹脂製のシールリングが記載されている。具体的な構成としては、リング側面に、環状溝の非密封流体側の側壁に線状に当接する線接触部が、合い口の一方側から他方側まで全周にわたって連続的に設けられ、合い口の一方側に設けられた線接触部と、該合い口の他方側に設けられた線接触部とが、径方向に離れて設けられている。また、特許文献1には、外周面とリング側面との角部が面取りされて傾斜面が形成されたシールリングが記載されている。 In recent years, the automobile industry has been accelerating the development of fuel-efficient vehicles against the background of environmental problems. As part of this, the need for low oil leaks is increasing as the demand for idling stop increases. For example, Patent Document 1 describes a resin seal ring having excellent quality that reduces the amount of leakage and maintains stable sealing performance for a long period of time while reducing rotational sliding friction. As a specific configuration, a linear contact portion that linearly abuts on the side wall of the annular groove on the unsealed fluid side is provided on the side surface of the ring continuously from one side to the other side of the abutment port. The line contact portion provided on one side of the mouth and the line contact portion provided on the other side of the mating mouth are provided apart in the radial direction. Further, Patent Document 1 describes a seal ring in which a corner portion between an outer peripheral surface and a side surface of the ring is chamfered to form an inclined surface.
特開平09-100919号公報Japanese Unexamined Patent Publication No. 09-001919 国際公開第2004/011827号International Publication No. 2004/011827
 射出成形によって得られた合成樹脂製のシールリングは、弾性変形により拡径して回転軸の環状溝に装着された後、ハウジング内径に組み付けられる。図12には、従来のシールリング41を装着した回転軸43をハウジング44内に組み付ける際の状態を示す。図12に示すように、回転軸43をハウジング44の一端側から挿入して組み付ける。ハウジング44の開口端部にはテーパ部44aが形成されている。しかしながら、偏芯などによってシールリング41の外周面がハウジング44のテーパ部44aよりも径方向外側に位置する場合がある。このような場合、シールリング41のリング側面42がハウジングの端面44bに接触することで、シールリング41にかじりなどの不具合が発生するおそれがある。 The synthetic resin seal ring obtained by injection molding is expanded in diameter by elastic deformation, mounted in the annular groove of the rotating shaft, and then assembled to the inner diameter of the housing. FIG. 12 shows a state when the rotating shaft 43 equipped with the conventional seal ring 41 is assembled in the housing 44. As shown in FIG. 12, the rotating shaft 43 is inserted from one end side of the housing 44 and assembled. A tapered portion 44a is formed at the open end of the housing 44. However, the outer peripheral surface of the seal ring 41 may be located radially outside the tapered portion 44a of the housing 44 due to eccentricity or the like. In such a case, the ring side surface 42 of the seal ring 41 may come into contact with the end surface 44b of the housing, which may cause a problem such as galling of the seal ring 41.
 本発明(下記の第1発明)は、このような事情に鑑みてなされたものであり、ハウジング組み付け時のかじりなどの発生を抑制でき、低オイルリーク性を維持できるシールリングを提供することを目的とする。 The present invention (the first invention below) has been made in view of such circumstances, and provides a seal ring capable of suppressing the occurrence of galling and the like at the time of assembling the housing and maintaining a low oil leak property. The purpose.
 一方で、外周面に傾斜面を備えるシールリングの成形金型の工程図を図24に示す。図24(a)は樹脂充填時を示し、図24(b)は型開き時を示し、図24(c)は製品取り出し時を示している。図24(a)に示すように、成形金型は、固定側金型81と、可動側金型82と、コアピン83とを有し、これらが衝合されてキャビティ84が形成される。溶融状態の樹脂組成物がキャビティ84に充填され、保圧を経た後、一定時間冷却して成形体85が得られる。成形体85の外周面からリング側面にわたって傾斜面85aが形成されている。 On the other hand, FIG. 24 shows a process diagram of a seal ring molding die having an inclined surface on the outer peripheral surface. FIG. 24 (a) shows the time when the resin is filled, FIG. 24 (b) shows the time when the mold is opened, and FIG. 24 (c) shows the time when the product is taken out. As shown in FIG. 24A, the molding die has a fixed-side mold 81, a movable-side mold 82, and a core pin 83, and these are abutted to form a cavity 84. The molten resin composition is filled in the cavity 84, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 85. An inclined surface 85a is formed from the outer peripheral surface of the molded body 85 to the side surface of the ring.
 続いて、型開きでは、固定側金型81に対して、可動側金型82およびコアピン83をX方向に可動させる。この際、本来であれば、コアピン83らの動きに合わせて成形体85もX方向に動くところ、成形体85が固定側金型81に吸着されて張り付く場合がある(図24(b)参照)。このような張り付きが生じると、シールリングが変形しやすくなり、例えば、リング側面の平面度が悪化し、オイルリークが多くなるおそれがある。また、張り付きが生じることで、後続の製品の取り出し(図24(c)参照)にも影響し、連続成形が困難になるおそれがある。このような張り付きは、金型の型割上、固定側金型81との接触面積が増加することから、傾斜面を有しないシールリングに比べて、傾斜面を有するシールリングの方がより発生しやすい。 Subsequently, in the mold opening, the movable side mold 82 and the core pin 83 are moved in the X direction with respect to the fixed side mold 81. At this time, normally, the molded body 85 also moves in the X direction in accordance with the movement of the core pins 83 and the like, but the molded body 85 may be attracted to and stick to the fixed side mold 81 (see FIG. 24 (b)). ). When such sticking occurs, the seal ring is easily deformed, for example, the flatness of the side surface of the ring is deteriorated, and oil leakage may increase. In addition, the occurrence of sticking affects the subsequent removal of the product (see FIG. 24C), which may make continuous molding difficult. Such sticking occurs more in the seal ring having an inclined surface than in the seal ring having no inclined surface because the contact area with the fixed side mold 81 increases due to the mold splitting of the mold. It's easy to do.
 本発明(下記の第2発明)は、このような事情に鑑みてなされたものであり、型開き時の張り付きの発生を抑制でき、低オイルリーク性を維持できるシールリングを提供することを目的とする。 The present invention (the second invention below) has been made in view of such circumstances, and an object of the present invention is to provide a seal ring capable of suppressing the occurrence of sticking at the time of mold opening and maintaining low oil leak property. And.
 本願の第1発明のシールリングは、ハウジングの軸孔に挿通される回転軸に設けられた環状溝に装着されて、該環状溝の非密封流体側の側壁面に摺動自在に接触し、かつ上記軸孔の内周面に接触して、これら回転軸と軸孔との間の環状隙間を封止するシールリングであって、上記シールリングは、樹脂組成物の射出成形体であり、外周面の少なくとも一端側に傾斜部を備え、上記傾斜部は、上記リング側面に接続した傾斜面と、上記外周面に対して略垂直に接続した段差面とを有し、リング径方向における上記段差面の幅が0.1mm以下であることを特徴とする。 The seal ring of the first invention of the present application is mounted on an annular groove provided in a rotating shaft inserted into a shaft hole of a housing, and slidably contacts a side wall surface on the unsealed fluid side of the annular groove. A seal ring that comes into contact with the inner peripheral surface of the shaft hole and seals an annular gap between the rotating shaft and the shaft hole. The seal ring is an injection-molded body of a resin composition. An inclined portion is provided on at least one end side of the outer peripheral surface, and the inclined portion has an inclined surface connected to the ring side surface and a stepped surface connected substantially perpendicular to the outer peripheral surface, and is described in the ring radial direction. The width of the stepped surface is 0.1 mm or less.
 上記傾斜部は、上記リング側面に対して略垂直で、上記傾斜面と上記段差面を繋ぐ接続面を有することを特徴とする。また、上記段差面は、上記傾斜面を延長した仮想平面よりもリング径方向の内側に位置することを特徴とする。 The inclined portion is substantially perpendicular to the side surface of the ring and has a connecting surface connecting the inclined surface and the stepped surface. Further, the stepped surface is characterized in that it is located inside in the ring radial direction with respect to the virtual plane on which the inclined surface is extended.
 上記シールリングの軸方向断面において、上記外周面に対する上記傾斜面の傾斜角度が20度~60度であることを特徴とする。 In the axial cross section of the seal ring, the inclination angle of the inclined surface with respect to the outer peripheral surface is 20 to 60 degrees.
 上記シールリングは、周方向の一部に複合ステップカットの合い口を有していることを特徴とする。 The seal ring is characterized by having a compound step cut opening in a part in the circumferential direction.
 上記樹脂組成物のベース樹脂が、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンサルファイド(PPS)樹脂、またはポリアミドイミド(PAI)樹脂であることを特徴とする。 The base resin of the above resin composition is a polyetherketone (PEK) resin, a polyetheretherketone (PEEK) resin, a polyphenylene sulfide (PPS) resin, or a polyamide-imide (PAI) resin.
 本願の第2発明のシールリングは、ハウジングの軸孔に挿通される回転軸に設けられた環状溝に装着されて、該環状溝の非密封流体側の側壁面に摺動自在に接触し、かつ上記軸孔の内周面に接触して、これら回転軸と軸孔との間の環状隙間を封止するシールリングであって、上記シールリングは、樹脂組成物の射出成形体であり、周方向の一部に合い口を備えるとともに、内周面にリング径方向に凹んだ凹部を有し、該凹部の深さがシールリングの径方向長さの1%~10%であることを特徴とする。 The seal ring of the second invention of the present application is mounted on an annular groove provided in a rotating shaft inserted into a shaft hole of a housing, and slidably contacts a side wall surface on the unsealed fluid side of the annular groove. A seal ring that comes into contact with the inner peripheral surface of the shaft hole and seals an annular gap between the rotating shaft and the shaft hole. The seal ring is an injection molded body of a resin composition. A joint is provided in a part in the circumferential direction, and a recess is provided on the inner peripheral surface in the radial direction of the ring, and the depth of the recess is 1% to 10% of the radial length of the seal ring. It is a feature.
 上記シールリングは、外周面の少なくとも一端側に傾斜部を備え、上記傾斜部は、リング側面に接続した傾斜面を有することを特徴とする。 The seal ring is characterized by having an inclined portion on at least one end side of the outer peripheral surface, and the inclined portion has an inclined surface connected to the side surface of the ring.
 上記傾斜部は、上記外周面に対して略垂直に接続した段差面を有し、リング径方向における上記段差面の幅が0.1mm以下であることを特徴とする。 The inclined portion has a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less.
 上記凹部のリング軸方向における幅が、上記シールリングの軸方向長さの2%~60%であることを特徴とする。 The width of the recess in the ring axis direction is 2% to 60% of the axial length of the seal ring.
 上記凹部は、リング周方向に沿って連続して設けられた凹溝であり、該凹溝のリング周方向における形成範囲は、上記シールリングの内周に対して15%以上であることを特徴とする。 The recess is a concave groove continuously provided along the ring circumferential direction, and the formation range of the concave groove in the ring circumferential direction is 15% or more with respect to the inner circumference of the seal ring. And.
 本願の第1発明のシールリングは、樹脂組成物の射出成形体であり、外周面の少なくとも一端側に傾斜部を備え、傾斜部は、リング側面に接続した傾斜面と、外周面に対して略垂直に接続した段差面とを有し、リング径方向における段差面の幅が0.1mm以下であるので、シールリングをハウジングに挿入して組み付ける際に、外径側端部の段差面が、ハウジングの端面に当たることを抑制でき、かじりの発生を防止できる。これにより、リング側面のシール面に打痕などの傷付きが防止されるため、シールリングの低オイルリーク性を維持できる。 The seal ring of the first invention of the present application is an injection-molded body of a resin composition, and has an inclined portion on at least one end side of the outer peripheral surface, and the inclined portion has an inclined portion connected to a ring side surface and an outer peripheral surface. Since it has a stepped surface connected substantially vertically and the width of the stepped surface in the ring radial direction is 0.1 mm or less, when the seal ring is inserted into the housing and assembled, the stepped surface at the outer diameter side end is formed. , It is possible to suppress the contact with the end face of the housing and prevent the occurrence of galling. As a result, scratches such as dents are prevented on the sealing surface on the side surface of the ring, so that the low oil leak property of the sealing ring can be maintained.
 傾斜部は、リング側面に対して略垂直で、傾斜面と段差面を繋ぐ接続面を有するので、シールリングの傾斜部をハウジングのテーパ部に当てて挿入する際に、段差面が、ハウジングの端面に当たることを一層抑制できる。さらに、段差面は、傾斜面を延長した仮想平面よりもリング径方向の内側に位置するので、仮想平面から段差面と外周面の境界部が突出せず、ハウジングの端面が当たった場合でもかじりの発生を防止できる。 The inclined portion is substantially perpendicular to the side surface of the ring and has a connecting surface connecting the inclined surface and the stepped surface. Therefore, when the inclined portion of the seal ring is applied to the tapered portion of the housing and inserted, the stepped surface is formed on the housing. It is possible to further suppress the contact with the end face. Further, since the stepped surface is located inside in the ring radial direction with respect to the virtual plane on which the inclined surface is extended, the boundary between the stepped surface and the outer peripheral surface does not protrude from the virtual plane, and even if the end surface of the housing hits, it is gnawing. Can be prevented.
 シールリングの軸方向断面において、外周面に対する傾斜面の傾斜角度が20度~60度であるので、回転軸に対してシールリングの偏芯が大きい場合や、ハウジングの端面が当たった場合でも、かじりの発生を抑制できる。 In the axial cross section of the seal ring, the inclination angle of the inclined surface with respect to the outer peripheral surface is 20 to 60 degrees, so even if the eccentricity of the seal ring is large with respect to the rotating shaft or the end surface of the housing hits. The occurrence of galling can be suppressed.
 シールリングは、周方向の一部に複合ステップカットの合い口を有しているので、オイルシール性が特に優れる。また、樹脂組成物のベース樹脂が、PEK樹脂、PEEK樹脂、PPS樹脂、またはPAI樹脂であるので、曲げ弾性率、耐熱性などに優れ、溝に組み込む際に拡径しても割れることがなく、シールする作動油の油温が高くなる場合でも使用できる。 The seal ring has a compound step-cut joint in a part of the circumferential direction, so the oil sealability is particularly excellent. Further, since the base resin of the resin composition is PEK resin, PEEK resin, PPS resin, or PAI resin, it has excellent flexural modulus, heat resistance, etc., and does not crack even if the diameter is increased when it is incorporated into the groove. , Can be used even when the temperature of the hydraulic oil to be sealed becomes high.
 本願の第2発明のシールリングは、樹脂組成物の射出成形体であり、周方向の一部に合い口を備えるとともに、内周面にリング径方向に凹んだ凹部を有し、該凹部の深さがシールリングの径方向長さの1%~10%であるので、型開き時において、成形体のコアピンなどへの追従性が向上し、固定側金型に対する張り付きを抑制できる。また、凹部の深さを所定範囲とすることで、シールリングの環状溝への落ち込みを防止しつつ、金型からの取り出し性を確保できる。これにより、型開き時の張り付きによって生じる変形を抑制でき、ひいては低オイルリーク性を維持できる。 The seal ring of the second invention of the present application is an injection molded product of a resin composition, and has a recess in a part in the circumferential direction and a recess in the inner peripheral surface in the ring radial direction. Since the depth is 1% to 10% of the radial length of the seal ring, the followability of the molded product to the core pin or the like is improved when the mold is opened, and sticking to the fixed-side mold can be suppressed. Further, by setting the depth of the recess within a predetermined range, it is possible to ensure the ease of removal from the mold while preventing the seal ring from falling into the annular groove. As a result, deformation caused by sticking at the time of mold opening can be suppressed, and thus low oil leak property can be maintained.
 シールリングのハウジングへの組み付け時には、リング側面がハウジングの端面に接触することで、シールリングにかじりなどの不具合が発生し、それによりシール性が影響を受けるおそれがある。この点、上記シールリングは、外周面の少なくとも一端側に傾斜部を備え、傾斜部は、リング側面に接続した傾斜面を有するので、角部が面取りされて、かじりの発生を抑制できる。一方、傾斜面の形成に伴って、型開き時の固定側金型への張り付きがより懸念されるが、内周面に上記凹部を有することから、張り付きを抑制できる。 When assembling the seal ring to the housing, the side surface of the ring comes into contact with the end surface of the housing, which may cause problems such as galling of the seal ring, which may affect the seal property. In this respect, since the seal ring is provided with an inclined portion on at least one end side of the outer peripheral surface and the inclined portion has an inclined surface connected to the side surface of the ring, the corner portion is chamfered and the occurrence of galling can be suppressed. On the other hand, with the formation of the inclined surface, there is more concern about sticking to the fixed-side mold when the mold is opened, but since the inner peripheral surface has the recess, sticking can be suppressed.
 上記傾斜部は、外周面に対して略垂直に接続した段差面を有し、リング径方向における段差面の幅が0.1mm以下であるので、ハウジングに組み付ける際に、外径側端部の段差面が、ハウジングの端面に当たることを抑制でき、かじりの発生を防止できる。これにより、リング側面のシール面に打痕などの傷付きが防止されるため、シールリングの低オイルリーク性の維持により効果である。また、段差面を設けることで、その延長線上に型割面を設定でき、シールリングの外径寸法のバラツキが抑えられる。 The inclined portion has a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less. It is possible to prevent the stepped surface from hitting the end surface of the housing and prevent the occurrence of galling. As a result, scratches such as dents are prevented on the sealing surface on the side surface of the ring, which is more effective in maintaining the low oil leakage property of the sealing ring. Further, by providing the stepped surface, the mold split surface can be set on the extension line thereof, and the variation in the outer diameter dimension of the seal ring can be suppressed.
 凹部のリング軸方向における幅が、シールリングの軸方向長さの2%~60%であるので、アンカー効果を発揮させつつ、シールリングの落ち込みを好適に防止できる。 Since the width of the concave portion in the ring axial direction is 2% to 60% of the axial length of the seal ring, it is possible to suitably prevent the seal ring from falling while exerting the anchor effect.
 凹部は、リング周方向に沿って連続して設けられた凹溝であり、該凹溝のリング周方向における形成範囲は、シールリングの内周に対して15%以上であるので、シールリングの略全体でアンカー効果を発揮させることができる。 The recess is a concave groove continuously provided along the ring circumferential direction, and the forming range of the concave groove in the ring circumferential direction is 15% or more with respect to the inner circumference of the seal ring. The anchor effect can be exerted almost as a whole.
本願の第1発明のシールリングの一例を示す平面図である。It is a top view which shows an example of the seal ring of 1st invention of this application. 図1のシールリングの断面図および一部拡大図である。FIG. 1 is a cross-sectional view and a partially enlarged view of the seal ring of FIG. 傾斜面と段差面の位置関係を説明するための図である。It is a figure for demonstrating the positional relationship between an inclined surface and a stepped surface. 本願の第1発明のシールリングの他の例の断面図および一部拡大図である。It is sectional drawing and the partially enlarged view of another example of the seal ring of 1st invention of this application. 図1のシールリングをハウジングに組み付ける際の状態を示す図である。It is a figure which shows the state at the time of assembling the seal ring of FIG. 1 to a housing. 図1のシールリングを環状溝に組み込んだ状態を示す断面図である。It is sectional drawing which shows the state which incorporated the seal ring of FIG. 1 into an annular groove. 射出成形時の成形金型の断面図である。It is sectional drawing of the molding die at the time of injection molding. 離型工程を示す断面図である。It is sectional drawing which shows the mold release process. 実施例A1~A4のシールリングの断面図である。It is sectional drawing of the seal ring of Examples A1 to A4. 比較例A1~A2のシールリングの断面図である。It is sectional drawing of the seal ring of Comparative Examples A1 and A2. シールリングのオイルリーク量の測定試験の概略図である。It is the schematic of the measurement test of the oil leak amount of a seal ring. 従来のシールリングをハウジングに組み付ける際の状態を示す図である。It is a figure which shows the state at the time of assembling the conventional seal ring to a housing. 本願の第2発明のシールリングの一例を示す平面図である。It is a top view which shows an example of the seal ring of the 2nd invention of this application. 図13のシールリングの断面図である。It is sectional drawing of the seal ring of FIG. 図13のシールリングの成形金型の工程図である。It is a process diagram of the molding die of the seal ring of FIG. 図13のシールリングを環状溝に組み込んだ状態を示す断面図である。It is sectional drawing which shows the state which incorporated the seal ring of FIG. 13 into an annular groove. 本願の第2発明のシールリングの他の例の断面図およびA矢視図である。2 is a cross-sectional view and a view taken along the line A of another example of the seal ring of the second invention of the present application. 本願の第2発明のシールリングの他の例の断面図である。It is sectional drawing of another example of the seal ring of the 2nd invention of this application. 本願の第2発明のシールリングの他の例の断面図および一部拡大図である。It is sectional drawing and the partially enlarged view of another example of the seal ring of 2nd invention of this application. 実施例B1~B3のシールリングの断面図などである。It is sectional drawing of the seal ring of Examples B1 to B3 and the like. 比較例B1~B2のシールリングの断面図である。It is sectional drawing of the seal ring of Comparative Examples B1 and B2. 比較例B2の取り出し工程を説明するための図である。It is a figure for demonstrating the taking-out process of the comparative example B2. シールリングのオイルリーク量の測定試験の概略図である。It is the schematic of the measurement test of the oil leak amount of a seal ring. 従来のシールリングの成形金型の工程図である。It is a process drawing of the molding die of the conventional seal ring.
 本願の第1発明のシールリングの一例を図1~図2に基づいて説明する。図1はシールリングの平面図であり、図2(a)はA-A線断面図であり、図2(b)はその一部拡大図である。図1に示すように、シールリング1は、金型を用いた射出成形によって形成される断面が略矩形の環状体である。シールリング1は、周方向の一箇所に合い口10を有するカットタイプのリングであり、弾性変形により拡径して環状溝に装着される。合い口10は一対の端部から構成される。一対の端部の形状については、ストレートカット、アングルカットなどにすることも可能であるが、オイルシール性に優れることから、図1に示す複合ステップカットを採用することが好ましい。 An example of the seal ring of the first invention of the present application will be described with reference to FIGS. 1 and 2. 1 is a plan view of the seal ring, FIG. 2A is a sectional view taken along line AA, and FIG. 2B is a partially enlarged view thereof. As shown in FIG. 1, the seal ring 1 is an annular body having a substantially rectangular cross section formed by injection molding using a mold. The seal ring 1 is a cut type ring having an opening 10 at one position in the circumferential direction, and is mounted in an annular groove by expanding its diameter by elastic deformation. The abutment 10 is composed of a pair of ends. The shape of the pair of ends can be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 1 because of its excellent oil sealability.
 シールリングの大きさ(外径φ、内径φ、リング幅(軸方向長さ)、リング厚み(径方向長さ)など)は、用途などによって適宜設定される。例えば、シールリングの内径φは9mm~75mmであり、外径φは13mm~80mmである。 The size of the seal ring (outer diameter φ, inner diameter φ, ring width (axial length), ring thickness (diameter length), etc.) is appropriately set depending on the application. For example, the inner diameter φ of the seal ring is 9 mm to 75 mm, and the outer diameter φ is 13 mm to 80 mm.
 シールリング1において、リング側面4が環状溝の側壁面との摺動面となる。図2(a)に示すように、リング内周面2とリング側面4との角部には、射出成形時において金型からの突出し部分となる段部5が設けられている。図2(a)では、段部5は両側に設けられている。また、リング外周面3とリング側面4との角部には、傾斜部6が設けられている。傾斜部6は、リング全周にわたり環状溝の側壁面との非接触部となる。なお、リング側面4の内径側端部には、凹部からなる複数の潤滑溝が周方向に離間して形成されていてもよい。 In the seal ring 1, the ring side surface 4 serves as a sliding surface with the side wall surface of the annular groove. As shown in FIG. 2A, a step portion 5 which is a protruding portion from the mold at the time of injection molding is provided at a corner portion between the ring inner peripheral surface 2 and the ring side surface 4. In FIG. 2A, the step portions 5 are provided on both sides. Further, an inclined portion 6 is provided at a corner portion between the ring outer peripheral surface 3 and the ring side surface 4. The inclined portion 6 is a non-contact portion with the side wall surface of the annular groove over the entire circumference of the ring. A plurality of lubricating grooves formed of recesses may be formed at the inner diameter side end of the ring side surface 4 so as to be separated from each other in the circumferential direction.
 傾斜部6についてさらに説明する。図2(b)に示すように、傾斜部6は、リング側面4に接続された傾斜面7と、リング外周面3に対して垂直に接続された段差面8と、接続面9とを有する。本願の第1発明において、段差面8は金型の型割によって形成される面(型割面とも言う)である。シールリング1に傾斜部6を設けた場合、リング側面4の延長線上に型割面を持ってくると、金型から離型する際に傾斜部6がアンダーカットとなってしまい、成形体を金型から取り出しにくい。そのため、本願の第1発明では、金型の型割面をシールリングの段差面8の延長線上に配置している。その上で、リング径方向における段差面8の幅Wを0.1mm以下としている。このように型割段差を小さくすることで、シールリングのかじりなどの不具合を防止している。特に、幅Wは0.01mm~0.05mmが好ましい。 The inclined portion 6 will be further described. As shown in FIG. 2B, the inclined portion 6 has an inclined surface 7 connected to the ring side surface 4, a stepped surface 8 connected perpendicularly to the ring outer peripheral surface 3, and a connecting surface 9. .. In the first invention of the present application, the stepped surface 8 is a surface (also referred to as a mold split surface) formed by mold splitting of a mold. When the sealing ring 1 is provided with the inclined portion 6, if the mold split surface is brought on the extension line of the ring side surface 4, the inclined portion 6 becomes undercut when the mold is released from the mold, and the molded body is formed. Difficult to remove from the mold. Therefore, in the first invention of the present application, the mold split surface of the mold is arranged on the extension line of the stepped surface 8 of the seal ring. On top of that, and with 0.1mm or less width W a of the stepped surface 8 of the ring radially. By reducing the mold split step in this way, problems such as galling of the seal ring are prevented. In particular, the width W a is preferably 0.01mm ~ 0.05mm.
 図2に示すシールリング1は、リング外周面3の両側に傾斜部を設けている。その両側の傾斜部のうち、一方の傾斜部(傾斜部6)が段差面8を有し、他方の傾斜部は傾斜面のみで構成されている。段差面8は、少なくとも一方側の傾斜部に形成すればよいが、両側の傾斜部に対称に形成してもよい。この場合、両側の傾斜部が段差面を有する構成となり、組み付け方向の依存性がなくなる。 The seal ring 1 shown in FIG. 2 is provided with inclined portions on both sides of the outer peripheral surface 3 of the ring. Of the inclined portions on both sides, one inclined portion (inclined portion 6) has a stepped surface 8, and the other inclined portion is composed of only an inclined surface. The stepped surface 8 may be formed on at least one inclined portion, but may be formed symmetrically on both inclined portions. In this case, the inclined portions on both sides have a stepped surface, and the dependence on the assembling direction is eliminated.
 傾斜面7の摺動面からの深さは、リング径方向の外側に向けて深くなり、リング軸方向には一定である。シールリング1の軸方向断面において、リング外周面3に対する傾斜面7の傾斜角α(図2(a)参照)は、例えば20度~60度である。傾斜角αは、好ましくは30度~50度であり、より好ましくは30度~45度であり、さらに好ましくは40度~45度である。傾斜角αが20度未満であると、シールリングの偏芯(環状溝からの飛び出し)が大きい場合にハウジングの端面に当たりやすくなり、かじりが発生するおそれがある。また、傾斜角αが60度を超えると、ハウジングの端面に当たった際にシールリングがスムーズにならわず、段差面8に引っかかり気味となり微小なかじりが発生するおそれがある。 The depth of the inclined surface 7 from the sliding surface becomes deeper toward the outside in the ring radial direction and is constant in the ring axis direction. In the axial cross section of the seal ring 1, the inclination angle α (see FIG. 2A) of the inclined surface 7 with respect to the outer peripheral surface 3 of the ring is, for example, 20 degrees to 60 degrees. The inclination angle α is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and further preferably 40 degrees to 45 degrees. If the inclination angle α is less than 20 degrees, it is easy to hit the end face of the housing when the eccentricity of the seal ring (protrusion from the annular groove) is large, and galling may occur. Further, if the inclination angle α exceeds 60 degrees, the seal ring does not smoothly line up when it hits the end surface of the housing, and it may be caught on the stepped surface 8 and minute galling may occur.
 また、図2のシールリング1では、傾斜面7と段差面8との間に、リング側面4に対し垂直な接続面9が設けられている。接続面9を設けることで、段差面8を傾斜部内に収めやすくなる。なお、接続面9は、リング側面4に対して略垂直な面であればよく、平面で構成されても曲面で構成されてもよい。リング軸方向における接続面9の幅Wは、特に限定されないが、段差面8の幅Wよりも大きいことが好ましい。具体的な寸法として、接続面9の幅Wは、例えば0.05mm~0.3mmであることが好ましい。より好ましくは0.05mm~0.1mmである。 Further, in the seal ring 1 of FIG. 2, a connecting surface 9 perpendicular to the ring side surface 4 is provided between the inclined surface 7 and the stepped surface 8. By providing the connecting surface 9, the stepped surface 8 can be easily accommodated in the inclined portion. The connecting surface 9 may be a surface substantially perpendicular to the ring side surface 4, and may be formed of a flat surface or a curved surface. The width W b of the connecting surface 9 in the ring axis direction is not particularly limited, but is preferably larger than the width W a of the stepped surface 8. As a specific dimension, the width W b of the connecting surface 9 is preferably, for example, 0.05 mm to 0.3 mm. More preferably, it is 0.05 mm to 0.1 mm.
 図3(a)では、傾斜面と段差面の位置関係を説明する。図3(a)に示すように、傾斜面7を延長した仮想平面をFとすると、段差面8は、仮想平面Fよりもリング径方向の内側に位置している。言い換えると、外周面3と段差面8との境界である角部Pは仮想平面Fから径方向外側に突出しない。このように段差面8を傾斜部の内側にすることで、ハウジングのテーパ部に傾斜面7を当てて押し込む際にも、段差面8(角部Pを含む)がハウジングの端面に当たることを抑制でき、かじりを防止できる。 FIG. 3A describes the positional relationship between the inclined surface and the stepped surface. As shown in FIG. 3A, assuming that the virtual plane extending the inclined surface 7 is F, the stepped surface 8 is located inside the virtual plane F in the ring radial direction. In other words, the corner portion P, which is the boundary between the outer peripheral surface 3 and the stepped surface 8, does not protrude outward in the radial direction from the virtual plane F. By setting the stepped surface 8 inside the inclined portion in this way, it is possible to prevent the stepped surface 8 (including the corner portion P) from hitting the end surface of the housing even when the inclined surface 7 is applied to the tapered portion of the housing and pushed in. It can prevent galling.
 図3(b)には、傾斜部の段差面の変形例を示している。図3(b)に示すように、段差面8’は外周面3に対して略垂直な曲面で形成され、外周面3と段差面8との境界部がR状に形成されている。段差面8’は、例えば、図3(a)に示す角部Pをバレル研磨などによって研磨することで得られる。境界部をR状とすることで、段差面8’のかじりを一層防止できる。なお、図3(b)の変形例においても、段差面8’は仮想平面Fよりもリング径方向の内側に位置している。 FIG. 3B shows an example of deformation of the stepped surface of the inclined portion. As shown in FIG. 3B, the stepped surface 8'is formed by a curved surface substantially perpendicular to the outer peripheral surface 3, and the boundary portion between the outer peripheral surface 3 and the stepped surface 8 is formed in an R shape. The stepped surface 8'is obtained, for example, by polishing the corner portion P shown in FIG. 3A by barrel polishing or the like. By forming the boundary portion into an R shape, galling of the stepped surface 8'can be further prevented. Also in the modified example of FIG. 3B, the stepped surface 8'is located inside the virtual plane F in the ring radial direction.
 本願の第1発明のシールリングの他の例を図4に示す。図4(a)はシールリングの断面図であり、図4(b)はその一部拡大図である。シールリング11は、図1のシールリング1と比べて、傾斜部の構成が異なる。具体的には、図4(b)に示すように、傾斜部16は、リング側面14に接続された傾斜面17と、リング外周面13に対して垂直に接続された段差面18とを有する。この形態においても、リング径方向における段差面18の幅Wは、0.1mm以下であり、好ましくは0.01mm~0.05mmである。なお、傾斜面17の傾斜角β(図4(a)参照)の好ましい範囲は、上述した傾斜面7の傾斜角αの範囲と同様である。 Another example of the seal ring of the first invention of the present application is shown in FIG. FIG. 4A is a cross-sectional view of the seal ring, and FIG. 4B is a partially enlarged view thereof. The seal ring 11 has a different structure of the inclined portion than the seal ring 1 of FIG. Specifically, as shown in FIG. 4B, the inclined portion 16 has an inclined surface 17 connected to the ring side surface 14 and a stepped surface 18 connected perpendicularly to the ring outer peripheral surface 13. .. Also in this embodiment, the width W a of the stepped surface 18 of the ring radial direction is at 0.1mm or less, preferably 0.01 mm ~ 0.05 mm. The preferable range of the inclination angle β of the inclined surface 17 (see FIG. 4A) is the same as the range of the inclined angle α of the inclined surface 7 described above.
 図5には、ハウジング組み付け時の状態を示す。図5では、シールリング1とハウジング22は断面を示している。シールリング1は、まず治具(図示省略)を用いて拡径されて、回転軸21の環状溝21aに装着される。シールリング1を装着した状態で回転軸21をハウジング22に挿入して組み付ける。図5に示すように、ハウジングの開口端部には、傾斜面(例えば傾斜角30度~50度)からなるテーパ部22aが施されている。しかし、ハウジングの壁部の肉厚が小さい場合や、シールリングに干渉しない程度に十分なテーパが形成できない場合には、偏芯によってシールリングの外周面がハウジングのテーパ部よりも外側に位置することがある。そのような場合、シールリングのリング側面がハウジングの端面に当たることでかじりが発生するおそれがある(図12参照)。 FIG. 5 shows the state when the housing is assembled. In FIG. 5, the seal ring 1 and the housing 22 show a cross section. The seal ring 1 is first expanded in diameter using a jig (not shown) and mounted in the annular groove 21a of the rotating shaft 21. With the seal ring 1 attached, the rotating shaft 21 is inserted into the housing 22 and assembled. As shown in FIG. 5, the open end of the housing is provided with a tapered portion 22a formed of an inclined surface (for example, an inclined angle of 30 to 50 degrees). However, if the wall thickness of the housing is small, or if a sufficient taper cannot be formed so as not to interfere with the seal ring, the outer peripheral surface of the seal ring is located outside the taper of the housing due to eccentricity. Sometimes. In such a case, galling may occur when the ring side surface of the seal ring hits the end surface of the housing (see FIG. 12).
 これに対して、本願の第1発明に係るシールリングは、図5(b)に示すように、リング外周面3の一端側に、上述した傾斜面7および段差面8を有する傾斜部が形成されているので、シールリングの偏芯量が大きくなった場合であっても、リング側面4と傾斜面7との境界部である傾斜角部6aを、ハウジング22のテーパ部22a内に収めやすくなる。すなわち、傾斜角部6aをテーパ部径Rの内側に位置させやすくできる。さらに、段差面8の幅が小さく設定されているので、ハウジング22の端面22bが段差面8に当たることを抑制でき、かじりの発生を防止できる。 On the other hand, in the seal ring according to the first invention of the present application, as shown in FIG. 5B, an inclined portion having the above-mentioned inclined surface 7 and stepped surface 8 is formed on one end side of the outer peripheral surface 3 of the ring. Therefore, even when the amount of eccentricity of the seal ring becomes large, the inclined angle portion 6a, which is the boundary portion between the ring side surface 4 and the inclined surface 7, can be easily accommodated in the tapered portion 22a of the housing 22. Become. That is, the inclined angle portion 6a can be easily positioned inside the tapered portion diameter R. Further, since the width of the stepped surface 8 is set to be small, it is possible to prevent the end surface 22b of the housing 22 from hitting the stepped surface 8 and prevent the occurrence of galling.
 シールリング1の傾斜角部6aを、ハウジング22のテーパ部22a内に収めるために、シールリング1の傾斜部寸法Wが設定される。傾斜部寸法Wは、リング径方向におけるリング外周面3から傾斜角部6aまでの距離であり、シールリング1の自由状態の外径φ、リング厚みT、環状溝の深さh、ハウジングのテーパ部径R、組み付け時の落込みによる最大偏芯量によって設定される。リング厚みTは、リング外周面3からリング内周面2までの距離であり、環状溝の深さhは、回転軸21の外周端面から環状溝21aの底部までの径方向長さであり、ハウジングのテーパ部径Rは、ハウジング22のテーパ部22aの外周径である。ここで、最大偏芯量は、シールリングが環状溝に落ち込んだ際に、反対側の部分が環状溝からはみ出す距離の最大値である。最大偏芯量は、各寸法(外径φ、T、h、R)が変化する場合にあっては、外径φの最大値、リング厚みTの最小値、環状溝の深さhの最小値、テーパ部径Rの最小値を用いて設定される。このように設定することで、シールリング1の最大偏芯時であっても、シールリング1の傾斜角部6aをハウジング22のテーパ部22a内に位置させることができ、シールリングをスムーズに挿入できる。 In order to accommodate the inclined portion 6a of the seal ring 1 in the tapered portion 22a of the housing 22, the inclined portion dimension W c of the seal ring 1 is set. The inclined portion dimension W c is the distance from the ring outer peripheral surface 3 to the inclined angle portion 6a in the ring radial direction, and is the free outer diameter φ of the seal ring 1, the ring thickness T, the depth h of the annular groove, and the housing. It is set by the taper diameter R and the maximum amount of eccentricity due to the drop during assembly. The ring thickness T is the distance from the outer peripheral surface 3 of the ring to the inner peripheral surface 2 of the ring, and the depth h of the annular groove is the radial length from the outer peripheral end surface of the rotating shaft 21 to the bottom of the annular groove 21a. The tapered portion diameter R of the housing is the outer peripheral diameter of the tapered portion 22a of the housing 22. Here, the maximum eccentricity amount is the maximum value of the distance at which the opposite portion protrudes from the annular groove when the seal ring falls into the annular groove. The maximum eccentricity is the maximum value of the outer diameter φ, the minimum value of the ring thickness T, and the minimum value of the annular groove depth h when each dimension (outer diameter φ, T, h, R) changes. It is set using the minimum value of the value and the taper diameter R. By setting in this way, the inclined angle portion 6a of the seal ring 1 can be positioned in the tapered portion 22a of the housing 22 even when the seal ring 1 is maximally eccentric, and the seal ring can be smoothly inserted. it can.
 シールリングの使用形態の概略を図6に基づいて説明する。シールリング1は、ハウジングの軸孔22cに挿通される回転軸21に設けられた環状溝21aに装着される。図中の矢印が作動油からの圧力が加わる方向であり、図中右側が非密封流体側である。シールリング1は、そのリング側面4で、環状溝21aの非密封流体側の側壁面21bに摺動自在に接触している。また、その外周面3で軸孔22cの内周面に接触している。このシール構造により、回転軸21と軸孔22cとの間の環状隙間を封止している。また、作動油は用途に応じた種類が適宜用いられる。例えば、油温として-30~150℃程度、油圧として0~3.0MPa程度、回転軸の回転数として0~7000rpm程度の条件で使用される。 The outline of the usage pattern of the seal ring will be described with reference to FIG. The seal ring 1 is mounted in an annular groove 21a provided in the rotating shaft 21 inserted into the shaft hole 22c of the housing. The arrow in the figure is the direction in which the pressure from the hydraulic oil is applied, and the right side in the figure is the unsealed fluid side. The seal ring 1 is slidably in contact with the side wall surface 21b on the unsealed fluid side of the annular groove 21a on the ring side surface 4. Further, the outer peripheral surface 3 is in contact with the inner peripheral surface of the shaft hole 22c. This sealing structure seals an annular gap between the rotating shaft 21 and the shaft hole 22c. Further, the type of hydraulic oil is appropriately used according to the intended use. For example, it is used under the conditions that the oil temperature is about −30 to 150 ° C., the oil pressure is about 0 to 3.0 MPa, and the rotation speed of the rotating shaft is about 0 to 7000 rpm.
 本願の第1発明のシールリングは、樹脂組成物の射出成形体である。樹脂組成物のベース樹脂としては、射出成形可能な合成樹脂であれば任意のものを使用できる。例えば、熱可塑性ポリイミド樹脂、PEK樹脂、PEEK樹脂、PPS樹脂、PAI樹脂、ポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレン(PE)樹脂、ポリアセタール(POM)樹脂、フェノール(PF)樹脂などが挙げられる。なお、これらの樹脂は単独で使用しても、2種類以上混合したポリマーアロイとしてもよい。これらの樹脂の中でも特に、摩擦摩耗特性、曲げ弾性率、耐熱性、摺動性などに優れることから、PEK樹脂、PEEK樹脂、PPS樹脂、またはPAI樹脂をベース樹脂として用いることが好ましい。これらの樹脂は高い弾性率を有し、環状溝に組み込む際に拡径しても割れ難く、シールする作動油の油温が高くなる場合でも使用でき、また、ソルベントクラックの心配もない。 The seal ring of the first invention of the present application is an injection molded product of a resin composition. As the base resin of the resin composition, any synthetic resin that can be injection-molded can be used. For example, thermoplastic polyimide resin, PEK resin, PEEK resin, PPS resin, PAI resin, polyamide (PA) resin, polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyethylene (PE) resin, polyacetal (POM). Examples thereof include resins and phenol (PF) resins. These resins may be used alone or as a polymer alloy in which two or more kinds are mixed. Among these resins, PEK resin, PEEK resin, PPS resin, or PAI resin is preferably used as the base resin because it is excellent in frictional wear characteristics, flexural modulus, heat resistance, slidability, and the like. These resins have a high elastic modulus, are hard to crack even if the diameter is increased when they are incorporated into the annular groove, can be used even when the oil temperature of the hydraulic oil to be sealed becomes high, and there is no concern about solvent cracks.
 また、必要に応じて上記ベース樹脂に、炭素繊維、ガラス繊維、アラミド繊維などの繊維状補強材、球状シリカや球状炭素などの球状充填材、マイカやタルクなどの鱗状補強材、チタン酸カリウムウィスカなどの微小繊維補強材を配合できる。また、ポリテトラフルオロエチレン(PTFE)樹脂、グラファイト、二硫化モリブデンなどの固体潤滑剤、リン酸カルシウム、硫酸カルシウムなどの摺動補強材、カーボンブラックなどの顔料も配合できる。これらは単独で配合することも、組み合せて配合することもできる。 In addition, if necessary, the above-mentioned base resin can be used as a fibrous reinforcing material such as carbon fiber, glass fiber, or aramid fiber, a spherical filler such as spherical silica or spherical carbon, a scale-like reinforcing material such as mica or talc, or potassium titanate whisker. Fine fiber reinforcing materials such as can be blended. Further, a polytetrafluoroethylene (PTFE) resin, a solid lubricant such as graphite and molybdenum disulfide, a sliding reinforcing material such as calcium phosphate and calcium sulfate, and a pigment such as carbon black can also be blended. These can be blended alone or in combination.
 以上の諸原材料を溶融混練して成形用ペレットとし、これを用いて射出成形法により所定形状に成形する。図7には成形金型の断面図を示す。図7に示すように、成形金型は、固定側金型23と、可動側金型24と、コアピン25とを有する。成形金型において、衝合面PLで衝合された固定側金型23および可動側金型24と、コアピン25によってキャビティ26が形成される。溶融状態の樹脂組成物がキャビティ26に充填され、保圧を経た後、一定時間冷却して成形体27が得られる。成形体27の段差面27aを含む傾斜部は、固定側金型23によって形成される。衝合面PLにおいて、固定側金型23の端部(シールリング外周方向側のPL面)は、可動側金型24の端部(シールリング外周方向側のPL面)よりもキャビティ26に向けて突出しており、この端部の位置の違いによって型割段差(段差面27a)が生じる。 The above raw materials are melt-kneaded into pellets for molding, which are then molded into a predetermined shape by an injection molding method. FIG. 7 shows a cross-sectional view of the molding die. As shown in FIG. 7, the molding die has a fixed side mold 23, a movable side mold 24, and a core pin 25. In the molding die, the cavity 26 is formed by the fixed side mold 23 and the movable side mold 24, which are abutted by the abutting surface PL, and the core pin 25. The molten resin composition is filled in the cavity 26, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 27. The inclined portion of the molded body 27 including the stepped surface 27a is formed by the fixed-side mold 23. In the abutting surface PL, the end portion of the fixed side mold 23 (PL surface on the outer peripheral direction side of the seal ring) is directed toward the cavity 26 rather than the end portion of the movable side mold 24 (PL surface on the outer peripheral direction side of the seal ring). Due to the difference in the position of the end portion, a mold split step (step surface 27a) is generated.
 続いて、固定側金型と可動側金型を型開きして成形体を取り出す。図8では、離型工程を段階的に示している。図8(a)では、固定側金型23と可動側金型24が衝合面で型割される。型開きの後、コアピン25が固定側金型23に向けて前進することで、成形体27が可動側金型24から離型する(図8(b))。コアピン25の段部25aによって、シールリングの内径側端部の段部が形成される。図8(c)に示すように、コアピン25がさらに前進することで、成形体27が成形金型から取り出される。取り出された成形体27の合い口は、一対の端部が相互に離れた状態となっているが、熱固定などによって閉じられ、図1に示すようなシールリング1が得られる。 Subsequently, the fixed side mold and the movable side mold are opened and the molded body is taken out. In FIG. 8, the mold removal process is shown step by step. In FIG. 8A, the fixed-side mold 23 and the movable-side mold 24 are molded at the abutting surface. After the mold is opened, the core pin 25 advances toward the fixed-side mold 23, so that the molded body 27 is separated from the movable-side mold 24 (FIG. 8 (b)). The step portion 25a of the core pin 25 forms a step portion of the inner diameter side end portion of the seal ring. As shown in FIG. 8 (c), the molded body 27 is taken out from the molding die by further advancing the core pin 25. The abutment of the taken-out molded body 27 has a pair of ends separated from each other, but is closed by heat fixing or the like to obtain a seal ring 1 as shown in FIG.
 本願の第2発明のシールリングの一例を図13~図14に基づいて説明する。図13はシールリングの平面図であり、図14はB-B線断面図である。図13に示すように、シールリング51は、金型を用いた射出成形によって形成され、断面が略矩形の環状体である。シールリング51は、周方向の一箇所に合い口60を有するカットタイプのリングであり、弾性変形により拡径して環状溝に装着される。合い口60は一対の端部から構成される。一対の端部の形状については、ストレートカット、アングルカットなどにすることも可能であるが、オイルシール性に優れることから、図13に示す複合ステップカットを採用することが好ましい。 An example of the seal ring of the second invention of the present application will be described with reference to FIGS. 13 to 14. FIG. 13 is a plan view of the seal ring, and FIG. 14 is a sectional view taken along line BB. As shown in FIG. 13, the seal ring 51 is an annular body formed by injection molding using a mold and having a substantially rectangular cross section. The seal ring 51 is a cut type ring having an opening 60 at one position in the circumferential direction, and is mounted in an annular groove by expanding its diameter by elastic deformation. The abutment 60 is composed of a pair of ends. The shape of the pair of ends can be straight cut, angle cut, or the like, but it is preferable to adopt the composite step cut shown in FIG. 13 because of its excellent oil sealability.
 シールリングの大きさ(外径φ、内径φ、リング幅W(軸方向長さ)、リング厚みT(径方向長さ)など)は、用途などによって適宜設定される。例えば、シールリングの内径φは9mm~75mmであり、外径φは13mm~80mmである。 The size of the seal ring (outer diameter φ, inner diameter φ, ring width W (axial length), ring thickness T (diameter length), etc.) is appropriately set depending on the application and the like. For example, the inner diameter φ of the seal ring is 9 mm to 75 mm, and the outer diameter φ is 13 mm to 80 mm.
 シールリング51において、リング側面54または54’が環状溝の側壁面との摺動面となる。図14に示すように、リング内周面52とリング側面54、54’との角部には、射出成形時において金型からの突出し部分となる段部55、55’が設けられている。図14では、段部55、55’はリング軸方向の両端部に設けられ、リング径方向に凹んだ部分である。また、リング外周面53とリング側面54、54’との両側の角部には、傾斜面からなる傾斜部56、56’が設けられている。傾斜部56、56’は、リング全周にわたって設けられ、環状溝の側壁面との非接触部となる。なお、リング側面54、54’の内径側端部には、凹部からなる複数の潤滑溝が周方向に離間して形成されていてもよい。 In the seal ring 51, the ring side surface 54 or 54'is a sliding surface with the side wall surface of the annular groove. As shown in FIG. 14, at the corners of the inner peripheral surface 52 of the ring and the side surfaces 54, 54'of the ring, stepped portions 55, 55', which are protruding portions from the mold during injection molding, are provided. In FIG. 14, the step portions 55 and 55'are provided at both ends in the ring axial direction and are recessed in the ring radial direction. Further, inclined portions 56, 56'composed of inclined surfaces are provided at the corners on both sides of the ring outer peripheral surface 53 and the ring side surfaces 54, 54'. The inclined portions 56 and 56'are provided over the entire circumference of the ring and serve as non-contact portions with the side wall surface of the annular groove. It should be noted that a plurality of lubricating grooves formed of recesses may be formed at the inner diameter side ends of the ring side surfaces 54 and 54'distance in the circumferential direction.
 傾斜部56、56’における傾斜面の摺動面(リング側面54または54’)からの深さは、リング径方向の外側に向けて深くなり、リング軸方向には一定である。シールリング51の軸方向断面において、リング外周面53に対する傾斜面の傾斜角γは、例えば20度~60度である。傾斜角γは、好ましくは30度~50度であり、より好ましくは30度~45度であり、さらに好ましくは40度~45度である。傾斜角γが20度未満であると、ハウジングへの組み付け時において、シールリングの偏芯(環状溝からの飛び出し)が大きい場合にハウジングの端面に当たりやすくなり、かじりが発生するおそれがある。また、傾斜角γが60度を超えると、ハウジングの端面に当たった際にシールリングがスムーズに誘導されないおそれがある。 The depth of the inclined surface at the inclined portions 56, 56'from the sliding surface (ring side surface 54 or 54') becomes deeper toward the outside in the ring radial direction and is constant in the ring axial direction. In the axial cross section of the seal ring 51, the inclination angle γ of the inclined surface with respect to the outer peripheral surface 53 of the ring is, for example, 20 degrees to 60 degrees. The inclination angle γ is preferably 30 degrees to 50 degrees, more preferably 30 degrees to 45 degrees, and further preferably 40 degrees to 45 degrees. If the inclination angle γ is less than 20 degrees, when the seal ring is assembled to the housing, if the eccentricity of the seal ring (protruding from the annular groove) is large, it is likely to hit the end face of the housing, and galling may occur. Further, if the inclination angle γ exceeds 60 degrees, the seal ring may not be smoothly guided when it hits the end face of the housing.
 図14に示すように、シールリング51は、一対の段部55、55’の間のリング内周面52にリング径方向に凹んだ凹部57を有している。凹部57は、後述の図15で示すように、成形金型の型開き時におけるアンダーカット部である。アンダーカット部は、金型(例えばコアピン)との係り代、つまり金型に引っ掛かる部分である。図14において、凹部57は、リング周方向に沿って連続して形成された断面円弧状の円弧溝である。この円弧溝は、両側の段部55、55’には開口しておらず、リング内周面内で閉じた凹溝となっている。なお、凹溝の形状は特に限定されず、例えば、断面矩形の角溝や断面三角形の三角溝などにしてもよい。 As shown in FIG. 14, the seal ring 51 has a recess 57 recessed in the ring radial direction on the inner peripheral surface 52 of the ring between the pair of step portions 55 and 55'. The recess 57 is an undercut portion when the molding die is opened, as shown in FIG. 15 described later. The undercut portion is a portion that is engaged with the mold (for example, a core pin), that is, a portion that is hooked on the mold. In FIG. 14, the recess 57 is an arc groove having an arcuate cross section formed continuously along the circumferential direction of the ring. This arc groove is not open to the step portions 55 and 55'on both sides, but is a concave groove closed in the inner peripheral surface of the ring. The shape of the concave groove is not particularly limited, and may be, for example, a square groove having a rectangular cross section or a triangular groove having a triangular cross section.
 シールリング51の凹部57の深さWは、リング厚みTの1%~10%である。リング厚みTは、シールリング1においてリング径方向の最大厚みをいい、図14では、リング内周面52とリング外周面53との間の長さである。凹部57の深さWは、凹部の最も凹んだ地点から、凹部が形成されていないと仮定した場合のリング内周面の仮想面fに降ろした垂線の長さをいう。深さWがリング厚みTの1%未満の場合、型開き時にアンカー効果が得られにくく、張り付きが発生するおそれがある。また、深さWがリング厚みTの10%を超えると、金型との引っ掛かりが強くなり、最終的に金型からの取り出しが困難になるおそれがある。深さWは、好ましくはリング厚みTの3%~5%である。 The depth W d of the recess 57 of the seal ring 51 is 1% to 10% of the ring thickness T. The ring thickness T refers to the maximum thickness in the ring radial direction of the seal ring 1, and is the length between the inner peripheral surface of the ring 52 and the outer peripheral surface of the ring 53 in FIG. The depth W d of the recess 57 refers to the length of a perpendicular line drawn from the most recessed point of the recess to the virtual surface f of the inner peripheral surface of the ring assuming that the recess is not formed. If the depth W d is less than 1% of the ring thickness T, it is difficult to obtain the anchor effect when the mold is opened, and sticking may occur. Further, if the depth W d exceeds 10% of the ring thickness T, the ring becomes more likely to be caught by the mold, and it may be difficult to finally remove the ring from the mold. The depth W d is preferably 3% to 5% of the ring thickness T.
 また、別の観点では、凹部57の深さWは、段部55、55’の深さ(径方向長さ)よりも浅いことが好ましい。また、凹部57の深さWの具体的な数値は0.05mm~0.2mm程度である。なお、段部55、55’は金型からの突出し部分につき、突出し時のシールリングの変形防止のため、その段部の深さ(径方向長さ)はリング厚みTの10%を超えて設けられている。 From another viewpoint, it is preferable that the depth W d of the recess 57 is shallower than the depth (diameter length) of the step portions 55 and 55'. Further, specific values of the depth W d of the recess 57 is about 0.05 mm ~ 0.2 mm. The stepped portions 55 and 55'are protruding from the mold, and the depth (diameter length) of the stepped portion exceeds 10% of the ring thickness T in order to prevent deformation of the seal ring at the time of protrusion. It is provided.
 凹部57のリング軸方向における幅Wは、特に限定されない。ただし、幅Wが小さいと、型開き時にアンカー効果が得られにくく張り付きが発生するおそれがあり、幅Wが大きいと、例えば溶融粘度が高い材料を用いた場合にショートショットが発生する場合がある。そのため、凹部57の幅Wは、リング幅Wの2%~60%であることが好ましく、5%~40%であることがより好ましい。リング幅Wは、シールリング1においてリング軸方向の最大幅をいい、図14では、一方のリング側面54と他方のリング側面54’との間の長さである。幅Wは、リング内周面52に対して開口した部分のリング軸方向の幅である。また、凹部57は、深さWのリング厚みTに対する割合(%)と、幅Wのリング幅Wに対する割合(%)との積が10以上、500以下の範囲となることが望ましい。10未満であれば型開き時にアンカー効果が得られにくく張り付きが発生するおそれがあり、500を超えると溶融粘度が高い材料を用いた場合にショートショットが発生する場合がある。 Width W e in the ring axial direction of the recess 57 is not particularly limited. However, if the width W e is small, there is a possibility that sticking difficult to obtain anchor effect at the time of mold opening occurs, if the short shot occurs in the case of using the width W e is large, for example, a high melt viscosity material There is. Therefore, the width W e of the concave portion 57 is preferably from 2% to 60% of the ring width W, and more preferably 5% to 40%. The ring width W refers to the maximum width in the ring axis direction of the seal ring 1, and in FIG. 14, it is the length between one ring side surface 54 and the other ring side surface 54'. Width W e is a ring axial width of a portion open to the ring inner peripheral surface 52. Further, it is desirable that the product of the ratio (%) of the depth W d to the ring thickness T and the ratio (%) of the width W e to the ring width W of the recess 57 is in the range of 10 or more and 500 or less. If it is less than 10, the anchor effect is difficult to obtain at the time of mold opening and sticking may occur, and if it exceeds 500, a short shot may occur when a material having a high melt viscosity is used.
 凹部57のリング周方向における形成範囲は、シールリング51の内周に対して15%以上であることが好ましく、50%以上がより好ましい。凹部57の形成範囲を15%以上とすることでアンカー効果が得られやすい。一方、合い口60(図13参照)の周辺、例えば合い口60を中心にしたリング周方向±10°の範囲の部分には凹部を形成しないことが好ましい。凹部57のリング周方向における形成範囲の上限は、例えば90%であり、80%が好ましい。 The formation range of the recess 57 in the ring circumferential direction is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51. Anchor effect can be easily obtained by setting the forming range of the recess 57 to 15% or more. On the other hand, it is preferable not to form a recess in the periphery of the abutment 60 (see FIG. 13), for example, a portion within a range of ± 10 ° in the ring circumferential direction about the abutment 60. The upper limit of the forming range of the recess 57 in the ring circumferential direction is, for example, 90%, preferably 80%.
 図14では、凹部として、周方向に沿って連続して形成された凹溝を示したが、該凹部がリング周方向で分割された複数(例えば2本)の凹溝で構成されていてもよい。この場合、複数の凹溝のリング周方向における形成範囲(各凹溝の合計)は、シールリング51の内周に対して15%以上であることが好ましく、50%以上がより好ましい。その上限は、例えば90%であり、80%が好ましい。 In FIG. 14, a concave groove continuously formed along the circumferential direction is shown as the concave portion, but even if the concave portion is composed of a plurality of (for example, two) concave grooves divided in the circumferential direction of the ring. Good. In this case, the formation range (total of each concave groove) in the ring circumferential direction of the plurality of concave grooves is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51. The upper limit is, for example, 90%, preferably 80%.
 また、本願の第2発明のシールリングの凹部は凹溝に限らず、孔で構成されていてもよい。この場合、例えば、複数の孔がリング周方向に互いに離間して配列された形状にすることができる。孔の深さ、リング軸方向における幅、リング周方向における形成範囲(複数の孔の場合はその合計)については、上述の各数値範囲を採用できる。 Further, the concave portion of the seal ring of the second invention of the present application is not limited to the concave groove, and may be composed of holes. In this case, for example, a plurality of holes can be arranged so as to be separated from each other in the circumferential direction of the ring. Each of the above numerical ranges can be adopted for the hole depth, the width in the ring axis direction, and the formation range in the ring circumferential direction (in the case of a plurality of holes, the total).
 本願の第2発明のシールリングは、樹脂組成物の射出成形体である。樹脂組成物のベース樹脂としては、射出成形可能な合成樹脂であれば任意のものを使用できる。例えば、熱可塑性ポリイミド樹脂、PEK樹脂、PEEK樹脂、PPS樹脂、PAI樹脂、PA樹脂、PBT樹脂、PET樹脂、PE樹脂、POM樹脂、PF樹脂などが挙げられる。なお、これらの樹脂は単独で使用しても、2種類以上混合したポリマーアロイとしてもよい。これらの樹脂の中でも特に、摩擦摩耗特性、曲げ弾性率、耐熱性、摺動性などに優れることから、PEK樹脂、PEEK樹脂、PPS樹脂、またはPAI樹脂をベース樹脂として用いることが好ましい。これらの樹脂は高い弾性率を有し、環状溝に組み込む際に拡径しても割れ難く、シールする作動油の油温が高くなる場合でも使用でき、また、ソルベントクラックの心配もない。 The seal ring of the second invention of the present application is an injection molded product of a resin composition. As the base resin of the resin composition, any synthetic resin that can be injection-molded can be used. For example, thermoplastic polyimide resin, PEK resin, PEEK resin, PPS resin, PAI resin, PA resin, PBT resin, PET resin, PE resin, POM resin, PF resin and the like can be mentioned. These resins may be used alone or as a polymer alloy in which two or more kinds are mixed. Among these resins, PEK resin, PEEK resin, PPS resin, or PAI resin is preferably used as the base resin because it is excellent in frictional wear characteristics, flexural modulus, heat resistance, slidability, and the like. These resins have a high elastic modulus, are hard to crack even if the diameter is increased when they are incorporated into the annular groove, can be used even when the oil temperature of the hydraulic oil to be sealed becomes high, and there is no concern about solvent cracks.
 また、必要に応じて上記ベース樹脂に、炭素繊維、ガラス繊維、アラミド繊維などの繊維状補強材、球状シリカや球状炭素などの球状充填材、マイカやタルクなどの鱗状補強材、チタン酸カリウムウィスカなどの微小繊維補強材を配合できる。また、PTFE樹脂、グラファイト、二硫化モリブデンなどの固体潤滑剤、リン酸カルシウム、硫酸カルシウムなどの摺動補強材、カーボンブラックなどの顔料も配合できる。これらは単独で配合することも、組み合せて配合することもできる。 In addition, if necessary, the above-mentioned base resin can be used as a fibrous reinforcing material such as carbon fiber, glass fiber, or aramid fiber, a spherical filler such as spherical silica or spherical carbon, a scale-like reinforcing material such as mica or talc, or potassium titanate whisker. Fine fiber reinforcing materials such as can be blended. Further, a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, a sliding reinforcing material such as calcium phosphate and calcium sulfate, and a pigment such as carbon black can also be blended. These can be blended alone or in combination.
 以上の諸原材料を溶融混練して成形用ペレットとし、これを用いて射出成形法により所定形状に成形する。図15には成形金型の工程図を示す。図15(a)に示すように、成形金型は、固定側金型61と、可動側金型62と、コアピン63とを有し、これらが衝合されてキャビティ64が形成される。溶融状態の樹脂組成物がキャビティ64に充填され、保圧を経た後、一定時間冷却して成形体65が得られる。成形体65の内周面には凹部65aが設けられており、凹部65aの凹みに対応してコアピン63に凸部63aが形成されている。 The above raw materials are melt-kneaded into pellets for molding, which are then molded into a predetermined shape by an injection molding method. FIG. 15 shows a process diagram of the molding die. As shown in FIG. 15A, the molding die has a fixed-side mold 61, a movable-side mold 62, and a core pin 63, and these are abutted to form a cavity 64. The molten resin composition is filled in the cavity 64, and after being held under pressure, it is cooled for a certain period of time to obtain a molded product 65. A concave portion 65a is provided on the inner peripheral surface of the molded body 65, and a convex portion 63a is formed on the core pin 63 corresponding to the concave portion of the concave portion 65a.
 続いて、図15(b)に示す型開きでは、固定側金型61に対して、可動側金型62およびコアピン63をX方向に可動させる。この際、凹部65aがコアピン63の凸部63aに引っ掛かるため、コアピン63の動きに追従して成形体65もX方向に動く。このように、凹部65aがアンダーカット部となり、成形体65が物理的に固定されるため、固定側金型61への張り付きが抑制される。 Subsequently, in the mold opening shown in FIG. 15B, the movable side mold 62 and the core pin 63 are moved in the X direction with respect to the fixed side mold 61. At this time, since the concave portion 65a is caught by the convex portion 63a of the core pin 63, the molded body 65 also moves in the X direction following the movement of the core pin 63. In this way, the recess 65a serves as an undercut portion, and the molded body 65 is physically fixed, so that sticking to the fixed-side mold 61 is suppressed.
 その後、図15(c)に示すように、コアピン63を固定側金型61に向けてY方向に前進させることで、成形体65が可動側金型62から離型する。そして、図15(d)に示すように、取り出しハンド66の係合部66aを成形体65のリング側面65bの一部に係合させて、Z方向に可動させることで、成形体65がコアピン63から取り出される。取り出された成形体65の合い口は、一対の端部が相互に離れた状態となっているが、熱固定などによって閉じられ、図13に示すシールリング51が得られる。 After that, as shown in FIG. 15 (c), the molded body 65 is separated from the movable mold 62 by advancing the core pin 63 toward the fixed mold 61 in the Y direction. Then, as shown in FIG. 15 (d), the engaging portion 66a of the take-out hand 66 is engaged with a part of the ring side surface 65b of the molded body 65 and moved in the Z direction, whereby the molded body 65 becomes a core pin. Taken out of 63. The abutment of the taken-out molded body 65 has a pair of ends separated from each other, but is closed by heat fixing or the like to obtain the seal ring 51 shown in FIG.
 シールリングの使用形態の概略を図16に基づいて説明する。シールリング51は、ハウジング72の軸孔72aに挿通される回転軸71に設けられた環状溝71aに装着される。図中の矢印が作動油からの圧力が加わる方向であり、図中右側が非密封流体側である。シールリング51は、そのリング側面54で、環状溝71aの非密封流体側の側壁面71bに摺動自在に接触している。また、そのリング外周面53で軸孔72aの内周面に接触している。このシール構造により、回転軸71と軸孔72aとの間の環状隙間を封止している。また、作動油は用途に応じた種類が適宜用いられる。例えば、油温として-30~150℃程度、油圧として0~3.0MPa程度、回転軸の回転数として0~7000rpm程度の条件で使用される。 The outline of the usage pattern of the seal ring will be described with reference to FIG. The seal ring 51 is mounted in an annular groove 71a provided in the rotating shaft 71 inserted into the shaft hole 72a of the housing 72. The arrow in the figure is the direction in which the pressure from the hydraulic oil is applied, and the right side in the figure is the unsealed fluid side. The seal ring 51 is slidably in contact with the side wall surface 71b on the unsealed fluid side of the annular groove 71a on the ring side surface 54 thereof. Further, the outer peripheral surface 53 of the ring is in contact with the inner peripheral surface of the shaft hole 72a. This sealing structure seals an annular gap between the rotating shaft 71 and the shaft hole 72a. Further, the type of hydraulic oil is appropriately used according to the intended use. For example, it is used under the conditions that the oil temperature is about −30 to 150 ° C., the oil pressure is about 0 to 3.0 MPa, and the rotation speed of the rotating shaft is about 0 to 7000 rpm.
 図16に示すように、シールリング51において、オイルリークに関わるリング外周面53やリング側面54にはアンダーカット部となる凹部が形成されておらず、リング内周面52に凹部57を形成することで、低オイルリーク性を維持することができる。さらに、凹部57によって、型開き時に固定側金型への張り付きが抑制されるので、張り付きに伴う変形、例えばリング側面54の平面度の悪化などを抑制でき、その結果、低オイルリーク性の維持に繋がる。 As shown in FIG. 16, in the seal ring 51, the outer peripheral surface 53 of the ring and the side surface 54 of the ring related to the oil leak are not formed with a recess to be an undercut portion, and the recess 57 is formed on the inner peripheral surface 52 of the ring. Therefore, low oil leak property can be maintained. Further, since the recess 57 suppresses sticking to the fixed-side mold when the mold is opened, deformation due to sticking, for example, deterioration of flatness of the ring side surface 54 can be suppressed, and as a result, low oil leak property is maintained. It leads to.
 以下には、図17~図19を参照して、本願の第2発明のシールリングの他の例を説明する。 Hereinafter, another example of the seal ring of the second invention of the present application will be described with reference to FIGS. 17 to 19.
 図17に示すシールリング51は、図14のシールリング51と比べて凹部の構成が異なっている。図17(a)はシールリングの断面図であり、図17(b)はC矢視図である。なお、凹部以外の構成の説明は省略する。 The seal ring 51 shown in FIG. 17 has a different recessed structure from the seal ring 51 shown in FIG. FIG. 17A is a cross-sectional view of the seal ring, and FIG. 17B is a view taken along the arrow C. The description of the configuration other than the concave portion will be omitted.
 図17(a)に示すように、凹部57Aは、リング内周面52において一方の段部55から他方の段部55’にかけて形成された凹部である。凹部57Aの深さWは一定であり、凹部の底面から仮想面fに降ろした垂線の長さとして表される。この構成においても凹部57Aの深さWは、リング厚みTの1%~10%を満たしている。 As shown in FIG. 17A, the recess 57A is a recess formed on the inner peripheral surface 52 of the ring from one step 55 to the other step 55'. The depth W d of the recess 57A is constant and is represented as the length of a perpendicular line drawn from the bottom surface of the recess to the virtual surface f. Depth W d of the concave portion 57A in this configuration satisfies the 1% to 10% of the ring thickness T.
 図17(b)に示すように、シールリング51をリング内周面側から見た図では、凹部57Aは台形状であり、その周方向幅はリング軸方向の一方側に向けて小さくなっている。具体的には、一方の段部55に開口する周方向幅Lは、他方の段部55’に開口する周方向幅Lよりも小さくなっている。この構成の場合、成形金型を型開きする際には、凹部57Aの周方向幅が小さくなっている側に向かって、つまりX方向に可動側金型およびコアピンを動かす。その結果、コアピンの凸部の幅広に形成された部分が凹部57Aに引っ掛かることで、固定側金型に対する張り付きを抑制できる。なお、型開き時のアンカー効果を発揮させつつ、取り出しハンド(図15(d)参照)による金型からの取り出し性を確保するため、周方向幅Lは、周方向幅Lに対して1.05倍~1.2倍であることが好ましい。 As shown in FIG. 17B, in the view of the seal ring 51 viewed from the inner peripheral surface side of the ring, the recess 57A has a trapezoidal shape, and its circumferential width becomes smaller toward one side in the ring axial direction. There is. Specifically, a circumferential width L a opening into one of the step portion 55 is smaller than the circumferential width L b which is open to the other stepped portion 55 '. In the case of this configuration, when the molding die is opened, the movable die and the core pin are moved toward the side where the circumferential width of the recess 57A is smaller, that is, in the X direction. As a result, the wide portion of the convex portion of the core pin is caught in the concave portion 57A, so that the sticking to the fixed side mold can be suppressed. Incidentally, while exhibiting the anchor effect at the time of mold opening, to ensure the extraction of the mold by taking out the hand (see FIG. 15 (d)), the circumferential width L b, to the circumferential width L a It is preferably 1.05 times to 1.2 times.
 図17において、凹部57Aは、リング内周面52の複数箇所に形成されていてもよい。例えば、リング周方向に等間隔に離間して3箇所~5箇所形成される。複数箇所に形成することで、リング略全体でアンカー効果を発揮させることができる。 In FIG. 17, the recesses 57A may be formed at a plurality of locations on the inner peripheral surface 52 of the ring. For example, 3 to 5 locations are formed at equal intervals in the circumferential direction of the ring. By forming it at a plurality of places, the anchor effect can be exerted on almost the entire ring.
 図18に示すシールリング51は、図14のシールリング51と比べて凹部の構成が異なっている。なお、凹部以外の構成の説明は省略する。図18に示すように、凹部57Bは、リング内周面において段部55から段部55’に向けて傾斜した凹部である。凹部57Bの仮想面fからの深さは、段部55’に近づくにしたがい深くなっている。この場合、凹部57Bの深さWは、凹部57Bの最も凹んだ地点から仮想面fに降ろした垂線の長さとして表される。この構成においても凹部57Bの深さWは、リング厚みTの1%~10%を満たしている。 The seal ring 51 shown in FIG. 18 has a different recessed structure from that of the seal ring 51 shown in FIG. The description of the configuration other than the concave portion will be omitted. As shown in FIG. 18, the recess 57B is a recess that is inclined from the step 55 to the step 55'on the inner peripheral surface of the ring. The depth of the recess 57B from the virtual surface f becomes deeper as it approaches the step portion 55'. In this case, the depth W d of the recess 57B is expressed as the length of a perpendicular line drawn from the most recessed point of the recess 57B to the virtual surface f. Depth W d of the concave portion 57B in this configuration satisfies the 1% to 10% of the ring thickness T.
 この構成の場合、成形金型を型開きする際には、凹部57Bの深さが浅くなっている側に向かって、つまりX方向に可動側金型およびコアピンを動かす。その結果、コアピンの凸部の高く形成された部分が凹部57Bに引っ掛かることで、固定側金型に対する張り付きを抑制できる。なお、凹部57Bは、リング周方向に沿って連続して設けられており、その形成範囲は、シールリング51の内周に対して15%以上であることが好ましく、50%以上がより好ましい。 In the case of this configuration, when opening the molding die, the movable die and the core pin are moved toward the side where the depth of the recess 57B is shallow, that is, in the X direction. As a result, the highly formed portion of the convex portion of the core pin is caught in the concave portion 57B, so that the sticking to the fixed side mold can be suppressed. The recess 57B is continuously provided along the circumferential direction of the ring, and the forming range thereof is preferably 15% or more, more preferably 50% or more with respect to the inner circumference of the seal ring 51.
 図19に示すシールリング51は、図14のシールリング51と比べて外周面に設けられた傾斜部の構成が異なっている。図19(a)はシールリングの断面図であり、図19(b)はその一部拡大図である。なお、傾斜部以外の構成の説明は省略する。 The seal ring 51 shown in FIG. 19 is different from the seal ring 51 of FIG. 14 in the configuration of the inclined portion provided on the outer peripheral surface. FIG. 19A is a cross-sectional view of the seal ring, and FIG. 19B is a partially enlarged view thereof. The description of the configuration other than the inclined portion will be omitted.
 図19に示すように、傾斜部56は、本願の第1発明のシールリング1(図2参照)と同様に、リング側面54に接続された傾斜面56aと、リング外周面53に対して垂直に接続された段差面58と、接続面59とを有する。段差面58は金型の型割によって形成される面(型割面とも言う)であり、この構成の場合、固定側金型と可動側金型の型割面がシールリング51の段差面58の延長線上に配置される。段差面58を設けることでシールリングの外径寸法のバラツキが抑えられる。一方で、型割段差が大きいと、ハウジング組み付け時のシールリングのかじりなどのおそれがあることから、リング径方向における段差面58の幅W(図19(b)参照))は0.1mm以下が好ましく、0.01mm~0.05mmがより好ましい。 As shown in FIG. 19, the inclined portion 56 is perpendicular to the inclined surface 56a connected to the ring side surface 54 and the ring outer peripheral surface 53, similarly to the seal ring 1 (see FIG. 2) of the first invention of the present application. It has a stepped surface 58 connected to the surface and a connecting surface 59. The stepped surface 58 is a surface formed by the mold splitting of the mold (also referred to as a mold splitting surface), and in this configuration, the mold split surface of the fixed side mold and the movable side mold is the stepped surface 58 of the seal ring 51. It is placed on the extension line of. By providing the stepped surface 58, variation in the outer diameter dimension of the seal ring can be suppressed. On the other hand, if the mold split step is large, there is a risk of galling of the seal ring when assembling the housing. Therefore, the width W f of the step surface 58 in the ring radial direction (see FIG. 19 (b)) is 0.1 mm. The following is preferable, and 0.01 mm to 0.05 mm is more preferable.
 図19に示すシールリング51は、リング外周面53の両側に傾斜部を設けている。その両側の傾斜部のうち、一方の傾斜部が段差面58を有し、他方の傾斜部は傾斜面のみで構成されている。段差面58は、少なくとも一方側の傾斜部に形成することが好ましく、両側の傾斜部に対称に形成してもよい。この場合、両側の傾斜部が段差面を有する構成となり、組み付け方向の依存性がなくなる。 The seal ring 51 shown in FIG. 19 is provided with inclined portions on both sides of the ring outer peripheral surface 53. Of the inclined portions on both sides, one inclined portion has a stepped surface 58, and the other inclined portion is composed of only an inclined surface. The stepped surface 58 is preferably formed on at least one inclined portion, and may be formed symmetrically on both inclined portions. In this case, the inclined portions on both sides have a stepped surface, and the dependence on the assembling direction is eliminated.
 また、図19のシールリング51では、傾斜面56aと段差面58との間に、リング側面54に対し垂直な接続面59が設けられている。接続面59を設けることで、段差面58を傾斜部内に収めやすくなる。なお、接続面59は、リング側面54に対して略垂直な面であればよく、平面で構成されても曲面で構成されてもよい。リング軸方向における接続面59の幅W(図19(b)参照)は、特に限定されないが、段差面58の幅Wよりも大きいことが好ましい。具体的な寸法として、接続面59の幅Wは、例えば0.05mm~0.3mmであることが好ましい。より好ましくは0.05mm~0.1mmである。 Further, in the seal ring 51 of FIG. 19, a connecting surface 59 perpendicular to the ring side surface 54 is provided between the inclined surface 56a and the stepped surface 58. By providing the connecting surface 59, the stepped surface 58 can be easily accommodated in the inclined portion. The connecting surface 59 may be a surface substantially perpendicular to the ring side surface 54, and may be formed of a flat surface or a curved surface. The width W g of the connecting surface 59 in the ring axis direction (see FIG. 19B) is not particularly limited, but is preferably larger than the width W f of the stepped surface 58. As specific dimensions, the width W g of the connection surface 59 is preferably, for example, 0.05 mm ~ 0.3 mm. More preferably, it is 0.05 mm to 0.1 mm.
 なお、傾斜面と段差面の位置関係については、上述の図3で示したように、段差面を、傾斜面を延長した仮想平面よりもリング径方向の内側に位置させることで、かじりを防止しやすくなる。 Regarding the positional relationship between the inclined surface and the stepped surface, as shown in FIG. 3 above, galling is prevented by locating the stepped surface inside the virtual plane on which the inclined surface is extended in the ring radial direction. It will be easier to do.
 上記図13~図19では、リング外周面に傾斜部を有するシールリングを示したが、本願の第2発明のシールリングはこれに限定されず、上記傾斜部を有しないシールリング、つまり角部が面取りされていないシールリングについても適用できる。また、上記図13~図19では、リング軸方向の両端部にリング径方向に凹んだ一対の段部を有するシールリングを示したが、本願の第2発明のシールリングはこれに限定されず、上記段部を有しないシールリングにも適用できる。 In FIGS. 13 to 19, the seal ring having an inclined portion on the outer peripheral surface of the ring is shown, but the seal ring of the second invention of the present application is not limited to this, and the seal ring having no inclined portion, that is, the corner portion. It can also be applied to seal rings that are not chamfered. Further, in FIGS. 13 to 19, a seal ring having a pair of stepped portions recessed in the ring radial direction at both ends in the ring axis direction is shown, but the seal ring of the second invention of the present application is not limited to this. It can also be applied to a seal ring that does not have the above-mentioned step portion.
実施例A1~実施例A4
 PEEK樹脂をベース樹脂として、炭素繊維およびPTFE樹脂を配合した樹脂組成物を用いて、図9に示すそれぞれの形状のシールリングを射出成形により製造した。実施例A1~実施例A4のシールリングの各寸法は、外径φ32mm、内径φ28mm、リング幅(軸方向長さ)2.3mm、リング厚み(径方向長さ)2mmである。各実施例のシールリングには、傾斜面7と段差面8と接続面9とを有する傾斜部が形成されており、段差面の幅W(図2参照)は0.05mm、接続面の幅W(図2参照)は0.08mmである。傾斜面の傾斜角θはそれぞれ異なっており、実施例A1が40度、実施例A2が30度、実施例A3が60度、実施例A4が20度である。また、各シールリングの傾斜部寸法W(図5参照)は、0.4mmである。
Example A1 to Example A4
Using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin, seal rings having the respective shapes shown in FIG. 9 were produced by injection molding. The dimensions of the seal rings of Examples A1 to A4 are an outer diameter of φ32 mm, an inner diameter of φ28 mm, a ring width (axial length) of 2.3 mm, and a ring thickness (radial length) of 2 mm. The seal ring of each example are inclined portion forming with a connecting surface 9 and the inclined surface 7 and the stepped surface 8, the width W a of the stepped surface (see FIG. 2) is 0.05 mm, connection surface The width W b (see FIG. 2) is 0.08 mm. The inclination angles θ of the inclined surfaces are different, and Example A1 is 40 degrees, Example A2 is 30 degrees, Example A3 is 60 degrees, and Example A4 is 20 degrees. The inclined portion dimension W c (see FIG. 5) of each seal ring is 0.4 mm.
比較例A1
 PEEK樹脂をベース樹脂として、炭素繊維およびPTFE樹脂を配合した樹脂組成物を用いて、図10に示す形状のシールリングを射出成形により製造した。このシールリングの各寸法は、外径φ32mm、内径φ28mm、リング幅2.3mm、リング厚み2mmである。
Comparative Example A1
A seal ring having the shape shown in FIG. 10 was produced by injection molding using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin. The dimensions of this seal ring are an outer diameter of φ32 mm, an inner diameter of φ28 mm, a ring width of 2.3 mm, and a ring thickness of 2 mm.
比較例A2
 PEEK樹脂をベース樹脂として、炭素繊維およびPTFE樹脂を配合した樹脂組成物を用いて、図10に示す形状のシールリングを射出成形により製造した。このシールリングの各寸法は、外径φ32mm、内径φ28mm、リング幅2.3mm、リング厚み2mmである。比較例A2のシールリングは、外周面の両側に傾斜部が形成されている。この傾斜部は、リング側面に対し垂直に接続された面と、リング外周面に対し垂直に接続された面とが傾斜面で接続された形状となっている。傾斜部寸法Wは、0.4mmであり、実施例の段差面に相当する面の幅Wは、0.2mmである。
Comparative Example A2
A seal ring having the shape shown in FIG. 10 was produced by injection molding using a resin composition containing PEEK resin as a base resin and carbon fiber and PTFE resin. The dimensions of this seal ring are an outer diameter of φ32 mm, an inner diameter of φ28 mm, a ring width of 2.3 mm, and a ring thickness of 2 mm. The seal ring of Comparative Example A2 has inclined portions formed on both sides of the outer peripheral surface. The inclined portion has a shape in which a surface connected perpendicularly to the side surface of the ring and a surface connected perpendicularly to the outer peripheral surface of the ring are connected by an inclined surface. The inclined portion dimension W c is 0.4 mm, and the width W a of the surface corresponding to the stepped surface of the embodiment is 0.2 mm.
<組み込み試験>
 得られた各シールリングの組み込み性について評価した。各シールリングを図5に示すように回転軸の環状溝(深さh2.2mm)に装着した状態で、ハウジング(テーパ部径R34.5mm、テーパ部の傾斜角45度)に挿入した。各シールリングについて、偏芯量をそれぞれ変更して組み込み性を4段階(A~D)で評価した。かじりが無い場合をA、かじりが微小の場合をB、かじりが小さい場合をC、かじりが大きい場合をDと評価した。結果を表1に示す。
<Built-in test>
The incorporateability of each of the obtained seal rings was evaluated. As shown in FIG. 5, each seal ring was inserted into the housing (tapered portion diameter R34.5 mm, tapered portion inclination angle 45 degrees) in a state of being mounted in the annular groove (depth h2.2 mm) of the rotating shaft. For each seal ring, the amount of eccentricity was changed and the ease of incorporation was evaluated in 4 stages (A to D). The case where there was no galling was evaluated as A, the case where the galling was minute was evaluated as B, the case where the galling was small was evaluated as C, and the case where the galling was large was evaluated as D. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、偏芯がない場合は、いずれのシールリングもかじりが発生しなかったが、偏芯量が大きくなるにしたがって、かじりの程度が大きくなる傾向が見られた。偏芯量0.6mmの場合、実施例A1~実施例A4では、ほとんどかじりが見られなかったのに対して、比較例A1~比較例A2では、それぞれ角部Pで大きなかじりが見られた。比較例A2は、傾斜部が形成されており、傾斜角部Qはハウジングのテーパ部内に位置しているが、角部Pを含む段差面の幅Wが大きいため、かじりが発生した。実施例A1~実施例A4の中でも、特に、傾斜面7の傾斜角が40度(実施例A1)、30度(実施例A2)のシールリングは、偏芯量が0.7mmと大きい場合でもほとんどかじりが見られなかった。なお、この場合、実施例A3(傾斜角θ=60度)のシールリングは、段差面でやや引っかかり気味となり、小さなかじりが発生した。 As shown in Table 1, when there was no eccentricity, galling did not occur in any of the seal rings, but the degree of galling tended to increase as the amount of eccentricity increased. When the eccentricity amount was 0.6 mm, almost no galling was observed in Examples A1 to A4, whereas large galling was observed at the corners P in Comparative Examples A1 to A2. .. Comparative Example A2 is inclined portions are formed, the inclined angle portion Q is located in the tapered portion of the housing, but since the width W a of the stepped surface including the corner portion P is large, galling occurred. Among Examples A1 to A4, in particular, the seal ring having an inclined surface 7 having an inclination angle of 40 degrees (Example A1) and 30 degrees (Example A2) has a large eccentricity of 0.7 mm. Almost no biting was seen. In this case, the seal ring of Example A3 (inclination angle θ = 60 degrees) was slightly caught on the stepped surface, and a small galling occurred.
<オイルリーク試験>
 得られた各シールリングのオイルリーク量を、図11に示す試験機により評価した。図11は試験機の概略図である。相手軸28の環状溝にシールリング30、30’を装着した。シールリングには、上記組み込み試験を実施する前のシールリングと、上記組み込み試験を実施した後(偏芯0.7mm)のシールリングをそれぞれ用いた。モータ31の回転によって、シールリング30、30’は、相手軸28の環状溝側壁と、ハウジング29の軸孔内周面と摺接する。油圧ユニット32より油を圧送して、シールリング30と30’との間の環状隙間に供給した。オイルリーク試験の条件は、油圧800kPa、回転数2000rpm、油温80℃とし、オイルにはATFを用いた。この試験機により、オイルリーク量(ml/min)を測定した。オイルリーク量は、試験開始から5分経過後において測定した値に基づくものである。結果を表2に示す。
<Oil leak test>
The amount of oil leak of each of the obtained seal rings was evaluated by the testing machine shown in FIG. FIG. 11 is a schematic view of the testing machine. Seal rings 30 and 30'are attached to the annular groove of the mating shaft 28. As the seal ring, a seal ring before the above-mentioned assembly test was performed and a seal ring after the above-mentioned assembly test (eccentricity 0.7 mm) were used. Due to the rotation of the motor 31, the seal rings 30 and 30'are in sliding contact with the annular groove side wall of the mating shaft 28 and the inner peripheral surface of the shaft hole of the housing 29. Oil was pumped from the hydraulic unit 32 and supplied to the annular gap between the seal rings 30 and 30'. The conditions of the oil leak test were a hydraulic pressure of 800 kPa, a rotation speed of 2000 rpm, an oil temperature of 80 ° C., and ATF was used as the oil. The amount of oil leak (ml / min) was measured by this tester. The amount of oil leak is based on the value measured 5 minutes after the start of the test. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、組み込み試験前については、いずれの試験例もほぼ同程度のオイルリーク量を示した。一方、組み込み試験後については、実施例A1、A2は、オイルリーク量にほとんど変化は見られなかった。上述したように、かじりがほとんど発生しなかったため、組み込みによっても低オイルリーク性が維持された。これに対して、比較例A1、A2は、組み込みによってオイルリーク量が大幅に増加した。これらのシールリングは組み込みに伴うかじりが大きかったため、側壁面や軸孔とのシール性が低下したと考えられる。なお、実施例A3~A4もオイルリーク量が増加する結果となったが、偏芯量(例えば偏芯0.6mmなど)によっては、低オイルリーク性が維持されると考えられる。 As shown in Table 2, before the incorporation test, all the test examples showed almost the same amount of oil leak. On the other hand, after the incorporation test, there was almost no change in the amount of oil leak in Examples A1 and A2. As described above, since galling hardly occurred, the low oil leak property was maintained even by the incorporation. On the other hand, in Comparative Examples A1 and A2, the amount of oil leak was significantly increased by incorporating. It is considered that these seal rings had a large amount of galling due to assembly, so that the sealability with the side wall surface and the shaft hole was deteriorated. Although the amount of oil leak increased in Examples A3 to A4, it is considered that the low oil leak property is maintained depending on the amount of eccentricity (for example, eccentricity of 0.6 mm).
実施例B1~実施例B3
 PEEK樹脂を用いて、図20に示すそれぞれの形状のシールリングを射出成形によって製造した。実施例B1~実施例B3のシールリングの各寸法は、外径φ43mm、リング幅(軸方向長さ)2.3mm、リング厚み(径方向長さ)2mmである。各実施例のシールリングの外周面には傾斜部が形成され、内周面には凹部が形成されている。実施例B1の凹部は円弧溝であり、深さWが0.06mm(3%)、幅Wが0.5mm(22%)である。実施例B2の凹部はC矢視図において台形状であり、深さWが0.1mm(5%)であり、周方向長さLが5.5mm、周方向長さLが6mmである。なお、この凹部は、リング周方向に離間して4箇所に形成した。実施例B3の凹部は円弧溝であり、深さWが0.06mm(3%)、幅Wが0.9mm(39%)である。なお、上記カッコ内の割合は、リング厚みまたはリング幅に対する割合を示している。また、割合同士の積は、実施例B1が66、実施例B3が117である。
Example B1 to Example B3
Using PEEK resin, seal rings of each shape shown in FIG. 20 were manufactured by injection molding. The dimensions of the seal rings of Examples B1 to B3 are an outer diameter of φ43 mm, a ring width (axial length) of 2.3 mm, and a ring thickness (radial length) of 2 mm. An inclined portion is formed on the outer peripheral surface of the seal ring of each embodiment, and a concave portion is formed on the inner peripheral surface. The recess of Example B1 is an arc groove having a depth W d of 0.06 mm (3%) and a width W e of 0.5 mm (22%). Recess of Example B2 is trapezoidal in C arrow view, the depth W d is 0.1 mm (5%), the circumferential length L a is 5.5 mm, the circumferential length L b is 6mm Is. The recesses were formed at four locations separated in the ring circumferential direction. The recess of Example B3 is an arc groove having a depth W d of 0.06 mm (3%) and a width W e of 0.9 mm (39%). The ratio in parentheses indicates the ratio to the ring thickness or the ring width. The product of the ratios is 66 in Example B1 and 117 in Example B3.
比較例B1~比較例B2
 PEEK樹脂を用いて、図21に示すそれぞれの形状のシールリングを射出成形によって製造した。比較例B1~B2のシールリングの各寸法は、実施例B1~B3と同様である。また、比較例B1~B2のシールリングの外周面には傾斜部が形成されている。比較例B1はアンダーカット部となる凹部を有していない。比較例B2は内周面に矩形溝の凹部を有し、その深さWが0.3mm(15%)、幅Wが0.5mm(22%)である。
Comparative Example B1 to Comparative Example B2
Using PEEK resin, seal rings of each shape shown in FIG. 21 were manufactured by injection molding. The dimensions of the seal rings of Comparative Examples B1 to B2 are the same as those of Examples B1 to B3. Further, an inclined portion is formed on the outer peripheral surface of the seal rings of Comparative Examples B1 and B2. Comparative Example B1 does not have a recess serving as an undercut portion. Comparative Example B2 has a concave portion of a rectangular groove on the inner peripheral surface, the depth W d of which is 0.3 mm (15%), and the width W e is 0.5 mm (22%).
<射出成形性試験>
 実施例B1~B3および比較例B1~B2のシールリングの製造時において、固定側金型への張り付きの有無、および、製品の変形の有無を評価した。張り付きの有無は射出成形工程の観察、変形の有無は定盤上に置いた時の浮き上がり部の有無により判断した。なお、各シールリングの製造前には金型洗浄を行い、各試験において離型剤は使用せずに行った。張り付きが発生するまで射出成形の連続運転を行い、張り付きが発生したショット数を表3に記入した。なお、連続運転は800ショットまでとした。結果を表3に示す。
<Injection moldability test>
At the time of manufacturing the seal rings of Examples B1 to B3 and Comparative Examples B1 to B2, the presence or absence of sticking to the fixed side mold and the presence or absence of deformation of the product were evaluated. The presence or absence of sticking was judged by observing the injection molding process, and the presence or absence of deformation was judged by the presence or absence of a raised portion when placed on the surface plate. The mold was washed before the production of each seal ring, and each test was performed without using a mold release agent. The injection molding was continuously operated until the sticking occurred, and the number of shots in which the sticking occurred was entered in Table 3. The continuous operation was limited to 800 shots. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例B1~実施例B3は、800ショット連続して射出成形しても固定側金型への張り付きがなく、取り出しハンドを用いた取り出し性も良好であった。これに対して、凹部を有しない比較例B1は、20ショット目で固定側金型への張り付きが発生し、リングにねじれ(変形)が生じた。また、比較例B2は、800ショットで張り付きは見られなかったが、取り出し時にリングの変形が生じた。具体的には、図22に示すように、比較例B2では凹部が所定以上の深さであるため、コアピン63への引っ掛かりが強く、取り出し時に負荷がかかり、リングに変形と凹部周辺の破壊が生じた。 As shown in Table 3, in Examples B1 to B3, even if injection molding was performed continuously for 800 shots, there was no sticking to the fixed side mold, and the take-out property using the take-out hand was also good. On the other hand, in Comparative Example B1 having no recess, sticking to the fixed side mold occurred at the 20th shot, and the ring was twisted (deformed). Further, in Comparative Example B2, no sticking was observed in 800 shots, but the ring was deformed at the time of taking out. Specifically, as shown in FIG. 22, in Comparative Example B2, since the recess is deeper than a predetermined depth, it is strongly caught on the core pin 63, a load is applied at the time of taking out, and the ring is deformed and the periphery of the recess is deformed. occured.
 アンダーカット部となる凹部の形成位置は、リング内周面以外にも、リング側面やリング外周面が考えられるが、リング側面の場合は、突出し時でもアンカー効果が強く、取り出しが困難になる。また、リング外周面の場合は、突出し時に成形体が金型に拘束された状態となるため、成形体を突き出せず連続成形が困難である。そのため、凹部をリング内周面に形成することで、図15で示したように、取り出し時に成形体が拘束されず、取り出しを容易に行うことができる。 The position of the concave portion to be the undercut portion may be the ring side surface or the ring outer peripheral surface in addition to the inner peripheral surface of the ring, but in the case of the ring side surface, the anchor effect is strong even when protruding, and it is difficult to take out. Further, in the case of the outer peripheral surface of the ring, the molded body is restrained by the mold at the time of protrusion, so that the molded body does not protrude and continuous molding is difficult. Therefore, by forming the concave portion on the inner peripheral surface of the ring, as shown in FIG. 15, the molded body is not restrained at the time of taking out, and the taking out can be easily performed.
<オイルリーク試験>
 得られた各シールリングのオイルリーク量を、図23に示す試験機により評価した。図23は試験機の概略図である。相手軸73の環状溝に、各試験例に対応した形状のシールリング75、75’を装着した。このシールリングの各寸法は、外径φ48mm、リング幅(軸方向長さ)1.6mm、リング厚み(径方向長さ)1.5mmであり、射出成形後に合い口を閉じた状態で熱固定を行った。上記寸法は熱固定後の寸法である。相手軸73を固定した状態で、モータ(図示省略)によってハウジング74を回転させた。シールリング75、75’は、相手軸73の環状溝側壁と、ハウジング74の軸孔内周面と摺接する。油圧ユニット76から油を圧送して、シールリング75と75’との間の環状隙間に供給した。オイルリーク試験の条件は、油圧2.0MPa、回転数2000rpm、油温120℃とし、オイルにはATFを用いた。この試験機により、オイルリーク量(ml/min)を測定した。結果を表4に示す。
<Oil leak test>
The amount of oil leak of each of the obtained seal rings was evaluated by the testing machine shown in FIG. 23. FIG. 23 is a schematic view of the testing machine. Seal rings 75 and 75'in the shape corresponding to each test example were attached to the annular groove of the mating shaft 73. Each dimension of this seal ring has an outer diameter of φ48 mm, a ring width (axial length) of 1.6 mm, and a ring thickness (radial length) of 1.5 mm, and is heat-fixed with the abutment closed after injection molding. Was done. The above dimensions are the dimensions after heat fixing. With the mating shaft 73 fixed, the housing 74 was rotated by a motor (not shown). The seal rings 75 and 75'are in sliding contact with the annular groove side wall of the mating shaft 73 and the inner peripheral surface of the shaft hole of the housing 74. Oil was pumped from the hydraulic unit 76 and supplied to the annular gap between the seal rings 75 and 75'. The conditions of the oil leak test were a hydraulic pressure of 2.0 MPa, a rotation speed of 2000 rpm, an oil temperature of 120 ° C., and ATF was used as the oil. The amount of oil leak (ml / min) was measured by this tester. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例B1~実施例B3のシールリングは、低オイルリーク量であり、オイルリーク量にほとんど差がなかった。上述したように、固定側金型への張り付きがなく、また金型からの取り出しが容易であることから、シールリングの変形を抑制でき、低オイルリーク性が維持された。これに対して、比較例B2は、オイルリーク量が多い結果となった。このシールリングは製品の取り出し時に変形があったため、側壁面や軸孔内周面とのシール性が低下したと考えられる。なお、表4に示す比較例B1は、張り付きが発生したシールリングを用いて試験を行った。張り付きが発生したため、リング側面の平面度の悪化が生じ、オイルリーク量の増大に繋がったと考えられる。 As shown in Table 4, the seal rings of Examples B1 to B3 had a low oil leak amount, and there was almost no difference in the oil leak amount. As described above, since there is no sticking to the fixed side mold and it is easy to take out from the mold, deformation of the seal ring can be suppressed and low oil leak property is maintained. On the other hand, in Comparative Example B2, the amount of oil leak was large. It is considered that this seal ring was deformed when the product was taken out, so that the sealability with the side wall surface and the inner peripheral surface of the shaft hole was deteriorated. In addition, Comparative Example B1 shown in Table 4 was tested using a seal ring in which sticking occurred. It is probable that the sticking occurred, which caused the flatness of the side surface of the ring to deteriorate, leading to an increase in the amount of oil leak.
 上記のように、実施例B1~実施例B3に係るシールリングは、シールリングの内周面に凹部を形成し、その凹部の深さをリング厚みの1%~10%とすることで、シール性やリングの落ち込みは従来のシールリングと同等を確保しつつ、金型からの取り出しが容易で、かつ、固定側金型への張り付きやそれに伴う変形を防止することができる。その結果、低オイルリーク性を維持されたシールリングになる。 As described above, the seal rings according to Examples B1 to B3 are sealed by forming recesses on the inner peripheral surface of the seal ring and setting the depth of the recesses to 1% to 10% of the ring thickness. It is possible to easily remove the seal ring from the mold while ensuring the same performance and depression of the ring as the conventional seal ring, and to prevent sticking to the fixed side mold and deformation accompanying it. The result is a seal ring that maintains low oil leakage.
 本願の第1発明および第2発明のシールリングは、ハウジング組み付け時のかじりなどの発生、または、型開き時の張り付きの発生を抑制でき、低オイルリーク性を維持できるので、回転軸とハウジングとの間で低オイルリーク性が要求されるシールリングとして使用できる。特に、自動車等におけるATやCVTなどの油圧機器に燃費向上のために好適に使用できる。 The seal rings of the first invention and the second invention of the present application can suppress the occurrence of galling at the time of assembling the housing or the occurrence of sticking at the time of opening the mold, and can maintain low oil leakage. It can be used as a seal ring that requires low oil leakage. In particular, it can be suitably used for improving fuel efficiency in hydraulic equipment such as ATs and CVTs in automobiles and the like.
  1、11 シールリング
  2、12 リング内周面
  3、13 リング外周面
  4、14 リング側面
  5、15 段部
  6、16 傾斜部
  7、17 傾斜面
  8、8’、18 段差面
  9  接続面
  10 合い口
  21 回転軸
  22 ハウジング
  23 固定側金型
  24 可動側金型
  25 コアピン
  26 キャビティ
  27 成形体
  28 相手軸
  29 ハウジング
  30、30’ シールリング
  31 モータ
  32 油圧ユニット
  51  シールリング
  52  リング内周面
  53  リング外周面
  54、54’ リング側面
  55、55’ 段部
  56 傾斜部
  56a 傾斜面
  57、57A、57B 凹部
  58 段差面
  59 接続面
  60 合い口
  61 固定側金型
  62 可動側金型
  63 コアピン
  64 キャビティ
  65 成形体
  66 取り出しハンド
  61 回転軸
  62 ハウジング
  63 相手軸
  64 ハウジング
  65、65’ シールリング
  66 油圧ユニット
1,11 Seal ring 2,12 Ring inner peripheral surface 3,13 Ring outer peripheral surface 4,14 Ring side surface 5,15 Stepped part 6,16 Inclined part 7,17 Inclined surface 8,8', 18 Stepped surface 9 Connection surface 10 Abutment 21 Rotating shaft 22 Housing 23 Fixed side mold 24 Movable side mold 25 Core pin 26 Cavity 27 Molded body 28 Mating shaft 29 Housing 30, 30'Seal ring 31 Motor 32 Hydraulic unit 51 Seal ring 52 Ring inner peripheral surface 53 Ring Outer surface 54, 54'Ring side 55, 55'Step 56 Inclined 56a Inclined surface 57, 57A, 57B Recess 58 Stepped surface 59 Connection surface 60 Joint 61 Fixed side mold 62 Movable side mold 63 Core pin 64 Cavity 65 Molded body 66 Extraction hand 61 Rotating shaft 62 Housing 63 Mating shaft 64 Housing 65, 65'Seal ring 66 Hydraulic unit

Claims (11)

  1.  ハウジングの軸孔に挿通される回転軸に設けられた環状溝に装着されて、該環状溝の非密封流体側の側壁面に摺動自在に接触し、かつ前記軸孔の内周面に接触して、これら回転軸と軸孔との間の環状隙間を封止するシールリングであって、
     前記シールリングは、樹脂組成物の射出成形体であり、外周面の少なくとも一端側に傾斜部を備え、
     前記傾斜部は、前記リング側面に接続した傾斜面と、前記外周面に対して略垂直に接続した段差面とを有し、リング径方向における前記段差面の幅が0.1mm以下であることを特徴とするシールリング。
    It is mounted on an annular groove provided on a rotating shaft inserted into a shaft hole of a housing, slidably contacts a side wall surface on the unsealed fluid side of the annular groove, and contacts an inner peripheral surface of the shaft hole. A seal ring that seals the annular gap between the rotating shaft and the shaft hole.
    The seal ring is an injection molded product of a resin composition, and has an inclined portion on at least one end side of the outer peripheral surface.
    The inclined portion has an inclined surface connected to the ring side surface and a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less. A seal ring featuring.
  2.  前記傾斜部は、前記リング側面に対して略垂直で、前記傾斜面と前記段差面を繋ぐ接続面を有することを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the inclined portion is substantially perpendicular to the side surface of the ring and has a connecting surface connecting the inclined surface and the stepped surface.
  3.  前記段差面は、前記傾斜面を延長した仮想平面よりもリング径方向の内側に位置することを特徴とする請求項2記載のシールリング。 The seal ring according to claim 2, wherein the stepped surface is located inside the virtual plane on which the inclined surface is extended in the ring radial direction.
  4.  前記シールリングの軸方向断面において、前記外周面に対する前記傾斜面の傾斜角度が20度~60度であることを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the inclination angle of the inclined surface with respect to the outer peripheral surface is 20 to 60 degrees in the axial cross section of the seal ring.
  5.  前記シールリングは、周方向の一部に複合ステップカットの合い口を有していることを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the seal ring has a joint of a composite step cut in a part in the circumferential direction.
  6.  前記樹脂組成物のベース樹脂が、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、またはポリアミドイミド樹脂であることを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the base resin of the resin composition is a polyetherketone resin, a polyetheretherketone resin, a polyphenylene sulfide resin, or a polyamide-imide resin.
  7.  ハウジングの軸孔に挿通される回転軸に設けられた環状溝に装着されて、該環状溝の非密封流体側の側壁面に摺動自在に接触し、かつ前記軸孔の内周面に接触して、これら回転軸と軸孔との間の環状隙間を封止するシールリングであって、
     前記シールリングは、樹脂組成物の射出成形体であり、周方向の一部に合い口を備えるとともに、内周面にリング径方向に凹んだ凹部を有し、該凹部の深さがシールリングの径方向長さの1%~10%であることを特徴とするシールリング。
    It is mounted on an annular groove provided on a rotating shaft inserted into a shaft hole of a housing, slidably contacts a side wall surface on the unsealed fluid side of the annular groove, and contacts an inner peripheral surface of the shaft hole. A seal ring that seals the annular gap between the rotating shaft and the shaft hole.
    The seal ring is an injection-molded body of a resin composition, and has a recess in a part in the circumferential direction and a recess in the ring radial direction on the inner peripheral surface, and the depth of the recess is the seal ring. A seal ring characterized by having a length of 1% to 10% in the radial direction of the resin.
  8.  前記シールリングは、外周面の少なくとも一端側に傾斜部を備え、前記傾斜部は、リング側面に接続した傾斜面を有することを特徴とする請求項7記載のシールリング。 The seal ring according to claim 7, wherein the seal ring is provided with an inclined portion on at least one end side of an outer peripheral surface, and the inclined portion has an inclined surface connected to a side surface of the ring.
  9.  前記傾斜部は、前記外周面に対して略垂直に接続した段差面を有し、リング径方向における前記段差面の幅が0.1mm以下であることを特徴とする請求項8記載のシールリング。 The seal ring according to claim 8, wherein the inclined portion has a stepped surface connected substantially perpendicular to the outer peripheral surface, and the width of the stepped surface in the ring radial direction is 0.1 mm or less. ..
  10.  前記凹部のリング軸方向における幅が、前記シールリングの軸方向長さの2%~60%であることを特徴とする請求項7記載のシールリング。 The seal ring according to claim 7, wherein the width of the concave portion in the ring axial direction is 2% to 60% of the axial length of the seal ring.
  11.  前記凹部は、リング周方向に沿って連続して設けられた凹溝であり、該凹溝のリング周方向における形成範囲は、前記シールリングの内周に対して15%以上であることを特徴とする請求項7記載のシールリング。 The recess is a concave groove continuously provided along the ring circumferential direction, and the forming range of the concave groove in the ring circumferential direction is 15% or more with respect to the inner circumference of the seal ring. The seal ring according to claim 7.
PCT/JP2020/045064 2019-12-11 2020-12-03 Seal ring WO2021117600A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-223370 2019-12-11
JP2019223370A JP7365881B2 (en) 2019-12-11 2019-12-11 Seal ring
JP2020116004A JP2022013442A (en) 2020-07-03 2020-07-03 Seal ring
JP2020-116004 2020-07-03

Publications (1)

Publication Number Publication Date
WO2021117600A1 true WO2021117600A1 (en) 2021-06-17

Family

ID=76330309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045064 WO2021117600A1 (en) 2019-12-11 2020-12-03 Seal ring

Country Status (1)

Country Link
WO (1) WO2021117600A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100919A (en) * 1995-05-31 1997-04-15 Ntn Corp Seal ring
JP2009085391A (en) * 2007-10-02 2009-04-23 Nok Corp Seal ring
WO2014129505A1 (en) * 2013-02-20 2014-08-28 Nok株式会社 Sealing device
JP2019105374A (en) * 2017-12-13 2019-06-27 Ntn株式会社 Manufacturing method of seal ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100919A (en) * 1995-05-31 1997-04-15 Ntn Corp Seal ring
JP2009085391A (en) * 2007-10-02 2009-04-23 Nok Corp Seal ring
WO2014129505A1 (en) * 2013-02-20 2014-08-28 Nok株式会社 Sealing device
JP2019105374A (en) * 2017-12-13 2019-06-27 Ntn株式会社 Manufacturing method of seal ring

Similar Documents

Publication Publication Date Title
KR102283650B1 (en) Seal ring
US5934680A (en) Split resin seal ring with chamfered end connection structures
KR102468516B1 (en) Sealing ring
US8028997B2 (en) Resin seal ring and manufacturing method
JPH0996363A (en) Seal ring
JP7178178B2 (en) Seal ring
JP4215785B2 (en) Manufacturing method of composite step cut type seal ring made of synthetic resin
JPH0875007A (en) Seal ring of synthetic resin
JPH09100919A (en) Seal ring
WO2022202605A1 (en) Method for producing seal ring, and molding die
WO2021117600A1 (en) Seal ring
JP2007078041A (en) Resinous seal ring
JP7153161B2 (en) Seal rings and hydraulics
JP7365881B2 (en) Seal ring
JP2022013442A (en) Seal ring
WO2022191274A1 (en) Seal ring
JPH0989111A (en) Synthetic resin made seal ring
JP2020051555A (en) Seal ring
JP3894752B2 (en) Synthetic resin seal ring
JP4686809B2 (en) Seal ring
JP6783273B2 (en) Seal ring
JP7166167B2 (en) Seal ring
JP3587894B2 (en) Sliding member for soft light metal
JP2023084054A (en) Seal ring for butterfly valve
JP2002081551A (en) Seal ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899053

Country of ref document: EP

Kind code of ref document: A1