WO2021117127A1 - Power generation amount estimation device - Google Patents

Power generation amount estimation device Download PDF

Info

Publication number
WO2021117127A1
WO2021117127A1 PCT/JP2019/048265 JP2019048265W WO2021117127A1 WO 2021117127 A1 WO2021117127 A1 WO 2021117127A1 JP 2019048265 W JP2019048265 W JP 2019048265W WO 2021117127 A1 WO2021117127 A1 WO 2021117127A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
amount
unit
generation amount
rainfall
Prior art date
Application number
PCT/JP2019/048265
Other languages
French (fr)
Japanese (ja)
Inventor
克也 平
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2020515044A priority Critical patent/JP6833303B1/en
Priority to PCT/JP2019/048265 priority patent/WO2021117127A1/en
Publication of WO2021117127A1 publication Critical patent/WO2021117127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the embodiment of the present invention relates to a power generation amount prediction device.
  • machine learning by AI keeps accumulating a wide variety of past performance data, automatically calculates multiple prediction formulas from a huge amount of data, and calculates the amount of power generation from weather forecast information. Prediction is being considered. With such a method, it is possible to realize long-term forecasts such as daily unit, weekly unit, and monthly unit.
  • An embodiment of the present invention provides a power generation amount prediction device that can accurately predict the power generation amount of photovoltaic power generation in a short period of time.
  • a power generation amount prediction device for predicting the power generation amount of a photovoltaic power generation system including a power generation unit having a solar panel and an inverter and a communication network, and the communication network. It includes a communication unit to be connected and a control unit that predicts the power generation amount of the power generation unit based on the information acquired through the communication unit, and the control unit is the same as the current power generation amount of the power generation unit. Calculate the power generation coefficient that represents the ratio to the power generation amount of the power generation unit on the previous day at the time, and if the current rain amount is larger than the predetermined amount, the power generation coefficient is based on the increase or decrease of the rain amount from the predetermined time before to the present.
  • the power generation coefficient is replaced with the corrected power generation coefficient as it is, and the power generation unit of the previous day at a future time
  • a power generation amount prediction device for calculating the predicted power generation amount of the power generation unit at the future time is provided.
  • a power generation amount prediction device capable of accurately predicting the power generation amount of photovoltaic power generation in a short period of time.
  • FIG. 1 is a block diagram schematically showing a photovoltaic power plant and a power generation amount prediction device according to an embodiment.
  • the power generation amount prediction device 10 is used by being incorporated in the photovoltaic power generation plant 2 (photovoltaic power generation system).
  • the power generation amount prediction device 10 predicts the amount of power generated by the photovoltaic power plant 2. More specifically, the power generation amount prediction device 10 predicts the amount of power generated in the photovoltaic power plant 2 in a short period of time such as several minutes or several hours.
  • the power generation amount prediction device 10 displays, for example, the power generation amount prediction result so that the manager of the photovoltaic power generation plant 2 or the like can monitor the power generation amount prediction result.
  • the power generation amount prediction result may be displayed by the power generation amount prediction device 10, or may be displayed by another device of the photovoltaic power generation plant 2 by transmitting the prediction result via the network or the like.
  • the power generation amount prediction device 10 or transmits the power generation amount prediction result to the equipment of the electric power company via a network or the like.
  • the power company can grasp the prediction result of the power generation amount of the photovoltaic power generation plant 2.
  • the prediction result of the amount of power generation can be reflected in the power generation plan of the entire power system.
  • the photovoltaic power generation plant 2 includes a power generation unit 3, a rain gauge 4, a communication network 5, and the like, in addition to the power generation amount prediction device 10.
  • the power generation unit 3 has a solar panel 6 and an inverter 7.
  • the power generation unit 3 includes, for example, a plurality of solar panels 6 and a plurality of inverters 7.
  • the number of the solar panel 6 and the inverter 7 may be any number.
  • the number of the solar panel 6 and the inverter 7 may be one.
  • the power generation amount prediction device 10 is not limited to the solar power generation plant 2, and may be used for predicting the power generation amount of, for example, a home-use solar power generation system.
  • the solar panel 6 uses the photovoltaic effect to convert the light energy of sunlight into DC power.
  • the inverter 7 converts the DC power generated by the solar panel 6 into AC power corresponding to the power system (not shown), and supplies the converted AC power to the power system.
  • the rain gauge 4 measures the amount of rainfall at the location where the solar panel 6 is installed.
  • the communication network 5 enables communication of each device in the photovoltaic power plant 2.
  • the power generation amount prediction device 10 is communicably connected to a plurality of inverters 7 and a rain gauge 4 via a communication network 5.
  • the communication network 5 is not limited to the wired network 5, and may have a wireless section in a part thereof.
  • the configuration of the communication network 5 may be any configuration that enables communication between the power generation amount prediction device 10 and each inverter 7, and communication between the power generation amount prediction device 10 and the rain gauge 4.
  • the power generation amount prediction device 10 includes a communication unit 12, a control unit 14, and a storage unit 16.
  • the power generation amount prediction device 10 may further include, for example, a display unit for displaying the prediction result.
  • the communication unit 12 is connected to the communication network 5 of the photovoltaic power plant 2.
  • the communication unit 12 may be connected to the communication network 5 by wire or may be connected to the communication network 5 via wireless.
  • the communication unit 12 communicates with each of the inverters 7 and the rain gauge 4 via, for example, the communication network 5.
  • the control unit 14 is connected to the communication unit 12.
  • the control unit 14 predicts the amount of power generated by the power generation unit 3 based on the information acquired via the communication unit 12.
  • the control unit 14 acquires the current power generation amount of each inverter 7 by communicating with each inverter 7 via the communication unit 12 and the communication network 5.
  • the control unit 14 acquires power generation amount information representing the current power generation amount of the power generation unit 3 (photovoltaic power generation plant 2) from the total power generation amount of each inverter 7.
  • the power generation amount of the inverter 7 may be acquired as the power generation amount information of the power generation unit 3.
  • control unit 14 acquires rainfall information indicating the amount of rainfall per unit time at the installation location of the solar panel 6 from the rain gauge 4 by communicating with the rain gauge 4 via the communication unit 12 and the communication network 5. To do.
  • the unit time is, for example, one minute.
  • control unit 14 may communicate with the equipment of the electric power company via the communication unit 12 and the communication network 5, or is different from the communication unit 12. Communication may be performed with the equipment of the electric power company via a network different from the communication unit and the communication network 5.
  • the method of acquiring power generation amount information is not limited to communication with each inverter 7.
  • the power generation amount information may be acquired from, for example, a higher-level controller that controls the operation of each inverter 7, a power meter that measures the power generation amount of the power generation unit 3, or the like, or a voltmeter or the like.
  • the control unit 14 may calculate and acquire the measurement result based on the measurement result of an ammeter or the like.
  • the rainfall information does not necessarily have to be acquired from the rain gauge 4.
  • Rainfall information may be obtained from, for example, a higher-level controller or an external server that provides weather information.
  • the storage unit 16 is connected to the control unit 14.
  • the storage unit 16 stores the information input from the control unit 14 and enables the control unit 14 to read the stored information.
  • the control unit 14 After acquiring the power generation amount information of the power generation unit 3, the control unit 14 stores the power generation amount information in the storage unit 16 in association with the acquired time. Further, the control unit 14 periodically acquires the power generation amount information of the power generation unit 3 to store the power generation amount information in the storage unit 16 at predetermined time intervals. As a result, the control unit 14 generates the current day power generation amount information 20 indicating the temporal change of the power generation amount of the power generation unit 3 on the current day (today).
  • the control unit 14 stores the current day power generation amount information 20 acquired on the previous day as the previous day power generation amount information 22 in the storage unit 16 when, for example, the date changes. More specifically, the previous day power generation amount information 22 changes the power generation amount of the power generation unit 3 on the previous day by associating the periodically acquired power generation amount of the power generation unit 3 with the acquisition time of the power generation amount. Information to represent. As a result, the control unit 14 can know the power generation amount of the power generation unit 3 on the previous day at the same time as the current time by referring to the power generation amount information 22 on the previous day.
  • the power generation amount information before the previous day may be stored in the storage unit 16 or may be deleted.
  • the control unit 14 After acquiring the rainfall information of the installation location of the solar panel 6, the control unit 14 stores the rainfall information in the storage unit 16. The control unit 14 periodically acquires rainfall information and stores it in the storage unit 16. As a result, the control unit 14 generates the predetermined period rainfall information 24 indicating the change in the rainfall amount for each unit time in the predetermined period from before the predetermined time to the present at the installation location of the solar panel 6.
  • the predetermined period is, for example, 30 minutes.
  • the control unit 14 acquires rainfall information every minute to generate rainfall information 24 for a predetermined period indicating a change in rainfall from 30 minutes ago to the present.
  • the predetermined period is not limited to 30 minutes and may be any period.
  • the control unit 14 generates the power generation amount information 20 on the day, the power generation amount information 22 on the previous day, and the rainfall information 24 for a predetermined period, and stores each information in the storage unit 16.
  • the current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rain amount information 24 are not limited to the storage unit 16 of the power generation amount prediction device 10, but are another storage connected via, for example, the communication network 5. It may be stored in a device or the like. In this case, the storage unit 16 for storing the current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rainfall information 24 can be omitted.
  • the power generation amount prediction device 10 may include at least a communication unit 12 and a control unit 14.
  • the current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rainfall information 24 are not limited to the control unit 14, and may be generated by another device.
  • the rainfall information 24 for a predetermined period may be generated by the rain gauge 4 and stored in the rain gauge 4.
  • FIG. 2 is a flowchart schematically showing an example of the operation of the power generation amount prediction device according to the embodiment.
  • the control unit 14 of the power generation amount prediction device 10 starts the operation, the control unit 14 of the power generation unit 3 first communicates with each inverter 7 via the communication unit 12 and the communication network 5. Acquire the current power generation amount PV (step S101 in FIG. 2).
  • step S102 in FIG. 2 The time when the control unit 14 acquires the current power generation amount PV of the power generation unit 3 by referring to the previous day power generation amount information 22 stored in the storage unit 16 after acquiring the current power generation amount PV of the power generation unit 3. At the same time as, the power generation amount OV of the power generation unit 3 on the previous day is acquired (step S102 in FIG. 2).
  • the control unit 14 calculates the power generation coefficient K by the following equation (1) (step S103 in FIG. 2).
  • K PV / OV ... (1)
  • the power generation coefficient K represents the ratio of the current power generation amount PV to the power generation amount OV at the same time on the previous day.
  • the current power generation amount PV and the power generation amount OV on the previous day change depending on the weather conditions and the operating status of the equipment. More specifically, the meteorological conditions include the intensity of solar radiation and the temperature of the solar panel 6. More specifically, the operating status of the equipment includes the operating / stopped state of each inverter 7, the failure of the solar panel 6, the disconnection of the main circuit cable, and the power consumption in the photovoltaic power generation plant 2.
  • the control unit 14 After calculating the power generation coefficient K, the control unit 14 acquires the current rainfall information at the installation location of the solar panel 6 by communicating with the rain gauge 4 via the communication unit 12 and the communication network 5. Then, the control unit 14 determines whether or not the current rainfall at the installation location of the solar panel 6 is equal to or less than a predetermined amount based on the acquired rainfall information (step S104 in FIG. 2).
  • the predetermined amount is, for example, 0 mm. In other words, the control unit 14 determines whether or not it is raining at the installation location of the solar panel 6. However, the predetermined amount is not limited to 0 mm. The predetermined amount may be appropriately set in consideration of, for example, the influence of rainfall on the power generation of the solar panel 6.
  • the control unit 14 determines that the current rainfall is greater than the predetermined amount, the control unit 14 acquires the increase / decrease ⁇ PR of the rainfall up to the current time by referring to the predetermined period rainfall information 24 stored in the storage unit 16 (FIG. Step 2 S105). In other words, the control unit 14 acquires the increase / decrease ⁇ PR of the rainfall based on the rainfall information acquired from the rain gauge 4.
  • the control unit 14 acquires the increase / decrease ⁇ PR of rainfall by, for example, the following equation (2).
  • ⁇ PR 1+ ((rainfall from 30 minutes to 15 minutes ago)-(rainfall from 15 minutes to the present)) / 100 ...
  • ⁇ PR is 1 when (rainfall from 30 minutes before to 15 minutes before) and (rainfall from 15 minutes before to the present) are the same.
  • ⁇ PR becomes larger than 1 when (rainfall from 30 minutes to 15 minutes ago) is larger than (rainfall from 15 minutes to the present), and (rainfall from 30 minutes to 15 minutes ago).
  • (rainfall) is less than (rainfall from 15 minutes ago to the present), it is less than 1.
  • ⁇ PR is 1 when there is no change in rainfall between 30 minutes before and 15 minutes before and between 15 minutes and now, and between 30 minutes and 15 minutes before and 15 minutes before. Greater than 1 when rainfall decreases from to the present, and less than 1 when rainfall increases between 30 and 15 minutes ago and between 15 minutes and now. Become.
  • the increase / decrease ⁇ PR of the rainfall becomes 1 when there is no change in the rainfall in the predetermined period, becomes larger than 1 when the rainfall decreases in the predetermined period, and becomes greater than 1 when the rainfall increases in the predetermined period. It becomes smaller.
  • the predetermined period is the same as the period of the predetermined period rainfall information 24. In this example, the predetermined period is 30 minutes. As described above, the predetermined period is not limited to 30 minutes and may be any period.
  • control unit 14 After obtaining the corrected power generation coefficient K', the control unit 14 sets the variable i to 0 and determines whether the variable i is equal to or less than a predetermined value n (steps S109 and S110 in FIG. 2).
  • the control unit 14 determines that the variable i is equal to or less than the predetermined value n, the control unit 14 refers to the previous day power generation amount information 22 stored in the storage unit 16 to refer to the previous day power generation unit 3 at the future time T (i).
  • the power generation amount OV (T (i)) is acquired (step S111 in FIG. 2).
  • the future time T (i) is a short-term time several minutes to several hours after the current time.
  • the predicted power generation amount PV (T (T)) at the future time T (i) is performed by the following equation (4). i)) is calculated (step S112 in FIG. 2).
  • PV (T (i)) K' ⁇ OV (T (i)) ... (4) That is, the control unit 14 of the power generation unit 3 at the future time T (i) by multiplying the power generation amount OV (T (i)) of the previous day at the future time T (i) by the corrected power generation coefficient K'. Calculate the predicted power generation PV (T (i)).
  • the control unit 14 After calculating the predicted power generation amount PV (T (i)), the control unit 14 adds 1 to the variable i and returns to the process of step S110. As a result, the control unit 14 acquires a plurality of predicted power generation amounts PV (T (i)) at intervals of several minutes or several hours.
  • the control unit 14 After acquiring a plurality of predicted power generation amounts PV (T (i)), the control unit 14 displays, for example, each predicted power generation amount PV (T (i)) on the display unit as a power generation amount prediction result, or power generation. Send it to company equipment. This makes it possible to monitor the prediction result of the amount of power generation and reflect it in the power generation plan.
  • the corrected power generation coefficient K' is obtained based on the power generation coefficient K and the increase / decrease ⁇ PR of the amount of rainfall, and the day before at the future time T (i).
  • the predicted power generation amount PV (T (i)) at the future time T (i) is calculated.
  • the power generation coefficient K is larger than 1.
  • the current power generation amount PV becomes smaller than the power generation amount OV at the same time on the previous day, and the power generation coefficient K becomes smaller than 1.
  • the influence of the difference in the weather conditions and the operating condition of the equipment between the present and the same time on the previous day on the power generation amount is appropriate. It can be reflected in the prediction result. Even when the photovoltaic power generation plant 2 loses its normal power generation capacity due to a facility failure in the photovoltaic power plant 2, it can be immediately reflected in the power generation amount prediction.
  • the current rainfall of whether the rainfall is constant, increasing, or decreasing is determined.
  • the impact on power generation can be appropriately reflected in the forecast results.
  • the power generation amount prediction device 10 it is possible to accurately predict the power generation amount of the photovoltaic power plant 2 in a short period of time. Further, the power generation amount prediction device 10 according to the present embodiment enables real-time power generation prediction even in a situation where there is no special sensor, a huge amount of data processing, high-precision weather forecast information, or the like. The power generation amount prediction device 10 can accurately predict the power generation amount in a short period of time of the photovoltaic power generation plant 2 while suppressing the complexity of the device configuration.
  • the embodiments of the present invention have been described above with reference to specific examples. However, the embodiments of the present invention are not limited to these specific examples.
  • the present invention can be similarly carried out by appropriately selecting from a range known to those skilled in the art, and the same effect can be obtained. As far as it can be obtained, it is included in the scope of the present invention. Further, a combination of any two or more elements of each specific example to the extent technically possible is also included in the scope of the present invention as long as the gist of the present invention is included.
  • photovoltaic power generation plants photovoltaic power generation systems
  • the power generation amount prediction device also belongs to the scope of the present invention as long as the gist of the present invention is included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Photovoltaic Devices (AREA)

Abstract

According to an embodiment of the present invention, a power generation amount estimation device (10) for estimating the power generation amount of a solar power generation system (2) equipped with a power generation unit (3) having solar panels (6) and inverters (7) and a communication network (5) is provided with: a communication unit (12) connected to the communication network (5); and a control unit (14) for estimating the power generation amount of the power generation unit (3) on the basis of the information acquired through the communication unit (12). The control unit (14) calculates a power generation coefficient representing the ratio between the current power generation amount of the power generation unit (3) and the power generation amount of the power generation unit (3) on the previous day at the same time. When the current amount of rainfall is greater than a predetermined amount, the control unit corrects the power generation coefficient on the basis of an increase or decrease of the amount of rainfall from a predetermined time ago to the present to calculate a corrected power generation coefficient. When the current amount of rainfall is less than or equal to the predetermined amount, the control unit directly replaces the power generation coefficient with the corrected power generation coefficient. Provided is the power generation amount estimation device (10) for calculating a estimated power generation amount of the power generation unit (3) at a future time by multiplying the power generation amount of the power generation unit (3) on the previous day at the future time by the corrected power generation coefficient. This provides the power generation amount estimation device (10) capable of accurately estimating the power generation amount of a solar power generation during a short period of time.

Description

発電量予測装置Power generation forecaster
 本発明の実施形態は、発電量予測装置に関する。 The embodiment of the present invention relates to a power generation amount prediction device.
 太陽光や風力などの再生可能エネルギーを利用した発電の発電量が増加すると、電力の需要と供給のバランスを調整することが難しくなってしまう場合がある。このため、再生可能エネルギーに基づく発電の発電量をリアルタイムに予測することが重要となっている。 If the amount of power generated using renewable energy such as solar power and wind power increases, it may become difficult to balance the supply and demand of electricity. For this reason, it is important to predict the amount of power generation based on renewable energy in real time.
 例えば、太陽光発電において、AI(Artificial Intelligence)による機械学習により、過去の多種多様な実績データを蓄積し続け、膨大なデータから複数の予測式を自動で算出し、天気予報情報から発電量を予測することが検討されている。こうした方式では、1日単位、1週間単位、1ヶ月単位などの長期間の予測を実現することが可能である。 For example, in photovoltaic power generation, machine learning by AI (Artificial Intelligence) keeps accumulating a wide variety of past performance data, automatically calculates multiple prediction formulas from a huge amount of data, and calculates the amount of power generation from weather forecast information. Prediction is being considered. With such a method, it is possible to realize long-term forecasts such as daily unit, weekly unit, and monthly unit.
 しかしながら、数分後や数時間後などの短期間の発電量予測において、太陽光発電プラント内の設備故障などにより、太陽光発電プラントが通常の発電能力を損なった場合などには、即座に発電量予測に反映することが難しかった。このため、太陽光発電においては、数分後や数時間後などの短期間の発電量をより精度良く予測できるようにすることが望まれる。 However, in short-term power generation forecasts such as minutes or hours later, if the photovoltaic power plant loses its normal power generation capacity due to equipment failure in the photovoltaic power plant, etc., it will generate power immediately. It was difficult to reflect it in the quantity forecast. Therefore, in photovoltaic power generation, it is desired to be able to more accurately predict the amount of power generation in a short period of time such as several minutes or several hours later.
特開2017-127140号公報JP-A-2017-127140
 本発明の実施形態は、太陽光発電の短期間の発電量を精度良く予測できる発電量予測装置を提供する。 An embodiment of the present invention provides a power generation amount prediction device that can accurately predict the power generation amount of photovoltaic power generation in a short period of time.
 本発明の実施形態によれば、太陽光パネルとインバータとを有する発電部と、通信ネットワークと、を備えた太陽光発電システムの発電量を予測する発電量予測装置であって、前記通信ネットワークに接続される通信部と、前記通信部を介して取得した情報に基づいて前記発電部の発電量を予測する制御部と、を備え、前記制御部は、前記発電部の現在の発電量と同時刻における前日の前記発電部の発電量との比を表す発電係数を計算し、現在の雨量が所定量よりも多い場合には、所定時間前から現在までの雨量の増減を基に前記発電係数を補正して補正後の発電係数を計算するとともに、現在の雨量が前記所定量以下の場合には、前記発電係数をそのまま前記補正後の発電係数に置き換え、将来時刻における前日の前記発電部の発電量に前記補正後の発電係数を乗算することにより、前記将来時刻における前記発電部の予測発電量を計算する発電量予測装置が提供される。 According to the embodiment of the present invention, it is a power generation amount prediction device for predicting the power generation amount of a photovoltaic power generation system including a power generation unit having a solar panel and an inverter and a communication network, and the communication network. It includes a communication unit to be connected and a control unit that predicts the power generation amount of the power generation unit based on the information acquired through the communication unit, and the control unit is the same as the current power generation amount of the power generation unit. Calculate the power generation coefficient that represents the ratio to the power generation amount of the power generation unit on the previous day at the time, and if the current rain amount is larger than the predetermined amount, the power generation coefficient is based on the increase or decrease of the rain amount from the predetermined time before to the present. Is corrected to calculate the corrected power generation coefficient, and when the current rainfall is less than or equal to the predetermined amount, the power generation coefficient is replaced with the corrected power generation coefficient as it is, and the power generation unit of the previous day at a future time By multiplying the power generation amount by the corrected power generation coefficient, a power generation amount prediction device for calculating the predicted power generation amount of the power generation unit at the future time is provided.
 本発明の実施形態によれば、太陽光発電の短期間の発電量を精度良く予測できる発電量予測装置が提供される。 According to the embodiment of the present invention, there is provided a power generation amount prediction device capable of accurately predicting the power generation amount of photovoltaic power generation in a short period of time.
実施形態に係る太陽光発電プラント及び発電量予測装置を模式的に表すブロック図である。It is a block diagram which shows typically the photovoltaic power generation plant and the power generation amount prediction apparatus which concerns on embodiment. 実施形態に係る発電量予測装置の動作の一例を模式的に表すフローチャートである。It is a flowchart which schematically shows an example of the operation of the power generation amount prediction apparatus which concerns on embodiment.
 以下に、各実施の形態について図面を参照しつつ説明する。
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, each embodiment will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio of the sizes between the parts, and the like are not necessarily the same as the actual ones. Further, even when the same parts are represented, the dimensions and ratios may be different from each other depending on the drawings.
In addition, in the present specification and each figure, the same elements as those described above with respect to the above-mentioned figures are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
 図1は、実施形態に係る太陽光発電プラント及び発電量予測装置を模式的に表すブロック図である。
 図1に表したように、発電量予測装置10は、太陽光発電プラント2(太陽光発電システム)に組み込んで用いられる。発電量予測装置10は、太陽光発電プラント2で発電される発電量の予測を行う。発電量予測装置10は、より詳しくは、太陽光発電プラント2において数分後や数時間後などの短期間先に発電される発電量の予測を行う。
FIG. 1 is a block diagram schematically showing a photovoltaic power plant and a power generation amount prediction device according to an embodiment.
As shown in FIG. 1, the power generation amount prediction device 10 is used by being incorporated in the photovoltaic power generation plant 2 (photovoltaic power generation system). The power generation amount prediction device 10 predicts the amount of power generated by the photovoltaic power plant 2. More specifically, the power generation amount prediction device 10 predicts the amount of power generated in the photovoltaic power plant 2 in a short period of time such as several minutes or several hours.
 発電量予測装置10は、例えば、発電量の予測結果を表示し、太陽光発電プラント2の管理者などが発電量の予測結果をモニタできるようにする。発電量の予測結果の表示は、発電量予測装置10で行ってもよいし、ネットワークを介して予測結果を送信することなどにより、太陽光発電プラント2の別の機器で行ってもよい。 The power generation amount prediction device 10 displays, for example, the power generation amount prediction result so that the manager of the photovoltaic power generation plant 2 or the like can monitor the power generation amount prediction result. The power generation amount prediction result may be displayed by the power generation amount prediction device 10, or may be displayed by another device of the photovoltaic power generation plant 2 by transmitting the prediction result via the network or the like.
 発電量予測装置10は、あるいは、発電量の予測結果をネットワークなどを介して電力会社の機器に送信する。これにより、太陽光発電プラント2の発電量の予測結果を電力会社側で把握することができる。例えば、発電量の予測結果を電力系統全体の発電計画に反映させることができる。 The power generation amount prediction device 10 or transmits the power generation amount prediction result to the equipment of the electric power company via a network or the like. As a result, the power company can grasp the prediction result of the power generation amount of the photovoltaic power generation plant 2. For example, the prediction result of the amount of power generation can be reflected in the power generation plan of the entire power system.
 太陽光発電プラント2は、発電量予測装置10の他に、発電部3、雨量計4、通信ネットワーク5などを備える。発電部3は、太陽光パネル6とインバータ7とを有する。発電部3は、例えば、複数の太陽光パネル6及び複数のインバータ7を備える。太陽光パネル6及びインバータ7の数は、任意の数でよい。太陽光パネル6及びインバータ7の数は、1つでもよい。発電量予測装置10は、太陽光発電プラント2に限ることなく、例えば、家庭用の太陽光発電システムなどの発電量の予測に用いてもよい。 The photovoltaic power generation plant 2 includes a power generation unit 3, a rain gauge 4, a communication network 5, and the like, in addition to the power generation amount prediction device 10. The power generation unit 3 has a solar panel 6 and an inverter 7. The power generation unit 3 includes, for example, a plurality of solar panels 6 and a plurality of inverters 7. The number of the solar panel 6 and the inverter 7 may be any number. The number of the solar panel 6 and the inverter 7 may be one. The power generation amount prediction device 10 is not limited to the solar power generation plant 2, and may be used for predicting the power generation amount of, for example, a home-use solar power generation system.
 太陽光パネル6は、光起電力効果を利用し、太陽光の光エネルギーを直流電力に変換する。インバータ7は、太陽光パネル6で発電された直流電力を電力系統(図示は省略)に応じた交流電力に変換し、変換後の交流電力を電力系統に供給する。 The solar panel 6 uses the photovoltaic effect to convert the light energy of sunlight into DC power. The inverter 7 converts the DC power generated by the solar panel 6 into AC power corresponding to the power system (not shown), and supplies the converted AC power to the power system.
 雨量計4は、太陽光パネル6の設置箇所の雨量を計測する。通信ネットワーク5は、太陽光発電プラント2内の各機器の通信を可能にする。発電量予測装置10は、通信ネットワーク5を介して複数のインバータ7及び雨量計4と通信可能に接続される。なお、通信ネットワーク5は、有線に限ることなく、一部に無線の区間を有してもよい。通信ネットワーク5の構成は、発電量予測装置10と各インバータ7との間の通信、及び発電量予測装置10と雨量計4との間の通信を可能にする任意の構成でよい。 The rain gauge 4 measures the amount of rainfall at the location where the solar panel 6 is installed. The communication network 5 enables communication of each device in the photovoltaic power plant 2. The power generation amount prediction device 10 is communicably connected to a plurality of inverters 7 and a rain gauge 4 via a communication network 5. The communication network 5 is not limited to the wired network 5, and may have a wireless section in a part thereof. The configuration of the communication network 5 may be any configuration that enables communication between the power generation amount prediction device 10 and each inverter 7, and communication between the power generation amount prediction device 10 and the rain gauge 4.
 発電量予測装置10は、通信部12と、制御部14と、記憶部16と、を備える。発電量予測装置10は、例えば、予測結果を表示するための表示部などをさらに備えてもよい。通信部12は、太陽光発電プラント2の通信ネットワーク5に接続される。通信部12は、有線で通信ネットワーク5と接続してもよいし、無線を介して通信ネットワーク5と接続してもよい。通信部12は、例えば、通信ネットワーク5を介して各インバータ7及び雨量計4と通信を行う。 The power generation amount prediction device 10 includes a communication unit 12, a control unit 14, and a storage unit 16. The power generation amount prediction device 10 may further include, for example, a display unit for displaying the prediction result. The communication unit 12 is connected to the communication network 5 of the photovoltaic power plant 2. The communication unit 12 may be connected to the communication network 5 by wire or may be connected to the communication network 5 via wireless. The communication unit 12 communicates with each of the inverters 7 and the rain gauge 4 via, for example, the communication network 5.
 制御部14は、通信部12と接続されている。制御部14は、通信部12を介して取得した情報に基づいて発電部3の発電量を予測する。 The control unit 14 is connected to the communication unit 12. The control unit 14 predicts the amount of power generated by the power generation unit 3 based on the information acquired via the communication unit 12.
 制御部14は、通信部12及び通信ネットワーク5を介して各インバータ7と通信を行うことにより、各インバータ7の現在の発電量を取得する。制御部14は、各インバータ7の発電量の合計から発電部3(太陽光発電プラント2)の現在の発電量を表す発電量情報を取得する。なお、インバータ7の数が1つである場合には、インバータ7の発電量を発電部3の発電量情報として取得すればよい。 The control unit 14 acquires the current power generation amount of each inverter 7 by communicating with each inverter 7 via the communication unit 12 and the communication network 5. The control unit 14 acquires power generation amount information representing the current power generation amount of the power generation unit 3 (photovoltaic power generation plant 2) from the total power generation amount of each inverter 7. When the number of inverters 7 is one, the power generation amount of the inverter 7 may be acquired as the power generation amount information of the power generation unit 3.
 また、制御部14は、通信部12及び通信ネットワーク5を介して雨量計4と通信を行うことにより、太陽光パネル6の設置箇所における単位時間当たりの雨量を表す雨量情報を雨量計4から取得する。単位時間は、例えば、1分間である。 Further, the control unit 14 acquires rainfall information indicating the amount of rainfall per unit time at the installation location of the solar panel 6 from the rain gauge 4 by communicating with the rain gauge 4 via the communication unit 12 and the communication network 5. To do. The unit time is, for example, one minute.
 発電量の予測結果を電力会社の機器に送信する場合、制御部14は、通信部12及び通信ネットワーク5を介して電力会社の機器と通信を行ってもよいし、通信部12とは別の通信部及び通信ネットワーク5とは別のネットワークを介して電力会社の機器と通信を行ってもよい。 When transmitting the predicted result of the amount of power generation to the equipment of the electric power company, the control unit 14 may communicate with the equipment of the electric power company via the communication unit 12 and the communication network 5, or is different from the communication unit 12. Communication may be performed with the equipment of the electric power company via a network different from the communication unit and the communication network 5.
 なお、発電量情報の取得方法は、各インバータ7との通信に限定されるものではない。発電量情報は、例えば、各インバータ7の動作を制御する上位のコントローラなどから取得してもよいし、発電部3の発電量を計測する電力計などから取得してもよいし、電圧計や電流計などの計測結果を基に制御部14で演算して取得してもよい。また、雨量情報は、必ずしも雨量計4から取得しなくてもよい。雨量情報は、例えば、上位のコントローラや天候の情報を提供する外部のサーバなどから取得してもよい。 The method of acquiring power generation amount information is not limited to communication with each inverter 7. The power generation amount information may be acquired from, for example, a higher-level controller that controls the operation of each inverter 7, a power meter that measures the power generation amount of the power generation unit 3, or the like, or a voltmeter or the like. The control unit 14 may calculate and acquire the measurement result based on the measurement result of an ammeter or the like. Further, the rainfall information does not necessarily have to be acquired from the rain gauge 4. Rainfall information may be obtained from, for example, a higher-level controller or an external server that provides weather information.
 記憶部16は、制御部14と接続されている。記憶部16は、制御部14から入力された情報を記憶するとともに、記憶した情報の制御部14による読み出しを可能にする。 The storage unit 16 is connected to the control unit 14. The storage unit 16 stores the information input from the control unit 14 and enables the control unit 14 to read the stored information.
 制御部14は、発電部3の発電量情報を取得した後、その発電量情報を取得した時刻と関連付けて記憶部16に記憶させる。また、制御部14は、発電部3の発電量情報を定期的に取得することにより、所定の時刻毎に発電量情報を記憶部16に記憶させる。これにより、制御部14は、当日(本日)の発電部3の発電量の時間的変化を表す当日発電量情報20を生成する。 After acquiring the power generation amount information of the power generation unit 3, the control unit 14 stores the power generation amount information in the storage unit 16 in association with the acquired time. Further, the control unit 14 periodically acquires the power generation amount information of the power generation unit 3 to store the power generation amount information in the storage unit 16 at predetermined time intervals. As a result, the control unit 14 generates the current day power generation amount information 20 indicating the temporal change of the power generation amount of the power generation unit 3 on the current day (today).
 制御部14は、例えば、日付が変わった際などに、前日に取得した当日発電量情報20を前日発電量情報22として記憶部16に記憶させる。前日発電量情報22は、より詳しくは、定期的に取得された発電部3の発電量と、発電量の取得時刻と、を関連付けることにより、発電部3の前日の発電量の時間的変化を表す情報である。これにより、制御部14は、前日発電量情報22を参照することで、現在の時刻と同時刻における前日の発電部3の発電量などを知ることができる。なお、前日よりも前の発電量情報は、記憶部16に記憶させておいてもよいし、消去してもよい。 The control unit 14 stores the current day power generation amount information 20 acquired on the previous day as the previous day power generation amount information 22 in the storage unit 16 when, for example, the date changes. More specifically, the previous day power generation amount information 22 changes the power generation amount of the power generation unit 3 on the previous day by associating the periodically acquired power generation amount of the power generation unit 3 with the acquisition time of the power generation amount. Information to represent. As a result, the control unit 14 can know the power generation amount of the power generation unit 3 on the previous day at the same time as the current time by referring to the power generation amount information 22 on the previous day. The power generation amount information before the previous day may be stored in the storage unit 16 or may be deleted.
 制御部14は、太陽光パネル6の設置箇所の雨量情報を取得した後、その雨量情報を記憶部16に記憶させる。制御部14は、雨量情報を定期的に取得し、記憶部16に記憶させる。これにより、制御部14は、太陽光パネル6の設置箇所における所定時間前から現在までの所定期間の単位時間毎の雨量の変化を表す所定期間雨量情報24を生成する。所定期間は、例えば、30分である。制御部14は、例えば、1分毎に雨量情報を取得することにより、30分前から現在までの雨量の変化を表す所定期間雨量情報24を生成する。但し、所定期間は、30分に限ることなく、任意の期間でよい。 After acquiring the rainfall information of the installation location of the solar panel 6, the control unit 14 stores the rainfall information in the storage unit 16. The control unit 14 periodically acquires rainfall information and stores it in the storage unit 16. As a result, the control unit 14 generates the predetermined period rainfall information 24 indicating the change in the rainfall amount for each unit time in the predetermined period from before the predetermined time to the present at the installation location of the solar panel 6. The predetermined period is, for example, 30 minutes. For example, the control unit 14 acquires rainfall information every minute to generate rainfall information 24 for a predetermined period indicating a change in rainfall from 30 minutes ago to the present. However, the predetermined period is not limited to 30 minutes and may be any period.
 このように、制御部14は、当日発電量情報20と前日発電量情報22と所定期間雨量情報24とを生成し、各情報を記憶部16に記憶させる。なお、当日発電量情報20、前日発電量情報22、及び所定期間雨量情報24は、発電量予測装置10の記憶部16に限ることなく、例えば、通信ネットワーク5を介して接続された別の記憶装置などに記憶させてもよい。この場合、当日発電量情報20、前日発電量情報22、及び所定期間雨量情報24を記憶するための記憶部16は、省略可能である。発電量予測装置10は、少なくとも通信部12と制御部14とを備えていればよい。また、当日発電量情報20、前日発電量情報22、及び所定期間雨量情報24は、制御部14に限ることなく、別の機器で生成してもよい。例えば、所定期間雨量情報24は、雨量計4で生成するとともに、雨量計4に記憶させてもよい。 In this way, the control unit 14 generates the power generation amount information 20 on the day, the power generation amount information 22 on the previous day, and the rainfall information 24 for a predetermined period, and stores each information in the storage unit 16. The current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rain amount information 24 are not limited to the storage unit 16 of the power generation amount prediction device 10, but are another storage connected via, for example, the communication network 5. It may be stored in a device or the like. In this case, the storage unit 16 for storing the current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rainfall information 24 can be omitted. The power generation amount prediction device 10 may include at least a communication unit 12 and a control unit 14. Further, the current day power generation amount information 20, the previous day power generation amount information 22, and the predetermined period rainfall information 24 are not limited to the control unit 14, and may be generated by another device. For example, the rainfall information 24 for a predetermined period may be generated by the rain gauge 4 and stored in the rain gauge 4.
 図2は、実施形態に係る発電量予測装置の動作の一例を模式的に表すフローチャートである。
 図2に表したように、発電量予測装置10の制御部14は、動作を開始すると、まず、通信部12及び通信ネットワーク5を介して各インバータ7と通信を行うことにより、発電部3の現在の発電量PVを取得する(図2のステップS101)。
FIG. 2 is a flowchart schematically showing an example of the operation of the power generation amount prediction device according to the embodiment.
As shown in FIG. 2, when the control unit 14 of the power generation amount prediction device 10 starts the operation, the control unit 14 of the power generation unit 3 first communicates with each inverter 7 via the communication unit 12 and the communication network 5. Acquire the current power generation amount PV (step S101 in FIG. 2).
 制御部14は、発電部3の現在の発電量PVを取得した後、記憶部16に記憶された前日発電量情報22を参照することにより、発電部3の現在の発電量PVを取得した時刻と同時刻における前日の発電部3の発電量OVを取得する(図2のステップS102)。 The time when the control unit 14 acquires the current power generation amount PV of the power generation unit 3 by referring to the previous day power generation amount information 22 stored in the storage unit 16 after acquiring the current power generation amount PV of the power generation unit 3. At the same time as, the power generation amount OV of the power generation unit 3 on the previous day is acquired (step S102 in FIG. 2).
 制御部14は、現在の発電量PV及び前日の発電量OVを取得した後、次の(1)式により、発電係数Kを計算する(図2のステップS103)。
 K=PV/OV・・・(1)
 発電係数Kは、すなわち、現在の発電量PVと前日同時刻の発電量OVとの比を表す。現在の発電量PV及び前日の発電量OVは、気象条件や設備の稼働状況などに応じて変化する。気象条件は、より具体的には、日射強度や太陽光パネル6の温度などである。設備の稼働状況は、より具体的には、各インバータ7の運転・停止の状態、太陽光パネル6の故障、主回路ケーブルの断線、及び太陽光発電プラント2内の消費電力などである。
After acquiring the current power generation amount PV and the power generation amount OV of the previous day, the control unit 14 calculates the power generation coefficient K by the following equation (1) (step S103 in FIG. 2).
K = PV / OV ... (1)
The power generation coefficient K represents the ratio of the current power generation amount PV to the power generation amount OV at the same time on the previous day. The current power generation amount PV and the power generation amount OV on the previous day change depending on the weather conditions and the operating status of the equipment. More specifically, the meteorological conditions include the intensity of solar radiation and the temperature of the solar panel 6. More specifically, the operating status of the equipment includes the operating / stopped state of each inverter 7, the failure of the solar panel 6, the disconnection of the main circuit cable, and the power consumption in the photovoltaic power generation plant 2.
 制御部14は、発電係数Kを計算した後、通信部12及び通信ネットワーク5を介して雨量計4と通信を行うことにより、太陽光パネル6の設置箇所における現在の雨量情報を取得する。そして、制御部14は、取得した雨量情報を基に、太陽光パネル6の設置箇所の現在の雨量が所定量以下か否かを判定する(図2のステップS104)。所定量は、例えば、0mmである。換言すれば、制御部14は、太陽光パネル6の設置箇所に雨が降っているか否かを判定する。但し、所定量は、0mmに限定されるものではない。所定量は、例えば、降雨が太陽光パネル6の発電に与える影響などを考慮して適宜設定すればよい。 After calculating the power generation coefficient K, the control unit 14 acquires the current rainfall information at the installation location of the solar panel 6 by communicating with the rain gauge 4 via the communication unit 12 and the communication network 5. Then, the control unit 14 determines whether or not the current rainfall at the installation location of the solar panel 6 is equal to or less than a predetermined amount based on the acquired rainfall information (step S104 in FIG. 2). The predetermined amount is, for example, 0 mm. In other words, the control unit 14 determines whether or not it is raining at the installation location of the solar panel 6. However, the predetermined amount is not limited to 0 mm. The predetermined amount may be appropriately set in consideration of, for example, the influence of rainfall on the power generation of the solar panel 6.
 制御部14は、現在の雨量が所定量よりも多いと判定した場合、記憶部16に記憶された所定期間雨量情報24を参照することにより、現在時刻までの雨量の増減ΔPRを取得する(図2のステップS105)。換言すれば、制御部14は、雨量計4から取得した雨量情報に基づいて雨量の増減ΔPRを取得する。 When the control unit 14 determines that the current rainfall is greater than the predetermined amount, the control unit 14 acquires the increase / decrease ΔPR of the rainfall up to the current time by referring to the predetermined period rainfall information 24 stored in the storage unit 16 (FIG. Step 2 S105). In other words, the control unit 14 acquires the increase / decrease ΔPR of the rainfall based on the rainfall information acquired from the rain gauge 4.
 制御部14は、例えば、次の(2)式により、雨量の増減ΔPRを取得する。
 ΔPR=1+((30分前から15分前までの雨量)-(15分前から現在までの雨量))/100・・・(2)
 この場合、ΔPRは、(30分前から15分前までの雨量)と(15分前から現在までの雨量)とが同じである場合に、1となる。そして、ΔPRは、(30分前から15分前までの雨量)が(15分前から現在までの雨量)よりも多い場合に、1よりも大きくなり、(30分前から15分前までの雨量)が(15分前から現在までの雨量)よりも少ない場合に、1よりも小さくなる。すなわち、ΔPRは、30分前から15分前までの間と15分前から現在までの間とで雨量の変化が無い場合に1となり、30分前から15分前までの間と15分前から現在までの間とで雨量が減少した場合に1よりも大きくなり、30分前から15分前までの間と15分前から現在までの間とで雨量が増加した場合に1よりも小さくなる。
The control unit 14 acquires the increase / decrease ΔPR of rainfall by, for example, the following equation (2).
ΔPR = 1+ ((rainfall from 30 minutes to 15 minutes ago)-(rainfall from 15 minutes to the present)) / 100 ... (2)
In this case, ΔPR is 1 when (rainfall from 30 minutes before to 15 minutes before) and (rainfall from 15 minutes before to the present) are the same. Then, ΔPR becomes larger than 1 when (rainfall from 30 minutes to 15 minutes ago) is larger than (rainfall from 15 minutes to the present), and (rainfall from 30 minutes to 15 minutes ago). When (rainfall) is less than (rainfall from 15 minutes ago to the present), it is less than 1. That is, ΔPR is 1 when there is no change in rainfall between 30 minutes before and 15 minutes before and between 15 minutes and now, and between 30 minutes and 15 minutes before and 15 minutes before. Greater than 1 when rainfall decreases from to the present, and less than 1 when rainfall increases between 30 and 15 minutes ago and between 15 minutes and now. Become.
 このように、雨量の増減ΔPRは、所定期間に雨量の変化が無い場合に1となり、所定期間に雨量が減少した場合に1よりも大きくなり、所定期間に雨量が増加した場合に1よりも小さくなる。所定期間は、所定期間雨量情報24の期間と同じである。この例において、所定期間は、30分である。前述のように、所定期間は、30分に限ることなく、任意の期間でよい。 As described above, the increase / decrease ΔPR of the rainfall becomes 1 when there is no change in the rainfall in the predetermined period, becomes larger than 1 when the rainfall decreases in the predetermined period, and becomes greater than 1 when the rainfall increases in the predetermined period. It becomes smaller. The predetermined period is the same as the period of the predetermined period rainfall information 24. In this example, the predetermined period is 30 minutes. As described above, the predetermined period is not limited to 30 minutes and may be any period.
 制御部14は、雨量の増減ΔPRを取得した後、ΔPRが1か否かを判定する(図2のステップS106)。制御部14は、ΔPRが1ではないと判定した場合、次の(3)式により、発電係数Kを補正する(図2のステップS107)。
 K´=K×ΔPR・・・(3)
 一方、制御部14は、ステップS104において現在の雨量が所定量以下であると判定した場合(雨が降っていない場合)、及びステップS106においてΔPRが1であると判定した場合には、K´=Kとし、発電係数Kをそのまま補正後の発電係数K´に置き換える(図2のステップS108)。
After acquiring the increase / decrease ΔPR of the rainfall, the control unit 14 determines whether or not the ΔPR is 1 (step S106 in FIG. 2). When the control unit 14 determines that ΔPR is not 1, the control unit 14 corrects the power generation coefficient K by the following equation (3) (step S107 in FIG. 2).
K'= K × ΔPR ... (3)
On the other hand, when the control unit 14 determines in step S104 that the current rainfall is equal to or less than a predetermined amount (when it is not raining), or when it determines that ΔPR is 1 in step S106, K' = K, and the power generation coefficient K is replaced with the corrected power generation coefficient K'as it is (step S108 in FIG. 2).
 制御部14は、補正後の発電係数K´を求めた後、変数iに0を設定するとともに、変数iが所定値n以下か以下を判定する(図2のステップS109、S110)。 After obtaining the corrected power generation coefficient K', the control unit 14 sets the variable i to 0 and determines whether the variable i is equal to or less than a predetermined value n (steps S109 and S110 in FIG. 2).
 制御部14は、変数iが所定値n以下であると判定した場合、記憶部16に記憶された前日発電量情報22を参照することにより、将来時刻T(i)における前日の発電部3の発電量OV(T(i))を取得する(図2のステップS111)。将来時刻T(i)は、現在の時刻から数分から数時間後の短期間の時刻である。 When the control unit 14 determines that the variable i is equal to or less than the predetermined value n, the control unit 14 refers to the previous day power generation amount information 22 stored in the storage unit 16 to refer to the previous day power generation unit 3 at the future time T (i). The power generation amount OV (T (i)) is acquired (step S111 in FIG. 2). The future time T (i) is a short-term time several minutes to several hours after the current time.
 制御部14は、将来時刻T(i)における前日の発電量OV(T(i))を取得した後、次の(4)式により、将来時刻T(i)における予測発電量PV(T(i))を計算する(図2のステップS112)。
 PV(T(i))=K´×OV(T(i))・・・(4)
 すなわち、制御部14は、将来時刻T(i)における前日の発電量OV(T(i))に補正後の発電係数K´を乗算することにより、将来時刻T(i)における発電部3の予測発電量PV(T(i))を計算する。制御部14は、予測発電量PV(T(i))を計算した後、変数iに1を加算し、ステップS110の処理に戻る。これにより、制御部14は、数分間隔あるいは数時間間隔の複数の予測発電量PV(T(i))を取得する。
After the control unit 14 acquires the power generation amount OV (T (i)) of the previous day at the future time T (i), the predicted power generation amount PV (T (T (T)) at the future time T (i) is performed by the following equation (4). i)) is calculated (step S112 in FIG. 2).
PV (T (i)) = K'× OV (T (i)) ... (4)
That is, the control unit 14 of the power generation unit 3 at the future time T (i) by multiplying the power generation amount OV (T (i)) of the previous day at the future time T (i) by the corrected power generation coefficient K'. Calculate the predicted power generation PV (T (i)). After calculating the predicted power generation amount PV (T (i)), the control unit 14 adds 1 to the variable i and returns to the process of step S110. As a result, the control unit 14 acquires a plurality of predicted power generation amounts PV (T (i)) at intervals of several minutes or several hours.
 制御部14は、複数の予測発電量PV(T(i))を取得した後、例えば、各予測発電量PV(T(i))を発電量の予測結果として表示部に表示したり、電力会社の機器に送信したりする。これにより、発電量の予測結果をモニタしたり発電計画に反映させたりすることが可能となる。 After acquiring a plurality of predicted power generation amounts PV (T (i)), the control unit 14 displays, for example, each predicted power generation amount PV (T (i)) on the display unit as a power generation amount prediction result, or power generation. Send it to company equipment. This makes it possible to monitor the prediction result of the amount of power generation and reflect it in the power generation plan.
 以上、説明したように、本実施形態に係る発電量予測装置10では、発電係数Kと雨量の増減ΔPRとを基に補正後の発電係数K´を求め、将来時刻T(i)における前日の発電量OV(T(i))に補正後の発電係数K´を乗算することにより、将来時刻T(i)における予測発電量PV(T(i))を計算する。 As described above, in the power generation amount prediction device 10 according to the present embodiment, the corrected power generation coefficient K'is obtained based on the power generation coefficient K and the increase / decrease ΔPR of the amount of rainfall, and the day before at the future time T (i). By multiplying the power generation amount OV (T (i)) by the corrected power generation coefficient K', the predicted power generation amount PV (T (i)) at the future time T (i) is calculated.
 例えば、前日よりも気象条件が良い場合や設備の故障が解消された場合などには、現在の発電量PVが前日同時刻の発電量OVよりも大きくなる。従って、この場合、発電係数Kは、1よりも大きくなる。反対に、前日よりも気象条件が悪い場合や設備が故障した場合などには、現在の発電量PVが前日同時刻の発電量OVよりも小さくなり、発電係数Kは、1よりも小さくなる。 For example, if the weather conditions are better than the previous day or if the equipment failure is resolved, the current power generation PV will be larger than the power generation OV at the same time the day before. Therefore, in this case, the power generation coefficient K is larger than 1. On the contrary, when the weather conditions are worse than the previous day or the equipment breaks down, the current power generation amount PV becomes smaller than the power generation amount OV at the same time on the previous day, and the power generation coefficient K becomes smaller than 1.
 従って、発電係数Kに基づいて予測発電量PV(T(i))を計算することにより、現在と前日同時刻との間の気象条件や設備の稼働状況の違いの発電量への影響を適切に予測結果に反映させることができる。太陽光発電プラント2内の設備故障などにより、太陽光発電プラント2が通常の発電能力を損なった場合などにも、即座に発電量予測に反映することができる。 Therefore, by calculating the predicted power generation amount PV (T (i)) based on the power generation coefficient K, the influence of the difference in the weather conditions and the operating condition of the equipment between the present and the same time on the previous day on the power generation amount is appropriate. It can be reflected in the prediction result. Even when the photovoltaic power generation plant 2 loses its normal power generation capacity due to a facility failure in the photovoltaic power plant 2, it can be immediately reflected in the power generation amount prediction.
 さらに、雨量の増減ΔPRを取得し、雨量の増減ΔPRを基に発電係数Kを補正することにより、雨量が一定であるか、増加傾向にあるか、減少傾向にあるか、という現在の降雨の発電量への影響を適切に予測結果に反映させることができる。 Furthermore, by acquiring the increase / decrease ΔPR of the rainfall and correcting the power generation coefficient K based on the increase / decrease ΔPR of the rainfall, the current rainfall of whether the rainfall is constant, increasing, or decreasing is determined. The impact on power generation can be appropriately reflected in the forecast results.
 従って、本実施形態に係る発電量予測装置10によれば、太陽光発電プラント2の短期間の発電量を精度良く予測することができる。また、本実施形態に係る発電量予測装置10では、特別なセンサー、膨大なデータ処理、高精度な天気予報情報などが無い状況でもリアルタイムの発電予測が可能となる。発電量予測装置10では、装置構成の複雑化を抑制しつつ、太陽光発電プラント2の短期間の発電量を精度良く予測することができる。 Therefore, according to the power generation amount prediction device 10 according to the present embodiment, it is possible to accurately predict the power generation amount of the photovoltaic power plant 2 in a short period of time. Further, the power generation amount prediction device 10 according to the present embodiment enables real-time power generation prediction even in a situation where there is no special sensor, a huge amount of data processing, high-precision weather forecast information, or the like. The power generation amount prediction device 10 can accurately predict the power generation amount in a short period of time of the photovoltaic power generation plant 2 while suppressing the complexity of the device configuration.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、太陽光発電プラント2及び発電量予測装置10に含まれる各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the embodiments of the present invention are not limited to these specific examples. For example, with respect to the specific configuration of each element included in the photovoltaic power plant 2 and the power generation amount prediction device 10, the present invention can be similarly carried out by appropriately selecting from a range known to those skilled in the art, and the same effect can be obtained. As far as it can be obtained, it is included in the scope of the present invention.
Further, a combination of any two or more elements of each specific example to the extent technically possible is also included in the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の実施の形態として上述した太陽光発電プラント2及び発電量予測装置10を基にして、当業者が適宜設計変更して実施し得る全ての太陽光発電プラント(太陽光発電システム)及び発電量予測装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all photovoltaic power generation plants (photovoltaic power generation systems) that can be implemented by a person skilled in the art by appropriately modifying the design based on the above-mentioned photovoltaic power generation plant 2 and the power generation amount prediction device 10 as the embodiment of the present invention. And the power generation amount prediction device also belongs to the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 In addition, within the scope of the idea of the present invention, those skilled in the art can come up with various modified examples and modified examples, and it is understood that these modified examples and modified examples also belong to the scope of the present invention. ..
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (7)

  1.  太陽光パネルとインバータとを有する発電部と、通信ネットワークと、を備えた太陽光発電システムの発電量を予測する発電量予測装置であって、
     前記通信ネットワークに接続される通信部と、
     前記通信部を介して取得した情報に基づいて前記発電部の発電量を予測する制御部と、
     を備え、
     前記制御部は、
      前記発電部の現在の発電量と同時刻における前日の前記発電部の発電量との比を表す発電係数を計算し、
      現在の雨量が所定量よりも多い場合には、所定時間前から現在までの雨量の増減を基に前記発電係数を補正して補正後の発電係数を計算するとともに、現在の雨量が前記所定量以下の場合には、前記発電係数をそのまま前記補正後の発電係数に置き換え、
     将来時刻における前日の前記発電部の発電量に前記補正後の発電係数を乗算することにより、前記将来時刻における前記発電部の予測発電量を計算する
     発電量予測装置。
    It is a power generation amount prediction device that predicts the power generation amount of a photovoltaic power generation system including a power generation unit having a solar panel and an inverter, and a communication network.
    The communication unit connected to the communication network and
    A control unit that predicts the amount of power generated by the power generation unit based on information acquired via the communication unit, and a control unit that predicts the amount of power generated by the power generation unit.
    With
    The control unit
    Calculate the power generation coefficient representing the ratio of the current power generation amount of the power generation unit to the power generation amount of the power generation unit on the previous day at the same time.
    When the current rainfall is larger than the predetermined amount, the power generation coefficient is corrected and the corrected power generation coefficient is calculated based on the increase / decrease in the rainfall from the predetermined time before to the present, and the current rainfall is the predetermined amount. In the following cases, the power generation coefficient is replaced with the corrected power generation coefficient as it is.
    A power generation amount prediction device that calculates the predicted power generation amount of the power generation unit at the future time by multiplying the power generation amount of the power generation unit on the previous day at the future time by the power generation coefficient after the correction.
  2.  前記制御部は、前記発電係数をKとし、前記発電部の現在の発電量をPVとし、同時刻における前日の前記発電部の発電量をOVとする時、K=PV/OVの式により、前記発電係数を計算する請求項1記載の発電量予測装置。 When the power generation coefficient is K, the current power generation amount of the power generation unit is PV, and the power generation amount of the power generation unit on the previous day at the same time is OV, the control unit uses the formula K = PV / OV. The power generation amount prediction device according to claim 1, wherein the power generation coefficient is calculated.
  3.  前記制御部は、前記通信部及び前記通信ネットワークを介して前記インバータと通信を行うことにより、前記発電部の現在の発電量を前記インバータから取得する請求項1記載の発電量予測装置。 The power generation amount prediction device according to claim 1, wherein the control unit acquires the current power generation amount of the power generation unit from the inverter by communicating with the inverter via the communication unit and the communication network.
  4.  前記発電部の前日の発電量の時間的変化を表す前日発電量情報を記憶した記憶部をさらに備え、
     前記制御部は、前記記憶部に記憶された前記前日発電量情報を参照することにより、前記発電部の現在の発電量を取得した時刻と同時刻における前日の前記発電部の発電量を取得する請求項1記載の発電量予測装置。
    A storage unit that stores information on the amount of power generated on the previous day, which represents a temporal change in the amount of power generated on the previous day of the power generation unit, is further provided.
    The control unit acquires the power generation amount of the power generation unit on the previous day at the same time as the time when the current power generation amount of the power generation unit is acquired by referring to the power generation amount information of the previous day stored in the storage unit. The power generation amount prediction device according to claim 1.
  5.  前記制御部は、前記記憶部に記憶された前記前日発電量情報を参照することにより、前記将来時刻における前日の前記発電部の発電量を取得する請求項4記載の発電量予測装置。 The power generation amount prediction device according to claim 4, wherein the control unit acquires the power generation amount of the power generation unit of the previous day at the future time by referring to the power generation amount information of the previous day stored in the storage unit.
  6.  前記制御部は、所定期間に雨量の変化が無い場合に1となり、前記所定期間に雨量が減少した場合に1よりも大きくなり、前記所定期間に雨量が増加した場合に1よりも小さくなる前記雨量の増減を取得し、前記雨量の増減を前記発電係数に乗算することにより、前記補正後の発電係数を計算する請求項1記載の発電量予測装置。 The control unit becomes 1 when there is no change in rainfall during the predetermined period, becomes larger than 1 when the rainfall decreases during the predetermined period, and becomes smaller than 1 when the rainfall increases during the predetermined period. The power generation amount prediction device according to claim 1, wherein the corrected power generation coefficient is calculated by acquiring the increase / decrease in rainfall and multiplying the increase / decrease in rainfall by the power generation coefficient.
  7.  前記太陽光発電システムは、前記太陽光パネルの設置箇所の雨量を計測する雨量計を備え、
     前記制御部は、前記通信部及び前記通信ネットワークを介して前記雨量計と通信を行い、前記太陽光パネルの設置箇所における単位時間当たりの雨量を表す雨量情報を前記雨量計から取得し、前記雨量情報に基づいて前記雨量の増減を取得する請求項6記載の発電量予測装置。
    The photovoltaic power generation system includes a rain gauge that measures the amount of rainfall at the location where the solar panel is installed.
    The control unit communicates with the rain gauge via the communication unit and the communication network, acquires rainfall information representing the rainfall per unit time at the installation location of the solar panel from the rain gauge, and obtains the rainfall information from the rain gauge. The power generation amount prediction device according to claim 6, wherein the increase / decrease in rainfall is acquired based on the information.
PCT/JP2019/048265 2019-12-10 2019-12-10 Power generation amount estimation device WO2021117127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515044A JP6833303B1 (en) 2019-12-10 2019-12-10 Power generation forecaster
PCT/JP2019/048265 WO2021117127A1 (en) 2019-12-10 2019-12-10 Power generation amount estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048265 WO2021117127A1 (en) 2019-12-10 2019-12-10 Power generation amount estimation device

Publications (1)

Publication Number Publication Date
WO2021117127A1 true WO2021117127A1 (en) 2021-06-17

Family

ID=74665137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048265 WO2021117127A1 (en) 2019-12-10 2019-12-10 Power generation amount estimation device

Country Status (2)

Country Link
JP (1) JP6833303B1 (en)
WO (1) WO2021117127A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382984B1 (en) * 2021-09-30 2022-04-08 비케이엠 주식회사 Terminal and contorl method thereof for predicting the amount of power generation of renewable energy generator
KR102383012B1 (en) * 2021-09-30 2022-04-08 비케이엠 주식회사 Terminal and contorl method thereof for more accurately predicting the amount of power generation of renewable energy generator by simultaneously performing hourly trend prediction and seaonal trend prediction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281060A (en) * 2006-04-04 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Power generation prediction method for photovoltaic power generation system, device, and program
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system
WO2017109970A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Power generation amount calculation device, power generation amount calculation system, power generation amount calculation method, and program
JP2017127140A (en) * 2016-01-14 2017-07-20 株式会社大林組 Solar power generation amount prediction method and solar power generation amount prediction device, and solar power generation amount prediction system
CN109165774A (en) * 2018-08-07 2019-01-08 燕山大学 A kind of short-term photovoltaic power prediction technique
WO2019021438A1 (en) * 2017-07-27 2019-01-31 三菱電機株式会社 Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program
CN110322364A (en) * 2019-06-19 2019-10-11 山东大学 A kind of short-term photovoltaic power generation prediction technique and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281060A (en) * 2006-04-04 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Power generation prediction method for photovoltaic power generation system, device, and program
JP2015138912A (en) * 2014-01-23 2015-07-30 大阪瓦斯株式会社 Photovoltaic power generation amount prediction system and weather forecast system
WO2017109970A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Power generation amount calculation device, power generation amount calculation system, power generation amount calculation method, and program
JP2017127140A (en) * 2016-01-14 2017-07-20 株式会社大林組 Solar power generation amount prediction method and solar power generation amount prediction device, and solar power generation amount prediction system
WO2019021438A1 (en) * 2017-07-27 2019-01-31 三菱電機株式会社 Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program
CN109165774A (en) * 2018-08-07 2019-01-08 燕山大学 A kind of short-term photovoltaic power prediction technique
CN110322364A (en) * 2019-06-19 2019-10-11 山东大学 A kind of short-term photovoltaic power generation prediction technique and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382984B1 (en) * 2021-09-30 2022-04-08 비케이엠 주식회사 Terminal and contorl method thereof for predicting the amount of power generation of renewable energy generator
KR102383012B1 (en) * 2021-09-30 2022-04-08 비케이엠 주식회사 Terminal and contorl method thereof for more accurately predicting the amount of power generation of renewable energy generator by simultaneously performing hourly trend prediction and seaonal trend prediction

Also Published As

Publication number Publication date
JP6833303B1 (en) 2021-02-24
JPWO2021117127A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5493886B2 (en) Photovoltaic power generation amount prediction system and solar power generation amount prediction method
US8620634B2 (en) Energy resource allocation including renewable energy sources
JP5198386B2 (en) Natural energy power generation control system, control device and control method
Rejc et al. Estimating the additional operating reserve in power systems with installed renewable energy sources
JP5600570B2 (en) Photovoltaic power generation prediction device, solar power generation amount prediction method, system voltage control device, system voltage control method
US10298056B2 (en) Power control system, power control method, and recording medium
KR101522858B1 (en) Energy management system having maximum power saving control and method thereof
JP6387617B2 (en) Distribution system accident recovery method, and distribution system&#39;s actual load and its width estimating device, method and program
US9638545B2 (en) Power management apparatus, power management system and power management method
JP6833303B1 (en) Power generation forecaster
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
US20230332573A1 (en) Controlling the operation of a wind turbine
US11451053B2 (en) Method and arrangement for estimating a grid state of a power distribution grid
EP2587610B1 (en) Systems and methods for adaptive power determination in power generating systems
US9851734B2 (en) Alert presentation apparatus and alert presentation method
JP2014033545A (en) Power generation efficiency guarantee device, power generation efficiency guarantee method, and power generation system comprising power generation efficiency guarantee device
JP2018133867A (en) Power control system and power control method
JP2013186756A (en) Power generation efficiency guarantee value calculation device and power generation efficiency guarantee value calculation method and power generation system having power generation efficiency guarantee value calculation device
JP2022094118A (en) Plan support device, renewable energy system, plan support method, and plan support program
CA2710905C (en) Energy resource allocation including renewable energy sources
JP5893507B2 (en) Alarm presenting device and alarm presenting method
JP5882135B2 (en) Demand information presentation apparatus and demand information presentation method
JP6258762B2 (en) Demand value prediction apparatus, demand value prediction method, and demand value prediction system
JP5869430B2 (en) Demand value prediction apparatus and demand value prediction method
Durstewitz et al. Estimation of Wear and Lifetime for an Improved Turbine Operation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515044

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955776

Country of ref document: EP

Kind code of ref document: A1