WO2021117386A1 - Receiving device - Google Patents

Receiving device Download PDF

Info

Publication number
WO2021117386A1
WO2021117386A1 PCT/JP2020/041556 JP2020041556W WO2021117386A1 WO 2021117386 A1 WO2021117386 A1 WO 2021117386A1 JP 2020041556 W JP2020041556 W JP 2020041556W WO 2021117386 A1 WO2021117386 A1 WO 2021117386A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
amplifier
receiving device
terminal
Prior art date
Application number
PCT/JP2020/041556
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 高野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021563791A priority Critical patent/JPWO2021117386A1/ja
Publication of WO2021117386A1 publication Critical patent/WO2021117386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/18Modifications of frequency-changers for eliminating image frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers

Definitions

  • This disclosure relates to a receiving device.
  • the superheterodyne system is widely used in devices that receive radio waves. In this method, it is desirable to secure a good image rejection ratio (IMRR: Image Response Rejection Ratio).
  • IMRR Image Response Rejection Ratio
  • LO Local Oscillator
  • variable phase shifter is generally composed of a complicated delay circuit, the circuit scale is increased and the power consumption is increased. Therefore, such a configuration is not suitable for applications for high frequency operation or low power consumption.
  • the present disclosure provides a receiving device that realizes IMRR improvement with a simple configuration.
  • the receiving device converts the phase difference between the first signal and the second signal into the first amplitude based on the logical product of the first signal and the second signal, and constitutes the first signal and the differential signal.
  • a first mixer, a first signal, and a fourth signal that convert the phase difference of these signals into a second amplitude based on the logical product of the third signal, the second signal, and the fourth signal constituting the differential signal.
  • the phase difference of these signals is converted to the third amplitude based on the logical product of, and the phase difference of these signals is converted to the fourth amplitude based on the logical product of the second signal and the third signal.
  • a mixer and a mixer having the mixer may be provided.
  • the first signal and the second signal may be orthogonal signals.
  • the mixer may include two switching elements connected in series, each of which receives a signal whose logical product is desired to be acquired as a drive signal.
  • the switching element may be a MOSFET.
  • a mixer having a AND circuit may be formed by using a MOSFET.
  • the mixer may be provided with a logical product gate that acquires the logical product of two signals. In this way, it may be implemented by the AND gate.
  • the receiving device is connected to the first mixer and amplifies the difference between the first amplitude and the second amplitude.
  • the receiving device is connected to the first amplifier and the second mixer and amplifies the difference between the third amplitude and the fourth amplitude.
  • a second amplifier may be provided, and between the non-inverting input terminal and the inverting output terminal of the first amplifier and between the inverting input terminal and the non-inverting output terminal of the first amplifier. Connect the resistor having the first resistance value to be connected, between the non-inverting input terminal and the inverting output terminal of the second amplifier, and between the inverting input terminal and the non-inverting output terminal of the second amplifier, respectively.
  • a resistor having a second resistance value to be obtained may be further provided. These resistors can adjust the gain of each amplifier.
  • the first resistance value and the second resistance value may have a predetermined ratio.
  • IMRR may be improved by adjusting the ratio of the first resistance value to the second resistance value.
  • the predetermined ratio may be determined based on the amplitude error between the first amplifier output and the second amplifier output, which is converted from the phase error between the first signal and the second signal. That is, the phase error between the first signal and the second signal can also be viewed as an amplitude error at the output of the amplifier by the logical product.
  • the receiving device may further include an amplitude error detection circuit that detects a quadrature amplitude error based on the output of the amplifier. By providing the detection circuit in this way, the influence of the phase error on the first signal and the second signal peculiar to the receiving device may be suppressed.
  • the first resistance value and the second resistance value may be controlled based on the output of the amplitude error detection circuit.
  • the first resistance value and the second resistance value may be values that can be controlled by the variable resistance.
  • the first resistance value and the second resistance value may be controlled so that the amplitude error between the output from the first amplifier and the output from the second amplifier is 0. ..
  • the receiving device may further include an AD conversion circuit that converts the output of the amplifier into a digital signal, and the amplitude error detection circuit may detect the quadrature amplitude error based on the output of the AD conversion circuit.
  • the signal used for improving IMRR may be an analog signal or a digital signal.
  • the receiving device changes the phase of one of the signals of the output based on the first amplifier and the output based on the second amplifier output from the AD conversion circuit, the phase shifter, the output of the AD conversion circuit, and the phase shift.
  • An adder circuit that adds the output of the device may be further provided. By using a phase shifter, the output may be output with the image removed from the baseband signal.
  • a gain adjustment circuit that adjusts the gain of the signal output from the AD conversion circuit may be further provided. In this way, instead of adjusting the gain in the amplifier, the gain may be adjusted in the signal output from the amplifier.
  • the phase shifter may change the phase of the signal by 90 degrees. Since the output channels are the I channel and the Q channel, either signal may be changed by 90 degrees to obtain an in-phase signal.
  • the phase shifter may arbitrarily change the phase of the signal. For example, an angle slightly deviated from 90 degrees may be specified. In this way, the influence of the residual phase error in the circuit can also be taken into consideration.
  • the receiving device is a receiving device that inputs an RF input signal and outputs a baseband signal, the RF input signal is applied to the input terminal, and the first signal is applied to the drive terminal.
  • the first transistor and the input terminal are connected to the output terminal of the first transistor, and the second signal orthogonal to the first signal is applied to the drive terminal.
  • the RF input signal is applied to the second transistor and the input terminal.
  • the third signal and the third signal constituting the differential signal are applied to the drive terminal.
  • the third transistor and the input terminal are connected to the output terminal of the third transistor, and the drive terminal is differential from the second signal.
  • a first amplifier that outputs a band signal may be provided.
  • the RF input signal is further applied to the input terminal and the fourth signal is applied to the drive terminal.
  • the fifth transistor and the input terminal are connected to the output terminal of the fifth transistor, and the first signal is connected to the drive terminal. Is applied, the RF input signal is applied to the 6th transistor and the input terminal, and the 2nd signal is applied to the drive terminal.
  • the 7th transistor and the input terminal are connected to the output terminal of the 7th transistor to drive.
  • the 8th transistor to which the 3rd signal is applied to the terminal, the non-inverting input terminal is connected to the output terminal of the 6th transistor, the inverting input terminal is connected to the output terminal of the 8th transistor, and the base band signal of the Q channel.
  • a second amplifier, which outputs a signal, may be provided.
  • the schematic block diagram of the receiving apparatus which concerns on one Embodiment A circuit diagram of a receiving device according to an embodiment.
  • a configuration example of a switch according to an embodiment. A timing chart showing the relationship between the LO signal and the output of the switch according to the embodiment.
  • a timing chart showing the output of the switch according to the embodiment. The graph which shows the relative error of the baseband amplitude which concerns on one Embodiment.
  • the schematic block diagram of the receiving apparatus which concerns on one Embodiment. The figure which shows an example of the circuit connected with the RF input of the receiving apparatus which concerns on one Embodiment.
  • the schematic block diagram of the receiving apparatus which concerns on one Embodiment. The schematic block diagram of the receiving apparatus which concerns on one Embodiment.
  • the receiving device according to some embodiments will be described with reference to the drawings.
  • the power supply voltage Vss, Vdd, etc. are not particularly mentioned, but it is assumed that the power supply voltage is appropriately applied to each circuit element, etc.
  • FIG. 1 is a schematic block diagram of a receiving device according to an embodiment.
  • the receiving device 1 includes a mixer 10 and an amplifier 20.
  • the receiving device 1 receives the RF (Radio Frequency) input signal, it outputs a baseband signal based on the LO signal output from the local oscillator.
  • RF Radio Frequency
  • the fourth signal LO270 is input to the receiving device 1.
  • the receiving device 1 may include a local oscillator, and the local oscillator inside the receiver 1 may oscillate these signals.
  • the local oscillator may include a PLL (Phase Locked Loop) or the like.
  • the mixer 10 is a mixer that mixes the RF input with the first signal LO0, the second signal LO90, the third signal LO180, and the fourth signal LO270 oscillated by the local oscillator.
  • the RF input and the LO signal converted based on the AND circuit are mixed.
  • the amplifier 20 is an amplifier that amplifies the mixed signal output from the mixer 10.
  • the amplifier 20 is, for example, an operational amplifier including a non-inverting input terminal, an inverting input terminal, a non-inverting output terminal, and an inverting output terminal.
  • the amplifier 20 amplifies and outputs the signal output from the mixer 10.
  • FIG. 2 is a circuit diagram showing the overall structure of the receiving device 1 in more detail.
  • the mixer 10 includes a first mixer 10A and a second mixer 10B, and the amplifier 20 includes a first amplifier 20A and a second amplifier 20B.
  • the first mixer 10A includes a switch 12IP and a switch 12IN
  • the second mixer 10B includes a switch 12QP and a switch 12QN.
  • Each switch may be configured by connecting two n-type MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistor) in series, for example.
  • An LO signal is applied to the gate (drive terminal) of each MOSFET.
  • the drain (input terminal) of one of the two MOSFETs is connected to the RF input, and the source (output terminal) is connected to the drain of the other MOSFET.
  • the source of the other MOSFET is connected to the appropriate input terminal of the amplifier 20.
  • the receiving device 1 may include a voltage-current conversion circuit 70.
  • the voltage signal input to the receiving device 1 is converted and gained into a current signal via the voltage-current conversion circuit 70, and is input to the mixer 10.
  • the first signal LO0 is applied to the drive terminal of the first transistor provided in the switch 12IP
  • the second signal LO90 is applied to the drive terminal of the second transistor.
  • the third signal LO180 is applied to the drive terminal of the third transistor provided in the switch 12IN
  • the fourth signal LO270 is applied to the drive terminal of the fourth transistor.
  • the fourth signal LO270 is applied to the drive terminal of the fifth transistor provided in the switch 12QP
  • the first signal LO0 is applied to the drive terminal of the sixth transistor.
  • the second signal LO90 is applied to the drive terminal of the seventh transistor provided in the switch 12QN
  • the third signal LO180 is applied to the drive terminal of the eighth transistor.
  • the signal to be applied may be a transistor provided in the switch as long as it can appropriately acquire the logical product described below.
  • the switch 12IP it is sufficient that the logical product of the first signal LO0 and the second signal LO90 can be output. Therefore, the second signal LO90 may be applied to the drive terminal of the first transistor, and the first signal LO0 may be applied to the drive terminal of the second transistor.
  • the other switches 12IQ, 12QP, and 12QN provided in the amplifier 20.
  • FIG. 3 is a configuration example of each switch. As described above, it may be configured to include two MOSFETs or may be configured to include an AND gate. For example, as shown in the above figure, by applying a signal to the gates of two n-type MOSFETs, switching based on the logical product of Sig1 and Sig2 is performed. When both signals are high, it is in an energized state, that is, an on state, and when at least one signal is low, it is in a cutoff state, that is, an off state.
  • the n-type MOSFET is used, the present invention is not limited to this, and for example, the signal may be inverted and applied to the gate of the p-type MOSFET. Further, the configuration may include, for example, a bipolar transistor instead of the MOSFET.
  • the gate of the n-type MOSFET may be provided with an AND gate that outputs the logical product of two signals. Similarly, in this case as well, when both signals are high, it is turned on, and when either signal is low, it is turned off.
  • the structure shown in FIG. 3 may be replaced by a circuit capable of appropriately acquiring the logical sum of the two signals.
  • the configuration of the mixer 10 is not limited to these, and may be configured by a circuit that can appropriately acquire a logical product using a PLL or the like.
  • the receiving device 1 shown in FIG. 2 and the like includes a switch as shown in FIG. 3 in the mixer 10. That is, in the receiving device 1, the synthesis of signals by the mixer 10 is executed by using a switch that acquires the logical sum of the two signals. These switches multiply the RF input with the LO signal and convert it to a baseband signal.
  • the output of the switch 12IP is connected to the non-inverting input terminal of the first amplifier 20A, and the output of the switch 12IN is connected to the inverting input terminal of the first amplifier 20A.
  • the output of the switch 12QP is connected to the non-inverting input terminal of the second amplifier 20B, and the output of the switch 12QN is connected to the inverting input terminal of the second amplifier 20B.
  • the first amplifier 20A and the second amplifier 20B may be operational amplifiers including a non-inverting input terminal, an inverting input terminal, a non-inverting output terminal, and an inverting output terminal, respectively.
  • the baseband signal output from the mixer 10 is appropriately amplified and output.
  • the I channel baseband signal is output from the first amplifier 20A
  • the Q channel baseband signal is output from the second amplifier 20B.
  • the first amplifier 20A is fed back from the inverting output terminal to the non-inverting input terminal via a resistor having a first resistance value R I , and controls the gain from the non-inverting output terminal to the inverting input terminal. It is fed back through a resistor having a resistance value of R I.
  • the second amplifier 20B is fed back from the inverting output terminal to the non-inverting input terminal via a resistor having a second resistance value R Q , and gains from the non-inverting output terminal to the inverting input terminal. It is fed back through a resistor with a second resistance value R Q to control.
  • FIG. 4 is a timing chart showing the LO signal and the output of each switch. In this figure, an ideal state in which no error occurs is shown. From top to bottom, the waveforms of the first signal LO0, the second signal LO90, the third signal LO180, and the fourth signal LO270, the output waveforms of the switches 12QP, 12IP, 12QN, and 12IN shown in FIG. 2, the difference between the switches 12IP and 12IN, and the switches. The waveform of the difference between 12QP and 12QN is shown.
  • the difference between the switches 12IP and 12IN is the envelope of the difference signal input to the first amplifier 20A
  • the difference between the switches 12QP and 12QN is the envelope of the difference signal input to the second amplifier 20B.
  • the phase difference between the signal input to the first amplifier 20A and the signal input to the second amplifier 20B is 90 degrees.
  • the duty ratio of the LO signal that drives each MOSFET of the switch is 50%.
  • the duty ratio of the output signal from each switch is 25%. In this way, when there is no phase error in the orthogonal components, switching with a duty ratio of 25% is equivalently performed in all the switches.
  • FIG. 5 is a timing chart of each signal when an error occurs in the orthogonal component of the LO signal.
  • a phase error of ⁇ occurs between the first signal LO0 and the second signal LO90.
  • This phase error is caused by, for example, an element mismatch in a local oscillator.
  • the signals (12IP-12IN, 12QP-12QN) input to each amplifier can be orthogonal even when the LO signal has quadrature phase error. I understand. That is, in the baseband output, the signals of the I channel and the Q channel are orthogonal to each other.
  • FIG. 6 is a partially extracted difference signal of the output from the switch in FIG. Assuming that the angular frequency of the LO signal is ⁇ LO , T and ⁇ T in the figure are defined as follows. Using these equations (1) and (2), the Fourier series of the waveform shown in FIG. 6 is calculated.
  • the frequency transform is the first-order component, and the Fourier coefficients a 1 and b 1 of the fundamental wave for the switching waveform (10IP-10IN) can be expressed by the following equations.
  • the fundamental wave component can be expressed as follows.
  • the Fourier coefficient for the switching waveform 12QP-12QN can be expressed as follows.
  • the fundamental wave component can be expressed by the following equation.
  • the current I RF of the RF signal input to the mixer 10 is defined as follows.
  • g m is the gain of the voltage-current conversion circuit 70
  • V RF is the amplitude of the RF input voltage
  • ⁇ RF is the angular frequency of the RF input signal.
  • the baseband output voltage on the I channel side is the product of (5) and (9) multiplied by the transimpedance gain R I of the amplifier 20 that operates as a TIA (Trans Impedance Amp), and can be expressed as follows. it can.
  • the final output can be expressed as follows.
  • the baseband output voltage on the Q channel side can be expressed as follows based on (8) and (9) and the transimpedance gain R Q of the amplifier 20.
  • FIG. 8 is a graph showing the relationship between the phase error ⁇ of the LO signal and the phase error ⁇ of the baseband signal. Also in FIG. 8, the simulation results are almost in agreement with the theoretical values. That is, the value of ⁇ is 0 regardless of the value of ⁇ .
  • FIG. 9 is a vector diagram showing the phase difference of the input LO signal and the amplitude difference of the output baseband signal.
  • the horizontal axis represents the real axis and the vertical axis represents the imaginary axis.
  • FIG. 10 is a diagram showing a baseband output in which the amplitude deviation is eliminated.
  • the horizontal axis represents the real axis, and the vertical axis represents the imaginary axis.
  • IMMR image rejection ratio
  • each of the ratio of the resistance to adjust the gain in the first amplifier 20A and the second amplifier 20B be adjusted so R I / R Q approaches 1 + [Delta] [theta], close the ⁇ A 0 be able to.
  • the signal amplitude difference between the I channel and the Q channel of the baseband signal may be set to 0. That is, IMRR can be improved by bringing ⁇ A closer to 0 without actually detecting the value of ⁇ in (21).
  • FIG. 11 is a graph showing an example of IMRR experimented in the receiving device 1 in which the amplitude error according to the present embodiment is measured and the gain of the amplifier 20 is adjusted.
  • a 2.4 GHz sine wave test tone was input as an RF input using an external signal generator, and the 1 MHz signal after down-conversion was measured at the output of the amplifier 20.
  • the amplitude error did not meet the IMRR specification value, but after the gain adjustment, an improvement of 10 to 15 dB was seen, and the result satisfying the specification value was obtained. ..
  • the IMRR of the receiving device 1 can be improved by executing the logical product calculation in the mixer 10 and providing the amplifier 20 whose gain is adjusted.
  • Measuring and adjusting the amplitude error ⁇ A of the baseband signal is relatively easier than the phase error ⁇ of the LO signal because the baseband signal is a signal with a lower frequency than the LO signal. Therefore, according to the receiving device 1 according to the present embodiment, it is possible to easily improve the IMRR without correcting the phase error of the LO signal.
  • processing can be performed in the band of the baseband signal, which has a lower frequency than the LO signal, it is possible to reduce power consumption and improve accuracy. Since the logical product is also executed by the switch 12 of the mixer 10, low power consumption can be realized from this point as well. Furthermore, since the limitation on the quadrature phase accuracy of the LO signal can be relaxed, the circuit scale can be reduced and the power consumption can be further reduced.
  • FIG. 12 is a block diagram schematically showing the receiving device 1 according to the present embodiment.
  • the receiving device 1 further includes an amplitude error detection circuit 30.
  • the amplitude error detection circuit 30 is connected to the output of the amplifier 20 and detects the amplitude error between the channels of the baseband signal output from the amplifier 20.
  • the gain adjustment in the amplifier 20 of the receiving device 1 may be performed based on the output of the amplitude error detection circuit 30.
  • the user may adjust R I / R Q so that the amplitude error ⁇ A becomes 0 based on the output of the amplitude error detection circuit 30.
  • the amplitude error detection circuit 30 may be configured to automatically change the gain adjusting resistance of the first amplifier 20A and the second amplifier 20B configured by the variable resistor.
  • the test tone may be input from the RF input at the timing of adjusting the gain for improving IMRR.
  • This gain adjustment may be performed, for example, at the time of shipment from the factory, at the time of starting up the equipment, and the like. Further, as another example, it may be executed at a predetermined timing when the receiving device 1 is activated. For example, the resistance value may be adjusted by determining the timing at which signal reception is not continuing. As another example, when the amplitude error detected by the amplitude error detection circuit 30 exceeds a predetermined value, reception may be stopped, the input may be switched to the test tone input, and the IMRR may be improved.
  • FIG. 13 is a diagram showing an example of a circuit connected to the RF input of FIG.
  • the RF input is connected to the test tone oscillator circuit 40 via the switch shown in FIG.
  • the test tone oscillation circuit 40 oscillates a signal having a waveform whose gain can be adjusted according to the above equation, such as a single tone sine wave or a square wave having a predetermined frequency.
  • the first resistance value R I and the second resistance value R Q of the receiving device 1 are adjusted based on the signal oscillated from the test tone oscillation circuit 40.
  • the test tone oscillator circuit 40 may include, for example, a PLL or the like.
  • the RF input terminal is connected to the antenna 42, and the radio wave can be received.
  • the present invention is not limited to this, and when it is desired to suppress power consumption, the switch may be switched so as not to be connected to the antenna 42.
  • the circuit shown in FIG. 13 may be an external circuit or a circuit built in the receiving device 1.
  • the amplitude error between the I / Q channels of the baseband signal is detected, the resistance value of the gain adjustment is adjusted based on this result, and the IMRR is improved. Can be executed. By making such adjustments, it is possible to configure the receiving device 1 according to the first embodiment described above.
  • the analog signal may be converted into a digital signal, and then the parameters for improving IMRR may be acquired.
  • FIG. 14 is a diagram schematically showing an example of executing the output of the receiving device 1 with a digital signal.
  • the receiving device 1 includes an analog-to-digital conversion circuit (ADC) 32 and a digital signal processing unit 50.
  • ADC analog-to-digital conversion circuit
  • the ADC 32 is a circuit provided for each amplifier to convert an input analog signal into a digital signal and output it.
  • the input is connected to an amplifier for each channel, and the output is connected to the digital signal processing unit 50.
  • the digital signal processing unit 50 includes an amplitude error detection circuit 52, a phase shifter 54, and an adder circuit 56.
  • the digital signal processing unit 50 outputs a signal from which the image has been removed with respect to the output from the amplifier 20 converted into the input digital signal.
  • the amplitude error detection circuit 52 executes an operation equivalent to that of the amplitude error detection circuit 30 which was a circuit for processing an analog signal in the above-described embodiment on a digital signal. That is, the amplitude error of these signals is detected with respect to the signals for each input channel. Further, after the detection, the gain adjusting resistance value provided in the amplifier 20 may be updated based on the detected value so that the error approaches zero.
  • the phase shifter 54 shifts the phase of the signal of any channel, for example, the signal of the I channel by +90 degrees. In this way, the phase shifter 54 is provided for either channel. In FIG. 14, it is provided on the I channel side, but it may be provided on the Q channel side.
  • the adder circuit 56 adds the output of the phase shifter 54 to one channel and the output of the amplitude error detection circuit 52 to the other channel.
  • the signals of the I channel and the Q channel are added by shifting one of the channels by 90 degrees, the desired signals are added in the same phase, while the image components are added in the opposite phase. Therefore, it is possible to acquire a signal from which the image component has been removed.
  • FIG. 14 it is possible to adjust the gain by connecting the circuit shown in FIG. 13 to the RF input terminal. As described above, also in this embodiment, it is possible to appropriately adjust the gain from the amplitude error of the baseband signal without directly acquiring the information on the phase error of the LO signal, and the same operation as in the above-described embodiment. , Can be effective.
  • FIG. 15 is a block diagram schematically showing the receiving device 1 according to the present embodiment.
  • the image signal level measurement and amplitude error correction circuit 57 in the digital signal processing unit 50 of the receiving device 1 may be connected to the output of the addition circuit 56 to output the image-removed signal.
  • the receiving device 1 measures the level of the image signal in the output stage of the receiving device 1 and adjusts the gain of the amplifier 20 so that the value is minimized. It may be a configuration.
  • FIG. 16 is a block diagram schematically showing the receiving device 1 according to the present embodiment.
  • the digital signal processing unit 50 of the receiving device 1 may further include a gain adjusting circuit 58.
  • the gain adjustment circuit 58 is provided between the output of the ADC 32 and the amplitude error detection circuit 52 for each channel, for example.
  • the amplitude error detection circuit 52 acquires the gain-adjusted signals of each channel, and adjusts the gain of the gain adjustment circuit 58 by detecting these amplitude errors. By adjusting the gain, it is possible to reduce the amplitude error and improve the image rejection ratio.
  • FIG. 17 is a block diagram schematically showing the receiving device 1 according to the present embodiment.
  • the receiving device 1 includes an analog signal processing unit 60 instead of the digital signal processing unit 50 in the above-described embodiment.
  • the analog signal processing unit 60 includes an amplitude error detection circuit 30, a phase shifter 62, and an adder circuit 64.
  • the phase shifter 62 and the adder circuit 64 perform the same operations as those provided in the digital signal processing unit 50.
  • the signal processing may be executed by an analog circuit as shown in FIG.
  • the configuration of the analog circuit is not particularly limited as long as the same signal processing as in FIG. 14 described above can be executed.
  • the phase shifter 54 or the phase shifter 62 shifts the phase of the signal by 90 degrees, but the present invention is not limited to this.
  • the phase may be shifted by (90 + ⁇ ) degrees.
  • the phase error of the baseband signal can be corrected by executing such a phase shift.
  • the phase shifter 54 or the phase shifter 62 may be a variable phase shifter. By making ⁇ variable, it is possible to perform accurate phase error correction based on the output of the amplitude error detection circuit 52 or the amplitude error detection circuit 30. Also in this embodiment, since the phase error is corrected by signal processing at a low frequency, it can be implemented as a simpler configuration than providing a phase error correction circuit in a local oscillator or the like.
  • IoT Internet of things
  • IoT Internet of things
  • IoT devices 9100 which are “things”
  • IoT devices 9003 the Internet, cloud 9005, etc.
  • IoT can be used in various industries such as agriculture, homes, automobiles, manufacturing, distribution, and energy.
  • FIG. 18 is a diagram showing an example of a schematic configuration of an IoT system 9000 to which the technique according to the present disclosure can be applied.
  • the IoT device 9001 includes various sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, an acceleration sensor, a distance sensor, an image sensor, a gas sensor, and a human sensor. Further, the IoT device 9001 may include terminals such as smartphones, mobile phones, wearable terminals, and game devices.
  • the IoT device 9001 is powered by an AC power supply, a DC power supply, a battery, a contactless power supply, a so-called energy harvest, or the like.
  • the IoT device 9001 can communicate by wire, wireless, proximity wireless communication, or the like.
  • 3G / LTE registered trademark
  • Wi-Fi registered trademark
  • IEEE802.5.4 Bluetooth
  • Zigbee registered trademark
  • Z-Wave Z-Wave and the like are preferably used.
  • the IoT device 9001 may switch and communicate with a plurality of these communication means.
  • the IoT device 9001 may form a one-to-one, star-shaped, tree-shaped, or mesh-shaped network.
  • the IoT device 9001 may connect to the external cloud 9005 directly or through the gateway 9002.
  • An address is assigned to the IoT device 9001 by IPv4, IPv6, 6LoWPAN, or the like.
  • the data collected from the IoT device 9001 is transmitted to another IoT device 9003, the server 9004, the cloud 9005, and the like.
  • the timing and frequency of transmitting data from the IoT device 9001 are appropriately adjusted, and the data may be compressed and transmitted.
  • Such data may be used as it is, or the data may be analyzed by a computer 9008 by various means such as statistical analysis, machine learning, data mining, cluster analysis, discriminant analysis, combination analysis, and time series analysis.
  • various services such as control, warning, monitoring, visualization, automation, and optimization can be provided.
  • IoT devices 9001 at home include washing machines, dryers, dryers, microwave ovens, dishwashers, refrigerators, ovens, rice cookers, cookware, gas appliances, fire alarms, thermostats, air conditioners, televisions, recorders, audio, Includes lighting equipment, water heaters, water heaters, vacuum cleaners, fans, air purifiers, security cameras, locks, door / shutter opening / closing devices, sprinklers, toilets, thermostats, weight scales, blood pressure monitors, etc.
  • the IoT device 9001 may include a solar cell, a fuel cell, a storage battery, a gas meter, a power meter, and a distribution board.
  • the communication method of the IoT device 9001 at home is preferably a low power consumption type communication method. Further, the IoT device 9001 may communicate by Wi-Fi indoors and 3G / LTE (registered trademark) outdoors.
  • An external server 9006 for controlling the IoT device may be installed on the cloud 9005 to control the IoT device 9001.
  • the IoT device 9001 transmits data such as the status of household equipment, temperature, humidity, power consumption, and the presence / absence of people / animals inside and outside the house.
  • the data transmitted from the home device is stored in the external server 9006 through the cloud 9005. Based on such data, new services will be provided.
  • Such an IoT device 9001 can be controlled by voice by using voice recognition technology.
  • various household devices can be visualized.
  • various sensors determine the presence or absence of residents and send the data to air conditioners, lights, etc., so that their power can be turned on and off.
  • advertisements can be displayed on displays provided in various home appliances via the Internet.
  • the example of the IoT system 9000 to which the technology according to the present disclosure can be applied has been described above.
  • the technique according to the present disclosure can be suitably applied to a receiving device for communicating between various devices among the configurations described above.
  • the technique in the present disclosure can be applied not only to the above applications but also to various communications using high frequencies, for example.
  • it can be used for communication not only in a house but also in an industry such as a factory. Further, for example, it may be mounted on a mobile body and mounted on a device for communication. Not limited to these, it can be implemented in various applications.
  • the receiving device is Based on the logical product of the first signal and the second signal, the phase difference between these signals is converted into the first amplitude, and the third signal constituting the first signal and the differential signal and the third signal and the second signal are differential.
  • a first mixer that converts the phase difference of these signals into a second amplitude based on the logical product of the fourth signal that constitutes the signal.
  • the phase difference of these signals is converted into a third amplitude based on the logical product of the first signal and the fourth signal, and the phase difference of these signals is converted based on the logical product of the second signal and the third signal.
  • a second mixer that converts the phase difference to the fourth amplitude Has a mixer, To be equipped.
  • the first signal and the second signal are orthogonal signals.
  • the receiving device according to (1).
  • the mixer includes two switching elements connected in series, each of which is a switching element in which a signal whose logical product is desired to be acquired is input as a drive signal.
  • the receiving device according to (1) or (2).
  • the switching element is a MOSFET.
  • the receiving device according to (3) is a MOSFET.
  • the mixer comprises a AND gate that acquires the AND of two signals.
  • the receiving device according to (1) or (2).
  • a second amplifier which is connected to the second mixer and amplifies the difference between the third amplitude and the fourth amplitude, Equipped with an amplifier that has A resistor having a first resistance value connected between the non-inverting input terminal and the inverting output terminal of the first amplifier and between the inverting input terminal and the non-inverting output terminal of the first amplifier, respectively.
  • the first resistance value and the second resistance value have a predetermined ratio.
  • the predetermined ratio is determined based on the amplitude error between the first amplifier output and the second amplifier output, which is converted from the phase error between the first signal and the second signal.
  • An amplitude error detection circuit that detects quadrature amplitude error based on the output of the amplifier.
  • the receiving device according to any one of (6) to (8).
  • the first resistance value and the second resistance value are controlled based on the output of the amplitude error detection circuit.
  • the first resistance value and the second resistance value are set so that the amplitude error between the output from the first amplifier and the output from the second amplifier is 0. Controlled, The receiving device according to (10).
  • An AD conversion circuit that converts the output of the amplifier into a digital signal, With more The amplitude error detection circuit detects the quadrature amplitude error based on the output of the AD conversion circuit.
  • the receiving device according to any one of (9) to (11).
  • a phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the AD conversion circuit.
  • An adder circuit that adds the output of the AD conversion circuit and the output of the phase shifter, The receiving device according to (12).
  • a gain adjustment circuit that adjusts the gain of the signal output from the AD conversion circuit, The receiving device according to (12) or (13), further comprising.
  • a phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the amplitude error detection circuit.
  • An adder circuit that adds the output of the amplitude error detection circuit and the output of the phase shifter, The receiving device according to any one of (9) to (14).
  • the phase shifter changes the phase of the signal by 90 degrees.
  • the receiving device according to (13) or (15).
  • the phase shifter arbitrarily changes the phase of the signal.
  • the receiving device according to (13) or (15).
  • a receiver that inputs RF input signals and outputs baseband signals.
  • the first transistor to which the RF input signal is applied to the input terminal and the first signal is applied to the drive terminal
  • a second transistor in which an input terminal is connected to an output terminal of the first transistor and a second signal orthogonal to the first signal is applied to a drive terminal.
  • a third transistor to which the RF input signal is applied to the input terminal and a third signal constituting the first signal and the differential signal is applied to the drive terminal.
  • a fourth transistor in which an input terminal is connected to an output terminal of the third transistor and a fourth signal constituting the second signal and a differential signal is applied to the drive terminal.
  • the first amplifier in which the non-inverting input terminal is connected to the output terminal of the second transistor, the inverting input terminal is connected to the output terminal of the fourth transistor, and the baseband signal of the I channel is output.
  • the fifth transistor to which the RF input signal is applied to the input terminal and the fourth signal is applied to the drive terminal
  • the sixth transistor in which the input terminal is connected to the output terminal of the fifth transistor and the first signal is applied to the drive terminal
  • the seventh transistor to which the RF input signal is applied to the input terminal and the second signal is applied to the drive terminal
  • the eighth transistor in which the input terminal is connected to the output terminal of the seventh transistor and the third signal is applied to the drive terminal
  • a second amplifier that outputs a Q-channel baseband signal by connecting the non-inverting input terminal to the output terminal of the sixth transistor and the inverting input terminal to the output terminal of the eighth transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

[Problem] To achieve IMRR improvement with a simple configuration. [Solution] This receiving device is provided with a mixer which includes: a first mixer which converts the phase difference between a first signal and a second signal into a first amplitude on the basis of a logical AND between the first signal and the second signal, and converts the phase difference between a third signal, which forms a differential signal with the first signal, and a fourth signal, which forms a differential signal with the second signal, into a second amplitude on the basis of a logical AND between the third signal and the fourth signal; and a second mixer which converts the phase difference between the first signal and the fourth signal into a third amplitude on the basis of a logical AND between the first signal and the fourth signal, and converts the phase difference between the second signal and the third signal into a fourth amplitude on the basis of a logical AND between the second signal and the third signal.

Description

受信装置Receiver
 本開示は、受信装置に関する。 This disclosure relates to a receiving device.
 電波を受信する装置においては、スーパーへテロダイン方式が広く用いられている。この方式では、良好なイメージ除去比(IMRR:Image Response Rejection Ratio)を確保することが望ましい。イメージ信号の除去においては、局部発振器(LO:Local Oscillator)の発振する信号(LO信号)の直交位相誤差が十分に小さいことが必要となる。集積回路を用いて実装する場合、素子のミスマッチによる位相精度劣化が問題となるが、近年の半導体プロセス微細化の進展に伴い、このミスマッチの影響は増大する傾向にある。このため、可変移相器等を用いて、LO信号の位相誤差を補正するイメージ除去ミキサの研究が行われている。 The superheterodyne system is widely used in devices that receive radio waves. In this method, it is desirable to secure a good image rejection ratio (IMRR: Image Response Rejection Ratio). In removing the image signal, it is necessary that the quadrature phase error of the signal (LO signal) oscillated by the local oscillator (LO: Local Oscillator) is sufficiently small. When mounting using an integrated circuit, deterioration of phase accuracy due to element mismatch becomes a problem, but the effect of this mismatch tends to increase with the progress of miniaturization of semiconductor processes in recent years. Therefore, research is being conducted on an image removal mixer that corrects the phase error of the LO signal using a variable phase shifter or the like.
特開2003-198262号公報Japanese Unexamined Patent Publication No. 2003-198262
 しかしながら、一般に可変移相器は、複雑な遅延回路により構成されるため、回路規模の増大と消費電力の増大をもたらす。このため、このような構成は、高周波動作又は低消費電力向けの応用には適していない。 However, since the variable phase shifter is generally composed of a complicated delay circuit, the circuit scale is increased and the power consumption is increased. Therefore, such a configuration is not suitable for applications for high frequency operation or low power consumption.
 本開示は、簡易な構成でIMRR改善を実現する受信装置を提供する。 The present disclosure provides a receiving device that realizes IMRR improvement with a simple configuration.
 一実施形態によれば、受信装置は、第1信号と第2信号との論理積に基づいてこれらの信号の位相差を第1振幅に変換し、第1信号と差動信号を構成する第3信号と第2信号と差動信号を構成する第4信号との論理積に基づいてこれらの信号の位相差を第2振幅に変換する、第1ミキサと、第1信号と第4信号との論理積に基づいてこれらの信号の位相差を第3振幅に変換し、第2信号と第3信号との論理積に基づいてこれらの信号の位相差を第4振幅に変換する、第2ミキサと、を有する、ミキサ、を備えてもよい。 According to one embodiment, the receiving device converts the phase difference between the first signal and the second signal into the first amplitude based on the logical product of the first signal and the second signal, and constitutes the first signal and the differential signal. A first mixer, a first signal, and a fourth signal that convert the phase difference of these signals into a second amplitude based on the logical product of the third signal, the second signal, and the fourth signal constituting the differential signal. The phase difference of these signals is converted to the third amplitude based on the logical product of, and the phase difference of these signals is converted to the fourth amplitude based on the logical product of the second signal and the third signal. A mixer and a mixer having the mixer may be provided.
 第1信号と第2信号は、直交信号であってもよい。 The first signal and the second signal may be orthogonal signals.
 ミキサは、直列に接続された2つのスイッチング素子であって、それぞれに論理積を取得したい信号が駆動信号として入力される、スイッチング素子、を備えてもよい。 The mixer may include two switching elements connected in series, each of which receives a signal whose logical product is desired to be acquired as a drive signal.
 スイッチング素子は、MOSFETであってもよい。このように、MOSFETを用いて論理積回路を備えるミキサを形成してもよい。 The switching element may be a MOSFET. In this way, a mixer having a AND circuit may be formed by using a MOSFET.
 ミキサは、2つの信号の論理積を取得する論理積ゲートを備えてもよい。このように、論理積ゲートにより実装されてもよい。 The mixer may be provided with a logical product gate that acquires the logical product of two signals. In this way, it may be implemented by the AND gate.
 受信装置は、第1ミキサと接続され、第1振幅と第2振幅との差を増幅する、第1アンプと、第2ミキサと接続され、第3振幅と第4振幅との差を増幅する、第2アンプと、を有するアンプを備えてもよく、第1アンプの非反転入力端子と反転出力端子との間、及び、第1アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第1抵抗値を有する抵抗と、第2アンプの非反転入力端子と反転出力端子との間、及び、第2アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第2抵抗値を有する抵抗と、をさらに備えてもよい。これらの抵抗は、各アンプのゲインを調整することができる。 The receiving device is connected to the first mixer and amplifies the difference between the first amplitude and the second amplitude. The receiving device is connected to the first amplifier and the second mixer and amplifies the difference between the third amplitude and the fourth amplitude. , A second amplifier may be provided, and between the non-inverting input terminal and the inverting output terminal of the first amplifier and between the inverting input terminal and the non-inverting output terminal of the first amplifier. Connect the resistor having the first resistance value to be connected, between the non-inverting input terminal and the inverting output terminal of the second amplifier, and between the inverting input terminal and the non-inverting output terminal of the second amplifier, respectively. A resistor having a second resistance value to be obtained may be further provided. These resistors can adjust the gain of each amplifier.
 第1抵抗値と第2抵抗値は、所定比を有してもよい。第1抵抗値と第2抵抗値の比率を調整することにより、IMRRを改善してもよい。 The first resistance value and the second resistance value may have a predetermined ratio. IMRR may be improved by adjusting the ratio of the first resistance value to the second resistance value.
 所定比は、第1信号と第2信号との位相誤差から変換された、前記第1アンプ出力及び前記第2アンプ出力間の振幅誤差に基づいて決定されてもよい。すなわち、第1信号と第2信号の位相誤差は、論理積により、アンプの出力における振幅誤差として見ることもできる。 The predetermined ratio may be determined based on the amplitude error between the first amplifier output and the second amplifier output, which is converted from the phase error between the first signal and the second signal. That is, the phase error between the first signal and the second signal can also be viewed as an amplitude error at the output of the amplifier by the logical product.
 受信装置は、アンプの出力に基づいて直交振幅誤差を検出する、振幅誤差検出回路、をさらに備えてもよい。このように、検出回路をもうけることにより、受信装置固有の第1信号と第2信号における位相誤差の影響を抑制してもよい。 The receiving device may further include an amplitude error detection circuit that detects a quadrature amplitude error based on the output of the amplifier. By providing the detection circuit in this way, the influence of the phase error on the first signal and the second signal peculiar to the receiving device may be suppressed.
 振幅誤差検出回路の出力に基づいて第1抵抗値及び第2抵抗値が制御されてもよい。例えば、第1抵抗値、第2抵抗値は、可変抵抗により制御できる値であってもよい。 The first resistance value and the second resistance value may be controlled based on the output of the amplitude error detection circuit. For example, the first resistance value and the second resistance value may be values that can be controlled by the variable resistance.
 振幅誤差検出回路からの出力において、第1アンプからの出力と第2アンプからの出力との間の振幅誤差を0とするように、第1抵抗値及び第2抵抗値が制御されてもよい。 In the output from the amplitude error detection circuit, the first resistance value and the second resistance value may be controlled so that the amplitude error between the output from the first amplifier and the output from the second amplifier is 0. ..
 受信装置は、アンプの出力をデジタル信号へと変換する、AD変換回路、をさらに備えてもよく、振幅誤差検出回路は、AD変換回路の出力に基づいて直交振幅誤差を検出してもよい。このように、IMRRの改善に利用する信号は、アナログ信号であってもデジタル信号であってもよい。 The receiving device may further include an AD conversion circuit that converts the output of the amplifier into a digital signal, and the amplitude error detection circuit may detect the quadrature amplitude error based on the output of the AD conversion circuit. As described above, the signal used for improving IMRR may be an analog signal or a digital signal.
 受信装置は、AD変換回路から出力された、第1アンプに基づく出力及び第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器と、AD変換回路の出力と、移相器の出力とを加算する、加算回路と、をさらに備えてもよい。移相器を用いることにより、ベースバンド信号からイメージが除去された出力がされてもよい。 The receiving device changes the phase of one of the signals of the output based on the first amplifier and the output based on the second amplifier output from the AD conversion circuit, the phase shifter, the output of the AD conversion circuit, and the phase shift. An adder circuit that adds the output of the device may be further provided. By using a phase shifter, the output may be output with the image removed from the baseband signal.
 AD変換回路から出力された信号のゲインを調整する、ゲイン調整回路、をさらに備えてもよい。このように、アンプにおいてゲインの調整をするのではなく、アンプから出力された信号においてゲインを調整してもよい。 A gain adjustment circuit that adjusts the gain of the signal output from the AD conversion circuit may be further provided. In this way, instead of adjusting the gain in the amplifier, the gain may be adjusted in the signal output from the amplifier.
 振幅誤差検出回路から出力された、第1アンプに基づく出力及び第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器、振幅誤差検出回路の出力と、移相器の出力とを加算する、加算回路と、をさらに備えてもよい。このように、アナログ信号の状態でイメージを除去してもよい。 The output of the phase shifter, the amplitude error detection circuit, and the output of the phase shifter that change the phase of one of the signals based on the first amplifier and the output based on the second amplifier, which are output from the amplitude error detection circuit. An adder circuit for adding and may be further provided. In this way, the image may be removed in the state of an analog signal.
 移相器は、信号の位相を90度変化させてもよい。出力されるチャネルは、IチャネルとQチャネルであるので、いずれかの信号を90度変化させて同相の信号としてもよい。 The phase shifter may change the phase of the signal by 90 degrees. Since the output channels are the I channel and the Q channel, either signal may be changed by 90 degrees to obtain an in-phase signal.
 移相器は、信号の位相を任意に変化させてもよい。例えば、90度から少しずれた角度を指定してもよい。このようにすると、回路内の残留位相誤差の影響をも考慮することができる。 The phase shifter may arbitrarily change the phase of the signal. For example, an angle slightly deviated from 90 degrees may be specified. In this way, the influence of the residual phase error in the circuit can also be taken into consideration.
 一実施形態によれば、受信装置は、RF入力信号を入力し、ベースバンド信号を出力する、受信装置であって、入力端子にRF入力信号が印加され、駆動端子に第1信号が印加される、第1トランジスタと、入力端子が第1トランジスタの出力端子と接続され、駆動端子に第1信号と直交する第2信号が印加される、第2トランジスタと、入力端子にRF入力信号が印加され、駆動端子に第1信号と差動信号を構成する第3信号が印加される、第3トランジスタと、入力端子が第3トランジスタの出力端子と接続され、駆動端子に第2信号と差動信号を構成する第4信号が印加される、第4トランジスタと、非反転入力端子が第2トランジスタの出力端子と接続され、反転入力端子が第4トランジスタの出力端子と接続され、Iチャネルのベースバンド信号を出力する、第1アンプと、を備えてもよい。 According to one embodiment, the receiving device is a receiving device that inputs an RF input signal and outputs a baseband signal, the RF input signal is applied to the input terminal, and the first signal is applied to the drive terminal. The first transistor and the input terminal are connected to the output terminal of the first transistor, and the second signal orthogonal to the first signal is applied to the drive terminal. The RF input signal is applied to the second transistor and the input terminal. The third signal and the third signal constituting the differential signal are applied to the drive terminal. The third transistor and the input terminal are connected to the output terminal of the third transistor, and the drive terminal is differential from the second signal. The fourth transistor to which the fourth signal constituting the signal is applied, the non-inverting input terminal is connected to the output terminal of the second transistor, the inverting input terminal is connected to the output terminal of the fourth transistor, and the base of the I channel. A first amplifier that outputs a band signal may be provided.
 受信装置はさらに、入力端子にRF入力信号が印加され、駆動端子に第4信号が印加される、第5トランジスタと、入力端子が第5トランジスタの出力端子と接続され、駆動端子に第1信号が印加される、第6トランジスタと、入力端子にRF入力信号が印加され、駆動端子に第2信号が印加される、第7トランジスタと、入力端子が第7トランジスタの出力端子と接続され、駆動端子に第3信号が印加される、第8トランジスタと、非反転入力端子が第6トランジスタの出力端子と接続され、反転入力端子が第8トランジスタの出力端子と接続され、Qチャネルのベースバンド信号を出力する、第2アンプと、を備えてもよい。 In the receiving device, the RF input signal is further applied to the input terminal and the fourth signal is applied to the drive terminal. The fifth transistor and the input terminal are connected to the output terminal of the fifth transistor, and the first signal is connected to the drive terminal. Is applied, the RF input signal is applied to the 6th transistor and the input terminal, and the 2nd signal is applied to the drive terminal. The 7th transistor and the input terminal are connected to the output terminal of the 7th transistor to drive. The 8th transistor to which the 3rd signal is applied to the terminal, the non-inverting input terminal is connected to the output terminal of the 6th transistor, the inverting input terminal is connected to the output terminal of the 8th transistor, and the base band signal of the Q channel. A second amplifier, which outputs a signal, may be provided.
一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の回路図。A circuit diagram of a receiving device according to an embodiment. 一実施形態に係るスイッチの構成例。A configuration example of a switch according to an embodiment. 一実施形態に係るLO信号とスイッチの出力の関係を示すタイミングチャート。A timing chart showing the relationship between the LO signal and the output of the switch according to the embodiment. 一実施形態に係るLO信号とスイッチの出力の関係を示すタイミングチャート。A timing chart showing the relationship between the LO signal and the output of the switch according to the embodiment. 一実施形態に係るスイッチの出力を示すタイミングチャート。A timing chart showing the output of the switch according to the embodiment. 一実施形態に係るベースバンド振幅の相対誤差を示すグラフ。The graph which shows the relative error of the baseband amplitude which concerns on one Embodiment. 一実施形態に係るLO位相誤差とベースバンド位相誤差の関係を示すグラフ。The graph which shows the relationship between the LO phase error and the baseband phase error which concerns on one Embodiment. 一実施形態に係るLO信号とベースバンド信号のベクトル図。The vector diagram of the LO signal and the baseband signal which concerns on one Embodiment. 一実施形態に係る位相ずれが無い場合のベースバンド信号のベクトル図。The vector diagram of the baseband signal when there is no phase shift which concerns on one Embodiment. 一実施形態に係る受信装置におけるIMRRを示す図。The figure which shows IMRR in the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置のRF入力と接続される回路の一例を示す図。The figure which shows an example of the circuit connected with the RF input of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の模式的なブロック図。The schematic block diagram of the receiving apparatus which concerns on one Embodiment. 一実施形態に係る受信装置の応用例を示す図。The figure which shows the application example of the receiving apparatus which concerns on one Embodiment.
 以下、図面を参照して、いくつかの実施形態に係る受信装置について説明する。なお、図面及び説明において、電源電圧Vss、Vdd等には特に触れないが、それぞれの回路素子等に適切に電源電圧が印加されているものとする。 Hereinafter, the receiving device according to some embodiments will be described with reference to the drawings. In the drawings and description, the power supply voltage Vss, Vdd, etc. are not particularly mentioned, but it is assumed that the power supply voltage is appropriately applied to each circuit element, etc.
 (第1実施形態)
 図1は、一実施形態に係る受信装置の模式的なブロック図である。受信装置1は、ミキサ10と、アンプ20と、を備える。受信装置1は、RF(Radio Frequency)入力信号を受信すると、局部発振器から出力されたLO信号に基づいて、ベースバンド信号を出力する。
(First Embodiment)
FIG. 1 is a schematic block diagram of a receiving device according to an embodiment. The receiving device 1 includes a mixer 10 and an amplifier 20. When the receiving device 1 receives the RF (Radio Frequency) input signal, it outputs a baseband signal based on the LO signal output from the local oscillator.
 局部発振器からは、基準の周波数を有する第1信号LO0と、これに直交する第2信号LO90と、第1信号LO0の反転信号である第3信号LO180と、第2信号LO90の反転信号である第4信号LO270と、が受信装置1へと入力される。別の例として、受信装置1が、局部発振器を備え、この内部の局部発振器がこれらの信号を発振してもよい。例えば、局部発振器は、PLL(Phase Locked Loop)等を備えていてもよい。 From the local oscillator, there are a first signal LO0 having a reference frequency, a second signal LO90 orthogonal to the first signal LO0, a third signal LO180 which is an inverted signal of the first signal LO0, and an inverted signal of the second signal LO90. The fourth signal LO270 is input to the receiving device 1. As another example, the receiving device 1 may include a local oscillator, and the local oscillator inside the receiver 1 may oscillate these signals. For example, the local oscillator may include a PLL (Phase Locked Loop) or the like.
 ミキサ10は、RF入力と、局部発振器が発振する第1信号LO0、第2信号LO90、第3信号LO180、第4信号LO270とを混合する、混合器である。ミキサ10において、RF入力と、AND回路(論理積回路)に基づいて変換されたLO信号と、を混合する。 The mixer 10 is a mixer that mixes the RF input with the first signal LO0, the second signal LO90, the third signal LO180, and the fourth signal LO270 oscillated by the local oscillator. In the mixer 10, the RF input and the LO signal converted based on the AND circuit (logical product circuit) are mixed.
 アンプ20は、ミキサ10から出力された混合信号を増幅させる増幅器である。アンプ20は、例えば、非反転入力端子、反転入力端子、非反転出力端子、反転出力端子を備える作動増幅器である。アンプ20は、ミキサ10から出力された信号を増幅して出力する。 The amplifier 20 is an amplifier that amplifies the mixed signal output from the mixer 10. The amplifier 20 is, for example, an operational amplifier including a non-inverting input terminal, an inverting input terminal, a non-inverting output terminal, and an inverting output terminal. The amplifier 20 amplifies and outputs the signal output from the mixer 10.
 図2は、受信装置1の全体構造をより詳細に示す回路図である。ミキサ10は、第1ミキサ10Aと、第2ミキサ10Bと、を備え、アンプ20は、第1アンプ20Aと、第2アンプ20Bと、を備える。 FIG. 2 is a circuit diagram showing the overall structure of the receiving device 1 in more detail. The mixer 10 includes a first mixer 10A and a second mixer 10B, and the amplifier 20 includes a first amplifier 20A and a second amplifier 20B.
 第1ミキサ10Aは、スイッチ12IPと、スイッチ12INと、を備え、第2ミキサ10Bは、スイッチ12QPと、スイッチ12QNと、を備える。各スイッチは、例えば、2つのn型のMOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor)を直列に接続して構成されてもよい。各MOSFETのゲート(駆動端子)には、LO信号が印加される。2つのMOSFETのうち一方のMOSFETのドレイン(入力端子)がRF入力に接続され、ソース(出力端子)が他方のMOSFETのドレインと接続される。他方のMOSFETのソースは、アンプ20の適切な入力端子に接続される。 The first mixer 10A includes a switch 12IP and a switch 12IN, and the second mixer 10B includes a switch 12QP and a switch 12QN. Each switch may be configured by connecting two n-type MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistor) in series, for example. An LO signal is applied to the gate (drive terminal) of each MOSFET. The drain (input terminal) of one of the two MOSFETs is connected to the RF input, and the source (output terminal) is connected to the drain of the other MOSFET. The source of the other MOSFET is connected to the appropriate input terminal of the amplifier 20.
 また、受信装置1は、電圧-電流変換回路70を備えていてもよい。受信装置1に入力される電圧による信号は、電圧-電流変換回路70を介して電流の信号へと変換及びゲインを掛けられ、ミキサ10へと入力される。 Further, the receiving device 1 may include a voltage-current conversion circuit 70. The voltage signal input to the receiving device 1 is converted and gained into a current signal via the voltage-current conversion circuit 70, and is input to the mixer 10.
 例えば、図2に示すように、スイッチ12IPに備えられる第1トランジスタの駆動端子には、第1信号LO0が、第2トランジスタの駆動端子には、第2信号LO90がそれぞれ印加される。スイッチ12INに備えられる第3トランジスタの駆動端子には、第3信号LO180が、第4トランジスタの駆動端子には、第4信号LO270がそれぞれ印加される。スイッチ12QPに備えられる第5トランジスタの駆動端子には、第4信号LO270が、第6トランジスタの駆動端子には、第1信号LO0がそれぞれ印加される。スイッチ12QNに備えられる第7トランジスタの駆動端子には、第2信号LO90が、第8トランジスタの駆動端子には、第3信号LO180がそれぞれ印加される。 For example, as shown in FIG. 2, the first signal LO0 is applied to the drive terminal of the first transistor provided in the switch 12IP, and the second signal LO90 is applied to the drive terminal of the second transistor. The third signal LO180 is applied to the drive terminal of the third transistor provided in the switch 12IN, and the fourth signal LO270 is applied to the drive terminal of the fourth transistor. The fourth signal LO270 is applied to the drive terminal of the fifth transistor provided in the switch 12QP, and the first signal LO0 is applied to the drive terminal of the sixth transistor. The second signal LO90 is applied to the drive terminal of the seventh transistor provided in the switch 12QN, and the third signal LO180 is applied to the drive terminal of the eighth transistor.
 なお、印加する信号は、スイッチに備えられるトランジスタにおいて、以下に説明する論理積を適切に取得できるものであればよい。例えば、スイッチ12IPにおいては、第1信号LO0と第2信号LO90の論理積が出力できればよい。このため、第1トランジスタの駆動端子に、第2信号LO90が、第2トランジスタの駆動端子に、第1信号LO0が印加されてもよい。アンプ20に備えられる他のスイッチ12IQ、12QP、12QNについても同様である。 The signal to be applied may be a transistor provided in the switch as long as it can appropriately acquire the logical product described below. For example, in the switch 12IP, it is sufficient that the logical product of the first signal LO0 and the second signal LO90 can be output. Therefore, the second signal LO90 may be applied to the drive terminal of the first transistor, and the first signal LO0 may be applied to the drive terminal of the second transistor. The same applies to the other switches 12IQ, 12QP, and 12QN provided in the amplifier 20.
 図3は、各スイッチの構成例である。上述したように、2つのMOSFETを備えて構成されていてもよいし、ANDゲートを備えて構成されてもよい。例えば、上図に示すように、2つのn型MOSFETのゲートに信号を印加することにより、Sig1とSig2との論理積に基づいたスイッチングを行う。双方の信号がHighである場合には、通電状態、すなわち、オン状態となり、少なくとも一方の信号がLowである場合には、遮断状態、すなわち、オフ状態となる。n型MOSFETとしたが、これには限られず、例えば、信号を反転させてp型MOSFETのゲートに印加してもよい。また、MOSFETではなく、例えば、バイポーラトランジスタを備える構成としてもよい。 FIG. 3 is a configuration example of each switch. As described above, it may be configured to include two MOSFETs or may be configured to include an AND gate. For example, as shown in the above figure, by applying a signal to the gates of two n-type MOSFETs, switching based on the logical product of Sig1 and Sig2 is performed. When both signals are high, it is in an energized state, that is, an on state, and when at least one signal is low, it is in a cutoff state, that is, an off state. Although the n-type MOSFET is used, the present invention is not limited to this, and for example, the signal may be inverted and applied to the gate of the p-type MOSFET. Further, the configuration may include, for example, a bipolar transistor instead of the MOSFET.
 また、下図に示すように、n型MOSFETのゲートに2つの信号の論理積を出力するANDゲートを備える構成としてもよい。この場合も同様に、双方の信号がHighである場合には、オンとなり、いずれか一方の信号がLowである場合には、オフとなる。ここでは2つの例を挙げたが、2つの信号の論理和を適切に取得できる回路により、図3に示す構造を代替してもよい。 Further, as shown in the figure below, the gate of the n-type MOSFET may be provided with an AND gate that outputs the logical product of two signals. Similarly, in this case as well, when both signals are high, it is turned on, and when either signal is low, it is turned off. Although two examples have been given here, the structure shown in FIG. 3 may be replaced by a circuit capable of appropriately acquiring the logical sum of the two signals.
 ミキサ10の構成は、これらに限られたものではなく、PLL等を用いて適切に論理積が取得できる回路により構成されてもよい。 The configuration of the mixer 10 is not limited to these, and may be configured by a circuit that can appropriately acquire a logical product using a PLL or the like.
 図2等に示す受信装置1は、図3に示すようなスイッチをそのミキサ10内に備える。すなわち、受信装置1において、ミキサ10による信号の合成は、2つの信号の論理和を取得するスイッチを用いて実行される。これらのスイッチにより、RF入力とLO信号との乗算がされ、ベースバンド信号に変換される。 The receiving device 1 shown in FIG. 2 and the like includes a switch as shown in FIG. 3 in the mixer 10. That is, in the receiving device 1, the synthesis of signals by the mixer 10 is executed by using a switch that acquires the logical sum of the two signals. These switches multiply the RF input with the LO signal and convert it to a baseband signal.
 例えば、スイッチ12IPの出力は、第1アンプ20Aの非反転入力端子に接続され、スイッチ12INの出力は、第1アンプ20Aの反転入力端子に接続される。同様に、スイッチ12QPの出力は、第2アンプ20Bの非反転入力端子に接続され、スイッチ12QNの出力は、第2アンプ20Bの反転入力端子に接続される。 For example, the output of the switch 12IP is connected to the non-inverting input terminal of the first amplifier 20A, and the output of the switch 12IN is connected to the inverting input terminal of the first amplifier 20A. Similarly, the output of the switch 12QP is connected to the non-inverting input terminal of the second amplifier 20B, and the output of the switch 12QN is connected to the inverting input terminal of the second amplifier 20B.
 第1アンプ20A、第2アンプ20Bは、それぞれ非反転入力端子、反転入力端子、非反転出力端子、反転出力端子と、を備える作動増幅器であってもよい。ミキサ10から出力されたベースバンド信号は、適切に増幅され、出力される。第1アンプ20Aからは、例えば、Iチャネルのベースバンド信号が出力され、第2アンプ20Bからは、Qチャネルのベースバンド信号が出力される。 The first amplifier 20A and the second amplifier 20B may be operational amplifiers including a non-inverting input terminal, an inverting input terminal, a non-inverting output terminal, and an inverting output terminal, respectively. The baseband signal output from the mixer 10 is appropriately amplified and output. For example, the I channel baseband signal is output from the first amplifier 20A, and the Q channel baseband signal is output from the second amplifier 20B.
 第1アンプ20Aは、反転出力端子から非反転入力端子へとゲインを制御する第1抵抗値RIを有する抵抗を介してフィードバックされ、非反転出力端子から反転入力端子へとゲインを制御する第1抵抗値RIを有する抵抗を介してフィードバックされる。同様に、第2アンプ20Bは、反転出力端子から非反転入力端子へとゲインを制御する第2抵抗値RQを有する抵抗を介してフィードバックされ、非反転出力端子から反転入力端子へとゲインを制御する第2抵抗値RQを有する抵抗を介してフィードバックされる。 The first amplifier 20A is fed back from the inverting output terminal to the non-inverting input terminal via a resistor having a first resistance value R I , and controls the gain from the non-inverting output terminal to the inverting input terminal. It is fed back through a resistor having a resistance value of R I. Similarly, the second amplifier 20B is fed back from the inverting output terminal to the non-inverting input terminal via a resistor having a second resistance value R Q , and gains from the non-inverting output terminal to the inverting input terminal. It is fed back through a resistor with a second resistance value R Q to control.
 LO信号の直交する信号において、位相の誤差が発生する場合に、どのような抵抗値を用いて誤差を抑制するかについて、以下説明する。 When a phase error occurs in a signal orthogonal to the LO signal, what kind of resistance value is used to suppress the error will be described below.
 図4は、LO信号と、各スイッチの出力を示すタイミングチャートである。この図においては、誤差の発生しない理想的な状態について示している。上から順に、第1信号LO0、第2信号LO90、第3信号LO180、第4信号LO270の波形、図2に示すスイッチ12QP、12IP、12QN、12INの出力波形、スイッチ12IP、12INの差、スイッチ12QP、12QNの差の波形を示す。 FIG. 4 is a timing chart showing the LO signal and the output of each switch. In this figure, an ideal state in which no error occurs is shown. From top to bottom, the waveforms of the first signal LO0, the second signal LO90, the third signal LO180, and the fourth signal LO270, the output waveforms of the switches 12QP, 12IP, 12QN, and 12IN shown in FIG. 2, the difference between the switches 12IP and 12IN, and the switches. The waveform of the difference between 12QP and 12QN is shown.
 スイッチ12IP、12INの差は、第1アンプ20Aに入力される差信号のエンベロープであり、スイッチ12QP、12QNの差は、第2アンプ20Bに入力される差信号のエンベロープである。ここで、第1アンプ20Aに入力される信号と、第2アンプ20Bに入力される信号の位相差が90度であることが分かる。 The difference between the switches 12IP and 12IN is the envelope of the difference signal input to the first amplifier 20A, and the difference between the switches 12QP and 12QN is the envelope of the difference signal input to the second amplifier 20B. Here, it can be seen that the phase difference between the signal input to the first amplifier 20A and the signal input to the second amplifier 20B is 90 degrees.
 図4からわかるように、スイッチの各MOSFETを駆動するLO信号のデューティ比は50%である。一方で、各スイッチからの出力信号のデューティ比は、25%である。直交成分に位相の誤差が無い場合、このように、全てのスイッチにおいて、等価的に25%のデューティ比のスイッチングが行われる。 As can be seen from FIG. 4, the duty ratio of the LO signal that drives each MOSFET of the switch is 50%. On the other hand, the duty ratio of the output signal from each switch is 25%. In this way, when there is no phase error in the orthogonal components, switching with a duty ratio of 25% is equivalently performed in all the switches.
 図5は、一方で、LO信号の直交成分において、誤差が生じた場合の各信号のタイミングチャートである。例えば、Δθの位相誤差が、第1信号LO0と第2信号LO90との間で発生すると仮定する。この位相誤差は、例えば、局部発振器における素子ミスマッチ等により生じる。この図から分かるように、論理積によりスイッチングを行うことにより、LO信号が直交位相誤差を有する場合においても、各アンプに入力される信号(12IP-12IN、12QP-12QN)は、直交することが分かる。すなわち、ベースバンド出力において、IチャネルとQチャネルの信号が直交している。 On the other hand, FIG. 5 is a timing chart of each signal when an error occurs in the orthogonal component of the LO signal. For example, assume that a phase error of Δθ occurs between the first signal LO0 and the second signal LO90. This phase error is caused by, for example, an element mismatch in a local oscillator. As can be seen from this figure, by switching by logical product, the signals (12IP-12IN, 12QP-12QN) input to each amplifier can be orthogonal even when the LO signal has quadrature phase error. I understand. That is, in the baseband output, the signals of the I channel and the Q channel are orthogonal to each other.
 数式を用いて、より詳細に説明する。図6は、図5におけるスイッチからの出力の差信号を一部抜き出したものである。LO信号の角周波数をωLOとおくと、図中のT、ΔTは、以下のように定義される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
この式(1)、(2)を用いて図6に示す波形のフーリエ級数を算出する。
It will be explained in more detail using mathematical formulas. FIG. 6 is a partially extracted difference signal of the output from the switch in FIG. Assuming that the angular frequency of the LO signal is ω LO , T and ΔT in the figure are defined as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Using these equations (1) and (2), the Fourier series of the waveform shown in FIG. 6 is calculated.
 周波数変換に関するのは、1次成分であり、スイッチングの波形(10IP-10IN)についての基本波のフーリエ係数a1、b1は、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
The frequency transform is the first-order component, and the Fourier coefficients a 1 and b 1 of the fundamental wave for the switching waveform (10IP-10IN) can be expressed by the following equations.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 これらに基づいて、基本波成分は、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000005
Based on these, the fundamental wave component can be expressed as follows.
Figure JPOXMLDOC01-appb-M000005
 同様に、スイッチング波形12QP-12QNについてのフーリエ係数は以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Similarly, the Fourier coefficient for the switching waveform 12QP-12QN can be expressed as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 これらに基づいて、基本波成分は、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000008
Based on these, the fundamental wave component can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000008
 次にベースバンド信号の振幅と位相に関して式を表す。ミキサ10に入力されるRF信号の電流IRFを以下のように定義する。
Figure JPOXMLDOC01-appb-M000009
ここで、gmは、電圧-電流変換回路70の利得、VRFは、RF入力電圧の振幅、ωRFは、RF入力信号の角周波数とする。
Next, the equation is expressed with respect to the amplitude and phase of the baseband signal. The current I RF of the RF signal input to the mixer 10 is defined as follows.
Figure JPOXMLDOC01-appb-M000009
Here, g m is the gain of the voltage-current conversion circuit 70, V RF is the amplitude of the RF input voltage, and ω RF is the angular frequency of the RF input signal.
 Iチャネル側のベースバンド出力電圧は、(5)と(9)の積にTIA(Trans Impedance Amp)として動作するアンプ20のトランスインピーダンスゲインRIを乗じたものとなり、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
The baseband output voltage on the I channel side is the product of (5) and (9) multiplied by the transimpedance gain R I of the amplifier 20 that operates as a TIA (Trans Impedance Amp), and can be expressed as follows. it can.
Figure JPOXMLDOC01-appb-M000010
 ωRF + ωLOの周波数成分は、ベースバンド増幅器のローパス特性で取り除かれるので、最終的な出力は、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Since the frequency component of ω RF + ω LO is removed by the low-pass characteristic of the baseband amplifier, the final output can be expressed as follows.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 同様に、Qチャネル側のベースバンド出力電圧は、(8)と(9)とアンプ20のトランスインピーダンスゲインRQに基づいて、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Similarly, the baseband output voltage on the Q channel side can be expressed as follows based on (8) and (9) and the transimpedance gain R Q of the amplifier 20.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 ここで、(11)と(14)を比較する。cos(ωBBt + Δθ / 2)とsin(ωBBt + Δθ / 2)は、直交関係にあることから、LO信号の位相誤差Δθがベースバンドにおいて消滅したことが分かる。ベースバンド信号の位相誤差をΔφとおくと、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000015
Δθが十分に小さいと仮定すると、(11)、(14)は、それぞれ以下のように近似することができる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Now compare (11) and (14). Since cos (ω BB t + Δθ / 2) and sin (ω BB t + Δθ / 2) are orthogonal to each other, it can be seen that the phase error Δθ of the LO signal disappears in the baseband. Assuming that the phase error of the baseband signal is Δφ, the following equation holds.
Figure JPOXMLDOC01-appb-M000015
Assuming that Δθ is sufficiently small, (11) and (14) can be approximated as follows.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 これらの(16)、(17)より、ベースバンド振幅のIチャネルとQチャネルの相対誤差ΔAは、次式のように表すことができる。
Figure JPOXMLDOC01-appb-M000018
From these (16) and (17), the relative error ΔA between the I channel and the Q channel of the baseband amplitude can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000018
 図7は、(18)においてR/ RQ = 1にした場合の、理論値とシミュレーション結果の比較を示すグラフである。この図7に示されるように、シミュレーションの結果は、理論値とほぼ一致している。より詳しくは、±π / 32の位相誤差に対して、約10%の振幅誤差が発生する。 FIG. 7 is a graph showing a comparison between the theoretical value and the simulation result when R I / R Q = 1 in (18). As shown in FIG. 7, the simulation results are in good agreement with the theoretical values. More specifically, for a phase error of ± π / 32, an amplitude error of about 10% occurs.
 図8は、LO信号の位相誤差Δθとベースバンド信号の位相誤差Δφの関係を示すグラフである。この図8においても、シミュレーションの結果は、理論値とほぼ一致している。すなわち、Δθの値によらず、Δφの値は、0となっている。 FIG. 8 is a graph showing the relationship between the phase error Δθ of the LO signal and the phase error Δφ of the baseband signal. Also in FIG. 8, the simulation results are almost in agreement with the theoretical values. That is, the value of Δφ is 0 regardless of the value of Δθ.
 図9は、入力されるLO信号の位相差と、出力されるベースバンド信号の振幅差を表すベクトル図で示したものである。両グラフとも、横軸は、実軸、縦軸は、虚軸を示す。ミキサ10において、論理積を演算することより、I / Qチャネル間のスイッチング波形に相関関係が生じる。例えば、図6に示すように、いずれかのチャネルにおいて、信号の幅がΔT(= Δθ / ωLO)大きくなると、他方のチャネルにおける信号の幅がΔT小さくなる。この関係から、I / Qチャネル間の直交関係が保たれたまま、図9に示すように、入力信号の位相のズレが、出力信号の振幅のズレへと変換される。これは、例えば、(16)(17)及び(18)から読み取ることもできる。 FIG. 9 is a vector diagram showing the phase difference of the input LO signal and the amplitude difference of the output baseband signal. In both graphs, the horizontal axis represents the real axis and the vertical axis represents the imaginary axis. By calculating the logical product in the mixer 10, a correlation occurs in the switching waveform between the I / Q channels. For example, as shown in FIG. 6, when the signal width in any channel increases by ΔT (= Δθ / ω LO ), the signal width in the other channel decreases by ΔT. From this relationship, as shown in FIG. 9, the phase shift of the input signal is converted into the amplitude shift of the output signal while maintaining the orthogonal relationship between the I / Q channels. This can also be read from, for example, (16) (17) and (18).
 図10は、振幅のズレが無くなったベースバンド出力を示す図である。横軸は、実軸、縦軸は、虚軸を示す。この図10に示すように、ベースバンド出力の振幅の誤差を無くすように、アンプ20のゲインを調整することにより、LO入力の位相のズレの影響を小さくすることができる。 FIG. 10 is a diagram showing a baseband output in which the amplitude deviation is eliminated. The horizontal axis represents the real axis, and the vertical axis represents the imaginary axis. As shown in FIG. 10, by adjusting the gain of the amplifier 20 so as to eliminate the error in the amplitude of the baseband output, the influence of the phase shift of the LO input can be reduced.
 イメージ除去比(IMMR)の補正は、この図10の状態に近づくように、ゲインを調整する。ΔA、Δφが十分に小さい時、IMMRは、次の式のように近似することができる。
Figure JPOXMLDOC01-appb-M000019
ΔAは、ベースバンド信号の振幅誤差であり、Δφは、上述したようにベースバンド信号の位相誤差である。ここで、(15)よりΔφ = 0とおくと、以下のように変形できる。
Figure JPOXMLDOC01-appb-M000020
The correction of the image rejection ratio (IMMR) adjusts the gain so as to approach the state shown in FIG. When ΔA and Δφ are sufficiently small, IMMR can be approximated by the following equation.
Figure JPOXMLDOC01-appb-M000019
ΔA is the amplitude error of the baseband signal, and Δφ is the phase error of the baseband signal as described above. Here, if Δφ = 0 is set from (15), it can be transformed as follows.
Figure JPOXMLDOC01-appb-M000020
 したがって、ΔA = 0とすれば、IMRR → -∞とすることができる。(18)に基づくと、この条件は、以下の通りである。
Figure JPOXMLDOC01-appb-M000021
Therefore, if ΔA = 0, then IMRR → -∞. Based on (18), this condition is as follows.
Figure JPOXMLDOC01-appb-M000021
 (21)によれば、第1アンプ20Aと第2アンプ20Bにおいてそれぞれのゲインを調整する抵抗の比を、R/ RQが1 + Δθに近づくように調整すれば、ΔAを0に近づけることができる。さらには、図10に示すように、ベースバンド信号のIチャネルとQチャネル間の信号の振幅差を0にすればよい。すなわち、実際に(21)においてΔθの値を検知すること無く、ΔAを0に近づけることにより、IMRRを改善することが可能となる。 According to (21), each of the ratio of the resistance to adjust the gain in the first amplifier 20A and the second amplifier 20B, be adjusted so R I / R Q approaches 1 + [Delta] [theta], close the ΔA 0 be able to. Further, as shown in FIG. 10, the signal amplitude difference between the I channel and the Q channel of the baseband signal may be set to 0. That is, IMRR can be improved by bringing ΔA closer to 0 without actually detecting the value of Δθ in (21).
 図11は、本実施形態に係る振幅誤差を測定しアンプ20のゲインが調整された受信装置1において実験したIMRRの一例を示すグラフである。外部の信号発生器を用いてRF入力として2.4GHzの正弦波のテストトーンを入力し、アンプ20の出力においてダウンコンバート後の1MHzの信号を計測した。振幅誤差の補正前に置いては、10サンプル全てがIMRRの仕様値を満たしていないが、ゲイン調整後においては、10~15dBの改善が見られ、仕様値を満足する結果が得られている。 FIG. 11 is a graph showing an example of IMRR experimented in the receiving device 1 in which the amplitude error according to the present embodiment is measured and the gain of the amplifier 20 is adjusted. A 2.4 GHz sine wave test tone was input as an RF input using an external signal generator, and the 1 MHz signal after down-conversion was measured at the output of the amplifier 20. Before the correction of the amplitude error, all 10 samples did not meet the IMRR specification value, but after the gain adjustment, an improvement of 10 to 15 dB was seen, and the result satisfying the specification value was obtained. ..
 以上のように、本実施形態によれば、ミキサ10において論理積演算を実行し、ゲインが調整されたアンプ20を備えることにより、受信装置1のIMRRの改善をすることができる。一般に、LO信号の位相誤差Δθを測定すること及び調整することは、困難である。ベースバンド信号の振幅誤差ΔAを測定すること及び調整することは、ベースバンド信号がLO信号よりも低周波の信号であることから、LO信号の位相誤差Δθよりも比較的容易である。このことから、本実施形態に係る受信装置1によれば、LO信号の位相誤差を補正すること無く、容易にIMRRを改善することが可能となる。 As described above, according to the present embodiment, the IMRR of the receiving device 1 can be improved by executing the logical product calculation in the mixer 10 and providing the amplifier 20 whose gain is adjusted. In general, it is difficult to measure and adjust the phase error Δθ of the LO signal. Measuring and adjusting the amplitude error ΔA of the baseband signal is relatively easier than the phase error Δθ of the LO signal because the baseband signal is a signal with a lower frequency than the LO signal. Therefore, according to the receiving device 1 according to the present embodiment, it is possible to easily improve the IMRR without correcting the phase error of the LO signal.
 また、LO信号に比べて低周波数なベースバンド信号の帯域で処理を行うことができるので、低消費電力化が可能であり、精度も向上することができる。論理積の実行も、ミキサ10のスイッチ12で行うので、この点からも低消費電力を実現可能である。さらに、LO信号の直交位相精度における制限を緩和することができるため、回路規模の削減を実現するとともに、さらなる低消費電力化を実現することができる。 Also, since processing can be performed in the band of the baseband signal, which has a lower frequency than the LO signal, it is possible to reduce power consumption and improve accuracy. Since the logical product is also executed by the switch 12 of the mixer 10, low power consumption can be realized from this point as well. Furthermore, since the limitation on the quadrature phase accuracy of the LO signal can be relaxed, the circuit scale can be reduced and the power consumption can be further reduced.
 (第2実施形態)
 図12は、本実施形態に係る受信装置1を模式的に示すブロック図である。受信装置1は、さらに、振幅誤差検出回路30を備える。振幅誤差検出回路30は、アンプ20の出力に接続され、アンプ20から出力されるベースバンド信号のチャネル間の振幅誤差を検出する。
(Second Embodiment)
FIG. 12 is a block diagram schematically showing the receiving device 1 according to the present embodiment. The receiving device 1 further includes an amplitude error detection circuit 30. The amplitude error detection circuit 30 is connected to the output of the amplifier 20 and detects the amplitude error between the channels of the baseband signal output from the amplifier 20.
 受信装置1のアンプ20におけるゲインの調整は、この振幅誤差検出回路30の出力に基づいて行ってもよい。例えば、ユーザが振幅誤差検出回路30の出力に基づいて、振幅誤差ΔAが0となるように、RI / RQを調整してもよい。また、別の例として、振幅誤差検出回路30が、可変抵抗により構成されている第1アンプ20A及び第2アンプ20Bのゲイン調整用の抵抗を自動的に変化させる構成であってもよい。 The gain adjustment in the amplifier 20 of the receiving device 1 may be performed based on the output of the amplitude error detection circuit 30. For example, the user may adjust R I / R Q so that the amplitude error ΔA becomes 0 based on the output of the amplitude error detection circuit 30. Further, as another example, the amplitude error detection circuit 30 may be configured to automatically change the gain adjusting resistance of the first amplifier 20A and the second amplifier 20B configured by the variable resistor.
 上述したように、IMRRの改善のゲイン調節をするタイミングにおいては、RF入力からテストトーンが入力されるようにしてもよい。このゲインの調整は、例えば、工場の出荷時、機器の立ち上げ時等に実行してもよい。また、別の例として、受信装置1が起動している所定のタイミングにおいて、実行されてもよい。例えば、信号の受信が続いていないタイミング等を判断して、抵抗値の調節を行ってもよい。別の例として、振幅誤差検出回路30が検出する振幅誤差が、所定の値を超えた場合に、受信を中止して、テストトーン入力に切り替え、IMRRの改善を行ってもよい。 As described above, the test tone may be input from the RF input at the timing of adjusting the gain for improving IMRR. This gain adjustment may be performed, for example, at the time of shipment from the factory, at the time of starting up the equipment, and the like. Further, as another example, it may be executed at a predetermined timing when the receiving device 1 is activated. For example, the resistance value may be adjusted by determining the timing at which signal reception is not continuing. As another example, when the amplitude error detected by the amplitude error detection circuit 30 exceeds a predetermined value, reception may be stopped, the input may be switched to the test tone input, and the IMRR may be improved.
 図13は、図12のRF入力に接続される回路の一例を示す図である。例えば、上記に説明したIMRR改善のためのゲインを調整する場合には、RF入力は、図13に示されるスイッチを介してテストトーン発振回路40と接続される。テストトーン発振回路40は、例えば、シングルトーンの正弦波、又は、所定の周波数の矩形波等、上記の式にしたがってゲイン調整が可能な波形の信号を発振する。テストトーン発振回路40から発振された信号に基づいて、受信装置1の第1抵抗値RI、及び、第2抵抗値RQを調整する。このテストトーン発振回路40は、例えば、PLL等を備えていてもよい。 FIG. 13 is a diagram showing an example of a circuit connected to the RF input of FIG. For example, when adjusting the gain for improving IMRR described above, the RF input is connected to the test tone oscillator circuit 40 via the switch shown in FIG. The test tone oscillation circuit 40 oscillates a signal having a waveform whose gain can be adjusted according to the above equation, such as a single tone sine wave or a square wave having a predetermined frequency. The first resistance value R I and the second resistance value R Q of the receiving device 1 are adjusted based on the signal oscillated from the test tone oscillation circuit 40. The test tone oscillator circuit 40 may include, for example, a PLL or the like.
 調整をしないタイミングにおいては、例えば、スイッチを切り替えることにより、RF入力端子は、アンテナ42と接続され、電波が受信可能な状態となる。また、これには限られず、消費電力を抑制したい場合等には、アンテナ42と接続しないようにスイッチを切り替えてもよい。 At the timing when adjustment is not performed, for example, by switching the switch, the RF input terminal is connected to the antenna 42, and the radio wave can be received. Further, the present invention is not limited to this, and when it is desired to suppress power consumption, the switch may be switched so as not to be connected to the antenna 42.
 なお、図13に示す回路は、外付けの回路であってもよいし、受信装置1に内蔵される回路であってもよい。 The circuit shown in FIG. 13 may be an external circuit or a circuit built in the receiving device 1.
 以上のように、本実施形態に係る受信装置1によれば、ベースバンド信号のI / Qチャネル間の振幅誤差を検出し、この結果に基づいてゲイン調整の抵抗値を調整し、IMRRの改善を実行することができる。このような調整をすることにより、前述した第1実施形態に係る受信装置1を構成することが可能となる。 As described above, according to the receiving device 1 according to the present embodiment, the amplitude error between the I / Q channels of the baseband signal is detected, the resistance value of the gain adjustment is adjusted based on this result, and the IMRR is improved. Can be executed. By making such adjustments, it is possible to configure the receiving device 1 according to the first embodiment described above.
 (第3実施形態)
 上記においては、アナログ信号に基づいて調整をする場合について説明したが、これには限られない。例えば、アナログ信号をデジタル信号に変換した上でIMRRの改善のパラメータを取得してもよい。
(Third Embodiment)
In the above, the case of adjusting based on the analog signal has been described, but the present invention is not limited to this. For example, the analog signal may be converted into a digital signal, and then the parameters for improving IMRR may be acquired.
 図14は、デジタル信号で受信装置1の出力を実行する一例を模式的に示す図である。受信装置1は、図2に記載の構成の他に、アナログ・デジタル変換回路(ADC)32と、デジタル信号処理部50と、を備える。 FIG. 14 is a diagram schematically showing an example of executing the output of the receiving device 1 with a digital signal. In addition to the configuration shown in FIG. 2, the receiving device 1 includes an analog-to-digital conversion circuit (ADC) 32 and a digital signal processing unit 50.
 ADC32は、それぞれのアンプに対して備えられ、入力されたアナログ信号をデジタル信号へと変換して出力する回路である。このADC32は、入力がそれぞれのチャネルに対するアンプと接続され、出力がデジタル信号処理部50に接続される。 The ADC 32 is a circuit provided for each amplifier to convert an input analog signal into a digital signal and output it. In this ADC 32, the input is connected to an amplifier for each channel, and the output is connected to the digital signal processing unit 50.
 デジタル信号処理部50は、振幅誤差検出回路52と、移相器54と、加算回路56と、を備える。このデジタル信号処理部50は、入力されたデジタル信号に変換されたアンプ20からの出力に対して、イメージが除去された信号を出力する。 The digital signal processing unit 50 includes an amplitude error detection circuit 52, a phase shifter 54, and an adder circuit 56. The digital signal processing unit 50 outputs a signal from which the image has been removed with respect to the output from the amplifier 20 converted into the input digital signal.
 振幅誤差検出回路52は、前述の実施形態においてアナログ信号を処理する回路であった振幅誤差検出回路30と同等の動作をデジタル信号に対して実行するものである。すなわち、入力されたチャネルごとの信号に対して、これらの信号の振幅の誤差を検出する。さらに、検出後に、検出された値に基づいてアンプ20に備えられるゲイン調整用の抵抗値を、誤差が0に近づくように更新してもよい。 The amplitude error detection circuit 52 executes an operation equivalent to that of the amplitude error detection circuit 30 which was a circuit for processing an analog signal in the above-described embodiment on a digital signal. That is, the amplitude error of these signals is detected with respect to the signals for each input channel. Further, after the detection, the gain adjusting resistance value provided in the amplifier 20 may be updated based on the detected value so that the error approaches zero.
 移相器54は、いずれかのチャネルの信号、例えば、Iチャネルの信号の位相を+90度シフトする。このように、移相器54は、いずれかのチャネルに対して備えられる。図14においては、Iチャネル側に備えられているが、Qチャネル側に備えられてもよい。 The phase shifter 54 shifts the phase of the signal of any channel, for example, the signal of the I channel by +90 degrees. In this way, the phase shifter 54 is provided for either channel. In FIG. 14, it is provided on the I channel side, but it may be provided on the Q channel side.
 加算回路56は、一方のチャネルに対する移相器54を介した出力と、他方のチャネルに対する振幅誤差検出回路52の出力と、を加算する。IチャネルとQチャネルとの信号をいずれかのチャネルを90度シフトして加算すると、所望の信号は、同相で加算されるのに対し、イメージ成分は逆相で加算される。このため、イメージ成分を除去した信号を取得することが可能となる。 The adder circuit 56 adds the output of the phase shifter 54 to one channel and the output of the amplitude error detection circuit 52 to the other channel. When the signals of the I channel and the Q channel are added by shifting one of the channels by 90 degrees, the desired signals are added in the same phase, while the image components are added in the opposite phase. Therefore, it is possible to acquire a signal from which the image component has been removed.
 図14においても、RF入力端子に図13に示す回路を接続してゲインの調整をすることが可能である。このように、本実施形態によっても、LO信号の位相誤差の情報を直接取得すること無く、ベースバンド信号の振幅誤差から適切にゲインを調整することが可能となり、前述の実施形態と同様の作用、効果を奏することができる。 Also in FIG. 14, it is possible to adjust the gain by connecting the circuit shown in FIG. 13 to the RF input terminal. As described above, also in this embodiment, it is possible to appropriately adjust the gain from the amplitude error of the baseband signal without directly acquiring the information on the phase error of the LO signal, and the same operation as in the above-described embodiment. , Can be effective.
 (第4実施形態)
 図15は、本実施形態に係る受信装置1を模式的に示すブロック図である。受信装置1のデジタル信号処理部50にあるイメージ信号レベル測定及び振幅誤差補正回路57は、加算回路56の出力と接続され、イメージ除去された信号を出力してもよい。このように、受信装置1は、この図15に示すように、受信装置1の出力段において、イメージ信号のレベルを測定しながら、その値が最小となるようにアンプ20のゲイン調整を実行する構成であってもよい。
(Fourth Embodiment)
FIG. 15 is a block diagram schematically showing the receiving device 1 according to the present embodiment. The image signal level measurement and amplitude error correction circuit 57 in the digital signal processing unit 50 of the receiving device 1 may be connected to the output of the addition circuit 56 to output the image-removed signal. As described above, as shown in FIG. 15, the receiving device 1 measures the level of the image signal in the output stage of the receiving device 1 and adjusts the gain of the amplifier 20 so that the value is minimized. It may be a configuration.
 (第5実施形態)
 図16は、本実施形態に係る受信装置1を模式的に示すブロック図である。受信装置1のデジタル信号処理部50は、さらに、ゲイン調整回路58を備えてもよい。ゲイン調整回路58は、例えば、チャネルごとに、ADC32の出力と、振幅誤差検出回路52との間に備えられる。振幅誤差検出回路52は、各チャネルのゲイン調整された信号を取得し、これらの振幅誤差を検出することにより、ゲイン調整回路58のゲインを調整する。ゲインを調整することにより、振幅誤差を小さくし、イメージ除去比を向上することが可能となる。
(Fifth Embodiment)
FIG. 16 is a block diagram schematically showing the receiving device 1 according to the present embodiment. The digital signal processing unit 50 of the receiving device 1 may further include a gain adjusting circuit 58. The gain adjustment circuit 58 is provided between the output of the ADC 32 and the amplitude error detection circuit 52 for each channel, for example. The amplitude error detection circuit 52 acquires the gain-adjusted signals of each channel, and adjusts the gain of the gain adjustment circuit 58 by detecting these amplitude errors. By adjusting the gain, it is possible to reduce the amplitude error and improve the image rejection ratio.
 例えば、十分に大きいビット数のADCが利用できる場合には、このような構成とすることができる。この場合、アンプ20におけるゲイン調整をしなくともよく、デジタル信号処理部50においてゲインの調整を実行することが可能となる。 For example, if an ADC with a sufficiently large number of bits can be used, such a configuration can be used. In this case, it is not necessary to adjust the gain in the amplifier 20, and the digital signal processing unit 50 can adjust the gain.
 (第6実施形態)
 図17は、本実施形態に係る受信装置1を模式的に示すブロック図である。受信装置1は、前述した実施形態におけるデジタル信号処理部50の代わりに、アナログ信号処理部60を備える。アナログ信号処理部60は、振幅誤差検出回路30と、移相器62と、加算回路64と、を備える。
(Sixth Embodiment)
FIG. 17 is a block diagram schematically showing the receiving device 1 according to the present embodiment. The receiving device 1 includes an analog signal processing unit 60 instead of the digital signal processing unit 50 in the above-described embodiment. The analog signal processing unit 60 includes an amplitude error detection circuit 30, a phase shifter 62, and an adder circuit 64.
 移相器62と、加算回路64は、デジタル信号処理部50に備えられている場合と同様の動作を行う。例えば、何らかの理由でADCを用いることができない場合、又は、アナログ信号による出力を取得したい場合には、この図17に示すように、信号処理をアナログ回路により実行してもよい。前述した図14と同様の信号処理を実行することができるのであれば、アナログ回路の構成は、特に問わない。 The phase shifter 62 and the adder circuit 64 perform the same operations as those provided in the digital signal processing unit 50. For example, if the ADC cannot be used for some reason, or if it is desired to acquire the output of an analog signal, the signal processing may be executed by an analog circuit as shown in FIG. The configuration of the analog circuit is not particularly limited as long as the same signal processing as in FIG. 14 described above can be executed.
 (第7実施形態)
 図14から図17において、移相器54又は移相器62は、信号の位相を90度シフトさせるものであったが、これには限られない。例えば、位相を(90 + α)度シフトさせるものであってもよい。例えば、ベースバンド信号の位相誤差によりIMRRの補正量が制限される場合に、このような位相シフトを実行することにより、ベースバンド信号の位相誤差を補正することができる。例えば、この移相器54又は移相器62は、可変移相器であってもよい。αを可変とすることにより、振幅誤差検出回路52又は振幅誤差検出回路30の出力に基づいて、精度のよい位相誤差の補正を実行することが可能となる。本実施形態においても、低周波での信号処理により位相誤差を補正するので、局部発振器等に位相誤差の補正回路を備えるよりも、簡易な構成として実装することができる。
(7th Embodiment)
In FIGS. 14 to 17, the phase shifter 54 or the phase shifter 62 shifts the phase of the signal by 90 degrees, but the present invention is not limited to this. For example, the phase may be shifted by (90 + α) degrees. For example, when the amount of IMRR correction is limited by the phase error of the baseband signal, the phase error of the baseband signal can be corrected by executing such a phase shift. For example, the phase shifter 54 or the phase shifter 62 may be a variable phase shifter. By making α variable, it is possible to perform accurate phase error correction based on the output of the amplitude error detection circuit 52 or the amplitude error detection circuit 30. Also in this embodiment, since the phase error is corrected by signal processing at a low frequency, it can be implemented as a simpler configuration than providing a phase error correction circuit in a local oscillator or the like.
 本開示に係る技術は、いわゆる「物のインターネット」であるIoT(Internet of things)と呼ばれる技術へ応用可能である。IoTとは、「物」であるIoTデバイス9100が、他のIoTデバイス9003、インターネット、クラウド9005などに接続され、情報交換することにより相互に制御する仕組みである。IoTは、農業、家、自動車、製造、流通、エネルギー、など様々な産業に利用できる。 The technology according to the present disclosure can be applied to a technology called IoT (Internet of things), which is a so-called "Internet of Things". IoT is a mechanism in which IoT devices 9100, which are "things", are connected to other IoT devices 9003, the Internet, cloud 9005, etc., and mutually control by exchanging information. IoT can be used in various industries such as agriculture, homes, automobiles, manufacturing, distribution, and energy.
 図18は、本開示に係る技術が適用され得るIoTシステム9000の概略的な構成の一例を示す図である。IoTデバイス9001には、温度センサー、湿度センサー、照度センサー、加速度センサー、距離センサー、画像センサー、ガスセンサー、人感センサーなどの各種センサーなどが含まれる。また、IoTデバイス9001には、スマートフォン、携帯電話、ウェアラブル端末、ゲーム機器などの端末を含めてもよい。IoTデバイス9001は、AC電源、DC電源、電池、非接触給電、いわゆるエナジーハーベストなどにより給電される。IoTデバイス9001は、有線、無線、近接無線通信などにより通信することができる。通信方式は3G/LTE(登録商標)、Wi-Fi(登録商標)、IEEE802.15.4、Bluetooth(登録商標)、Zigbee(登録商標)、Z-Waveなどが好適に用いられる。IoTデバイス9001は、これらの通信手段の複数を切り替えて通信してもよい。 FIG. 18 is a diagram showing an example of a schematic configuration of an IoT system 9000 to which the technique according to the present disclosure can be applied. The IoT device 9001 includes various sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, an acceleration sensor, a distance sensor, an image sensor, a gas sensor, and a human sensor. Further, the IoT device 9001 may include terminals such as smartphones, mobile phones, wearable terminals, and game devices. The IoT device 9001 is powered by an AC power supply, a DC power supply, a battery, a contactless power supply, a so-called energy harvest, or the like. The IoT device 9001 can communicate by wire, wireless, proximity wireless communication, or the like. As the communication method, 3G / LTE (registered trademark), Wi-Fi (registered trademark), IEEE802.5.4, Bluetooth (registered trademark), Zigbee (registered trademark), Z-Wave and the like are preferably used. The IoT device 9001 may switch and communicate with a plurality of these communication means.
 IoTデバイス9001は、1対1、星状、ツリー状、メッシュ状のネットワークを形成してもよい。IoTデバイス9001は、直接に、またはゲートウエイ9002を通して、外部のクラウド9005に接続してもよい。IoTデバイス9001には、IPv4、IPv6、6LoWPANなどによって、アドレスが付与される。IoTデバイス9001から収集されたデータは、他のIoTデバイス9003、サーバ9004、クラウド9005などに送信される。IoTデバイス9001からデータを送信するタイミングや頻度は好適に調整され、データを圧縮して送信してもよい。このようなデータはそのまま利用してもよく、統計解析、機械学習、データマイニング、クラスタ分析、判別分析、組み合わせ分析、時系列分析など様々な手段でデータをコンピュータ9008で分析してもよい。このようなデータを利用することにより、コントロール、警告、監視、可視化、自動化、最適化、など様々なサービスを提供することができる。 The IoT device 9001 may form a one-to-one, star-shaped, tree-shaped, or mesh-shaped network. The IoT device 9001 may connect to the external cloud 9005 directly or through the gateway 9002. An address is assigned to the IoT device 9001 by IPv4, IPv6, 6LoWPAN, or the like. The data collected from the IoT device 9001 is transmitted to another IoT device 9003, the server 9004, the cloud 9005, and the like. The timing and frequency of transmitting data from the IoT device 9001 are appropriately adjusted, and the data may be compressed and transmitted. Such data may be used as it is, or the data may be analyzed by a computer 9008 by various means such as statistical analysis, machine learning, data mining, cluster analysis, discriminant analysis, combination analysis, and time series analysis. By using such data, various services such as control, warning, monitoring, visualization, automation, and optimization can be provided.
 本開示に係る技術は、家に関するデバイス、サービスにも応用可能である。家におけるIoTデバイス9001には、洗濯機、乾燥機、ドライヤ、電子レンジ、食洗機、冷蔵庫、オーブン、炊飯器、調理器具、ガス器具、火災報知器、サーモスタット、エアコン、テレビ、レコーダ、オーディオ、照明機器、温水器、給湯器、掃除機、扇風機、空気清浄器、セキュリティカメラ、錠、扉・シャッター開閉装置、スプリンクラー、トイレ、温度計、体重計、血圧計などが含まれる。さらにIoTデバイス9001には、太陽電池、燃料電池、蓄電池、ガスメータ、電力メータ、分電盤を含んでもよい。 The technology related to this disclosure can also be applied to devices and services related to homes. IoT devices 9001 at home include washing machines, dryers, dryers, microwave ovens, dishwashers, refrigerators, ovens, rice cookers, cookware, gas appliances, fire alarms, thermostats, air conditioners, televisions, recorders, audio, Includes lighting equipment, water heaters, water heaters, vacuum cleaners, fans, air purifiers, security cameras, locks, door / shutter opening / closing devices, sprinklers, toilets, thermostats, weight scales, blood pressure monitors, etc. Further, the IoT device 9001 may include a solar cell, a fuel cell, a storage battery, a gas meter, a power meter, and a distribution board.
 家におけるIoTデバイス9001の通信方式は、低消費電力タイプの通信方式が望ましい。また、IoTデバイス9001は屋内ではWi-Fi、屋外では3G/LTE(登録商標)により通信するようにしてもよい。クラウド9005上にIoTデバイス制御用の外部サーバ9006を設置し、IoTデバイス9001を制御してもよい。IoTデバイス9001は、家庭機器の状況、温度、湿度、電力使用量、家屋内外の人・動物の存否などのデータを送信する。家庭機器から送信されたデータは、クラウド9005を通じて、外部サーバ9006に蓄積される。このようなデータに基づき、新たなサービスが提供される。このようなIoTデバイス9001は、音声認識技術を利用することにより、音声によりコントロールすることができる。 The communication method of the IoT device 9001 at home is preferably a low power consumption type communication method. Further, the IoT device 9001 may communicate by Wi-Fi indoors and 3G / LTE (registered trademark) outdoors. An external server 9006 for controlling the IoT device may be installed on the cloud 9005 to control the IoT device 9001. The IoT device 9001 transmits data such as the status of household equipment, temperature, humidity, power consumption, and the presence / absence of people / animals inside and outside the house. The data transmitted from the home device is stored in the external server 9006 through the cloud 9005. Based on such data, new services will be provided. Such an IoT device 9001 can be controlled by voice by using voice recognition technology.
 また各種家庭機器からテレビに情報を直接送付することにより、各種家庭機器の状態を可視化することができる。さらには、各種センサーが居住者の有無を判断し、データを空調機、照明などに送付することで、それらの電源をオン・オフすることができる。さらには、各種家庭機器に供えられたディスプレイにインターネットを通じて広告を表示することができる。 Also, by sending information directly from various household devices to the TV, the status of various household devices can be visualized. Furthermore, various sensors determine the presence or absence of residents and send the data to air conditioners, lights, etc., so that their power can be turned on and off. Furthermore, advertisements can be displayed on displays provided in various home appliances via the Internet.
 以上、本開示に係る技術が適用され得るIoTシステム9000の一例について説明した。本開示に係る技術は、以上説明した構成のうち、種々のデバイス間を通信するための受信装置に好適に適用され得る。 The example of the IoT system 9000 to which the technology according to the present disclosure can be applied has been described above. The technique according to the present disclosure can be suitably applied to a receiving device for communicating between various devices among the configurations described above.
 なお、本開示における技術は、上記の応用だけでは無く、例えば、高周波数を用いる種々の通信において応用することが可能である。例えば、上記のように家の中だけでは無く、工場等の産業における通信に用いることもできる。また、例えば、移動体に搭載し、通信を行うデバイスに実装されてもよい。これらに限られず、種々の応用において実装することが可能である。 The technique in the present disclosure can be applied not only to the above applications but also to various communications using high frequencies, for example. For example, as described above, it can be used for communication not only in a house but also in an industry such as a factory. Further, for example, it may be mounted on a mobile body and mounted on a device for communication. Not limited to these, it can be implemented in various applications.
 前述した実施形態は、以下のような形態としてもよい。 The above-described embodiment may be in the following form.
(1)
 受信装置は、
 第1信号と第2信号との論理積に基づいてこれらの信号の位相差を第1振幅に変換し、前記第1信号と差動信号を構成する第3信号と前記第2信号と差動信号を構成する第4信号との論理積に基づいてこれらの信号の位相差を第2振幅に変換する、第1ミキサと、
 前記第1信号と前記第4信号との論理積に基づいてこれらの信号の位相差を第3振幅に変換し、前記第2信号と前記第3信号との論理積に基づいてこれらの信号の位相差を第4振幅に変換する、第2ミキサと、
 を有する、ミキサ、
 を備える。
(1)
The receiving device is
Based on the logical product of the first signal and the second signal, the phase difference between these signals is converted into the first amplitude, and the third signal constituting the first signal and the differential signal and the third signal and the second signal are differential. A first mixer that converts the phase difference of these signals into a second amplitude based on the logical product of the fourth signal that constitutes the signal.
The phase difference of these signals is converted into a third amplitude based on the logical product of the first signal and the fourth signal, and the phase difference of these signals is converted based on the logical product of the second signal and the third signal. A second mixer that converts the phase difference to the fourth amplitude,
Has a mixer,
To be equipped.
(2)
 前記第1信号と前記第2信号は、直交信号である、
 (1)に記載の受信装置。
(2)
The first signal and the second signal are orthogonal signals.
The receiving device according to (1).
(3)
 前記ミキサは、直列に接続された2つのスイッチング素子であって、それぞれに論理積を取得したい信号が駆動信号として入力される、スイッチング素子、を備える、
 (1)又は(2)に記載の受信装置。
(3)
The mixer includes two switching elements connected in series, each of which is a switching element in which a signal whose logical product is desired to be acquired is input as a drive signal.
The receiving device according to (1) or (2).
(4)
 前記スイッチング素子は、MOSFETである、
 (3)に記載の受信装置。
(4)
The switching element is a MOSFET.
The receiving device according to (3).
(5)
 前記ミキサは、2つの信号の論理積を取得する論理積ゲートを備える、
 (1)又は(2)に記載の受信装置。
(5)
The mixer comprises a AND gate that acquires the AND of two signals.
The receiving device according to (1) or (2).
(6)
 前記第1ミキサと接続され、前記第1振幅と前記第2振幅との差を増幅する、第1アンプと、
 前記第2ミキサと接続され、前記第3振幅と前記第4振幅との差を増幅する、第2アンプと、
 を有するアンプを備え、
 前記第1アンプの非反転入力端子と反転出力端子との間、及び、前記第1アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第1抵抗値を有する抵抗と、
 前記第2アンプの非反転入力端子と反転出力端子との間、及び、前記第2アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第2抵抗値を有する抵抗と、
 をさらに備える、
 (1)から(5)のいずれかに記載の受信装置。
(6)
A first amplifier that is connected to the first mixer and amplifies the difference between the first amplitude and the second amplitude.
A second amplifier, which is connected to the second mixer and amplifies the difference between the third amplitude and the fourth amplitude,
Equipped with an amplifier that has
A resistor having a first resistance value connected between the non-inverting input terminal and the inverting output terminal of the first amplifier and between the inverting input terminal and the non-inverting output terminal of the first amplifier, respectively.
A resistor having a second resistance value connected between the non-inverting input terminal and the inverting output terminal of the second amplifier and between the inverting input terminal and the non-inverting output terminal of the second amplifier, respectively.
Further prepare,
The receiving device according to any one of (1) to (5).
(7)
 前記第1抵抗値と前記第2抵抗値は、所定比を有する、
 (6)に記載の受信装置。
(7)
The first resistance value and the second resistance value have a predetermined ratio.
The receiving device according to (6).
(8)
 前記所定比は、前記第1信号と前記第2信号との位相誤差から変換された、前記第1アンプ出力及び前記第2アンプ出力間の振幅誤差に基づいて決定される、
 (7)に記載の受信装置。
(8)
The predetermined ratio is determined based on the amplitude error between the first amplifier output and the second amplifier output, which is converted from the phase error between the first signal and the second signal.
The receiving device according to (7).
(9)
 前記アンプの出力に基づいて直交振幅誤差を検出する、振幅誤差検出回路、
 をさらに備える、(6)から(8)のいずれかに記載の受信装置。
(9)
An amplitude error detection circuit that detects quadrature amplitude error based on the output of the amplifier.
The receiving device according to any one of (6) to (8).
(10)
 前記振幅誤差検出回路の出力に基づいて前記第1抵抗値及び前記第2抵抗値が制御される、
 (9)に記載の受信装置。
(10)
The first resistance value and the second resistance value are controlled based on the output of the amplitude error detection circuit.
The receiving device according to (9).
(11)
 前記振幅誤差検出回路からの出力において、前記第1アンプからの出力と前記第2アンプからの出力との間の振幅誤差を0とするように、前記第1抵抗値及び前記第2抵抗値が制御される、
 (10)に記載の受信装置。
(11)
In the output from the amplitude error detection circuit, the first resistance value and the second resistance value are set so that the amplitude error between the output from the first amplifier and the output from the second amplifier is 0. Controlled,
The receiving device according to (10).
(12)
 前記アンプの出力をデジタル信号へと変換する、AD変換回路、
 をさらに備え、
 前記振幅誤差検出回路は、前記AD変換回路の出力に基づいて前記直交振幅誤差を検出する、
 (9)から(11)のいずれかに記載の受信装置。
(12)
An AD conversion circuit that converts the output of the amplifier into a digital signal,
With more
The amplitude error detection circuit detects the quadrature amplitude error based on the output of the AD conversion circuit.
The receiving device according to any one of (9) to (11).
(13)
 前記AD変換回路から出力された、前記第1アンプに基づく出力及び前記第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器と、
 前記AD変換回路の出力と、前記移相器の出力とを加算する、加算回路と、
 をさらに備える、(12)に記載の受信装置。
(13)
A phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the AD conversion circuit.
An adder circuit that adds the output of the AD conversion circuit and the output of the phase shifter,
The receiving device according to (12).
(14)
 前記AD変換回路から出力された信号のゲインを調整する、ゲイン調整回路、
 をさらに備える、(12)又は(13)に記載の受信装置。
(14)
A gain adjustment circuit that adjusts the gain of the signal output from the AD conversion circuit,
The receiving device according to (12) or (13), further comprising.
(15)
 前記振幅誤差検出回路から出力された、前記第1アンプに基づく出力及び前記第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器、
 前記振幅誤差検出回路の出力と、前記移相器の出力とを加算する、加算回路と、
 をさらに備える、(9)から(14)のいずれかに記載の受信装置。
(15)
A phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the amplitude error detection circuit.
An adder circuit that adds the output of the amplitude error detection circuit and the output of the phase shifter,
The receiving device according to any one of (9) to (14).
(16)
 前記移相器は、信号の位相を90度変化させる、
 (13)又は(15)に記載の受信装置。
(16)
The phase shifter changes the phase of the signal by 90 degrees.
The receiving device according to (13) or (15).
(17)
 前記移相器は、信号の位相を任意に変化させる、
 (13)又は(15)に記載の受信装置。
(17)
The phase shifter arbitrarily changes the phase of the signal.
The receiving device according to (13) or (15).
(18)
 RF入力信号を入力し、ベースバンド信号を出力する、受信装置であって、
 入力端子に前記RF入力信号が印加され、駆動端子に第1信号が印加される、第1トランジスタと、
 入力端子が前記第1トランジスタの出力端子と接続され、駆動端子に前記第1信号と直交する第2信号が印加される、第2トランジスタと、
 入力端子に前記RF入力信号が印加され、駆動端子に前記第1信号と差動信号を構成する第3信号が印加される、第3トランジスタと、
 入力端子が前記第3トランジスタの出力端子と接続され、駆動端子に前記第2信号と差動信号を構成する第4信号が印加される、第4トランジスタと、
 非反転入力端子が前記第2トランジスタの出力端子と接続され、反転入力端子が前記第4トランジスタの出力端子と接続され、Iチャネルのベースバンド信号を出力する、第1アンプと、
 を備える受信装置。
(18)
A receiver that inputs RF input signals and outputs baseband signals.
The first transistor, to which the RF input signal is applied to the input terminal and the first signal is applied to the drive terminal,
A second transistor in which an input terminal is connected to an output terminal of the first transistor and a second signal orthogonal to the first signal is applied to a drive terminal.
A third transistor to which the RF input signal is applied to the input terminal and a third signal constituting the first signal and the differential signal is applied to the drive terminal.
A fourth transistor in which an input terminal is connected to an output terminal of the third transistor and a fourth signal constituting the second signal and a differential signal is applied to the drive terminal.
The first amplifier, in which the non-inverting input terminal is connected to the output terminal of the second transistor, the inverting input terminal is connected to the output terminal of the fourth transistor, and the baseband signal of the I channel is output.
A receiver equipped with.
(19)
 入力端子に前記RF入力信号が印加され、駆動端子に前記第4信号が印加される、第5トランジスタと、
 入力端子が前記第5トランジスタの出力端子と接続され、駆動端子に前記第1信号が印加される、第6トランジスタと、
 入力端子に前記RF入力信号が印加され、駆動端子に前記第2信号が印加される、第7トランジスタと、
 入力端子が前記第7トランジスタの出力端子と接続され、駆動端子に前記第3信号が印加される、第8トランジスタと、
 非反転入力端子が前記第6トランジスタの出力端子と接続され、反転入力端子が前記第8トランジスタの出力端子と接続され、Qチャネルのベースバンド信号を出力する、第2アンプと、
 をさらに備える(18)に記載の受信装置。
(19)
The fifth transistor, to which the RF input signal is applied to the input terminal and the fourth signal is applied to the drive terminal,
The sixth transistor, in which the input terminal is connected to the output terminal of the fifth transistor and the first signal is applied to the drive terminal,
The seventh transistor, to which the RF input signal is applied to the input terminal and the second signal is applied to the drive terminal,
The eighth transistor, in which the input terminal is connected to the output terminal of the seventh transistor and the third signal is applied to the drive terminal,
A second amplifier that outputs a Q-channel baseband signal by connecting the non-inverting input terminal to the output terminal of the sixth transistor and the inverting input terminal to the output terminal of the eighth transistor.
The receiving device according to (18).
 本開示の態様は、前述した実施形態に限定されるものではなく、想到しうる種々の変形も含むものであり、本開示の効果も前述の内容に限定されるものではない。各実施形態における構成要素は、適切に組み合わされて適用されてもよい。すなわち、特許請求の範囲に規定された内容及びその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 The aspect of the present disclosure is not limited to the above-described embodiment, but also includes various possible modifications, and the effect of the present disclosure is not limited to the above-mentioned contents. The components in each embodiment may be applied in an appropriate combination. That is, various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present disclosure derived from the contents defined in the claims and their equivalents.
1:受信装置、
10:ミキサ、10A:第1ミキサ、10B:第2ミキサ、
12IP、12IN、12QP、12QN:スイッチ、
20:アンプ、20A:第1アンプ、20B:第2アンプ、
30:振幅誤差検出回路、
32:ADC、
40:テストトーン発振回路、
42:アンテナ、
50:デジタル信号処理部、
52:振幅誤差検出回路、
54:移相器、
56:加算回路、
57:イメージ信号レベル測定及び振幅誤差補正回路、
58:ゲイン調整回路、
60:アナログ信号処理部、
62:移相器、
64:加算回路、
70:電圧-電流変換回路
1: Receiver,
10: Mixer, 10A: 1st mixer, 10B: 2nd mixer,
12IP, 12IN, 12QP, 12QN: Switch,
20: Amplifier, 20A: 1st amplifier, 20B: 2nd amplifier,
30: Amplitude error detection circuit,
32: ADC,
40: Test tone oscillator circuit,
42: Antenna,
50: Digital signal processing unit,
52: Amplitude error detection circuit,
54: Phaser,
56: Addition circuit,
57: Image signal level measurement and amplitude error correction circuit,
58: Gain adjustment circuit,
60: Analog signal processing unit,
62: Phaser,
64: Addition circuit,
70: Voltage-current conversion circuit

Claims (19)

  1.  第1信号と第2信号との論理積に基づいてこれらの信号の位相差を第1振幅に変換し、前記第1信号と差動信号を構成する第3信号と前記第2信号と差動信号を構成する第4信号との論理積に基づいてこれらの信号の位相差を第2振幅に変換する、第1ミキサと、
     前記第1信号と前記第4信号との論理積に基づいてこれらの信号の位相差を第3振幅に変換し、前記第2信号と前記第3信号との論理積に基づいてこれらの信号の位相差を第4振幅に変換する、第2ミキサと、
     を有する、ミキサ、
     を備える受信装置。
    Based on the logical product of the first signal and the second signal, the phase difference between these signals is converted into the first amplitude, and the third signal constituting the first signal and the differential signal and the third signal and the second signal are differential. A first mixer that converts the phase difference of these signals into a second amplitude based on the logical product of the fourth signal that constitutes the signal.
    The phase difference of these signals is converted into a third amplitude based on the logical product of the first signal and the fourth signal, and the phase difference of these signals is converted based on the logical product of the second signal and the third signal. A second mixer that converts the phase difference to the fourth amplitude,
    Has a mixer,
    A receiver equipped with.
  2.  前記第1信号と前記第2信号は、直交信号である、
     請求項1に記載の受信装置。
    The first signal and the second signal are orthogonal signals.
    The receiving device according to claim 1.
  3.  前記ミキサは、直列に接続された2つのスイッチング素子であって、それぞれに論理積を取得したい信号が駆動信号として入力される、スイッチング素子、を備える、
     請求項1に記載の受信装置。
    The mixer includes two switching elements connected in series, each of which is a switching element in which a signal whose logical product is desired to be acquired is input as a drive signal.
    The receiving device according to claim 1.
  4.  前記スイッチング素子は、MOSFETである、
     請求項3に記載の受信装置。
    The switching element is a MOSFET.
    The receiving device according to claim 3.
  5.  前記ミキサは、2つの信号の論理積を取得する論理積駆動端子を備える、
     請求項1に記載の受信装置。
    The mixer includes a logical product drive terminal that acquires the logical product of two signals.
    The receiving device according to claim 1.
  6.  前記第1ミキサと接続され、前記第1振幅と前記第2振幅との差を増幅する、第1アンプと、
     前記第2ミキサと接続され、前記第3振幅と前記第4振幅との差を増幅する、第2アンプと、
     を有するアンプを備え、
     前記第1アンプの非反転入力端子と反転出力端子との間、及び、前記第1アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第1抵抗値を有する抵抗と、
     前記第2アンプの非反転入力端子と反転出力端子との間、及び、前記第2アンプの反転入力端子と非反転出力端子との間に、それぞれ接続される第2抵抗値を有する抵抗と、
     をさらに備える、
     請求項1に記載の受信装置。
    A first amplifier that is connected to the first mixer and amplifies the difference between the first amplitude and the second amplitude.
    A second amplifier, which is connected to the second mixer and amplifies the difference between the third amplitude and the fourth amplitude,
    Equipped with an amplifier that has
    A resistor having a first resistance value connected between the non-inverting input terminal and the inverting output terminal of the first amplifier and between the inverting input terminal and the non-inverting output terminal of the first amplifier, respectively.
    A resistor having a second resistance value connected between the non-inverting input terminal and the inverting output terminal of the second amplifier and between the inverting input terminal and the non-inverting output terminal of the second amplifier, respectively.
    Further prepare,
    The receiving device according to claim 1.
  7.  前記第1抵抗値と前記第2抵抗値は、所定比を有する、
     請求項6に記載の受信装置。
    The first resistance value and the second resistance value have a predetermined ratio.
    The receiving device according to claim 6.
  8.  前記所定比は、前記第1信号と前記第2信号との位相誤差から変換された、前記第1アンプの出力及び前記第2アンプの出力間の振幅誤差に基づいて決定される、
     請求項7に記載の受信装置。
    The predetermined ratio is determined based on the amplitude error between the output of the first amplifier and the output of the second amplifier, which is converted from the phase error between the first signal and the second signal.
    The receiving device according to claim 7.
  9.  前記アンプの出力に基づいて直交振幅誤差を検出する、振幅誤差検出回路、
     をさらに備える、請求項6に記載の受信装置。
    An amplitude error detection circuit that detects quadrature amplitude error based on the output of the amplifier.
    6. The receiving device according to claim 6.
  10.  前記振幅誤差検出回路の出力に基づいて前記第1抵抗値及び前記第2抵抗値が制御される、
     請求項9に記載の受信装置。
    The first resistance value and the second resistance value are controlled based on the output of the amplitude error detection circuit.
    The receiving device according to claim 9.
  11.  前記振幅誤差検出回路からの出力において、前記第1アンプからの出力と前記第2アンプからの出力との間の振幅誤差を0とするように、前記第1抵抗値及び前記第2抵抗値が制御される、
     請求項10に記載の受信装置。
    In the output from the amplitude error detection circuit, the first resistance value and the second resistance value are set so that the amplitude error between the output from the first amplifier and the output from the second amplifier is 0. Controlled,
    The receiving device according to claim 10.
  12.  前記アンプの出力をデジタル信号へと変換する、AD変換回路、
     をさらに備え、
     前記振幅誤差検出回路は、前記AD変換回路の出力に基づいて前記直交振幅誤差を検出する、
     請求項9に記載の受信装置。
    An AD conversion circuit that converts the output of the amplifier into a digital signal,
    With more
    The amplitude error detection circuit detects the quadrature amplitude error based on the output of the AD conversion circuit.
    The receiving device according to claim 9.
  13.  前記AD変換回路から出力された、前記第1アンプに基づく出力及び前記第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器と、
     前記AD変換回路の出力と、前記移相器の出力とを加算する、加算回路と、
     をさらに備える、請求項12に記載の受信装置。
    A phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the AD conversion circuit.
    An adder circuit that adds the output of the AD conversion circuit and the output of the phase shifter,
    12. The receiving device according to claim 12.
  14.  前記AD変換回路から出力された信号のゲインを調整する、ゲイン調整回路、
     をさらに備える、請求項12に記載の受信装置。
    A gain adjustment circuit that adjusts the gain of the signal output from the AD conversion circuit,
    12. The receiving device according to claim 12.
  15.  前記振幅誤差検出回路から出力された、前記第1アンプに基づく出力及び前記第2アンプに基づく出力のうち一方の信号の位相を変化させる、移相器、
     前記振幅誤差検出回路の出力と、前記移相器の出力とを加算する、加算回路と、
     をさらに備える、請求項9に記載の受信装置。
    A phase shifter that changes the phase of one of the signals based on the first amplifier and the output based on the second amplifier output from the amplitude error detection circuit.
    An adder circuit that adds the output of the amplitude error detection circuit and the output of the phase shifter,
    9. The receiving device according to claim 9.
  16.  前記移相器は、信号の位相を90度変化させる、
     請求項13に記載の受信装置。
    The phase shifter changes the phase of the signal by 90 degrees.
    The receiving device according to claim 13.
  17.  前記移相器は、信号の位相を任意に変化させる、
     請求項13に記載の受信装置。
    The phase shifter arbitrarily changes the phase of the signal.
    The receiving device according to claim 13.
  18.  RF入力信号を入力し、ベースバンド信号を出力する、受信装置であって、
     入力端子に前記RF入力信号が印加され、駆動端子に第1信号が印加される、第1トランジスタと、
     入力端子が前記第1トランジスタの出力端子と接続され、駆動端子に前記第1信号と直交する第2信号が印加される、第2トランジスタと、
     入力端子に前記RF入力信号が印加され、駆動端子に前記第1信号と差動信号を構成する第3信号が印加される、第3トランジスタと、
     入力端子が前記第3トランジスタの出力端子と接続され、駆動端子に前記第2信号と差動信号を構成する第4信号が印加される、第4トランジスタと、
     非反転入力端子が前記第2トランジスタの出力端子と接続され、反転入力端子が前記第4トランジスタの出力端子と接続され、Iチャネルのベースバンド信号を出力する、第1アンプと、
     を備える受信装置。
    A receiver that inputs RF input signals and outputs baseband signals.
    The first transistor, to which the RF input signal is applied to the input terminal and the first signal is applied to the drive terminal,
    A second transistor in which an input terminal is connected to an output terminal of the first transistor and a second signal orthogonal to the first signal is applied to a drive terminal.
    A third transistor to which the RF input signal is applied to the input terminal and a third signal constituting the first signal and the differential signal is applied to the drive terminal.
    A fourth transistor in which an input terminal is connected to an output terminal of the third transistor and a fourth signal constituting the second signal and a differential signal is applied to the drive terminal.
    The first amplifier, in which the non-inverting input terminal is connected to the output terminal of the second transistor, the inverting input terminal is connected to the output terminal of the fourth transistor, and the baseband signal of the I channel is output.
    A receiver equipped with.
  19.  入力端子に前記RF入力信号が印加され、駆動端子に前記第4信号が印加される、第5トランジスタと、
     入力端子が前記第5トランジスタの出力端子と接続され、駆動端子に前記第1信号が印加される、第6トランジスタと、
     入力端子に前記RF入力信号が印加され、駆動端子に前記第2信号が印加される、第7トランジスタと、
     入力端子が前記第7トランジスタの出力端子と接続され、駆動端子に前記第3信号が印加される、第8トランジスタと、
     非反転入力端子が前記第6トランジスタの出力端子と接続され、反転入力端子が前記第8トランジスタの出力端子と接続され、Qチャネルのベースバンド信号を出力する、第2アンプと、
     をさらに備える請求項18に記載の受信装置。
    The fifth transistor, to which the RF input signal is applied to the input terminal and the fourth signal is applied to the drive terminal,
    The sixth transistor, in which the input terminal is connected to the output terminal of the fifth transistor and the first signal is applied to the drive terminal,
    The seventh transistor, to which the RF input signal is applied to the input terminal and the second signal is applied to the drive terminal,
    The eighth transistor, in which the input terminal is connected to the output terminal of the seventh transistor and the third signal is applied to the drive terminal,
    A second amplifier that outputs a Q-channel baseband signal by connecting the non-inverting input terminal to the output terminal of the sixth transistor and the inverting input terminal to the output terminal of the eighth transistor.
    18. The receiving device according to claim 18.
PCT/JP2020/041556 2019-12-09 2020-11-06 Receiving device WO2021117386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563791A JPWO2021117386A1 (en) 2019-12-09 2020-11-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222403 2019-12-09
JP2019-222403 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117386A1 true WO2021117386A1 (en) 2021-06-17

Family

ID=76329750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041556 WO2021117386A1 (en) 2019-12-09 2020-11-06 Receiving device

Country Status (2)

Country Link
JP (1) JPWO2021117386A1 (en)
WO (1) WO2021117386A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353929A (en) * 1999-06-10 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> Phase converter and attenuator, phase amplitude adjuster and image suppression type transmitter
JP2006101388A (en) * 2004-09-30 2006-04-13 Renesas Technology Corp Receiver, receiving method and mobile radio terminal
JP2009118114A (en) * 2007-11-06 2009-05-28 Nsc Co Ltd Receiver
JP2009284466A (en) * 2008-04-21 2009-12-03 Seiko Epson Corp Mixer circuit, communication device, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353929A (en) * 1999-06-10 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> Phase converter and attenuator, phase amplitude adjuster and image suppression type transmitter
JP2006101388A (en) * 2004-09-30 2006-04-13 Renesas Technology Corp Receiver, receiving method and mobile radio terminal
JP2009118114A (en) * 2007-11-06 2009-05-28 Nsc Co Ltd Receiver
JP2009284466A (en) * 2008-04-21 2009-12-03 Seiko Epson Corp Mixer circuit, communication device, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2021117386A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN103999358B (en) With the insensitive RF power-sensing circuits changed to process, temperature and load impedance
CN109428616B (en) Apparatus and method for radio frequency transmitter to compensate for local oscillator leakage
CN106464272B (en) Resistor network and mixer with programmable-gain
CN106877943B (en) Communication transceiver using loopback calibration and calibration method of transmitting power thereof
JP2006025426A (en) System and method of correcting lo leakage and sideband image
CN106324336B (en) A kind of power-sensing circuit, power amplifier module and calibration of power circuit
WO2012174831A1 (en) Method and device for calibrating iq signals in real time
JP2003032048A (en) Frequency converter, orthogonal demodulator and orthogonal modulator
US8744379B1 (en) Temperature independent CMOS radio frequency power detector
JP2011009862A (en) Wireless communication apparatus and impedance control method
JP5732373B2 (en) High frequency signal processing apparatus and radio communication system
US9319261B2 (en) Transmission apparatus
WO2021117386A1 (en) Receiving device
US8457561B2 (en) Method and system for signal strength measurement
CN104320204A (en) Local oscillator IQ signal phase and amplitude calibration device
CN112436857B (en) Detection circuit and detection method, wireless radio frequency transceiver and electrical equipment
Ghayvat et al. A 2.4 ghz cmos gilbert mixer in 180nm technology
CN101540640A (en) Carrier leak correcting circuit used at front end of emission and method thereof
EP3706338B1 (en) Transmission/reception circuit, communication device, and method for controlling transmission/reception circuit
WO2022113848A1 (en) Reception device
CN100576721C (en) The method that direct conversion receiver, frequency mixer and minimizing are leaked from this frequency mixer
US11709190B2 (en) Radio frequency (RF) power sensor
US11190283B2 (en) Polar system and delay difference calibration method
JP5069211B2 (en) Temperature compensation circuit and temperature compensation method
Xu et al. Phase Offset Calibration in Multi-Channel Radio-Frequency Transceivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900099

Country of ref document: EP

Kind code of ref document: A1