WO2021117574A1 - Power supply circuit and control method - Google Patents

Power supply circuit and control method Download PDF

Info

Publication number
WO2021117574A1
WO2021117574A1 PCT/JP2020/044852 JP2020044852W WO2021117574A1 WO 2021117574 A1 WO2021117574 A1 WO 2021117574A1 JP 2020044852 W JP2020044852 W JP 2020044852W WO 2021117574 A1 WO2021117574 A1 WO 2021117574A1
Authority
WO
WIPO (PCT)
Prior art keywords
dead time
mode
power supply
supply circuit
controller
Prior art date
Application number
PCT/JP2020/044852
Other languages
French (fr)
Japanese (ja)
Inventor
池田 智
俊也 中林
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021117574A1 publication Critical patent/WO2021117574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • This disclosure relates to a power supply circuit and a control method.
  • One of the purposes of the present disclosure is to provide a power supply circuit and a control method capable of reducing loss more efficiently.
  • the present disclosure is, for example, High-side switch and low-side switch, Equipped with a controller that sets the dead time, which is the period during which the high-side switch and low-side switch are turned off.
  • the controller is a power supply circuit that sets a dead time corresponding to a mode that switches according to the load current.
  • the present disclosure is, for example, The controller sets the dead time, which is the period during which the high-side and low-side switches are off.
  • a controller is a control method in a power supply circuit that sets a dead time corresponding to a mode that switches according to a load current.
  • FIG. 1 is a diagram for explaining a configuration example of a power supply circuit according to an embodiment.
  • FIG. 2 is a diagram referred to when a plurality of examples of operation modes of the power supply circuit according to the embodiment are described.
  • 3A and 3B are diagrams that are referred to when a dead time setting example according to the first embodiment is described.
  • FIG. 4 is a diagram referred to when a dead time setting example according to the first embodiment is described.
  • FIG. 5 is a diagram referred to when the first example of the method of detecting the switching between the heavy load mode and the light load mode is described.
  • FIG. 6 is a diagram referred to when a second example of a method of detecting a switch between a heavy load mode and a light load mode is given.
  • FIG. 1 is a diagram for explaining a configuration example of a power supply circuit according to an embodiment.
  • FIG. 2 is a diagram referred to when a plurality of examples of operation modes of the power supply circuit according to the embodiment are described.
  • FIG. 7 is a diagram referred to when a third example of a method of detecting switching between a heavy load mode and a light load mode is given.
  • FIG. 8 is a diagram referred to when a fourth example of a method of detecting a switch between a heavy load mode and a light load mode is given.
  • FIG. 9 is a diagram referred to when a fifth example of a method of detecting switching between a heavy load mode and a light load mode is given.
  • FIG. 10 is a diagram referred to when a sixth example of a method of detecting switching between a heavy load mode and a light load mode is made.
  • FIG. 11 is a diagram referred to when a seventh example of a method of detecting switching between a heavy load mode and a light load mode is made.
  • FIG. 8 is a diagram referred to when a fourth example of a method of detecting a switch between a heavy load mode and a light load mode is given.
  • FIG. 9 is a diagram referred to
  • FIG. 12 is a diagram that is referred to when the outline of the second embodiment is explained.
  • FIG. 13 is a diagram that is referred to when the outline of the second embodiment is explained.
  • FIG. 14 is a diagram that is referred to when the method of detecting the input voltage in the second embodiment is explained.
  • 15A and 15B are diagrams that will be referred to when the outline of the third embodiment is explained.
  • FIG. 16 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 17 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 18 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 16 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 17 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 18 is a diagram referred to
  • FIG. 19 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 20 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 21 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • FIG. 22 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
  • the input voltage to the synchronous rectifier circuit decreases with the use of the camera. It is desirable that the optimum dead time is set as the input voltage decreases.
  • next-generation FETs Field Effect Transistors
  • GaN gallium nitride
  • GaAs gallium arsenide
  • Coss loss the loss due to this
  • FIG. 1 is a diagram for explaining a configuration example of a power supply circuit (power supply circuit 1) according to the present embodiment.
  • a general power supply circuit configuration and function can be applied.
  • An input voltage V in (DC voltage) is supplied to the power supply circuit 1.
  • the input voltage V in is supplied from a battery, a rectifier circuit that rectifies an AC voltage, or the like. From the positive side of the input voltage V in is the line L1 is derived, the line from the negative side of the input voltage V in L2 (ground line) is derived.
  • the power supply circuit 1 has a high-side switch 11A and a low-side switch 11B connected between the line L1 and the line L2.
  • the high-side switch 11A and the low-side switch 11B are composed of, for example, an N-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Specifically, the drain of the high side switch 11A is connected to the line L1, and the source of the low side switch 11B is connected to the line L2.
  • the high-side switch 11A and the low-side switch 11B are controlled to be complementary, that is, to be alternately turned on at a predetermined frequency so that the upper and lower switching elements are not turned on at the same time. A dead time for a predetermined period is set so that the high side switch 11A and the low side switch 11B are not turned on at the same time.
  • An inductor and a capacitor are connected to the connection midpoint PA between the high side switch 11A and the low side switch 11B. Specifically, one end of the inductor (L) 12 is connected to the connection midpoint PA, and the capacitor 13 is connected between the other end of the inductor 12 and the line L2. The output of the circuit including the inductor 12 and the capacitor 13 is supplied to the load 2.
  • the power supply circuit 1 has a controller 101, a driver 102, an input voltage detection circuit 103, a zero cross detection circuit 104, and a feedback circuit 105.
  • the controller 101 controls the power supply circuit 1 in an integrated manner. For example, the controller 101 sets a dead time corresponding to the mode of switching according to the load current, and controls on / off of the high side switch 11A and the low side switch 11B based on the set dead time.
  • the driver 102 turns on / off the high-side switch 11A and the low-side switch 11B based on the control of the controller 101.
  • the input voltage detection circuit 103 is a circuit that detects a voltage having an input voltage of V in.
  • the zero-cross detection circuit 104 is a circuit that detects zero-cross of a switching current and a switching voltage.
  • the error amplifier 105A in which the negative terminal is connected to the resistor 14, the resistor 15, the connection midpoint PB between the resistor 14 and the resistor 15, and the output of the error amplifier 105A are connected to the negative terminal. It has a comparator 105B.
  • the feedback circuit 105 is a circuit for maintaining the set voltage value constant.
  • the resistor 14 and the resistor 15 dividing the output voltage V o of the power supply circuit 1.
  • the error amplifier 105A compares the voltage divided by the resistors 14 and 15 with the reference voltage V REF, and outputs the difference voltage.
  • the comparator 105B determines the pulse width of PWM (Pulse Width Modulation) control by comparing the differential voltage supplied from the error amplifier 105A with the triangular wave. The determined pulse width is fed back to the controller 101, and the output voltage is controlled by controlling the controller 101 based on the fed-back pulse width.
  • PWM Pulse Width Modulation
  • the configuration of the power supply circuit 1 can be appropriately changed according to the operation mode and the feedback control method described later.
  • the voltage mode is used as an example as the feedback control method for stabilizing the output, but the current mode may be applied.
  • the inductor current (current flowing through the inductor 12) is input to the positive terminal of the comparator 105B instead of the triangular wave.
  • PWM Pulse Width Modulation
  • PFM Pulse Frequency Modulation
  • CCM Continuous Conduction Mode
  • DCM Discontinuous Conductance Mode
  • a power supply circuit whose operation mode is PFM control generally has a circuit for detecting a switching frequency and a circuit for counting the number of pulses.
  • the above-mentioned operation mode can be applied as the operation mode of the power supply circuit 1.
  • the general power supply circuit also operates in a mode corresponding to the load current.
  • the power supply circuit has a circuit for detecting switching between a light load mode having a small load current and a heavy load mode having a large load current, and operates according to each mode.
  • the mode according to the load current is limited to two modes, and may be three or more modes. As shown in FIG. 2, since the zero cross occurrence frequency and the switching frequency change according to the load current, the mode of switching according to the load current can be determined by detecting the zero cross occurrence frequency and the like.
  • FIG. 3A is a diagram schematically showing the loss when the load is heavy (at the time of heavy load). Further, FIG. 3B is a diagram schematically showing the loss when the load is light (when the load is light). The thickness of the arrow schematically indicates the magnitude of loss or the like.
  • the penetration loss P short becomes smaller as the dead time t dead becomes longer.
  • Deadtime losses P deadtime for the duration of the dead time t dead since the low-side switch 11B is generated by turning on the reverse direction, the dead time t dead is longer increases.
  • the low-side switch 11B is made of GaN, the current flowing when the switch is turned on in the opposite direction is accumulated in the drain-source capacitance.
  • the load current I o becomes large and the path flowing out to the penetration path, that is, the penetration loss P short becomes small, while the load current I o becomes large.
  • the dead time becomes large.
  • the load current I o becomes small and the path flowing out to the penetration path, that is, the penetration loss P short becomes large, while the load current I o is small.
  • the loss P dead time becomes smaller.
  • dead time t dead the sum of the through loss P short and a dead time losses P deadtime is minimized Will exist.
  • Line LA in Fig. 4 shows a dead time losses P deadtime at heavy loads
  • the line LA ' indicates the dead time losses P deadtime at light loads.
  • the dead time losses P deadtime becomes larger as the dead time t dead is greater, and the dead time losses P deadtime at heavy load is greater than the dead time losses P deadtime at light loads.
  • the line LB in FIG. 4 indicates the penetration loss P short under heavy load, and the line LB'indicates the penetration loss P short under light load. As described above, the penetration loss P short becomes smaller as the dead time t dead becomes larger, and the penetration loss P short under heavy load is smaller than the penetration loss P short at light load.
  • the line LC in FIG. 4 shows the total loss P loss under heavy load.
  • the line LC shown by the curve is a combination of the line LA and the line LB.
  • the dead time t dead corresponding to the minimum point of the line LC, that is, the point where the loss P loss is the smallest is the optimum dead time under heavy load (dead time t dead_best A in FIG. 4).
  • the line LC'in FIG. 4 shows the total loss P loss at the time of light load.
  • the line LC'shown by the curve is a combination of the line LA'and the line LB'.
  • the dead time t dead corresponding to the minimum point of the line LC', that is, the place where the loss P loss is the smallest is the optimum dead time when the load is light (in FIG. 4, the dead time t dead_best B larger than the dead time t dead_best A). ).
  • the dead time corresponding to each mode is set according to the switching of such modes.
  • the optimum dead time can be set without adding a circuit or the like to the power supply circuit 1 having a general configuration, and the loss in the power supply circuit 1 can be reduced.
  • FIG. 5 shows a first example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 5 shows only the configuration related to the first example.
  • the zero cross of the switching current (inductor current IL ) is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101.
  • the controller 101 discriminates between the heavy load mode and the light load mode according to the detection result of the zero cross detection circuit 104, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • the controller 101 determines that the heavy load mode is used when the number of zero crosses detected is less than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets a dead time corresponding to the heavy load mode. Determine the light load mode and set the dead time corresponding to the light load mode.
  • FIG. 6 shows a second example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 6 shows only the configuration related to the second example.
  • the zero cross of the switching voltage V sw is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101.
  • the controller 101 discriminates between the heavy load mode and the light load mode according to the detection result of the zero cross detection circuit 104, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • the controller 101 determines that the heavy load mode is used when the number of zero crosses detected is less than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets a dead time corresponding to the heavy load mode. Determine the light load mode and set the dead time corresponding to the light load mode.
  • FIG. 7 shows a third example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 7 shows only the configuration related to the third example.
  • the third example is an example assuming a case where the operation mode of the power supply circuit 1 is PFM control.
  • the power supply circuit 1 generally has a switching frequency detection circuit 110, and the switching frequency is detected by the switching frequency detection circuit 110.
  • the switching frequency detected by the switching frequency detection circuit 110 is supplied to the controller 101.
  • the controller 101 discriminates between the heavy load mode and the light load mode according to the supplied switching frequency, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • the controller 101 determines that the heavy load mode is used when the switching frequency is equal to or higher than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets the dead time corresponding to the heavy load mode when the switching frequency is less than the predetermined value. Determine and set the dead time corresponding to the light load mode.
  • FIG. 8 shows a fourth example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 8 shows only the configuration related to the fourth example.
  • the fourth example is an example assuming a case where the operation mode of the power supply circuit 1 is PFM control.
  • the power supply circuit 1 generally has a pulse count circuit 111, and the pulse count circuit 111 detects the number of pulses.
  • the number of pulses detected by the pulse count circuit 111 is supplied to the controller 101.
  • the controller 101 discriminates between the heavy load mode and the light load mode according to the number of supplied pulses, and sets the dead time corresponding to the discriminated mode.
  • Switching control is performed based on the set dead time. Specifically, when the number of pulses is more than a predetermined value, the controller 101 determines that it is a heavy load mode and sets a dead time corresponding to the heavy load mode, and when the number of pulses is less than a predetermined value, it is regarded as a light load mode. Determine and set the dead time corresponding to the light load mode.
  • FIG. 9 shows a fifth example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 9 shows only the configuration related to the fifth example. In a large-scale system, a system configuration corresponding to multiple outputs can be considered by using a plurality of power supply circuits 1 on the premise that the electric powers of the respective supply destinations of the plurality of power supply circuits are correlated with each other. FIG. 9 is an example assuming such a system. In the fifth example, as shown in FIG. 9, information indicating the mode switched according to the load current (mode after switching) is supplied to the controller 101 of the power supply circuit 1 from the other power supply circuit 1A. To.
  • the controller 101 discriminates between the heavy load mode and the light load mode based on the information indicating the supplied mode, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • the power supply circuit 1 may be connected in multiple stages.
  • FIG. 10 shows a sixth example of a method of detecting a switch between a heavy load mode and a light load mode.
  • the sixth example is an example in which the load 2 is a camera.
  • the load current changes according to the shooting mode of the camera. For example, if the shooting mode of the camera is the still image shooting mode, the load current is relatively small, and if the shooting mode is the operation shooting mode or the continuous shooting mode, the load current is large. Therefore, in this example, as shown in FIG. 10, the controller 101 receives the shooting mode of the camera from the camera control circuit 150. Then, the controller 101 discriminates between the heavy load mode and the light load mode based on the shooting mode of the camera, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • FIG. 11 shows a seventh example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 11 shows only the configuration related to the seventh example.
  • the load current changes according to the operation mode of the secondary device as the load 2. For example, when the operation mode of the secondary side device is the standby state where the power consumption is low, the load current is relatively small, and when the operation mode of the secondary side device is the normal operation mode where the power consumption is large, the load current is large. Become. Therefore, in this example, as shown in FIG. 11, the controller 101 receives the operation mode of the secondary side device from the secondary side device.
  • the controller 101 discriminates between the heavy load mode and the light load mode based on the operation mode of the secondary device, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
  • the controller 101 may read the operation mode of the secondary device.
  • the dead time corresponding to the mode of switching according to the load current is set.
  • the optimum dead time is set, so that the loss in the power supply circuit can be suppressed as much as possible.
  • the power supply circuit having a general configuration can be used in the present disclosure, when high-speed control, addition of a large-scale circuit, and power are not required, and the Coss loss due to the low withstand voltage of the FET in the future cannot be ignored. Also, the loss can be minimized. Further, since control that does not depend on the semiconductor process is possible, it is possible to minimize the loss not only in GaN but also in devices made of any material such as GaAs.
  • the second embodiment is an embodiment in which a dead time is set according to the magnitude of the input voltage V in.
  • the rising time tr (falling time tf) of the switching waveform becomes long. Therefore, it is necessary to secure a dead time t dead in order to reduce the penetration loss P short. In other words, when the input voltage V in is small, it is not necessary to reduce the penetration loss P short , so that the dead time t dead can be shortened.
  • the horizontal axis shows the dead time t dead
  • the vertical axis shows the total loss P loss (P deadtime + P short ).
  • Line LD in FIG. 13 shows the dead time losses P deadtime.
  • the line LE in FIG. 13 shows the penetration loss P short when the input voltage V in is larger than a predetermined value.
  • the line LE'in FIG. 13 indicates the penetration loss P short when the input voltage V in is less than a predetermined value.
  • the line LF shown by the curve in FIG. 13 shows the total loss P loss when the input voltage V in is large.
  • the line LF is a combination of the line LD and the line LE.
  • the dead time t dead corresponding to the minimum point of the line LF, that is, the point where the loss P loss is the smallest is the optimum dead time when the input voltage V in is large (dead time t dead_best C in FIG. 13). ..
  • the line LF'shown by the curve in FIG. 13 shows the total loss P loss when the input voltage V in is large. Further, the line LF'is a combination of the line LD and the line LE'.
  • the dead time t dead corresponding to the minimum point of the line LF', that is, the point where the loss P loss is the smallest is the optimum dead time when the input voltage V in is small (dead time t dead_best D in FIG. 13). is there.
  • the optimum dead time for minimizing the loss P loss differs depending on the input voltage V in. Specifically, the smaller the input voltage V in , the smaller the dead time t dead . Therefore, in this embodiment, by using the input voltage detection function common power circuit has, the dead time t dead in response to the detected input voltage V in is adapted to be set.
  • FIG. 14 shows an example of a method of detecting the input voltage V in. Note that FIG. 14 shows only the configuration related to this example.
  • the input voltage detection circuit 103 included in the power supply circuit 1 detects the input voltage V in .
  • the input voltage V in detected by the input voltage detection circuit 103 is supplied to the controller 101.
  • the controller 101 sets a dead time corresponding to the input voltage V in. Switching control is performed based on the set dead time.
  • the input voltage V in may be classified into two patterns, large and small, and the dead time corresponding to each pattern may be set, or the input voltage V in may be classified into three or more patterns, and the dead time corresponding to each pattern may be set. It may be set.
  • the third embodiment is roughly an embodiment in which the first embodiment and the second embodiment are combined. Specifically, this is an example in which a mode for switching according to the load current and a dead time corresponding to the input voltage are set.
  • the horizontal axis defines the load current I o and the vertical axis defines the input voltage V in.
  • the dead time t dead1 to the dead time t dead4 are defined according to each of the four patterns of the magnitude of the load current I o corresponding to the heavy load mode and the light load mode and the magnitude of the input voltage V in.
  • the larger the load current I o the smaller the dead time (see FIG. 4). Therefore , t dead4> t dead1 and t dead3 > t dead2 hold. Further, since the dead time becomes smaller as the input voltage V in becomes smaller (see FIG. 13), t dead3 > t dead4 and t dead2 > t dead1 hold.
  • a threshold value I th is set for the load current Io and a threshold value V th is set for the input voltage V in , respectively, according to four patterns classified by the threshold value I th and the threshold value V th.
  • Dead time is set.
  • the controller 101 determines the mode according to the load current, and also refers to the input voltage to select and set the optimum dead time.
  • 4 quadrants an example of dividing into 4 patterns (4 quadrants) is shown, but it goes without saying that it can be divided into any number of patterns (number of quadrants).
  • a specific example thereof will be described.
  • FIG. 16 shows an example in which the first example and the second embodiment described in the first embodiment are combined. Note that FIG. 16 shows only the configuration related to this example.
  • the zero cross of the switching current (inductor current IL ) is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101.
  • the controller 101 determines either the heavy load mode or the light load mode according to the detection result of the zero cross detection circuit 104.
  • the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101.
  • the controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of zero crosses and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 17 shows an example in which the second example described in the first embodiment and the second embodiment are combined. Note that FIG. 17 shows only the configuration related to this example.
  • the zero cross of the switching voltage V sw is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101.
  • the controller 101 determines either the heavy load mode or the light load mode according to the detection result of the zero cross detection circuit 104.
  • the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101.
  • the controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of zero crosses and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 18 shows an example in which the third example and the second embodiment described in the first embodiment are combined. Note that FIG. 18 shows only the configuration related to this example.
  • the switching frequency detected by the switching frequency detection circuit 110 is supplied to the controller 101.
  • the controller 101 determines either the heavy load mode or the light load mode according to the supplied switching frequency.
  • the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101.
  • the controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the switching frequency and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 19 shows an example in which the fourth example and the second embodiment described in the first embodiment are combined. Note that FIG. 19 shows only the configuration related to this example.
  • the number of pulses is detected by the pulse count circuit 111.
  • the number of pulses detected by the pulse count circuit 111 is supplied to the controller 101.
  • the controller 101 determines either the heavy load mode or the light load mode according to the number of supplied pulses.
  • the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101.
  • the controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of pulses and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 20 shows an example in which the fifth example described in the first embodiment and the second embodiment are combined. Note that FIG. 20 shows only the configuration related to this example.
  • the controller 101 determines either the heavy load mode or the light load mode according to the information indicating the mode supplied from the power supply circuit 1A. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the information indicating the mode and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 21 shows an example in which the sixth example described in the first embodiment and the second embodiment are combined. Note that FIG. 21 shows only the configuration related to this example.
  • the controller 101 receives the shooting mode of the camera from the camera control circuit 150. Then, the controller 101 determines either the heavy load mode or the light load mode based on the shooting mode of the camera. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the shooting mode of the camera and the input voltage V in. Switching control is performed based on the set dead time.
  • FIG. 22 shows an example in which the seventh example described in the first embodiment and the second embodiment are combined. Note that FIG. 22 shows only the configuration related to this example.
  • the controller 101 receives the operation mode of the secondary device from the secondary device. Then, the controller 101 determines either the heavy load mode or the light load mode based on the operation mode of the secondary device. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the operation mode of the secondary device and the input voltage V in. Switching control is performed based on the set dead time. The controller 101 may read the operation mode of the secondary device.
  • the optimum dead time is set in consideration of not only the load current but also the input voltage, the loss can be further reduced. Further, since the loss can be reduced, when the input voltage is supplied from the battery, the continuous operation time of the battery can be lengthened.
  • the circuit configuration of the power supply circuit, the elements in the circuit, etc. can be changed as appropriate without departing from the gist of the present disclosure.
  • the load of the power supply circuit is not limited to the camera described in the embodiment. Examples of the load include electronic devices such as television receivers and printers. Further, the power supply circuit may be built in the adapter or the like. In addition, a plurality of examples relating to the mode determination method described in the first embodiment may be combined as appropriate.
  • the present disclosure may also adopt the following configuration.
  • a controller for setting a dead time which is a period during which the high-side switch and the low-side switch are turned off, is provided.
  • the controller is a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.
  • the controller sets a first dead time corresponding to the heavy load mode when the mode is the heavy load mode, and corresponds to the light load mode when the mode is the light load mode.
  • the power supply circuit according to (1) wherein a second dead time longer than the first dead time is set.
  • the load to which the load current is supplied is the camera.
  • the controller is a control method in a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This power supply circuit is provided with: a high-side switch and a low-side switch; and a controller for setting a dead time that is a time period during which the high-side switch and the low-side switch are off. The controller sets the dead time corresponding to a mode that is switched in accordance with a load current.

Description

電源回路および制御方法Power supply circuit and control method
 本開示は、電源回路および制御方法に関する。 This disclosure relates to a power supply circuit and a control method.
 電源回路、具体的には同期整流回路の貫通損失を低減させるため、2個のスイッチング素子のオン/オフを切り替える際に、両方のスイッチング素子をオフする期間(以下、デッドタイムと適宜、称される)を設定する技術が提案されている。(例えば、下記の特許文献1を参照のこと)。 In order to reduce the penetration loss of the power supply circuit, specifically the synchronous rectifier circuit, when switching the on / off of the two switching elements, the period during which both switching elements are turned off (hereinafter, appropriately referred to as dead time). The technology to set the circuit has been proposed. (See, for example, Patent Document 1 below).
特開2009-290812号公報Japanese Unexamined Patent Publication No. 2009-290812
 このような分野では、より効率的に電源回路における損失を低減させることが望まれている。 In such fields, it is desired to reduce the loss in the power supply circuit more efficiently.
 本開示は、より効率的に損失を低減させることができる電源回路および制御方法を提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide a power supply circuit and a control method capable of reducing loss more efficiently.
 本開示は、例えば、
 ハイサイドスイッチおよびローサイドスイッチと、
 ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定するコントローラとを備え、
 コントローラは、負荷電流に応じて切り替わるモードに対応するデッドタイムを設定する
 電源回路である。
The present disclosure is, for example,
High-side switch and low-side switch,
Equipped with a controller that sets the dead time, which is the period during which the high-side switch and low-side switch are turned off.
The controller is a power supply circuit that sets a dead time corresponding to a mode that switches according to the load current.
 本開示は、例えば、
 コントローラが、ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定し、
 コントローラは、負荷電流に応じて切り替わるモードに対応するデッドタイムを設定する
 電源回路における制御方法である。
The present disclosure is, for example,
The controller sets the dead time, which is the period during which the high-side and low-side switches are off.
A controller is a control method in a power supply circuit that sets a dead time corresponding to a mode that switches according to a load current.
図1は、実施形態にかかる電源回路の構成例を説明するための図である。FIG. 1 is a diagram for explaining a configuration example of a power supply circuit according to an embodiment. 図2は、実施形態にかかる電源回路の動作モードの複数の例が説明される際に参照される図である。FIG. 2 is a diagram referred to when a plurality of examples of operation modes of the power supply circuit according to the embodiment are described. 図3Aおよび図3Bは、第1の実施形態におけるデッドタイムの設定例が説明される際に参照される図である。3A and 3B are diagrams that are referred to when a dead time setting example according to the first embodiment is described. 図4は、第1の実施形態におけるデッドタイムの設定例が説明される際に参照される図である。FIG. 4 is a diagram referred to when a dead time setting example according to the first embodiment is described. 図5は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第1の例に関する説明がなされる際に参照される図である。FIG. 5 is a diagram referred to when the first example of the method of detecting the switching between the heavy load mode and the light load mode is described. 図6は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第2の例に関する説明がなされる際に参照される図である。FIG. 6 is a diagram referred to when a second example of a method of detecting a switch between a heavy load mode and a light load mode is given. 図7は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第3の例に関する説明がなされる際に参照される図である。FIG. 7 is a diagram referred to when a third example of a method of detecting switching between a heavy load mode and a light load mode is given. 図8は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第4の例に関する説明がなされる際に参照される図である。FIG. 8 is a diagram referred to when a fourth example of a method of detecting a switch between a heavy load mode and a light load mode is given. 図9は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第5の例に関する説明がなされる際に参照される図である。FIG. 9 is a diagram referred to when a fifth example of a method of detecting switching between a heavy load mode and a light load mode is given. 図10は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第6の例に関する説明がなされる際に参照される図である。FIG. 10 is a diagram referred to when a sixth example of a method of detecting switching between a heavy load mode and a light load mode is made. 図11は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第7の例に関する説明がなされる際に参照される図である。FIG. 11 is a diagram referred to when a seventh example of a method of detecting switching between a heavy load mode and a light load mode is made. 図12は、第2の実施形態の概要に関する説明がなされる際に参照される図である。FIG. 12 is a diagram that is referred to when the outline of the second embodiment is explained. 図13は、第2の実施形態の概要に関する説明がなされる際に参照される図である。FIG. 13 is a diagram that is referred to when the outline of the second embodiment is explained. 図14は、第2の実施形態において入力電圧を検出する方法の説明がなされる際に参照される図である。FIG. 14 is a diagram that is referred to when the method of detecting the input voltage in the second embodiment is explained. 図15Aおよび図15Bは、第3の実施形態の概要に関する説明がなされる際に参照される図である。15A and 15B are diagrams that will be referred to when the outline of the third embodiment is explained. 図16は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 16 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図17は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 17 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図18は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 18 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図19は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 19 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図20は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 20 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図21は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 21 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described. 図22は、第3の実施形態にかかる電源回路の動作に関する説明がなされる際に参照される図である。FIG. 22 is a diagram referred to when the operation of the power supply circuit according to the third embodiment is described.
 以下、本開示の実施形態等について図面を参照しながらの説明がなされる。なお、説明は以下の順序で行う。
<本開示で考慮すべき問題>
<第1の実施形態>
<第2の実施形態>
<第3の実施形態>
<変形例>
 以下に説明する実施形態等は本開示の好適な具体例であり、本開示の内容がこれらの実施形態等に限定されるものではない。
Hereinafter, embodiments and the like of the present disclosure will be described with reference to the drawings. The explanation will be given in the following order.
<Issues to be considered in this disclosure>
<First Embodiment>
<Second embodiment>
<Third embodiment>
<Modification example>
The embodiments and the like described below are suitable specific examples of the present disclosure, and the contents of the present disclosure are not limited to these embodiments and the like.
<本開示で考慮すべき問題>
 始めに、本開示の理解を容易とするために、本開示において考慮すべき問題についての説明がなされる。
<Issues to be considered in this disclosure>
First, in order to facilitate the understanding of the present disclosure, the issues to be considered in the present disclosure will be explained.
 上述したように、DC(Direct Current)-DCコンバータ、同期整流回路等と称される電源回路の分野では、より効率的に損失を低減することが望まれている。すなわち、一般的な電源回路が有する構成、機能に対して、新規の構成や機能を追加することなく、効率的に損失を低減することが望まれる。上述した特許文献1に記載の同期整流回路では、スイッチング波形のエッジを検出してリアルタイム且つ連続的にデッドタイムを調整するため、エッジを検出するための回路が追加的に必要となる。 As described above, in the field of power supply circuits called DC (Direct Current) -DC converters, synchronous rectifier circuits, etc., it is desired to reduce the loss more efficiently. That is, it is desired to efficiently reduce the loss without adding a new configuration or function to the configuration and function of a general power supply circuit. In the synchronous rectifier circuit described in Patent Document 1 described above, in order to detect the edge of the switching waveform and adjust the dead time continuously in real time, an additional circuit for detecting the edge is required.
 また、カメラのようなバッテリで駆動する製品においては、同期整流回路に対する入力電圧がカメラの使用に伴い低下する。かかる入力電圧の低下に伴い、最適なデッドタイムが設定されることが望ましい。 Also, in battery-powered products such as cameras, the input voltage to the synchronous rectifier circuit decreases with the use of the camera. It is desirable that the optimum dead time is set as the input voltage decreases.
 また、今後、主に民生機器向けにGaN(窒化ガリウム)、GaAs(ガリウムヒ素)等の次世代のFET(Field Effect Transistor)の低耐圧化の開発が進むと、FET全体が小型化する。FETの小型化に伴って寄生容量Coss(ゲート-ソース間の容量とドレイン-ソース間の容量の合計)が大きくなる。一方で、スイッチング電源においては、ハイサイド側のFETの寄生容量およびローサイド側のFETの寄生容量が常に充放電を繰り返しており、これによる損失(以下、Coss損失と適宜、称される)が、FETの低耐圧化に伴い増大し、無視できなくなる。かかるCoss損失は、次世代のFETを用いた電源回路の電力変換効率の向上を阻害する要因となり得る。以上の観点に鑑みてなされた本開示の実施形態について、以下、詳細な説明がなされる。 In the future, as the development of low withstand voltage of next-generation FETs (Field Effect Transistors) such as GaN (gallium nitride) and GaAs (gallium arsenide) progresses mainly for consumer devices, the entire FET will become smaller. As the FET becomes smaller, the parasitic capacitance Coss (the sum of the capacitance between the gate and the source and the capacitance between the drain and the source) increases. On the other hand, in the switching power supply, the parasitic capacitance of the high-side FET and the parasitic capacitance of the low-side FET are constantly repeatedly charged and discharged, and the loss due to this (hereinafter, appropriately referred to as Coss loss) is reduced. It increases as the withstand voltage of the FET decreases and cannot be ignored. Such a Cass loss can be a factor that hinders the improvement of the power conversion efficiency of the power supply circuit using the next-generation FET. The embodiments of the present disclosure made in view of the above viewpoint will be described in detail below.
<第1の実施形態>
[電源回路]
(回路構成例)
 図1は、本実施形態にかかる電源回路(電源回路1)の構成例を説明するための図である。なお、本実施形態にかかる電源回路1としては、一般的な電源回路の構成、機能を適用することができる。
<First Embodiment>
[Power supply circuit]
(Circuit configuration example)
FIG. 1 is a diagram for explaining a configuration example of a power supply circuit (power supply circuit 1) according to the present embodiment. As the power supply circuit 1 according to the present embodiment, a general power supply circuit configuration and function can be applied.
 電源回路1には、入力電圧Vin(直流電圧)が供給される。入力電圧Vinは、電池や交流電圧を整流する整流回路等から供給される。入力電圧Vinの正側からはラインL1が導出されており、入力電圧Vinの負側からはラインL2(グランドライン)が導出されている。 An input voltage V in (DC voltage) is supplied to the power supply circuit 1. The input voltage V in is supplied from a battery, a rectifier circuit that rectifies an AC voltage, or the like. From the positive side of the input voltage V in is the line L1 is derived, the line from the negative side of the input voltage V in L2 (ground line) is derived.
 電源回路1は、ラインL1とラインL2との間に接続されたハイサイドスイッチ11Aとローサイドスイッチ11Bとを有している。ハイサイドスイッチ11Aおよびローサイドスイッチ11Bは、例えば、N型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)により構成されている。具体的には、ハイサイドスイッチ11AのドレインがラインL1に接続されており、ローサイドスイッチ11BのソースがラインL2に接続されている。ハイサイドスイッチ11Aおよびローサイドスイッチ11Bは、相補的、すなわち、上下のスイッチング素子が同時にオンすることがないように所定の周波数で交互にオンするように制御される。ハイサイドスイッチ11Aおよびローサイドスイッチ11Bが同時にオンすることがないように、所定の期間のデッドタイムが設定される。 The power supply circuit 1 has a high-side switch 11A and a low-side switch 11B connected between the line L1 and the line L2. The high-side switch 11A and the low-side switch 11B are composed of, for example, an N-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Specifically, the drain of the high side switch 11A is connected to the line L1, and the source of the low side switch 11B is connected to the line L2. The high-side switch 11A and the low-side switch 11B are controlled to be complementary, that is, to be alternately turned on at a predetermined frequency so that the upper and lower switching elements are not turned on at the same time. A dead time for a predetermined period is set so that the high side switch 11A and the low side switch 11B are not turned on at the same time.
 ハイサイドスイッチ11Aとローサイドスイッチ11Bとの間の接続中点PAには、インダクタとコンデンサが接続されている。具体的には、接続中点PAにインダクタ(L)12の一端が接続されており、インダクタ12の他端とラインL2との間にコンデンサ13が接続されている。インダクタ12およびコンデンサ13を含む回路の出力が負荷2に対して供給される。 An inductor and a capacitor are connected to the connection midpoint PA between the high side switch 11A and the low side switch 11B. Specifically, one end of the inductor (L) 12 is connected to the connection midpoint PA, and the capacitor 13 is connected between the other end of the inductor 12 and the line L2. The output of the circuit including the inductor 12 and the capacitor 13 is supplied to the load 2.
 また、電源回路1は、コントローラ101と、ドライバ102と、入力電圧検出回路103と、ゼロクロス検出回路104と、フィードバック回路105とを有している。コントローラ101は、電源回路1を統括的に制御する。コントローラ101は、例えば、負荷電流に応じて切り替わるモードに対応するデッドタイムを設定し、設定したデッドタイムに基づいて、ハイサイドスイッチ11Aおよびローサイドスイッチ11Bのオン/オフを制御する。 Further, the power supply circuit 1 has a controller 101, a driver 102, an input voltage detection circuit 103, a zero cross detection circuit 104, and a feedback circuit 105. The controller 101 controls the power supply circuit 1 in an integrated manner. For example, the controller 101 sets a dead time corresponding to the mode of switching according to the load current, and controls on / off of the high side switch 11A and the low side switch 11B based on the set dead time.
 ドライバ102は、コントローラ101の制御に基づいて、ハイサイドスイッチ11Aおよびローサイドスイッチ11Bのオン/オフを行う。入力電圧検出回路103は、入力電圧Vinの電圧を検出する回路である。ゼロクロス検出回路104は、スイッチング電流やスイッチング電圧のゼロクロスを検出する回路である。 The driver 102 turns on / off the high-side switch 11A and the low-side switch 11B based on the control of the controller 101. The input voltage detection circuit 103 is a circuit that detects a voltage having an input voltage of V in. The zero-cross detection circuit 104 is a circuit that detects zero-cross of a switching current and a switching voltage.
 フィードバック回路105は、抵抗14と、抵抗15と、抵抗14と抵抗15との間の接続中点PBにマイナス端子が接続されるエラーアンプ105Aと、エラーアンプ105Aの出力がマイナス端子に接続されるコンパレータ105Bとを有している。フィードバック回路105は、設定された電圧値を一定に維持するための回路である。 In the feedback circuit 105, the error amplifier 105A in which the negative terminal is connected to the resistor 14, the resistor 15, the connection midpoint PB between the resistor 14 and the resistor 15, and the output of the error amplifier 105A are connected to the negative terminal. It has a comparator 105B. The feedback circuit 105 is a circuit for maintaining the set voltage value constant.
 フィードバック回路105における、抵抗14および抵抗15は、電源回路1の出力電圧Voを分圧する。エラーアンプ105Aは、抵抗14および抵抗15で分圧された電圧と基準電圧VREFとを比較して、差分の電圧を出力する。コンパレータ105Bは、エラーアンプ105Aから供給された差分の電圧と三角波とを比較することにより、PWM(Pulse Width Modulation)制御のパルス幅を決定する。決定されたパルス幅がコントローラ101にフィードバックされ、フィードバックされたパルス幅に基づくコントローラ101の制御が行われることにより出力電圧が制御される。 In the feedback circuit 105, the resistor 14 and the resistor 15, dividing the output voltage V o of the power supply circuit 1. The error amplifier 105A compares the voltage divided by the resistors 14 and 15 with the reference voltage V REF, and outputs the difference voltage. The comparator 105B determines the pulse width of PWM (Pulse Width Modulation) control by comparing the differential voltage supplied from the error amplifier 105A with the triangular wave. The determined pulse width is fed back to the controller 101, and the output voltage is controlled by controlling the controller 101 based on the fed-back pulse width.
 なお、電源回路1の構成は、後述する動作モードや、フィードバック制御方式に応じて適宜、変更することが可能である。例えば、上述した説明では、出力を安定化するためのフィードバック制御の方式として、電圧モードを例にした説明がなされたが、電流モードが適用されてもよい。この場合、コンパレータ105Bのプラス端子には三角波ではなく、インダクタ電流(インダクタ12を流れる電流)が入力される。 The configuration of the power supply circuit 1 can be appropriately changed according to the operation mode and the feedback control method described later. For example, in the above description, the voltage mode is used as an example as the feedback control method for stabilizing the output, but the current mode may be applied. In this case, the inductor current (current flowing through the inductor 12) is input to the positive terminal of the comparator 105B instead of the triangular wave.
(動作モード)
 図2が参照されつつ、電源回路1の動作モードの複数の例が説明される。図2に示すように、出力電圧を制御する動作モードとして、PWM(Pulse Width Modulation)制御とPFM(Pulse Frequency Modulation)とが挙げられる。PWMは、スイッチング周期(周波数)が一定であり、デューティー比を調整することで安定化を行う方式である。また、PFMは、スイッチング素子のオン/オフ時間は一定で、周波数を変更する方式である。PWM制御は、さらに、CCM(Continuous Conduction Mode)とDCM(Discontinuous Conductance Mode)とに分けることができる。PWM制御におけるCCMでは、インダクタ電流ILが負になることが許容される。PWM制御におけるDCMでは、インダクタ電流ILが負になることを防ぐことによって軽負荷時の効率を改善するようにしている。
(action mode)
A plurality of examples of the operation modes of the power supply circuit 1 will be described with reference to FIG. As shown in FIG. 2, as an operation mode for controlling the output voltage, PWM (Pulse Width Modulation) control and PFM (Pulse Frequency Modulation) can be mentioned. PWM is a method in which the switching cycle (frequency) is constant and stabilization is performed by adjusting the duty ratio. Further, the PFM is a method in which the on / off time of the switching element is constant and the frequency is changed. PWM control can be further divided into CCM (Continuous Conduction Mode) and DCM (Discontinuous Conductance Mode). In CCM in the PWM control, it is allowed that the inductor current I L becomes negative. In DCM in the PWM control, so as to improve efficiency at light loads by preventing the inductor current I L becomes negative.
 図2では、各動作モードにおける、接続中点PAにおける電圧であるスイッチ端子電圧VSWと、インダクタ12に流れる電流であるインダクタ電流ILとの関係が示されている。 In Figure 2, in each operation mode, the switch terminal voltage V SW is the voltage at the connection point PA, the relationship between the inductor current I L is shown a current flowing through the inductor 12.
 PWM制御では、軽負荷時、すなわち、負荷電流が小さいときにインダクタ電流ILがゼロクロスするレベルまで効果するため、ゼロクロスの発生頻度が大きくなる。PFM制御では、インダクタ電流ILが負になるのを防ぎ、軽負荷時に両方のFET(ハイサイドスイッチ11Aおよびローサイドスイッチ11B)をオフにしてパルスをスキップすることによって効率が改善される。従って、負荷電流が小さくなるとパルスがスキップされるので、ゼロクロスの発生頻度が少なくなる。 In PWM control, when the load is light, that is, when the load current is small, the inductor current IL is effective up to the level of zero crossing, so that the frequency of zero crossing increases. In PFM control prevents the inductor current I L becomes negative, efficiency is improved by skipping clear the pulse both of the FET (high-side switch 11A and the low-side switch 11B) at light loads. Therefore, when the load current becomes small, the pulse is skipped, so that the frequency of occurrence of zero cross is reduced.
 動作モードがPFM制御である電源回路は、一般的に、スイッチング周波数を検出する回路やパルス数をカウントする回路を有している。 A power supply circuit whose operation mode is PFM control generally has a circuit for detecting a switching frequency and a circuit for counting the number of pulses.
 電源回路1の動作モードとしては、上述した動作モードを適用することができる。なお、一般的な電源回路は、負荷電流に対応するモードでも動作する。例えば、電源回路は、負荷電流が小さい軽負荷モードおよび負荷電流が大きい重負荷モードの切り替わりを検出する回路を有し、各モードに応じた動作を行う。もちろん、負荷電流に応じたモードは2モードに限らす、3モード以上であってもよい。図2に示すように、負荷電流に応じてゼロクロスの発生頻度やスイッチング周波数が変化することから、負荷電流に応じて切り替わるモードは、ゼロクロスの発生頻度等を検出することにより判別することができる。 The above-mentioned operation mode can be applied as the operation mode of the power supply circuit 1. The general power supply circuit also operates in a mode corresponding to the load current. For example, the power supply circuit has a circuit for detecting switching between a light load mode having a small load current and a heavy load mode having a large load current, and operates according to each mode. Of course, the mode according to the load current is limited to two modes, and may be three or more modes. As shown in FIG. 2, since the zero cross occurrence frequency and the switching frequency change according to the load current, the mode of switching according to the load current can be determined by detecting the zero cross occurrence frequency and the like.
[デッドタイムの設定について]
(概要)
 続いて、第1の実施形態におけるデッドタイムの設定例についての説明がなされる。以下に示す処理は、例えば、コントローラ101により行われる。始めに、図3A、図3Bおよび図4が参照されつつ、概要についての説明がなされる。
[About dead time setting]
(Overview)
Subsequently, an example of setting the dead time in the first embodiment will be described. The processing shown below is performed by, for example, the controller 101. First, an overview will be given with reference to FIGS. 3A, 3B and 4.
 図3Aは、負荷が重い場合(重負荷時)における損失を模式的に示した図である。また、図3Bは、負荷が軽い場合(軽負荷時)における損失を模式的に示した図である。矢印の太さは、損失等の大きさを模式的に示している。 FIG. 3A is a diagram schematically showing the loss when the load is heavy (at the time of heavy load). Further, FIG. 3B is a diagram schematically showing the loss when the load is light (when the load is light). The thickness of the arrow schematically indicates the magnitude of loss or the like.
 入力電力Pinは、出力電力Pout、貫通損失Pshort、デッドタイム損失Pdeadtimeにおいて消費される。ここにおける損失は、貫通損失Pshortとデッドタイム損失Pdeadtimeとの和となる。貫通損失Pshortは、デッドタイムtdeadが長くなるほど小さくなる。デッドタイム損失Pdeadtimeは、デッドタイムtdeadの期間中、ローサイドスイッチ11Bが逆方向にオンすることで発生するため、デッドタイムtdeadが長いほどが大きくなる。逆方向にオンした際に流れる電流は、ローサイドスイッチ11BがGaNで構成される場合には、ドレイン-ソース間容量に蓄積される。 Input power P in the output power P out, through loss P short, is consumed in the dead time losses P deadtime. Loss in this case is the sum of the penetration loss P short and dead time losses P deadtime. The penetration loss P short becomes smaller as the dead time t dead becomes longer. Deadtime losses P deadtime for the duration of the dead time t dead, since the low-side switch 11B is generated by turning on the reverse direction, the dead time t dead is longer increases. When the low-side switch 11B is made of GaN, the current flowing when the switch is turned on in the opposite direction is accumulated in the drain-source capacitance.
 一般に、デッドタイム損失Pdeadtimeは、以下の式1により表される。
[式1]
deadtime=2*VTH*Io*tdead*fsw (W)
但し、
TH:ローサイドスイッチの逆方向ONしきい値電圧
o:負荷電流
sw:動作周波数
である。
Generally, the dead time loss P deadtime is expressed by the following equation 1.
[Equation 1]
P deadtime = 2 * V TH * I o * t dead * f sw (W)
However,
V TH : Reverse ON threshold voltage of low side switch I o : Load current f sw : Operating frequency.
 図3Aに示す重負荷時には、負荷電流Ioが大きくなり、貫通経路に流出する経路、すなわち、貫通損失Pshortは小さくなる一方、負荷電流Ioが大きいことから、式1によりデッドタイム損失Pdeadtimeが大きくなる。 At the time of heavy load shown in FIG. 3A, the load current I o becomes large and the path flowing out to the penetration path, that is, the penetration loss P short becomes small, while the load current I o becomes large. The dead time becomes large.
 一方、図3Bに示す軽負荷時には、負荷電流Ioが小さくなり、貫通経路に流出する経路、すなわち、貫通損失Pshortは大きくなる一方、負荷電流Ioが小さいことから、式1によりデッドタイム損失Pdeadtimeが小さくなる。 On the other hand, at the time of light load shown in FIG. 3B, the load current I o becomes small and the path flowing out to the penetration path, that is, the penetration loss P short becomes large, while the load current I o is small. The loss P dead time becomes smaller.
 すなわち、貫通損失Pshortとデッドタイム損失Pdeadtimeとは、デッドタイムtdeadの大小による増減の特性が異なるため、貫通損失Pshortおよびデッドタイム損失Pdeadtimeの総和が最小となるデッドタイムtdeadが存在することになる。 That is, through the loss P short and dead time losses P deadtime, since the characteristics of the increase or decrease due to the magnitude of the dead time t dead different, dead time t dead the sum of the through loss P short and a dead time losses P deadtime is minimized Will exist.
 続いて、図4に示すグラフが参照されつつ、負荷電流に応じて最適なデッドタイムtdeadが変化する点についての説明がなされる。図4のグラフの横軸はデッドタイムtdeadを示し、縦軸はトータルの損失Ploss(Pdeadtime+Pshort)を示している。 Subsequently, with reference to the graph shown in FIG. 4, the point that the optimum dead time t dead changes according to the load current will be described. The horizontal axis of the graph of FIG. 4 shows the dead time t dead , and the vertical axis shows the total loss P loss (P deadtime + P short ).
 図4におけるラインLAは、重負荷時におけるデッドタイム損失Pdeadtimeを示し、ラインLA'は軽負荷時におけるデッドタイム損失Pdeadtimeを示す。上述したように、デッドタイム損失Pdeadtimeは、デッドタイムtdeadが大きいほど大きくなり、且つ、重負荷時におけるデッドタイム損失Pdeadtimeは、軽負荷時におけるデッドタイム損失Pdeadtimeより大きい。 Line LA in Fig. 4 shows a dead time losses P deadtime at heavy loads, the line LA 'indicates the dead time losses P deadtime at light loads. As described above, the dead time losses P deadtime becomes larger as the dead time t dead is greater, and the dead time losses P deadtime at heavy load is greater than the dead time losses P deadtime at light loads.
 図4におけるラインLBは、重負荷時における貫通損失Pshortを示し、ラインLB'は軽負荷時における貫通損失Pshortを示す。上述したように、貫通損失Pshortは、デッドタイムtdeadが大きいほど小さくなり、且つ、重負荷時における貫通損失Pshortは、軽負荷時における貫通損失Pshortより小さい。 The line LB in FIG. 4 indicates the penetration loss P short under heavy load, and the line LB'indicates the penetration loss P short under light load. As described above, the penetration loss P short becomes smaller as the dead time t dead becomes larger, and the penetration loss P short under heavy load is smaller than the penetration loss P short at light load.
 図4におけるラインLCは、重負荷時におけるトータルの損失Plossを示している。曲線で示されるラインLCは、ラインLAとラインLBとを合成したものである。ラインLCの極小点、すなわち、損失Plossが最も小さくなる箇所に対応するデッドタイムtdeadが重負荷時における最適なデッドタイム(図4中、デッドタイムtdead_bestA)である。 The line LC in FIG. 4 shows the total loss P loss under heavy load. The line LC shown by the curve is a combination of the line LA and the line LB. The dead time t dead corresponding to the minimum point of the line LC, that is, the point where the loss P loss is the smallest is the optimum dead time under heavy load (dead time t dead_best A in FIG. 4).
 また、図4におけるラインLC'は、軽負荷時におけるトータルの損失Plossを示している。曲線で示されるラインLC'は、ラインLA'とラインLB'とを合成したものである。ラインLC'の極小点、すなわち、損失Plossが最も小さくなる箇所に対応するデッドタイムtdeadが軽負荷時における最適なデッドタイム(図4中、デッドタイムtdead_bestAより大きいデッドタイムtdead_bestB)である。 Further, the line LC'in FIG. 4 shows the total loss P loss at the time of light load. The line LC'shown by the curve is a combination of the line LA'and the line LB'. The dead time t dead corresponding to the minimum point of the line LC', that is, the place where the loss P loss is the smallest is the optimum dead time when the load is light (in FIG. 4, the dead time t dead_best B larger than the dead time t dead_best A). ).
 一般的な構成を有する電源回路1では、例えば、重負荷時に対応する重負荷モードおよび軽負荷時に対応する軽負荷モードの切り替わりが可能とされている。そこで、本実施形態では、かかるモードの切り替わりに応じて、それぞれのモードに対応するデッドタイムが設定される。これにより、一般的な構成を有する電源回路1に回路等を追加することなく、最適なデッドタイムを設定することができ、電源回路1における損失を低減することが可能となる。 In the power supply circuit 1 having a general configuration, for example, it is possible to switch between a heavy load mode corresponding to a heavy load and a light load mode corresponding to a light load. Therefore, in the present embodiment, the dead time corresponding to each mode is set according to the switching of such modes. As a result, the optimum dead time can be set without adding a circuit or the like to the power supply circuit 1 having a general configuration, and the loss in the power supply circuit 1 can be reduced.
[モードの切り替わりを検出する方法の例]
 続いて、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の例についての説明がなされる。重負荷モードおよび軽負荷モードの切り替わりは、図1に示した、電源回路1が有する構成、換言すれば、一般的な電源回路1が有する構成により、新たな回路を追加することなく検出することができる。
[Example of how to detect mode switching]
Subsequently, an example of a method for detecting the switching between the heavy load mode and the light load mode will be described. Switching between the heavy load mode and the light load mode can be detected without adding a new circuit by the configuration of the power supply circuit 1 shown in FIG. 1, in other words, the configuration of the general power supply circuit 1. Can be done.
「第1の例」
 図5は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第1の例を示す。なお、図5では、第1の例に関連する構成のみが図示されている。第1の例では、スイッチング電流(インダクタ電流IL)のゼロクロスがゼロクロス検出回路104により検出され、その結果がコントローラ101に供給される。コントローラ101は、ゼロクロス検出回路104の検出結果に応じて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。具体的には、コントローラ101は、ゼロクロスの検出数が所定未満の場合には重負荷モードと判別して重負荷モードに対応するデッドタイムを設定し、ゼロクロスの検出数が所定以上の場合には軽負荷モードと判別して軽負荷モードに対応するデッドタイムを設定する。
"First example"
FIG. 5 shows a first example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 5 shows only the configuration related to the first example. In the first example, the zero cross of the switching current (inductor current IL ) is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101. The controller 101 discriminates between the heavy load mode and the light load mode according to the detection result of the zero cross detection circuit 104, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. Specifically, the controller 101 determines that the heavy load mode is used when the number of zero crosses detected is less than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets a dead time corresponding to the heavy load mode. Determine the light load mode and set the dead time corresponding to the light load mode.
「第2の例」
 図6は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第2の例を示す。なお、図6では、第2の例に関連する構成のみが図示されている。第2の例では、スイッチング電圧Vswのゼロクロスがゼロクロス検出回路104により検出され、その結果がコントローラ101に供給される。コントローラ101は、ゼロクロス検出回路104の検出結果に応じて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。具体的には、コントローラ101は、ゼロクロスの検出数が所定未満の場合には重負荷モードと判別して重負荷モードに対応するデッドタイムを設定し、ゼロクロスの検出数が所定以上の場合には軽負荷モードと判別して軽負荷モードに対応するデッドタイムを設定する。
"Second example"
FIG. 6 shows a second example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 6 shows only the configuration related to the second example. In the second example, the zero cross of the switching voltage V sw is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101. The controller 101 discriminates between the heavy load mode and the light load mode according to the detection result of the zero cross detection circuit 104, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. Specifically, the controller 101 determines that the heavy load mode is used when the number of zero crosses detected is less than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets a dead time corresponding to the heavy load mode. Determine the light load mode and set the dead time corresponding to the light load mode.
「第3の例」
 図7は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第3の例を示す。なお、図7では、第3の例に関連する構成のみが図示されている。第3の例は、電源回路1の動作モードがPFM制御である場合を想定した例である。動作モードがPFM制御の場合には、図7に示すように、電源回路1は、スイッチング周波数検出回路110を一般に有しており、スイッチング周波数検出回路110によりスイッチング周波数が検出される。スイッチング周波数検出回路110により検出されたスイッチング周波数がコントローラ101に供給される。コントローラ101は、供給されたスイッチング周波数に応じて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。具体的には、コントローラ101は、スイッチング周波数が所定以上の場合には重負荷モードと判別して重負荷モードに対応するデッドタイムを設定し、スイッチング周波数が所定未満の場合には軽負荷モードと判別して軽負荷モードに対応するデッドタイムを設定する。
"Third example"
FIG. 7 shows a third example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 7 shows only the configuration related to the third example. The third example is an example assuming a case where the operation mode of the power supply circuit 1 is PFM control. When the operation mode is PFM control, as shown in FIG. 7, the power supply circuit 1 generally has a switching frequency detection circuit 110, and the switching frequency is detected by the switching frequency detection circuit 110. The switching frequency detected by the switching frequency detection circuit 110 is supplied to the controller 101. The controller 101 discriminates between the heavy load mode and the light load mode according to the supplied switching frequency, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. Specifically, the controller 101 determines that the heavy load mode is used when the switching frequency is equal to or higher than a predetermined value, sets a dead time corresponding to the heavy load mode, and sets the dead time corresponding to the heavy load mode when the switching frequency is less than the predetermined value. Determine and set the dead time corresponding to the light load mode.
「第4の例」
 図8は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第4の例を示す。なお、図8では、第4の例に関連する構成のみが図示されている。第4の例は、電源回路1の動作モードがPFM制御である場合を想定した例である。動作モードがPFM制御の場合には、図8に示すように、電源回路1は、パルスカウント回路111を一般に有しており、パルスカウント回路111によりパルス数が検出される。パルスカウント回路111により検出されたパルス数がコントローラ101に供給される。コントローラ101は、供給されたパルス数に応じて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。具体的には、コントローラ101は、パルス数が所定以上の場合には重負荷モードと判別して重負荷モードに対応するデッドタイムを設定し、パルス数が所定未満の場合には軽負荷モードと判別して軽負荷モードに対応するデッドタイムを設定する。
"Fourth example"
FIG. 8 shows a fourth example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 8 shows only the configuration related to the fourth example. The fourth example is an example assuming a case where the operation mode of the power supply circuit 1 is PFM control. When the operation mode is PFM control, as shown in FIG. 8, the power supply circuit 1 generally has a pulse count circuit 111, and the pulse count circuit 111 detects the number of pulses. The number of pulses detected by the pulse count circuit 111 is supplied to the controller 101. The controller 101 discriminates between the heavy load mode and the light load mode according to the number of supplied pulses, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. Specifically, when the number of pulses is more than a predetermined value, the controller 101 determines that it is a heavy load mode and sets a dead time corresponding to the heavy load mode, and when the number of pulses is less than a predetermined value, it is regarded as a light load mode. Determine and set the dead time corresponding to the light load mode.
「第5の例」
 図9は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第5の例を示す。なお、図9では、第5の例に関連する構成のみが図示されている。大規模なシステムでは、複数の電源回路のそれぞれの供給先の電力が互いに相関があることを前提として、電源回路1を複数用いて、多出力に対応するシステム構成も考えられる。図9は、かかるシステムを想定した例である。第5の例では、図9に示すように、電源回路1のコントローラ101に対して、負荷電流に応じて切り替わったモード(切り替わり後のモード)を示す情報が、他の電源回路1Aから供給される。コントローラ101は、供給されたモードを示す情報に基づいて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。なお、電源回路1が多段接続されてもよい。
"Fifth example"
FIG. 9 shows a fifth example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 9 shows only the configuration related to the fifth example. In a large-scale system, a system configuration corresponding to multiple outputs can be considered by using a plurality of power supply circuits 1 on the premise that the electric powers of the respective supply destinations of the plurality of power supply circuits are correlated with each other. FIG. 9 is an example assuming such a system. In the fifth example, as shown in FIG. 9, information indicating the mode switched according to the load current (mode after switching) is supplied to the controller 101 of the power supply circuit 1 from the other power supply circuit 1A. To. The controller 101 discriminates between the heavy load mode and the light load mode based on the information indicating the supplied mode, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. The power supply circuit 1 may be connected in multiple stages.
「第6の例」
 図10は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第6の例を示す。なお、図10では、第6の例に関連する構成のみが図示されている。第6の例は、負荷2がカメラである例である。カメラの撮影モードに応じて負荷電流が変化する。例えば、カメラの撮影モードが静止画撮影モードであれば負荷電流は比較的小さく、撮影モードが動作撮影モードや連写モードであれば負荷電流が大きくなる。そこで、本例では、図10に示すように、コントローラ101が、カメラの撮影モードをカメラ制御回路150から受け取る。そして、コントローラ101は、カメラの撮影モードに基づいて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。
"Sixth example"
FIG. 10 shows a sixth example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 10 shows only the configuration related to the sixth example. The sixth example is an example in which the load 2 is a camera. The load current changes according to the shooting mode of the camera. For example, if the shooting mode of the camera is the still image shooting mode, the load current is relatively small, and if the shooting mode is the operation shooting mode or the continuous shooting mode, the load current is large. Therefore, in this example, as shown in FIG. 10, the controller 101 receives the shooting mode of the camera from the camera control circuit 150. Then, the controller 101 discriminates between the heavy load mode and the light load mode based on the shooting mode of the camera, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time.
「第7の例」
 図11は、重負荷モードおよび軽負荷モードの切り替わりを検出する方法の第7の例を示す。なお、図11では、第7の例に関連する構成のみが図示されている。負荷2としての2次側デバイスの動作モードに応じて負荷電流が変化する。例えば、2次側デバイスの動作モードが、電力消費が少ないスタンバイ状態のときは負荷電流が比較的小さく、2次側デバイスの動作モードが、電力消費が大きい通常動作モードの場合は負荷電流が大きくなる。そこで、本例では、図11に示すように、コントローラ101が、2次側デバイスの動作モードを2次側デバイスから受け取る。そして、コントローラ101は、2次側デバイスの動作モードに基づいて、重負荷モードおよび軽負荷モードの何れかを判別し、判別したモードに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。なお、コントローラ101が2次側デバイスの動作モードを読み取るようにしてもよい。
"7th example"
FIG. 11 shows a seventh example of a method of detecting a switch between a heavy load mode and a light load mode. Note that FIG. 11 shows only the configuration related to the seventh example. The load current changes according to the operation mode of the secondary device as the load 2. For example, when the operation mode of the secondary side device is the standby state where the power consumption is low, the load current is relatively small, and when the operation mode of the secondary side device is the normal operation mode where the power consumption is large, the load current is large. Become. Therefore, in this example, as shown in FIG. 11, the controller 101 receives the operation mode of the secondary side device from the secondary side device. Then, the controller 101 discriminates between the heavy load mode and the light load mode based on the operation mode of the secondary device, and sets the dead time corresponding to the discriminated mode. Switching control is performed based on the set dead time. The controller 101 may read the operation mode of the secondary device.
 以上説明した第1の実施形態によれば、負荷電流に応じて切り替わるモードに対応するデッドタイムが設定される。これにより、最適なデッドタイムが設定されるので、電源回路における損失を極力、抑制することができる。
 また、本開示は一般的な構成を有する電源回路を利用できるので、高速制御や大規模な回路の追加、電力を必要とせずに、今後のFETの低耐圧化に伴うCoss損失が無視できない場合においても、損失の最小化が可能となる。
 また、半導体のプロセスに依存しない制御が可能なため、GaNだけでなく、GaAs等のあらゆる材料のデバイスにおいて損失の最小化が可能となる。
According to the first embodiment described above, the dead time corresponding to the mode of switching according to the load current is set. As a result, the optimum dead time is set, so that the loss in the power supply circuit can be suppressed as much as possible.
Further, since the power supply circuit having a general configuration can be used in the present disclosure, when high-speed control, addition of a large-scale circuit, and power are not required, and the Coss loss due to the low withstand voltage of the FET in the future cannot be ignored. Also, the loss can be minimized.
Further, since control that does not depend on the semiconductor process is possible, it is possible to minimize the loss not only in GaN but also in devices made of any material such as GaAs.
<第2の実施形態>
 続いて、第2の実施形態についての説明がなされる。なお、電源回路1の構成等、第1の実施形態で説明した事項は、特に断らない限り、第2の実施形態に対して適用することができる。第2の実施形態は、一般的な電源回路が有する入力電圧検出機能を利用して、入力電圧に応じたデッドタイムを設定する処理が行われる。
<Second embodiment>
Subsequently, the second embodiment will be described. The matters described in the first embodiment, such as the configuration of the power supply circuit 1, can be applied to the second embodiment unless otherwise specified. In the second embodiment, a process of setting a dead time according to the input voltage is performed by utilizing the input voltage detection function of a general power supply circuit.
 例えば、入力電圧Vinがバッテリから供給される場合には、バッテリの残容量に応じて入力電圧Vinが変動する。第2の実施形態は、入力電圧Vinの大きさに応じたデッドタイムが設定される実施形態である。 For example, when the input voltage V in is supplied from the battery, the input voltage V in fluctuates according to the remaining capacity of the battery. The second embodiment is an embodiment in which a dead time is set according to the magnitude of the input voltage V in.
 図12に示すように、入力電圧Vinが大きくなると、スイッチング波形の立ち上がり時間tr(立ち下がり時間tf)が長くなる。その分、貫通損失Pshortを小さくするために、デッドタイムtdeadを確保する必要がある。換言すれば、入力電圧Vinが小さい場合には、貫通損失Pshortを小さくする必要がないため、デッドタイムtdeadを短くすることができる。 As shown in FIG. 12, as the input voltage V in increases, the rising time tr (falling time tf) of the switching waveform becomes long. Therefore, it is necessary to secure a dead time t dead in order to reduce the penetration loss P short. In other words, when the input voltage V in is small, it is not necessary to reduce the penetration loss P short , so that the dead time t dead can be shortened.
 図13に示すグラフは、図4と同様、横軸がデッドタイムtdeadを示し、縦軸がトータルの損失Ploss(Pdeadtime+Pshort)を示している。 In the graph shown in FIG. 13, similarly to FIG. 4, the horizontal axis shows the dead time t dead , and the vertical axis shows the total loss P loss (P deadtime + P short ).
 図13におけるラインLDは、デッドタイム損失Pdeadtimeを示している。図13におけるラインLEは、入力電圧Vinが所定より大きい場合の貫通損失Pshortを示す。図13におけるラインLE'は、入力電圧Vinが所定未満である場合の貫通損失Pshortを示す。 Line LD in FIG. 13 shows the dead time losses P deadtime. The line LE in FIG. 13 shows the penetration loss P short when the input voltage V in is larger than a predetermined value. The line LE'in FIG. 13 indicates the penetration loss P short when the input voltage V in is less than a predetermined value.
 図13において曲線で示されるラインLFは、入力電圧Vinが大きい場合のトータルの損失Plossを示している。また、ラインLFは、ラインLDとラインLEとを合成したものである。ラインLFの極小点、すなわち、損失Plossが最も小さくなる箇所に対応するデッドタイムtdeadが、入力電圧Vinが大きい場合の最適なデッドタイム(図13中、デッドタイムtdead_bestC)である。 The line LF shown by the curve in FIG. 13 shows the total loss P loss when the input voltage V in is large. The line LF is a combination of the line LD and the line LE. The dead time t dead corresponding to the minimum point of the line LF, that is, the point where the loss P loss is the smallest is the optimum dead time when the input voltage V in is large (dead time t dead_best C in FIG. 13). ..
 また、図13において曲線で示されるラインLF'は、入力電圧Vinが大きい場合のトータルの損失Plossを示している。また、ラインLF'は、ラインLDとラインLE'とを合成したものである。ラインLF'の極小点、すなわち、損失Plossが最も小さくなる箇所に対応するデッドタイムtdeadが、入力電圧Vinが小さい場合の最適なデッドタイム(図13中、デッドタイムtdead_bestD)である。 Further, the line LF'shown by the curve in FIG. 13 shows the total loss P loss when the input voltage V in is large. Further, the line LF'is a combination of the line LD and the line LE'. The dead time t dead corresponding to the minimum point of the line LF', that is, the point where the loss P loss is the smallest is the optimum dead time when the input voltage V in is small (dead time t dead_best D in FIG. 13). is there.
 このように、入力電圧Vinに応じて、損失Plossを最小化する最適なデッドタイムが異なる。具体的には、入力電圧Vinが小さくなるほど、デッドタイムtdeadが小さくなる。そこで、本実施形態では、一般的な電源回路が有している入力電圧検出機能を利用して、検出された入力電圧Vinに応じてデッドタイムtdeadが設定されるようになされる。 As described above, the optimum dead time for minimizing the loss P loss differs depending on the input voltage V in. Specifically, the smaller the input voltage V in , the smaller the dead time t dead . Therefore, in this embodiment, by using the input voltage detection function common power circuit has, the dead time t dead in response to the detected input voltage V in is adapted to be set.
 図14は、入力電圧Vinを検出する方法の一例を示す。なお、図14では、本例に関連する構成のみが図示されている。電源回路1が有する入力電圧検出回路103が入力電圧Vinを検出する。入力電圧検出回路103により検出された入力電圧Vinがコントローラ101に供給される。コントローラ101は、入力電圧Vinに対応するデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 14 shows an example of a method of detecting the input voltage V in. Note that FIG. 14 shows only the configuration related to this example. The input voltage detection circuit 103 included in the power supply circuit 1 detects the input voltage V in . The input voltage V in detected by the input voltage detection circuit 103 is supplied to the controller 101. The controller 101 sets a dead time corresponding to the input voltage V in. Switching control is performed based on the set dead time.
 なお、入力電圧Vinを大小2パターンに分類し、各パターンに対応するデッドタイムが設定されてもよいし、入力電圧Vinを3パターン以上に分類し、それぞれのパターンに対応するデッドタイムが設定されてもよい。 The input voltage V in may be classified into two patterns, large and small, and the dead time corresponding to each pattern may be set, or the input voltage V in may be classified into three or more patterns, and the dead time corresponding to each pattern may be set. It may be set.
<第3の実施形態>
 続いて、第3の実施形態についての説明がなされる。なお、電源回路1の構成等、第1、第2の実施形態で説明した事項は、特に断らない限り、第3の実施形態に対して適用することができる。
<Third embodiment>
Subsequently, the third embodiment will be described. The matters described in the first and second embodiments, such as the configuration of the power supply circuit 1, can be applied to the third embodiment unless otherwise specified.
 第3の実施形態は、概略的には、第1の実施形態と第2の実施形態とを組み合わせた実施形態である。具体的には、負荷電流に応じて切り替わるモードおよび入力電圧に対応するデッドタイムが設定される例である。 The third embodiment is roughly an embodiment in which the first embodiment and the second embodiment are combined. Specifically, this is an example in which a mode for switching according to the load current and a dead time corresponding to the input voltage are set.
 図15Aに示すように、横軸に負荷電流Io、縦軸に入力電圧Vinが規定される。そして、重負荷モードおよび軽負荷モードに対応する負荷電流Ioの大小と、入力電圧Vinの大小との4パターンのそれぞれに応じたデッドタイムtdead1~デッドタイムtdead4が規定される。 As shown in FIG. 15A, the horizontal axis defines the load current I o and the vertical axis defines the input voltage V in. Then, the dead time t dead1 to the dead time t dead4 are defined according to each of the four patterns of the magnitude of the load current I o corresponding to the heavy load mode and the light load mode and the magnitude of the input voltage V in.
 第1の実施形態で説明したように、負荷電流Ioが大きいほどデッドタイムが小さくなることから(図4参照)、tdead4>tdead1、tdead3>tdead2が成り立つ。また、入力電圧Vinが小さいほどデッドタイムが小さくなることから(図13参照)、tdead3>tdead4、tdead2>tdead1が成り立つ。 As described in the first embodiment, the larger the load current I o, the smaller the dead time (see FIG. 4). Therefore , t dead4> t dead1 and t dead3 > t dead2 hold. Further, since the dead time becomes smaller as the input voltage V in becomes smaller (see FIG. 13), t dead3 > t dead4 and t dead2 > t dead1 hold.
 そこで、図15Bに示すように、負荷電流Ioに対して閾値Ith、入力電圧Vinに対して閾値Vthをそれぞれ設定し、閾値Ithおよび閾値Vthにより区分される4パターンに応じたデッドタイムが設定される。コントローラ101は、負荷電流に応じたモードを判別し、且つ、入力電圧も参照して最適なデッドタイムを選択して設定する。なお、上述した説明では、4パターン(4象限)に区分した例が示されているが、任意のパターン数(象限数)に区分できることは言うまでもない。以下、その具体例に関する説明がなされる。 Therefore, as shown in FIG. 15B, a threshold value I th is set for the load current Io and a threshold value V th is set for the input voltage V in , respectively, according to four patterns classified by the threshold value I th and the threshold value V th. Dead time is set. The controller 101 determines the mode according to the load current, and also refers to the input voltage to select and set the optimum dead time. In the above description, an example of dividing into 4 patterns (4 quadrants) is shown, but it goes without saying that it can be divided into any number of patterns (number of quadrants). Hereinafter, a specific example thereof will be described.
 図16は、第1の実施形態で説明した第1の例と第2の実施形態とを組み合わせた例を示す。なお、図16では、本例に関連する構成のみが図示されている。スイッチング電流(インダクタ電流IL)のゼロクロスがゼロクロス検出回路104により検出され、その結果がコントローラ101に供給される。コントローラ101は、ゼロクロス検出回路104の検出結果に応じて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、ゼロクロスの数に基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 16 shows an example in which the first example and the second embodiment described in the first embodiment are combined. Note that FIG. 16 shows only the configuration related to this example. The zero cross of the switching current (inductor current IL ) is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101. The controller 101 determines either the heavy load mode or the light load mode according to the detection result of the zero cross detection circuit 104. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of zero crosses and the input voltage V in. Switching control is performed based on the set dead time.
 図17は、第1の実施形態で説明した第2の例と第2の実施形態とを組み合わせた例を示す。なお、図17では、本例に関連する構成のみが図示されている。スイッチング電圧Vswのゼロクロスがゼロクロス検出回路104により検出され、その結果がコントローラ101に供給される。コントローラ101は、ゼロクロス検出回路104の検出結果に応じて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、ゼロクロスの数に基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 17 shows an example in which the second example described in the first embodiment and the second embodiment are combined. Note that FIG. 17 shows only the configuration related to this example. The zero cross of the switching voltage V sw is detected by the zero cross detection circuit 104, and the result is supplied to the controller 101. The controller 101 determines either the heavy load mode or the light load mode according to the detection result of the zero cross detection circuit 104. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of zero crosses and the input voltage V in. Switching control is performed based on the set dead time.
 図18は、第1の実施形態で説明した第3の例と第2の実施形態とを組み合わせた例を示す。なお、図18では、本例に関連する構成のみが図示されている。スイッチング周波数検出回路110により検出されたスイッチング周波数がコントローラ101に供給される。コントローラ101は、供給されたスイッチング周波数に応じて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、スイッチング周波数に基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 18 shows an example in which the third example and the second embodiment described in the first embodiment are combined. Note that FIG. 18 shows only the configuration related to this example. The switching frequency detected by the switching frequency detection circuit 110 is supplied to the controller 101. The controller 101 determines either the heavy load mode or the light load mode according to the supplied switching frequency. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the switching frequency and the input voltage V in. Switching control is performed based on the set dead time.
 図19は、第1の実施形態で説明した第4の例と第2の実施形態とを組み合わせた例を示す。なお、図19では、本例に関連する構成のみが図示されている。パルスカウント回路111によりパルス数が検出される。パルスカウント回路111により検出されたパルス数がコントローラ101に供給される。コントローラ101は、供給されたパルス数に応じて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、パルス数に基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 19 shows an example in which the fourth example and the second embodiment described in the first embodiment are combined. Note that FIG. 19 shows only the configuration related to this example. The number of pulses is detected by the pulse count circuit 111. The number of pulses detected by the pulse count circuit 111 is supplied to the controller 101. The controller 101 determines either the heavy load mode or the light load mode according to the number of supplied pulses. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the number of pulses and the input voltage V in. Switching control is performed based on the set dead time.
 図20は、第1の実施形態で説明した第5の例と第2の実施形態とを組み合わせた例を示す。なお、図20では、本例に関連する構成のみが図示されている。コントローラ101は、電源回路1Aから供給されたモードを示す情報に応じて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、モードを示す情報に基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 20 shows an example in which the fifth example described in the first embodiment and the second embodiment are combined. Note that FIG. 20 shows only the configuration related to this example. The controller 101 determines either the heavy load mode or the light load mode according to the information indicating the mode supplied from the power supply circuit 1A. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the information indicating the mode and the input voltage V in. Switching control is performed based on the set dead time.
 図21は、第1の実施形態で説明した第6の例と第2の実施形態とを組み合わせた例を示す。なお、図21では、本例に関連する構成のみが図示されている。コントローラ101は、カメラの撮影モードをカメラ制御回路150から受け取る。そして、コントローラ101は、カメラの撮影モードに基づいて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、カメラの撮影モードに基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。 FIG. 21 shows an example in which the sixth example described in the first embodiment and the second embodiment are combined. Note that FIG. 21 shows only the configuration related to this example. The controller 101 receives the shooting mode of the camera from the camera control circuit 150. Then, the controller 101 determines either the heavy load mode or the light load mode based on the shooting mode of the camera. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the shooting mode of the camera and the input voltage V in. Switching control is performed based on the set dead time.
 図22は、第1の実施形態で説明した第7の例と第2の実施形態とを組み合わせた例を示す。なお、図22では、本例に関連する構成のみが図示されている。コントローラ101は、2次側デバイスの動作モードを2次側デバイスから受け取る。そして、コントローラ101は、2次側デバイスの動作モードに基づいて、重負荷モードおよび軽負荷モードの何れかを判別する。また、入力電圧検出回路103は、入力電圧Vinを検出し、検出結果をコントローラ101に供給する。コントローラ101は、2次側デバイスの動作モードに基づいて判別したモードと入力電圧Vinとに基づいて、デッドタイムtdead1~デッドタイムtdead4の何れかのデッドタイムを設定する。設定されたデッドタイムに基づくスイッチング制御がなされる。なお、コントローラ101が2次側デバイスの動作モードを読み取るようにしてもよい。 FIG. 22 shows an example in which the seventh example described in the first embodiment and the second embodiment are combined. Note that FIG. 22 shows only the configuration related to this example. The controller 101 receives the operation mode of the secondary device from the secondary device. Then, the controller 101 determines either the heavy load mode or the light load mode based on the operation mode of the secondary device. Further, the input voltage detection circuit 103 detects the input voltage V in and supplies the detection result to the controller 101. The controller 101 sets a dead time of any of dead time t dead1 to dead time t dead4 based on the mode determined based on the operation mode of the secondary device and the input voltage V in. Switching control is performed based on the set dead time. The controller 101 may read the operation mode of the secondary device.
 本実施形態では、負荷電流だけでなく入力電圧も考慮して最適なデッドタイムが設定されるため、損失を一層、低減することができる。また、損失を低減できるので、入力電圧がバッテリから供給される場合に、当該バッテリの連続動作時間を長くすることが可能となる。 In this embodiment, since the optimum dead time is set in consideration of not only the load current but also the input voltage, the loss can be further reduced. Further, since the loss can be reduced, when the input voltage is supplied from the battery, the continuous operation time of the battery can be lengthened.
<変形例>
 以上、本開示の複数の実施形態について具体的に説明したが、本開示の内容は上述した実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
<Modification example>
Although the plurality of embodiments of the present disclosure have been specifically described above, the contents of the present disclosure are not limited to the above-described embodiments, and various modifications based on the technical idea of the present disclosure are possible.
 電源回路の回路構成、回路における素子等は本開示の要旨を逸脱しない範囲で適宜、変更することができる。また、電源回路の負荷は、実施形態で挙げたカメラに限定されることはない。負荷としては、テレビジョン受信機、プリンタ等の電子機器を例示することができる。また、電源回路は、アダプタ等に内蔵されていてもよい。また、第1の実施形態で説明されたモードの判別方法に関する複数の例は、適宜、組み合わされてもよい。 The circuit configuration of the power supply circuit, the elements in the circuit, etc. can be changed as appropriate without departing from the gist of the present disclosure. Further, the load of the power supply circuit is not limited to the camera described in the embodiment. Examples of the load include electronic devices such as television receivers and printers. Further, the power supply circuit may be built in the adapter or the like. In addition, a plurality of examples relating to the mode determination method described in the first embodiment may be combined as appropriate.
 上述の実施形態および変形例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよく、公知のもので置き換えることも可能である。また、実施形態および変形例における構成、方法、工程、形状、材料および数値などは、技術的な矛盾が生じない範囲において、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments and modifications are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used as necessary. Alternatively, it may be replaced with a known one. In addition, the configurations, methods, processes, shapes, materials, numerical values, and the like in the embodiments and modifications can be combined with each other as long as there is no technical contradiction.
 なお、本明細書中で例示された効果により本開示の内容が限定して解釈されるものではない。 It should be noted that the content of the present disclosure is not construed as being limited by the effects exemplified in this specification.
 本開示は、以下の構成も採ることができる。
(1)
 ハイサイドスイッチおよびローサイドスイッチと、
 前記ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定するコントローラとを備え、
 前記コントローラは、負荷電流に応じて切り替わるモードに対応する前記デッドタイムを設定する
 電源回路。
(2)
 前記コントローラは、前記モードが重負荷モードである場合には、当該重負荷モードに対応する第1のデッドタイムを設定し、前記モードが軽負荷モードである場合には、当該軽負荷モードに対応し、前記第1のデッドタイムよりも長い第2のデッドタイムを設定する
 (1)に記載の電源回路。
(3)
 前記コントローラは、スイッチング電流のゼロクロスを検出することにより判別される前記モードに対応した前記デッドタイムを設定する
 (1)または(2)に記載の電源回路。
(4)
 前記コントローラは、スイッチング電圧のゼロクロスを検出することにより判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(3)までの何れかに記載の電源回路。
(5)
 前記コントローラは、スイッチング周波数を検出することにより判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(4)までの何れかに記載の電源回路。
(6)
 前記コントローラは、パルス数を検出することにより判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(5)までの何れかに記載の電源回路。
(7)
 前記コントローラは、他の電源回路から供給される前記モードを示す情報に基づいて判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(6)までの何れかに記載の電源回路。
(8)
 前記コントローラは、前記負荷電流が供給される負荷の動作モードに基づいて判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(7)までの何れかに記載の電源回路。
(9)
 前記動作モードは、通常動作モードおよびスタンバイモードの何れかである
 (8)に記載の電源回路。
(10)
 前記負荷電流が供給される負荷がカメラであり、
 前記コントローラは、前記カメラの撮影モードに基づいて判別される前記モードに対応した前記デッドタイムを設定する
 (1)から(7)までの何れかに記載の電源回路。
(11)
 前記コントローラは、負荷電流に応じて切り替わるモードおよび入力電圧に対応する前記デッドタイムを設定する
 (1)に記載の電源回路。
(12)
 前記コントローラは、負荷電流の大小関係および前記入力電圧の大小関係に応じて規定される複数のデッドタイムから選択したデッドタイムを設定する
 (11)に記載の電源回路。
(13)
 コントローラが、ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定し、
 前記コントローラは、負荷電流に応じて切り替わるモードに対応する前記デッドタイムを設定する
 電源回路における制御方法。
The present disclosure may also adopt the following configuration.
(1)
High-side switch and low-side switch,
A controller for setting a dead time, which is a period during which the high-side switch and the low-side switch are turned off, is provided.
The controller is a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.
(2)
The controller sets a first dead time corresponding to the heavy load mode when the mode is the heavy load mode, and corresponds to the light load mode when the mode is the light load mode. The power supply circuit according to (1), wherein a second dead time longer than the first dead time is set.
(3)
The power supply circuit according to (1) or (2), wherein the controller sets the dead time corresponding to the mode determined by detecting the zero cross of the switching current.
(4)
The power supply circuit according to any one of (1) to (3), wherein the controller sets the dead time corresponding to the mode determined by detecting the zero cross of the switching voltage.
(5)
The power supply circuit according to any one of (1) to (4), wherein the controller sets the dead time corresponding to the mode determined by detecting the switching frequency.
(6)
The power supply circuit according to any one of (1) to (5), wherein the controller sets the dead time corresponding to the mode determined by detecting the number of pulses.
(7)
The power supply circuit according to any one of (1) to (6), wherein the controller sets the dead time corresponding to the mode determined based on the information indicating the mode supplied from another power supply circuit. ..
(8)
The power supply circuit according to any one of (1) to (7), wherein the controller sets the dead time corresponding to the mode determined based on the operation mode of the load to which the load current is supplied.
(9)
The power supply circuit according to (8), wherein the operation mode is either a normal operation mode or a standby mode.
(10)
The load to which the load current is supplied is the camera.
The power supply circuit according to any one of (1) to (7), wherein the controller sets the dead time corresponding to the mode determined based on the shooting mode of the camera.
(11)
The power supply circuit according to (1), wherein the controller sets a mode in which the controller switches according to a load current and a dead time corresponding to an input voltage.
(12)
The power supply circuit according to (11), wherein the controller sets a dead time selected from a plurality of dead times defined according to the magnitude relation of the load current and the magnitude relation of the input voltage.
(13)
The controller sets the dead time, which is the period during which the high-side and low-side switches are off.
The controller is a control method in a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.
1・・・電源回路
2・・・負荷
11A・・・ハイサイドスイッチ
11B・・・ローサイドスイッチ
101・・・コントローラ
103・・・入力電圧検出回路
104・・・ゼロクロス検出回路
105・・・フィードバック回路
1 ... Power supply circuit 2 ... Load 11A ... High side switch 11B ... Low side switch 101 ... Controller 103 ... Input voltage detection circuit 104 ... Zero cross detection circuit 105 ... Feedback circuit

Claims (13)

  1.  ハイサイドスイッチおよびローサイドスイッチと、
     前記ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定するコントローラとを備え、
     前記コントローラは、負荷電流に応じて切り替わるモードに対応する前記デッドタイムを設定する
     電源回路。
    High-side switch and low-side switch,
    A controller for setting a dead time, which is a period during which the high-side switch and the low-side switch are turned off, is provided.
    The controller is a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.
  2.  前記コントローラは、前記モードが重負荷モードである場合には、当該重負荷モードに対応する第1のデッドタイムを設定し、前記モードが軽負荷モードである場合には、当該軽負荷モードに対応し、前記第1のデッドタイムよりも長い第2のデッドタイムを設定する
     請求項1に記載の電源回路。
    The controller sets a first dead time corresponding to the heavy load mode when the mode is the heavy load mode, and corresponds to the light load mode when the mode is the light load mode. The power supply circuit according to claim 1, wherein a second dead time longer than the first dead time is set.
  3.  前記コントローラは、スイッチング電流のゼロクロスを検出することにより判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined by detecting the zero cross of the switching current.
  4.  前記コントローラは、スイッチング電圧のゼロクロスを検出することにより判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined by detecting the zero cross of the switching voltage.
  5.  前記コントローラは、スイッチング周波数を検出することにより判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined by detecting the switching frequency.
  6.  前記コントローラは、パルス数を検出することにより判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined by detecting the number of pulses.
  7.  前記コントローラは、他の電源回路から供給される前記モードを示す情報に基づいて判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined based on the information indicating the mode supplied from another power supply circuit.
  8.  前記コントローラは、前記負荷電流が供給される負荷の動作モードに基づいて判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined based on the operation mode of the load to which the load current is supplied.
  9.  前記動作モードは、通常動作モードおよびスタンバイモードの何れかである
     請求項8に記載の電源回路。
    The power supply circuit according to claim 8, wherein the operation mode is either a normal operation mode or a standby mode.
  10.  前記負荷電流が供給される負荷がカメラであり、
     前記コントローラは、前記カメラの撮影モードに基づいて判別される前記モードに対応した前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The load to which the load current is supplied is the camera.
    The power supply circuit according to claim 1, wherein the controller sets the dead time corresponding to the mode determined based on the shooting mode of the camera.
  11.  前記コントローラは、負荷電流に応じて切り替わるモードおよび入力電圧に対応する前記デッドタイムを設定する
     請求項1に記載の電源回路。
    The power supply circuit according to claim 1, wherein the controller sets a mode in which the controller switches according to a load current and a dead time corresponding to an input voltage.
  12.  前記コントローラは、負荷電流の大小関係および前記入力電圧の大小関係に応じて規定される複数のデッドタイムから選択したデッドタイムを設定する
     請求項11に記載の電源回路。
    The power supply circuit according to claim 11, wherein the controller sets a dead time selected from a plurality of dead times defined according to the magnitude relation of the load current and the magnitude relation of the input voltage.
  13.  コントローラが、ハイサイドスイッチおよびローサイドスイッチがオフとなる期間であるデッドタイムを設定し、
     前記コントローラは、負荷電流に応じて切り替わるモードに対応する前記デッドタイムを設定する
     電源回路における制御方法。
    The controller sets the dead time, which is the period during which the high-side and low-side switches are off.
    The controller is a control method in a power supply circuit that sets the dead time corresponding to a mode in which the controller switches according to a load current.
PCT/JP2020/044852 2019-12-12 2020-12-02 Power supply circuit and control method WO2021117574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019224125 2019-12-12
JP2019-224125 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117574A1 true WO2021117574A1 (en) 2021-06-17

Family

ID=76330263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044852 WO2021117574A1 (en) 2019-12-12 2020-12-02 Power supply circuit and control method

Country Status (1)

Country Link
WO (1) WO2021117574A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033513A (en) * 2012-08-02 2014-02-20 Tdk Corp Power supply device
JP2016111776A (en) * 2014-12-04 2016-06-20 三菱電機株式会社 Power conversion device
WO2017094488A1 (en) * 2015-12-04 2017-06-08 株式会社村田製作所 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033513A (en) * 2012-08-02 2014-02-20 Tdk Corp Power supply device
JP2016111776A (en) * 2014-12-04 2016-06-20 三菱電機株式会社 Power conversion device
WO2017094488A1 (en) * 2015-12-04 2017-06-08 株式会社村田製作所 Power conversion device

Similar Documents

Publication Publication Date Title
US6618274B2 (en) Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
US8564975B2 (en) AC-DC converter
US6870747B2 (en) Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
EP3198710B1 (en) Control method for buck-boost power converters
US6958592B2 (en) Adaptive delay control circuit for switched mode power supply
US8013585B2 (en) DC-DC converter and DC-DC power conversion method employing overcurrent protection
US9048742B2 (en) Systems and methods for adjusting current consumption of control chips to reduce standby power consumption of power converters
US6744649B1 (en) Zero switching power converter operable as asymmetrical full-bridge converter
US7499299B2 (en) Method and apparatus for reducing body diode conduction of synchronous rectifiers
US9136768B2 (en) Switching power supply device
US20100172160A1 (en) System and method for providing control for switch-mode power supply
US20080169792A1 (en) Power converter with snubber
US7161332B1 (en) Removing a phase in multiphase DC/DC converter without disturbing the output voltage
US9397579B2 (en) Full-bridge switching DC/DC converters and controllers thereof
JP2008533959A (en) Switchable power converter and method of operating the same
US9935547B2 (en) System and method for a switched-mode power supply
US20080259649A1 (en) Switched mode power supply comprising a rectifier circuit
US6462520B1 (en) Differential output switching converter with ripple reduction
US9966861B1 (en) Active clamp converter and control method for the same
US8503195B1 (en) System and method for zero volt switching of half bridge converters during startup and short circuit conditions
JP3475904B2 (en) Switching power supply
WO2021117574A1 (en) Power supply circuit and control method
TWI768888B (en) Two-stage power converter and method of operating a two-stage converter
CN115441742A (en) System and method for switching an active clamped flyback converter
US11172550B2 (en) Dual-control LED dimming system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20898144

Country of ref document: EP

Kind code of ref document: A1