WO2021117275A1 - Liquid filter and liquid treatment method - Google Patents

Liquid filter and liquid treatment method Download PDF

Info

Publication number
WO2021117275A1
WO2021117275A1 PCT/JP2020/025376 JP2020025376W WO2021117275A1 WO 2021117275 A1 WO2021117275 A1 WO 2021117275A1 JP 2020025376 W JP2020025376 W JP 2020025376W WO 2021117275 A1 WO2021117275 A1 WO 2021117275A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
liquid
layered double
double hydroxide
liquid filter
Prior art date
Application number
PCT/JP2020/025376
Other languages
French (fr)
Japanese (ja)
Inventor
朝倉健夫
大野睦浩
草野正明
関口政一
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Priority to JP2021563740A priority Critical patent/JP7309120B2/en
Publication of WO2021117275A1 publication Critical patent/WO2021117275A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present invention relates to a liquid filter using a layered double hydroxide and a liquid treatment method.
  • Layered double hydroxides are known to have an anion exchange effect.
  • arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite ions, and other anionic harmful substances By immobilizing arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite ions, and other anionic harmful substances by this anion exchange action, waste safety improvement technology and detoxification environment It is expected that the improvement technology can contribute to improving the quality of contaminated water, preventing the elution of harmful substances, improving the soil, and promoting the stabilization of harmful substances at waste disposal sites.
  • a layered double hydroxide to a filter (for example, Patent Document 1).
  • an object of the first invention and the third invention is to provide a liquid filter in which the housing is less likely to be clogged even if the layered double hydroxide collapses due to water flow or the like.
  • An object of the second invention is to provide a method for treating a liquid that can easily detect the replacement time of the layered double hydroxide supplied to the housing.
  • the liquid filter according to the first invention includes a housing containing a layered double hydroxide that adsorbs harmful substances contained in the liquid, and a moving device that moves the layered double hydroxide in the housing.
  • the method for treating a liquid according to the second invention includes a step of setting a height of a housing through which the liquid passes and a dimension in a direction intersecting the height of the housing, and a unit time of the liquid to be supplied to the housing.
  • a step of setting the supply amount per unit a step of setting the supply amount of the layered double hydroxide that adsorbs harmful substances contained in the liquid to the housing, and the layered double hydroxide by passing water through the liquid.
  • the liquid filter according to the third invention guides the housing containing the layered double hydroxide that adsorbs harmful substances contained in the liquid and the liquid supplied to the housing toward the discharge side of the housing. It is equipped with a pipe.
  • the moving device moves the layered double hydroxide
  • the clogging of the housing can be reduced.
  • the replacement time of the layered double hydroxide and the time when the clog in the housing is or is likely to occur are almost the same, the replacement time of the layered double hydroxide can be easily detected. can do.
  • the pipe guides the liquid toward the discharge side of the housing, the clogging of the housing can be reduced.
  • FIG. 1 is a schematic view showing the filtration device 100 of the first embodiment.
  • the filtration device 100 of the present embodiment includes a liquid filter 1, a supply unit 10 for supplying the liquid to be filtered to the liquid filter 1, and a discharge unit 20 for discharging the liquid filtered by the liquid filter 1.
  • a differential pressure gauge 30 that detects the differential pressure between the supply unit 10 and the discharge unit 20, a moving device 40 that moves the layered double hydroxide 3 described later, and a control device 50 that controls the entire filtration device 100. doing.
  • the liquid filter 1 has a housing 2 and a layered double hydroxide 3 housed in the housing 2.
  • a resin such as phenol resin or polypropylene resin or a metal such as stainless steel can be used.
  • the housing 2 has a supply unit side screwed portion that is screwed with the supply unit 10 and a discharge unit side screwed portion that is screwed with the discharge unit 20.
  • the size of the layered double hydroxide 3 is shown as a size that is easy to see, unlike the actual size.
  • the housing 2 of the present embodiment has a cylindrical shape, and as shown in FIG. 1, the dimension in the X direction is 3 to 8 times, preferably 4 to 5 times the dimension in the Y direction (dimension in the height direction). It is twice as large.
  • the linear velocity of the liquid supplied to the housing 2 can be lowered, so that the layered double hydroxides 3 are less likely to collapse, and the liquid filter 1 has a small particle size of the layered double hydroxides 3a. It is possible to prevent clogging due to the above.
  • the dimension of the housing 2 in the X direction is increased and the dimension of the housing 2 in the height direction is decreased, the space velocity (Space Velocity) of the liquid supplied to the housing 2 is increased. Therefore, the contact time of arsenic contained in the liquid supplied to the housing 2 in contact with the layered double hydroxide 3 is shortened, and arsenic may not be sufficiently adsorbed by the layered double hydroxide 3.
  • the dimension of the housing 2 in the Y direction is increased by 3 to 8 times, preferably 4 to 5 times, the dimension in the X direction, and arsenic and layered double hydroxides are provided.
  • the contact time with 3 may be lengthened.
  • the moving device 40 can also be applied to a housing whose dimension in the Y direction is larger than the dimension in the X direction.
  • the shape of the housing 2 is not limited to a cylindrical shape, and may be a conical shape or a rectangular shape.
  • the method for producing the layered double hydroxide 3 is disclosed in the international application number PCT / JP2017 / 046943 (WO2018 / 124,190), etc., which the applicant of the present application filed earlier. Therefore, although detailed description is omitted, an acidic solution containing divalent metal ions and trivalent metal ions and an alkaline solution are mixed to synthesize layered double hydroxides 3, and washing, filter pressing, drying, etc.
  • Granular layered double hydroxide 3 can be produced through each of the steps described above. The production control is performed so that the particle size of the granular layered double hydroxide 3 is preferably 0.5 to 1.2 mm rather than 0.4 mm to 1.5 mm in the present embodiment.
  • the layered double hydroxide 3 Since the granular layered double hydroxide 3 becomes muddy due to the passage of liquid water, the layered double hydroxide 3 before becoming muddy and muddy (for example, having a particle size of 0.3 mm or less) is moved. It is preferable to move by 40 (details will be described later).
  • the supply unit 10 supplies a liquid containing a harmful substance such as arsenic to the housing 2 from a water source such as a container or a well (not shown).
  • the supply unit 10 supplies the liquid in the range of 3 liters to 12 liters per hour, but the amount of the liquid supplied from the supply unit 10 depends on the size (volume) of the housing 2. It can be decided as appropriate.
  • one supply unit 10 is provided on the right end side in FIG. 1, a plurality of supply units 10 may be provided, and the mounting position of the supply unit 10 can be arbitrarily set.
  • the supply unit 10 may include a diffusion unit such as a shower head so that the liquid supplied into the housing 2 diffuses in the X direction.
  • the diffusion unit is preferably provided on the housing 2 side of the supply unit 10. This makes it possible to prevent the liquid supplied from the supply unit 10 from being adsorbed only by the layered double hydroxide 3 at a specific location.
  • the discharge unit 20 discharges the liquid after arsenic is adsorbed by the layered double hydroxide 3 to the outside of the housing 2. It is preferable that the discharge unit 20 is provided with a filter that prevents the layered double hydroxide 3 from passing through so that the layered double hydroxide 3 is not discharged from the discharge unit 20.
  • the filter may be formed with an opening through which the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 pass.
  • the filter may be formed with an opening that does not allow the layered double hydroxide 3a having a small particle size to pass through, but allows the layered double hydroxide 3 that has become muddy to pass through.
  • one discharge unit 20 is provided on the left end side in FIG.
  • a plurality of discharge units 20 may be provided, and the mounting position of the discharge unit 20 can be arbitrarily set.
  • the liquid is supplied from above the housing 2 and discharged from below the housing 2, but the liquid may be supplied from below the housing 2 and discharged from above the housing 2.
  • a plurality of valves may be switched to switch between supply and discharge.
  • the differential pressure gauge 30 measures the pressure difference between the pressure of the liquid flowing through the supply unit 10 and the liquid flowing through the discharge unit 20.
  • One end of the differential pressure gauge 30 is connected to the supply unit 10, the other end is connected to the discharge unit 20, and the measurement result is output to the control device 50.
  • the differential pressure measured by the differential pressure gauge 30 is small, clogging due to the collapse of the layered double hydroxide 3 does not occur, while when the differential pressure measured by the differential pressure gauge 30 is large, the layered double hydroxide is water. It is considered that clogging has occurred due to the collapse of the oxide 3, or clogging may occur.
  • the housing 2 when a differential pressure of 100 KPa or more or 150 KPa or more is generated, the housing 2 may be clogged or may be clogged.
  • a differential pressure that should be determined to be clogged in the housing 2 may be set according to the pressure resistance of the housing 2.
  • the moving device 40 moves the layered double hydroxide 3 so that the housing 2 is not clogged.
  • the moving device 40 may be any device that can vibrate the housing 2 in the vertical direction (Y-axis direction), for example, an ultrasonic vibrator that generates ultrasonic vibration, a MEMS vibrator, or the like. May be used.
  • Y-axis direction vertical direction
  • the moving devices 40 may be provided on the lower surface of the housing 2, but the number of the moving devices 40 can be arbitrarily set, and the moving devices 40 may be provided on the side surface or the upper surface of the housing 2.
  • the moving device 40 may be one that can generate vibration in the left-right direction (X-axis direction).
  • the moving device 40 may be provided in the housing 2.
  • FIG. 2 is a schematic view showing the inside of the housing 2 after driving the moving device 40.
  • the shape of the upper layered double hydroxide 3 is deformed by the passage of liquid, and there are many layered double hydroxides 3a having a small particle size on the upper side.
  • the layered double hydroxide 3a having a small particle size is diffused, so that the housing caused by the layered double hydroxide 3a having a small particle size It is possible to reduce the occurrence of clogging in 2.
  • the mobile device 40 can also be configured by deforming the supply unit 10 and the discharge unit 20.
  • FIG. 3 is a diagram showing a modified example of the supply unit 10 (discharge unit 20), and since the configuration is the same, the description will be continued using the supply unit 10 as an example.
  • the supply unit 10 is connected to a container (not shown) that stores a liquid containing a harmful substance via a supply valve 11, and after arsenic is adsorbed by the layered double hydroxide 3 via the discharge valve 12. Is connected to a pipe that discharges the liquid of the above to the outside of the housing 2. Further, the supply valve 11 and the discharge valve 12 are connected to the control device 50.
  • the control device 50 switches the supply valve 11 of the supply unit 10 from the open state to the closed state to stop the supply of the liquid, and the discharge valve 12 of the supply unit 10. Is switched from the closed state to the open state so that the liquid in the housing 2 can be discharged from the supply unit 10 using a pump (not shown). Further, the control device 50 switches the discharge valve 12 of the discharge unit 20 from the open state to the closed state to stop the discharge of the liquid, and switches the supply valve 11 of the discharge unit 20 from the closed state to the open state to the discharge unit 20.
  • the liquid can be supplied to the housing 2 by using a pump (not shown).
  • control device 50 supplies the liquid from the lower side of the housing 2 and discharges the liquid after the arsenic is adsorbed by the layered double hydroxide 3 from the upper side of the housing 2 to the outside of the housing 2.
  • the layered double hydroxide 3a having a small particle size diffuses in the housing 2, so that clogging in the housing 2 occurs. Can be reduced.
  • the moving device 40 using the vibrator and the moving device 40 using the supply valve 11 and the discharge valve 12 may be used in combination.
  • the supply unit 10 and the discharge unit 20 are provided on the upper surface of the housing 2, and the supply unit 10 and the discharge unit 20 are provided on the lower surface of the housing 2, so that the layered double hydroxide 3a having a small particle size is provided. May be diffused in the housing 2. In this case as well, it may be used in combination with the moving device 40 using the vibrator.
  • the control device 50 includes a CPU that performs various arithmetic processes and a memory that stores programs and data, and controls the entire filtration device 100.
  • the control device 50 performs control for reducing clogging in the housing 2 such as switching control for the supply valve 11 and the discharge valve 12 described above, and control for replacement of the layered double hydroxide 3.
  • FIG. 4 is a flowchart of the filtration process by the control device 50, and the description will be continued below based on the flowchart of FIG.
  • N the parameter indicating the number of times the mobile device 40 is driven
  • the control device 50 starts timing at the timing when the layered double hydroxide 3 is supplied to the housing 2 and a liquid containing arsenic or the like is passed through the housing 2 (step S1).
  • the control device 50 may store the date and time when the water flow starts instead of the timekeeping. In either case, it is sufficient to know the total time for passing water. Further, when the water flow is not continuously performed, the control device 50 may stop the time counting at the end of the water flow and restart the time measurement at the restart of the water flow.
  • the control device 50 measures with a differential pressure gauge 30 when a liquid containing arsenic or the like is flowing, and determines whether or not the differential pressure between the supply unit 10 and the discharge unit 20 is equal to or less than the threshold value (step S2).
  • the threshold value is set to 150 KPa, and the control device 50 repeats step S2 on the assumption that the housing 2 is not clogged when the differential pressure by the differential pressure gauge 30 is 150 KPa or less.
  • the control device 50 proceeds to step S3 on the assumption that clogging in the housing 2 may occur or may occur when the differential pressure by the differential pressure gauge 30 exceeds 150 KPa.
  • the control device 50 drives the moving device 40 to diffuse the layered double hydroxide 3a (see FIG. 1) having a small particle size located in the upper part of the housing 2 (step S3). ).
  • the moving device 40 one using an oscillator, one using a supply valve 11 and a discharge valve 12, and one having a supply unit 10 and a discharge unit 20 on each of the upper surface and the lower surface are driven individually or in combination as appropriate. can do.
  • the control device 50 determines whether or not the differential pressure has become equal to or lower than the threshold value due to the driving of the moving device 40 (step S4).
  • the control device 50 repeats the determination in step S4 until the differential pressure becomes equal to or less than the threshold value.
  • the control device 50 filters when the differential pressure does not fall below the threshold value even when the moving device 40 is driven for a predetermined time (for example, 5 to 60 minutes), the differential pressure does not decrease, or the differential pressure increases. It may be determined that the device 100 has some abnormality.
  • the control device 50 may stop the water flow or replace the layered double hydroxide 3 because the adsorption performance of the layered double hydroxide 3 has deteriorated.
  • the description will be continued on the assumption that the differential pressure becomes equal to or less than the threshold value due to the driving of the moving device 40.
  • the control device 50 stops driving the mobile device 40 (step S5), increases the number of times N of the mobile device 40 is driven by one (N ⁇ N + 1), and stores it in the memory (step). S6).
  • the reason why the control device 50 stores the drive count N of the mobile device 40 in the memory is to determine the replacement time of the layered double hydroxide 3.
  • the control device 50 determines whether to replace the layered double hydroxide 3 (step S7).
  • 1 kg of the layered double hydroxide 3 can adsorb arsenic contained in 6000 to 8000 liters of liquid.
  • the control device 50 may determine the replacement time of the layered double hydroxide 3 based on the time counting time acquired in step S1.
  • control device 50 may determine the replacement time of the layered double hydroxide 3 based on the number of times N of the moving device 40 is driven and the driving time of the moving device 40. .. When the determination is made using the drive time of the mobile device 40, the time from the start to the stop of the drive may be measured and totaled each time the mobile device 40 is driven.
  • the filtration device 100 is equipped with various communication devices such as wireless communication and wired communication, weather information such as temperature, humidity, and rainfall can be obtained, and the above-mentioned correction coefficient can be set or changed.
  • weather information such as temperature, humidity, and rainfall
  • the above-mentioned correction coefficient can be set or changed.
  • the arsenic concentration is often caused by a water source such as a well, it is possible to store water source data such as which water source the liquid is from and position information in a memory and reflect it in the above correction coefficient. Good.
  • the differential pressure does not fall below the threshold value even after a predetermined time elapses, the differential pressure does not decrease, or the differential pressure does not decrease. May be used when becomes high. That is, the volume and shape of the housing 2, the supply amount of the layered double hydroxide 3 supplied to the housing 2, and the supply amount of the liquid supplied from the supply unit 10 are set, and the layered double hydroxide 3 is provided. It suffices to make the replacement time substantially coincide with the time when the inside of the housing 2 is or is likely to be clogged. In this case, the moving device 40 can be omitted.
  • the control device 50 drives the moving device 40 to drive the layered double hydroxide.
  • the replacement time of 3 may be made to coincide with the time when the inside of the housing 2 is or is likely to be clogged.
  • the control device 50 may drive the moving device 40 based on the differential pressure of the differential pressure gauge 30, or may drive the moving device 40 based on the liquid water flow time or the liquid water flow amount.
  • the replacement time of the layered double hydroxide 3 and the time when clogging in the housing 2 is or is likely to occur are substantially the same, the replacement time of the layered double hydroxide 3 is set to the first (1) in the housing 2. It may be the time when the clogging of the second time) occurs or is likely to occur, or it may be the time when the second and subsequent clogging occurs or is likely to occur.
  • step S7 If the determination in step S7 is Yes, the control device 50 performs various processes for exchanging the layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size (step S8), and ends this flowchart. ..
  • the control device 50 determines the replacement time of the layered double hydroxide 3 according to the measurement result of the differential pressure gauge 30, so that the liquid filter 1 that is easy to use is realized. can do. Further, since the control device 50 determines the replacement time of the layered double hydroxide 3 based on at least one of the drive time of the mobile device 40 and the number of times the mobile device 40 is driven, the liquid filter 1 that is easy to use is realized. can do.
  • the dimension in the height direction (Y direction) of the housing 2 and the dimension in the direction intersecting the height direction (X direction) are set, and the liquid to be supplied to the housing 2 is supplied per unit time.
  • the amount is set, the amount of the layered double hydroxide 3 supplied to the housing 2 is set, and the layered double hydroxide is clogged when the housing 2 is clogged due to the change in the shape of the layered double hydroxide 3 due to the passage of liquid.
  • the hydroxide 3 is being replaced.
  • the layered double hydroxide 3 can be replaced at an appropriate timing without providing a sensor for detecting the deterioration of the adsorption performance of the layered double hydroxide 3.
  • the housing 2 can also be applied to a housing whose dimension in the Y direction is larger than the dimension in the X direction.
  • FIG. 5 is a schematic view showing the filtration device 100 of the second embodiment, and in the second embodiment, the housing 2 is provided at an angle.
  • the space velocity of the fluid can be reduced by tilting the housing 2 by 3 to 40 degrees, preferably 5 to 30 degrees.
  • the time for the arsenic contained in the liquid to come into contact with the layered double hydroxide 3 can be lengthened as compared with the case where the housing 2 is not tilted. If the angle at which the housing 2 is tilted is less than 3 degrees, the time for arsenic to come into contact with the layered double hydroxide 3 is not so long, and if the angle at which the housing 2 is tilted exceeds 40 degrees, the speed at which the liquid heads toward the discharge unit 20 increases. It gets too fast. As described above, according to the second embodiment, it is possible to realize the liquid filter 1 capable of efficiently adsorbing arsenic.
  • FIG. 6 is a schematic view showing a modified example of the second embodiment, and is provided with a second discharge portion 21 for discharging the muddy layered double hydroxide 3 to the outside of the housing 2.
  • the muddy layered double hydroxide 3 tends to accumulate on the upper part of the housing 2, and when the housing 2 is tilted as in the present embodiment, it moves to the left side of FIG. 6 according to the tilt. Therefore, in this modification, the mud-like layered double hydroxide 3 is passed through the left end of the upper part of the housing 2 (one end on the lower side of the housing 2), and the non-mud-like layered double hydroxide is passed.
  • the second discharge unit 21 is a pipe member, and in this modified example, it is connected to the discharge unit 20 to discharge the muddy layered double hydroxide 3 to the outside of the housing 2, but the discharge unit 20 is It may be an independent discharge pipeline.
  • the opening formed at the left end of the upper part of the housing 2 may be sized so as to allow the layered double hydroxide 3a having a small particle size to pass through.
  • the moving device 40 may be omitted.
  • the second discharge unit 21 of this modification may be applied to the first embodiment.
  • the second discharge portion 21 may be provided at either the left end or the right end of the housing 2, or may be provided at both the left end and the right end of the housing 2.
  • the muddy layered double hydroxide 3 can be discharged, so that the clogging of the housing 2 can be reduced.
  • FIG. 7 is a schematic view showing the filtration device 100 of the third embodiment, in which a moving device 40 is provided in the housing 2 and a second supply unit 60 for supplying a new layered double hydroxide 3 to the housing 2. Is provided. Further, in the present embodiment, the muddy layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size are passed through, and the other layered double hydroxide 3 is not passed through the selection unit 5.
  • a third discharge section 22 is provided for discharging the muddy layered double hydroxide 3 that has passed through the selection section 5 and the layered double hydroxide 3a having a small particle size to the outside of the housing 2.
  • the illustration of the differential pressure gauge 30 is simplified.
  • the moving device 40 of the present embodiment includes a belt conveyor 41 and a roll member 42 that drives the upper surface of the belt conveyor 41 in the direction of an arrow in the drawing.
  • the belt conveyor 41 only needs to be able to convey the muddy layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size, and for example, a hole smaller than that of the layered double hydroxide 3a having a small particle size is formed. It can be in the form of a mesh. In this case, it is desirable that the mesh-shaped belt conveyor 41 determines the mesh count so that the muddy layered double hydroxide 3 can also be conveyed.
  • the roll member 42 is made of resin or metal, and is rotated counterclockwise by a motor (not shown) to repeatedly drive the upper surface of the belt conveyor 41 in the direction of the arrow.
  • the selection unit 5 is a plate-shaped member extending in the Y direction, and allows the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 to pass through, while the other layered double hydroxides. It has an opening of a size that does not allow the object 3 to pass through. Therefore, the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 conveyed by the belt conveyor 41 pass through this opening and are conveyed to the disposal portion 2a of the housing 2.
  • the third discharge section 22 is provided below the disposal section 2a, the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 are placed in the housing 2. Can be disposed of externally.
  • the size of the opening of the selection unit 5 may be set so that the layered double hydroxide 3a having a small particle size is not discharged from the third discharge unit 22.
  • the control device 50 may rotate a motor (not shown) clockwise to drive the upper surface of the belt conveyor 41 in the direction opposite to the arrow direction. Further, it is preferable to provide the selection unit 5, the disposal unit 2a, and the discharge unit 20 on the right end side of the housing 2. The opening of the selection unit 5 is made smaller so that the layered double hydroxide 3a having a small particle size does not pass through the selection unit 5, but the muddy layered double hydroxide 3 passes through the selection unit 5. It may be.
  • the second supply unit 60 has a supply path 61 for supplying the new layered double hydroxide 3, and a valve 62 connected to the control device 50.
  • the control device 50 can periodically control the valve 62 from the closed state to the open state to supply the housing 2 with the new layered double hydroxide 3.
  • the muddy layered double hydroxide 3 is discharged to the outside of the housing 2, while a new layered double hydroxide 3 is provided to the housing 2, so that the housing 2 is more clogged. Can be reduced.
  • the differential pressure gauge 30 may be omitted, or the second supply unit 60 may be omitted.
  • the disposal unit 2a, the selection unit 5, the mobile device 40, and the second supply unit 60 of the third embodiment can also be applied to the second embodiment.
  • FIG. 8 is a schematic view showing the filtration device 100 of the fourth embodiment.
  • the housing 2 has a dimension in the Y direction larger than a dimension in the X direction.
  • the valve 13 is provided in the supply unit 10. The valve 13 is switched between the open state and the closed state by the air pressure from a compressor (not shown), and the liquid is supplied to the housing 2 when the valve 13 is in the open state, and the liquid is not supplied to the housing 2 when the valve 13 is in the closed state. There is.
  • a part of the valve 13 is designed so that the color is switched between the open state and the closed state.
  • the color is a color that calls attention such as yellow or red, and can be identified from the outside. You can do it.
  • the control device 50 opens the valve 13 from the open state to the closed state when the replacement time of the layered compound hydroxide 3 coincides with the time when the inside of the housing 2 is or is likely to be clogged.
  • the supply of the liquid to the housing 2 is stopped by switching to.
  • a part of the valve 13 changes to a color that calls attention, so that it is possible to notify the replacement time of the layered double hydroxide 3.
  • a sound may be generated to call attention.
  • FIG. 9 is a schematic view showing the filtration device 100 of the fifth embodiment.
  • the pipe 6 guides the liquid supplied from the supply unit 10 to the middle or lower side of the housing 2 along the Y direction of the housing 2.
  • resin, metal, or the like can be used as the material of the pipe 6.
  • one end (upper side) of the pipe 6 is located above the layered double hydroxide 3. This is to prevent the pipe 6 from being clogged by preventing the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 from entering the inside of the pipe 6.
  • one end (upper side) of the pipe 6 is located above the liquid surface.
  • the pipe 6 has a larger number of holes 7 on the other end side (lower side) than on one end side (upper side), and is 5 mm to 50 mm, preferably about 5 mm to 25 mm from one end (upper side). Until then, the hole 7 is not formed. This is to prevent the liquid supplied from the supply unit 10 from being supplied to the upper part of the housing 2.
  • the liquid supplied from the supply unit 10 is supplied to the lower side of the housing 2 by the pipe 6 and the hole portion 7 provided in the pipe 6, a layer having a small particle size in the upper part of the housing 2 is supplied.
  • the double hydroxide 3a is less likely to become muddy, and the housing 2 is less likely to be clogged.
  • the size of the pore portion 7 is preferably smaller than the size of the layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size. This makes it possible to prevent the pipe 6 from being clogged with the layered double hydroxide 3 or the layered double hydroxide 3a having a small particle size. Further, if the size of the hole 7 is made larger near the center (middle in the Y direction) or near the outlet (lower in the Y direction) of the pipe than on the inlet side (upper part in the Y direction) of the pipe 6, the size of the hole 7 is increased from the supply part 10. The supplied liquid can be guided to the middle or lower part of the housing 2.
  • the size of the hole 7 may be larger near the center of the pipe 6 than near the outlet side of the pipe 6. Further, in the fifth embodiment, since the inner diameter of the pipe 6 is larger than the size of the hole 7, the amount of the liquid discharged from one hole 7 is the amount of the liquid discharged from the lower part of the pipe 6. It is less than the amount of emissions.
  • the number of pipes 6 may be one or three or more.
  • the layered double hydroxide 3a having a small particle size becomes muddy, it may become muddy by about T cm (for example, 5 cm) from the upper layer. Therefore, when a plurality of pipes 6 are provided, the two pipes 6 are separated by the muddy layered double hydroxide 3 by providing them at intervals of 2 T cm (for example, 10 cm) or more in the X direction. You can prevent it from getting clogged.
  • T cm for example, 10 cm
  • a plurality of pipes 6 are provided, they are preferably provided at substantially equal intervals, and may be arranged so as to be radial, for example.
  • the length of the pipe 6 in the Y direction can be arbitrarily set, and the length of the housing 2 may be set to near the center of the Y direction, or may be set to the vicinity of the lower part of the pipe 6 in the Y direction. Good.
  • the plurality of pipes 6 may have the same length.
  • the holding member 8 is a member that holds the pipe 6, and may have any shape as long as the pipe 6 can be held, and a resin, metal, or the like can be used as the material.
  • a resin net member may be used as the holding member 8 to hold the pipe 6 in the mesh.
  • the pipe 6 can be held by utilizing the elastic deformation of the net member.
  • one holding member 8 can hold a plurality of holding members 8. In FIG. 9, the holding member 8 holds the pipe 6 at one place, but a plurality of holding members 8 may be provided at a distance in the Y direction to hold the pipe 6 at a plurality of places.
  • the pipe 6 guides the liquid supplied from the supply unit 10 to the lower part of the housing 2, the muddy layered double hydroxide 3 is formed only on the upper part of the housing 2. Can be prevented. Thereby, it is possible to reduce the clogging of the housing 2. Further, by adjusting the number, length, diameter, number of holes 7 and the like of the pipe 6, the time when the layered double hydroxide 3 is replaced and the time when the inside of the housing 2 is clogged or is likely to occur. If the above are substantially the same, the replacement time of the layered double hydroxide 3 can be easily detected based on the measurement result of the differential pressure gauge 30.
  • the moving device 40 may be driven in order to substantially coincide with the time when the layered double hydroxide 3 is replaced and the time when the housing 2 is clogged or is likely to be clogged.
  • any mobile device 40 of the first to fourth embodiments may be used. If the replacement time of the layered double hydroxide 3 and the time when the clogging in the housing 2 occurs or is likely to occur can be substantially coincided with each other without using the moving device 40, the moving device It is also possible to omit 40.
  • FIG. 10 is a schematic view of a filtration device 100 showing a modified example of the fifth embodiment.
  • the inner diameter of the pipe 6 is larger than the size of the hole 7, the amount of liquid discharged from the lower part of the pipe 6 is large, and the layered double hydroxide having a small particle size near the lower part of the pipe 6 is discharged.
  • the hydroxide 3a may become muddy.
  • the liquid guided to the lower part of the housing 2 by the pipe 6 is close to the discharge portion 20, the liquid discharged from the lower part of the pipe 6 has a shorter contact time with the layered double hydroxide 3, and arsenic. May not be sufficiently adsorbed by the layered double hydroxide 3.
  • the shape of the pipe 6 is tapered so that the outer diameter and the inner diameter become smaller toward the lower part of the pipe (toward the discharge portion 20). Therefore, in this modification, the amount of liquid discharged from the lower part of the pipe 6 can be reduced as compared with the fifth embodiment, so that the layered double hydroxide having a small particle size near the lower part of the pipe 6 can be reduced. It is possible to reduce the muddy state of 3a. Further, since the amount of the liquid discharged from the lower part of the pipe 6 is reduced, the amount of the liquid having a short contact time with the layered double hydroxide 3 can be reduced. Even when the inner diameter of the pipe 6 is tapered, the inner diameter of the lower portion of the pipe 6 is preferably equal to or larger than the size of the hole 7.
  • a flow meter may be provided in the supply unit 10 and the discharge unit 20 instead of the differential pressure gauge 30, and whether the housing 2 is clogged due to the difference between the flow rate flowing through the supply unit 10 and the flow rate flowing through the discharge unit 20. May be judged.
  • the liquid filter 1 may be a cartridge exchange type.
  • the supply valve 11, the discharge valve 12, the valve 13 and the valve 62 may be an air valve or an electromagnetic valve. Further, the first to fifth embodiments may be combined as appropriate.
  • Liquid filter 2 Housing 3 Layered compound hydroxide 3a Small particle size layered compound hydroxide 10 Supply part 11 Supply valve 12 Discharge valve 20 Discharge part 30 Differential pressure gauge 40 Moving device 50 Control device 100 Filtering device

Abstract

In order to reduce clogging of a filter when a layered double hydroxide breaks apart due to water being passed, the invention provides a liquid filter comprising a housing accommodating a layered double hydroxide for adsorbing a harmful substance contained in a liquid and a moving device for moving the layered double hydroxide located inside the housing. 

Description

液体用フィルタならびに液体の処理方法Liquid filter and liquid processing method
 本発明は層状複水酸化物を用いた液体用フィルタならびに液体の処理方法に関する。 The present invention relates to a liquid filter using a layered double hydroxide and a liquid treatment method.
 層状複水酸化物は、陰イオン交換作用を有していることが知られている。そして、この陰イオン交換作用によって、ヒ素、フッ素、ホウ素、セレン、六価クロム、亜硝酸イオン、その他の陰イオン系の有害物質を固定化すれば、廃棄物の安全性向上技術、無害化環境改善技術において、汚染水の水質改善、有害物質の溶出防止、土壌改良、廃棄物処分場での有害物質の安定化促進等に寄与できるものと期待されている。そして、層状複水酸化物をフィルタに適用する提案もなされている(例えば特許文献1)。 Layered double hydroxides are known to have an anion exchange effect. By immobilizing arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite ions, and other anionic harmful substances by this anion exchange action, waste safety improvement technology and detoxification environment It is expected that the improvement technology can contribute to improving the quality of contaminated water, preventing the elution of harmful substances, improving the soil, and promoting the stabilization of harmful substances at waste disposal sites. Then, it has been proposed to apply a layered double hydroxide to a filter (for example, Patent Document 1).
特開2019―828号公報JP-A-2019-828
 しかしながら、層状複水酸化物にはまだ改善の余地があり、層状複水酸化物が供給されているハウジングに通水した際に顆粒状の層状複水酸化物が崩れてしまうという課題があった。
 また、ハウジングに供給された層状複水酸化物の交換時期については具体的な提案がなかった。
However, there is still room for improvement in the layered double hydroxide, and there is a problem that the granular layered double hydroxide collapses when water is passed through the housing to which the layered double hydroxide is supplied. ..
In addition, there was no concrete proposal as to when to replace the layered double hydroxide supplied to the housing.
 そこで、本第1発明および本第3発明では、層状複水酸化物が通水などにより崩れてもハウジングが詰まることを低減した液体用フィルタを提供することを目的とする。
 本第2発明では、ハウジングに供給された層状複水酸化物の交換時期を容易に検出する液体の処理方法を提供することを目的とする。
Therefore, an object of the first invention and the third invention is to provide a liquid filter in which the housing is less likely to be clogged even if the layered double hydroxide collapses due to water flow or the like.
An object of the second invention is to provide a method for treating a liquid that can easily detect the replacement time of the layered double hydroxide supplied to the housing.
 本第1発明に係る液体用フィルタは、液体に含まれる有害物質を吸着する層状複水酸化物が収容されたハウジングと、前記ハウジング内の前記層状複水酸化物を移動させる移動装置と、を備えている。
 本第2発明に係る液体の処理方法は、液体を通水するハウジングの高さと、前記ハウジングの高さと交差する方向の寸法と、を設定するステップと、前記ハウジングに供給する前記液体の単位時間あたりの供給量を設定するステップと、前記液体に含まれる有害物質を吸着する層状複水酸化物の前記ハウジングへの供給量を設定するステップと、前記液体の通水による前記層状複水酸化物の形状の変化に伴う前記ハウジングに詰まりが生じた際に前記層状複水酸化物を交換するステップと、を含んでいる。
 本第3発明に係る液体用フィルタは、液体に含まれる有害物質を吸着する層状複水酸化物が収容されたハウジングと、前記ハウジングに供給される前記液体を前記ハウジングの排出側に向けて導くパイプと、を備えている。
The liquid filter according to the first invention includes a housing containing a layered double hydroxide that adsorbs harmful substances contained in the liquid, and a moving device that moves the layered double hydroxide in the housing. I have.
The method for treating a liquid according to the second invention includes a step of setting a height of a housing through which the liquid passes and a dimension in a direction intersecting the height of the housing, and a unit time of the liquid to be supplied to the housing. A step of setting the supply amount per unit, a step of setting the supply amount of the layered double hydroxide that adsorbs harmful substances contained in the liquid to the housing, and the layered double hydroxide by passing water through the liquid. It includes a step of replacing the layered double hydroxide when the housing is clogged due to a change in the shape of the.
The liquid filter according to the third invention guides the housing containing the layered double hydroxide that adsorbs harmful substances contained in the liquid and the liquid supplied to the housing toward the discharge side of the housing. It is equipped with a pipe.
 本第1発明によれば、移動装置が層状複水酸化物を移動させているので、ハウジングのつまりを低減することができる。
 本第2発明によれば、層状複水酸化物の交換時期と、ハウジング内の詰まりが発生もしくは発生しそうな時期とをほぼ一致させているので、層状複水酸化物の交換時期を容易に検出することができる。
 本第3発明によれば、パイプが液体をハウジングの排出側に向けて導くので、ハウジングのつまりを低減することができる。
According to the first invention, since the moving device moves the layered double hydroxide, the clogging of the housing can be reduced.
According to the second invention, since the replacement time of the layered double hydroxide and the time when the clog in the housing is or is likely to occur are almost the same, the replacement time of the layered double hydroxide can be easily detected. can do.
According to the third invention, since the pipe guides the liquid toward the discharge side of the housing, the clogging of the housing can be reduced.
本第1実施形態の濾過装置を表す概要図である。It is a schematic diagram which shows the filtration apparatus of this 1st Embodiment. 移動装置を駆動させた後のハウジング内を表す概要図である。It is a schematic diagram which shows the inside of the housing after driving a moving device. 供給部(排出部)の変形例を示す図である。It is a figure which shows the modification of the supply part (discharge part). 制御装置による濾過処理のフローチャートである。It is a flowchart of the filtration process by a control device. 本第2実施形態の濾過装置を表す概要図である。It is a schematic diagram which shows the filtration apparatus of this 2nd Embodiment. 本第2実施形態の変形例を表す概要図である。It is a schematic diagram which shows the modification of this 2nd Embodiment. 本第3実施形態の濾過装置を表す概要図である。It is a schematic diagram which shows the filtration apparatus of this 3rd Embodiment. 本第4実施形態の濾過装置を表す概要図である。It is a schematic diagram which shows the filtration apparatus of this 4th Embodiment. 本第5実施形態の濾過装置を表す概要図である。It is a schematic diagram which shows the filtration apparatus of this 5th Embodiment. 本第5実施形態の変形例を示す濾過装置の概要図である。It is the schematic of the filtration apparatus which shows the modification of this 5th Embodiment.
 以下に、本発明の第1の実施形態を、添付の図面に基づいて詳細に説明する。なお、以下で説明する実施形態により、本発明が限定されるものではない。 Hereinafter, the first embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.
(第1実施形態)
 図1は、第1実施形態の濾過装置100を表す概要図である。本実施形態では有害物質としてヒ素を吸着する場合について説明するが、これに限定されるものではなくフッ素、ホウ素、セレン、六価クロム、シリカなども吸着可能である。
 本実施形態の濾過装置100は、液体用フィルタ1と、この液体用フィルタ1に濾過すべき液体を供給する供給部10と、液体用フィルタ1にて濾過された液体を排出する排出部20と、供給部10と排出部20との差圧を検出する差圧計30と、後述の層状複水酸化物3を移動させる移動装置40と、濾過装置100全体を制御する制御装置50と、を有している。
(First Embodiment)
FIG. 1 is a schematic view showing the filtration device 100 of the first embodiment. In the present embodiment, the case where arsenic is adsorbed as a harmful substance will be described, but the present invention is not limited to this, and fluorine, boron, selenium, hexavalent chromium, silica and the like can also be adsorbed.
The filtration device 100 of the present embodiment includes a liquid filter 1, a supply unit 10 for supplying the liquid to be filtered to the liquid filter 1, and a discharge unit 20 for discharging the liquid filtered by the liquid filter 1. , A differential pressure gauge 30 that detects the differential pressure between the supply unit 10 and the discharge unit 20, a moving device 40 that moves the layered double hydroxide 3 described later, and a control device 50 that controls the entire filtration device 100. doing.
 液体用フィルタ1は、ハウジング2と、このハウジング2に収容される層状複水酸化物3と、を有している。ハウジング2は、フェノール樹脂やポリプロピレン樹脂などの樹脂や、ステンレスなどの金属を用いることができる。ハウジング2は、供給部10と螺合する供給部側螺合部と、排出部20と螺合する排出部側螺合部と、を有している。なお、層状複水酸化物3の大きさは、実際の大きさとは異なり、視認しやすい大きさとして図示している。
 本実施形態のハウジング2は、円筒状であり、図1に示してあるようにX方向の寸法がY方向の寸法(高さ方向の寸法)より3倍から8倍、好ましくは4倍から5倍大きくなっている。これは、液体用フィルタ1に供給部10からヒ素などが含まれた液体を通水していくと、図1に示すように上側の層状複水酸化物3a(小さな粒径の層状複水酸化物3aともいう)の形状が崩れるが、この小さな粒径の層状複水酸化物3aが泥状化してX方向全体に拡がって液体用フィルタ1内が詰まってしまうのを抑制するためである。すなわち、ハウジング2のX方向の寸法を大きくすることによりハウジング2のX方向の断面積(図1の横断面であり、Y軸に垂直な断面)が大きくなる。これにより、ハウジング2に供給される液体の線速度(Linear Velocity)を低くすることができるので層状複水酸化物3が崩れにくくなり、液体用フィルタ1が小さな粒径の層状複水酸化物3aに起因して詰まってしまうのを抑制することができる。
The liquid filter 1 has a housing 2 and a layered double hydroxide 3 housed in the housing 2. For the housing 2, a resin such as phenol resin or polypropylene resin or a metal such as stainless steel can be used. The housing 2 has a supply unit side screwed portion that is screwed with the supply unit 10 and a discharge unit side screwed portion that is screwed with the discharge unit 20. The size of the layered double hydroxide 3 is shown as a size that is easy to see, unlike the actual size.
The housing 2 of the present embodiment has a cylindrical shape, and as shown in FIG. 1, the dimension in the X direction is 3 to 8 times, preferably 4 to 5 times the dimension in the Y direction (dimension in the height direction). It is twice as large. This is because when a liquid containing arsenic or the like is passed through the liquid filter 1 from the supply unit 10, the upper layered double hydroxide 3a (layered double hydroxide having a small particle size) is shown in FIG. This is to prevent the layered double hydroxide 3a having a small particle size from becoming muddy and spreading in the entire X direction to clog the inside of the liquid filter 1, although the shape of the object 3a) is deformed. That is, by increasing the dimension of the housing 2 in the X direction, the cross-sectional area of the housing 2 in the X direction (the cross section of FIG. 1 and the cross section perpendicular to the Y axis) is increased. As a result, the linear velocity of the liquid supplied to the housing 2 can be lowered, so that the layered double hydroxides 3 are less likely to collapse, and the liquid filter 1 has a small particle size of the layered double hydroxides 3a. It is possible to prevent clogging due to the above.
 一方、ハウジング2のX方向の寸法を大きくしてハウジング2の高さ方向の寸法が小さくなると、ハウジング2に供給される液体の空間速度(Space Velocity)が大きくなる。このため、ハウジング2に供給される液体に含まれるヒ素が層状複水酸化物3と接触する接触時間が短くなり、ヒ素が層状複水酸化物3に十分吸着されなくなる可能性がある。詳細は後述するものの、移動装置40を設けることによりハウジング2のY方向の寸法をX方向の寸法より3倍から8倍、好ましくは4倍から5倍大きくして、ヒ素と層状複水酸化物3との接触時間を長くするようにしてもよい。なお、移動装置40は、Y方向の寸法がX方向の寸法よりも大きなハウジングにも適用することもできる。また、ハウジング2の形状は、円筒状に限定されるものではなく、円錐状や矩形状でも構わない。 On the other hand, when the dimension of the housing 2 in the X direction is increased and the dimension of the housing 2 in the height direction is decreased, the space velocity (Space Velocity) of the liquid supplied to the housing 2 is increased. Therefore, the contact time of arsenic contained in the liquid supplied to the housing 2 in contact with the layered double hydroxide 3 is shortened, and arsenic may not be sufficiently adsorbed by the layered double hydroxide 3. Although the details will be described later, by providing the moving device 40, the dimension of the housing 2 in the Y direction is increased by 3 to 8 times, preferably 4 to 5 times, the dimension in the X direction, and arsenic and layered double hydroxides are provided. The contact time with 3 may be lengthened. The moving device 40 can also be applied to a housing whose dimension in the Y direction is larger than the dimension in the X direction. Further, the shape of the housing 2 is not limited to a cylindrical shape, and may be a conical shape or a rectangular shape.
 層状複水酸化物3の製造方法は、本願出願人が先に出願した国際出願番号PCT/JP2017/046943(WO2018/124,190)などに開示されている。したがって、詳細な説明は省略するが、2価の金属イオンと3価の金属イオンを含む酸性溶液とアルカリ性溶液とを混合し、層状複水酸化物3を合成し、洗浄、フィルタプレス、乾燥などの各工程を経て顆粒状の層状複水酸化物3を製造することができる。顆粒状の層状複水酸化物3の粒径は、本実施形態において0.4mm~1.5mmより好ましくは0.5~1.2mmになるように製造管理をしている。液体の通水により顆粒状の層状複水酸化物3は、泥状になるので、泥状および泥状になる前(例えば、粒径0.3mm以下)の層状複水酸化物3を移動装置40により移動させることが好ましい(詳細後述)。 The method for producing the layered double hydroxide 3 is disclosed in the international application number PCT / JP2017 / 046943 (WO2018 / 124,190), etc., which the applicant of the present application filed earlier. Therefore, although detailed description is omitted, an acidic solution containing divalent metal ions and trivalent metal ions and an alkaline solution are mixed to synthesize layered double hydroxides 3, and washing, filter pressing, drying, etc. Granular layered double hydroxide 3 can be produced through each of the steps described above. The production control is performed so that the particle size of the granular layered double hydroxide 3 is preferably 0.5 to 1.2 mm rather than 0.4 mm to 1.5 mm in the present embodiment. Since the granular layered double hydroxide 3 becomes muddy due to the passage of liquid water, the layered double hydroxide 3 before becoming muddy and muddy (for example, having a particle size of 0.3 mm or less) is moved. It is preferable to move by 40 (details will be described later).
 供給部10は、ヒ素などの有害物質が含まれた液体を不図示の容器または井戸などの水源からハウジング2に供給するものである。本実施形態において、供給部10は1時間あたり3リットルから12リットルの範囲で液体を供給するものとするが、供給部10からの液体の供給量はハウジング2の大きさ(容積)に応じて適宜決めることができる。なお、供給部10は、図1において、右端側に1つ設けられているが、複数設けてもよく、供給部10の取り付け位置も任意に設定することができる。また、供給部10は、ハウジング2内に供給される液体がX方向に拡散するようにシャワーヘッドのような拡散部を備えていてもよい。この場合、拡散部は、供給部10のハウジング2側に設けることが好ましい。これにより、供給部10から供給される液体が特定箇所にある層状複水酸化物3のみで吸着されることを防ぐことができる。 The supply unit 10 supplies a liquid containing a harmful substance such as arsenic to the housing 2 from a water source such as a container or a well (not shown). In the present embodiment, the supply unit 10 supplies the liquid in the range of 3 liters to 12 liters per hour, but the amount of the liquid supplied from the supply unit 10 depends on the size (volume) of the housing 2. It can be decided as appropriate. Although one supply unit 10 is provided on the right end side in FIG. 1, a plurality of supply units 10 may be provided, and the mounting position of the supply unit 10 can be arbitrarily set. Further, the supply unit 10 may include a diffusion unit such as a shower head so that the liquid supplied into the housing 2 diffuses in the X direction. In this case, the diffusion unit is preferably provided on the housing 2 side of the supply unit 10. This makes it possible to prevent the liquid supplied from the supply unit 10 from being adsorbed only by the layered double hydroxide 3 at a specific location.
 排出部20は、層状複水酸化物3によりヒ素が吸着された後の液体をハウジング2外に排出するものである。層状複水酸化物3が排出部20から排出されないように、排出部20は、層状複水酸化物3の通過を防止するフィルタを設けることが好ましい。この場合、フィルタには、小さな粒径の層状複水酸化物3aおよび泥状化した層状複水酸化物3を通過させるような開口を形成してもよい。あるいは、フィルタには、小さな粒径の層状複水酸化物3aは通過させず、泥状化した層状複水酸化物3を通過させるような開口を形成してもよい。
 排出部20は、図1において、左端側に1つ設けられているが、複数設けてもよく、排出部20の取り付け位置も任意に設定することができる。
 なお、本実施形態ではハウジング2の上方から液体を供給してハウジング2の下方から液体を排出したが、ハウジング2の下方から液体を供給してハウジング2の上方から液体を排出してもよい。また、詳細は後述するものの、複数のバルブを切替えて供給と排出とを切替えるようにしてもよい。
The discharge unit 20 discharges the liquid after arsenic is adsorbed by the layered double hydroxide 3 to the outside of the housing 2. It is preferable that the discharge unit 20 is provided with a filter that prevents the layered double hydroxide 3 from passing through so that the layered double hydroxide 3 is not discharged from the discharge unit 20. In this case, the filter may be formed with an opening through which the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 pass. Alternatively, the filter may be formed with an opening that does not allow the layered double hydroxide 3a having a small particle size to pass through, but allows the layered double hydroxide 3 that has become muddy to pass through.
Although one discharge unit 20 is provided on the left end side in FIG. 1, a plurality of discharge units 20 may be provided, and the mounting position of the discharge unit 20 can be arbitrarily set.
In the present embodiment, the liquid is supplied from above the housing 2 and discharged from below the housing 2, but the liquid may be supplied from below the housing 2 and discharged from above the housing 2. Further, although the details will be described later, a plurality of valves may be switched to switch between supply and discharge.
 差圧計30は、供給部10を流れる液体の圧力と、排出部20を流れる液体との差圧を計測するものである。差圧計30は、一端が供給部10に接続され、他端が排出部20に接続され、計測結果が制御装置50に出力される。差圧計30で計測される差圧が小さい場合には層状複水酸化物3の崩れに起因する詰まりは発生していない一方、差圧計30で計測される差圧が大きい場合には層状複水酸化物3の崩れに起因する詰まりが発生している、もしくは詰まりが発生する可能性があると考えられる。本実施形態では、100KPa以上もしくは150KPa以上の差圧が生じた場合に、ハウジング2内で詰まりが生じている、もしくは、詰まりが発生する可能性があるものとする。なお、ハウジング2の耐圧に応じてハウジング2内で詰まりが生じていると判断すべき差圧を設定してもよい。 The differential pressure gauge 30 measures the pressure difference between the pressure of the liquid flowing through the supply unit 10 and the liquid flowing through the discharge unit 20. One end of the differential pressure gauge 30 is connected to the supply unit 10, the other end is connected to the discharge unit 20, and the measurement result is output to the control device 50. When the differential pressure measured by the differential pressure gauge 30 is small, clogging due to the collapse of the layered double hydroxide 3 does not occur, while when the differential pressure measured by the differential pressure gauge 30 is large, the layered double hydroxide is water. It is considered that clogging has occurred due to the collapse of the oxide 3, or clogging may occur. In the present embodiment, when a differential pressure of 100 KPa or more or 150 KPa or more is generated, the housing 2 may be clogged or may be clogged. A differential pressure that should be determined to be clogged in the housing 2 may be set according to the pressure resistance of the housing 2.
 移動装置40は、ハウジング2内で詰まりが生じないように、層状複水酸化物3を移動させるものである。本実施形態において、移動装置40は、ハウジング2に対して上下方向(Y軸方向)に振動を与えられるものであればよく、例えば超音波振動を発生させる超音波振動子や、MEMS振動子などを用いてもよい。図1においては、ハウジング2の下面に2つの移動装置40を設けたが、その数は任意に設定することができ、移動装置40はハウジング2の側面や上面に設けてもよい。また、移動装置40は、左右方向(X軸方向)に振動を生じさせられるものであってもよい。なお、移動装置40をハウジング2内に設けてもよい。 The moving device 40 moves the layered double hydroxide 3 so that the housing 2 is not clogged. In the present embodiment, the moving device 40 may be any device that can vibrate the housing 2 in the vertical direction (Y-axis direction), for example, an ultrasonic vibrator that generates ultrasonic vibration, a MEMS vibrator, or the like. May be used. In FIG. 1, two moving devices 40 are provided on the lower surface of the housing 2, but the number of the moving devices 40 can be arbitrarily set, and the moving devices 40 may be provided on the side surface or the upper surface of the housing 2. Further, the moving device 40 may be one that can generate vibration in the left-right direction (X-axis direction). The moving device 40 may be provided in the housing 2.
 図2は、移動装置40を駆動させた後のハウジング2内を表す概要図である。図1では液体の通水により上側の層状複水酸化物3の形状が崩れてしまい、上側に小さな粒径の層状複水酸化物3aが数多くある。これに対して、移動装置40を駆動することにより、図2に示すように、小さな粒径の層状複水酸化物3aが拡散するので、小さな粒径の層状複水酸化物3aに起因するハウジング2内の詰まりの発生を低減することができる。 FIG. 2 is a schematic view showing the inside of the housing 2 after driving the moving device 40. In FIG. 1, the shape of the upper layered double hydroxide 3 is deformed by the passage of liquid, and there are many layered double hydroxides 3a having a small particle size on the upper side. On the other hand, by driving the moving device 40, as shown in FIG. 2, the layered double hydroxide 3a having a small particle size is diffused, so that the housing caused by the layered double hydroxide 3a having a small particle size It is possible to reduce the occurrence of clogging in 2.
 なお、移動装置40は、供給部10や排出部20を変形させて構成することもできる。図3は供給部10(排出部20)の変形例を示す図であり、その構成については同様のため供給部10を例にして説明を続ける。供給部10は、供給バルブ11を介して有害物質が含まれた液体を蓄えた不図示の容器に接続されるとともに、排出バルブ12を介して層状複水酸化物3によりヒ素が吸着された後の液体をハウジング2外に排出する配管に接続されている。また、供給バルブ11、排出バルブ12は制御装置50に接続されている。 The mobile device 40 can also be configured by deforming the supply unit 10 and the discharge unit 20. FIG. 3 is a diagram showing a modified example of the supply unit 10 (discharge unit 20), and since the configuration is the same, the description will be continued using the supply unit 10 as an example. The supply unit 10 is connected to a container (not shown) that stores a liquid containing a harmful substance via a supply valve 11, and after arsenic is adsorbed by the layered double hydroxide 3 via the discharge valve 12. Is connected to a pipe that discharges the liquid of the above to the outside of the housing 2. Further, the supply valve 11 and the discharge valve 12 are connected to the control device 50.
 制御装置50は、差圧計30の計測値が100KPaを超えた場合に、供給部10の供給バルブ11を開状態から閉状態に切替えて液体の供給を停止するとともに、供給部10の排出バルブ12を閉状態から開状態に切替えて供給部10からハウジング2内の液体を不図示のポンプを用いて排出可能な状態にする。
 また、制御装置50は、排出部20の排出バルブ12を開状態から閉状態に切替えて液体の排出を停止するとともに、排出部20の供給バルブ11を閉状態から開状態に切替えて排出部20からハウジング2に液体を不図示のポンプを用いて供給可能な状態にする。
When the measured value of the differential pressure gauge 30 exceeds 100 KPa, the control device 50 switches the supply valve 11 of the supply unit 10 from the open state to the closed state to stop the supply of the liquid, and the discharge valve 12 of the supply unit 10. Is switched from the closed state to the open state so that the liquid in the housing 2 can be discharged from the supply unit 10 using a pump (not shown).
Further, the control device 50 switches the discharge valve 12 of the discharge unit 20 from the open state to the closed state to stop the discharge of the liquid, and switches the supply valve 11 of the discharge unit 20 from the closed state to the open state to the discharge unit 20. The liquid can be supplied to the housing 2 by using a pump (not shown).
 すなわち、制御装置50は、ハウジング2の下側から液体を供給するとともに、ハウジング2の上側から層状複水酸化物3によりヒ素が吸着された後の液体をハウジング2外に排出する。このように、液体の供給方向と排出方向とを切替えることにより(逆流させることにより)、小さな粒径の層状複水酸化物3aがハウジング2内で拡散するので、ハウジング2内の詰まりの発生を低減することができる。
 なお、振動子を用いた移動装置40と、供給バルブ11と排出バルブ12とを用いた移動装置40とを併用するようにしてもよい。
That is, the control device 50 supplies the liquid from the lower side of the housing 2 and discharges the liquid after the arsenic is adsorbed by the layered double hydroxide 3 from the upper side of the housing 2 to the outside of the housing 2. In this way, by switching between the supply direction and the discharge direction of the liquid (by regurgitating), the layered double hydroxide 3a having a small particle size diffuses in the housing 2, so that clogging in the housing 2 occurs. Can be reduced.
The moving device 40 using the vibrator and the moving device 40 using the supply valve 11 and the discharge valve 12 may be used in combination.
 これに代えて、ハウジング2の上面に供給部10と排出部20とを設けるとともに、ハウジング2の下面に供給部10と排出部20とを設けるようにして小さな粒径の層状複水酸化物3aをハウジング2内で拡散させてもよい。
 この場合も、振動子を用いた移動装置40と併用するようにしてもよい。
Instead of this, the supply unit 10 and the discharge unit 20 are provided on the upper surface of the housing 2, and the supply unit 10 and the discharge unit 20 are provided on the lower surface of the housing 2, so that the layered double hydroxide 3a having a small particle size is provided. May be diffused in the housing 2.
In this case as well, it may be used in combination with the moving device 40 using the vibrator.
 制御装置50は、各種演算処理を行うCPUや、プログラムやデータを記憶するメモリを備え、濾過装置100全体を制御するものである。制御装置50は、上述の供給バルブ11、排出バルブ12の切替制御などのハウジング2内の詰まりを低減する制御および層状複水酸化物3の交換に関する制御を行っている。 The control device 50 includes a CPU that performs various arithmetic processes and a memory that stores programs and data, and controls the entire filtration device 100. The control device 50 performs control for reducing clogging in the housing 2 such as switching control for the supply valve 11 and the discharge valve 12 described above, and control for replacement of the layered double hydroxide 3.
(フローチャートの説明)
 図4は制御装置50による濾過処理のフローチャートであり、以下、図4のフローチャートに基づき説明を続ける。なお、図4の処理が開始される段階では、移動装置40の駆動回数を示すパラメータNは、初期化(N=0)されている。
(Explanation of flowchart)
FIG. 4 is a flowchart of the filtration process by the control device 50, and the description will be continued below based on the flowchart of FIG. At the stage when the process of FIG. 4 is started, the parameter N indicating the number of times the mobile device 40 is driven is initialized (N = 0).
 制御装置50は、ハウジング2に層状複水酸化物3が供給され、ヒ素などが含まれた液体を通水するタイミングで計時を開始する(ステップS1)。なお、制御装置50は、計時に代えて通水を開始する日時を記憶するようにしてもよい。いずれの場合においても通水を行ったトータルの時間が分かればよい。また、制御装置50は、通水が連続して行われない場合、通水の終了に合わせて計時を停止し、通水の再開に合わせて計時を再開すればよい。 The control device 50 starts timing at the timing when the layered double hydroxide 3 is supplied to the housing 2 and a liquid containing arsenic or the like is passed through the housing 2 (step S1). The control device 50 may store the date and time when the water flow starts instead of the timekeeping. In either case, it is sufficient to know the total time for passing water. Further, when the water flow is not continuously performed, the control device 50 may stop the time counting at the end of the water flow and restart the time measurement at the restart of the water flow.
 制御装置50は、ヒ素などが含まれた液体の通水時に差圧計30による計測を行い、供給部10と排出部20と差圧が閾値以下かどうか判定する(ステップS2)。本実施形態において閾値は150KPaとし、制御装置50は、差圧計30による差圧が150KPa以下の場合にハウジング2内の詰まりは発生していないとしてステップS2を繰り返す。一方、制御装置50は、差圧計30による差圧が150KPaを超える場合にハウジング2内の詰まりが発生もしくは発生する可能性があるとしてステップS3に進む。 The control device 50 measures with a differential pressure gauge 30 when a liquid containing arsenic or the like is flowing, and determines whether or not the differential pressure between the supply unit 10 and the discharge unit 20 is equal to or less than the threshold value (step S2). In the present embodiment, the threshold value is set to 150 KPa, and the control device 50 repeats step S2 on the assumption that the housing 2 is not clogged when the differential pressure by the differential pressure gauge 30 is 150 KPa or less. On the other hand, the control device 50 proceeds to step S3 on the assumption that clogging in the housing 2 may occur or may occur when the differential pressure by the differential pressure gauge 30 exceeds 150 KPa.
 制御装置50は、ステップS2の判断がNoの場合に移動装置40を駆動して、ハウジング2の上部に位置する小さな粒径の層状複水酸化物3a(図1参照)を拡散させる(ステップS3)。移動装置40としては、振動子を用いるもの、供給バルブ11と排出バルブ12とを用いるもの、上面と下面とのそれぞれに供給部10と排出部20とを設けたものを単独もしくは適宜組み合わせて駆動することができる。 When the determination in step S2 is No, the control device 50 drives the moving device 40 to diffuse the layered double hydroxide 3a (see FIG. 1) having a small particle size located in the upper part of the housing 2 (step S3). ). As the moving device 40, one using an oscillator, one using a supply valve 11 and a discharge valve 12, and one having a supply unit 10 and a discharge unit 20 on each of the upper surface and the lower surface are driven individually or in combination as appropriate. can do.
 制御装置50は、移動装置40の駆動により差圧が閾値以下になったかどうかを判断する(ステップS4)。制御装置50は、差圧が閾値以下になるまでステップS4の判断を繰り返す。なお、制御装置50は、移動装置40を所定時間(例えば5分から60分)駆動しても差圧が閾値以下にならない場合や、差圧が低くならない場合や、差圧が高くなる場合に濾過装置100に何等かの異常があると判断してもよい。このように判断した場合、制御装置50は、通水を停止したり、層状複水酸化物3の吸着性能が劣化したとして層状複水酸化物3を交換したりしてもよい。
 ここでは、移動装置40の駆動により差圧が閾値以下になったとして説明を続ける。
The control device 50 determines whether or not the differential pressure has become equal to or lower than the threshold value due to the driving of the moving device 40 (step S4). The control device 50 repeats the determination in step S4 until the differential pressure becomes equal to or less than the threshold value. The control device 50 filters when the differential pressure does not fall below the threshold value even when the moving device 40 is driven for a predetermined time (for example, 5 to 60 minutes), the differential pressure does not decrease, or the differential pressure increases. It may be determined that the device 100 has some abnormality. When this determination is made, the control device 50 may stop the water flow or replace the layered double hydroxide 3 because the adsorption performance of the layered double hydroxide 3 has deteriorated.
Here, the description will be continued on the assumption that the differential pressure becomes equal to or less than the threshold value due to the driving of the moving device 40.
 制御装置50は、差圧が閾値以下になったので移動装置40の駆動を停止し(ステップS5)、移動装置40の駆動回数Nを1回増やして(N←N+1)メモリに記憶させる(ステップS6)。制御装置50が移動装置40の駆動回数Nをメモリに記憶させるのは、層状複水酸化物3の交換時期を判断するためである。 Since the differential pressure becomes equal to or less than the threshold value, the control device 50 stops driving the mobile device 40 (step S5), increases the number of times N of the mobile device 40 is driven by one (N ← N + 1), and stores it in the memory (step). S6). The reason why the control device 50 stores the drive count N of the mobile device 40 in the memory is to determine the replacement time of the layered double hydroxide 3.
 次いで、制御装置50は、層状複水酸化物3を交換するかどうかの判断を行う(ステップS7)。本実施形態において、層状複水酸化物3が1kgで液体6000リットルから8000リットルに含まれるヒ素を吸着できるとし、例えば供給部10が1時間あたり5リットルの液体を供給すると、1200時間(50日)から1600時間(約67日)が層状複水酸化物3を交換する目安となる。このため、制御装置50は、ステップS1で取得した計時時間に基づいて層状複水酸化物3の交換時期を判断すればよい。また、これに代えて、もしくはこれと併用して、制御装置50は移動装置40の駆動回数Nや移動装置40の駆動時間に基づいて層状複水酸化物3の交換時期を判断してもよい。移動装置40の駆動時間を用いて判断する場合、移動装置40の駆動する度に、駆動開始から停止までの時間を計測して、合計するようにすればよい。 Next, the control device 50 determines whether to replace the layered double hydroxide 3 (step S7). In the present embodiment, it is assumed that 1 kg of the layered double hydroxide 3 can adsorb arsenic contained in 6000 to 8000 liters of liquid. For example, when the supply unit 10 supplies 5 liters of liquid per hour, 1200 hours (50 days). ) To 1600 hours (about 67 days) is a guideline for replacing the layered double hydroxide 3. Therefore, the control device 50 may determine the replacement time of the layered double hydroxide 3 based on the time counting time acquired in step S1. Alternatively, or in combination with this, the control device 50 may determine the replacement time of the layered double hydroxide 3 based on the number of times N of the moving device 40 is driven and the driving time of the moving device 40. .. When the determination is made using the drive time of the mobile device 40, the time from the start to the stop of the drive may be measured and totaled each time the mobile device 40 is driven.
 1kgの層状複水酸化物3でも6000リットル通水できる場合と、8000リットル通水できる場合とがあるのは、ヒ素の濃度に起因しており、ヒ素の濃度が高い場合は6000リットルの通水で層状複水酸化物3の吸着性能が劣化してしまう。このため、気温が高く液体が蒸発しやすい場合は液体のヒ素濃度が上昇するので、交換時期を短くするような補正係数をメモリに記憶させておけばよい。一方、雨季などで大量の雨が降った場合は液体のヒ素濃度が低下するので交換時期を長くするような補正係数をメモリに記憶させておけばよい。なお、無線通信や有線通信などの各種通信装置を濾過装置100に備えれば、気温や湿度や降雨量といった気象情報を入手することができ、上述の補正係数の設定や変更することができる。また、ヒ素の濃度は、井戸などの水源に起因することが多いので、どこの水源からの液体かといった水源データや、位置情報などをメモリに記憶させておき上述の補正係数に反映させてもよい。 The reason why 1 kg of layered double hydroxide 3 can pass 6000 liters of water and 8000 liters of water can be caused by the concentration of arsenic, and when the concentration of arsenic is high, 6000 liters of water can be passed. As a result, the adsorption performance of the layered double hydroxide 3 deteriorates. Therefore, when the temperature is high and the liquid easily evaporates, the arsenic concentration of the liquid increases, so that a correction coefficient that shortens the replacement period may be stored in the memory. On the other hand, when a large amount of rain falls in the rainy season or the like, the arsenic concentration of the liquid decreases, so a correction coefficient that prolongs the replacement period may be stored in the memory. If the filtration device 100 is equipped with various communication devices such as wireless communication and wired communication, weather information such as temperature, humidity, and rainfall can be obtained, and the above-mentioned correction coefficient can be set or changed. In addition, since the arsenic concentration is often caused by a water source such as a well, it is possible to store water source data such as which water source the liquid is from and position information in a memory and reflect it in the above correction coefficient. Good.
 また、層状複水酸化物3の交換の判断として、前述したようにステップS4の判断において所定時間が経過しても差圧が閾値以下にならない場合や、差圧が低くならない場合や、差圧が高くなる場合を用いてもよい。すなわち、ハウジング2の容積および形状と、ハウジング2に供給する層状複水酸化物3の供給量と、供給部10から供給する液体の供給量と、を設定して、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とをほぼ一致させるようにすればよい。この場合、移動装置40を省略することも可能となる。 Further, as a determination of replacement of the layered double hydroxide 3, as described above, in the determination of step S4, the differential pressure does not fall below the threshold value even after a predetermined time elapses, the differential pressure does not decrease, or the differential pressure does not decrease. May be used when becomes high. That is, the volume and shape of the housing 2, the supply amount of the layered double hydroxide 3 supplied to the housing 2, and the supply amount of the liquid supplied from the supply unit 10 are set, and the layered double hydroxide 3 is provided. It suffices to make the replacement time substantially coincide with the time when the inside of the housing 2 is or is likely to be clogged. In this case, the moving device 40 can be omitted.
 また、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とが一致しない場合に、制御装置50は、移動装置40を駆動させることにより層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とを一致させるようにしてもよい。この場合、制御装置50は、差圧計30の差圧に基づいて移動装置40を駆動させてもよく、液体の通水時間または液体の通水量に基づいて移動装置40を駆動させてもよい。なお、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とをほぼ一致させる場合に、層状複水酸化物3の交換時期をハウジング2内の最初(1回目)の詰まりの発生もしくは発生しそうな時期としてもよく、2回目以降の詰まりの発生もしくは発生しそうな時期としてもよい。 Further, when the replacement time of the layered double hydroxide 3 and the time when the housing 2 is likely to be clogged or clogged do not match, the control device 50 drives the moving device 40 to drive the layered double hydroxide. The replacement time of 3 may be made to coincide with the time when the inside of the housing 2 is or is likely to be clogged. In this case, the control device 50 may drive the moving device 40 based on the differential pressure of the differential pressure gauge 30, or may drive the moving device 40 based on the liquid water flow time or the liquid water flow amount. When the replacement time of the layered double hydroxide 3 and the time when clogging in the housing 2 is or is likely to occur are substantially the same, the replacement time of the layered double hydroxide 3 is set to the first (1) in the housing 2. It may be the time when the clogging of the second time) occurs or is likely to occur, or it may be the time when the second and subsequent clogging occurs or is likely to occur.
 制御装置50は、ステップS7の判断をYesとすると、層状複水酸化物3および小さな粒径の層状複水酸化物3aの交換のための各種処理を行ない(ステップS8)、本フローチャートを終了する。 If the determination in step S7 is Yes, the control device 50 performs various processes for exchanging the layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size (step S8), and ends this flowchart. ..
 本実施形態の液体用フィルタ1によれば、移動装置40が小さな粒径の層状複水酸化物3aを拡散させるので、ハウジング2内の詰まりの発生を低減することができる。また、本実施形態の液体用フィルタ1によれば、制御装置50が差圧計30の測定結果に応じて層状複水酸化物3の交換時期を判断するので、使い勝手のよい液体用フィルタ1を実現することができる。また、制御装置50が移動装置40の駆動時間と、移動装置40の駆動回数との少なくとも一方に基づいて層状複水酸化物3の交換時期を判断するので、使い勝手のよい液体用フィルタ1を実現することができる。 According to the liquid filter 1 of the present embodiment, since the moving device 40 diffuses the layered double hydroxide 3a having a small particle size, it is possible to reduce the occurrence of clogging in the housing 2. Further, according to the liquid filter 1 of the present embodiment, the control device 50 determines the replacement time of the layered double hydroxide 3 according to the measurement result of the differential pressure gauge 30, so that the liquid filter 1 that is easy to use is realized. can do. Further, since the control device 50 determines the replacement time of the layered double hydroxide 3 based on at least one of the drive time of the mobile device 40 and the number of times the mobile device 40 is driven, the liquid filter 1 that is easy to use is realized. can do.
 本実施形態では、ハウジング2の高さ方向(Y方向)の寸法と、この高さ方向と交差する方向(X方向)の寸法とを設定し、ハウジング2に供給する液体の単位時間あたりの供給量を設定し、層状複水酸化物3のハウジング2への供給量を設定し、液体の通水による層状複水酸化物3の形状の変化に伴うハウジング2に詰まりが生じた際に層状複水酸化物3を交換している。これにより、層状複水酸化物3の吸着性能の劣化を検出するセンサーを設けることなく、適切なタイミングで層状複水酸化物3を交換することができる。なお、ハウジング2は、Y方向の寸法がX方向の寸法よりも大きなものにも適用することもできる。 In the present embodiment, the dimension in the height direction (Y direction) of the housing 2 and the dimension in the direction intersecting the height direction (X direction) are set, and the liquid to be supplied to the housing 2 is supplied per unit time. The amount is set, the amount of the layered double hydroxide 3 supplied to the housing 2 is set, and the layered double hydroxide is clogged when the housing 2 is clogged due to the change in the shape of the layered double hydroxide 3 due to the passage of liquid. The hydroxide 3 is being replaced. As a result, the layered double hydroxide 3 can be replaced at an appropriate timing without providing a sensor for detecting the deterioration of the adsorption performance of the layered double hydroxide 3. The housing 2 can also be applied to a housing whose dimension in the Y direction is larger than the dimension in the X direction.
(第2実施形態)
 以下、図5を用いて第2実施形態につき説明するが、第1実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。図5は、本第2実施形態の濾過装置100を表す概要図であり、第2実施形態ではハウジング2を傾けて設けている。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIG. 5, but the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 5 is a schematic view showing the filtration device 100 of the second embodiment, and in the second embodiment, the housing 2 is provided at an angle.
 ハウジング2のX方向の寸法をY方向の寸法よりも大きくした場合においても、ハウジング2を3度から40度、好ましくは5度から30度傾けることにより流体の空間速度を小さくすることができる。これにより、液体に含まれるヒ素が層状複水酸化物3と接触する時間を、ハウジング2を傾けない場合に比べて長くすることができる。なお、ハウジング2を傾ける角度が3度未満ではヒ素が層状複水酸化物3と接触する時間がさほど長くならず、ハウジング2を傾ける角度が40度を超えると液体が排出部20に向かう速度が速くなり過ぎる。このように、本第2実施形態によれば、効率良くヒ素を吸着することができる液体用フィルタ1を実現することができる。 Even when the dimension of the housing 2 in the X direction is larger than the dimension in the Y direction, the space velocity of the fluid can be reduced by tilting the housing 2 by 3 to 40 degrees, preferably 5 to 30 degrees. As a result, the time for the arsenic contained in the liquid to come into contact with the layered double hydroxide 3 can be lengthened as compared with the case where the housing 2 is not tilted. If the angle at which the housing 2 is tilted is less than 3 degrees, the time for arsenic to come into contact with the layered double hydroxide 3 is not so long, and if the angle at which the housing 2 is tilted exceeds 40 degrees, the speed at which the liquid heads toward the discharge unit 20 increases. It gets too fast. As described above, according to the second embodiment, it is possible to realize the liquid filter 1 capable of efficiently adsorbing arsenic.
(第2実施形態の変形例)
 図6は、本第2実施形態の変形例を表す概要図であり、泥状化した層状複水酸化物3をハウジング2外に排出する第2排出部21を設けている。なお、図面を簡単にするために、差圧計30の図示を簡略化している。
 泥状化した層状複水酸化物3は、ハウジング2の上部に溜まりやすく、本実施形態のようにハウジング2を傾けた場合には、傾斜に従って図6の左側に移動する。このため、本変形例では、ハウジング2の上部の左端(ハウジング2の高さ方向が低い側の一端)に泥状化した層状複水酸化物3を通過させ、泥状化していない層状複水酸化物3を通過させない開口部を設けて、第2排出部21としている。第2排出部21は、管部材であり、本変形例では排出部20に接続して、泥状化した層状複水酸化物3をハウジング2外に排出しているが、排出部20とは独立した排出管路としてもよい。
(Modified example of the second embodiment)
FIG. 6 is a schematic view showing a modified example of the second embodiment, and is provided with a second discharge portion 21 for discharging the muddy layered double hydroxide 3 to the outside of the housing 2. In addition, in order to simplify the drawing, the illustration of the differential pressure gauge 30 is simplified.
The muddy layered double hydroxide 3 tends to accumulate on the upper part of the housing 2, and when the housing 2 is tilted as in the present embodiment, it moves to the left side of FIG. 6 according to the tilt. Therefore, in this modification, the mud-like layered double hydroxide 3 is passed through the left end of the upper part of the housing 2 (one end on the lower side of the housing 2), and the non-mud-like layered double hydroxide is passed. An opening through which the oxide 3 does not pass is provided to form a second discharge portion 21. The second discharge unit 21 is a pipe member, and in this modified example, it is connected to the discharge unit 20 to discharge the muddy layered double hydroxide 3 to the outside of the housing 2, but the discharge unit 20 is It may be an independent discharge pipeline.
 また、ハウジング2の上部の左端(ハウジング2の高さ方向が低い側の一端)に形成された開口は、小さな粒径の層状複水酸化物3aを通過させるような大きさとしてもよい。なお、本変形例において、移動装置40を省略してもよい。
 また、本変形例の第2排出部21を第1実施形態に適用してもよい。この場合、第2排出部21は、ハウジング2の左端と右端とのいずれか一方に設けてもよく、ハウジング2の左端と右端との両方に設けるようにしてもよい。このように、本変形例では、泥状化した層状複水酸化物3を排出することができるので、ハウジング2の詰まりを低減することができる。
Further, the opening formed at the left end of the upper part of the housing 2 (one end on the side where the height direction of the housing 2 is low) may be sized so as to allow the layered double hydroxide 3a having a small particle size to pass through. In this modification, the moving device 40 may be omitted.
Further, the second discharge unit 21 of this modification may be applied to the first embodiment. In this case, the second discharge portion 21 may be provided at either the left end or the right end of the housing 2, or may be provided at both the left end and the right end of the housing 2. As described above, in the present modification, the muddy layered double hydroxide 3 can be discharged, so that the clogging of the housing 2 can be reduced.
(第3実施形態)
 以下、図7を用いて第3実施形態につき説明するが、第1実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。図7は、本第3実施形態の濾過装置100を表す概要図であり、ハウジング2内に移動装置40を設けるとともに、ハウジング2に新たな層状複水酸化物3を供給する第2供給部60を設けている。更に、本実施形態では、泥状化した層状複水酸化物3および小さな粒径の層状複水酸化物3aを通過させ、それ以外の層状複水酸化物3を通過させない選択部5と、この選択部5を通過した泥状化した層状複水酸化物3および小さな粒径の層状複水酸化物3aをハウジング2外に排出する第3排出部22を設けている。なお、図面を簡単にするために、差圧計30の図示を簡略化している。
(Third Embodiment)
Hereinafter, the third embodiment will be described with reference to FIG. 7, but the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 7 is a schematic view showing the filtration device 100 of the third embodiment, in which a moving device 40 is provided in the housing 2 and a second supply unit 60 for supplying a new layered double hydroxide 3 to the housing 2. Is provided. Further, in the present embodiment, the muddy layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size are passed through, and the other layered double hydroxide 3 is not passed through the selection unit 5. A third discharge section 22 is provided for discharging the muddy layered double hydroxide 3 that has passed through the selection section 5 and the layered double hydroxide 3a having a small particle size to the outside of the housing 2. In addition, in order to simplify the drawing, the illustration of the differential pressure gauge 30 is simplified.
 本実施形態の移動装置40は、ベルトコンベア41と、このベルトコンベア41の上面を図中の矢印方向に駆動するロール部材42と、を備えている。
 ベルトコンベア41は、泥状化した層状複水酸化物3および小さな粒径の層状複水酸化物3aを搬送できればよく、例えば小さな粒径の層状複水酸化物3aよりも小さな穴が形成されたメッシュ状とすることができる。この場合、メッシュ状のベルトコンベア41は、泥状化した層状複水酸化物3も搬送できるようにメッシュの番手を決めることが望ましい。
 ロール部材42は、樹脂や金属製であり、不図示のモータにより半時計方向に回転してベルトコンベア41の上面を矢印方向に繰り返し駆動している。
The moving device 40 of the present embodiment includes a belt conveyor 41 and a roll member 42 that drives the upper surface of the belt conveyor 41 in the direction of an arrow in the drawing.
The belt conveyor 41 only needs to be able to convey the muddy layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size, and for example, a hole smaller than that of the layered double hydroxide 3a having a small particle size is formed. It can be in the form of a mesh. In this case, it is desirable that the mesh-shaped belt conveyor 41 determines the mesh count so that the muddy layered double hydroxide 3 can also be conveyed.
The roll member 42 is made of resin or metal, and is rotated counterclockwise by a motor (not shown) to repeatedly drive the upper surface of the belt conveyor 41 in the direction of the arrow.
 選択部5は、Y方向に延びた板状の部材であり、小さな粒径の層状複水酸化物3aおよび泥状化した層状複水酸化物3を通過させる一方、それ以外の層状複水酸化物3を通過させない大きさの開口を有している。このため、ベルトコンベア41により搬送された小さな粒径の層状複水酸化物3aおよび泥状化した層状複水酸化物3は、この開口を通過してハウジング2の廃棄部2aに搬送される。本第3実施形態においては、廃棄部2aの下方に第3排出部22を設けているので、小さな粒径の層状複水酸化物3aおよび泥状化した層状複水酸化物3をハウジング2の外部に廃棄することができる。なお、小さな粒径の層状複水酸化物3aは、第3排出部22から排出しないよう選択部5の開口の大きさを設定してもよい。 The selection unit 5 is a plate-shaped member extending in the Y direction, and allows the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 to pass through, while the other layered double hydroxides. It has an opening of a size that does not allow the object 3 to pass through. Therefore, the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 conveyed by the belt conveyor 41 pass through this opening and are conveyed to the disposal portion 2a of the housing 2. In the third embodiment, since the third discharge section 22 is provided below the disposal section 2a, the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 are placed in the housing 2. Can be disposed of externally. The size of the opening of the selection unit 5 may be set so that the layered double hydroxide 3a having a small particle size is not discharged from the third discharge unit 22.
 なお、ベルトコンベア41を矢印方向に駆動し続けると、選択部5の開口を通過できない層状複水酸化物3が選択部5付近に溜まってしまう虞がある。この場合、制御装置50は、不図示のモータを時計方向に回転してベルトコンベア41の上面を矢印方向と逆の方向に駆動すればよい。また、ハウジング2の右端側にも選択部5と、廃棄部2aと、排出部20とを設けることが好ましい。なお、選択部5の開口をより小さくして小さな粒径の層状複水酸化物3aは選択部5を通過させずに、泥状化した層状複水酸化物3が選択部5を通過するようにしてもよい。 If the belt conveyor 41 is continuously driven in the direction of the arrow, the layered double hydroxide 3 that cannot pass through the opening of the selection unit 5 may accumulate in the vicinity of the selection unit 5. In this case, the control device 50 may rotate a motor (not shown) clockwise to drive the upper surface of the belt conveyor 41 in the direction opposite to the arrow direction. Further, it is preferable to provide the selection unit 5, the disposal unit 2a, and the discharge unit 20 on the right end side of the housing 2. The opening of the selection unit 5 is made smaller so that the layered double hydroxide 3a having a small particle size does not pass through the selection unit 5, but the muddy layered double hydroxide 3 passes through the selection unit 5. It may be.
 第2供給部60は、新しい層状複水酸化物3を供給する供給路61と、制御装置50に接続されたバルブ62とを有している。
 制御装置50は、定期的にバルブ62を閉状態から開状態にする制御を行って、ハウジング2に新しい層状複水酸化物3を供給することができる。
 第3実施形態では、泥状化した層状複水酸化物3はハウジング2の外部に排出する一方、新たな層状複水酸化物3をハウジング2に提供しているので、ハウジング2の詰まりをより低減することができる。なお、第3実施形態において、差圧計30を省略してもよく、第2供給部60を省略するようにしてもよい。
 また、第3実施形態の廃棄部2aや、選択部5や、移動装置40や、第2供給部60は、第2実施形態にも適用することができる。
The second supply unit 60 has a supply path 61 for supplying the new layered double hydroxide 3, and a valve 62 connected to the control device 50.
The control device 50 can periodically control the valve 62 from the closed state to the open state to supply the housing 2 with the new layered double hydroxide 3.
In the third embodiment, the muddy layered double hydroxide 3 is discharged to the outside of the housing 2, while a new layered double hydroxide 3 is provided to the housing 2, so that the housing 2 is more clogged. Can be reduced. In the third embodiment, the differential pressure gauge 30 may be omitted, or the second supply unit 60 may be omitted.
Further, the disposal unit 2a, the selection unit 5, the mobile device 40, and the second supply unit 60 of the third embodiment can also be applied to the second embodiment.
(第4実施形態)
 以下、図8を用いて第4実施形態につき説明するが、第1実施形態から第3実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。
 図8は、本第4実施形態の濾過装置100を表す概要図であり、本第4実施形態ではハウジング2は、Y方向の寸法がX方向の寸法よりも大きなものとなっている。また、本第4実施形態では、供給部10にバルブ13が設けられている。バルブ13は、不図示のコンプレッサーからの空気圧により開状態と閉状態とが切り替わり、開状態のときにハウジング2に液体が供給され、閉状態のときにハウジング2に液体が供給されないようになっている。また、バルブ13の一部は、開状態と閉状態とで色が切り替わるようになっており、例えば閉状態のときは、黄色や赤色などの注意を喚起する色となっており、外部から識別できるようになっている。
(Fourth Embodiment)
Hereinafter, the fourth embodiment will be described with reference to FIG. 8, but the same components as those of the first to third embodiments are designated by the same reference numerals, and the description thereof will be omitted or simplified.
FIG. 8 is a schematic view showing the filtration device 100 of the fourth embodiment. In the fourth embodiment, the housing 2 has a dimension in the Y direction larger than a dimension in the X direction. Further, in the fourth embodiment, the valve 13 is provided in the supply unit 10. The valve 13 is switched between the open state and the closed state by the air pressure from a compressor (not shown), and the liquid is supplied to the housing 2 when the valve 13 is in the open state, and the liquid is not supplied to the housing 2 when the valve 13 is in the closed state. There is. Further, a part of the valve 13 is designed so that the color is switched between the open state and the closed state. For example, when the valve 13 is in the closed state, the color is a color that calls attention such as yellow or red, and can be identified from the outside. You can do it.
 本第4実施形態において、制御装置50は、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とが一致したときに、バルブ13を開状態から閉状態に切替えて、ハウジング2への液体の供給を停止している。また、前述のようにバルブ13の一部が注意を喚起する色に変わるので層状複水酸化物3の交換時期を報知することができる。
 なお、色による注意喚起に代えて、もしくは、併用して、制御装置50は、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生もしくは発生しそうな時期とが一致したときに、音を発生させて注意を喚起するようにしてもよい。
In the fourth embodiment, the control device 50 opens the valve 13 from the open state to the closed state when the replacement time of the layered compound hydroxide 3 coincides with the time when the inside of the housing 2 is or is likely to be clogged. The supply of the liquid to the housing 2 is stopped by switching to. Further, as described above, a part of the valve 13 changes to a color that calls attention, so that it is possible to notify the replacement time of the layered double hydroxide 3.
In addition, instead of or in combination with the color alert, when the control device 50 coincides with the time when the layered double hydroxide 3 is replaced and the time when the housing 2 is clogged or is likely to occur. , A sound may be generated to call attention.
(第5実施形態)
 以下、図9を用いて第5実施形態につき説明するが、第1実施形態から第4実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。
 図9は、本第5実施形態の濾過装置100を表す概要図であり、本第5実施形態では側面に孔部7を有したパイプ6と、ハウジング2内でパイプ6を保持する保持部材8と、を有している。
(Fifth Embodiment)
Hereinafter, the fifth embodiment will be described with reference to FIG. 9, but the same components as those of the first to fourth embodiments are designated by the same reference numerals, and the description thereof will be omitted or simplified.
FIG. 9 is a schematic view showing the filtration device 100 of the fifth embodiment. In the fifth embodiment, a pipe 6 having a hole 7 on a side surface and a holding member 8 for holding the pipe 6 in the housing 2 And have.
 パイプ6は、供給部10から供給される液体をハウジング2のY方向に沿ってハウジング2の中部や下部側に導くものである。パイプ6の材質は、樹脂や金属などを用いることができる。パイプ6は、図9に示してあるように、一端(上部側)が層状複水酸化物3よりも上方に位置している。これは、小さな粒径の層状複水酸化物3aや泥状化した層状複水酸化物3がパイプ6内部に入るのを防ぐことにより、パイプ6が詰まるのを避けるためである。なお、ハウジング2の上側に液体が満たされていない空間がある場合には、パイプ6は、一端(上部側)が液面よりも上方に位置することが好ましい。 The pipe 6 guides the liquid supplied from the supply unit 10 to the middle or lower side of the housing 2 along the Y direction of the housing 2. As the material of the pipe 6, resin, metal, or the like can be used. As shown in FIG. 9, one end (upper side) of the pipe 6 is located above the layered double hydroxide 3. This is to prevent the pipe 6 from being clogged by preventing the layered double hydroxide 3a having a small particle size and the muddy layered double hydroxide 3 from entering the inside of the pipe 6. When there is a space above the housing 2 that is not filled with liquid, it is preferable that one end (upper side) of the pipe 6 is located above the liquid surface.
 また、パイプ6は、一端側(上部側)よりも他端側(下部側)のほうが孔部7の数が多くなっており、一端(上部側)から5mm~50mm、好ましくは5mm~25mmくらいまでは孔部7が形成されていない。これは、供給部10から供給される液体をハウジング2の上部には供給しないようにするためである。本実施形態では、パイプ6やパイプ6に設けられた孔部7により供給部10から供給される液体をハウジング2の下部側に供給しているので、ハウジング2の上部にある小さな粒径の層状複水酸化物3aが泥状化しにくくなり、ハウジング2が詰まるのを低減している。なお、孔部7の大きさは、層状複水酸化物3および小さな粒径の層状複水酸化物3aの大きさよりも小さいことが好ましい。これにより、パイプ6が層状複水酸化物3や小さな粒径の層状複水酸化物3aにより詰まることを防止することができる。また、孔部7の大きさは、パイプ6の入口側(Y方向上部)に比べてパイプの真ん中(Y方向中部)付近または出口側(Y方向下部)付近で大きくすれば、供給部10から供給される液体をハウジング2の中部や下部に導くことができる。なお、孔部7の大きさは、パイプ6の出口側付近に比べてパイプ6の真ん中付近で大きくしてもよい。
 また、本第5実施形態において、パイプ6の内径は、孔部7の大きさよりも大きいので、1つの孔部7から排出される液体の排出量は、パイプ6の下部から排出される液体の排出量よりも少なくなっている。
Further, the pipe 6 has a larger number of holes 7 on the other end side (lower side) than on one end side (upper side), and is 5 mm to 50 mm, preferably about 5 mm to 25 mm from one end (upper side). Until then, the hole 7 is not formed. This is to prevent the liquid supplied from the supply unit 10 from being supplied to the upper part of the housing 2. In the present embodiment, since the liquid supplied from the supply unit 10 is supplied to the lower side of the housing 2 by the pipe 6 and the hole portion 7 provided in the pipe 6, a layer having a small particle size in the upper part of the housing 2 is supplied. The double hydroxide 3a is less likely to become muddy, and the housing 2 is less likely to be clogged. The size of the pore portion 7 is preferably smaller than the size of the layered double hydroxide 3 and the layered double hydroxide 3a having a small particle size. This makes it possible to prevent the pipe 6 from being clogged with the layered double hydroxide 3 or the layered double hydroxide 3a having a small particle size. Further, if the size of the hole 7 is made larger near the center (middle in the Y direction) or near the outlet (lower in the Y direction) of the pipe than on the inlet side (upper part in the Y direction) of the pipe 6, the size of the hole 7 is increased from the supply part 10. The supplied liquid can be guided to the middle or lower part of the housing 2. The size of the hole 7 may be larger near the center of the pipe 6 than near the outlet side of the pipe 6.
Further, in the fifth embodiment, since the inner diameter of the pipe 6 is larger than the size of the hole 7, the amount of the liquid discharged from one hole 7 is the amount of the liquid discharged from the lower part of the pipe 6. It is less than the amount of emissions.
 本第5実施形態では、2本のパイプ6を図9に示しているが、パイプ6の数は1本でもよく3本以上でもよい。小さな粒径の層状複水酸化物3aが泥状化する場合に、上層からTセンチ(例えば5センチ)程度泥状化することがある。このため、パイプ6を複数設ける場合には、X方向に2Tセンチ(例えば10センチ)以上の間隔をあけて設けることにより、泥状化した層状複水酸化物3により2つのパイプ6の間が詰まってしまうのを防ぐことができる。また、パイプ6を複数設ける場合には、ほぼ等間隔に設けることが好ましく、例えば放射状となるように配置してもよい。
 また、パイプ6のY方向の長さも任意に設定することができ、ハウジング2のY方向の真ん中付近までの長さにしてもよく、パイプ6のY方向の下部付近までの長さにしてもよい。なお、複数のパイプ6を同じ長さとしてもよい。
In the fifth embodiment, two pipes 6 are shown in FIG. 9, but the number of pipes 6 may be one or three or more. When the layered double hydroxide 3a having a small particle size becomes muddy, it may become muddy by about T cm (for example, 5 cm) from the upper layer. Therefore, when a plurality of pipes 6 are provided, the two pipes 6 are separated by the muddy layered double hydroxide 3 by providing them at intervals of 2 T cm (for example, 10 cm) or more in the X direction. You can prevent it from getting clogged. When a plurality of pipes 6 are provided, they are preferably provided at substantially equal intervals, and may be arranged so as to be radial, for example.
Further, the length of the pipe 6 in the Y direction can be arbitrarily set, and the length of the housing 2 may be set to near the center of the Y direction, or may be set to the vicinity of the lower part of the pipe 6 in the Y direction. Good. The plurality of pipes 6 may have the same length.
 保持部材8は、パイプ6を保持する部材であり、パイプ6を保持できればどのような形状でもよく、材質としては樹脂や金属などを用いることができる。例えば、保持部材8として、樹脂製の網部材を用い、網の目においてパイプ6を保持するようにしてもよい。保持部材8として網部材を用いた場合には、網部材の弾性変形を利用してパイプ6を保持することができる。また、網の目でパイプ6を保持すれば、1つの保持部材8で複数の保持部材8を保持することができる。なお、図9では、保持部材8が1か所でパイプ6を保持しているが、Y方向に離間して保持部材8を複数設けて複数個所でパイプ6を保持するようにしてもよい。 The holding member 8 is a member that holds the pipe 6, and may have any shape as long as the pipe 6 can be held, and a resin, metal, or the like can be used as the material. For example, a resin net member may be used as the holding member 8 to hold the pipe 6 in the mesh. When a net member is used as the holding member 8, the pipe 6 can be held by utilizing the elastic deformation of the net member. Further, if the pipe 6 is held by the mesh, one holding member 8 can hold a plurality of holding members 8. In FIG. 9, the holding member 8 holds the pipe 6 at one place, but a plurality of holding members 8 may be provided at a distance in the Y direction to hold the pipe 6 at a plurality of places.
 本第5実施形態によれば、パイプ6が供給部10から供給される液体をハウジング2の下部に導くので、泥状化した層状複水酸化物3がハウジング2の上部にのみ形成されるのを防ぐことができる。これにより、ハウジング2が詰まるのを低減することができる。
 また、パイプ6の数や、長さや、径や孔部7の数などを調整して、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生する時期もしくは発生しそうな時期とをほぼ一致させれば、差圧計30の計測結果に基づいて、層状複水酸化物3の交換時期を容易に検出することができる。なお、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生する時期もしくは発生しそうな時期とをほぼ一致させるために移動装置40を駆動してもよい。この場合、第1実施形態から第4実施形態のどの移動装置40を用いてもよい。なお、移動装置40を用いなくても、層状複水酸化物3の交換時期と、ハウジング2内の詰まりが発生する時期もしくは発生しそうな時期とをほぼ一致させることができる場合には、移動装置40を省略することも可能となる。
According to the fifth embodiment, since the pipe 6 guides the liquid supplied from the supply unit 10 to the lower part of the housing 2, the muddy layered double hydroxide 3 is formed only on the upper part of the housing 2. Can be prevented. Thereby, it is possible to reduce the clogging of the housing 2.
Further, by adjusting the number, length, diameter, number of holes 7 and the like of the pipe 6, the time when the layered double hydroxide 3 is replaced and the time when the inside of the housing 2 is clogged or is likely to occur. If the above are substantially the same, the replacement time of the layered double hydroxide 3 can be easily detected based on the measurement result of the differential pressure gauge 30. The moving device 40 may be driven in order to substantially coincide with the time when the layered double hydroxide 3 is replaced and the time when the housing 2 is clogged or is likely to be clogged. In this case, any mobile device 40 of the first to fourth embodiments may be used. If the replacement time of the layered double hydroxide 3 and the time when the clogging in the housing 2 occurs or is likely to occur can be substantially coincided with each other without using the moving device 40, the moving device It is also possible to omit 40.
(第5実施形態の変形例)
 図10は、本第5実施形態の変形例を示す濾過装置100の概要図である。第5実施形態においては、パイプ6の内径は、孔部7の大きさよりも大きいので、パイプ6の下部から排出される液体の排出量が多く、パイプ6の下部付近で小さな粒径の層状複水酸化物3aが泥状化する可能性がある。また、パイプ6によりハウジング2の下部に導かれた液体は、排出部20に近いので、パイプ6の下部から排出された液体は、層状複水酸化物3と接触する接触時間が短くなり、ヒ素が層状複水酸化物3に十分吸着されなくなる可能性がある。
(Modified example of the fifth embodiment)
FIG. 10 is a schematic view of a filtration device 100 showing a modified example of the fifth embodiment. In the fifth embodiment, since the inner diameter of the pipe 6 is larger than the size of the hole 7, the amount of liquid discharged from the lower part of the pipe 6 is large, and the layered double hydroxide having a small particle size near the lower part of the pipe 6 is discharged. The hydroxide 3a may become muddy. Further, since the liquid guided to the lower part of the housing 2 by the pipe 6 is close to the discharge portion 20, the liquid discharged from the lower part of the pipe 6 has a shorter contact time with the layered double hydroxide 3, and arsenic. May not be sufficiently adsorbed by the layered double hydroxide 3.
 このため、本変形例では、図10に示すようにパイプ6の形状をパイプの下部に向けて(排出部20に向けて)外径および内径が小さくなるようなテーパ形状としている。このため、本変形例では、パイプ6の下部から排出される液体の排出量を第5実施形態に比べて少なくすることができるので、パイプ6の下部付近で小さな粒径の層状複水酸化物3aが泥状化することを低減することができる。また、パイプ6の下部から排出される液体の排出量を少なくしているので、層状複水酸化物3と接触する接触時間が短い液体の量を少なくすることができる。
 なお、パイプ6の内径をテーパ形状とした場合でも、パイプ6の下部の内径は、孔部7の大きさと同等以上とすることが好ましい。
Therefore, in this modification, as shown in FIG. 10, the shape of the pipe 6 is tapered so that the outer diameter and the inner diameter become smaller toward the lower part of the pipe (toward the discharge portion 20). Therefore, in this modification, the amount of liquid discharged from the lower part of the pipe 6 can be reduced as compared with the fifth embodiment, so that the layered double hydroxide having a small particle size near the lower part of the pipe 6 can be reduced. It is possible to reduce the muddy state of 3a. Further, since the amount of the liquid discharged from the lower part of the pipe 6 is reduced, the amount of the liquid having a short contact time with the layered double hydroxide 3 can be reduced.
Even when the inner diameter of the pipe 6 is tapered, the inner diameter of the lower portion of the pipe 6 is preferably equal to or larger than the size of the hole 7.
 以上説明した実施形態は、本発明を説明するための例示に過ぎず、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。例えば、差圧計30に代えて供給部10と排出部20とに流量計を設けてもよく、供給部10を流れる流量と、排出部20を流れる流量との差からハウジング2が詰まっているかどうかを判断してもよい。また、液体用フィルタ1をカートリッジ交換式としてもよい。供給バルブ11、排出バルブ12、バルブ13およびバルブ62は、空気弁としてもよく、電磁弁としてもよい。また、第1実施形態から第5実施形態を適宜組み合わせてもよい。 The embodiments described above are merely examples for explaining the present invention, and various modifications can be made without departing from the gist of the present invention. For example, a flow meter may be provided in the supply unit 10 and the discharge unit 20 instead of the differential pressure gauge 30, and whether the housing 2 is clogged due to the difference between the flow rate flowing through the supply unit 10 and the flow rate flowing through the discharge unit 20. May be judged. Further, the liquid filter 1 may be a cartridge exchange type. The supply valve 11, the discharge valve 12, the valve 13 and the valve 62 may be an air valve or an electromagnetic valve. Further, the first to fifth embodiments may be combined as appropriate.
1 液体用フィルタ  2 ハウジング  3 層状複水酸化物
3a 小さな粒径の層状複水酸化物  10 供給部  11 供給バルブ
12 排出バルブ  20 排出部  30 差圧計  40 移動装置
50 制御装置  100 濾過装置
 
1 Liquid filter 2 Housing 3 Layered compound hydroxide 3a Small particle size layered compound hydroxide 10 Supply part 11 Supply valve 12 Discharge valve 20 Discharge part 30 Differential pressure gauge 40 Moving device 50 Control device 100 Filtering device

Claims (23)

  1.  液体に含まれる有害物質を吸着する層状複水酸化物が収容されたハウジングと、
     前記ハウジング内の前記層状複水酸化物を移動させる移動装置と、を備えた液体用フィルタ。
    A housing containing a layered double hydroxide that adsorbs harmful substances contained in liquids,
    A liquid filter comprising a moving device for moving the layered double hydroxide in the housing.
  2.  前記移動装置は前記ハウジングの外側に設けられている請求項1記載の液体用フィルタ。 The liquid filter according to claim 1, wherein the moving device is provided on the outside of the housing.
  3.  前記移動装置は、
     前記ハウジングに接続された第1配管部から液体を供給し、前記ハウジングに接続された第2配管部から液体を排出する状態と、前記第2配管部から液体を供給し、前記第1配管部から液体を排出する状態と、を切り替える切替部を有する請求項2に記載の液体用フィルタ。
    The moving device is
    A state in which a liquid is supplied from the first piping portion connected to the housing and the liquid is discharged from the second piping portion connected to the housing, and a state in which the liquid is supplied from the second piping portion and the liquid is supplied from the first piping portion. The liquid filter according to claim 2, further comprising a switching unit for switching between a state of discharging liquid from the liquid.
  4.  前記移動装置は前記ハウジング内に設けられている請求項1記載の液体用フィルタ。 The liquid filter according to claim 1, wherein the moving device is provided in the housing.
  5.  前記移動装置は、前記層状複水酸化物が拡散するように前記層状複水酸化物を移動させる請求項1から4のいずれか一項に記載の液体用フィルタ。 The liquid filter according to any one of claims 1 to 4, wherein the moving device moves the layered double hydroxide so as to diffuse the layered double hydroxide.
  6.  前記移動装置は、前記ハウジングに振動を与える振動部材を有している請求項1から5のいずれか一項に記載の液体用フィルタ。 The liquid filter according to any one of claims 1 to 5, wherein the moving device has a vibrating member that vibrates the housing.
  7.  前記ハウジングに供給される液体と、前記ハウジングから排出する液体との差圧を測定する差圧計と、
     前記差圧計の測定結果に応じて前記移動装置を制御する制御装置と、を備えた請求項1から6のいずれか一項に記載の液体用フィルタ。
    A differential pressure gauge that measures the differential pressure between the liquid supplied to the housing and the liquid discharged from the housing.
    The liquid filter according to any one of claims 1 to 6, further comprising a control device that controls the moving device according to the measurement result of the differential pressure gauge.
  8.  前記制御装置は、前記差圧計の測定結果に応じて前記層状複水酸化物の交換を判定する請求項7記載の液体用フィルタ。 The liquid filter according to claim 7, wherein the control device determines the replacement of the layered double hydroxide according to the measurement result of the differential pressure gauge.
  9.  前記移動装置の駆動時間と、前記移動装置の駆動回数との少なくとも一方に基づいて前記層状複水酸化物の交換を判定する制御装置を備えた請求項1から6のいずれか一項に記載の液体用フィルタ。 The invention according to any one of claims 1 to 6, further comprising a control device for determining replacement of the layered double hydroxide based on at least one of the drive time of the mobile device and the number of times the mobile device is driven. Liquid filter.
  10.  前記層状複水酸化物の交換を判定する基準が、前記液体の前記有害物質の濃度に関連する情報に基づいて設定される、請求項8又は9に記載の液体用フィルタ。 The liquid filter according to claim 8 or 9, wherein the criteria for determining the exchange of the layered double hydroxide is set based on the information related to the concentration of the harmful substance in the liquid.
  11.  前記ハウジングが水平面に対して傾けて設置される、請求項1~10のいずれか一項に記載の液体用フィルタ。 The liquid filter according to any one of claims 1 to 10, wherein the housing is installed at an angle with respect to a horizontal plane.
  12.  前記ハウジングが水平面に対して3~40度傾けて設置される、請求項11に記載の液体用フィルタ。 The liquid filter according to claim 11, wherein the housing is installed at an angle of 3 to 40 degrees with respect to a horizontal plane.
  13.  前記ハウジングには、前記層状複水酸化物のうち泥状化した層状複水酸化物を外部に導出する管路が設けられている、請求項1~12のいずれか一項に記載の液体用フィルタ。 The liquid according to any one of claims 1 to 12, wherein the housing is provided with a conduit for leading out the muddy layered double hydroxide among the layered double hydroxides to the outside. filter.
  14.  前記移動装置は、前記ハウジング内において泥状化した前記層状複水酸化物を前記管路に向けて移動させるベルトコンベアである、請求項13に記載の液体用フィルタ。 The liquid filter according to claim 13, wherein the moving device is a belt conveyor that moves the layered double hydroxide that has become muddy in the housing toward the pipeline.
  15.  前記ハウジングに対して前記液体を供給するかしないかを切り替えるバルブを備え、前記バルブの状態に応じて、前記バルブの一部の色が変化する、請求項1~14のいずれか一項に記載の液体用フィルタ。 The invention according to any one of claims 1 to 14, further comprising a valve for switching whether to supply the liquid to the housing, and changing the color of a part of the valve according to the state of the valve. Liquid filter.
  16.  液体を通水するハウジングの高さと、前記ハウジングの高さと交差する方向の寸法と、を設定するステップと、
     前記ハウジングに供給する前記液体の単位時間あたりの供給量を設定するステップと、
     前記液体に含まれる有害物質を吸着する層状複水酸化物の前記ハウジングへの供給量を設定するステップと、
     前記液体の通水による前記層状複水酸化物の形状の変化に伴う前記ハウジングに詰まりが生じた際に前記層状複水酸化物を交換するステップと、を含む液体の処理方法。
    Steps to set the height of the housing through which the liquid passes and the dimensions in the direction intersecting the height of the housing.
    A step of setting the supply amount of the liquid to be supplied to the housing per unit time, and
    A step of setting the amount of the layered double hydroxide that adsorbs harmful substances contained in the liquid to the housing, and
    A method for treating a liquid, which comprises a step of replacing the layered double hydroxide when the housing is clogged due to a change in the shape of the layered double hydroxide due to water flow of the liquid.
  17.  前記ハウジング内の前記層状複水酸化物を移動させて、前記層状複水酸化物の形状の変化に伴う前記ハウジングに詰まりが生じる時間を調整するステップを含む請求項16記載の液体の処理方法。 The method for treating a liquid according to claim 16, further comprising a step of moving the layered double hydroxide in the housing to adjust the time during which the housing is clogged due to a change in the shape of the layered double hydroxide.
  18.  液体に含まれる有害物質を吸着する層状複水酸化物が収容されたハウジングと、
     前記ハウジングに供給される前記液体を前記ハウジングの排出側に向けて導くパイプと、を備えた液体用フィルタ。
    A housing containing a layered double hydroxide that adsorbs harmful substances contained in liquids,
    A liquid filter comprising a pipe that guides the liquid supplied to the housing toward the discharge side of the housing.
  19.  前記パイプの側面には孔部が形成されている請求項18記載の液体用フィルタ。 The liquid filter according to claim 18, wherein a hole is formed on the side surface of the pipe.
  20.  前記孔部は、前記ハウジングの供給側に比べて、前記ハウジングの前記排出側に多く形成されている請求項19記載の液体用フィルタ。 The liquid filter according to claim 19, wherein the holes are formed more on the discharge side of the housing than on the supply side of the housing.
  21.  前記孔部は複数設けられており、前記パイプの入口側の孔部の大きさに比べてパイプの真ん中付近の孔部が大きい請求項19又は20に記載の液体用フィルタ。 The liquid filter according to claim 19 or 20, wherein a plurality of the holes are provided, and the hole near the center of the pipe is larger than the size of the hole on the inlet side of the pipe.
  22.  前記パイプはテーパ形状である請求項18~21のいずれか一項記載の液体用フィルタ。 The liquid filter according to any one of claims 18 to 21, wherein the pipe has a tapered shape.
  23.  前記ハウジングには、前記パイプとして第1パイプと第2パイプとが設けられており、
     前記第1パイプと前記第2パイプとの長さが異なっている請求項18~22のいずれか一項記載の液体用フィルタ。
     
    The housing is provided with a first pipe and a second pipe as the pipes.
    The liquid filter according to any one of claims 18 to 22, wherein the first pipe and the second pipe have different lengths.
PCT/JP2020/025376 2019-12-12 2020-06-26 Liquid filter and liquid treatment method WO2021117275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563740A JP7309120B2 (en) 2019-12-12 2020-06-26 Liquid filter and liquid treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962947139P 2019-12-12 2019-12-12
US62/947,139 2019-12-12
US201962953637P 2019-12-26 2019-12-26
US62/953,637 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021117275A1 true WO2021117275A1 (en) 2021-06-17

Family

ID=76330210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025376 WO2021117275A1 (en) 2019-12-12 2020-06-26 Liquid filter and liquid treatment method

Country Status (2)

Country Link
JP (1) JP7309120B2 (en)
WO (1) WO2021117275A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211510A (en) * 1985-07-10 1987-01-20 Kinzoku Kogyo Jigyodan Fluidized solid/liquid contact device
JPS62204806A (en) * 1986-03-05 1987-09-09 Sumitomo Chem Co Ltd Method for collecting available material by adsorbent
JP2004167404A (en) * 2002-11-20 2004-06-17 Clusterone Corporation:Kk Water cleaner
JP2005306667A (en) * 2004-04-21 2005-11-04 Univ Waseda Crystalline layered double hydroxide powder, its producing method, formed article, and method for immobilizing harmful substance
WO2008059618A1 (en) * 2006-11-17 2008-05-22 Jdc Corporation Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance
JP2010214233A (en) * 2009-03-13 2010-09-30 Toshiba Corp Adsorption apparatus for wastewater
JP2010279915A (en) * 2009-06-05 2010-12-16 Toshiba Corp Adsorption device
JP2015037762A (en) * 2011-12-12 2015-02-26 株式会社エコファースト Water purification apparatus and management system for water purification apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211510A (en) * 1985-07-10 1987-01-20 Kinzoku Kogyo Jigyodan Fluidized solid/liquid contact device
JPS62204806A (en) * 1986-03-05 1987-09-09 Sumitomo Chem Co Ltd Method for collecting available material by adsorbent
JP2004167404A (en) * 2002-11-20 2004-06-17 Clusterone Corporation:Kk Water cleaner
JP2005306667A (en) * 2004-04-21 2005-11-04 Univ Waseda Crystalline layered double hydroxide powder, its producing method, formed article, and method for immobilizing harmful substance
WO2008059618A1 (en) * 2006-11-17 2008-05-22 Jdc Corporation Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance
JP2010214233A (en) * 2009-03-13 2010-09-30 Toshiba Corp Adsorption apparatus for wastewater
JP2010279915A (en) * 2009-06-05 2010-12-16 Toshiba Corp Adsorption device
JP2015037762A (en) * 2011-12-12 2015-02-26 株式会社エコファースト Water purification apparatus and management system for water purification apparatus

Also Published As

Publication number Publication date
JP7309120B2 (en) 2023-07-18
JPWO2021117275A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
EP1328329B1 (en) Proportional flow feeder for water filter cartridge
EP1706193B1 (en) Filter system with automatic media refresh
JP2012516764A (en) System and method for water treatment regeneration stage
JP4096886B2 (en) Biohazard countermeasure cabinet and cabinet filter replacement time detection method
EP2726169B1 (en) Filter head, and filter assembly and water treatment apparatus having the same
WO2021117275A1 (en) Liquid filter and liquid treatment method
US20180169562A1 (en) Capture and removal of targeted gas
JP5928995B2 (en) Membrane separation processing apparatus and method of operating the apparatus
EP3233245B1 (en) Regeneration of a filter element and gas purification device comprising that filter element
CA2531344C (en) Apparatus for measuring mercury contained in gaseous medium
KR20200130378A (en) Method for purifying membrane filter using ultrasonic wave and backwash pulse, and apparatus therefor
US7744759B1 (en) Maintaining wastewater-treatment sand filters
KR20160024602A (en) Strainer and control method thereof
KR100792590B1 (en) Filtering system
KR101772555B1 (en) Wet type air cleaner
US20080000822A1 (en) Filter Apparatus for Filtering a Flowing Material
JP3581960B2 (en) Automatic drain discharge method and apparatus
KR20150118323A (en) Water membrane filter and air clener using the same
KR101087062B1 (en) Filtration system using backwash-pressure fluctuations
KR100733691B1 (en) A filtering apparatus
US7402189B2 (en) Autonomously-cleaned conditioning system
JP2007098360A (en) Water purifier
JP2015116521A (en) Water purification apparatus and method
JP7130166B1 (en) Foreign matter removal device
JP2003340486A (en) Diffuser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899134

Country of ref document: EP

Kind code of ref document: A1