WO2021117299A1 - Mobile communication system, on-board mobile station, wireless control station, control method for transmission beam, and control method for reception beam - Google Patents

Mobile communication system, on-board mobile station, wireless control station, control method for transmission beam, and control method for reception beam Download PDF

Info

Publication number
WO2021117299A1
WO2021117299A1 PCT/JP2020/032906 JP2020032906W WO2021117299A1 WO 2021117299 A1 WO2021117299 A1 WO 2021117299A1 JP 2020032906 W JP2020032906 W JP 2020032906W WO 2021117299 A1 WO2021117299 A1 WO 2021117299A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
vehicle
station
transmission
range
Prior art date
Application number
PCT/JP2020/032906
Other languages
French (fr)
Japanese (ja)
Inventor
勇男 桂
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021117299A1 publication Critical patent/WO2021117299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to a mobile communication system, an in-vehicle mobile station, a wireless control station, a transmission beam control method, and a reception beam control method.
  • This application claims priority based on Japanese Application No. 2019-222964 filed on December 10, 2019, and incorporates all the contents described in the Japanese application.
  • the radio control station or mobile station in the system performs beamforming in order to compensate for the attenuation of radio waves. Radio control stations and mobile stations can improve gain by directing the beam in a specific direction by beamforming.
  • the wireless control station performs wireless communication with the directivity direction of the beam directed to the mobile station (radio control station), it is necessary to specify the directivity direction of the beam directed to the mobile station (radio control station). Therefore, the wireless control station performs beam sweeping at a stage before starting wireless communication with the mobile station.
  • Beam sweeping is a process for searching for a mobile station capable of communication connection by changing the directivity direction of the beam and identifying an appropriate directivity direction for the mobile station.
  • the radio control station sequentially transmits broadcast information by a plurality of transmission beams having different directivity directions.
  • the mobile station receives this broadcast information, it transmits the minimum information (preamble), the identification information of the broadcast information, and the like to the wireless control station.
  • the radio control station recognizes the existence of the mobile station by receiving the information transmitted from the mobile station, identifies the transmission beam of the broadcast information from the identification information of the broadcast information, and indicates an appropriate direction to the mobile station. Can be specified (see, for example, Patent Document 1). After that, a random access process is performed between the wireless control station and the mobile station, and then a communication connection is made and wireless communication is started.
  • the mobile communication system is a mobile communication system including a wireless control station that transmits information necessary for communication connection and an in-vehicle mobile station that waits for the information while changing the directivity direction of a reception beam.
  • the in-vehicle mobile station includes a receiving antenna that forms the receiving beam, and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the in-vehicle mobile station.
  • the mobile communication system includes a wireless control station that transmits information necessary for communication connection between the vehicle-mounted mobile station and the vehicle-mounted mobile station while changing the direction of the transmission beam.
  • the wireless control station is a mobile communication system including the above, and the radio control station has the transmission beam according to the light color of the transmission antenna forming the transmission beam and the traffic signal installed on the road on which the vehicle-mounted mobile station moves. It is provided with a transmitting antenna control unit that changes the variable range of the direction of the above.
  • the in-vehicle mobile station is an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station while changing the directivity direction of the reception beam, and is a reception that forms the reception beam. It includes an antenna and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the vehicle-mounted mobile station.
  • the wireless control station is a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station while changing the directivity direction of the transmission beam, and forms the transmission beam. It includes a transmitting antenna and a transmitting antenna control unit that changes a variable range of the directivity direction of the transmitting beam according to the light color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves.
  • reception beam control method is a reception beam control method performed by an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station, and the reception beam is controlled while changing the direction of direction.
  • the step of forming and the step of changing the variable range of the directing direction of the received beam according to the position of the in-vehicle mobile station are included.
  • the transmission beam control method is a transmission beam control method performed by a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station by the transmission beam, and is directed.
  • a step of forming the transmission beam while changing the direction a step of changing the variable range of the direction of the transmission beam according to the color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves, and a step of changing the variable range of the direction of the transmission beam. including.
  • the present disclosure can be realized as a program for causing a computer to execute a step which is a characteristic process described above.
  • FIG. 1 is a plan view showing a part of the area where the mobile communication system according to the embodiment is installed.
  • FIG. 2 is a block diagram showing an example of a connection mode between each device installed on the road and the device installed in the station building of the wireless control station.
  • FIG. 3 is a perspective view showing an example of the remote unit.
  • FIG. 4 is a block diagram showing an example of the configuration of the remote unit.
  • FIG. 5A is a perspective view showing an example of an in-vehicle mobile station.
  • FIG. 5B is a block diagram showing an example of the configuration of an in-vehicle mobile station.
  • FIG. 6 is a block diagram showing an example of the configuration of the first antenna module.
  • FIG. 1 is a plan view showing a part of the area where the mobile communication system according to the embodiment is installed.
  • FIG. 2 is a block diagram showing an example of a connection mode between each device installed on the road and the device installed in the station building of the wireless control station.
  • FIG. 3 is
  • FIG. 7 is a sequence diagram showing a process performed when the wireless control station and the mobile station communicate with each other.
  • FIG. 8 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by the remote unit of the present embodiment.
  • FIG. 9 is a diagram showing an example of a downlink radio frame by a radio control station.
  • FIG. 10 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by an in-vehicle mobile station of a vehicle.
  • FIG. 11 is a flowchart showing control of a variable range of the directivity direction of the transmission beam by the remote unit performed by the antenna control device.
  • FIG. 12 is a diagram showing an example of a downlink radio frame by a radio control station in the restricted mode.
  • FIG. 13 is a diagram showing an example of a variable range of a beam set for each remote unit at an intersection.
  • FIG. 14 is a flowchart showing control of a variable range of the directivity direction of the received beam performed by the in-vehicle mobile station.
  • FIG. 15 is a flowchart showing an example of processing in the restricted mode.
  • FIG. 16 is a diagram for explaining a variable range of the directivity of the reception beam of the vehicle-mounted mobile station traveling on the road R.
  • FIG. 17 is a diagram showing a state in which a truck is traveling in front of an in-vehicle mobile station.
  • the wireless control station since the wireless control station searches the entire range in the azimuth direction around its own station by beam sweeping, it may also search for an area where the mobile station does not exist, and the wireless control station may search for the presence of the mobile station. It may take a relatively long time to recognize.
  • the mobile station since the mobile station also performs wireless communication with the directivity direction of the beam directed to the wireless control station, it is necessary to specify the directivity direction of the beam directed to the wireless control station. Therefore, the mobile station also attempts to receive the broadcast information transmitted from the wireless control station while changing the directivity direction of the reception beam before starting wireless communication with the wireless control station. As a result, the mobile station searches for the radio control station (notification information from) and identifies the directivity direction of the beam toward the radio control station. For this reason, even in a mobile station, when searching for a wireless control station, a search in a direction in which the wireless control station does not exist may be performed, so that it takes a relatively long time for the mobile station to recognize the existence of the wireless control station. May be required.
  • the mobile station when it takes a relatively long time for the beam sweeping by the wireless control station and the search for the wireless control station by the mobile station, for example, the mobile station enters the area where the wireless control station can communicate with the wireless control station and then wirelessly operates. There may be a delay in the time until communication starts.
  • This disclosure was made in view of such circumstances, and an object of the present disclosure is to provide a technology capable of promptly starting wireless communication.
  • the mobile communication system is a mobile communication including a wireless control station that transmits information necessary for communication connection and an in-vehicle mobile station that waits for the information while changing the directivity direction of a reception beam.
  • the in-vehicle mobile station includes a receiving antenna forming the receiving beam and a receiving antenna control unit that changes a variable range of the directivity of the receiving beam according to the position of the in-vehicle mobile station. Be prepared.
  • the in-vehicle mobile station when searching for a wireless control station capable of communication connection by waiting for information necessary for communication connection, directs the reception beam according to the position of the in-vehicle mobile station. Change the variable range of direction. Therefore, the in-vehicle mobile station is variable when there is an area around the own station where it is clear that the wireless control station does not exist, or when wireless communication is performed with the wireless control station located in a certain direction. It can be changed to narrow the range. As a result, the time required to search for the wireless control station can be shortened, and wireless communication can be started promptly.
  • the receiving antenna control unit sets the variable range as the first reception range, and the position of the vehicle-mounted mobile station is the predetermined area. If it is within, the variable range may be a second reception range narrower than the first reception range. In this case, since the in-vehicle mobile station sets the variable range to the second reception range narrower than the first reception range within the predetermined area, the in-vehicle mobile station searches for the wireless control station within the predetermined area rather than outside the predetermined area. The time required for this can be shortened as needed, and wireless communication can be started promptly.
  • the predetermined area may be an area set on the upstream side of an intersection located in front of the vehicle-mounted mobile station in the traveling direction.
  • the in-vehicle mobile station can search for the wireless control station by narrowing the variable range in the traveling direction if the vehicle enters the predetermined area. If the wireless control station is installed at the intersection, the in-vehicle mobile station can quickly search for the wireless control station and can promptly start wireless communication with the wireless control station installed at the intersection.
  • the wireless control station includes a remote unit installed on the road and capable of communicating with the vehicle-mounted mobile station, and the predetermined area is located in front of the vehicle-mounted mobile station in the traveling direction. It may be an area set on the upstream side of the remote unit located.
  • the in-vehicle mobile station can search for the wireless control station by narrowing the variable range in the traveling direction if the vehicle enters the predetermined area. As a result, the in-vehicle mobile station can quickly search for the wireless control station and can promptly start wireless communication with the wireless control station.
  • the second reception range may be a range in which the directivity direction of the reception beam is limited to the beam directed in the traveling direction of the vehicle-mounted mobile station.
  • the variable range as the second reception range, the in-vehicle mobile station can search for the wireless control station by narrowing down the traveling direction.
  • the receiving antenna control is performed.
  • the unit may change the variable range so that the directivity direction is limited to the reception beam directed in the direction opposite to the traveling direction of the vehicle-mounted mobile station. If the information cannot be received within the predetermined area, it is possible that an obstacle blocking the reception beam exists in front of the in-vehicle mobile station. Therefore, if the in-vehicle mobile station changes the variable range to a range facing in the opposite direction of the traveling direction and directs the received beam in the opposite direction of the traveling direction, the vehicle exits the predetermined area and exits the intersection or the wireless control station. After passing through, the radio control station at the rear position can be quickly searched.
  • the receiving antenna control unit changes the variable range to the first receiving range when the vehicle-mounted mobile station moves out of the predetermined area and then travels by a predetermined distance. It may be configured as follows. In this case, the search for the radio control station located behind the in-vehicle mobile station can be continued from the time of leaving the predetermined area to the time of traveling by a predetermined distance.
  • the radio control station transmits the information while changing the directivity direction of the transmission beam, and a light of a traffic signal installed on a road on which the in-vehicle mobile station moves.
  • a transmission antenna control unit that changes a variable range of the directivity direction of the transmission beam according to the color may be provided.
  • the radio control station can change the variable range of the directivity of the transmission beam according to the movement mode of the vehicle-mounted mobile station that stops or moves depending on the light color of the traffic signal. Therefore, for example, in order to preferentially search for an in-vehicle mobile station that is permitted to travel by a green light and moves on the road, the radio control station can be changed to narrow the variable range to the range corresponding to the road. .. As a result, the time required to search for an in-vehicle mobile station moving on the road can be shortened, and wireless communication can be started promptly.
  • the mobile communication system is a wireless control that transmits information necessary for communication connection between the vehicle-mounted mobile station and the vehicle-mounted mobile station while changing the direction of the transmission beam.
  • a mobile communication system including a station, wherein the wireless control station responds to the color of the transmitting antenna forming the transmitting beam and the light color of a traffic signal installed on the road on which the in-vehicle mobile station moves.
  • a transmission antenna control unit that changes a variable range of the direction of the transmission beam is provided.
  • the wireless control station narrows the variable range of the directing direction of the transmission beam according to the movement mode of the in-vehicle mobile station that stops or moves depending on the light color of the traffic signal. Can be changed.
  • the time required for the search can be shortened, and wireless communication can be started promptly. ..
  • the transmission antenna control unit can change the variable range to either a first transmission range or a second transmission range narrower than the first transmission range. In this case, if the variable range is changed to the second transmission range, the time required to search for the in-vehicle mobile station can be shortened as compared with the case of the first transmission range, and wireless communication can be started promptly. it can.
  • the second transmission range is preferably a range in which the directivity direction of the transmission beam is limited to the beam directed in the extending direction of the road.
  • the transmitting antenna control unit may change the variable range from the first transmitting range to the second transmitting range when the road is permitted to travel by switching the light color of the traffic signal. ..
  • the radio control station can increase the chances of searching for an in-vehicle mobile station on the road by limiting the range forming the transmission beam to the permitted road when the road is permitted to travel. .. As a result, it is possible to effectively search for an in-vehicle mobile station that is allowed to proceed and passes through the road in a short time.
  • the in-vehicle mobile station is an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station while changing the directivity direction of the received beam, and receives the received beam. It includes a receiving antenna to be formed and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the vehicle-mounted mobile station.
  • the wireless control station is a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station while changing the directivity direction of the transmission beam. It includes a transmitting antenna that forms a transmitting beam, and a transmitting antenna control unit that changes a variable range of the directivity of the transmitting beam according to the light color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves. ..
  • the reception beam control method is a reception beam control method performed by an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station, and changes the direction of direction. It includes a step of forming a receiving beam while changing a variable range of a directing direction of the receiving beam according to the position of the vehicle-mounted mobile station.
  • the transmission beam control method is a transmission beam control method performed by a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station, and is a directing direction.
  • the step of forming a transmission beam while changing the transmission beam and the step of changing the variable range of the direction of the transmission beam according to the light color of the traffic signal installed on the road on which the vehicle-mounted mobile station moves are included. ..
  • FIG. 1 is a plan view showing a part of the area where the mobile communication system according to the embodiment is installed.
  • the upper side of the paper is north and the lower side of the paper is south.
  • the mobile communication system includes a wireless control station 1 and a mobile station 4.
  • the wireless control station 1 includes a plurality of remote units 2.
  • the remote unit 2 is also called a base station, a radio control station, a remote radio head, or the like.
  • the wireless control station 1 has a function of performing wireless communication with the mobile station 4 by the remote unit 2.
  • the remote unit 2 performs wireless communication based on, for example, a 5th generation mobile communication system.
  • the remote unit 2 has a function of performing beamforming on the transmission beam and the reception beam, and communicates with the directivity direction of the transmission / reception beam toward the communication destination.
  • a plurality of remote units 2 (four in the example) are installed at the intersection I on the road R.
  • the remote unit 2 is installed, for example, corresponding to a plurality of traffic signals 6 installed in each direction of the intersection I.
  • the mobile station 4 includes a mobile terminal 4b such as a mobile phone, a smartphone, a tablet terminal, a laptop computer, etc. possessed by a pedestrian H or the like, in addition to the vehicle-mounted mobile station 4a mounted on the vehicle V.
  • the mobile station 4 performs wireless communication with the wireless control station 1 in accordance with the 5th generation mobile communication system. Therefore, the mobile station 4 also has a function of performing beamforming, and communicates with the directivity direction of the transmission / reception beam directed to the communication destination. Further, the mobile station 4 may have a function of performing wireless communication conforming to the 4th generation mobile communication system.
  • the area to which the wireless control station 1 can provide the service is included in the cell formed by the wireless control station by the 4th generation mobile communication system, and transmission / reception by both communication systems is possible.
  • the plurality of remote units 2 are connected to the line concentrator 10.
  • the concentrator 10 has an interface function for connecting a plurality of remote units 2 and an aggregation device (described later) installed in a station building of a mobile communication system.
  • a signal controller 12 for controlling a plurality of traffic signals 6 is also connected to the line concentrator 10.
  • the line concentrator 10 also has an interface function for connecting the signal controller 12 and the central control device (described later) installed in the traffic control center of the Intelligent Transport Systems (ITS).
  • ITS Intelligent Transport Systems
  • a roadside wireless communication device 14 by an ITS wireless system is connected to the signal controller 12.
  • the roadside wireless communication device 14 can perform wireless communication with the vehicle-mounted communication device 16 by the ITS wireless system mounted on the vehicle V.
  • FIG. 2 is a block diagram showing an example of a connection mode between each device installed on the road R and the device installed in the station building of the wireless control station 1.
  • the remote unit 2 is installed at a high place by a support column 7 together with a traffic signal 6.
  • the roadside wireless communication device 14 is also installed on the support column 7.
  • the remote unit 2 is installed on the road R by the support columns 7.
  • on the road R means a position on the road R where the remote unit 2 can form a transmission / reception beam along the direction in which the road R extends. Therefore, it does not have to be directly above the road R, and may be a position where the transmission / reception beam can be formed.
  • the wireless control station 1 includes an aggregation device 20 in addition to the remote unit 2. As shown in FIG. 2, the aggregation device 20 is installed in the station building B located at a location away from the remote unit 2. The aggregation device 20 is connected to the line concentrator device 18. The line concentrator 18 is connected to the line concentrator 10 via an optical transmission line 11. The line concentrator 10 and the line concentrator 18 have a function of performing optical communication, and the remote unit 2 installed on the road R side and the aggregation device 20 installed in the station building B communicate with each other by optical communication. It has a function as an interface for connecting communicably. Therefore, the plurality of remote units 2 and the aggregation device 20 are connected to each other so as to be able to communicate with each other by the line concentrator 10 and the line concentrator 18.
  • the aggregation device 20 is, for example, a device also called a central unit, and is connected to the core network NW1 of the mobile communication system.
  • the aggregation device 20 is composed of a computer including a CPU (Central Processing Unit) and a storage device such as a memory and a hard disk.
  • the storage device included in the aggregation device 20 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the aggregation device 20 is realized.
  • the aggregation device 20 realizes the function of the aggregation device 20 by reading the program recorded on a non-transient recording medium that can be read by a computer such as the storage device.
  • the aggregation device 20 functionally has a communication processing unit 20a.
  • the communication processing unit 20a performs necessary processing on the digital baseband signals given from the plurality of remote units 2, and supplies the communication data obtained by the processing to the core network NW1. Further, the communication processing unit 20a performs necessary processing on the communication data given from the core network NW1 to generate a digital baseband signal, and gives the digital baseband signal to the plurality of remote units 2.
  • the aggregation device 20 stores communication data and various information related to wireless communication in a predetermined wireless frame, and performs the above processing on various information stored in the wireless frame to generate a digital baseband signal.
  • the communication processing unit 20a searches for a communication-connectable mobile station 4 existing around the remote unit 2 by transmitting notification information or the like which is information necessary for communication connection, and communicates with the detected mobile station. It has a function to perform processing for communication connection with. Further, the communication processing unit 20a can specify the directivity direction of the transmission / reception beam in the wireless communication with the mobile station 4 for each predetermined unit such as data in the wireless frame, a block, or an area. The communication processing unit 20a provides the remote unit 2 with directivity information for designating the directivity direction of the transmission / reception beam for each predetermined unit.
  • variable range information (described later) is given from the remote unit 2
  • the communication processing unit 20a determines the directing direction of the transmission beam for each predetermined unit within the range indicated by the variable range information, and determines the directing direction. Information is given to the remote unit 2.
  • an ITS communication device 22 is installed in the station building B.
  • the ITS communication device 22 is connected to the line concentrator 18.
  • the line concentrator 10 and the line concentrator 18 also have a function of connecting the signal controller 12 and the ITS communication device 22 installed in the station building B so as to be able to communicate with each other by optical communication. Therefore, the signal controller 12 and the ITS communication device 22 are communicably connected to each other by the line concentrator 10 and the line concentrator 18.
  • the ITS communication device 22 is communicably connected to the central control device 24 installed in the traffic control center via the network NW2 by an individual communication carrier or the like with the core network NW1.
  • the ITS communication device 22 transmits the communication data given by the central control device 24 to the signal controller 12. Further, the ITS communication device 22 transmits the communication data given by the signal controller 12 to the central control device 24.
  • the central control device 24 generates signal control commands and traffic information regarding the timing of switching the light colors of the plurality of traffic signals 6, and transmits these information to the signal controller 12.
  • the signal controller 12 controls the light color according to the signal control command.
  • the signal controller 12 gives the given traffic information to the roadside wireless communication device 14.
  • the roadside wireless communication device 14 transmits this traffic information to the vehicle-mounted communication device 16 on the road R.
  • traffic information, probe information, or the like is given from the vehicle-mounted communication device 16
  • the roadside wireless communication device 14 gives the given information to the signal controller 12.
  • the signal controller 12 gives information from the in-vehicle communication device 16 to the central control device 24 via the ITS communication device 22 and the network NW2.
  • the signal controller 12 is communicably connected to a plurality of remote units 2 via the line concentrator 10.
  • the signal controller 12 has a function of giving light color information indicating the light color of each traffic signal 6 to a plurality of remote units 2.
  • FIG. 3 is a perspective view showing an example of the remote unit 2.
  • the remote unit 2 includes a box-shaped housing 30 and a plurality of array antennas 32.
  • a plurality of (four in the example) array antennas 32 are arranged so as to surround the side surface of the housing 30.
  • the array antenna 32 includes a substrate 32a and a plurality of antenna elements 32b mounted on the substrate 32a, respectively.
  • the antenna element 32b is, for example, a planar antenna such as a patch antenna.
  • Each array antenna 32 can perform beamforming by adjusting the phase of signals transmitted and received by a plurality of antenna elements 32b.
  • Each array antenna 32 can form a transmission / reception beam in a range of an azimuth angle of about 90 degrees about the normal line of the substrate 32a.
  • the remote unit 2 can form a transmission / reception beam directed in all directions of the remote unit 2.
  • the remote unit 2 has, for example, a plurality of transmission / reception systems, and forms a beam for each transmission / reception system.
  • the remote unit 2 has a function of transmitting and receiving radio waves to and from the mobile station 4 while performing beamforming.
  • FIG. 4 is a block diagram showing an example of the configuration of the remote unit 2.
  • the remote unit 2 includes four array antennas 32, a synthesis distributor 34, a transceiver 36, and an antenna control device 38.
  • the composite distributor 34, the transceiver 36, and the antenna control device 38 are housed inside the housing 30.
  • Each array antenna 32 is connected to the transceiver 36 via the composite distributor 34.
  • the transmitter / receiver 36 performs processing such as modulation, amplification, digital / analog conversion, and frequency conversion on the digital baseband signal given from the aggregation device 20 to generate a radio frequency signal (RF signal).
  • the generated RF signal is given to the array antenna 32 via the synthesis distributor 34.
  • the transceiver 36 performs processing such as amplification, frequency conversion, analog / digital conversion, and demodulation on the RF signal received by the array antenna 32 to generate a digital baseband signal.
  • the generated digital baseband signal is given to the aggregation device 20.
  • the transceiver 36 processes a plurality of transmission / reception systems corresponding to the plurality of transmission / reception systems of the remote unit 2.
  • the transceiver 36 generates an RF signal for each of a plurality of systems, and generates a digital baseband signal for each of the plurality of systems.
  • the synthesis distributor 34 synthesizes the RF signals received by the plurality of antenna elements 32b for each receiving system and gives them to the transceiver 36, and transfers the RF signals given from the transceiver 36 to the plurality of antenna elements 32b for each transmitting system. Distribute.
  • the array antenna 32 feeds the received radio wave as an RF signal to the transceiver 36. Further, the array antenna 32 radiates the RF signal given from the transceiver 36 into space as a radio wave.
  • the array antenna 32 includes a plurality of antenna elements 32b and a phase adjuster 40.
  • the phase adjuster 40 adjusts the phases of a plurality of signals transmitted and received by the plurality of antenna elements 32b.
  • the phase adjuster 40 includes a number of phase shifters 40a corresponding to each of the plurality of antenna elements 32b.
  • the phase adjuster 40 can adjust the relative phases of a plurality of signals by adjusting each phase shifter 40a, and can change the directing direction of the transmission / reception beam formed by the array antenna 32.
  • An antenna control device 38 is connected to the phase adjuster 40 of each array antenna 32.
  • the antenna control device 38 has a function of controlling the directivity direction of the transmission / reception beam formed by the array antenna 32 for each transmission / reception tilt.
  • the antenna control device 38 is composed of a computer including a CPU and a storage device such as a memory and a hard disk.
  • the storage device included in the antenna control device 38 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the antenna control device 38 is realized.
  • the antenna control device 38 realizes the function of the antenna control device 38 by reading the program recorded on a computer-readable non-transient recording medium such as the storage device.
  • the antenna control device 38 controls the phase adjuster 40 by giving a control command to the phase adjuster 40.
  • the antenna control device 38 causes the array antenna 32 to form a transmission / reception beam for each of the plurality of transmission / reception systems, and controls the direction of the transmission / reception beam.
  • the antenna control device 38 controls the directivity direction of the transmission / reception beam based on the directivity direction information given from the communication processing unit 20a of the radio control station 1.
  • the antenna control device 38 is given light color information from the corresponding signal controller 12 via the line concentrator 10.
  • the antenna control device 38 controls a variable range of the directivity direction of the transmission beam formed by the remote unit 2 according to the light color of the traffic signal 6.
  • the antenna control device 38 determines a variable range of the directivity direction of the transmission beam according to the light color of the traffic signal 6.
  • the antenna control device 38 provides the variable range information to the aggregation device 20.
  • the variable range information is information indicating a variable range in the directivity direction of the transmission beam defined by the antenna control device 38.
  • the communication processing unit 20a of the aggregation device 20 determines the directivity direction of the transmission beam when transmitting various data within the variable range of the directivity direction of the transmission beam indicated by the variable range information, and generates the directivity direction information.
  • the antenna control device 38 controls the directivity direction of the transmission beam within the variable range set by the antenna control unit 58b by controlling the directivity direction of the transmission / reception beam based on the directivity direction information from the aggregation device 20.
  • the antenna control device 38 is a transmission antenna control unit that changes the variable range of the directivity direction of the transmission beam formed by the four array antennas 32 (transmission antennas) of the remote unit 2 according to the light color of the traffic signal 6.
  • the "variable range of the directivity direction of the transmission (reception) beam" may be referred to as the "variable range of the transmission (reception) beam” or simply the "variable range”.
  • FIG. 5A is a perspective view showing an example of the vehicle-mounted mobile station 4a.
  • the in-vehicle mobile station 4a includes a pyramid-shaped housing 44 and a first antenna module 46.
  • the first antenna module 46 is a device for wireless communication with a wireless control station 1 compliant with the fifth generation mobile communication system, and includes a plurality of array antennas 48.
  • a plurality of (four in the illustrated example) array antennas 48 are arranged so as to surround the side surface of the housing 44.
  • Each of the array antennas 48 includes a substrate 48a and a plurality of antenna elements 48b mounted on the substrate 48a.
  • the antenna element 48b is, for example, a planar antenna such as a patch antenna.
  • Each array antenna 48 can perform beamforming with respect to a transmission beam and a reception beam by adjusting the phases of signals transmitted and received by a plurality of antenna elements 48b.
  • Each array antenna 48 can form a beam in a range of an azimuth angle of about 90 degrees about the normal of the substrate 48a.
  • the first antenna module 46 can form a beam directed in all directions of the own station 4a.
  • the first antenna module 46 has a function of transmitting and receiving radio waves to and from the remote unit 2 of the radio control station 1 while performing beamforming.
  • FIG. 5B is a block diagram showing an example of the configuration of the in-vehicle mobile station 4a.
  • the vehicle-mounted mobile station 4a includes a control device 50 and a second antenna module 52 in addition to the first antenna module 46.
  • the control device 50 and the second antenna module 52 are housed inside the housing 44.
  • the second antenna module 52 has a function of transmitting and receiving radio waves to and from a radio control station compliant with the 4th generation mobile communication system.
  • the in-vehicle mobile station 4a can perform wireless communication conforming to the fourth generation mobile communication system.
  • the control device 50 includes an interface (IF) unit 54, a GPS (Global Positioning System) receiver 56, and a processing device 58.
  • the IF unit 54 is provided between the first antenna module 46 and the second antenna module 52, and the processing device 58, and has a function of communicably connecting them.
  • the GPS receiver 56 has a function of acquiring the position of the control device 50 (vehicle-mounted mobile station 4a) and giving it to the processing device 58.
  • the processing device 58 is composed of a computer including a CPU and a storage device such as a memory and a hard disk.
  • the storage device included in the processing device 58 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the processing device 58 is realized.
  • the processing device 58 realizes the function of the processing device 58 by reading the program recorded on a computer-readable non-transient recording medium such as the storage device.
  • the processing device 58 functionally includes a communication processing unit 58a and an antenna control unit 58b.
  • the communication processing unit 58a has a function of performing processing related to the baseband signal.
  • the communication processing unit 58a supplies the baseband signal to the first antenna module 46 or the second antenna module 52.
  • the baseband signal given to the first antenna module 46 or the second antenna module 52 is transmitted as a radio wave by the first antenna module 46 or the second antenna module 52.
  • the communication processing unit 58a receives the baseband signal given from the first antenna module 46 or the second antenna module 52.
  • the communication processing unit 58a searches for and detects the remote unit 2 of the wireless control station 1 existing around the own station 4a by listening for the notification information which is the information necessary for the communication connection from the wireless control station. It has a function of performing a process for making a communication connection with the remote unit 2.
  • the antenna control unit 58b has a function of controlling the directivity of the transmission / reception beam formed by the first antenna module 46.
  • the antenna control unit 58b controls the phase adjuster 66 by giving a control command to the phase adjuster 66 (FIG. 6) included in the first antenna module 46.
  • the antenna control unit 58b causes the first antenna module 46 to form a transmission / reception beam, and controls the directivity direction of the transmission / reception beam.
  • the antenna control unit 58b reception antenna control unit
  • first antenna module 46 (reception antenna) according to the position of its own station 4a obtained from the GPS receiver 56. Has a function of changing the variable range of the received beam formed by.
  • the antenna control unit 58b can memorize the position of the own station 4a over time and specify the traveling direction of the own station 4a. Further, the antenna control unit 58b can store the position of the own station 4a over time and obtain the mileage traveled by the own station 4a from a specific position to the current position. Further, the storage device of the processing device 58 stores map information indicating the position and shape of the road R and the intersection I around the vehicle V. The map information includes information indicating a restricted area, which will be described later. The antenna control unit 58b can determine whether or not the own station 4a is within the restricted area based on this map information. The map information does not have to be stored in the processing device 58, and when the car navigation system of the vehicle V stores the map information, the antenna control unit 58b stores the map information from the car navigation system. You can refer to it.
  • FIG. 6 is a block diagram showing an example of the configuration of the first antenna module 46.
  • the first antenna module 46 includes four array antennas 48, a changeover switch 62, and a transceiver 64. Each array antenna 48 is connected to the transceiver 64 via the changeover switch 62.
  • the transceiver 64 performs processing such as modulation and amplification on the baseband signal given from the communication processing unit 58a of the control device 50 to generate an RF signal.
  • the generated RF signal is given to the array antenna 48 via the changeover switch 62.
  • the transceiver 64 performs processing such as amplification and demodulation on the RF signal received by the array antenna 48 to generate a baseband signal.
  • the generated baseband signal is given to the communication processing unit 58a.
  • the changeover switch 62 has a function of switching the connection destination of the transceiver 64 to any one of the four array antennas 48.
  • the four array antennas 48 are switched according to the directivity direction of the transmission / reception beam. Therefore, wireless communication with the remote unit 2 is performed using any one of the four array antennas 48.
  • the array antenna 48 feeds the received radio wave from the remote unit 2 to the transceiver 64 as an RF signal. Further, the array antenna 48 radiates the RF signal given from the transceiver 64 into space as a radio wave.
  • the array antenna 48 further includes a phase adjuster 66 and a synthetic distributor 68 in addition to the plurality of antenna elements 48b.
  • the phase adjuster 66 adjusts the phases of a plurality of signals transmitted and received by the plurality of antenna elements 48b.
  • the phase adjuster 66 includes a number of phase shifters 66a corresponding to each of the plurality of antenna elements 48b.
  • the phase adjuster 66 can adjust the relative phases of a plurality of signals by adjusting each phase shifter 66a, and can change the directing direction of the transmission / reception beam formed by the array antenna 48.
  • a control command from the antenna control unit 58b is given to the phase adjuster 66 of each array antenna 48.
  • the phase adjuster 66 adjusts each phase shifter 66a in response to this control command.
  • the control command from the antenna control unit 58b is also given to the changeover switch 62.
  • the changeover switch 62 identifies the array antenna 48 to be connected to the transceiver 64 based on the control command.
  • FIG. 7 is a sequence diagram showing a process performed when the wireless control station 1 and the mobile station 4 communicate with each other.
  • the radio control station 1 performs a process called beam sweeping (step S1).
  • the beam sweeping is a process in which the radio control station 1 (remote unit 2) sequentially transmits broadcast information by a plurality of beams having different directivity directions.
  • the radio control station 1 executes beam sweeping at regular intervals.
  • the radio control station 1 can obtain the presence of a mobile station 4 that can be communicated and connected around the remote unit 2 and an appropriate direction of the beam directed to the mobile station 4. That is, the beam sweeping is a process of searching for a mobile station 4 capable of communication connection by changing the directivity direction of the transmission beam that transmits the broadcast information.
  • FIG. 8 is a diagram showing the directivity directions of the transmission / reception beams that can be formed by the remote unit 2 of the present embodiment.
  • FIG. 8 shows the directivity direction of the transmission / reception beam formed by the remote unit 2 provided on the route r1 connected to the intersection I from the north direction.
  • the arrow extending from the remote unit 2 in FIG. 8 is the directivity direction of the transmission / reception beam formed by the remote unit 2.
  • the upper side of the paper is north and the lower side of the paper is south.
  • the remote unit 2 forms a transmission / reception beam directed in each directivity direction, as shown by a dotted line in FIG.
  • the transmission / reception beam formed by the remote unit 2 is formed, for example, with a length of about 100 meters from the remote unit 2. That is, the transmission / reception range of the remote unit 2 is a range from the remote unit 2 to about 100 meters.
  • the remote unit 2 of the present embodiment can form 12 transmission / reception beams having different directivity directions.
  • the directivity direction of each beam is set to a direction determined by dividing the azimuth into 12 equal parts.
  • An index is set for each beam in each directivity direction. In FIG. 8, # 1 is set as an index for the transmission / reception beam whose directivity is directed to the west.
  • # 2 is set as an index for the transmission / reception beam whose directivity direction is west-northwest
  • # 3 is set as an index for the transmission / reception beam whose directivity direction is northwest. In this way, each beam is indexed from # 1 to # 12 in order clockwise along the azimuth direction.
  • the communication processing unit 20a of the wireless control station 1 provides the remote unit 2 with the index associated with each predetermined unit as the directivity direction information. That is, the communication processing unit 20a specifies the directivity direction of the transmission / reception beam formed in the remote unit 2 by using the index.
  • An index is also set for the transmission / reception beam formed by the other remote unit 2. That is, even in the transmission / reception beam formed by the other remote unit 2, # 2 is set as an index for the transmission / reception beam whose directivity direction is west-northwest, and # 1 to # 12 are sequentially clockwise along the azimuth direction. Index is set.
  • the elevation angle direction of each beam is appropriately set so as to be able to transmit and receive to and from the mobile station 4 at a position along the azimuth angle direction.
  • FIG. 9 is a diagram showing an example of a downlink radio frame by the radio control station 1.
  • 12 regions b1 to b12 for transmitting the broadcast information transmitted by beam sweeping are secured in the radio frame F by the radio control station 1.
  • These regions b1 to b12 are regions called SS / PBCH (Synchronization Signal / Physical Broadcast Channel) blocks.
  • the regions b1 to b12 are also referred to as blocks b1 to b12.
  • the blocks b1 to b12 are arranged side by side in the time axis direction, and are periodically transmitted at a predetermined period P. This period P is, for example, 20 milliseconds.
  • the synchronization signal and the broadcast information are stored in the blocks b1 to b12. Both the synchronization signal and the broadcast information include information necessary for communication connection.
  • the broadcast information includes identification information for identifying a block in which the broadcast information is stored.
  • the mobile station 4 that has received the broadcast information transmits the minimum information (random access preamble) to the radio control station 1 based on the identification information included in the broadcast information. Further, when the wireless control station 1 receives the random access preamble, the wireless control station 1 can recognize that there is a mobile station 4 capable of communication connection around the own station 1 (remote unit 2), and the mobile station can perform communication. It is possible to recognize which of the blocks b1 to b12 the received block is based on the random access preamble.
  • the communication processing unit 20a of the wireless control station 1 can select a transmission beam for transmitting each block b1 to b12 from the indexes # 1 to # 12. For example, when it is allowed to change the directivity direction of the transmission beam over the entire azimuth direction in a certain remote unit 2, the communication processing unit 20a has blocks b1 to b12 and an index # as shown in FIG. The beams 1 to # 12 are associated with each other, and the beam corresponding to each of the blocks b1 to b12 is selected as the transmission beam. In FIG. 9, the communication processing unit 20a selects the beam of index # 1 as the transmission beam of block b1, the beam of index # 2 as the transmission beam of block b2, and the index # 3 as the transmission beam of block b3.
  • the communication processing unit 20a generates directivity information so that the blocks b1 to b12 are transmitted by the selected transmission beam, and supplies the directivity information to the remote unit 2.
  • the remote unit 2 to which the directivity information is given transmits the blocks b1 to b12 by the beam of the selected index. In this way, the radio control station 1 performs beam sweeping by transmitting the blocks b1 to b12 by transmission beams having different directivity directions.
  • the radio control station 1 transmits the synchronization signal and the broadcast information by beam sweeping as described above (step S1).
  • the mobile station 4 which is not in communication with the wireless control station 1 searches for the remote unit 2 of the wireless control station 1 (step S2).
  • the search for the remote unit 2 of the wireless control station 1 performed by the mobile station 4 means that the mobile station 4 sequentially forms a plurality of received beams having different directivity directions, and the broadcast information transmitted from the remote unit 2 of the wireless control station 1 is transmitted. This is a process that waits for reception. By this process, the mobile station 4 searches for the remote unit 2 of the wireless control station 1 that can be connected to the communication.
  • FIG. 10 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by the vehicle-mounted mobile station 4a of the vehicle V.
  • the arrow extending from the vehicle-mounted mobile station 4a in FIG. 10 is the directivity direction of the transmission / reception beam formed by the vehicle-mounted mobile station 4a.
  • the in-vehicle mobile station 4a forms a transmission / reception beam directed in each directivity direction.
  • the vehicle-mounted mobile station 4a of the present embodiment can form 12 transmission / reception beams having different directivity directions.
  • the directivity direction of each beam is set in a direction determined by dividing the beam into 12 equal parts at an equal angle in the azimuth direction. Similar to the radio control station 1, each beam is indexed for each directivity direction.
  • # 1 is set as an index for the transmission / reception beam whose directivity direction is in the traveling direction of the vehicle V. Further, when the vehicle V is viewed from above, indexes from # 1 to # 12 are set for each beam in order clockwise along the azimuth direction.
  • the in-vehicle mobile station 4a changes the directing direction of the reception beam by using a part or all of the reception beams of indexes # 1 to # 12 in a state where the communication connection is not made with the wireless control station 1. Search for a possible remote unit 2.
  • the mobile terminal 4b also performs the same processing.
  • the mobile station 4 when the mobile station 4 receives the synchronization signal and the broadcast information transmitted by the wireless control station 1 by beam sweeping (step S3), the mobile station 4 recognizes the existence of the remote unit 2 capable of communication connection.
  • the directing direction of the beam directed to the remote unit 2 can be acquired depending on the directing direction of the received beam when the broadcast information is received (step S4). For example, when the mobile station 4 receives a plurality of broadcast information by a plurality of received beams having different directivity directions, the mobile station 4 remotely determines the directivity direction of the received beam that has received the broadcast information having the highest reception quality such as received power. Acquired as the directivity direction toward the unit 2. As a result, the mobile station 4 can acquire the most appropriate directivity direction as the directivity direction toward the remote unit 2.
  • the mobile station 4 transmits a random access preamble to the radio control station 1 based on the identification information included in the broadcast information (step S5).
  • the mobile station 4 transmits the random access preamble by the PRACH (Physical Random Access Channel) assigned to the uplink radio frame. For example, when each block b1 to b12 is associated with 12 different regions provided in the uplink radio frame for PRACH, the region for PRACH corresponding to each block b1 to b12 is associated. Information indicating the above can be used as identification information.
  • the mobile station 4 transmits a random access preamble using the area for PRACH indicated by the identification information included in the received broadcast information.
  • the radio control station 1 that has received the random access preamble determines which block of the blocks b1 to b12 is received by the mobile station 4 that has received the random access preamble from the area used for transmitting the random access preamble. Can be recognized.
  • the radio control station 1 can acquire the directivity direction of the beam directed to the mobile station 4 from the directivity direction of the transmission beam used for transmission of each block b1 to b12 (step S6).
  • the radio control station 1 transmits a random access response including a random access preamble transmitted from the mobile station 4, timing information, scheduling information, and the like to the mobile station 4 (step S7). After that, information is repeatedly exchanged between the wireless control station 1 and the mobile station 4, and a communication connection is established between the wireless control station 1 and the mobile station 4 (step S8).
  • establishing a communication connection means establishing a state in which communication data can be transmitted and received to and from each other by performing the above-mentioned processing with a specific communication destination.
  • the mobile station 4 determines whether or not to maintain communication with the radio control station 1 (step S9).
  • the mobile station 4 determines whether or not to maintain the communication based on the reception quality of the broadcast information from the wireless control station 1.
  • the mobile station 4 receives the broadcast information even while communicating with the wireless control station 1, and searches for an appropriate direction toward the remote unit 2 based on the received broadcast information.
  • the radio control station 1 also searches for an appropriate directivity direction toward the mobile station 4 based on the information from the mobile station 4.
  • the remote unit 2 of the wireless control station 1 and the mobile station 4 maintain a communication connection while directing the directivity directions of the beams to each other.
  • the mobile station 4 determines that the received power of the broadcast information from the wireless control station 1 is smaller than the predetermined value, the mobile station 4 determines that the communication with the wireless control station 1 is not maintained, and the received power of the broadcast information is predetermined. If it is determined to be equal to or higher than the value, communication with the wireless control station 1 is maintained. If it is determined that the communication with the wireless control station 1 is not maintained, the mobile station 4 disconnects the communication with the wireless control station 1 (step S10).
  • the wireless control station 1 of the present embodiment has a function of controlling a variable range of a transmission beam by the remote unit 2 according to the light color of the traffic signal 6.
  • the control of one remote unit 2 by the wireless control station 1 will be described, but the wireless control station 1 performs the same control for each remote unit 2.
  • the antenna control device 38 included in the remote unit 2 controls the variable range of the transmission beam by the remote unit 2.
  • FIG. 11 is a flowchart showing the control of the variable range of the transmission beam by the remote unit 2 performed by the antenna control device 38.
  • the antenna control device 38 is given light color information from the traffic signal 6 corresponding to the remote unit 2.
  • the antenna control device 38 refers to the light color information and determines whether or not the light color of the traffic signal 6 is blue (step S11). When it is determined in step S11 that the light color of the traffic signal 6 is not blue (when it is red or yellow), the antenna control device 38 executes the normal mode (step S12) and returns to step S11.
  • the antenna control device 38 provides the communication processing unit 20a of the aggregation device 20 with variable range information indicating that the variable range of the transmission beam is the entire range in the azimuth direction (first transmission range).
  • the communication processing unit 20a of the aggregation device 20 transmits various information including broadcast information using all the transmission beams having indexes # 1 to # 12.
  • the communication processing unit 20a transmits the blocks b1 to b12 by transmission beams having different directivity directions (transmission beams having indexes # 1 to # 12) as shown in FIG.
  • the variable range information can be used as an index of usable transmission beams.
  • the variable range information indicating the entire range in the azimuth direction is the index # 1 to # 12 of the beam.
  • the variable range information can also be a range of azimuth angles.
  • the broadcast information is transmitted over the entire range of the remote unit 2 in the azimuth direction.
  • the wireless control station 1 searches for the mobile station 4 existing in the entire range in the azimuth angle direction of the remote unit 2 in the normal mode, and makes a communication connection.
  • step S11 determines whether the light color of the traffic signal 6 is blue. If it is determined in step S11 that the light color of the traffic signal 6 is blue, the antenna control device 38 executes the restriction mode (step S13) and returns to step S11.
  • the antenna control device 38 collects variable range information indicating that the variable range of the transmission beam is a limited range (second transmission range) limited so as to be narrower than in the normal mode. It is given to the communication processing unit 20a. As a result, the communication processing unit 20a of the aggregation device 20 transmits various information including broadcast information using only the transmission beam included in the limited range among the beams having indexes # 1 to # 12.
  • the limiting range is set to a range that limits the usable transmission beam to a beam along the road R (direction) where entry to the intersection I can be permitted by the light color of the traffic signal 6.
  • the road R where the entrance to the intersection I is permitted by the light color of the traffic signal 6 is covered as the service area.
  • the restriction range is limited to the transmission beam whose directivity direction is directed from the north direction to the extension direction of the route r1 connected to the intersection I.
  • the beams directed in the extending direction of the route r1 are the beams having indexes # 3, # 4, # 10, and # 11.
  • the limiting range includes the directivity of the beam of index # 3 and the directivity of the beam of index # 4 among the azimuth directions.
  • the range W2 is limited to include the direction and the directivity of the beam at index # 11.
  • the antenna control device 38 gives the beam indexes # 3, # 4, # 10, and # 11 to the communication processing unit 20a as variable range information.
  • the communication processing unit 20a of the aggregation device 20 to which the variable range information is given generates directional information for transmitting various information including the broadcast information by using the transmission beam within the limited range. That is, in the directivity direction information in this case, the transmission beam for causing the remote unit 2 to perform transmission is any of the transmission beams having indexes # 3, # 4, # 10, and # 11.
  • the beam directed in the extending direction of the route (road) includes a beam along the extending direction of the route and a direction intersecting the extending direction of the route. It may contain beams that do not deviate significantly from the road.
  • FIG. 12 is a diagram showing an example of a downlink radio frame by the radio control station 1 in the restricted mode.
  • the configuration of the wireless frame F is the same as in the normal mode.
  • the communication processing unit 20a transmits the broadcast information by the transmission beam within the limited range indicated by the variable range information.
  • the transmitting beam within the limiting range is limited to the transmitting beams having indexes # 3, # 4, # 10, and # 11.
  • the communication processing unit 20a transmits blocks b1 to b12 using only transmission beams having indexes # 3, # 4, # 10, and # 11. For example, as shown in FIG.
  • the communication processing unit 20a selects the transmission beam of index # 3 as the transmission beam of block b1, selects the transmission beam of index # 4 as the transmission beam of block b2, and selects the transmission beam of index # 4 as the transmission beam of block b3.
  • the transmit beam of index # 10 is selected as the transmit beam
  • the transmit beam of index # 11 is selected as the transmit beam of block b4.
  • the communication processing unit 20a allocates the transmission beams of blocks b1 to b12 from among the transmission beams having indexes # 3, # 4, # 10, and # 11, and uses these four transmission beams to block b1 to blocks b1 to. b12 is transmitted.
  • the broadcast information is transmitted in the azimuth angle direction of the remote unit 2 within the range reached by the transmission beam within the restriction range.
  • the wireless control station 1 searches for the mobile station 4 existing in the limited range in the azimuth angle direction of the remote unit 2 in the restricted mode, and makes a communication connection.
  • the radio control station 1 when various information including broadcast information is transmitted by the beams having indexes # 3, # 4, # 10, and # 11, the radio control station 1 exists in a range that can be transmitted and received by these four beams. Search for the mobile station 4 to be used, and make a communication connection.
  • FIG. 13 is a diagram showing an example of a variable range of a beam set in each remote unit 2 at an intersection I. Also in FIG. 13, the upper side of the paper surface is north and the lower side of the paper surface is south. In FIG. 13, the light color of the traffic signal 6a provided on the road r1 connected to the intersection I from the north direction and the light color of the traffic light 6c provided on the road r3 connected to the intersection I from the south direction are blue. , The traffic light 6b provided on the road r2 connecting from the west to the intersection I is red, and the traffic light 6d provided on the road r4 connecting from the east to the intersection I is red. Shows the case.
  • the normal mode is executed in the remote units 2b and 2d corresponding to the traffic signals 6b and 6d whose light color is red. Therefore, the variable range of the beams of the remote units 2b and 2d is the entire range in the azimuth direction as shown in FIG. In this case, the remote units 2b and 2d search for the mobile station 4 existing in the entire range of the remote units 2b and 2d in the azimuth direction. In FIG. 13, the circular line figure surrounding the remote unit 2 indicates that the variable range of the beam is the entire range in the azimuth direction.
  • the restriction mode is executed. Therefore, as shown in FIG. 13, the variable range of the beams of the remote units 2a and 2c is the beam along the extending direction of the road r1 and the road r3 that are allowed to enter the intersection I in the azimuth angle direction. Is set in a limited range so that The remote units 2a and 2c search for the mobile station 4 existing in the range where the beam is formed on the road r1 and the road r3 in the azimuthal directions of the remote units 2a and 2c.
  • the remote unit 2a transmits various information including notification information using beams having indexes # 3, # 4, # 10, and # 11, and the remote unit 2c has indexes # 4, # 5, # 9, and #.
  • Various information including notification information is transmitted using the 10 beams.
  • the in-vehicle mobile station 4a mainly enters the intersection I from the direction r1 and passes through the intersection I.
  • the remote unit 2c mainly searches for the vehicle-mounted mobile station 4a that enters the intersection I from the route r3 and passes through the intersection I.
  • the variable range of the beam shown in FIG. 13 is changed by switching the light color of each traffic signal 6. If the light colors of the traffic lights 6a and 6c are switched to red and the light colors of the other traffic lights 6b and 6d are switched to blue, the remote units 2a and 2b execute the normal mode, and the remote units 2b and 2d are in the restricted mode. Is executed.
  • the remote unit 2 when the travel of the corresponding route is permitted by the green light, the remote unit 2 forms a transmission beam and the search range is limited to the route where the travel is permitted, and the vehicle-mounted mobile station 4a on the route is restricted. You can increase the chances of exploring. As a result, it is possible to effectively search for the in-vehicle mobile station 4a that is allowed to travel by the green light and passes through the direction in a short time.
  • the in-vehicle mobile station 4a is stopped at a red light, there is time to spare, so that the remote unit 2 has an azimuth of the remote unit 2 when the travel of the corresponding direction is not permitted by the red light.
  • the mobile station 4 existing in the entire range in the angular direction is searched.
  • the radio control station 1 is changed so as to narrow the variable range of the transmission beam according to the movement mode of the vehicle-mounted mobile station 4a which is stopped or moved depending on the light color of the traffic signal 6. be able to.
  • the time required to search for the in-vehicle mobile station 4a can be shortened as necessary. That is, if the variable range of the transmission beam is changed from the entire range to the limited range, the time required to search the in-vehicle mobile station 4a can be shortened as compared with the case of the entire range, and wireless communication can be started promptly. be able to.
  • the wireless control station 1 If there is a delay in starting wireless communication between the wireless control station 1 and the mobile station 4, for example, if the mobile station 4 is an in-vehicle mobile station 4a mounted on a vehicle V traveling on a road, the in-vehicle mobile station The time required for wireless communication between 4a and the wireless control station 1 is squeezed, and the communication efficiency is lowered. On the other hand, according to the present embodiment, since wireless communication can be started promptly, a decrease in communication efficiency can be suppressed.
  • FIG. 14 is a flowchart showing the control of the variable range of the received beam performed by the in-vehicle mobile station 4a.
  • the vehicle-mounted mobile station 4a determines whether or not it is in communication connection with the wireless control station 1 (step S21). When determining that the wireless control station 1 is in communication connection, the vehicle-mounted mobile station 4a repeats step S21 again. Therefore, the in-vehicle mobile station 4a repeats step S21 until it is determined that the in-vehicle mobile station 4a is not connected to the wireless control station 1 by communication.
  • the vehicle-mounted mobile station 4a does not need to search for the remote unit 2 and does not need to control the variable range of the received beam. Therefore, when it is determined that the wireless control station 1 is in communication connection, the vehicle-mounted mobile station 4a does not proceed with the variable range control process.
  • the vehicle-mounted mobile station 4a determines whether or not the position of the vehicle-mounted mobile station 4a is within the restricted area (step S22).
  • the restricted area predetermined area is an area set on the upstream side of the intersection I where the remote unit 2 of the wireless control station 1 is installed. Therefore, when traveling toward the intersection I located in front of the vehicle-mounted mobile station 4a in the traveling direction, the vehicle-mounted mobile station 4a enters the restricted area before reaching the intersection I.
  • the upstream side of the intersection I is the front side of the intersection I located in front of the vehicle-mounted mobile station 4a, and includes the range from the position of the vehicle-mounted mobile station 4a to the intersection I.
  • the traveling direction of the vehicle-mounted mobile station 4a is the traveling direction when the vehicle-mounted mobile station 4a moves along the road R.
  • the front of the vehicle-mounted mobile station 4a in the traveling direction means the front of the vehicle-mounted mobile station 4a when the vehicle-mounted mobile station 4a advances along the traveling direction.
  • the vehicle-mounted mobile station 4a executes the normal mode (step S23) and returns to step S21.
  • the vehicle-mounted mobile station 4a sequentially uses 12 reception beams of indexes # 1 to # 12 to change the directivity direction of the reception beams, and searches for the remote unit 2 capable of communication connection. That is, in the normal mode, the vehicle-mounted mobile station 4a sets the variable range of the reception beam to the entire range in the azimuth direction (first reception range).
  • the elevation angle direction of each beam is appropriately set so as to be able to transmit and receive to and from the radio control station 1 at a position along the azimuth angle direction.
  • step S24 the vehicle-mounted mobile station 4a executes the restricted mode (step S24) and returns to step S21.
  • the vehicle-mounted mobile station 4a changes the directivity direction of the received beam by sequentially using three received beams of indexes # 1, # 2, and # 12, which are beams whose directivity directions are directed in the traveling direction of the vehicle-mounted mobile station 4a. Then, the remote unit 2 that can be connected to the communication is searched. That is, in the limited mode, the in-vehicle mobile station 4a sets the variable range of the received beam to a limited range (second reception range) narrower than the entire range.
  • FIG. 15 is a flowchart showing an example of processing in the restricted mode.
  • the vehicle-mounted mobile station 4a first sets the variable range of the received beam to the limiting range (step S31).
  • the limiting range is the range in the azimuth angle direction.
  • the limiting range is set to a range in which the directivity direction of the received beam is limited to the beam directed in the traveling direction of the vehicle-mounted mobile station 4a.
  • the in-vehicle mobile station 4a changes the directivity direction of the reception beam by sequentially using the three reception beams as described above, and mainly searches for the remote unit 2 located in front of the travel direction of the own station 4a. ..
  • the reception beams whose directivity directions are directed in the traveling direction of the vehicle-mounted mobile station 4a are three reception beams having indexes # 1, # 2, and # 12 (FIG. 10).
  • the receiving beam whose directing direction is directed to the traveling direction of the vehicle-mounted mobile station 4a includes the receiving beam whose directing direction is along the traveling direction and when the range of the azimuth angle centered on the traveling direction is less than 180 degrees. May include a received beam whose directional direction is within its azimuth.
  • the vehicle-mounted mobile station 4a determines whether or not it is in communication connection with the wireless control station 1 (step S32). When it is determined that the wireless control station 1 is in communication connection, the in-vehicle mobile station 4a ends the process. When it is determined to not communicating connected to the radio control station 1, the vehicle-mounted mobile station 4a, after own station 4a enters into the restricted area, it is determined whether the vehicle has traveled a predetermined distance K 2 (step S33 ).
  • the distance K 2 is set to be shorter than the distance from the upstream end of the restricted area to the intersection I.
  • step S33 if it is determined that no traveling distance K 2 is a predetermined travel distance, the vehicle-mounted mobile station 4a, the process returns to step S32 again. Therefore, when the state can not communicate connected to the radio control station 1 continues, vehicle mobile station 4a repeats the step S33 until the running distance K 2. If it is determined that traveling distance K 2 in step S33, the vehicle-mounted mobile station 4a, the process proceeds to step S34, index # 6, # 7, change the orientation of the receive beam sequentially with three receiving beams # 8 Then, the remote unit 2 that can be connected to the communication is searched.
  • step S34 the vehicle-mounted mobile station 4a changes the variable range of the received beam so that the directivity direction is limited to the received beam directed in the direction opposite to the traveling direction of the vehicle-mounted mobile station 4a (behind the vehicle-mounted mobile station 4a). To do. As a result, the in-vehicle mobile station 4a searches for the remote unit 2 located behind the own station 4a.
  • vehicle mobile station 4a is from enters the restricted area until the travel distance K 2, carries out the search of the remote unit 2 located forward in the traveling direction of the own station 4a, the distance K 2 or more runs the own station
  • the remote unit 2 located behind 4a is searched.
  • the receiving beam whose directing direction is directed to the rear of the vehicle-mounted mobile station 4a includes the receiving beam whose directing direction is opposite to the traveling direction and the range of the azimuth angle when centered in the opposite direction is 180 degrees. When less than, a received beam whose direction is within the range of the azimuth may be included.
  • step S35 determines whether or not at least one of the following two conditions is satisfied.
  • Condition 1 The wireless control station 1 is connected by communication.
  • Condition 2 own station 4a is progressing after passing through the intersection I predetermined distance K 3.
  • the vehicle-mounted mobile station 4a repeats step S35. If at least one of the two conditions is satisfied, the in-vehicle mobile station 4a ends the process.
  • the distance K 3 is set to the same distance as the distance K 1.
  • FIG. 16 is a diagram for explaining a variable range of the reception beam of the vehicle-mounted mobile station 4a traveling on the road R.
  • FIG. 16 shows a case where the vehicle-mounted mobile station 4a (vehicle V) travels from the position A toward the intersection I where the remote unit 2 is installed.
  • the remote unit 2 transmits various information including broadcast information by the transmission beam.
  • a restricted area is set on the upstream side of the intersection I located in front of the vehicle-mounted mobile station 4a in the traveling direction.
  • the restricted area is from the intersection I, which is an area that is set on the road of a distance K 1 just upstream the upstream end L1.
  • the restricted area is set according to, for example, the transmission / reception range of the remote unit 2. Therefore, for example, the distance K 1 is set to about 100 meters.
  • the in-vehicle mobile station 4a can obtain the position of the own station 4a from the GPS receiver 56. Further, the position of the intersection I and the position of the remote unit 2 can be stored in advance in the storage device of the processing device 58 of the vehicle-mounted mobile station 4a, and the vehicle-mounted mobile station 4a communicates wirelessly by the second antenna module 52. It can also be obtained from the outside. Further, when the vehicle-mounted communication device 16 is communicably connected to the processing device 58, the position of the intersection I and the position of the remote unit 2 can be acquired from the roadside wireless communication device 14 via the vehicle-mounted communication device 16. .. The in-vehicle mobile station 4a controls the variable range of the received beam based on these positions.
  • the variable range of the received beam is the entire range in the azimuth angle direction as shown in FIG.
  • the circular line figure surrounding the periphery of the vehicle-mounted mobile station 4a indicates that the variable range of the beam is the entire range in the azimuth direction.
  • the vehicle-mounted mobile station 4a advances to the position B, the vehicle-mounted mobile station 4a is within the restricted area, and therefore, if the communication connection with the wireless control station 1 is not established, the restricted mode is executed (step S24 in FIG. 14). ). Further, the vehicle-mounted mobile station 4a does not reach from the upstream end L1 of the restricted area to the middle point L2 distance K 2 to the downstream side. Therefore, as shown in FIG. 16, the variable range of the received beam in this case is a limited range that allows only the beam directed in the traveling direction in the azimuth angle direction (step S31 in FIG. 15). Therefore, the in-vehicle mobile station 4a searches for the remote unit 2 located in front of the own station 4a in the traveling direction.
  • the in-vehicle mobile station 4a ends the restriction mode (step S32 in FIG. 15).
  • the vehicle-mounted mobile station 4a passes through the intermediate point L2 without being able to communicate with the remote unit 2 (position C)
  • the vehicle-mounted mobile station 4a is limited to the reception beam whose directivity is directed to the rear of the vehicle-mounted mobile station 4a.
  • the variable range of the received beam is changed so as to be (step S34 in FIG. 15).
  • the in-vehicle mobile station 4a searches for the remote unit 2 located behind the own station 4a.
  • the variable range in this case is set to a range that limits the received beam to a beam whose directivity direction is directed to the rear of the vehicle-mounted mobile station 4a (beams of indexes # 6, # 7, and # 8) in the azimuth angle direction.
  • the wireless control station 1 cannot be found in the restricted area and the communication connection with the remote unit 2 cannot be established, it is possible that an obstacle blocking the transmission beam and the reception beam from the remote unit 2 exists in front of the vehicle-mounted mobile station 4a. ..
  • FIG. 17 is a diagram showing a state in which a truck is traveling in front of the vehicle-mounted mobile station 4a. As shown in FIG. 17, when a tall truck T travels in front of the vehicle-mounted mobile station 4a, the truck T becomes an obstacle and the transmission beam from the remote unit 2 and the reception beam of the vehicle-mounted mobile station 4a become obstacles. It may be blocked.
  • the in-vehicle mobile station 4a changes the variable range to a range facing backward (opposite direction in the traveling direction), so that if the receiving beam is directed backward, after passing through the intersection I and the remote unit 2. , The remote unit 2 at the rear position can be quickly searched.
  • the vehicle-mounted mobile station 4a From the vehicle-mounted mobile station 4a is waypoint L2, to be able communication connection with the remote unit 2 during the period from the intersection I to the point L3 advanced a predetermined distance K 3 to the downstream side, vehicle movement
  • the station 4a maintains a state in which the variable range of the reception beam is limited to the reception beam directed to the rear of the vehicle-mounted mobile station 4a.
  • the vehicle-mounted mobile station 4a executes the normal mode (step S23 in FIG. 14). Therefore, the variable range of the received beam is the entire range in the azimuth angle direction as shown in FIG.
  • vehicle mobile station 4a can continue searching for the remote unit 2 which is a rear position of the own station 4a. As a result, it is possible to leave the possibility of being able to communicate with the remote unit 2 after passing through the intersection I.
  • the variable range of the received beam is changed according to the position of the vehicle-mounted mobile station 4a. That is, the in-vehicle mobile station 4a sets the variable range to the entire range in the azimuth direction when the position of the in-vehicle mobile station 4a is outside the restricted area, and sets the variable range when the position of the in-vehicle mobile station 4a is within the restricted area. Make it a narrower limit.
  • the in-vehicle mobile station 4a has an area around the own station 4a where it is clear that the remote unit 2 does not exist, or when wireless communication is performed with the remote unit 2 located in a certain direction. Can be configured to select a limited range with a narrow variable range. As a result, the time required to search for the remote unit 2 can be shortened, and wireless communication can be started promptly.
  • the area on the upstream side of the remote unit 2 installed in front of the vehicle-mounted mobile station 4a in the traveling direction is set as the restricted area, and the limited range of the variable range is set as the traveling direction of the vehicle-mounted mobile station 4a. Since the range is limited to the reception beam directed in the direction, the vehicle-mounted mobile station 4a can search the remote unit 2 by narrowing the variable range in the traveling direction if the vehicle enters the restricted area. As a result, the in-vehicle mobile station 4a can quickly search for the remote unit 2 and can quickly start wireless communication with the remote unit 2.
  • the embodiments disclosed this time are exemplary in all respects and are not restrictive.
  • the remote unit 2 may be installed at a place other than the intersection on the road R.
  • a restricted area is set on the upstream side of the remote unit 2.
  • the upstream side of the remote unit 2 is the front side of the remote unit 2 located in front of the vehicle-mounted mobile station 4a, and includes the range from the position of the vehicle-mounted mobile station 4a to the remote unit 2.
  • the restricted area may be installed at an intersection where the remote unit 2 is not installed.
  • the vehicle-mounted mobile station 4a if the vehicle-mounted mobile station 4a approaches the intersection, the vehicle-mounted mobile station 4a will switch from the normal mode to the restricted mode regardless of the installation of the remote unit 2. Therefore, the in-vehicle mobile station 4a can switch from the normal mode to the restricted mode as long as it has the position of the intersection, and when the information on the installation of the remote unit 2 cannot be obtained or at the introduction stage of the remote unit 2, the vehicle-mounted mobile station 4a can switch to the restricted mode. Even when an intersection where the remote unit 2 is installed and an intersection where the remote unit 2 is not installed are mixed, if the remote unit 2 is installed at the intersection, it can be appropriately dealt with.
  • Wireless control station 2a, 2b, 2c, 2d Remote unit 4 Mobile station 4a In-vehicle mobile station 4b Mobile terminal 6, 6a, 6b, 6c, 6d Traffic signal 7 Prop 10 Concentrator 11 Optical transmission line 12 Signal controller 14 Roadside wireless communication device 16 In-vehicle communication device 18 Concentrator 20 Concentrator 20a Communication processing unit 22 ITS communication device 24 Central control device 30 Housing 32 Array antenna 32a Board 32b Antenna element 34 Composite distributor 36 Transmitter / receiver 38 Antenna control device 40 Phase adjuster 40a Phase shifter 44 Housing 46 First antenna module 48 Array antenna 48a Substrate 48b Antenna element 50 Control device 52 Second antenna module 54 IF unit 56 GPS receiver 58 Processing device 58a Communication processing unit 58b Antenna control unit 62 Changeover switch 64 Transmitter / receiver 66 Phase adjuster 66a Phase adjuster 68 Synthetic distributor B Station building F Wireless frame H Pedestrian I Intersection K 1 distance K 2 distance K 3 distance L1 Upstream end L2 Intermediate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This mobile communication system comprises: a wireless control station that transmits information necessary for communication connection; an on-board mobile station that waits for the information while changing the orientation of the reception beam. The on-board mobile station is provided with: a reception antenna for forming the reception beam; and a reception antenna control unit that changes, in accordance with the position of the on-board mobile station, the variable range of the orientation of the reception beam.

Description

移動通信システム、車載移動局、無線制御局、送信ビームの制御方法、及び受信ビームの制御方法Mobile communication system, in-vehicle mobile station, wireless control station, transmission beam control method, and reception beam control method
 本開示は、移動通信システム、車載移動局、無線制御局、送信ビームの制御方法、及び受信ビームの制御方法に関する。
 本出願は、2019年12月10日出願の日本出願第2019-222964号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a mobile communication system, an in-vehicle mobile station, a wireless control station, a transmission beam control method, and a reception beam control method.
This application claims priority based on Japanese Application No. 2019-222964 filed on December 10, 2019, and incorporates all the contents described in the Japanese application.
 第5世代移動通信システムでは、ミリ波又は準ミリ波を利用して無線通信を行うため、伝搬損失が大きい。そこで、前記システムにおける無線制御局や移動局は、電波の減衰を補償するために、ビームフォーミングを行う。無線制御局及び移動局は、ビームフォーミングによって特定の方向にビームの指向性を向けることで利得を向上させることができる。 In the 5th generation mobile communication system, since wireless communication is performed using millimeter waves or quasi-millimeter waves, propagation loss is large. Therefore, the radio control station or mobile station in the system performs beamforming in order to compensate for the attenuation of radio waves. Radio control stations and mobile stations can improve gain by directing the beam in a specific direction by beamforming.
 無線制御局(移動局)は、ビームの指向方向を移動局(無線制御局)へ向けて無線通信を行うため、移動局(無線制御局)へ向くビームの指向方向を特定する必要がある。
 そこで、無線制御局は、移動局との間で無線通信を開始する前の段階においてビームスイーピングを行う。ビームスイーピングとは、ビームの指向方向を変化させて通信接続可能な移動局を探索し、この移動局に対する適切な指向方向を特定するための処理である。
Since the wireless control station (mobile station) performs wireless communication with the directivity direction of the beam directed to the mobile station (radio control station), it is necessary to specify the directivity direction of the beam directed to the mobile station (radio control station).
Therefore, the wireless control station performs beam sweeping at a stage before starting wireless communication with the mobile station. Beam sweeping is a process for searching for a mobile station capable of communication connection by changing the directivity direction of the beam and identifying an appropriate directivity direction for the mobile station.
 ビームスイーピングにおいて、無線制御局は、指向方向の異なる複数の送信ビームによって、報知情報を順次送信する。移動局はこの報知情報を受信すると、最小限の情報(プリアンブル)や報知情報の識別情報等を無線制御局へ送信する。
 無線制御局は、移動局から送信される情報を受信することで移動局の存在を認識するとともに、報知情報の識別情報から当該報知情報の送信ビームを特定し、その移動局に対する適切な指向方向を特定することができる(例えば、特許文献1参照)。
 その後、無線制御局と移動局との間で、ランダムアクセス処理が行われ、その後、通信接続がなされて無線通信が開始される。
In beam sweeping, the radio control station sequentially transmits broadcast information by a plurality of transmission beams having different directivity directions. When the mobile station receives this broadcast information, it transmits the minimum information (preamble), the identification information of the broadcast information, and the like to the wireless control station.
The radio control station recognizes the existence of the mobile station by receiving the information transmitted from the mobile station, identifies the transmission beam of the broadcast information from the identification information of the broadcast information, and indicates an appropriate direction to the mobile station. Can be specified (see, for example, Patent Document 1).
After that, a random access process is performed between the wireless control station and the mobile station, and then a communication connection is made and wireless communication is started.
国際公開第2018/134995International Publication No. 2018/134995
 実施形態である移動通信システムは、通信接続に必要な情報を送信する無線制御局と、前記情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局と、を備えた移動通信システムであって、前記車載移動局は、前記受信ビームを形成する受信アンテナと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える。 The mobile communication system according to the embodiment is a mobile communication system including a wireless control station that transmits information necessary for communication connection and an in-vehicle mobile station that waits for the information while changing the directivity direction of a reception beam. The in-vehicle mobile station includes a receiving antenna that forms the receiving beam, and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the in-vehicle mobile station.
 また、他の実施形態である移動通信システムは、車載移動局と、前記車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局と、を備えた移動通信システムであって、前記無線制御局は、前記送信ビームを形成する送信アンテナと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える。 Further, the mobile communication system according to another embodiment includes a wireless control station that transmits information necessary for communication connection between the vehicle-mounted mobile station and the vehicle-mounted mobile station while changing the direction of the transmission beam. The wireless control station is a mobile communication system including the above, and the radio control station has the transmission beam according to the light color of the transmission antenna forming the transmission beam and the traffic signal installed on the road on which the vehicle-mounted mobile station moves. It is provided with a transmitting antenna control unit that changes the variable range of the direction of the above.
 また、他の実施形態である車載移動局は、無線制御局からの通信接続に必要な情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局であって、前記受信ビームを形成する受信アンテナと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える。 Further, the in-vehicle mobile station according to another embodiment is an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station while changing the directivity direction of the reception beam, and is a reception that forms the reception beam. It includes an antenna and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the vehicle-mounted mobile station.
 他の実施形態である無線制御局は、車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局であって、前記送信ビームを形成する送信アンテナと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える。 The wireless control station according to another embodiment is a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station while changing the directivity direction of the transmission beam, and forms the transmission beam. It includes a transmitting antenna and a transmitting antenna control unit that changes a variable range of the directivity direction of the transmitting beam according to the light color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves.
 他の実施形態である受信ビームの制御方法は、無線制御局からの通信接続に必要な情報を待ち受ける車載移動局が行う受信ビームの制御方法であって、指向方向を変化させつつ前記受信ビームを形成するステップと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更するステップと、を含む。 Another embodiment of the reception beam control method is a reception beam control method performed by an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station, and the reception beam is controlled while changing the direction of direction. The step of forming and the step of changing the variable range of the directing direction of the received beam according to the position of the in-vehicle mobile station are included.
 また、他の実施形態である送信ビームの制御方法は、車載移動局との間において通信接続に必要な情報を、送信ビームによって送信する無線制御局が行う送信ビームの制御方法であって、指向方向を変更させつつ前記送信ビームを形成するステップと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更するステップと、を含む。 Further, the transmission beam control method according to another embodiment is a transmission beam control method performed by a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station by the transmission beam, and is directed. A step of forming the transmission beam while changing the direction, a step of changing the variable range of the direction of the transmission beam according to the color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves, and a step of changing the variable range of the direction of the transmission beam. including.
 本開示は、上述の特徴的な処理であるステップをコンピュータに実行させるためのプログラムとして実現したりすることができる。 The present disclosure can be realized as a program for causing a computer to execute a step which is a characteristic process described above.
図1は、実施形態に係る移動通信システムが設置されたエリアの一部を示す平面図である。FIG. 1 is a plan view showing a part of the area where the mobile communication system according to the embodiment is installed. 図2は、道路に設置された各装置と、無線制御局の局舎に設置された装置との接続態様の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a connection mode between each device installed on the road and the device installed in the station building of the wireless control station. 図3は、リモートユニットの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the remote unit. 図4は、リモートユニットの構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the remote unit. 図5Aは、車載移動局の一例を示す斜視図である。FIG. 5A is a perspective view showing an example of an in-vehicle mobile station. 図5Bは、車載移動局の構成の一例を示すブロック図である。FIG. 5B is a block diagram showing an example of the configuration of an in-vehicle mobile station. 図6は、第1アンテナモジュールの構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the first antenna module. 図7は、無線制御局と移動局とが通信接続する際に行う処理を示すシーケンス図である。FIG. 7 is a sequence diagram showing a process performed when the wireless control station and the mobile station communicate with each other. 図8は、本実施形態のリモートユニットが形成可能な送受信ビームの指向方向を示す図である。FIG. 8 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by the remote unit of the present embodiment. 図9は、無線制御局による下りの無線フレームの一例を示す図である。FIG. 9 is a diagram showing an example of a downlink radio frame by a radio control station. 図10は、車両の車載移動局が形成可能な送受信ビームの指向方向を示す図である。FIG. 10 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by an in-vehicle mobile station of a vehicle. 図11は、アンテナ制御装置が行うリモートユニットによる送信ビームの指向方向の可変範囲の制御を示すフローチャートである。FIG. 11 is a flowchart showing control of a variable range of the directivity direction of the transmission beam by the remote unit performed by the antenna control device. 図12は、制限モードにおける無線制御局による下り無線フレームの一例を示す図である。FIG. 12 is a diagram showing an example of a downlink radio frame by a radio control station in the restricted mode. 図13は、交差点の各リモートユニットに設定されるビームの可変範囲の一例を示す図である。FIG. 13 is a diagram showing an example of a variable range of a beam set for each remote unit at an intersection. 図14は、車載移動局が行う、受信ビームの指向方向の可変範囲の制御を示すフローチャートである。FIG. 14 is a flowchart showing control of a variable range of the directivity direction of the received beam performed by the in-vehicle mobile station. 図15は、制限モードの処理の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of processing in the restricted mode. 図16は、道路Rを走行する車載移動局の受信ビームの指向方向の可変範囲を説明するための図である。FIG. 16 is a diagram for explaining a variable range of the directivity of the reception beam of the vehicle-mounted mobile station traveling on the road R. 図17は、車載移動局の前方にトラックが走行している状態を示した図である。FIG. 17 is a diagram showing a state in which a truck is traveling in front of an in-vehicle mobile station.
[本開示が解決しようとする課題]
 ここで、無線制御局は、ビームスイーピングによって自局の周囲について方位角方向の全範囲に亘って探索するため、移動局が存在しないエリアも探索することがあり、無線制御局が移動局の存在を認識するまでに比較的多くの時間を要する場合がある。
[Issues to be solved by this disclosure]
Here, since the wireless control station searches the entire range in the azimuth direction around its own station by beam sweeping, it may also search for an area where the mobile station does not exist, and the wireless control station may search for the presence of the mobile station. It may take a relatively long time to recognize.
 また、移動局も、ビームの指向方向を無線制御局へ向けて無線通信を行うため、無線制御局へ向くビームの指向方向を特定する必要がある。よって、移動局も、無線制御局との間で無線通信を開始する前の段階において、受信ビームの指向方向を変化させつつ無線制御局から送信される報知情報の受信を試みる。これにより、移動局は、無線制御局(からの報知情報)を探索し、無線制御局へ向くビームの指向方向を特定する。
 このため、移動局においても、無線制御局を探索する際に無線制御局が存在しない方向の探索を行うことがあるので、移動局が無線制御局の存在を認識するまでに比較的多くの時間を要する場合がある。
Further, since the mobile station also performs wireless communication with the directivity direction of the beam directed to the wireless control station, it is necessary to specify the directivity direction of the beam directed to the wireless control station. Therefore, the mobile station also attempts to receive the broadcast information transmitted from the wireless control station while changing the directivity direction of the reception beam before starting wireless communication with the wireless control station. As a result, the mobile station searches for the radio control station (notification information from) and identifies the directivity direction of the beam toward the radio control station.
For this reason, even in a mobile station, when searching for a wireless control station, a search in a direction in which the wireless control station does not exist may be performed, so that it takes a relatively long time for the mobile station to recognize the existence of the wireless control station. May be required.
 このように、無線制御局によるビームスイーピング、及び移動局による無線制御局の探索に比較的時間を要することになると、例えば、移動局が無線制御局と通信接続可能なエリアに進入してから無線通信を開始するまでの時間に遅延が生じるおそれがある。 As described above, when it takes a relatively long time for the beam sweeping by the wireless control station and the search for the wireless control station by the mobile station, for example, the mobile station enters the area where the wireless control station can communicate with the wireless control station and then wirelessly operates. There may be a delay in the time until communication starts.
 本開示はこのような事情に鑑みてなされたものであり、速やかに無線通信を開始することができる技術の提供を目的とする。 This disclosure was made in view of such circumstances, and an object of the present disclosure is to provide a technology capable of promptly starting wireless communication.
[本開示の効果]
 本開示によれば、速やかに無線通信を開始することができる。
[Effect of the present disclosure]
According to the present disclosure, wireless communication can be started promptly.
 最初に実施形態の内容を列記して説明する。
[実施形態の概要]
(1)実施形態である移動通信システムは、通信接続に必要な情報を送信する無線制御局と、前記情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局と、を備えた移動通信システムであって、前記車載移動局は、前記受信ビームを形成する受信アンテナと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える。
First, the contents of the embodiments will be listed and described.
[Outline of Embodiment]
(1) The mobile communication system according to the embodiment is a mobile communication including a wireless control station that transmits information necessary for communication connection and an in-vehicle mobile station that waits for the information while changing the directivity direction of a reception beam. In the system, the in-vehicle mobile station includes a receiving antenna forming the receiving beam and a receiving antenna control unit that changes a variable range of the directivity of the receiving beam according to the position of the in-vehicle mobile station. Be prepared.
 上記構成の移動通信システムによれば、通信接続に必要な情報を待ち受けることで通信接続可能な無線制御局を探索する際に、車載移動局は、車載移動局の位置に応じて受信ビームの指向方向の可変範囲を変更する。よって、車載移動局は自局の周囲に無線制御局が存在しないことが明らかなエリアが存在する場合や、一定の方向に位置する無線制御局との間で無線通信を行う場合等において、可変範囲を狭めるように変更することができる。これにより、無線制御局を探索するために要する時間を短縮することができ、速やかに無線通信を開始することができる。 According to the mobile communication system having the above configuration, when searching for a wireless control station capable of communication connection by waiting for information necessary for communication connection, the in-vehicle mobile station directs the reception beam according to the position of the in-vehicle mobile station. Change the variable range of direction. Therefore, the in-vehicle mobile station is variable when there is an area around the own station where it is clear that the wireless control station does not exist, or when wireless communication is performed with the wireless control station located in a certain direction. It can be changed to narrow the range. As a result, the time required to search for the wireless control station can be shortened, and wireless communication can be started promptly.
(2)上記移動通信システムにおいて、前記受信アンテナ制御部は、前記車載移動局の位置が所定エリア外である場合、前記可変範囲を第1受信範囲とし、前記車載移動局の位置が前記所定エリア内である場合、前記可変範囲を前記第1受信範囲よりも狭い第2受信範囲としてもよい。
 この場合、車載移動局は、所定エリア内においては、可変範囲を第1受信範囲よりも狭い第2受信範囲とするので、所定エリア内においては、所定エリア外よりも無線制御局を探索するために要する時間を必要に応じて短縮することができ、速やかに無線通信を開始することができる。
(2) In the mobile communication system, when the position of the vehicle-mounted mobile station is outside the predetermined area, the receiving antenna control unit sets the variable range as the first reception range, and the position of the vehicle-mounted mobile station is the predetermined area. If it is within, the variable range may be a second reception range narrower than the first reception range.
In this case, since the in-vehicle mobile station sets the variable range to the second reception range narrower than the first reception range within the predetermined area, the in-vehicle mobile station searches for the wireless control station within the predetermined area rather than outside the predetermined area. The time required for this can be shortened as needed, and wireless communication can be started promptly.
(3)また、上記移動通信システムにおいて、前記所定エリアは、前記車載移動局の進行方向前方に位置する交差点の上流側に設定されたエリアであってもよい。
 この場合、車載移動局は、所定エリア内に進入すれば、可変範囲を進行方向に絞って無線制御局を探索することができる。無線制御局が交差点に設置されていれば、車載移動局は、無線制御局を速やかに探索でき、交差点に設置された無線制御局との無線通信を速やかに開始することができる。
(3) Further, in the mobile communication system, the predetermined area may be an area set on the upstream side of an intersection located in front of the vehicle-mounted mobile station in the traveling direction.
In this case, the in-vehicle mobile station can search for the wireless control station by narrowing the variable range in the traveling direction if the vehicle enters the predetermined area. If the wireless control station is installed at the intersection, the in-vehicle mobile station can quickly search for the wireless control station and can promptly start wireless communication with the wireless control station installed at the intersection.
(4)また、上記移動通信システムにおいて、前記無線制御局は、道路上に設置され前記車載移動局と通信接続可能なリモートユニットを備え、前記所定エリアは、前記車載移動局の進行方向前方に位置する前記リモートユニットの上流側に設定されたエリアであってもよい。
 この場合、車載移動局は、所定エリア内に進入すれば、可変範囲を進行方向に絞って無線制御局を探索することができる。これにより、車載移動局は、無線制御局を速やかに探索でき、無線制御局との無線通信を速やかに開始することができる。
(4) Further, in the mobile communication system, the wireless control station includes a remote unit installed on the road and capable of communicating with the vehicle-mounted mobile station, and the predetermined area is located in front of the vehicle-mounted mobile station in the traveling direction. It may be an area set on the upstream side of the remote unit located.
In this case, the in-vehicle mobile station can search for the wireless control station by narrowing the variable range in the traveling direction if the vehicle enters the predetermined area. As a result, the in-vehicle mobile station can quickly search for the wireless control station and can promptly start wireless communication with the wireless control station.
(5)上記移動通信システムにおいて、前記第2受信範囲は、前記受信ビームの指向方向が前記車載移動局の進行方向に向くビームに制限される範囲であってもよい。
 この場合、可変範囲を第2受信範囲とすることで、車載移動局は進行方向に絞って無線制御局を探索することができる。
(5) In the mobile communication system, the second reception range may be a range in which the directivity direction of the reception beam is limited to the beam directed in the traveling direction of the vehicle-mounted mobile station.
In this case, by setting the variable range as the second reception range, the in-vehicle mobile station can search for the wireless control station by narrowing down the traveling direction.
(6)また、上記移動通信システムにおいて、前記車載移動局が前記所定エリア内に進入した後、前記車載移動局が所定の走行距離だけ進行する間に前記情報を受信できない場合、前記受信アンテナ制御部は、指向方向が前記車載移動局の進行方向の反対方向に向く受信ビームに制限されるように前記可変範囲を変更してもよい。
 所定エリア内において情報を受信できない場合、受信ビームを遮る障害物が車載移動局の前方に存在することが考えられる。よって、車載移動局は、可変範囲を進行方向の反対方向に向く範囲に変更しておくことで、受信ビームを進行方向の反対方向へ向けておけば、所定エリアを退出し交差点又は無線制御局を通過した後、後方位置となる無線制御局を速やかに探索することができる。
(6) Further, in the mobile communication system, when the information cannot be received while the vehicle-mounted mobile station travels by a predetermined mileage after the vehicle-mounted mobile station enters the predetermined area, the receiving antenna control is performed. The unit may change the variable range so that the directivity direction is limited to the reception beam directed in the direction opposite to the traveling direction of the vehicle-mounted mobile station.
If the information cannot be received within the predetermined area, it is possible that an obstacle blocking the reception beam exists in front of the in-vehicle mobile station. Therefore, if the in-vehicle mobile station changes the variable range to a range facing in the opposite direction of the traveling direction and directs the received beam in the opposite direction of the traveling direction, the vehicle exits the predetermined area and exits the intersection or the wireless control station. After passing through, the radio control station at the rear position can be quickly searched.
(7)また、上記移動通信システムにおいて、前記受信アンテナ制御部は、前記車載移動局が前記所定エリア外へ退出してから所定距離だけ進行すると、前記可変範囲を前記第1受信範囲に変更するように構成してもよい。
 この場合、所定エリア外へ退出してから所定距離だけ進行するまでの間、車載移動局の後方位置となる無線制御局の探索を継続することができる。
(7) Further, in the mobile communication system, the receiving antenna control unit changes the variable range to the first receiving range when the vehicle-mounted mobile station moves out of the predetermined area and then travels by a predetermined distance. It may be configured as follows.
In this case, the search for the radio control station located behind the in-vehicle mobile station can be continued from the time of leaving the predetermined area to the time of traveling by a predetermined distance.
(8)上記移動通信システムにおいて、前記無線制御局は、前記情報を、送信ビームの指向方向を変化させつつ送信する送信アンテナと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備えていてもよい。
 この場合、無線制御局は、交通信号機の灯色によって停止したり、移動したりする車載移動局の移動態様に応じて送信ビームの指向方向の可変範囲を変更することができる。
 よって、例えば、青信号によって進行が許可され道路上を移動する車載移動局を優先的に探索するために、無線制御局は、可変範囲を道路上に対応する範囲に狭めるように変更することができる。これにより、道路上を移動する車載移動局を探索するために要する時間を短縮することができ、速やかに無線通信を開始することができる。
(8) In the mobile communication system, the radio control station transmits the information while changing the directivity direction of the transmission beam, and a light of a traffic signal installed on a road on which the in-vehicle mobile station moves. A transmission antenna control unit that changes a variable range of the directivity direction of the transmission beam according to the color may be provided.
In this case, the radio control station can change the variable range of the directivity of the transmission beam according to the movement mode of the vehicle-mounted mobile station that stops or moves depending on the light color of the traffic signal.
Therefore, for example, in order to preferentially search for an in-vehicle mobile station that is permitted to travel by a green light and moves on the road, the radio control station can be changed to narrow the variable range to the range corresponding to the road. .. As a result, the time required to search for an in-vehicle mobile station moving on the road can be shortened, and wireless communication can be started promptly.
(9)また、他の実施形態である移動通信システムは、車載移動局と、前記車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局と、を備えた移動通信システムであって、前記無線制御局は、前記送信ビームを形成する送信アンテナと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える。 (9) Further, the mobile communication system according to another embodiment is a wireless control that transmits information necessary for communication connection between the vehicle-mounted mobile station and the vehicle-mounted mobile station while changing the direction of the transmission beam. A mobile communication system including a station, wherein the wireless control station responds to the color of the transmitting antenna forming the transmitting beam and the light color of a traffic signal installed on the road on which the in-vehicle mobile station moves. A transmission antenna control unit that changes a variable range of the direction of the transmission beam is provided.
 上記構成の移動通信システムによれば、無線制御局は、交通信号機の灯色によって停止したり移動したりする車載移動局の移動態様に応じて、送信ビームの指向方向の可変範囲を狭めるように変更することができる。これにより、通信接続に必要な情報を送信して、通信接続可能な車載移動局を探索する際に、探索のために要する時間を短縮することができ、速やかに無線通信を開始することができる。 According to the mobile communication system having the above configuration, the wireless control station narrows the variable range of the directing direction of the transmission beam according to the movement mode of the in-vehicle mobile station that stops or moves depending on the light color of the traffic signal. Can be changed. As a result, when searching for an in-vehicle mobile station capable of communicating by transmitting information necessary for communication connection, the time required for the search can be shortened, and wireless communication can be started promptly. ..
(10)上記移動通信システムにおいて、前記送信アンテナ制御部は、前記可変範囲を第1送信範囲、及び前記第1送信範囲よりも狭い第2送信範囲のいずれかに変更することができる。
 この場合、可変範囲を第2送信範囲に変更すれば、第1送信範囲の場合よりも、車載移動局を探索するために要する時間を短縮することができ、速やかに無線通信を開始することができる。
(10) In the mobile communication system, the transmission antenna control unit can change the variable range to either a first transmission range or a second transmission range narrower than the first transmission range.
In this case, if the variable range is changed to the second transmission range, the time required to search for the in-vehicle mobile station can be shortened as compared with the case of the first transmission range, and wireless communication can be started promptly. it can.
(11)上記移動通信システムにおいて、前記第2送信範囲は、前記送信ビームの指向方向が前記道路の延線方向に向くビームに制限される範囲であることが好ましい。
(12)また、上記移動通信システムにおいて、
 前記送信アンテナ制御部は、前記交通信号機の灯色の切り替わりによって前記道路の進行が許可されたときに前記可変範囲を前記第1送信範囲から前記第2送信範囲に変更するものであってもよい。
 この場合、無線制御局は、道路の進行が許可された場合、送信ビームを形成する範囲が進行の許可された道路上に制限され、道路上の車載移動局を探索する機会を増やすことができる。この結果、進行が許可され短時間で道路を通過してしまう車載移動局を効果的に探索することができる。
(11) In the mobile communication system, the second transmission range is preferably a range in which the directivity direction of the transmission beam is limited to the beam directed in the extending direction of the road.
(12) Further, in the mobile communication system,
The transmitting antenna control unit may change the variable range from the first transmitting range to the second transmitting range when the road is permitted to travel by switching the light color of the traffic signal. ..
In this case, the radio control station can increase the chances of searching for an in-vehicle mobile station on the road by limiting the range forming the transmission beam to the permitted road when the road is permitted to travel. .. As a result, it is possible to effectively search for an in-vehicle mobile station that is allowed to proceed and passes through the road in a short time.
(13)また、他の実施形態である車載移動局は、無線制御局からの通信接続に必要な情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局であって、前記受信ビームを形成する受信アンテナと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える。 (13) Further, the in-vehicle mobile station according to another embodiment is an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station while changing the directivity direction of the received beam, and receives the received beam. It includes a receiving antenna to be formed and a receiving antenna control unit that changes a variable range of the directivity direction of the receiving beam according to the position of the vehicle-mounted mobile station.
(14)また、他の実施形態である無線制御局は、車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局であって、前記送信ビームを形成する送信アンテナと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える。 (14) Further, the wireless control station according to another embodiment is a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station while changing the directivity direction of the transmission beam. It includes a transmitting antenna that forms a transmitting beam, and a transmitting antenna control unit that changes a variable range of the directivity of the transmitting beam according to the light color of a traffic signal installed on the road on which the vehicle-mounted mobile station moves. ..
(15)また、他の実施形態である受信ビームの制御方法は、無線制御局からの通信接続に必要な情報を待ち受ける車載移動局が行う受信ビームの制御方法であって、指向方向を変化させつつ受信ビームを形成するステップと、前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更するステップと、を含む。 (15) Further, the reception beam control method according to another embodiment is a reception beam control method performed by an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station, and changes the direction of direction. It includes a step of forming a receiving beam while changing a variable range of a directing direction of the receiving beam according to the position of the vehicle-mounted mobile station.
(16)また、他の実施形態である送信ビームの制御方法は、車載移動局との間において通信接続に必要な情報を送信する無線制御局が行う送信ビームの制御方法であって、指向方向を変更させつつ送信ビームを形成するステップと、前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更するステップと、を含む。 (16) Further, the transmission beam control method according to another embodiment is a transmission beam control method performed by a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station, and is a directing direction. The step of forming a transmission beam while changing the transmission beam and the step of changing the variable range of the direction of the transmission beam according to the light color of the traffic signal installed on the road on which the vehicle-mounted mobile station moves are included. ..
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
〔移動通信システムの全体構成について〕
 図1は、実施形態に係る移動通信システムが設置されたエリアの一部を示す平面図である。なお、図1において、紙面上側が北、紙面下側が南とする。
 図1中、移動通信システムは、無線制御局1と、移動局4とを含んで構成されている。
[Details of Embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
In addition, at least a part of each embodiment described below may be arbitrarily combined.
[Overall configuration of mobile communication system]
FIG. 1 is a plan view showing a part of the area where the mobile communication system according to the embodiment is installed. In FIG. 1, the upper side of the paper is north and the lower side of the paper is south.
In FIG. 1, the mobile communication system includes a wireless control station 1 and a mobile station 4.
 無線制御局1は、リモートユニット2を複数備えている。リモートユニット2は、基地局、無線制御局、リモートラジオヘッド等とも呼ばれる。
 無線制御局1は、リモートユニット2によって移動局4との間で無線通信を行う機能を有する。リモートユニット2は、例えば、第5世代移動通信システムに準拠した無線通信を行う。リモートユニット2は、送信ビーム及び受信ビームについてビームフォーミングを行う機能を有しており、送受信ビームの指向方向を通信先へ向けて通信する。
 リモートユニット2は、道路Rの交差点Iに複数(図例では4つ)設置されている。リモートユニット2は、例えば、交差点Iの各方路それぞれに設置されている複数の交通信号機6に対応して設置されている。
The wireless control station 1 includes a plurality of remote units 2. The remote unit 2 is also called a base station, a radio control station, a remote radio head, or the like.
The wireless control station 1 has a function of performing wireless communication with the mobile station 4 by the remote unit 2. The remote unit 2 performs wireless communication based on, for example, a 5th generation mobile communication system. The remote unit 2 has a function of performing beamforming on the transmission beam and the reception beam, and communicates with the directivity direction of the transmission / reception beam toward the communication destination.
A plurality of remote units 2 (four in the example) are installed at the intersection I on the road R. The remote unit 2 is installed, for example, corresponding to a plurality of traffic signals 6 installed in each direction of the intersection I.
 移動局4は、車両Vに搭載された車載移動局4aの他、歩行者H等が所持する携帯電話、スマートフォン、タブレット端末、ノートパソコン等の移動端末4bを含む。
 移動局4は、無線制御局1との間で第5世代移動通信システムに準拠した無線通信を行う。よって、移動局4もビームフォーミングを行う機能を有しており、送受信ビームの指向方向を通信先へ向けて通信する。
 また、移動局4は、第4世代移動通信システムに準拠した無線通信を行う機能を有している場合がある。なお、無線制御局1がサービスを提供可能な領域は、第4世代移動通信システムによる無線制御局が形成するセル内に含まれており、両通信システムによる送受信が可能である。
The mobile station 4 includes a mobile terminal 4b such as a mobile phone, a smartphone, a tablet terminal, a laptop computer, etc. possessed by a pedestrian H or the like, in addition to the vehicle-mounted mobile station 4a mounted on the vehicle V.
The mobile station 4 performs wireless communication with the wireless control station 1 in accordance with the 5th generation mobile communication system. Therefore, the mobile station 4 also has a function of performing beamforming, and communicates with the directivity direction of the transmission / reception beam directed to the communication destination.
Further, the mobile station 4 may have a function of performing wireless communication conforming to the 4th generation mobile communication system. The area to which the wireless control station 1 can provide the service is included in the cell formed by the wireless control station by the 4th generation mobile communication system, and transmission / reception by both communication systems is possible.
 複数のリモートユニット2は、集線装置10に接続されている。集線装置10は、複数のリモートユニット2と、移動通信システムの局舎に設置された集約装置(後に説明する)との間を接続するためのインターフェース機能を有している。
 また、集線装置10には、複数の交通信号機6を制御する信号制御機12も接続されている。集線装置10は、信号制御機12と、高度道路交通システム(ITS)の交通管制センターに設置された中央管制装置(後に説明する)との間を接続するためのインターフェース機能も有している。
 信号制御機12には、ITS無線システムによる路側無線通信機14が接続されている。路側無線通信機14は、車両Vに搭載されたITS無線システムによる車載通信機16との間で無線通信が可能である。
The plurality of remote units 2 are connected to the line concentrator 10. The concentrator 10 has an interface function for connecting a plurality of remote units 2 and an aggregation device (described later) installed in a station building of a mobile communication system.
Further, a signal controller 12 for controlling a plurality of traffic signals 6 is also connected to the line concentrator 10. The line concentrator 10 also has an interface function for connecting the signal controller 12 and the central control device (described later) installed in the traffic control center of the Intelligent Transport Systems (ITS).
A roadside wireless communication device 14 by an ITS wireless system is connected to the signal controller 12. The roadside wireless communication device 14 can perform wireless communication with the vehicle-mounted communication device 16 by the ITS wireless system mounted on the vehicle V.
 図2は、道路Rに設置された各装置と、無線制御局1の局舎に設置された装置との接続態様の一例を示すブロック図である。
 図2に示すように、リモートユニット2は、交通信号機6と共に支柱7によって高所に設置される。また、路側無線通信機14も支柱7に設置される。
 本実施形態において、リモートユニット2は、支柱7によって道路R上に設置される。ここで、道路R上とは、リモートユニット2が道路Rが延びる方向に沿った送受信ビームを形成可能な道路Rにおける位置をいう。よって、道路Rの真上である必要はなく、前記送受信ビームが形成可能な位置であればよい。
FIG. 2 is a block diagram showing an example of a connection mode between each device installed on the road R and the device installed in the station building of the wireless control station 1.
As shown in FIG. 2, the remote unit 2 is installed at a high place by a support column 7 together with a traffic signal 6. Further, the roadside wireless communication device 14 is also installed on the support column 7.
In the present embodiment, the remote unit 2 is installed on the road R by the support columns 7. Here, on the road R means a position on the road R where the remote unit 2 can form a transmission / reception beam along the direction in which the road R extends. Therefore, it does not have to be directly above the road R, and may be a position where the transmission / reception beam can be formed.
 無線制御局1は、リモートユニット2の他に、集約装置20を含む。
 図2に示すように、集約装置20は、リモートユニット2から離れた場所にある局舎Bに設置されている。
 集約装置20は、集線装置18に接続されている。
 集線装置18は、光伝送路11を介して集線装置10に接続されている。集線装置10及び集線装置18は、光通信を行う機能を有しており、道路R側に設置されたリモートユニット2と、局舎Bに設置された集約装置20とを互いに光通信によって相互に通信可能に接続するインターフェースとしての機能を有する。よって、複数のリモートユニット2と、集約装置20とは、集線装置10及び集線装置18によって相互に通信可能に接続される。
The wireless control station 1 includes an aggregation device 20 in addition to the remote unit 2.
As shown in FIG. 2, the aggregation device 20 is installed in the station building B located at a location away from the remote unit 2.
The aggregation device 20 is connected to the line concentrator device 18.
The line concentrator 18 is connected to the line concentrator 10 via an optical transmission line 11. The line concentrator 10 and the line concentrator 18 have a function of performing optical communication, and the remote unit 2 installed on the road R side and the aggregation device 20 installed in the station building B communicate with each other by optical communication. It has a function as an interface for connecting communicably. Therefore, the plurality of remote units 2 and the aggregation device 20 are connected to each other so as to be able to communicate with each other by the line concentrator 10 and the line concentrator 18.
 集約装置20は、例えば、セントラルユニットとも呼ばれる装置であり、移動通信システムのコアネットワークNW1に接続されている。集約装置20は、CPU(Central Processing Unit)や、メモリ、ハードディスク等の記憶装置を備えたコンピュータによって構成されている。集約装置20が有する記憶装置には、CPUが実行するためのコンピュータプログラム等が記憶されている。CPUがこのコンピュータプログラムを読み出して実行することで、集約装置20が有する各機能が実現される。
 集約装置20は、前記記憶装置のようなコンピュータ読み取り可能な非一過性の記録媒体に記録された前記プログラムを読み込むことで、前記集約装置20が有する機能を実現する。
The aggregation device 20 is, for example, a device also called a central unit, and is connected to the core network NW1 of the mobile communication system. The aggregation device 20 is composed of a computer including a CPU (Central Processing Unit) and a storage device such as a memory and a hard disk. The storage device included in the aggregation device 20 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the aggregation device 20 is realized.
The aggregation device 20 realizes the function of the aggregation device 20 by reading the program recorded on a non-transient recording medium that can be read by a computer such as the storage device.
 集約装置20は、通信処理部20aを機能的に有する。通信処理部20aは、複数のリモートユニット2から与えられるデジタルベースバンド信号に対して必要な処理を行い、処理を行って得られる通信データをコアネットワークNW1へ与える。また、通信処理部20aは、コアネットワークNW1から与えられる通信データに対して必要な処理を行ってデジタルベースバンド信号を生成し、デジタルベースバンド信号を複数のリモートユニット2へ与える。集約装置20は、所定の無線フレームに通信データや無線通信に関する各種情報を格納し、無線フレームに格納された各種情報に対して前記処理を行いデジタルベースバンド信号を生成する。 The aggregation device 20 functionally has a communication processing unit 20a. The communication processing unit 20a performs necessary processing on the digital baseband signals given from the plurality of remote units 2, and supplies the communication data obtained by the processing to the core network NW1. Further, the communication processing unit 20a performs necessary processing on the communication data given from the core network NW1 to generate a digital baseband signal, and gives the digital baseband signal to the plurality of remote units 2. The aggregation device 20 stores communication data and various information related to wireless communication in a predetermined wireless frame, and performs the above processing on various information stored in the wireless frame to generate a digital baseband signal.
 また、通信処理部20aは、通信接続に必要な情報である報知情報等を送信することでリモートユニット2の周囲に存在する通信接続可能な移動局4を探索し、検出した移動局との間で通信接続するための処理を行う機能を有する。
 また、通信処理部20aは、移動局4との無線通信における送受信ビームの指向方向を無線フレーム中のデータや、ブロック、領域といった所定単位ごとに指定することができる。通信処理部20aは、所定単位ごとに送受信ビームの指向方向を指定するための指向方向情報をリモートユニット2へ与える。
 また、通信処理部20aは、可変範囲情報(後に説明する)がリモートユニット2から与えられた場合、この可変範囲情報が示す範囲内で送信ビームの指向方向を所定単位ごとに決定し、指向方向情報をリモートユニット2へ与える。
Further, the communication processing unit 20a searches for a communication-connectable mobile station 4 existing around the remote unit 2 by transmitting notification information or the like which is information necessary for communication connection, and communicates with the detected mobile station. It has a function to perform processing for communication connection with.
Further, the communication processing unit 20a can specify the directivity direction of the transmission / reception beam in the wireless communication with the mobile station 4 for each predetermined unit such as data in the wireless frame, a block, or an area. The communication processing unit 20a provides the remote unit 2 with directivity information for designating the directivity direction of the transmission / reception beam for each predetermined unit.
Further, when the variable range information (described later) is given from the remote unit 2, the communication processing unit 20a determines the directing direction of the transmission beam for each predetermined unit within the range indicated by the variable range information, and determines the directing direction. Information is given to the remote unit 2.
 また、局舎Bには、集約装置20の他に、ITS用通信装置22が設置されている。
 ITS用通信装置22は、集線装置18に接続されている。集線装置10及び集線装置18は、信号制御機12と、局舎Bに設置されたITS用通信装置22とを互いに光通信によって相互に通信可能に接続する機能も有する。よって、信号制御機12と、ITS用通信装置22とは、集線装置10及び集線装置18によって相互に通信可能に接続される。
Further, in the station building B, in addition to the aggregation device 20, an ITS communication device 22 is installed.
The ITS communication device 22 is connected to the line concentrator 18. The line concentrator 10 and the line concentrator 18 also have a function of connecting the signal controller 12 and the ITS communication device 22 installed in the station building B so as to be able to communicate with each other by optical communication. Therefore, the signal controller 12 and the ITS communication device 22 are communicably connected to each other by the line concentrator 10 and the line concentrator 18.
 ITS用通信装置22は、コアネットワークNW1とは個別の通信事業者等によるネットワークNW2を介して交通管制センターに設置された中央管制装置24に通信可能に接続されている。ITS用通信装置22は、中央管制装置24から与えられる通信データを信号制御機12へ送信する。また、ITS用通信装置22は、信号制御機12から与えられる通信データを中央管制装置24へ送信する。 The ITS communication device 22 is communicably connected to the central control device 24 installed in the traffic control center via the network NW2 by an individual communication carrier or the like with the core network NW1. The ITS communication device 22 transmits the communication data given by the central control device 24 to the signal controller 12. Further, the ITS communication device 22 transmits the communication data given by the signal controller 12 to the central control device 24.
 中央管制装置24は、複数の交通信号機6の灯色の切り替えタイミング等に関する信号制御命令や交通情報を生成し、これら情報を信号制御機12へ送信する。信号制御機12は、信号制御命令が与えられると、この信号制御命令に従って灯色を制御する。また、信号制御機12は、交通情報が与えられると、与えられた交通情報を路側無線通信機14へ与える。
 路側無線通信機14は、この交通情報を道路R上の車載通信機16へ送信する。また、路側無線通信機14は、車載通信機16から交通情報やプローブ情報等が与えられると、与えられた情報を信号制御機12へ与える。信号制御機12は、車載通信機16からの情報をITS用通信装置22及びネットワークNW2を介して中央管制装置24へ与える。
The central control device 24 generates signal control commands and traffic information regarding the timing of switching the light colors of the plurality of traffic signals 6, and transmits these information to the signal controller 12. When a signal control command is given, the signal controller 12 controls the light color according to the signal control command. Further, when the traffic information is given, the signal controller 12 gives the given traffic information to the roadside wireless communication device 14.
The roadside wireless communication device 14 transmits this traffic information to the vehicle-mounted communication device 16 on the road R. Further, when traffic information, probe information, or the like is given from the vehicle-mounted communication device 16, the roadside wireless communication device 14 gives the given information to the signal controller 12. The signal controller 12 gives information from the in-vehicle communication device 16 to the central control device 24 via the ITS communication device 22 and the network NW2.
 信号制御機12は、集線装置10を介して複数のリモートユニット2に通信可能に接続されている。信号制御機12は、各交通信号機6の灯色を示す灯色情報を複数のリモートユニット2へ与える機能を有する。 The signal controller 12 is communicably connected to a plurality of remote units 2 via the line concentrator 10. The signal controller 12 has a function of giving light color information indicating the light color of each traffic signal 6 to a plurality of remote units 2.
〔リモートユニット2の構成について〕
 図3は、リモートユニット2の一例を示す斜視図である。
 リモートユニット2は、箱状の筐体30と、複数のアレイアンテナ32とを備えている。
 複数(図例では4つ)のアレイアンテナ32は、筐体30の側面を取り巻くように配置されている。
 アレイアンテナ32は、それぞれ、基板32aと、基板32aに実装された複数のアンテナ素子32bとを備えている。アンテナ素子32bは、例えば、パッチアンテナ等の平面アンテナである。
 各アレイアンテナ32は、複数のアンテナ素子32bにより送受信される信号の位相を調整することで、ビームフォーミングが可能である。各アレイアンテナ32はそれぞれ基板32aの法線を中心に約90度の方位角の範囲で送受信ビームを形成することができる。これにより、リモートユニット2は、リモートユニット2の全方位へ向く送受信ビームを形成することができる。
 リモートユニット2は、例えば、複数の送受信系統を有しており、送受信系統ごとにビームを形成する。リモートユニット2は、ビームフォーミングを行いつつ、移動局4との間で無線波の送受信を行う機能を有する。
[About the configuration of remote unit 2]
FIG. 3 is a perspective view showing an example of the remote unit 2.
The remote unit 2 includes a box-shaped housing 30 and a plurality of array antennas 32.
A plurality of (four in the example) array antennas 32 are arranged so as to surround the side surface of the housing 30.
The array antenna 32 includes a substrate 32a and a plurality of antenna elements 32b mounted on the substrate 32a, respectively. The antenna element 32b is, for example, a planar antenna such as a patch antenna.
Each array antenna 32 can perform beamforming by adjusting the phase of signals transmitted and received by a plurality of antenna elements 32b. Each array antenna 32 can form a transmission / reception beam in a range of an azimuth angle of about 90 degrees about the normal line of the substrate 32a. As a result, the remote unit 2 can form a transmission / reception beam directed in all directions of the remote unit 2.
The remote unit 2 has, for example, a plurality of transmission / reception systems, and forms a beam for each transmission / reception system. The remote unit 2 has a function of transmitting and receiving radio waves to and from the mobile station 4 while performing beamforming.
 図4は、リモートユニット2の構成の一例を示すブロック図である。
 図4に示すように、リモートユニット2は、4つのアレイアンテナ32の他、合成分配器34と、送受信機36と、アンテナ制御装置38とを備えている。
 合成分配器34、送受信機36、及びアンテナ制御装置38は、筐体30の内部に収容されている。
 各アレイアンテナ32は、合成分配器34を介して送受信機36に接続されている。
FIG. 4 is a block diagram showing an example of the configuration of the remote unit 2.
As shown in FIG. 4, the remote unit 2 includes four array antennas 32, a synthesis distributor 34, a transceiver 36, and an antenna control device 38.
The composite distributor 34, the transceiver 36, and the antenna control device 38 are housed inside the housing 30.
Each array antenna 32 is connected to the transceiver 36 via the composite distributor 34.
 送受信機36は、集約装置20から与えられるデジタルベースバンド信号に対して変調、増幅、デジタル/アナログ変換、周波数変換等の処理を行い、無線周波数の信号(RF信号)を生成する。生成したRF信号は、合成分配器34を介してアレイアンテナ32へ与えられる。
 また、送受信機36は、アレイアンテナ32が受信したRF信号に対して増幅、周波数変換、アナログ/デジタル変換、復調等の処理を行い、デジタルベースバンド信号を生成する。生成したデジタルベースバンド信号は、集約装置20へ与えられる。
 送受信機36は、リモートユニット2が有する複数の送受信系統に対応して複数の送受信系統の処理を行う。よって、送受信機36は、複数系統ごとにRF信号を生成し、複数系統ごとにデジタルベースバンド信号を生成する。
 合成分配器34は、複数のアンテナ素子32bが受信したRF信号を受信系統ごとに合成して送受信機36へ与えるとともに、送受信機36から与えられるRF信号を送信系統ごとに複数のアンテナ素子32bへ分配する。
The transmitter / receiver 36 performs processing such as modulation, amplification, digital / analog conversion, and frequency conversion on the digital baseband signal given from the aggregation device 20 to generate a radio frequency signal (RF signal). The generated RF signal is given to the array antenna 32 via the synthesis distributor 34.
Further, the transceiver 36 performs processing such as amplification, frequency conversion, analog / digital conversion, and demodulation on the RF signal received by the array antenna 32 to generate a digital baseband signal. The generated digital baseband signal is given to the aggregation device 20.
The transceiver 36 processes a plurality of transmission / reception systems corresponding to the plurality of transmission / reception systems of the remote unit 2. Therefore, the transceiver 36 generates an RF signal for each of a plurality of systems, and generates a digital baseband signal for each of the plurality of systems.
The synthesis distributor 34 synthesizes the RF signals received by the plurality of antenna elements 32b for each receiving system and gives them to the transceiver 36, and transfers the RF signals given from the transceiver 36 to the plurality of antenna elements 32b for each transmitting system. Distribute.
 アレイアンテナ32は、受信した無線波をRF信号として送受信機36へ与える。また、アレイアンテナ32は、送受信機36から与えられるRF信号を無線波として空間へ放射する。
 アレイアンテナ32は、複数のアンテナ素子32bの他、位相調整器40を備える。
 位相調整器40は、複数のアンテナ素子32bで送受信される複数の信号の位相を調整する。位相調整器40は、複数のアンテナ素子32bそれぞれに対応した数の移相器40aを備える。位相調整器40は、各移相器40aを調整することで複数の信号の相対位相を調整し、アレイアンテナ32によって形成される送受信ビームの指向方向を変化させることができる。
 各アレイアンテナ32の位相調整器40には、アンテナ制御装置38が接続される。アンテナ制御装置38は、アレイアンテナ32が形成する送受信ビームの指向方向を送受信傾倒ごとに制御する機能を有する。
The array antenna 32 feeds the received radio wave as an RF signal to the transceiver 36. Further, the array antenna 32 radiates the RF signal given from the transceiver 36 into space as a radio wave.
The array antenna 32 includes a plurality of antenna elements 32b and a phase adjuster 40.
The phase adjuster 40 adjusts the phases of a plurality of signals transmitted and received by the plurality of antenna elements 32b. The phase adjuster 40 includes a number of phase shifters 40a corresponding to each of the plurality of antenna elements 32b. The phase adjuster 40 can adjust the relative phases of a plurality of signals by adjusting each phase shifter 40a, and can change the directing direction of the transmission / reception beam formed by the array antenna 32.
An antenna control device 38 is connected to the phase adjuster 40 of each array antenna 32. The antenna control device 38 has a function of controlling the directivity direction of the transmission / reception beam formed by the array antenna 32 for each transmission / reception tilt.
 アンテナ制御装置38は、CPUや、メモリ、ハードディスク等の記憶装置を備えたコンピュータによって構成されている。アンテナ制御装置38が有する記憶装置には、CPUが実行するためのコンピュータプログラム等が記憶されている。CPUがこのコンピュータプログラムを読み出して実行することで、アンテナ制御装置38が有する各機能が実現される。
 アンテナ制御装置38は、前記記憶装置のようなコンピュータ読み取り可能な非一過性の記録媒体に記録された前記プログラムを読み込むことで、アンテナ制御装置38が有する機能を実現する。
The antenna control device 38 is composed of a computer including a CPU and a storage device such as a memory and a hard disk. The storage device included in the antenna control device 38 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the antenna control device 38 is realized.
The antenna control device 38 realizes the function of the antenna control device 38 by reading the program recorded on a computer-readable non-transient recording medium such as the storage device.
 アンテナ制御装置38は、位相調整器40に制御命令を与えることで位相調整器40を制御する。アンテナ制御装置38は、位相調整器40を制御することで、複数の送受信系統ごとにアレイアンテナ32に送受信ビームを形成させるとともに、この送受信ビームの指向方向を制御する。
 アンテナ制御装置38は、無線制御局1の通信処理部20aから与えられる指向方向情報に基づいて、送受信ビームの指向方向を制御する。
The antenna control device 38 controls the phase adjuster 40 by giving a control command to the phase adjuster 40. By controlling the phase adjuster 40, the antenna control device 38 causes the array antenna 32 to form a transmission / reception beam for each of the plurality of transmission / reception systems, and controls the direction of the transmission / reception beam.
The antenna control device 38 controls the directivity direction of the transmission / reception beam based on the directivity direction information given from the communication processing unit 20a of the radio control station 1.
 また、アンテナ制御装置38には、集線装置10を介して、対応する信号制御機12から灯色情報が与えられる。アンテナ制御装置38は、交通信号機6の灯色に応じてリモートユニット2が形成する送信ビームの指向方向の可変範囲を制御する。アンテナ制御装置38は、交通信号機6の灯色に応じて送信ビームの指向方向の可変範囲を定める。
 アンテナ制御装置38は、可変範囲情報を集約装置20へ与える。可変範囲情報はアンテナ制御装置38が定めた送信ビームの指向方向の可変範囲を示す情報である。
 集約装置20の通信処理部20aは、可変範囲情報が示す送信ビームの指向方向の可変範囲内で各種データを送信する際の送信ビームの指向方向を決定し、指向方向情報を生成する。
 アンテナ制御装置38は、集約装置20からの指向方向情報に基づいて送受信ビームの指向方向を制御することで、アンテナ制御部58bが設定した可変範囲の中で送信ビームの指向方向を制御する。
 このように、アンテナ制御装置38は、交通信号機6の灯色に応じてリモートユニット2の4つのアレイアンテナ32(送信アンテナ)が形成する送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部を構成する。
 なお、以下の説明では、「送信(受信)ビームの指向方向の可変範囲」を、「送信(受信)ビームの可変範囲」、又は、単に「可変範囲」と呼ぶことがある。
Further, the antenna control device 38 is given light color information from the corresponding signal controller 12 via the line concentrator 10. The antenna control device 38 controls a variable range of the directivity direction of the transmission beam formed by the remote unit 2 according to the light color of the traffic signal 6. The antenna control device 38 determines a variable range of the directivity direction of the transmission beam according to the light color of the traffic signal 6.
The antenna control device 38 provides the variable range information to the aggregation device 20. The variable range information is information indicating a variable range in the directivity direction of the transmission beam defined by the antenna control device 38.
The communication processing unit 20a of the aggregation device 20 determines the directivity direction of the transmission beam when transmitting various data within the variable range of the directivity direction of the transmission beam indicated by the variable range information, and generates the directivity direction information.
The antenna control device 38 controls the directivity direction of the transmission beam within the variable range set by the antenna control unit 58b by controlling the directivity direction of the transmission / reception beam based on the directivity direction information from the aggregation device 20.
In this way, the antenna control device 38 is a transmission antenna control unit that changes the variable range of the directivity direction of the transmission beam formed by the four array antennas 32 (transmission antennas) of the remote unit 2 according to the light color of the traffic signal 6. To configure.
In the following description, the "variable range of the directivity direction of the transmission (reception) beam" may be referred to as the "variable range of the transmission (reception) beam" or simply the "variable range".
〔車載移動局4aの構成について〕
 図5Aは、車載移動局4aの一例を示す斜視図である。
 車載移動局4aは、角錐台状の筐体44と、第1アンテナモジュール46とを備えている。
 第1アンテナモジュール46は、第5世代移動通信システムに準拠した無線制御局1と無線通信するための装置であり、複数のアレイアンテナ48を備えている。
 複数(図例では4つ)のアレイアンテナ48は、筐体44の側面を取り巻くように配置されている。
 アレイアンテナ48は、それぞれ、基板48aと、基板48aに実装された複数のアンテナ素子48bとを備えている。アンテナ素子48bは、例えば、パッチアンテナ等の平面アンテナである。
 各アレイアンテナ48は、複数のアンテナ素子48bにより送受信される信号の位相を調整することで、送信ビーム及び受信ビームについてビームフォーミングが可能である。各アレイアンテナ48はそれぞれ基板48aの法線を中心に約90度の方位角の範囲でビームを形成することができる。これにより、第1アンテナモジュール46は、自局4aの全方位へ向くビームを形成することができる。
 第1アンテナモジュール46は、ビームフォーミングを行いつつ、無線制御局1のリモートユニット2との間で無線波の送受信を行う機能を有する。
[About the configuration of the in-vehicle mobile station 4a]
FIG. 5A is a perspective view showing an example of the vehicle-mounted mobile station 4a.
The in-vehicle mobile station 4a includes a pyramid-shaped housing 44 and a first antenna module 46.
The first antenna module 46 is a device for wireless communication with a wireless control station 1 compliant with the fifth generation mobile communication system, and includes a plurality of array antennas 48.
A plurality of (four in the illustrated example) array antennas 48 are arranged so as to surround the side surface of the housing 44.
Each of the array antennas 48 includes a substrate 48a and a plurality of antenna elements 48b mounted on the substrate 48a. The antenna element 48b is, for example, a planar antenna such as a patch antenna.
Each array antenna 48 can perform beamforming with respect to a transmission beam and a reception beam by adjusting the phases of signals transmitted and received by a plurality of antenna elements 48b. Each array antenna 48 can form a beam in a range of an azimuth angle of about 90 degrees about the normal of the substrate 48a. As a result, the first antenna module 46 can form a beam directed in all directions of the own station 4a.
The first antenna module 46 has a function of transmitting and receiving radio waves to and from the remote unit 2 of the radio control station 1 while performing beamforming.
 図5Bは、車載移動局4aの構成の一例を示すブロック図である。
 図5Bに示すように、車載移動局4aは、第1アンテナモジュール46の他、制御装置50と、第2アンテナモジュール52とを備える。制御装置50及び第2アンテナモジュール52は、筐体44の内部に収容されている。
 第2アンテナモジュール52は、第4世代移動通信システムに準拠した無線制御局との間で無線波の送受信を行う機能を有する。車載移動局4aは、第2アンテナモジュール52を備えることで、第4世代移動通信システムに準拠した無線通信が可能である。
FIG. 5B is a block diagram showing an example of the configuration of the in-vehicle mobile station 4a.
As shown in FIG. 5B, the vehicle-mounted mobile station 4a includes a control device 50 and a second antenna module 52 in addition to the first antenna module 46. The control device 50 and the second antenna module 52 are housed inside the housing 44.
The second antenna module 52 has a function of transmitting and receiving radio waves to and from a radio control station compliant with the 4th generation mobile communication system. By including the second antenna module 52, the in-vehicle mobile station 4a can perform wireless communication conforming to the fourth generation mobile communication system.
 制御装置50は、インターフェース(IF)部54と、GPS(Global Positioning System)受信機56と、処理装置58とを備える。IF部54は、第1アンテナモジュール46及び第2アンテナモジュール52と、処理装置58との間に設けられており、これらを通信可能に接続する機能を有する。GPS受信機56は、制御装置50(車載移動局4a)の位置を取得し、処理装置58へ与える機能を有する。 The control device 50 includes an interface (IF) unit 54, a GPS (Global Positioning System) receiver 56, and a processing device 58. The IF unit 54 is provided between the first antenna module 46 and the second antenna module 52, and the processing device 58, and has a function of communicably connecting them. The GPS receiver 56 has a function of acquiring the position of the control device 50 (vehicle-mounted mobile station 4a) and giving it to the processing device 58.
 処理装置58は、CPUや、メモリ、ハードディスク等の記憶装置を備えたコンピュータによって構成されている。処理装置58が有する記憶装置には、CPUが実行するためのコンピュータプログラム等が記憶されている。CPUがこのコンピュータプログラムを読み出して実行することで、処理装置58が有する各機能が実現される。
 処理装置58は、前記記憶装置のようなコンピュータ読み取り可能な非一過性の記録媒体に記録された前記プログラムを読み込むことで、前記処理装置58が有する機能を実現する。
 処理装置58は、通信処理部58aと、アンテナ制御部58bとを機能的に有する。
The processing device 58 is composed of a computer including a CPU and a storage device such as a memory and a hard disk. The storage device included in the processing device 58 stores a computer program or the like for execution by the CPU. When the CPU reads and executes this computer program, each function of the processing device 58 is realized.
The processing device 58 realizes the function of the processing device 58 by reading the program recorded on a computer-readable non-transient recording medium such as the storage device.
The processing device 58 functionally includes a communication processing unit 58a and an antenna control unit 58b.
 通信処理部58aは、ベースバンド信号に関する処理を行う機能を有する。通信処理部58aは、ベースバンド信号を第1アンテナモジュール46又は第2アンテナモジュール52へ与える。第1アンテナモジュール46又は第2アンテナモジュール52に与えられたベースバンド信号は、第1アンテナモジュール46又は第2アンテナモジュール52によって無線波として送信される。また、通信処理部58aは、第1アンテナモジュール46又は第2アンテナモジュール52から与えられるベースバンド信号を受信する。
 また、通信処理部58aは、無線制御局からの通信接続に必要な情報である報知情報を待ち受けることで、自局4aの周囲に存在する無線制御局1のリモートユニット2を探索し、検出したリモートユニット2との間で通信接続するための処理を行う機能を有する。
The communication processing unit 58a has a function of performing processing related to the baseband signal. The communication processing unit 58a supplies the baseband signal to the first antenna module 46 or the second antenna module 52. The baseband signal given to the first antenna module 46 or the second antenna module 52 is transmitted as a radio wave by the first antenna module 46 or the second antenna module 52. Further, the communication processing unit 58a receives the baseband signal given from the first antenna module 46 or the second antenna module 52.
Further, the communication processing unit 58a searches for and detects the remote unit 2 of the wireless control station 1 existing around the own station 4a by listening for the notification information which is the information necessary for the communication connection from the wireless control station. It has a function of performing a process for making a communication connection with the remote unit 2.
 アンテナ制御部58bは、第1アンテナモジュール46が形成する送受信ビームの指向方向を制御する機能を有する。
 アンテナ制御部58bは、第1アンテナモジュール46が有する位相調整器66(図6)に制御命令を与えることで位相調整器66を制御する。アンテナ制御部58bは、位相調整器66を制御することで、第1アンテナモジュール46に送受信ビームを形成させるとともに、この送受信ビームの指向方向を制御する。
 アンテナ制御部58b(受信アンテナ制御部)は、通信接続可能なリモートユニット2を探索する際に、GPS受信機56から得られる自局4aの位置に応じて、第1アンテナモジュール46(受信アンテナ)が形成する受信ビームの可変範囲を変更する機能を有する。
 また、アンテナ制御部58bは、自局4aの位置を経時的に記憶し、自局4aの進行方向を特定することができる。また、アンテナ制御部58bは、自局4aの位置を経時的に記憶し、特定の位置から現在の位置まで自局4aが走行した走行距離を求めることができる。
 また、処理装置58の記憶装置には、車両V周辺の道路Rや交差点Iの位置や形状を示す地図情報が記憶されている。前記地図情報には、後述する制限エリアを示す情報が含まれる。アンテナ制御部58bは、この地図情報に基づいて自局4aが制限エリア内か否かを判定することができる。なお、地図情報は、処理装置58が記憶していなくてもよく、車両Vのカーナビゲーションシステムが前記地図情報を記憶している場合、アンテナ制御部58bは、前記カーナビゲーションシステムから前記地図情報を参照することができる。
The antenna control unit 58b has a function of controlling the directivity of the transmission / reception beam formed by the first antenna module 46.
The antenna control unit 58b controls the phase adjuster 66 by giving a control command to the phase adjuster 66 (FIG. 6) included in the first antenna module 46. By controlling the phase adjuster 66, the antenna control unit 58b causes the first antenna module 46 to form a transmission / reception beam, and controls the directivity direction of the transmission / reception beam.
When searching for a remote unit 2 capable of communication connection, the antenna control unit 58b (reception antenna control unit) first antenna module 46 (reception antenna) according to the position of its own station 4a obtained from the GPS receiver 56. Has a function of changing the variable range of the received beam formed by.
Further, the antenna control unit 58b can memorize the position of the own station 4a over time and specify the traveling direction of the own station 4a. Further, the antenna control unit 58b can store the position of the own station 4a over time and obtain the mileage traveled by the own station 4a from a specific position to the current position.
Further, the storage device of the processing device 58 stores map information indicating the position and shape of the road R and the intersection I around the vehicle V. The map information includes information indicating a restricted area, which will be described later. The antenna control unit 58b can determine whether or not the own station 4a is within the restricted area based on this map information. The map information does not have to be stored in the processing device 58, and when the car navigation system of the vehicle V stores the map information, the antenna control unit 58b stores the map information from the car navigation system. You can refer to it.
 図6は、第1アンテナモジュール46の構成の一例を示すブロック図である。
 図6中、第1アンテナモジュール46は、4つのアレイアンテナ48の他、切替スイッチ62と、送受信機64とを備える。
 各アレイアンテナ48は、切替スイッチ62を介して送受信機64に接続される。
FIG. 6 is a block diagram showing an example of the configuration of the first antenna module 46.
In FIG. 6, the first antenna module 46 includes four array antennas 48, a changeover switch 62, and a transceiver 64.
Each array antenna 48 is connected to the transceiver 64 via the changeover switch 62.
 送受信機64は、制御装置50の通信処理部58aから与えられるベースバンド信号に対して、変調、増幅等の処理を行い、RF信号を生成する。生成したRF信号は、切替スイッチ62を介してアレイアンテナ48へ与えられる。
 また、送受信機64は、アレイアンテナ48が受信したRF信号に対して、増幅、復調等の処理を行い、ベースバンド信号を生成する。生成したベースバンド信号は、通信処理部58aへ与えられる。
The transceiver 64 performs processing such as modulation and amplification on the baseband signal given from the communication processing unit 58a of the control device 50 to generate an RF signal. The generated RF signal is given to the array antenna 48 via the changeover switch 62.
Further, the transceiver 64 performs processing such as amplification and demodulation on the RF signal received by the array antenna 48 to generate a baseband signal. The generated baseband signal is given to the communication processing unit 58a.
 切替スイッチ62は、送受信機64の接続先を4つのアレイアンテナ48のうちのいずれかに切り替える機能を有する。4つのアレイアンテナ48は、送受信ビームの指向方向に応じて切り替えられる。よって、リモートユニット2との間の無線通信は、4つのアレイアンテナ48のうちのいずれか1つを用いて行われる。
 アレイアンテナ48は、受信したリモートユニット2からの無線波をRF信号として送受信機64へ与える。また、アレイアンテナ48は、送受信機64から与えられるRF信号を無線波として空間へ放射する。
 アレイアンテナ48は、複数のアンテナ素子48bの他、位相調整器66と、合成分配器68とをさらに備える。
The changeover switch 62 has a function of switching the connection destination of the transceiver 64 to any one of the four array antennas 48. The four array antennas 48 are switched according to the directivity direction of the transmission / reception beam. Therefore, wireless communication with the remote unit 2 is performed using any one of the four array antennas 48.
The array antenna 48 feeds the received radio wave from the remote unit 2 to the transceiver 64 as an RF signal. Further, the array antenna 48 radiates the RF signal given from the transceiver 64 into space as a radio wave.
The array antenna 48 further includes a phase adjuster 66 and a synthetic distributor 68 in addition to the plurality of antenna elements 48b.
 位相調整器66は、複数のアンテナ素子48bで送受信される複数の信号の位相を調整する。位相調整器66は、複数のアンテナ素子48bそれぞれに対応した数の移相器66aを備える。位相調整器66は、各移相器66aを調整することにより複数の信号の相対位相を調整し、アレイアンテナ48によって形成される送受信ビームの指向方向を変化させることができる。
 各アレイアンテナ48の位相調整器66には、アンテナ制御部58bからの制御命令が与えられる。位相調整器66は、この制御命令に応じて各移相器66aを調整する。
 なお、アンテナ制御部58bからの制御命令は、切替スイッチ62にも与えられる。切替スイッチ62は、制御命令に基づいて送受信機64に接続するアレイアンテナ48を特定する。
The phase adjuster 66 adjusts the phases of a plurality of signals transmitted and received by the plurality of antenna elements 48b. The phase adjuster 66 includes a number of phase shifters 66a corresponding to each of the plurality of antenna elements 48b. The phase adjuster 66 can adjust the relative phases of a plurality of signals by adjusting each phase shifter 66a, and can change the directing direction of the transmission / reception beam formed by the array antenna 48.
A control command from the antenna control unit 58b is given to the phase adjuster 66 of each array antenna 48. The phase adjuster 66 adjusts each phase shifter 66a in response to this control command.
The control command from the antenna control unit 58b is also given to the changeover switch 62. The changeover switch 62 identifies the array antenna 48 to be connected to the transceiver 64 based on the control command.
〔通信接続の処理について〕
 図7は、無線制御局1と移動局4とが通信接続する際に行う処理を示すシーケンス図である。
 図7に示すように、無線制御局1は、ビームスイーピングと呼ばれる処理を行う(ステップS1)。
 ここで、ビームスイーピングとは、指向方向の異なる複数のビームによって無線制御局1(のリモートユニット2)が報知情報を順次送信する処理である。無線制御局1は、ビームスイーピングを一定周期で実行している。無線制御局1は、ビームスイーピングによって、リモートユニット2の周囲に位置する通信接続可能な移動局4の存在及びその移動局4へ向くビームの適切な指向方向を得ることができる。つまり、ビームスイーピングとは、報知情報を送信する送信ビームの指向方向を変化させて通信接続可能な移動局4を探索する処理である。
[Communication connection processing]
FIG. 7 is a sequence diagram showing a process performed when the wireless control station 1 and the mobile station 4 communicate with each other.
As shown in FIG. 7, the radio control station 1 performs a process called beam sweeping (step S1).
Here, the beam sweeping is a process in which the radio control station 1 (remote unit 2) sequentially transmits broadcast information by a plurality of beams having different directivity directions. The radio control station 1 executes beam sweeping at regular intervals. By beam sweeping, the radio control station 1 can obtain the presence of a mobile station 4 that can be communicated and connected around the remote unit 2 and an appropriate direction of the beam directed to the mobile station 4. That is, the beam sweeping is a process of searching for a mobile station 4 capable of communication connection by changing the directivity direction of the transmission beam that transmits the broadcast information.
 図8は、本実施形態のリモートユニット2が形成可能な送受信ビームの指向方向を示す図である。図8では、北方向から交差点Iに繋がる方路r1に設けられたリモートユニット2が形成する送受信ビームの指向方向を示している。図8中のリモートユニット2から延びる矢印が、リモートユニット2が形成する送受信ビームの指向方向である。なお、図8では、紙面上側が北、紙面下側が南とする。 FIG. 8 is a diagram showing the directivity directions of the transmission / reception beams that can be formed by the remote unit 2 of the present embodiment. FIG. 8 shows the directivity direction of the transmission / reception beam formed by the remote unit 2 provided on the route r1 connected to the intersection I from the north direction. The arrow extending from the remote unit 2 in FIG. 8 is the directivity direction of the transmission / reception beam formed by the remote unit 2. In FIG. 8, the upper side of the paper is north and the lower side of the paper is south.
 リモートユニット2は、図8中の点線で示すように、各指向方向に向く送受信ビームを形成する。リモートユニット2が形成する送受信ビームは、例えば、リモートユニット2から100メートル程度までの長さで形成される。つまり、リモートユニット2の送受信範囲はリモートユニット2から100メートル程度までの範囲となる。
 図8に示すように、本実施形態のリモートユニット2は、指向方向が異なる12の送受信ビームを形成することができる。各ビームの指向方向は、方位角を12等分することで定まる方向に設定されている。
 各ビームには、指向方向ごとにインデックスが設定されている。
 図8中、指向方向が西方向へ向く送受信ビームにはインデックスとして#1が設定されている。また、指向方向が西北西へ向く送受信ビームにはインデックスとして#2が設定され、指向方向が北西へ向く送受信ビームにはインデックスとして#3が設定されている。このように各ビームには、方位角方向に沿って時計回りに順番に#1から#12までのインデックスが設定されている。
The remote unit 2 forms a transmission / reception beam directed in each directivity direction, as shown by a dotted line in FIG. The transmission / reception beam formed by the remote unit 2 is formed, for example, with a length of about 100 meters from the remote unit 2. That is, the transmission / reception range of the remote unit 2 is a range from the remote unit 2 to about 100 meters.
As shown in FIG. 8, the remote unit 2 of the present embodiment can form 12 transmission / reception beams having different directivity directions. The directivity direction of each beam is set to a direction determined by dividing the azimuth into 12 equal parts.
An index is set for each beam in each directivity direction.
In FIG. 8, # 1 is set as an index for the transmission / reception beam whose directivity is directed to the west. Further, # 2 is set as an index for the transmission / reception beam whose directivity direction is west-northwest, and # 3 is set as an index for the transmission / reception beam whose directivity direction is northwest. In this way, each beam is indexed from # 1 to # 12 in order clockwise along the azimuth direction.
 無線制御局1の通信処理部20aは、所定単位ごとにインデックスを対応付けたものを指向方向情報としてリモートユニット2へ与える。つまり、通信処理部20aは、インデックスを用いてリモートユニット2に形成させる送受信ビームの指向方向を指定する。
 なお、他のリモートユニット2が形成する送受信ビームについても同様にインデックスが設定される。つまり、他のリモートユニット2が形成する送受信ビームにおいても、指向方向が西北西へ向く送受信ビームにはインデックスとして#2が設定され、方位角方向に沿って時計回りに順番に#1から#12までのインデックスが設定される。
 なお、各ビームの仰角方向は、方位角方向に沿う位置の移動局4との間で送受信可能となるように適宜設定される。
The communication processing unit 20a of the wireless control station 1 provides the remote unit 2 with the index associated with each predetermined unit as the directivity direction information. That is, the communication processing unit 20a specifies the directivity direction of the transmission / reception beam formed in the remote unit 2 by using the index.
An index is also set for the transmission / reception beam formed by the other remote unit 2. That is, even in the transmission / reception beam formed by the other remote unit 2, # 2 is set as an index for the transmission / reception beam whose directivity direction is west-northwest, and # 1 to # 12 are sequentially clockwise along the azimuth direction. Index is set.
The elevation angle direction of each beam is appropriately set so as to be able to transmit and receive to and from the mobile station 4 at a position along the azimuth angle direction.
 図9は、無線制御局1による下りの無線フレームの一例を示す図である。
 図9に示すように、無線制御局1による無線フレームFには、ビームスイーピングによって送信する報知情報を送信するための12個の領域b1~b12が確保されている。この領域b1~b12は、SS/PBCH(Synchronization Signal / Physical Broadcast Channel)ブロックと呼ばれる領域である。以下、領域b1~b12を、ブロックb1~b12とも呼ぶ。
 ブロックb1~b12は、時間軸方向に並べて配置され、所定の周期Pで周期的に送信される。この周期Pは、例えば、20ミリ秒である。
FIG. 9 is a diagram showing an example of a downlink radio frame by the radio control station 1.
As shown in FIG. 9, 12 regions b1 to b12 for transmitting the broadcast information transmitted by beam sweeping are secured in the radio frame F by the radio control station 1. These regions b1 to b12 are regions called SS / PBCH (Synchronization Signal / Physical Broadcast Channel) blocks. Hereinafter, the regions b1 to b12 are also referred to as blocks b1 to b12.
The blocks b1 to b12 are arranged side by side in the time axis direction, and are periodically transmitted at a predetermined period P. This period P is, for example, 20 milliseconds.
 ブロックb1~b12には、同期信号と、報知情報とが格納される。同期信号及び報知情報は、共に、通信接続に必要な情報を含む。報知情報は、報知情報が格納されたブロックを識別するための識別情報を含む。後述するように、報知情報を受信した移動局4は、報知情報に含まれる識別情報に基づいて最小限の情報(ランダムアクセスプリアンブル)を無線制御局1へ送信する。さらに、ランダムアクセスプリアンブルを無線制御局1が受信すると、無線制御局1は、自局1(リモートユニット2)の周囲に通信接続可能な移動局4が存在することを認識できるとともに、移動局が受信したブロックがブロックb1~b12のうちのいずれであるのかをランダムアクセスプリアンブルに基づいて認識することができる。 The synchronization signal and the broadcast information are stored in the blocks b1 to b12. Both the synchronization signal and the broadcast information include information necessary for communication connection. The broadcast information includes identification information for identifying a block in which the broadcast information is stored. As will be described later, the mobile station 4 that has received the broadcast information transmits the minimum information (random access preamble) to the radio control station 1 based on the identification information included in the broadcast information. Further, when the wireless control station 1 receives the random access preamble, the wireless control station 1 can recognize that there is a mobile station 4 capable of communication connection around the own station 1 (remote unit 2), and the mobile station can perform communication. It is possible to recognize which of the blocks b1 to b12 the received block is based on the random access preamble.
 無線制御局1の通信処理部20aは、インデックス#1~#12の中から各ブロックb1~b12を送信する送信ビームを選択することができる。例えば、あるリモートユニット2における方位角方向の全域で送信ビームの指向方向を変化させることが許容されている場合、通信処理部20aは、図9に示すように、ブロックb1~b12と、インデックス#1~#12とを対応付け、ブロックb1~b12それぞれに対応するビームを送信ビームとして選択する。
 図9では、通信処理部20aは、ブロックb1の送信ビームとしてインデックス#1のビームを選択し、ブロックb2の送信ビームとしてインデックス#2のビームを選択し、ブロックb3の送信ビームとしてインデックス#3のビームを選択し、ブロックb12の送信ビームとしてインデックス#12のビームを選択する。
 通信処理部20aは、選択した送信ビームによってブロックb1~b12が送信されるように指向方向情報を生成し、リモートユニット2へ与える。
 この指向方向情報が与えられたリモートユニット2は、ブロックb1~b12を選択されたインデックスのビームによって送信する。
 このように、無線制御局1は、ブロックb1~b12を指向方向の異なる送信ビームによって送信することで、ビームスイーピングを行う。
The communication processing unit 20a of the wireless control station 1 can select a transmission beam for transmitting each block b1 to b12 from the indexes # 1 to # 12. For example, when it is allowed to change the directivity direction of the transmission beam over the entire azimuth direction in a certain remote unit 2, the communication processing unit 20a has blocks b1 to b12 and an index # as shown in FIG. The beams 1 to # 12 are associated with each other, and the beam corresponding to each of the blocks b1 to b12 is selected as the transmission beam.
In FIG. 9, the communication processing unit 20a selects the beam of index # 1 as the transmission beam of block b1, the beam of index # 2 as the transmission beam of block b2, and the index # 3 as the transmission beam of block b3. Select the beam and select the beam of index # 12 as the transmission beam of block b12.
The communication processing unit 20a generates directivity information so that the blocks b1 to b12 are transmitted by the selected transmission beam, and supplies the directivity information to the remote unit 2.
The remote unit 2 to which the directivity information is given transmits the blocks b1 to b12 by the beam of the selected index.
In this way, the radio control station 1 performs beam sweeping by transmitting the blocks b1 to b12 by transmission beams having different directivity directions.
 図7に戻って、無線制御局1は、上述したように、ビームスイーピングによって、同期信号及び報知情報を送信する(ステップS1)。
 また同時に、無線制御局1と通信接続していない移動局4は、無線制御局1のリモートユニット2の探索を行う(ステップS2)。
 移動局4が行う無線制御局1のリモートユニット2の探索とは、移動局4が指向方向の異なる複数の受信ビームを順次形成し、無線制御局1のリモートユニット2から送信される報知情報の受信を待ち受ける処理である。移動局4は、この処理によって、通信接続可能な無線制御局1のリモートユニット2を探索する。
Returning to FIG. 7, the radio control station 1 transmits the synchronization signal and the broadcast information by beam sweeping as described above (step S1).
At the same time, the mobile station 4 which is not in communication with the wireless control station 1 searches for the remote unit 2 of the wireless control station 1 (step S2).
The search for the remote unit 2 of the wireless control station 1 performed by the mobile station 4 means that the mobile station 4 sequentially forms a plurality of received beams having different directivity directions, and the broadcast information transmitted from the remote unit 2 of the wireless control station 1 is transmitted. This is a process that waits for reception. By this process, the mobile station 4 searches for the remote unit 2 of the wireless control station 1 that can be connected to the communication.
 図10は、車両Vの車載移動局4aが形成可能な送受信ビームの指向方向を示す図である。図10中の車載移動局4aから延びる矢印が、車載移動局4aが形成する送受信ビームの指向方向である。
 車載移動局4aは、各指向方向に向く送受信ビームを形成する。図10に示すように、本実施形態の車載移動局4aは、指向方向が異なる12の送受信ビームを形成することができる。各ビームの指向方向は、方位角方向に等角度で12等分することで定まる方向に設定されている。
 各ビームには、無線制御局1と同様、指向方向ごとにインデックスが設定されている。
 図10中、指向方向が車両Vの進行方向へ向く送受信ビームにはインデックスとして#1が設定されている。また、車両Vを上面視したときにおいて、各ビームには、方位角方向に沿って時計回りに順番に#1から#12までのインデックスが設定されている。
FIG. 10 is a diagram showing a directivity direction of a transmission / reception beam that can be formed by the vehicle-mounted mobile station 4a of the vehicle V. The arrow extending from the vehicle-mounted mobile station 4a in FIG. 10 is the directivity direction of the transmission / reception beam formed by the vehicle-mounted mobile station 4a.
The in-vehicle mobile station 4a forms a transmission / reception beam directed in each directivity direction. As shown in FIG. 10, the vehicle-mounted mobile station 4a of the present embodiment can form 12 transmission / reception beams having different directivity directions. The directivity direction of each beam is set in a direction determined by dividing the beam into 12 equal parts at an equal angle in the azimuth direction.
Similar to the radio control station 1, each beam is indexed for each directivity direction.
In FIG. 10, # 1 is set as an index for the transmission / reception beam whose directivity direction is in the traveling direction of the vehicle V. Further, when the vehicle V is viewed from above, indexes from # 1 to # 12 are set for each beam in order clockwise along the azimuth direction.
 車載移動局4aは、無線制御局1と通信接続していない状態においてインデックス#1~#12の受信ビームのうちの一部又は全部を用いることで、受信ビームの指向方向を変化させて通信接続可能なリモートユニット2を探索する。
 なお、移動端末4bも同様の処理を行う。
The in-vehicle mobile station 4a changes the directing direction of the reception beam by using a part or all of the reception beams of indexes # 1 to # 12 in a state where the communication connection is not made with the wireless control station 1. Search for a possible remote unit 2.
The mobile terminal 4b also performs the same processing.
 図7に戻って、無線制御局1がビームスイーピングによって送信した同期信号及び報知情報を移動局4が受信すると(ステップS3)、移動局4は、通信接続可能なリモートユニット2の存在を認識するとともに、報知情報を受信した際の受信ビームの指向方向によって、リモートユニット2へ向くビームの指向方向を取得することができる(ステップS4)。
 例えば、移動局4が、指向方向の異なる複数の受信ビームによって複数の報知情報を受信した場合、移動局4は受信電力等の受信品質が最も高い報知情報を受信した受信ビームの指向方向をリモートユニット2へ向く指向方向として取得する。これにより、移動局4は、リモートユニット2へ向く指向方向として最も適切な指向方向を取得することができる。
Returning to FIG. 7, when the mobile station 4 receives the synchronization signal and the broadcast information transmitted by the wireless control station 1 by beam sweeping (step S3), the mobile station 4 recognizes the existence of the remote unit 2 capable of communication connection. At the same time, the directing direction of the beam directed to the remote unit 2 can be acquired depending on the directing direction of the received beam when the broadcast information is received (step S4).
For example, when the mobile station 4 receives a plurality of broadcast information by a plurality of received beams having different directivity directions, the mobile station 4 remotely determines the directivity direction of the received beam that has received the broadcast information having the highest reception quality such as received power. Acquired as the directivity direction toward the unit 2. As a result, the mobile station 4 can acquire the most appropriate directivity direction as the directivity direction toward the remote unit 2.
 次いで、移動局4は、報知情報に含まれる識別情報に基づいてランダムアクセスプリアンブルを無線制御局1へ送信する(ステップS5)。移動局4は、ランダムアクセスプリアンブルを上り無線フレームに割り当てられているPRACH(Physical Random Access Channel)によって送信する。
 例えば、各ブロックb1~b12と、上り無線フレームに設けられた互いに異なる12個の領域であってPRACH用の領域とが対応付けられている場合、各ブロックb1~b12に対応するPRACH用の領域を示す情報を識別情報とすることができる。移動局4は、受信した報知情報に含まれる識別情報が示すPRACH用の領域を用いてランダムアクセスプリアンブルを送信する。
 このランダムアクセスプリアンブルを受信した無線制御局1は、ランダムアクセスプリアンブルの送信に用いられた領域からランダムアクセスプリアンブルを受信した移動局4が各ブロックb1~b12のうちのいずれのブロックを受信したかを認識することができる。
 無線制御局1は、各ブロックb1~b12の送信に用いた送信ビームの指向方向から、移動局4へ向くビームの指向方向を取得することができる(ステップS6)。
Next, the mobile station 4 transmits a random access preamble to the radio control station 1 based on the identification information included in the broadcast information (step S5). The mobile station 4 transmits the random access preamble by the PRACH (Physical Random Access Channel) assigned to the uplink radio frame.
For example, when each block b1 to b12 is associated with 12 different regions provided in the uplink radio frame for PRACH, the region for PRACH corresponding to each block b1 to b12 is associated. Information indicating the above can be used as identification information. The mobile station 4 transmits a random access preamble using the area for PRACH indicated by the identification information included in the received broadcast information.
The radio control station 1 that has received the random access preamble determines which block of the blocks b1 to b12 is received by the mobile station 4 that has received the random access preamble from the area used for transmitting the random access preamble. Can be recognized.
The radio control station 1 can acquire the directivity direction of the beam directed to the mobile station 4 from the directivity direction of the transmission beam used for transmission of each block b1 to b12 (step S6).
 次いで、無線制御局1は、移動局4から送信されたランダムアクセスプリアンブルや、タイミング情報、スケジューリングに関する情報等を含むランダムアクセス応答を移動局4へ送信する(ステップS7)。
 その後、無線制御局1と移動局4との間で情報の交換を繰り返し、無線制御局1と移動局4との間で通信接続が確立される(ステップS8)。
 なお、通信接続の確立とは、特定の通信先との間で上述の処理を行い、互いに通信データの送受信が可能な状態を確立することをいう。
Next, the radio control station 1 transmits a random access response including a random access preamble transmitted from the mobile station 4, timing information, scheduling information, and the like to the mobile station 4 (step S7).
After that, information is repeatedly exchanged between the wireless control station 1 and the mobile station 4, and a communication connection is established between the wireless control station 1 and the mobile station 4 (step S8).
Note that establishing a communication connection means establishing a state in which communication data can be transmitted and received to and from each other by performing the above-mentioned processing with a specific communication destination.
 次いで、移動局4は、無線制御局1との間の通信を維持するか否かを判定する(ステップS9)。
 移動局4は、無線制御局1からの報知情報の受信品質によって通信を維持するか否かを判定する。移動局4は、無線制御局1との間で通信接続している間も、報知情報を受信し、受信した報知情報に基づいて、リモートユニット2へ向く適切な指向方向を探索する。また、無線制御局1も、移動局4からの情報に基づいて移動局4へ向く適切な指向方向を探索する。これにより、無線制御局1のリモートユニット2と、移動局4とは、互いにビームの指向方向を向け合いつつ通信接続を維持する。
Next, the mobile station 4 determines whether or not to maintain communication with the radio control station 1 (step S9).
The mobile station 4 determines whether or not to maintain the communication based on the reception quality of the broadcast information from the wireless control station 1. The mobile station 4 receives the broadcast information even while communicating with the wireless control station 1, and searches for an appropriate direction toward the remote unit 2 based on the received broadcast information. Further, the radio control station 1 also searches for an appropriate directivity direction toward the mobile station 4 based on the information from the mobile station 4. As a result, the remote unit 2 of the wireless control station 1 and the mobile station 4 maintain a communication connection while directing the directivity directions of the beams to each other.
 移動局4は、例えば、無線制御局1からの報知情報の受信電力が所定値よりも小さいと判定した場合、無線制御局1との通信を維持しないと判定し、報知情報の受信電力が所定値以上と判定した場合、無線制御局1との通信を維持する。
 無線制御局1との通信を維持しないと判定した場合、移動局4は無線制御局1との通信を切断する(ステップS10)。
For example, when the mobile station 4 determines that the received power of the broadcast information from the wireless control station 1 is smaller than the predetermined value, the mobile station 4 determines that the communication with the wireless control station 1 is not maintained, and the received power of the broadcast information is predetermined. If it is determined to be equal to or higher than the value, communication with the wireless control station 1 is maintained.
If it is determined that the communication with the wireless control station 1 is not maintained, the mobile station 4 disconnects the communication with the wireless control station 1 (step S10).
〔無線制御局1による送信ビームの可変範囲の制御について〕
 本実施形態の無線制御局1は、交通信号機6の灯色に応じて、リモートユニット2による送信ビームの可変範囲の制御を行う機能を有する。ここでは、無線制御局1による1つのリモートユニット2に対する制御について説明するが、無線制御局1は各リモートユニット2それぞれについて同様の制御を行う。
 リモートユニット2による送信ビームの可変範囲の制御は、リモートユニット2が備えるアンテナ制御装置38が行う。
[Control of variable range of transmitted beam by wireless control station 1]
The wireless control station 1 of the present embodiment has a function of controlling a variable range of a transmission beam by the remote unit 2 according to the light color of the traffic signal 6. Here, the control of one remote unit 2 by the wireless control station 1 will be described, but the wireless control station 1 performs the same control for each remote unit 2.
The antenna control device 38 included in the remote unit 2 controls the variable range of the transmission beam by the remote unit 2.
 図11は、アンテナ制御装置38が行うリモートユニット2による送信ビームの可変範囲の制御を示すフローチャートである。
 アンテナ制御装置38には、上述したように、リモートユニット2に対応する交通信号機6から灯色情報が与えられる。
 アンテナ制御装置38は、まず、灯色情報を参照し、交通信号機6の灯色が青であるか否かを判定する(ステップS11)。
 ステップS11において交通信号機6の灯色が青でないと判定した場合(赤又は黄である場合)、アンテナ制御装置38は、通常モードを実行し(ステップS12)、ステップS11へ戻る。
FIG. 11 is a flowchart showing the control of the variable range of the transmission beam by the remote unit 2 performed by the antenna control device 38.
As described above, the antenna control device 38 is given light color information from the traffic signal 6 corresponding to the remote unit 2.
First, the antenna control device 38 refers to the light color information and determines whether or not the light color of the traffic signal 6 is blue (step S11).
When it is determined in step S11 that the light color of the traffic signal 6 is not blue (when it is red or yellow), the antenna control device 38 executes the normal mode (step S12) and returns to step S11.
 通常モードにおいて、アンテナ制御装置38は、送信ビームの可変範囲が方位角方向の全範囲(第1送信範囲)であることを示す可変範囲情報を集約装置20の通信処理部20aへ与える。
 これにより、集約装置20の通信処理部20aは、インデックスが#1~#12までの全ての送信ビームを用いて報知情報を含む各種情報を送信する。この場合、通信処理部20aは、図9にて示したようにブロックb1~b12を指向方向の異なる送信ビーム(インデックス#1~#12の送信ビーム)によって送信する。
 なお、可変範囲情報は、使用可能な送信ビームのインデックスとすることができる。この場合、方位角方向の全範囲を示す可変範囲情報は、ビームのインデックス#1~#12となる。また、可変範囲情報は、方位角の範囲とすることもできる。
In the normal mode, the antenna control device 38 provides the communication processing unit 20a of the aggregation device 20 with variable range information indicating that the variable range of the transmission beam is the entire range in the azimuth direction (first transmission range).
As a result, the communication processing unit 20a of the aggregation device 20 transmits various information including broadcast information using all the transmission beams having indexes # 1 to # 12. In this case, the communication processing unit 20a transmits the blocks b1 to b12 by transmission beams having different directivity directions (transmission beams having indexes # 1 to # 12) as shown in FIG.
The variable range information can be used as an index of usable transmission beams. In this case, the variable range information indicating the entire range in the azimuth direction is the index # 1 to # 12 of the beam. The variable range information can also be a range of azimuth angles.
 通常モードにおいて、報知情報は、リモートユニット2の方位角方向の全範囲に送信される。
 これにより、無線制御局1は、通常モードにおいて、リモートユニット2の方位角方向の全範囲に存在する移動局4を探索し、通信接続を行う。
In the normal mode, the broadcast information is transmitted over the entire range of the remote unit 2 in the azimuth direction.
As a result, the wireless control station 1 searches for the mobile station 4 existing in the entire range in the azimuth angle direction of the remote unit 2 in the normal mode, and makes a communication connection.
 一方、ステップS11において交通信号機6の灯色が青であると判定した場合、アンテナ制御装置38は、制限モードを実行し(ステップS13)、ステップS11へ戻る。 On the other hand, if it is determined in step S11 that the light color of the traffic signal 6 is blue, the antenna control device 38 executes the restriction mode (step S13) and returns to step S11.
 制限モードにおいて、アンテナ制御装置38は、送信ビームの可変範囲が通常モードの場合よりも狭くなるように制限された制限範囲(第2送信範囲)であることを示す可変範囲情報を集約装置20の通信処理部20aへ与える。
 これにより、集約装置20の通信処理部20aは、インデックスが#1~#12までのビームのうち、制限範囲に含まれる送信ビームのみを用いて報知情報を含む各種情報を送信する。
 ここで、制限範囲は、使用可能な送信ビームを、交通信号機6の灯色によって交差点Iへの進入が許可されうる道路R(方路)に沿ったビームに制限する範囲に設定される。これにより、交通信号機6の灯色によって交差点Iへの進入が許可される道路Rがサービスエリアとしてカバーされる。
In the limiting mode, the antenna control device 38 collects variable range information indicating that the variable range of the transmission beam is a limited range (second transmission range) limited so as to be narrower than in the normal mode. It is given to the communication processing unit 20a.
As a result, the communication processing unit 20a of the aggregation device 20 transmits various information including broadcast information using only the transmission beam included in the limited range among the beams having indexes # 1 to # 12.
Here, the limiting range is set to a range that limits the usable transmission beam to a beam along the road R (direction) where entry to the intersection I can be permitted by the light color of the traffic signal 6. As a result, the road R where the entrance to the intersection I is permitted by the light color of the traffic signal 6 is covered as the service area.
 例えば、図8中の交通信号機6の灯色が青である場合、制限範囲は、送信ビームの指向方向が北方向から交差点Iに繋がる方路r1の延線方向に向く送信ビームに制限される範囲である。図8において、方路r1の延線方向に向くビームが、インデックス#3、#4、#10、#11のビームであるとする。この場合、制限範囲は、方位角方向のうち、インデックス#3のビームの指向方向と、インデックス#4のビームの指向方向とを含むように制限された範囲W1と、インデックス#10のビームの指向方向と、インデックス#11のビームの指向方向とを含むように制限された範囲W2である。
 この場合、アンテナ制御装置38は可変範囲情報として、ビームのインデックス#3、#4、#10、#11を通信処理部20aへ与える。
 可変範囲情報が与えられた集約装置20の通信処理部20aは、制限範囲内の送信ビームを用いて報知情報を含む各種情報を送信するための指向方向情報を生成する。つまり、この場合の指向方向情報における、リモートユニット2に送信を行わせるための送信ビームは、インデックス#3、#4、#10、#11の送信ビームのいずれかとなる。
 なお、方路(道路)の延線方向に向くビームには、上述したように、方路の延線方向に沿うビームの他、方路の延線方向に対して交差する方向であって方路から極端に逸脱することがないビームが含まれることがある。
For example, when the light color of the traffic signal 6 in FIG. 8 is blue, the restriction range is limited to the transmission beam whose directivity direction is directed from the north direction to the extension direction of the route r1 connected to the intersection I. The range. In FIG. 8, it is assumed that the beams directed in the extending direction of the route r1 are the beams having indexes # 3, # 4, # 10, and # 11. In this case, the limiting range includes the directivity of the beam of index # 3 and the directivity of the beam of index # 4 among the azimuth directions. The range W2 is limited to include the direction and the directivity of the beam at index # 11.
In this case, the antenna control device 38 gives the beam indexes # 3, # 4, # 10, and # 11 to the communication processing unit 20a as variable range information.
The communication processing unit 20a of the aggregation device 20 to which the variable range information is given generates directional information for transmitting various information including the broadcast information by using the transmission beam within the limited range. That is, in the directivity direction information in this case, the transmission beam for causing the remote unit 2 to perform transmission is any of the transmission beams having indexes # 3, # 4, # 10, and # 11.
As described above, the beam directed in the extending direction of the route (road) includes a beam along the extending direction of the route and a direction intersecting the extending direction of the route. It may contain beams that do not deviate significantly from the road.
 図12は、制限モードにおける無線制御局1による下り無線フレームの一例を示す図である。
 図12中、無線フレームFの構成は、通常モード時と同じである。
 しかし、制限モードにおいては、通信処理部20aは、可変範囲情報で示される制限範囲内の送信ビームによって報知情報を送信する。
 上述のように、制限範囲内の送信ビームは、インデックスが#3、#4、#10、#11の送信ビームに制限される。通信処理部20aは、インデックスが#3、#4、#10、#11の送信ビームのみを用いてブロックb1~b12を送信する。
 例えば、図12に示すように、通信処理部20aは、ブロックb1の送信ビームとしてインデックス#3の送信ビームを選択し、ブロックb2の送信ビームとしてインデックス#4の送信ビームを選択し、ブロックb3の送信ビームとしてインデックス#10の送信ビームを選択し、ブロックb4の送信ビームとしてインデックス#11の送信ビームを選択する。
 通信処理部20aは、このように、ブロックb1~b12の送信ビームをインデックスが#3、#4、#10、#11の送信ビームの中から割り当て、これら4つの送信ビームを用いてブロックb1~b12を送信する。
FIG. 12 is a diagram showing an example of a downlink radio frame by the radio control station 1 in the restricted mode.
In FIG. 12, the configuration of the wireless frame F is the same as in the normal mode.
However, in the limited mode, the communication processing unit 20a transmits the broadcast information by the transmission beam within the limited range indicated by the variable range information.
As described above, the transmitting beam within the limiting range is limited to the transmitting beams having indexes # 3, # 4, # 10, and # 11. The communication processing unit 20a transmits blocks b1 to b12 using only transmission beams having indexes # 3, # 4, # 10, and # 11.
For example, as shown in FIG. 12, the communication processing unit 20a selects the transmission beam of index # 3 as the transmission beam of block b1, selects the transmission beam of index # 4 as the transmission beam of block b2, and selects the transmission beam of index # 4 as the transmission beam of block b3. The transmit beam of index # 10 is selected as the transmit beam, and the transmit beam of index # 11 is selected as the transmit beam of block b4.
In this way, the communication processing unit 20a allocates the transmission beams of blocks b1 to b12 from among the transmission beams having indexes # 3, # 4, # 10, and # 11, and uses these four transmission beams to block b1 to blocks b1 to. b12 is transmitted.
 制限モードにおいて、報知情報は、リモートユニット2の方位角方向のうち制限範囲内の送信ビームが到達する範囲に送信される。
 これにより、無線制御局1は、制限モードにおいて、リモートユニット2の方位角方向のうちの制限範囲に存在する移動局4を探索し、通信接続を行う。
In the restriction mode, the broadcast information is transmitted in the azimuth angle direction of the remote unit 2 within the range reached by the transmission beam within the restriction range.
As a result, the wireless control station 1 searches for the mobile station 4 existing in the limited range in the azimuth angle direction of the remote unit 2 in the restricted mode, and makes a communication connection.
 例えば、図8では、インデックスが#3、#4、#10、#11のビームによって報知情報を含む各種情報を送信する場合、無線制御局1は、これら4つのビームによって送受信可能な範囲に存在する移動局4を探索し、通信接続を行う。 For example, in FIG. 8, when various information including broadcast information is transmitted by the beams having indexes # 3, # 4, # 10, and # 11, the radio control station 1 exists in a range that can be transmitted and received by these four beams. Search for the mobile station 4 to be used, and make a communication connection.
 図13は、交差点Iの各リモートユニット2に設定されるビームの可変範囲の一例を示す図である。図13においても、紙面上側が北、紙面下側が南とする。
 図13では、北方向から交差点Iに繋がる方路r1に設けられた交通信号機6aの灯色、及び南方向から交差点Iへ繋がる方路r3に設けられた交通信号機6cの灯色が青色であり、西方向から交差点Iへ繋がる方路r2に設けられた交通信号機6bの灯色が赤色であり、東方向から交差点Iへ繋がる方路r4に設けられた交通信号機6dの灯色が赤色である場合を示している。
FIG. 13 is a diagram showing an example of a variable range of a beam set in each remote unit 2 at an intersection I. Also in FIG. 13, the upper side of the paper surface is north and the lower side of the paper surface is south.
In FIG. 13, the light color of the traffic signal 6a provided on the road r1 connected to the intersection I from the north direction and the light color of the traffic light 6c provided on the road r3 connected to the intersection I from the south direction are blue. , The traffic light 6b provided on the road r2 connecting from the west to the intersection I is red, and the traffic light 6d provided on the road r4 connecting from the east to the intersection I is red. Shows the case.
 灯色が赤色である交通信号機6b、6dに対応するリモートユニット2b、2dでは、通常モードが実行される。よって、リモートユニット2b、2dのビームの可変範囲は、図13に示すように、方位角方向全範囲となる。この場合、リモートユニット2b、2dは、リモートユニット2b、2dの方位角方向の全範囲に存在する移動局4を探索する。なお、図13においてリモートユニット2の周囲を囲む円形の線図形が、ビームの可変範囲が方位角方向全範囲であることを示している。 The normal mode is executed in the remote units 2b and 2d corresponding to the traffic signals 6b and 6d whose light color is red. Therefore, the variable range of the beams of the remote units 2b and 2d is the entire range in the azimuth direction as shown in FIG. In this case, the remote units 2b and 2d search for the mobile station 4 existing in the entire range of the remote units 2b and 2d in the azimuth direction. In FIG. 13, the circular line figure surrounding the remote unit 2 indicates that the variable range of the beam is the entire range in the azimuth direction.
 一方、灯色が青色である交通信号機6a、6cに対応するリモートユニット2a、2cでは、制限モードが実行される。よって、リモートユニット2a、2cのビームの可変範囲は、図13に示すように、方位角方向のうち、交差点Iへの進入が許可される方路r1及び方路r3の延線方向に沿うビームが形成されるように制限された範囲に設定される。
 リモートユニット2a、2cは、リモートユニット2a、2cの方位角方向のうち、方路r1及び方路r3上においてビームが形成される範囲に存在する移動局4を探索する。
 リモートユニット2aは、インデックスが#3、#4、#10、#11のビームを用いて報知情報を含む各種情報を送信し、リモートユニット2cは、インデックスが#4、#5、#9、#10のビームを用いて報知情報を含む各種情報を送信する。
On the other hand, in the remote units 2a and 2c corresponding to the traffic signals 6a and 6c whose light color is blue, the restriction mode is executed. Therefore, as shown in FIG. 13, the variable range of the beams of the remote units 2a and 2c is the beam along the extending direction of the road r1 and the road r3 that are allowed to enter the intersection I in the azimuth angle direction. Is set in a limited range so that
The remote units 2a and 2c search for the mobile station 4 existing in the range where the beam is formed on the road r1 and the road r3 in the azimuthal directions of the remote units 2a and 2c.
The remote unit 2a transmits various information including notification information using beams having indexes # 3, # 4, # 10, and # 11, and the remote unit 2c has indexes # 4, # 5, # 9, and #. Various information including notification information is transmitted using the 10 beams.
 この場合、リモートユニット2a、2cは、道路R上において方路r1、r3以外の範囲に送信ビームを形成しないので、主として、方路r1から交差点Iへ進入し交差点Iを通過する車載移動局4aを探索する。また、リモートユニット2cは、主として、方路r3から交差点Iへ進入し交差点Iを通過する車載移動局4aを探索する。 In this case, since the remote units 2a and 2c do not form a transmission beam on the road R in a range other than the directions r1 and r3, the in-vehicle mobile station 4a mainly enters the intersection I from the direction r1 and passes through the intersection I. To explore. Further, the remote unit 2c mainly searches for the vehicle-mounted mobile station 4a that enters the intersection I from the route r3 and passes through the intersection I.
 図13に示すビームの可変範囲は、各交通信号機6の灯色の切り替わりによって変更される。交通信号機6a、6cの灯色が赤色、他の交通信号機6b、6dの灯色が青色に切り替われば、リモートユニット2a、2bでは、通常モードが実行され、リモートユニット2b、2dでは、制限モードが実行される。 The variable range of the beam shown in FIG. 13 is changed by switching the light color of each traffic signal 6. If the light colors of the traffic lights 6a and 6c are switched to red and the light colors of the other traffic lights 6b and 6d are switched to blue, the remote units 2a and 2b execute the normal mode, and the remote units 2b and 2d are in the restricted mode. Is executed.
 上記構成では、リモートユニット2は、対応する方路の進行が青信号によって許可された場合、送信ビームを形成し探索する範囲が進行の許可された方路上に制限され、方路上の車載移動局4aを探索する機会を増やすことができる。この結果、青信号によって進行が許可され短時間で方路を通過してしまう車載移動局4aを効果的に探索することができる。
 なお、車載移動局4aが赤信号で停止している場合には、時間的余裕があるので、リモートユニット2は、対応する方路の進行が赤信号によって許可されない場合、そのリモートユニット2の方位角方向の全範囲に存在する移動局4を探索する。
In the above configuration, when the travel of the corresponding route is permitted by the green light, the remote unit 2 forms a transmission beam and the search range is limited to the route where the travel is permitted, and the vehicle-mounted mobile station 4a on the route is restricted. You can increase the chances of exploring. As a result, it is possible to effectively search for the in-vehicle mobile station 4a that is allowed to travel by the green light and passes through the direction in a short time.
When the in-vehicle mobile station 4a is stopped at a red light, there is time to spare, so that the remote unit 2 has an azimuth of the remote unit 2 when the travel of the corresponding direction is not permitted by the red light. The mobile station 4 existing in the entire range in the angular direction is searched.
 上記構成のシステムによれば、無線制御局1は、交通信号機6の灯色によって停止したり移動したりする車載移動局4aの移動態様に応じて、送信ビームの可変範囲を狭めるように変更することができる。これにより、車載移動局4aを探索するために要する時間を必要に応じて短縮することができる。
 つまり、送信ビームの可変範囲を全範囲から制限範囲に変更すれば、全範囲の場合よりも、車載移動局4aを探索するために要する時間を短縮することができ、速やかに無線通信を開始することができる。
According to the system having the above configuration, the radio control station 1 is changed so as to narrow the variable range of the transmission beam according to the movement mode of the vehicle-mounted mobile station 4a which is stopped or moved depending on the light color of the traffic signal 6. be able to. As a result, the time required to search for the in-vehicle mobile station 4a can be shortened as necessary.
That is, if the variable range of the transmission beam is changed from the entire range to the limited range, the time required to search the in-vehicle mobile station 4a can be shortened as compared with the case of the entire range, and wireless communication can be started promptly. be able to.
 無線制御局1と移動局4との間の無線通信を開始に遅延が生じれば、例えば、移動局4が道路を走行する車両Vに搭載された車載移動局4aである場合、車載移動局4aと無線制御局1との無線通信を行うための時間が圧迫され、通信効率を低下させてしまう。
 これに対して、本実施形態によれば、速やかに無線通信を開始することができるので、通信効率の低下を抑制することができる。
If there is a delay in starting wireless communication between the wireless control station 1 and the mobile station 4, for example, if the mobile station 4 is an in-vehicle mobile station 4a mounted on a vehicle V traveling on a road, the in-vehicle mobile station The time required for wireless communication between 4a and the wireless control station 1 is squeezed, and the communication efficiency is lowered.
On the other hand, according to the present embodiment, since wireless communication can be started promptly, a decrease in communication efficiency can be suppressed.
〔車載移動局4aによる受信ビームの可変範囲の制御について〕
 本実施形態の車載移動局4a(のアンテナ制御部58b)は、通信接続可能な無線制御局1(リモートユニット2)を探索する際に、車載移動局4a(車両V)の位置に応じて、受信ビームの可変範囲の制御を行う機能を有する。
 図14は、車載移動局4aが行う、受信ビームの可変範囲の制御を示すフローチャートである。
[Control of variable range of received beam by in-vehicle mobile station 4a]
When searching for a wireless control station 1 (remote unit 2) capable of communication connection, the vehicle-mounted mobile station 4a (antenna control unit 58b) of the present embodiment responds to the position of the vehicle-mounted mobile station 4a (vehicle V). It has a function to control the variable range of the received beam.
FIG. 14 is a flowchart showing the control of the variable range of the received beam performed by the in-vehicle mobile station 4a.
 まず、車載移動局4aは、無線制御局1と通信接続しているか否かを判定する(ステップS21)。
 無線制御局1と通信接続していると判定する場合、車載移動局4aは、再度ステップS21を繰り返す。よって、車載移動局4aは、無線制御局1と通信接続していないと判定するまで、ステップS21を繰り返す。無線制御局1と通信接続している場合、車載移動局4aは、リモートユニット2を探索する必要がなく、受信ビームの可変範囲を制御する必要がない。このため、無線制御局1と通信接続していると判定する場合、車載移動局4aは、可変範囲の制御の処理を進めない。
First, the vehicle-mounted mobile station 4a determines whether or not it is in communication connection with the wireless control station 1 (step S21).
When determining that the wireless control station 1 is in communication connection, the vehicle-mounted mobile station 4a repeats step S21 again. Therefore, the in-vehicle mobile station 4a repeats step S21 until it is determined that the in-vehicle mobile station 4a is not connected to the wireless control station 1 by communication. When communicating with the wireless control station 1, the vehicle-mounted mobile station 4a does not need to search for the remote unit 2 and does not need to control the variable range of the received beam. Therefore, when it is determined that the wireless control station 1 is in communication connection, the vehicle-mounted mobile station 4a does not proceed with the variable range control process.
 ステップS21において無線制御局1と通信接続していないと判定すると、車載移動局4aは、車載移動局4aの位置が制限エリア内か否かを判定する(ステップS22)。
 制限エリア(所定エリア)とは、無線制御局1のリモートユニット2が設置された交差点Iの上流側に設定されたエリアである。よって、車載移動局4aの進行方向前方に位置する交差点Iへ向けて進行する際、車載移動局4aは交差点Iに到達する前に制限エリア内に進入することとなる。
 なお、交差点Iの上流側とは、車載移動局4aから見て前方に位置する交差点Iの手前側であって、車載移動局4aの位置から交差点Iまでの範囲を含む。
 車載移動局4aの進行方向とは、車載移動局4aが道路Rに沿って移動する際の進行方向である。
 車載移動局4aの進行方向前方とは、車載移動局4aが進行方向に沿って前進する場合において車載移動局4aの前方をいう。
If it is determined in step S21 that the communication is not connected to the wireless control station 1, the vehicle-mounted mobile station 4a determines whether or not the position of the vehicle-mounted mobile station 4a is within the restricted area (step S22).
The restricted area (predetermined area) is an area set on the upstream side of the intersection I where the remote unit 2 of the wireless control station 1 is installed. Therefore, when traveling toward the intersection I located in front of the vehicle-mounted mobile station 4a in the traveling direction, the vehicle-mounted mobile station 4a enters the restricted area before reaching the intersection I.
The upstream side of the intersection I is the front side of the intersection I located in front of the vehicle-mounted mobile station 4a, and includes the range from the position of the vehicle-mounted mobile station 4a to the intersection I.
The traveling direction of the vehicle-mounted mobile station 4a is the traveling direction when the vehicle-mounted mobile station 4a moves along the road R.
The front of the vehicle-mounted mobile station 4a in the traveling direction means the front of the vehicle-mounted mobile station 4a when the vehicle-mounted mobile station 4a advances along the traveling direction.
 ステップS22において車載移動局4aの位置が制限エリア外と判定する場合、車載移動局4aは、通常モードを実行し(ステップS23)、ステップS21へ戻る。
 通常モードにおいて、車載移動局4aは、インデックス#1~#12の12個の受信ビームを順次用いて受信ビームの指向方向を変化させ、通信接続可能なリモートユニット2の探索を行う。つまり、通常モードでは、車載移動局4aは、受信ビームの可変範囲を方位角方向の全範囲(第1受信範囲)に設定する。
 なお、各ビームの仰角方向は、方位角方向に沿う位置の無線制御局1との間で送受信可能となるように適宜設定される。
When it is determined in step S22 that the position of the vehicle-mounted mobile station 4a is outside the restricted area, the vehicle-mounted mobile station 4a executes the normal mode (step S23) and returns to step S21.
In the normal mode, the vehicle-mounted mobile station 4a sequentially uses 12 reception beams of indexes # 1 to # 12 to change the directivity direction of the reception beams, and searches for the remote unit 2 capable of communication connection. That is, in the normal mode, the vehicle-mounted mobile station 4a sets the variable range of the reception beam to the entire range in the azimuth direction (first reception range).
The elevation angle direction of each beam is appropriately set so as to be able to transmit and receive to and from the radio control station 1 at a position along the azimuth angle direction.
 一方、ステップS22において車載移動局4aの位置が制限エリア外と判定する場合、車載移動局4aは、制限モードを実行し(ステップS24)、ステップS21へ戻る。
 制限モードにおいて、車載移動局4aは、指向方向が車載移動局4aの進行方向に向くビームであるインデックス#1、#2、#12の3つの受信ビームを順次用いて受信ビームの指向方向を変化させ、通信接続可能なリモートユニット2の探索を行う。つまり、制限モードでは、車載移動局4aは、受信ビームの可変範囲を全範囲よりも狭い制限範囲(第2受信範囲)に設定する。
On the other hand, when it is determined in step S22 that the position of the vehicle-mounted mobile station 4a is outside the restricted area, the vehicle-mounted mobile station 4a executes the restricted mode (step S24) and returns to step S21.
In the limited mode, the vehicle-mounted mobile station 4a changes the directivity direction of the received beam by sequentially using three received beams of indexes # 1, # 2, and # 12, which are beams whose directivity directions are directed in the traveling direction of the vehicle-mounted mobile station 4a. Then, the remote unit 2 that can be connected to the communication is searched. That is, in the limited mode, the in-vehicle mobile station 4a sets the variable range of the received beam to a limited range (second reception range) narrower than the entire range.
 図15は、制限モードの処理の一例を示すフローチャートである。
 制限モードにおいて、車載移動局4aは、まず、受信ビームの可変範囲を制限範囲に設定する(ステップS31)。
 なお、制限範囲は、方位角方向の範囲である。制限範囲は、受信ビームの指向方向が車載移動局4aの進行方向に向くビームに制限される範囲に設定される。これにより、車載移動局4aは、上述のように、3つの受信ビームを順次用いて受信ビームの指向方向を変化させ、主として、自局4aの進行方向前方に位置するリモートユニット2の探索を行う。本実施形態では、指向方向が車載移動局4aの進行方向に向く受信ビームは、インデックス#1、#2、#12の3つの受信ビームである(図10)。
 なお、指向方向が車載移動局4aの進行方向に向く受信ビームには、指向方向が進行方向に沿う受信ビームの他、進行方向を中心としたときの方位角の範囲を180度未満としたときに指向方向がその方位角の範囲内である受信ビームが含まれることがある。
FIG. 15 is a flowchart showing an example of processing in the restricted mode.
In the limiting mode, the vehicle-mounted mobile station 4a first sets the variable range of the received beam to the limiting range (step S31).
The limiting range is the range in the azimuth angle direction. The limiting range is set to a range in which the directivity direction of the received beam is limited to the beam directed in the traveling direction of the vehicle-mounted mobile station 4a. As a result, the in-vehicle mobile station 4a changes the directivity direction of the reception beam by sequentially using the three reception beams as described above, and mainly searches for the remote unit 2 located in front of the travel direction of the own station 4a. .. In the present embodiment, the reception beams whose directivity directions are directed in the traveling direction of the vehicle-mounted mobile station 4a are three reception beams having indexes # 1, # 2, and # 12 (FIG. 10).
The receiving beam whose directing direction is directed to the traveling direction of the vehicle-mounted mobile station 4a includes the receiving beam whose directing direction is along the traveling direction and when the range of the azimuth angle centered on the traveling direction is less than 180 degrees. May include a received beam whose directional direction is within its azimuth.
 次いで、車載移動局4aは、無線制御局1と通信接続しているか否かを判定する(ステップS32)。
 無線制御局1と通信接続していると判定する場合、車載移動局4aは処理を終える。
 無線制御局1と通信接続していないと判定する場合、車載移動局4aは、自局4aが制限エリア内に進入した後、所定の距離Kだけ走行したか否かを判定する(ステップS33)。距離Kは、制限エリアの上流端から交差点Iまでの距離よりも短い距離に設定される。
Next, the vehicle-mounted mobile station 4a determines whether or not it is in communication connection with the wireless control station 1 (step S32).
When it is determined that the wireless control station 1 is in communication connection, the in-vehicle mobile station 4a ends the process.
When it is determined to not communicating connected to the radio control station 1, the vehicle-mounted mobile station 4a, after own station 4a enters into the restricted area, it is determined whether the vehicle has traveled a predetermined distance K 2 (step S33 ). The distance K 2 is set to be shorter than the distance from the upstream end of the restricted area to the intersection I.
 ステップS33において、所定の走行距離である距離Kだけ走行していないと判定する場合、車載移動局4aは、再度ステップS32に戻る。よって、無線制御局1と通信接続できない状態が継続すると、車載移動局4aは、距離Kだけ走行するまでステップS33を繰り返す。
 ステップS33において距離Kだけ走行したと判定する場合、車載移動局4aは、ステップS34へ進み、インデックス#6、#7、#8の3つの受信ビームを順次用いて受信ビームの指向方向を変化させ、通信接続可能なリモートユニット2の探索を行う。つまり、ステップS34では、車載移動局4aは、指向方向が車載移動局4aの進行方向の反対方向(車載移動局4aの後方)に向く受信ビームに制限されるように受信ビームの可変範囲を変更する。これにより、車載移動局4aは、自局4aの後方に位置するリモートユニット2の探索を行う。
In step S33, if it is determined that no traveling distance K 2 is a predetermined travel distance, the vehicle-mounted mobile station 4a, the process returns to step S32 again. Therefore, when the state can not communicate connected to the radio control station 1 continues, vehicle mobile station 4a repeats the step S33 until the running distance K 2.
If it is determined that traveling distance K 2 in step S33, the vehicle-mounted mobile station 4a, the process proceeds to step S34, index # 6, # 7, change the orientation of the receive beam sequentially with three receiving beams # 8 Then, the remote unit 2 that can be connected to the communication is searched. That is, in step S34, the vehicle-mounted mobile station 4a changes the variable range of the received beam so that the directivity direction is limited to the received beam directed in the direction opposite to the traveling direction of the vehicle-mounted mobile station 4a (behind the vehicle-mounted mobile station 4a). To do. As a result, the in-vehicle mobile station 4a searches for the remote unit 2 located behind the own station 4a.
 これにより車載移動局4aは、制限エリアに進入してから距離Kだけ走行するまでは、自局4aの進行方向前方に位置するリモートユニット2の探索を行い、距離K以上走行すると自局4aの後方に位置するリモートユニット2の探索を行う。
 なお、指向方向が車載移動局4aの後方に向く受信ビームには、指向方向が進行方向に対して反対方向に向く受信ビームの他、反対方向を中心としたときの方位角の範囲を180度未満としたときに指向方向がその方位角の範囲内である受信ビームが含まれることがある。
Accordingly vehicle mobile station 4a is from enters the restricted area until the travel distance K 2, carries out the search of the remote unit 2 located forward in the traveling direction of the own station 4a, the distance K 2 or more runs the own station The remote unit 2 located behind 4a is searched.
The receiving beam whose directing direction is directed to the rear of the vehicle-mounted mobile station 4a includes the receiving beam whose directing direction is opposite to the traveling direction and the range of the azimuth angle when centered in the opposite direction is 180 degrees. When less than, a received beam whose direction is within the range of the azimuth may be included.
 次いで、車載移動局4aは、ステップS35へ進み、下記2つの条件のうちの少なくとも一方を満たしているか否かを判定する(ステップS35)。
条件1:無線制御局1と通信接続している。
条件2:自局4aが交差点Iを通過してから所定の距離Kだけ進行している。
Next, the vehicle-mounted mobile station 4a proceeds to step S35 and determines whether or not at least one of the following two conditions is satisfied (step S35).
Condition 1: The wireless control station 1 is connected by communication.
Condition 2: own station 4a is progressing after passing through the intersection I predetermined distance K 3.
 これら2つの条件のうちの少なくとも一方を満たしていない場合、車載移動局4aは、ステップS35を繰り返す。2つの条件のうちの少なくとも一方を満たしている場合、車載移動局4aは処理を終える。
 なお、距離Kは、距離Kと同程度の距離に設定される。
If at least one of these two conditions is not met, the vehicle-mounted mobile station 4a repeats step S35. If at least one of the two conditions is satisfied, the in-vehicle mobile station 4a ends the process.
The distance K 3 is set to the same distance as the distance K 1.
 図16は、道路Rを走行する車載移動局4aの受信ビームの可変範囲を説明するための図である。
 図16では、車載移動局4a(車両V)が、位置Aから、リモートユニット2が設置された交差点Iへ向かって走行する場合を示している。
 リモートユニット2は、上述したように、送信ビームによって報知情報を含む各種情報を送信する。
 また、車載移動局4aの進行方向前方に位置する交差点Iの上流側には制限エリアが設定されている。この制限エリアは、交差点Iから、距離Kだけ上流側の上流端L1までの道路上に設定されたエリアである。
 制限エリアは、例えば、リモートユニット2の送受信範囲に応じて設定される。よって、例えば、距離Kは100メートル程度に設定される。
FIG. 16 is a diagram for explaining a variable range of the reception beam of the vehicle-mounted mobile station 4a traveling on the road R.
FIG. 16 shows a case where the vehicle-mounted mobile station 4a (vehicle V) travels from the position A toward the intersection I where the remote unit 2 is installed.
As described above, the remote unit 2 transmits various information including broadcast information by the transmission beam.
Further, a restricted area is set on the upstream side of the intersection I located in front of the vehicle-mounted mobile station 4a in the traveling direction. The restricted area is from the intersection I, which is an area that is set on the road of a distance K 1 just upstream the upstream end L1.
The restricted area is set according to, for example, the transmission / reception range of the remote unit 2. Therefore, for example, the distance K 1 is set to about 100 meters.
 車載移動局4aは、自局4aの位置をGPS受信機56から得ることができる。また、交差点Iの位置や、リモートユニット2の位置は、車載移動局4aの処理装置58の記憶装置に予め記憶させておくことができるし、車載移動局4aが第2アンテナモジュール52による無線通信によって外部から取得することもできる。
 また、車載通信機16が処理装置58に通信可能に接続されている場合、車載通信機16を介して路側無線通信機14から交差点Iの位置や、リモートユニット2の位置を取得することもできる。
 車載移動局4aは、これら位置に基づいて、受信ビームの可変範囲を制御する。
The in-vehicle mobile station 4a can obtain the position of the own station 4a from the GPS receiver 56. Further, the position of the intersection I and the position of the remote unit 2 can be stored in advance in the storage device of the processing device 58 of the vehicle-mounted mobile station 4a, and the vehicle-mounted mobile station 4a communicates wirelessly by the second antenna module 52. It can also be obtained from the outside.
Further, when the vehicle-mounted communication device 16 is communicably connected to the processing device 58, the position of the intersection I and the position of the remote unit 2 can be acquired from the roadside wireless communication device 14 via the vehicle-mounted communication device 16. ..
The in-vehicle mobile station 4a controls the variable range of the received beam based on these positions.
 図16中、車載移動局4aが位置Aである場合、車載移動局4aは、制限エリア外であるので、無線制御局1と通信接続していなければ、通常モードを実行する(図14中、ステップS23)。よって、受信ビームの可変範囲は、図16に示すように方位角方向全範囲となる。なお、図16において車載移動局4aの周囲を囲む円形の線図形が、ビームの可変範囲が方位角方向全範囲であることを示している。 In FIG. 16, when the in-vehicle mobile station 4a is in the position A, the in-vehicle mobile station 4a is outside the restricted area, and therefore, if it is not connected to the wireless control station 1 by communication, the normal mode is executed (in FIG. 14). Step S23). Therefore, the variable range of the received beam is the entire range in the azimuth angle direction as shown in FIG. In addition, in FIG. 16, the circular line figure surrounding the periphery of the vehicle-mounted mobile station 4a indicates that the variable range of the beam is the entire range in the azimuth direction.
 次いで、車載移動局4aが位置Bへ進むと、車載移動局4aは、制限エリア内であるので、無線制御局1と通信接続していなければ、制限モードを実行する(図14中、ステップS24)。さらに、車載移動局4aは、制限エリアの上流端L1から下流側へ距離Kの中間地点L2まで到達していない。よって、この場合の受信ビームの可変範囲は、図16に示すように、方位角方向のうち、進行方向に向くビームのみを許容する制限範囲となる(図15中、ステップS31)。よって、車載移動局4aは、自局4aの進行方向前方に位置するリモートユニット2の探索を行う。 Next, when the vehicle-mounted mobile station 4a advances to the position B, the vehicle-mounted mobile station 4a is within the restricted area, and therefore, if the communication connection with the wireless control station 1 is not established, the restricted mode is executed (step S24 in FIG. 14). ). Further, the vehicle-mounted mobile station 4a does not reach from the upstream end L1 of the restricted area to the middle point L2 distance K 2 to the downstream side. Therefore, as shown in FIG. 16, the variable range of the received beam in this case is a limited range that allows only the beam directed in the traveling direction in the azimuth angle direction (step S31 in FIG. 15). Therefore, the in-vehicle mobile station 4a searches for the remote unit 2 located in front of the own station 4a in the traveling direction.
 この上流端L1から下流側へ距離Kだけ進行するまでの間に前方のリモートユニット2と通信接続すれば、車載移動局4aはリモートユニット2を探索する必要がなくなる。よって、車載移動局4aは制限モードを終える(図15中、ステップS32)。
 一方、車載移動局4aが、リモートユニット2と通信接続できないまま、中間地点L2を通過すると(位置C)、車載移動局4aは、指向方向が車載移動局4aの後方に向く受信ビームに制限されるように受信ビームの可変範囲を変更する(図15中、ステップS34)。これにより、車載移動局4aは、自局4aの後方に位置するリモートユニット2の探索を行う。
 この場合の可変範囲は、方位角方向において、受信ビームを、指向方向が車載移動局4aの後方に向くビーム(インデックス#6、#7、#8のビーム)に制限する範囲に設定される。
If communication connection with the front of the remote unit 2 during the period from the upstream end L1 to progression distance K 2 to the downstream side, the vehicle-mounted mobile station 4a is not necessary to search for the remote unit 2. Therefore, the in-vehicle mobile station 4a ends the restriction mode (step S32 in FIG. 15).
On the other hand, when the vehicle-mounted mobile station 4a passes through the intermediate point L2 without being able to communicate with the remote unit 2 (position C), the vehicle-mounted mobile station 4a is limited to the reception beam whose directivity is directed to the rear of the vehicle-mounted mobile station 4a. The variable range of the received beam is changed so as to be (step S34 in FIG. 15). As a result, the in-vehicle mobile station 4a searches for the remote unit 2 located behind the own station 4a.
The variable range in this case is set to a range that limits the received beam to a beam whose directivity direction is directed to the rear of the vehicle-mounted mobile station 4a (beams of indexes # 6, # 7, and # 8) in the azimuth angle direction.
 制限エリア内において無線制御局1を発見できず、リモートユニット2と通信接続できない場合、リモートユニット2からの送信ビーム及び受信ビームを遮る障害物が車載移動局4aの前方に存在することが考えられる。 If the wireless control station 1 cannot be found in the restricted area and the communication connection with the remote unit 2 cannot be established, it is possible that an obstacle blocking the transmission beam and the reception beam from the remote unit 2 exists in front of the vehicle-mounted mobile station 4a. ..
 図17は、車載移動局4aの前方にトラックが走行している状態を示した図である。
 図17に示すように、車載移動局4aの前方に背の高いトラックTが走行する場合、トラックTが障害物となって、リモートユニット2からの送信ビームや、車載移動局4aの受信ビームが遮られる場合がある。
FIG. 17 is a diagram showing a state in which a truck is traveling in front of the vehicle-mounted mobile station 4a.
As shown in FIG. 17, when a tall truck T travels in front of the vehicle-mounted mobile station 4a, the truck T becomes an obstacle and the transmission beam from the remote unit 2 and the reception beam of the vehicle-mounted mobile station 4a become obstacles. It may be blocked.
 このような場合、交差点I及びリモートユニット2を通過すれば、トラックTは、リモートユニット2と車載移動局4aとの間の障害物ではなくなる。
 よって、車載移動局4aは、可変範囲を後方(進行方向の反対方向)に向く範囲に変更しておくことで、受信ビームを後方へ向けておけば、交差点I及びリモートユニット2を通過した後、後方位置となるリモートユニット2を速やかに探索することができる。
In such a case, if the truck T passes through the intersection I and the remote unit 2, the truck T is no longer an obstacle between the remote unit 2 and the vehicle-mounted mobile station 4a.
Therefore, the in-vehicle mobile station 4a changes the variable range to a range facing backward (opposite direction in the traveling direction), so that if the receiving beam is directed backward, after passing through the intersection I and the remote unit 2. , The remote unit 2 at the rear position can be quickly searched.
 図16に戻って、その後、車載移動局4aが中間地点L2から、交差点Iから下流側へ所定の距離Kだけ進んだ地点L3までの間にリモートユニット2と通信接続できなければ、車載移動局4aは、受信ビームの可変範囲を、車載移動局4aの後方に向く受信ビームに制限された状態を維持する。
 車載移動局4aがリモートユニット2と通信接続できないまま地点L3を過ぎ、位置Dに到達すると、車載移動局4aは、通常モードを実行する(図14中、ステップS23)。よって、受信ビームの可変範囲は、図16に示すように方位角方向全範囲となる。
Returning to FIG. 16, then, from the vehicle-mounted mobile station 4a is waypoint L2, to be able communication connection with the remote unit 2 during the period from the intersection I to the point L3 advanced a predetermined distance K 3 to the downstream side, vehicle movement The station 4a maintains a state in which the variable range of the reception beam is limited to the reception beam directed to the rear of the vehicle-mounted mobile station 4a.
When the vehicle-mounted mobile station 4a passes the point L3 and reaches the position D without being able to communicate with the remote unit 2, the vehicle-mounted mobile station 4a executes the normal mode (step S23 in FIG. 14). Therefore, the variable range of the received beam is the entire range in the azimuth angle direction as shown in FIG.
 この場合、交差点Iを通過してから距離Kだけ進行するまでの間、車載移動局4aは、自局4aの後方位置となるリモートユニット2の探索を継続することができる。これにより、交差点Iを通過した後に、リモートユニット2と通信接続できる可能性を残すことができる。 In this case, until the proceeds from through the intersection I distance K 3, vehicle mobile station 4a can continue searching for the remote unit 2 which is a rear position of the own station 4a. As a result, it is possible to leave the possibility of being able to communicate with the remote unit 2 after passing through the intersection I.
 上記構成の車載移動局4aによれば、車載移動局4aが無線制御局1のリモートユニット2を探索する際に、車載移動局4aの位置に応じて受信ビームの可変範囲を変更する。
 つまり、車載移動局4aは、車載移動局4aの位置が制限エリア外である場合、可変範囲を方位角方向の全範囲とし、車載移動局4aの位置が制限エリア内である場合、可変範囲をより狭い制限範囲とする。
According to the vehicle-mounted mobile station 4a having the above configuration, when the vehicle-mounted mobile station 4a searches for the remote unit 2 of the wireless control station 1, the variable range of the received beam is changed according to the position of the vehicle-mounted mobile station 4a.
That is, the in-vehicle mobile station 4a sets the variable range to the entire range in the azimuth direction when the position of the in-vehicle mobile station 4a is outside the restricted area, and sets the variable range when the position of the in-vehicle mobile station 4a is within the restricted area. Make it a narrower limit.
 よって、車載移動局4aは自局4aの周囲にリモートユニット2が存在しないことが明らかなエリアが存在する場合や、一定の方向に位置するリモートユニット2との間で無線通信を行う場合等においては、可変範囲が狭い制限範囲を選択するように構成することができる。これにより、リモートユニット2を探索するために要する時間を短縮することができ、速やかに無線通信を開始することができる。 Therefore, the in-vehicle mobile station 4a has an area around the own station 4a where it is clear that the remote unit 2 does not exist, or when wireless communication is performed with the remote unit 2 located in a certain direction. Can be configured to select a limited range with a narrow variable range. As a result, the time required to search for the remote unit 2 can be shortened, and wireless communication can be started promptly.
 また、上記実施形態において、車載移動局4aの進行方向前方に設置されたリモートユニット2の上流側のエリアを制限エリアとし、かつ、可変範囲の制限範囲を、指向方向が車載移動局4aの進行方向に向く受信ビームに制限する範囲としたので、車載移動局4aは、制限エリア内に進入すれば、可変範囲を進行方向に絞ってリモートユニット2を探索することができる。これにより、車載移動局4aは、リモートユニット2を速やかに探索でき、リモートユニット2との無線通信を速やかに開始することができる。 Further, in the above embodiment, the area on the upstream side of the remote unit 2 installed in front of the vehicle-mounted mobile station 4a in the traveling direction is set as the restricted area, and the limited range of the variable range is set as the traveling direction of the vehicle-mounted mobile station 4a. Since the range is limited to the reception beam directed in the direction, the vehicle-mounted mobile station 4a can search the remote unit 2 by narrowing the variable range in the traveling direction if the vehicle enters the restricted area. As a result, the in-vehicle mobile station 4a can quickly search for the remote unit 2 and can quickly start wireless communication with the remote unit 2.
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 本実施形態では、交差点Iにリモートユニット2が設置された場合を例示したが、リモートユニット2は、道路Rのうち交差点以外の場所に設置してもよい。この場合、リモートユニット2の上流側に制限エリアが設定される。
 この場合、リモートユニット2の上流側とは、車載移動局4aから見て前方に位置するリモートユニット2の手前側であって、車載移動局4aの位置からリモートユニット2までの範囲を含む。
 また、制限エリアは、リモートユニット2が設置されていない交差点に設置されていてもよい。この場合、車載移動局4aは、交差点に接近すればリモートユニット2の設置に関わらず通常モードから制限モードに切り替えることとなる。
 よって、車載移動局4aは、交差点の位置を有していれば、通常モードから制限モードに切り替えることができ、リモートユニット2の設置に関する情報が取得できない場合や、リモートユニット2の導入段階で、リモートユニット2が設置されている交差点とされていない交差点とが混在している場合等においても、交差点にリモートユニット2が設置されていれば適切に対応することができる。
[Other]
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not restrictive.
In the present embodiment, the case where the remote unit 2 is installed at the intersection I is illustrated, but the remote unit 2 may be installed at a place other than the intersection on the road R. In this case, a restricted area is set on the upstream side of the remote unit 2.
In this case, the upstream side of the remote unit 2 is the front side of the remote unit 2 located in front of the vehicle-mounted mobile station 4a, and includes the range from the position of the vehicle-mounted mobile station 4a to the remote unit 2.
Further, the restricted area may be installed at an intersection where the remote unit 2 is not installed. In this case, if the vehicle-mounted mobile station 4a approaches the intersection, the vehicle-mounted mobile station 4a will switch from the normal mode to the restricted mode regardless of the installation of the remote unit 2.
Therefore, the in-vehicle mobile station 4a can switch from the normal mode to the restricted mode as long as it has the position of the intersection, and when the information on the installation of the remote unit 2 cannot be obtained or at the introduction stage of the remote unit 2, the vehicle-mounted mobile station 4a can switch to the restricted mode. Even when an intersection where the remote unit 2 is installed and an intersection where the remote unit 2 is not installed are mixed, if the remote unit 2 is installed at the intersection, it can be appropriately dealt with.
 本開示の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 The scope of the present disclosure is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include the meaning equivalent to the scope of claims and all changes within the scope.
1 無線制御局
2,2a,2b,2c,2d リモートユニット
4 移動局
4a 車載移動局
4b 移動端末
6,6a,6b,6c,6d 交通信号機
7 支柱
10 集線装置
11 光伝送路
12 信号制御機
14 路側無線通信機
16 車載通信機
18 集線装置
20 集約装置
20a 通信処理部
22 ITS用通信装置
24 中央管制装置
30 筐体
32 アレイアンテナ
32a 基板
32b アンテナ素子
34 合成分配器
36 送受信機
38 アンテナ制御装置
40 位相調整器
40a 移相器
44 筐体
46 第1アンテナモジュール
48 アレイアンテナ
48a 基板
48b アンテナ素子
50 制御装置
52 第2アンテナモジュール
54 IF部
56 GPS受信機
58 処理装置
58a 通信処理部
58b アンテナ制御部
62 切替スイッチ
64 送受信機
66 位相調整器
66a 移相器
68 合成分配器
B 局舎
F 無線フレーム
H 歩行者
I 交差点
 距離
 距離
 距離
L1 上流端
L2 中間地点
L3 地点
NW1 コアネットワーク
NW2 ネットワーク
P 周期
R 道路
T トラック
V 車両
W1 範囲
W2 範囲
b1~b12 ブロック
r1,r2,r3,r4 方路
1 Wireless control station 2, 2a, 2b, 2c, 2d Remote unit 4 Mobile station 4a In-vehicle mobile station 4b Mobile terminal 6, 6a, 6b, 6c, 6d Traffic signal 7 Prop 10 Concentrator 11 Optical transmission line 12 Signal controller 14 Roadside wireless communication device 16 In-vehicle communication device 18 Concentrator 20 Concentrator 20a Communication processing unit 22 ITS communication device 24 Central control device 30 Housing 32 Array antenna 32a Board 32b Antenna element 34 Composite distributor 36 Transmitter / receiver 38 Antenna control device 40 Phase adjuster 40a Phase shifter 44 Housing 46 First antenna module 48 Array antenna 48a Substrate 48b Antenna element 50 Control device 52 Second antenna module 54 IF unit 56 GPS receiver 58 Processing device 58a Communication processing unit 58b Antenna control unit 62 Changeover switch 64 Transmitter / receiver 66 Phase adjuster 66a Phase adjuster 68 Synthetic distributor B Station building F Wireless frame H Pedestrian I Intersection K 1 distance K 2 distance K 3 distance L1 Upstream end L2 Intermediate point L3 Point NW1 Core network NW2 network P period R Road T Truck V Vehicle W1 Range W2 Range b1 to b12 Block r1, r2, r3, r4 Direction

Claims (16)

  1.  通信接続に必要な情報を送信する無線制御局と、
     前記情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局と、を備えた移動通信システムであって、
     前記車載移動局は、
     前記受信ビームを形成する受信アンテナと、
     前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える
    移動通信システム。
    A wireless control station that sends information necessary for communication connection,
    A mobile communication system including an in-vehicle mobile station that waits for the information while changing the directivity direction of the received beam.
    The in-vehicle mobile station
    The receiving antenna forming the receiving beam and
    A mobile communication system including a receiving antenna control unit that changes a variable range of the directivity of the receiving beam according to the position of the vehicle-mounted mobile station.
  2.  前記受信アンテナ制御部は、前記車載移動局の位置が所定エリア外である場合、前記可変範囲を第1受信範囲とし、前記車載移動局の位置が前記所定エリア内である場合、前記可変範囲を前記第1受信範囲よりも狭い第2受信範囲とする
    請求項1に記載の移動通信システム。
    The receiving antenna control unit sets the variable range as the first reception range when the position of the vehicle-mounted mobile station is outside the predetermined area, and sets the variable range when the position of the vehicle-mounted mobile station is within the predetermined area. The mobile communication system according to claim 1, wherein the second reception range is narrower than the first reception range.
  3.  前記所定エリアは、前記車載移動局の進行方向前方に位置する交差点の上流側に設定されたエリアである
    請求項2に記載の移動通信システム。
    The mobile communication system according to claim 2, wherein the predetermined area is an area set on the upstream side of an intersection located in front of the vehicle-mounted mobile station in the traveling direction.
  4.  前記無線制御局は、道路上に設置され前記車載移動局と通信接続可能なリモートユニットを備え、
     前記所定エリアは、前記車載移動局の進行方向前方に位置する前記リモートユニットの上流側に設定されたエリアである
    請求項2に記載の移動通信システム。
    The wireless control station includes a remote unit installed on the road and capable of communicating with the in-vehicle mobile station.
    The mobile communication system according to claim 2, wherein the predetermined area is an area set on the upstream side of the remote unit located in front of the vehicle-mounted mobile station in the traveling direction.
  5.  前記第2受信範囲は、前記受信ビームの指向方向が前記車載移動局の進行方向に向くビームに制限される範囲である
    請求項3又は請求項4に記載の移動通信システム。
    The mobile communication system according to claim 3 or 4, wherein the second reception range is a range in which the directivity direction of the reception beam is limited to a beam directed in the traveling direction of the vehicle-mounted mobile station.
  6.  前記車載移動局が前記所定エリア内に進入した後、前記車載移動局が所定の走行距離だけ進行する間に前記情報を受信できない場合、前記受信アンテナ制御部は、指向方向が前記車載移動局の進行方向の反対方向に向く受信ビームに制限されるように前記可変範囲を変更する
    請求項3から請求項5のいずれか一項に記載の移動通信システム。
    When the in-vehicle mobile station cannot receive the information while the in-vehicle mobile station travels by a predetermined mileage after entering the predetermined area, the receiving antenna control unit has a directing direction of the in-vehicle mobile station. The mobile communication system according to any one of claims 3 to 5, wherein the variable range is changed so as to be limited to a reception beam directed in a direction opposite to the traveling direction.
  7.  前記受信アンテナ制御部は、前記車載移動局が前記所定エリア外へ退出してから所定距離だけ進行すると、前記可変範囲を前記第1受信範囲に変更する
    請求項6に記載の移動通信システム。
    The mobile communication system according to claim 6, wherein the receiving antenna control unit changes the variable range to the first receiving range when the vehicle-mounted mobile station moves out of the predetermined area and then travels by a predetermined distance.
  8.  前記無線制御局は、
     前記情報を、送信ビームの指向方向を変化させつつ送信する送信アンテナと、
     前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える
    請求項1に記載の移動通信システム。
    The wireless control station
    A transmitting antenna that transmits the information while changing the directivity direction of the transmitting beam, and
    The mobile communication system according to claim 1, further comprising a transmission antenna control unit that changes a variable range of the directivity direction of the transmission beam according to the light color of a traffic signal installed on a road on which the vehicle-mounted mobile station moves. ..
  9.  車載移動局と、
     前記車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局と、を備えた移動通信システムであって、
     前記無線制御局は、
     前記送信ビームを形成する送信アンテナと、
     前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える
    移動通信システム。
    In-vehicle mobile station and
    A mobile communication system including a wireless control station that transmits information necessary for communication connection with the in-vehicle mobile station while changing the directivity direction of a transmission beam.
    The wireless control station
    The transmitting antenna forming the transmitting beam and
    A mobile communication system including a transmission antenna control unit that changes a variable range of the directivity direction of the transmission beam according to the light color of a traffic signal installed on a road on which the vehicle-mounted mobile station moves.
  10.  前記送信アンテナ制御部は、前記可変範囲を第1送信範囲、及び前記第1送信範囲よりも狭い第2送信範囲のいずれかに変更する
    請求項9に記載の移動通信システム。
    The mobile communication system according to claim 9, wherein the transmission antenna control unit changes the variable range to either a first transmission range or a second transmission range narrower than the first transmission range.
  11.  前記第2送信範囲は、前記送信ビームの指向方向が前記道路の延線方向に向くビームに制限される範囲である
    請求項10に記載の移動通信システム。
    The mobile communication system according to claim 10, wherein the second transmission range is a range in which the directivity direction of the transmission beam is limited to a beam directed in the extending direction of the road.
  12.  前記送信アンテナ制御部は、前記交通信号機の灯色の切り替わりによって前記道路の進行が許可されたときに前記可変範囲を前記第1送信範囲から前記第2送信範囲に変更する
    請求項11に記載の移動通信システム。
    The eleventh aspect of claim 11, wherein the transmitting antenna control unit changes the variable range from the first transmission range to the second transmission range when the road is permitted to travel by switching the light color of the traffic signal. Mobile communication system.
  13.  無線制御局からの通信接続に必要な情報を、受信ビームの指向方向を変化させつつ待ち受ける車載移動局であって、
     前記受信ビームを形成する受信アンテナと、
     前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更する受信アンテナ制御部と、を備える
    車載移動局。
    An in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station while changing the directivity direction of the received beam.
    The receiving antenna forming the receiving beam and
    An in-vehicle mobile station including a receiving antenna control unit that changes a variable range of the directivity of the receiving beam according to the position of the in-vehicle mobile station.
  14.  車載移動局との間において通信接続に必要な情報を、送信ビームの指向方向を変化させつつ送信する無線制御局であって、
     前記送信ビームを形成する送信アンテナと、
     前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更する送信アンテナ制御部と、を備える
    無線制御局。
    A wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station while changing the directivity direction of the transmission beam.
    The transmitting antenna forming the transmitting beam and
    A wireless control station including a transmission antenna control unit that changes a variable range of the directivity direction of the transmission beam according to the light color of a traffic signal installed on a road on which the vehicle-mounted mobile station moves.
  15.  無線制御局からの通信接続に必要な情報を待ち受ける車載移動局が行う受信ビームの制御方法であって、
     指向方向を変化させつつ受信ビームを形成するステップと、
     前記車載移動局の位置に応じて、前記受信ビームの指向方向の可変範囲を変更するステップと、を含む
    受信ビームの制御方法。
    It is a reception beam control method performed by an in-vehicle mobile station that waits for information necessary for communication connection from a wireless control station.
    The step of forming the received beam while changing the directivity,
    A method for controlling a reception beam, which includes a step of changing a variable range of the directivity of the reception beam according to the position of the vehicle-mounted mobile station.
  16.  車載移動局との間において通信接続に必要な情報を送信する無線制御局が行う送信ビームの制御方法であって、
     指向方向を変更させつつ送信ビームを形成するステップと、
     前記車載移動局が移動する道路に設置された交通信号機の灯色に応じて、前記送信ビームの指向方向の可変範囲を変更するステップと、を含む
    送信ビームの制御方法。
    It is a transmission beam control method performed by a wireless control station that transmits information necessary for communication connection with an in-vehicle mobile station.
    Steps to form a transmitting beam while changing the directivity,
    A method for controlling a transmission beam, which includes a step of changing a variable range of a directivity direction of the transmission beam according to a light color of a traffic signal installed on a road on which the vehicle-mounted mobile station moves.
PCT/JP2020/032906 2019-12-10 2020-08-31 Mobile communication system, on-board mobile station, wireless control station, control method for transmission beam, and control method for reception beam WO2021117299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-222964 2019-12-10
JP2019222964 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021117299A1 true WO2021117299A1 (en) 2021-06-17

Family

ID=76329711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032906 WO2021117299A1 (en) 2019-12-10 2020-08-31 Mobile communication system, on-board mobile station, wireless control station, control method for transmission beam, and control method for reception beam

Country Status (1)

Country Link
WO (1) WO2021117299A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074145A (en) * 2005-09-05 2007-03-22 Toyota Motor Corp Vehicle-to-vehicle communication device
JP2011071646A (en) * 2009-09-24 2011-04-07 Aisin Seiki Co Ltd Vehicle-mounted communication device
JP2014064140A (en) * 2012-09-20 2014-04-10 Asahi Glass Co Ltd Antenna control method and antenna device
WO2017033799A1 (en) * 2015-08-26 2017-03-02 京セラ株式会社 Wireless communication device and network side device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074145A (en) * 2005-09-05 2007-03-22 Toyota Motor Corp Vehicle-to-vehicle communication device
JP2011071646A (en) * 2009-09-24 2011-04-07 Aisin Seiki Co Ltd Vehicle-mounted communication device
JP2014064140A (en) * 2012-09-20 2014-04-10 Asahi Glass Co Ltd Antenna control method and antenna device
WO2017033799A1 (en) * 2015-08-26 2017-03-02 京セラ株式会社 Wireless communication device and network side device

Similar Documents

Publication Publication Date Title
EP1961133B1 (en) Point-to-multipoint communications system and method
CN102428607B (en) Automatically directing apparatus and method for communication antenna
US20200313294A1 (en) Butler matrix circuit, phased array antenna, front-end module, and wireless communication terminal
US20060229070A1 (en) Soft handoff method and apparatus for mobile vehicles using directional antennas
US9123993B2 (en) Vehicle antenna apparatus with a horizontal main beam direction
KR102368601B1 (en) V2X Antenna and V2X Antenna system having the same
US9871570B1 (en) Beam determining unit and beam-searching method for a wireless heterogeneous network
JP2019021978A (en) Radio communication apparatus and mobile body
CN109618304B (en) Millimeter wave base station and vehicle-mounted communication system
US20220384955A1 (en) Antenna system mounted on vehicle
US11984950B2 (en) Vehicle, apparatus, method, and computer program for a vehicle in a mobile communication system
KR20220123133A (en) Broadband antennas deployed in vehicles
CN113556189B (en) Antenna adjusting method and device for unmanned aerial vehicle
EP3228023B1 (en) Dynamic azimuth adjustment for cellular repeater antenna systems
JP4265329B2 (en) Narrow wireless communication system, mobile communication terminal, base station
WO2021117299A1 (en) Mobile communication system, on-board mobile station, wireless control station, control method for transmission beam, and control method for reception beam
CN111869121A (en) Unmanned aerial vehicle comprising an antenna element panel
JP2021111946A (en) Mobile communication system, radio control station, and transmission beam control method
JP2012235334A (en) Roadside communication apparatus
JP2019009530A (en) Radio communication device, base station device, mobile station device, mobile body, and communication system
JP7238452B2 (en) Antenna module, mobile communication device, vehicle, switching method, and computer program
KR20240042087A (en) Broadband antenna placed in vehicle
US8233406B1 (en) Communication system and method for operating a control database for a wireless communication system
JP2021177612A (en) Terminal device, mobile communication system, and transmission method
JP2002305474A (en) Communication system for mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP