WO2021116920A1 - Produits en sachet - Google Patents

Produits en sachet Download PDF

Info

Publication number
WO2021116920A1
WO2021116920A1 PCT/IB2020/061661 IB2020061661W WO2021116920A1 WO 2021116920 A1 WO2021116920 A1 WO 2021116920A1 IB 2020061661 W IB2020061661 W IB 2020061661W WO 2021116920 A1 WO2021116920 A1 WO 2021116920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
tobacco
composition
weight
nicotine
Prior art date
Application number
PCT/IB2020/061661
Other languages
English (en)
Inventor
Savannah JOHNSON
Dwayne William Beeson
Ronald K. Hutchens
Wesley Steven Jones
David Neil Mcclanahan
Travis O'neal
Pankaj Patel
Original Assignee
Nicoventures Trading Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Limited filed Critical Nicoventures Trading Limited
Priority to EP20898597.8A priority Critical patent/EP4072350A4/fr
Priority to JP2022534727A priority patent/JP2023504919A/ja
Priority to MX2022006975A priority patent/MX2022006975A/es
Priority to CA3159483A priority patent/CA3159483A1/fr
Priority to US17/207,353 priority patent/US20210204590A1/en
Publication of WO2021116920A1 publication Critical patent/WO2021116920A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F23/00Cases for tobacco, snuff, or chewing tobacco
    • A24F23/02Tobacco pouches
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/301Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by aromatic compounds
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • A24B15/303Plant extracts other than tobacco

Definitions

  • the present disclosure relates to flavored products intended for human use.
  • the products are configured for oral use and deliver substances such as flavors and/or active ingredients during use.
  • Such products may include tobacco or a product derived from tobacco, or may be tobacco-free alternatives.
  • Tobacco may be enjoyed in a so-called “smokeless” form.
  • smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user.
  • Conventional formats for such smokeless tobacco products include moist snuff, snus, and chewing tobacco, which are typically formed almost entirely of particulate, granular, or shredded tobacco, and which are either portioned by the user or presented to the user in individual portions, such as in single-use pouches or sachets.
  • Other traditional forms of smokeless products include compressed or agglomerated forms, such as plugs, tablets, or pellets.
  • Alternative product formats, such as tobacco- containing gums and mixtures of tobacco with other plant materials are also known. See for example, the types of smokeless tobacco formulations, ingredients, and processing methodologies set forth in US Pat.
  • Smokeless tobacco product configurations that combine tobacco material with various binders and fillers have been proposed more recently, with example product formats including lozenges, pastilles, gels, extruded forms, and the like. See, for example, the types of products described in US Patent App. Pub. Nos.
  • Certain types of pouches or sachets have been employed to contain compositions adapted for oral use. See for example, the types of representative smokeless tobacco products, as well as the various smokeless tobacco formulations, ingredients and processing methodologies, referenced in the background art set forth in U.S. Pat. Pub. Nos. 2011/0303511 to Brinkley et al. and 2013/0206150 to Duggins et al.; which are incorporated herein by reference.
  • those pouches or sachets are inserted into the mouth of the user, and water soluble components contained within those pouches or sachets are released as a result of interaction with saliva.
  • Certain commercially available smokeless tobacco products such as products commonly referred to as "snus,” comprise ground tobacco materials incorporated within sealed pouches.
  • Representative types of snus products have been manufactured in Europe, particularly in Sweden, by or through companies such as Swedish Match AB (e.g., for brands such as General, Ettan, Goteborgs Rape and Grovsnus); Fiedler & Lundgren AB (e.g., for brands such as Lucky Strike, Granit, Krekt and Mocca); JTI Sweden AB (e.g., for brands such as Gustavus) and Rocker Production AB (e.g., for brands such as Rocker).
  • Swedish Match AB e.g., for brands such as General, Ettan, Goteborgs Rape and Grovsnus
  • Fiedler & Lundgren AB e.g., for brands such as Lucky Strike, Granit, Krekt and Mocca
  • JTI Sweden AB e.g., for brands such as Gustavus
  • snus products can be manufactured using equipment such as that available as SB 51-1/T, SBL 50 and SB 53-2/T from Merzmaschinen GmBH.
  • Certain types of product employing pouches or sachets have been employed to contain nicotine, such as those used for nicotine replacement therapy (NRT) types of products (e.g., a pharmaceutical product distributed under the tradename ZONNIC® by Niconovum AB).
  • NRT nicotine replacement therapy
  • a pharmaceutical product distributed under the tradename ZONNIC® by Niconovum AB e.g., a pharmaceutical product distributed under the tradename ZONNIC® by Niconovum AB.
  • NRT nicotine replacement therapy
  • WO 2010/031552 to Axelsson et al. and WO 2012/134380 to Nilsson which are incorporated herein by reference.
  • All-white snus portions are growing in popularity, and offer a discrete and aesthetically pleasing alternative to traditional snus.
  • Such modern "white" pouched products may include a bleached tobacco or may be tobacco-free.
  • the present disclosure relates to a pouched product adapted for release of a water-soluble component therefrom, wherein the pouched product can include an outer water-permeable pouch defining a cavity containing a composition comprising a water-soluble component capable of being released through the water-permeable pouch.
  • the composition within the cavity of the pouch can contain a tobacco-derived product, such as a particulate tobacco material, nicotine, particulate non-tobacco material (e.g., microcrystalline cellulose) that has been treated to contain nicotine and/or flavoring agents, or fibrous plant material (e.g., beet pulp fiber) treated to contain a tobacco extract.
  • the composition within the cavity of the pouch is a smokeless tobacco product or nicotine replacement therapy product.
  • the composition within the cavity of the pouch can be a particulate material adapted for steeping or brewing (i.e., configured for liquid extraction), such as a tea or coffee material. Accordingly, in certain embodiments, the composition within the cavity of the pouch can comprise a particulate or fibrous plant material such as would be found in various teas or tea variants. In some embodiments, the composition within the cavity can comprise a flavor component such that flavor can be added to a liquid (e.g., water).
  • a liquid e.g., water
  • the outer pouch can be formed from a nonwoven web that exhibits acceptable taste and other sensory characteristics.
  • the nonwoven web is needle punched and can exhibit enhanced strength and/or porosity (e.g., as compared with a comparable nonwoven web that has not been subjected to needle punching). Porosity of a nonwoven web after needle punching can be dependent upon fiber properties such as, but not limited to, type of fiber (blends of fiber types are also contemplated herein), fiber shape, fiber size, fabric thickness, fabric density, etc. It is noted that nonwoven webs formed according to methods described herein can have a porosity that has been tailored to desired specifications.
  • Embodiment 1 A method of preparing a water-permeable pouch material, comprising: providing a fibrous web comprising a plurality of fibers; and needle punching the fibrous web to form the water- permeable pouch material.
  • Embodiment 2 The method of Embodiment 1, further comprising: providing a continuous supply of the pouch material; engaging lateral edges of the pouch material such that a longitudinally -extending seam is formed; sealing the longitudinally -extending seam such that a continuous tubular member is formed from the continuous supply of pouch material; inserting a composition adapted for oral use into the continuous tubular member; subdividing the continuous tubular member into discrete pouch portions such that each pouch portion includes a composition charge; and sealing a leading and an end edge of each discrete pouch portion such that an outer water-permeable pouch is formed that encloses the composition charge such that a pouched product is formed.
  • Embodiment 3 The method of Embodiment 2, wherein the composition comprises at least one of a particulate tobacco material, nicotine, particulate non-tobacco material treated to contain nicotine and/or flavoring agents, and fibrous plant material carrying a tobacco extract.
  • Embodiment 4 The method of any of Embodiments 2-3, wherein the fibrous web further comprises a plurality of heat sealable binder fibers.
  • Embodiment 5 The method of any of Embodiments 2-4, wherein the composition comprises an active ingredient selected from the group consisting of a nicotine component, botanicals, stimulants, nutraceuticals, amino acids, vitamins, cannabinoids, cannabimimetics, terpenes, and combinations thereof.
  • an active ingredient selected from the group consisting of a nicotine component, botanicals, stimulants, nutraceuticals, amino acids, vitamins, cannabinoids, cannabimimetics, terpenes, and combinations thereof.
  • Embodiment 6 The method of any of Embodiments 2 and 4-5, wherein the composition is substantially free of a tobacco material.
  • Embodiment 7 The method of any of Embodiments 1-6, wherein the pouch material has a basis weight in the range of 25-40 gsm.
  • Embodiment 8 A pouched product prepared according to the method of any of Embodiments 1-7.
  • Embodiment 9 A pouched product adapted for release of a water-soluble component therefrom, comprising: a composition comprising a water-soluble component; an outer water-permeable pouch defining a cavity containing the composition; wherein the water-soluble component is capable of being released through the water-permeable pouch; and wherein the outer water-permeable pouch comprises a needle- punched nonwoven web.
  • Embodiment 10 The pouched product of Embodiment 9, wherein the water-permeable pouch comprises at least two nonwoven layers, wherein at least one of the two nonwoven layers has been formed by a process comprising needle punching, and wherein one of the at least two nonwoven layers is relatively hydrophilic and one of the at least two nonwoven layers is relatively hydrophobic.
  • Embodiment 11 The pouched product of any of Embodiments 9-10, wherein the composition within the cavity of the pouch comprises at least one of a particulate tobacco material, nicotine, particulate non-tobacco material treated to contain nicotine and or flavoring agents, and fibrous plant material carrying a tobacco extract.
  • Embodiment 12 The pouched product of any of Embodiments 9-11, wherein the composition comprises an active ingredient selected from the group consisting of a nicotine component, botanicals, stimulants, nutraceuticals, amino acids, vitamins, cannabinoids, cannabimimetics, terpenes, and combinations thereof.
  • Embodiment 13 The pouched product of any of Embodiments 9-10 and 12, wherein the composition is substantially free of a tobacco material.
  • FIG. 1 is a front perspective view illustrating a pouched product according to an embodiment of the present disclosure
  • FIG. 2 is a partial cross-sectional view illustrating a pouched product comprising a layered outer pouch, wherein the layered outer pouch comprises a hydrophilic material layer and a hydrophobic material layer; and
  • FIG. 3 is a flow chart illustrating the general steps for manufacturing a pouched product according to an embodiment of the present disclosure.
  • the term "configured for oral use” as used herein means that the product is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the mixture (e.g., flavoring agents and/or nicotine) to pass into the mouth of the user.
  • the product is adapted to deliver components to a user through mucous membranes in the user's mouth and, in some instances, said component is an active ingredient (including, but not limited to, for example, nicotine) that can be absorbed through the mucous membranes in the mouth when the product is used.
  • the disclosure provides products in the form of a mixture of one or more components, disposed within a moisture-permeable container (e.g., a water-permeable pouch).
  • a moisture-permeable container e.g., a water-permeable pouch
  • Such mixtures in the water-permeable pouch format are typically used by placing a pouch containing the mixture in the mouth of a human subject/user.
  • the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used.
  • the pouch preferably is not chewed or swallowed.
  • the components of the mixture therein e.g., flavoring agents and/or nicotine
  • the pouch may be removed from the mouth of the consumer for disposal.
  • Preferred pouch materials for products described herein may be designed and manufactured such that under conditions of normal use, a significant amount of the contents of the formulation within the pouch permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity.
  • an example pouched product 10 can comprise an outer water- permeable container 20 in the form of a pouch which contains a particulate mixture 15 adapted for oral use.
  • the orientation, size, and type of outer water-permeable pouch and the type and nature of the composition adapted for oral use that are illustrated herein are not construed as limiting thereof.
  • a moisture-permeable packet or pouch can act as a container for use of the composition within.
  • the pouch provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag.
  • flavoring ingredients, disintegration aids, and other desired components may be incorporated within, or applied to, the pouch material.
  • the composition/construction of such packets or pouches, such as the container pouch 20 in the embodiment illustrated in FIG. 1, may be varied as noted herein.
  • suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Grand, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare.
  • a pouch type of product similar in shape and form to various embodiments of a pouched product described herein is commercially available as ZONNIC (distributed by Niconovum AB).
  • pouch type products generally similar in shape and form to various embodiments of a pouched product are set forth as snuff bag compositions E-J in Example 1 of PCT WO 2007/104573 to Axelsson et al., which is incorporated herein by reference, which are produced using excipient ingredients and processing conditions that can be used to manufacture pouched products as described herein.
  • the pouches of the present disclosure can be formed from a fleece material, e.g., fibrous nonwoven webs.
  • the term “fiber” is defined as a basic element of textiles. Fibers are often in the form of a rope- or string-like element.
  • the term “fiber” is intended to include fibers, fdaments, continuous filaments, staple fibers, and the like.
  • the term “multicomponent fibers” refers to fibers that comprise two or more components that are different by physical or chemical nature, including bicomponent fibers. Specifically, the term “multicomponent fibers” includes staple and continuous fibers prepared from two or more polymers present in discrete structured domains in the fiber, as opposed to blends where the domains tend to be dispersed, random or unstructured.
  • a “fleece material” as used herein may be formed from various types of fibers (e.g., cellulosic fibers; such as viscose fibers, regenerated cellulose fibers, cellulose fibers, and wood pulps; cotton fibers; other natural fibers; or polymer/synthetic -type fibers) capable of being formed into a traditional fleece fabrics or other traditional pouch materials.
  • fibers e.g., cellulosic fibers; such as viscose fibers, regenerated cellulose fibers, cellulose fibers, and wood pulps; cotton fibers; other natural fibers; or polymer/synthetic -type fibers
  • fleece materials may be provided in the form of a woven or nonwoven fabric. Suitable types of fleece materials, for example, are described in U.S. Patent No. 8,931,493 to Sebastian et al.; US Patent App. Pub. No. 2016/0000140 to Sebastian et al.; and US Patent App. Pub. No. 2016/007
  • nonwoven is used herein in reference to fibrous materials, webs, mats, batts, or sheets in which fibers are aligned in an undefined or random orientation.
  • the nonwoven fibers are initially presented as unbound fibers or filaments.
  • An important step in the manufacturing of nonwovens involves binding the various fibers or filaments together.
  • the manner in which the fibers or filaments are bound can vary, and include thermal, mechanical and chemical techniques that are selected in part based on the desired characteristics of the final product.
  • Nonwoven fabric forming methods for natural and synthetic fibers may include dry laid, airlaid and wetlaid methods.
  • the nonwoven fabric can be formed using a spunlaid or spunmelt process, which includes both spunbond and meltblown processes, wherein such processes are understood to typically entail melting, extruding, collecting and bonding thermoplastic polymer materials to form a fibrous nonwoven web.
  • spunlaid or spunmelt process which includes both spunbond and meltblown processes, wherein such processes are understood to typically entail melting, extruding, collecting and bonding thermoplastic polymer materials to form a fibrous nonwoven web.
  • meltblowing is known in the art and is discussed in various patents, for example, U.S. Pat. Nos.
  • the fleece materials can have varying thicknesses, porosities and other parameters.
  • the fleece material can be formed such that the fiber orientation and porosity of the fleece material is altered to achieve the desired release characteristics of the releasable material contained therein.
  • the fibers within the fleece material may include, but are not limited to, a polymer selected from the group consisting of poly glycolic acid, polylactic acid, polyhydroxyalkanoates, polycaprolactone, polybutylene succinate, polybutylene succinate adipate, and copolymers thereof.
  • the fibers within the fleece material may be selected from the group consisting wool, cotton, fibers made of cellulosic material, such as regenerated cellulose, cellulose acetate, cellulose triacetate, cellulose nitrate, ethyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, hydroxypropyl cellulose, methyl hydroxypropyl cellulose, protein fibers, and the like. See also, the fiber types set forth in US Pat. Appl. Pub. Nos. 2014/0083438 to Sebastian et al. and 2016/0073689 to Sebastian et al., which is incorporated by reference herein.
  • the fibers used in the nonwoven web according to the present disclosure can vary, and include fibers having any type of cross-section, including, but not limited to, circular, rectangular, square, oval, triangular, and multilobal.
  • the fibers can have one or more void spaces, wherein the void spaces can have, for example, circular, rectangular, square, oval, triangular, or multilobal cross- sections.
  • the fibers can be selected from single-component (/. ⁇ ?..
  • multicomponent fiber types including, but not limited to, fibers having a sheath/core structure and fibers having an islands-in-the-sea structure, as well as fibers having a side-by- side, segmented pie, segmented cross, segmented ribbon, or tipped multilobal cross-sections.
  • the outer water-permeable pouch of the present disclosure utilizes a fibrous nonwoven web that includes a plurality of heat sealing binder fibers comprising a thermoplastic polymer capable of providing the function of heat sealing of the pouch.
  • a “binder fiber” can be a fiber of any type, size, chemistry, etc. that can be used for the purpose of undergoing softening or melting upon heating, such that the binder fiber can act as a binding agent for the nonwoven web.
  • the binder fibers are staple fibers.
  • the heat sealing binder fibers are typically mixed or blended with other dissimilar fiber types, such as conventional fibers used to form nonwoven “fleece” pouches.
  • the heat sealing binder fibers can be blended with cellulosic fibers (e.g., regenerated cellulose known as rayon or viscose fibers).
  • the dissimilar fibers can also be staple fibers.
  • Each fiber in the nonwoven web can be a homocomponent fiber. See, e.g. , the binder fibers and pouch materials disclosed in U.S. Pat. Pub. No. 2016/0073689, which is herein incorporated by reference in its entirety.
  • the fleece material includes a plurality of heat sealing binder fibers
  • the fleece material can be substantially free of any additional binder coatings and other binder materials known in the art.
  • the physical parameters of the fibers present in the nonwoven web can vary.
  • the fibers used in the nonwoven web can have varying size (e.g., length, dpf) and crimp characteristics.
  • fibers used in the nonwoven web can be nano fibers, sub-micron fibers, and/or micron-sized fibers.
  • fibers of the nonwoven webs useful herein can measure about 1.5 dpf to about 2.0 dpf, or about 1.6 dpf to about 1.90 dpf.
  • each fiber can be a staple fiber.
  • Each fiber length can measure about 35 mm to about 60 mm, or about 38 mm to about 55 mm, for example.
  • each fiber can measure about 4-10 crimps per cm, or about 5-8 crimps per cm. It can be advantageous for all fibers in the nonwoven web to have similar fiber size and crimp attributes to ensure favorable blending and orientation of the fibers in the nonwoven web.
  • the fibrous webs can have varying thicknesses, porosities and other parameters.
  • the fleece material can be formed such that the fiber orientation and porosity of the pouched product formed therefrom can retain the composition adapted for oral use that is enclosed within the outer water-permeable pouch, but can also allow the flavors of the composition to be enjoyed by the consumer.
  • the fibrous webs can have a basis weight of about 20 gsm to about 35 gsm, or about 25 gsm to about 30 gsm.
  • the fibrous web can have a basis weight of about 28 gsm.
  • the fleece material can have a relatively high basis weight.
  • the basis weight of a fleece material can be in the range of about 25-40 gsm, about 30-40 gsm, or about 35-40 gsm. In certain embodiments, the basis weight of the fleece material can be about 25 gsm or greater, about 30 gsm or greater, or about 35 gsm or greater. In various embodiments, the fibrous webs can have much higher basis weights, e.g., a basis weight of about 150 gsm or greater, such as in the range of about 150 gsm to about 4,000 gsm.
  • needle punching processes described herein can impact the basis weight of a fabric (e.g., the basis weight of a fleece material that has been subjected to needle punching can be decreased as a result of the needle punching).
  • Basis weight of a fabric can be measured using ASTM D3776/D3776M- 09a (2013) (Standard Test Methods for Mass Per Unit Area (Weight) of Fabric), for example.
  • the fibrous web can have a thickness of about 0.1 mm to about 0.15 mm (e.g., about 0.11 mm).
  • the fibrous web can have an elongation of about 70% to about 80%, e.g., about 78%.
  • the fibrous web can have a peak load of about 4 lbs. to about 8 lbs., e.g., about 5.5 lbs.
  • Elongation and breaking strength of textile fabrics can be measured using ASTM D5034-09(2013) (Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test)), for example.
  • the fibrous web can have a Tensile Energy Absorption (TEA) of about 35 to about 40, e.g., about 37. In certain embodiments, the fibrous web can have a porosity of greater than about 10,000 ml/min/cnr.
  • TEA can be measured, for example, as the work done to break the specimen under tensile loading per lateral area of the specimen. Porosity, or air permeability of textile fabrics can be measured using ASTM D737-04(2012) (Standard Test method for Air Permeability of Textile Fabrics), for example.
  • the outer water-permeable pouch is made from a nonwoven web as described above.
  • pouch is constructed of a single layer of the nonwoven web.
  • the pouch material comprises a multilayer composite made up of two or more nonwoven layers. Each nonwoven layer can be formed by processes discussed above.
  • a first layer 50 can be relatively hydrophilic and a second layer 55 can be relatively hydrophobic (compared to each other).
  • an outer water-permeable pouch can comprise an outer hydrophilic layer 50 and an inner hydrophobic layer 55 that can be in contact with the composition adapted for oral use 60.
  • the hydrophobic layer can, during storage of the pouched product, retain any moisture in the composition adapted for oral use such that flavors in the composition are not lost due to moisture loss.
  • capillaries in the hydrophobic layer can wick out moisture into the mouth of the user, such that flavors are released into the oral cavity when used.
  • the pouch material can enhance storage stability without significantly compromising the enjoyment of the product by the end user.
  • the relatively hydrophilic layer could be located on the interior of the multi-layer structure.
  • the two layers can be formed into a multi-layer composite nonwoven material using any means known in the art, such as by attaching the two layers together using adhesive or stitching.
  • the hydrophobicity of a textile material can be evaluated, for example, by measuring the contact angles between a drop of liquid and the surface of a textile material, as is known in the art.
  • an outer hydrophilic layer can comprise a flavor component (such as any of the flavor components noted herein), which can be applied to the nonwoven layer in any conventional manner such as by coating, printing, and the like.
  • the flavor within an outer hydrophilic layer can differ from a flavor contained within the internal composition adapted for oral use.
  • the product can be designed to provide multiple, different sensory experiences, a first sensory experience where the flavor in the outer layer transitions into the mouth of the user and a second sensory experience, typically occurring later in time, where the flavor of the internal composition transitions into the mouth of the user.
  • the hydrophilic and hydrophobic layers can be formed from similar nonwoven web compositions, but one of the nonwoven webs can be treated to enhance either hydrophobicity or hydrophilicity.
  • a layer of the nonwoven web can be treated with a wet chemical solution to confer hydrophilicity thereupon.
  • a nonwoven web layer is treated with an aqueous alcohol solution containing a food-grade surfactant.
  • the surfactant may include, for example one or more of sorbitan aliphatic acid ester, poly glycerin aliphatic acid ester, or sucrose aliphatic acid ester (see, e.g., U.S. Pat. No.
  • the fleece fabric layers can be made hydrophilic or hydrophobic by changing the cellulose fiber chosen.
  • predominantly hydrophobic cellulose fibers are commercially available as Tencel® Biosoft from Lenzing of Austria and as Olea Fiber from Kelheim of Germany.
  • the hydrophilic layer can incorporate cationic or anionic cellulose fibers that are also available from Kelheim of Germany, for example.
  • the hydrophilic layer can contain additives such as polyethylene glycols, methyl cellulose, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose phthalate, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylic acids, gelatins, alginates, sulfosuccinates, and combinations thereof.
  • additives such as polyethylene glycols, methyl cellulose, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose phthalate, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylic acids, gelatins, alginates, sulfosuccinates, and combinations thereof.
  • a heat sealable binder coating or a binder material may be added to the fibers prior to forming the fleece material.
  • heat sealable binder coatings refers to liquid coating materials, such as acrylic polymer compositions, applied to a nonwoven web and which are capable of sealing seams of individual pouches upon heating.
  • a binder material can be added to the fleece material after it has been formed.
  • a binding powder can be applied to the fleece material.
  • powdered polyethylene can be used as a binder material. The powder can be applied between layers of fibers when cross-laying, air laying, or as an after treatment. A short exposure in an oven is sufficient to melt and fuse the powder.
  • the fleece material after formation of the fleece material, can be needle punched (as described in further detail herein below). Without being limited by theory, needle punched fleece materials as described herein can exhibit enhanced strength and/or controlled porosity.
  • the basis weight of the fleece material can impact the amount of the surface area of the fleece material that is subjected to needle punching.
  • the means of producing the fleece material can vary.
  • Web formation can be accomplished by any means known in the art. Web formation will typically involve a carding step, which involves deposition of the fibers onto a surface followed by aligning/blending the fibers in a machine direction. Thereafter, the nonwoven web is typically subjected to some type of bonding/entanglement including, but not limited to, thermal fusion or bonding, mechanical entanglement, chemical adhesive, or a combination thereof. In one embodiment, the nonwoven web is bonded thermally using a calendar (which can provide flat or point bonding), steam jet bonding, or a thru-air oven. Additional bonding methods include ultrasonic bonding and crimping. In some embodiments, needle punching is utilized, wherein needles are used to provide physical entanglement between fibers. In one embodiment, the web is entangled using hydroentanglement, which is a process used to entangle and bond fibers using hydrodynamic forces.
  • a “preliminary” needle process i.e . , needle tacking
  • a secondary bonding process e.g., chemical bonding, hydroentanglement, etc.
  • a “needle tacking” process can include layering fibers into a loose matting structure and then entangling the layered fibers with the use of needles penetrating through the mass of fibers.
  • the needles can include “barbs” that hook or latch onto the fibers, thereby interlocking them as the needles move continuously up and down through the layered fiber mat. There can be two or more needling positions.
  • the initial needling (also referred to as “tacking”) can be configured to entangle the fibrous layers into one layer. Further needling steps can be configured to form a nonwoven web with specific parameters (e.g., density, basis weight, thickness, porosity, tensile strength, etc.) as desired.
  • the nonwoven web is made by providing a dry laid or a spun laid web of fibers, and then needle punching the web to bond the dry laid or spun laid web.
  • the needle punched fleece material is produced when barbed needles are pushed through the fibrous web, forcing some fibers upwards or downwards through the web by the barbed needles.
  • the fibers punched through the web remain at their new position once the needles are withdrawn. This needling action interlocks fibers and holds the structure together by inter fiber friction forces caused by compression of the web, thereby bonding the web.
  • the web is converted into a nonwoven fabric.
  • Nonwoven webs formed via a needle punching process can exhibit a higher basis weight than nonwoven webs formed via alternative processes.
  • a needle punching process can also require less precise control than certain thermal bonding processes.
  • a web or batt of fibers is fed to a needling area, usually via drawing and/or feed rollers.
  • the web is repeatedly punctured or perforated by a battery of needles and reoriented. This operation can be carried out several times per minute (e.g., modern machines can operate around 2000 strokes per minute).
  • several needling zones can be utilized, one after the other in a row, with different needle settings and direction of stitching.
  • the penetration depth of the needles can be adjusted to achieve a desired level of bonding, strength, and/or porosity in the nonwoven fabric produced. For example, when the penetration depth is too high, the fibers can be pulled through the textile and result in a non-uniform fabric. Similarly, the amount of needles used across the surface area of a fibrous web can be adjusted. In some embodiments, approximately 500- 7500 needles can be used per meter of machine width. See, e.g., Kiekens, P., Zamfir, M., Non-wovens From Cotton Fibres for Absorbent Products Obtained by the Needle-Punching Process, AUTEX Research Journal, Vol. 2, No 4, December 2002, which is herein incorporated by reference. It is noted that needle penetrations per square inch of material can be varied to meet desired specifications of the nonwoven webs described herein.
  • the needles used in a needle punching process can have different characteristics depending on the desired traits of the needle-punched fleece material.
  • a needle generally comprises a crank, a shank, a working blade, a barb, and a point, as generally known in the art. All of these features can be varied (e.g., working blade form, needle point type, barb form, gauge, etc.).
  • the needle gauge can be in the range of about 20-38 gauge. However, this can be adjusted depending on the desired characteristics of the fibrous fleece material.
  • the nonwoven industry uses two types of needles, known as single reduction needles and double reduction needles, which may be applicable in various embodiments of the present disclosure. Single reduction needles are much stiffer than double reduction needles. The single reduction needle is typically made for coarser gauge needles used for stiffer fabrics.
  • the needles used in a needle punching process can have barbs on the side of the needles which grip the fibers as the web is perforated and then pull the fibers through the web. As the needle returns back through the web, the fibers remain in their new position since the barbs only face in one direction.
  • the dimensions of the barbs and their relative arrangement can vary depending on the application and machine operation.
  • different barb forms are available in the industry (e.g., standard barbs, die-pressed barbs, etc.).
  • the working blade form can also vary, e.g., including triangular blades, star-shaped blades, drop blades, and quadra blades.
  • the needle point in some embodiments can be selected from a sharp point or a ball point.
  • the proportions of the needles, the shape of the needles, and the types of needles used can affect the physical properties of the nonwoven fabric resulting from the needle punching process.
  • the fibrous web can be subjected to needle punching.
  • the needle punching can be applied to less than about 60% of the surface area of the fibrous web (or resulting pouch), such as less than about 50%, less than about 30%, less than about 20%, or less than about 10% (e.g., about 1% to about 50%, about 5% to about 40%, or about 10% to about 30%, or about 1% to about 10%).
  • the nonwoven web is made by a fleece carding process with point bonding.
  • the point bonding (e.g., using a calendar) can be limited to a relatively small portion of the surface area of the fibrous web to maintain good porosity in the web for migration of water-soluble components through the web during oral use.
  • the point bonding is limited to less than about 60% of the surface area of the fibrous web (or resulting pouch), such as less than about 50%, less than about 30%, less than about 20%, or less than about 10% (e.g., about 1% to about 50%, about 5% to about 40%, or about 10% to about 30%, or about 1% to about 10%).
  • An advantage of point bonding is the ability to control the porosity, flexibility and fabric strength.
  • the fibrous web can be subjected to hydroentangling in addition to needle punching.
  • hydroentangled or “spunlaced” as applied to a nonwoven fabric herein defines a web subjected to impingement by a curtain of high speed, fine water jets, typically emanating from a nozzle jet strip accommodated in a pressure vessel often referred to as a manifold or an injector.
  • This hydroentangled fabric can be characterized by reoriented, twisted, turned and entangled fibers.
  • the fibers can be hydroentangled by exposing the fibrous web to water pressure from one or more hydroentangling manifolds at a water pressure in the range of about 10 bar to about 1000 bar.
  • spunlace technology in certain embodiments, will have less impact on porosity of the web and, thus, may enhance flavor transfer through the nonwoven pouch material.
  • the nonwoven web after formation and bonding of the nonwoven web, can be subjected to a second bonding method in order to reduce elongation of the web during processing.
  • nonwoven webs of the present disclosure can exhibit significant elongation during high speed processing on pouching equipment. Too much elongation of the nonwoven web can cause the web to shrink during processing, such that the final product is not sized appropriately. As such, it can be necessary to modify process equipment to fit a wider roll of fleece, for example, to compensate for any shrinkage in the final product due to elongation.
  • the nonwoven web can be needle punched and/or point bonded after the first bonding (e.g., hydroentangling) is completed.
  • a second bonding process can increase the tensile strength of the nonwoven web and reduce elongation characteristics.
  • a secondary needle punching process can further entangle and thereby bond the fibers of the nonwoven fabric.
  • the nonwoven web subjected to the secondary needle punching process can have a tensile strength in the cross direction of about 2.5 N/50mm or greater, and a tensile strength in the machine direction of about 2.0 N/50mm or greater.
  • a point bonding process can bond a nonwoven web by partially or completely melting the web (e.g., the heat sealable binder material and/or heat sealable binder fibers) at discrete points.
  • the nonwoven web can be subjected to ultrasonic bonding after initial bonding of the web. Any ultrasonic bonding system for nonwoven materials known in the art can be used to ultrasonically bond the nonwoven web. See, for example, the apparatuses and devices disclosed inU.S. Pat. Nos. 8,096,339 to Aust and 8,557,071 to Weiler, incorporated by reference herein.
  • the nonwoven web can be subjected to point bonding via embossed and/or engraved calendar rolls, which are typically heated.
  • the point bonding process is typically limited to less than about 60% of the surface area of the nonwoven web as noted above.
  • no secondary bonding process is employed, while other embodiments may employ a secondary bonding process.
  • a secondary bonding process it may be, for example, thermal bonding/forming.
  • the point bonding/needle punching is limited to less than about 60% of the surface area of the nonwoven web (or resulting pouch), such as less than about 50%, less than about 30%, less than about 20%, or less than about 10% (e.g., about 1% to about 50%, about 5% to about 40%, about 10% to about 30%, or about 1% to about 10%).
  • the processing techniques used to blend, entangle and bond the nonwoven web can also impart a desired texture to the fibrous nonwoven web material.
  • a desired texture e.g. a desired pattern
  • This textured pattern can include product identifying information.
  • the product identifying information is selected from the group consisting of product brand, a company name, a corporate logo, a corporate brand, a marketing message, product strength, active ingredient, product manufacture date, product expiration date, product flavor, product release profile, weight, product code (e.g., batch code), other product differentiating markings, and combinations thereof.
  • Pouched products generally comprise, in addition to the pouch-based exterior, a mixture within the pouch that typically comprises one or more active ingredients and/or one or more flavorants, and various other optional ingredients.
  • the composition of the material within the needle-punched pouches provided herein is not particularly limited, and can comprise any filling composition, including those included within conventional pouched produces. Such compositions are generally mixtures of two or more components and as such, the compositions are, in some cases, referenced herein below as “mixtures.” Certain components that can advantageously be included in the mixtures within certain embodiments of the needle-punched pouches provided herein are outlined generally below; however, it is to be understood that the discussion below is not intended to be limiting of the components that can be incorporated within the disclosed needle- punched pouches. Filler Component
  • the material within the pouches as described herein typically includes at least one particulate filler component.
  • particulate filler components may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
  • the filler components are particulate materials and are cellulose-based.
  • suitable particulate filler components are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources.
  • cellulosic non-tobacco plant material examples include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX ® brand filler available from International Fiber Corporation), bran fiber, and mixtures thereof.
  • Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials.
  • Additional examples of potential particulate fdler components include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fillers can also be used.
  • Starch as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the mixture based on the ability of the starch material to impart a specific organoleptic properly to composition. Starches derived from various sources can be used.
  • starch major sources include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava).
  • sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams.
  • modified starches are modified starches.
  • a modified starch has undergone one or more structural modifications, often designed to alter its high heat properties.
  • Some starches have been developed by genetic modifications, and are considered to be “genetically modified” starches.
  • Other starches are obtained and subsequently physically (e.g., heat, cool water swelling, etc.), chemically, or enzymatically modified.
  • modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, acetylation, hydroxypropylation, and/or partial hydrolysis.
  • Enzymatic treatment includes subjecting native starches to enzyme isolates or concentrates, microbial enzymes, and/or enzymes native to plant materials, e.g., amylase present in com kernels to modify com starch.
  • modified starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes.
  • Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
  • the particulate filler component is a cellulose material or cellulose derivative.
  • One particularly suitable particulate filler component for use in the products described herein is microcrystalline cellulose ("MCC").
  • MCC microcrystalline cellulose
  • the MCC may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses.
  • the MCC may be selected from the group consisting of AVICEL ® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL ® grades 101, 102, 12, 20 and EMOCEL ® grades 50M and 90M, and the like, and mixtures thereof.
  • the mixture comprises MCC as the particulate filler component.
  • the quantity of MCC present in the mixture as described herein may vary according to the desired properties.
  • the amount of particulate filler component can vary, but is typically up to about 75 percent of the material contained within the pouch by weight (i.e., the mixture), based on the total weight of the mixture.
  • a typical range of particulate filler material (e.g., MCC) within the mixture can be from about 10 to about 75 percent by total weight of the mixture, for example, from about 10, about 15, about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50 weight percent (e.g., about 20 to about 50 weight percent or about 25 to about 45 weight percent).
  • the amount of particulate filler material is at least about 10 percent by weight, such as at least about 20 percent, or at least about 25 percent, or at least about 30 percent, or at least about 35 percent, or at least about 40 percent, based on the total weight of the mixture.
  • the particulate filler component further comprises a cellulose derivative or a combination of such derivatives.
  • the mixture comprises from about 1 to about 10% of the cellulose derivative by weight, based on the total weight of the mixture, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative.
  • the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydro xyalkyl, or aryl group.
  • Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC”), hydroxypropylmethylcellulose (“HPMC”), hydroxy ethyl cellulose, and carboxymethylcellulose (“CMC”).
  • the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxy ethyl cellulose, and CMC.
  • the cellulose derivative is HPC.
  • the mixture comprises from about 1 to about 3% HPC by weight, based on the total weight of the mixture.
  • the water content of the mixture within the pouched product described herein, prior to use by a consumer of the product, may vary according to the desired properties.
  • the mixture, as present within the product prior to insertion into the mouth of the user is less than about 60 percent by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55, about 10 to about 50, about 20 to about 45, or about 25 to about 40 percent water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight.
  • flavoring agent or “flavorant” is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product.
  • sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma.
  • Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
  • flavors include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, trigeminal sensates, and any combinations thereof. See also, Leffingwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972), which is incorporated herein by reference.
  • Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus. These flavors may be provided neat (i.e., alone) or in a composite, and may be employed as concentrates or flavor packages (e.g., spearmint and menthol, orange and cinnamon; lime, pineapple, and the like). Representative types of components also are set forth in US Pat. No. 5,387,416 to White et al.; US Pat. App. Pub. No. 2005/0244521 to Strickland et al.; and PCT Application Pub. No. WO 05/041699 to Quinter et al., each of which is incorporated herein by reference. In some instances, the flavoring agent may be provided in a spray -dried form or a liquid form.
  • the flavoring agent generally comprises at least one volatile flavor component.
  • volatile refers to a chemical substance that forms a vapor readily at ambient temperatures (i.e., a chemical substance that has a high vapor pressure at a given temperature relative to a nonvolatile substance).
  • a volatile flavor component has a molecular weight below about 400 Da, and often include at least one carbon-carbon double bond, carbon-oxygen double bond, or both.
  • the at least one volatile flavor component comprises one or more alcohols, aldehydes, aromatic hydrocarbons, ketones, esters, terpenes, terpenoids, or a combination thereof.
  • Non-limiting examples of aldehydes include vanillin, ethyl vanillin, p-anisaldehyde, hexanal, furfural, isovaleraldehyde, cuminaldehyde, benzaldehyde, and citronellal.
  • Non-limiting examples of ketones include l-hydroxy-2-propanone and 2-hydroxy-3-methyl-2- cyclopentenone-l-one.
  • Non-limiting examples of esters include allyl hexanoate, ethyl heptanoate, ethyl hexanoate, isoamyl acetate, and 3-methylbutyl acetate.
  • Non-limiting examples of terpenes include sabinene, limonene, gamma-terpinene, beta-famesene, nerolidol, thujone, myrcene, geraniol, nerol, citronellol, linalool, and eucalyptol.
  • the at least one volatile flavor component comprises one or more of ethyl vanillin, cinnamaldehyde, sabinene, limonene, gamma-terpinene, beta-farnesene, or citral.
  • the at least one volatile flavor component comprises ethyl vanillin.
  • the amount of flavoring agent utilized in the mixture can vary, but is typically up to about 10 weight percent, and certain embodiments are characterized by a flavoring agent content of at least about 0.1 weight percent, such as about 0.5 to about 10 weight percent, about 1 to about 6 weight percent, or about 2 to about 5 weight percent, based on the total weight of the mixture.
  • the amount of flavoring agent present within the mixture may vary over a period of time (e.g., during a period of storage after preparation of the mixture). For example, certain volatile components present in the mixture may evaporate or undergo chemical transformations, leading to a reduction in the concentration of one or more volatile flavor components. In one embodiment, a concentration of one or more of the at least one volatile flavor components present is greater than a concentration of the same one or more volatile flavor components present in a control pouched product which does not include the one or more organic acids, after the same time period.
  • the same mechanisms responsible for loss of whiteness result in a gradual decline in certain volatile components in the flavoring (e.g., aldehydes, ketones, terpenes). Therefore, a decline in the presence of these volatile components leading to the discoloration over time may be expected to diminish the sensory satisfaction associated with products subject to such a degradation process.
  • the mixture may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the mixture.
  • a salt e.g., alkali metal salts
  • suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, and the like.
  • a representative amount of salt is about 0.5 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the mixture, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight).
  • the mixture typically further comprises one or more sweeteners.
  • the sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners.
  • natural sweeteners include isomaltulose, fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like.
  • artificial sweeteners include sucralose, maltodextrin, saccharin, aspartame, acesulfame K, neotame and the like.
  • the sweetener comprises one or more sugar alcohols.
  • Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form.
  • Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates).
  • a representative amount of sweetener may make up from about 0.1 to about 20 percent or more of the of the mixture by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the mixture on a weight basis, based on the total weight of the mixture.
  • Binding agents may make up from about 0.1 to about 20 percent or more of the of the mixture by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the mixture on a weight basis, based on the total weight of the mixture.
  • a binder (or combination of binders) may be employed in certain embodiments, in amounts sufficient to provide the desired physical attributes and physical integrity to the mixture. Binders also often function as thickening or gelling agents. Typical binders can be organic or inorganic, or a combination thereof. Representative binders include modified cellulose, povidone, sodium alginate, starch-based binders, pectin, carrageenan, pullulan, zein, and the like, and combinations thereof. A binder may be employed in amounts sufficient to provide the desired physical attributes and physical integrity to the mixture. In some embodiments, the binder comprises pectin or carrageenan or combinations thereof.
  • the amount of binder utilized in the mixture can vary, but is typically up to about 30 weight percent, and certain embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 1 to about 30% by weight, or about 5 to about 10% by weight, based on the total weight of the mixture.
  • the binder includes a gum, for example, a natural gum.
  • a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents.
  • Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof.
  • natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the mixture.
  • one or more humectants may be employed in the mixture.
  • humectants include, but are not limited to, glycerin, propylene glycol, and the like.
  • the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the mixture.
  • the humectant may impart desirable flow characteristics to the mixture for depositing in a mold.
  • a humectant will typically make up about 5% or less of the weight of the mixture (e.g., from about 0.5 to about 5% by weight).
  • a representative amount of humectant is about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the mixture.
  • the mixture of the present disclosure can comprise pH adjusters or buffering agents.
  • pH adjusters and buffering agents include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like.
  • the buffering agent is typically present in an amount less than about 5 percent based on the weight of the mixture, for example, from about 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or from about 1% to about 2% by weight, based on the total weight of the mixture.
  • suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
  • a colorant may be employed in amounts sufficient to provide the desired physical attributes to the mixture.
  • colorants include various dyes and pigments, such as caramel coloring and titanium dioxide.
  • the amount of colorant utilized in the mixture can vary, but when present is typically up to about 3 weight percent, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the mixture.
  • composition as disclosed herein includes one or more active ingredients.
  • an "active ingredient” refers to one or more substances belonging to any of the following categories: API (active pharmaceutical ingredient), food additives, natural medicaments, and naturally occurring substances that can have an effect on humans.
  • Example active ingredients include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body).
  • the active ingredient may be of the type generally referred to as dietary supplements, nutraceuticals, "phytochemicals” or “functional foods.”
  • dietary supplements e.g., nutraceuticals, "phytochemicals” or “functional foods.”
  • Non-limiting examples of active ingredients include those falling in the categories of botanical ingredients, stimulants, amino acids, nicotine components, and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as A, B3, B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)). Each of these categories is further described herein below.
  • the particular choice of active ingredients will vary depending upon the desired flavor, texture, and desired characteristics of the particular product.
  • the active ingredient is selected from the group consisting of caffeine, taurine, GABA, theanine, vitamin C, lemon balm extract, ginseng, citicoline, sunflower lecithin, and combinations thereof.
  • the active ingredient can include a combination of caffeine, theanine, and optionally ginseng.
  • the active ingredient includes a combination of theanine, gamma-amino butyric acid (GABA), and lemon balm extract.
  • the active ingredient includes theanine, theanine and tryptophan, or theanine and one or more B vitamins (e.g., vitamin B6 or B12).
  • the active ingredient includes a combination of caffeine, taurine, and vitamin C.
  • an active ingredient or combination thereof is present in a total concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 20%.
  • the active ingredient or combination of active ingredients is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.5% w/w to about 10%, from about 1% to about 10%, from about 1% to about 5% by weight, based on the total weight of the composition.
  • the active ingredient or combination of active ingredients is present in a concentration of from about 0.001%, about 0.01%, about 0.1% , or about 1%, up to about 20% by weight, such as, e.g., from about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%,
  • the active ingredient comprises a botanical ingredient.
  • botanical ingredient refers to any plant material or fungal-derived material, including plant material in its natural form and plant material derived from natural plant materials, such as extracts or isolates from plant materials or treated plant materials (e.g., plant materials subjected to heat treatment, fermentation, bleaching, or other treatment processes capable of altering the physical and/or chemical nature of the material).
  • a “botanical” includes, but is not limited to, "herbal materials,” which refer to seed-producing plants that do not develop persistent woody tissue and are often valued for their medicinal or sensory characteristics (e.g., teas or tisanes).
  • compositions as disclosed herein can be characterized as free of any tobacco material (e.g., any embodiment as disclosed herein may be completely or substantially free of any tobacco material).
  • substantially free is meant that no tobacco material has been intentionally added.
  • certain embodiments can be characterized as having less than 0.001% by weight of tobacco, or less than 0.0001%, or even 0% by weight of tobacco.
  • a botanical When present, a botanical is typically at a concentration of from about 0.01% w/w to about 10% by weight, such as, e.g., from about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • the botanical materials useful in the present disclosure may comprise, without limitation, any of the compounds and sources set forth herein, including mixtures thereof. Certain botanical materials of this type are sometimes referred to as dietary supplements, nutraceuticals, "phytochemicals” or “functional foods.” Certain botanicals, as the plant material or an extract thereof, have found use in traditional herbal medicine, and are described further herein.
  • Non-limiting examples of botanicals or botanical-derived materials include ashwagandha, Bacopa monniera, baobab, basil, Centella asiatica, Chai-hu, chamomile, cherry blossom, chlorophyll, cinnamon, citrus, cloves, cocoa, cordyceps, curcumin, damiana, Dorstenia arifolia, Dorstenia odorata, essential oils, eucalyptus, fennel, Galphimia glauca, ginger, Ginkgo biloba, ginseng (e.g., Panax ginseng), green tea, Griffonia simplicifolia, guarana, cannabis, hemp, hops, jasmine, Kaempferia parviflora (Thai ginseng), kava, lavender, lemon balm, lemongrass, licorice, lutein, maca, matcha, Nardostachys chinensis, oil-based extract of Viola odorata, peppermint, quercetin,
  • the active ingredient comprises lemon balm.
  • Lemon balm ( Melissa officinalis) is a mildly lemon-scented herb from the same family as mint ( Lamiaceae ). The herb is native to Europe, North Africa, and West Asia. The tea of lemon balm, as well as the essential oil and the extract, are used in traditional and alternative medicine.
  • the active ingredient comprises lemon balm extract.
  • the lemon balm extract is present in an amount of from about 1 to about 4% by weight, based on the total weight of the composition.
  • the active ingredient comprises ginseng.
  • Ginseng is the root of plants of the genus Panax, which are characterized by the presence of unique steroid saponin phytochemicals (ginsenosides) and gintonin. Ginseng finds use as a dietary supplement in energy drinks or herbal teas, and in traditional medicine. Cultivated species include Korean ginseng ( P . ginseng), South China ginseng (P. notoginseng), and American ginseng (P. quinquefolius). American ginseng and Korean ginseng vary in the type and quantity of various ginsenosides present. In some embodiments, the ginseng is American ginseng or Korean ginseng. In specific embodiments, the active ingredient comprises Korean ginseng. In some embodiments, ginseng is present in an amount of from about 0.4 to about 0.6% by weight, based on the total weight of the composition.
  • the active ingredient comprises one or more stimulants.
  • stimulants refers to a material that increases activity of the central nervous system and/or the body, for example, enhancing focus, cognition, vigor, mood, alertness, and the like.
  • Non-limiting examples of stimulants include caffeine, theacrine, theobromine, and theophylline.
  • Theacrine (1,3,7,9-tetramethyluric acid) is a purine alkaloid which is structurally related to caffeine, and possesses stimulant, analgesic, and anti-inflammatory effects.
  • Present stimulants may be natural, naturally derived, or wholly synthetic.
  • certain botanical materials may possess a stimulant effect by virtue of the presence of e.g., caffeine or related alkaloids, and accordingly are “natural” stimulants.
  • the stimulant e.g., caffeine, theacrine
  • caffeine can be obtained by extraction and purification from botanical sources (e.g., tea).
  • whole synthetic it is meant that the stimulant has been obtained by chemical synthesis.
  • the active ingredient comprises caffeine.
  • the caffeine is present in an encapsulated form.
  • Vitashure ® available from Balchem Corp., 52 Sunrise Park Road, New Hampton, NY, 10958.
  • a stimulant or combination of stimulants is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • the composition comprises caffeine in an amount of from about 1.5 to about 6% by weight, based on the total weight of the composition;
  • the active ingredient comprises an amino acid.
  • amino acid refers to an organic compound that contains amine (-NH 2 ) and carboxyl (-COOH) or sulfonic acid (SO 3 H) functional groups, along with a side chain (R group), which is specific to each amino acid.
  • Amino acids may be proteinogenic or non-proteinogenic. By “proteinogenic” is meant that the amino acid is one of the twenty naturally occurring amino acids found in proteins.
  • the proteinogenic amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.
  • non-proteinogenic is meant that either the amino acid is not found naturally in protein, or is not directly produced by cellular machinery (e.g., is the product of post-tranlational modification).
  • Non-limiting examples of non-proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2- aminoethanesulfonic acid), theanine (L-y-glutamylethylamide), hydroxyproline, and beta-alanine.
  • the active ingredient comprises theanine.
  • the active ingredient comprises GABA.
  • the active ingredient comprises a combination of theanine and GABA.
  • the active ingredient is a combination of theanine, GABA, and lemon balm.
  • the active ingredient is a combination of caffeine, theanine, and ginseng.
  • the active ingredient comprises taurine.
  • the active ingredient is a combination of caffeine and taurine.
  • an amino acid or combination of amino acids is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • Vitamins e.g., theanine, GABA, and combinations thereof
  • the active ingredient comprises a vitamin or combination of vitamins.
  • vitamin refers to an organic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of metabolism in a mammal.
  • vitamins required by human metabolism which are: vitamin A (as all-trans-retinol, all-trans-retinyl-esters, as well as all-trans-beta-carotene and other provitamin A carotenoids), vitamin B 1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), vitamin B12 (cobalamins), vitamin C (ascorbic acid), vitamin D (calciferols), vitamin E (tocopherols and tocotrienols), and vitamin K (quinones).
  • the active ingredient comprises vitamin C.
  • the active ingredient comprises vitamin C.
  • a vitamin or combination of vitamins is typically at a concentration of from about 0.01% w/w to about 6% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 2%, about 3%, about 4%, about 5% , or about 6% by weight, based on the total weight of the composition.
  • the active ingredient comprises one or more antioxidants.
  • antioxidant refers to a substance which prevents or suppresses oxidation by terminating free radical reactions, and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Non-limiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
  • Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, marjoram, milk thistle, mints (menthe), oo
  • Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts.
  • the botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids.
  • Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, co enzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
  • Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
  • a tocopherol epicatechol, epigallocatechol, epigallocatechol gallate
  • erythorbic acid sodium erythorbate
  • 4-hexylresorcinol theaf
  • an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the composition.
  • the pouched products of the present disclosure can include a nicotinic compound.
  • nicotinic compound or “source of nicotine” often refers to naturally -occurring or synthetic nicotinic compound unbound from a plant material, meaning the compound is at least partially purified and not contained within a plant structure, such as a tobacco leaf. Most preferably, nicotine is naturally -occurring and obtained as an extract from a Nicotiana species (e.g., tobacco).
  • the nicotine can have the enantiomeric form S(-)-nicotine, R(+)-nicotine, or a mixture of S(-)-nicotine and R(+)-nicotine.
  • the nicotine is in the form of S(-)-nicotine (e.g., in a form that is virtually all S(-)-nicotine) or a racemic mixture composed primarily or predominantly of S(-)-nicotine (e.g., a mixture composed of about 95 weight parts S(-)-nicotine and about 5 weight parts R(+)-nicotine).
  • the nicotine is employed in virtually pure form or in an essentially pure form. Highly preferred nicotine that is employed has a purity of greater than about 95 percent, more preferably greater than about 98 percent, and most preferably greater than about 99 percent, on a weight basis.
  • a nicotine component may be included in the mixture in free base form, salt form, as a complex, or as a solvate.
  • nicotine component is meant any suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present.
  • the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt.
  • nicotine is in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
  • At least a portion of the nicotine can be employed in the form of a salt.
  • Salts of nicotine can be provided using the types of ingredients and techniques set forth in US Pat. No. 2,033,909 to Cox et al. and Perfetti, Beitrage Tab akf or s chung Int., 12: 43-54 (1983), which are incorporated herein by reference. Additionally, salts of nicotine are available from sources such as Pfaltz and Bauer, Inc. and K&K Laboratories, Division of ICN Biochemicals, Inc.
  • the nicotine component is selected from the group consisting of nicotine free base, a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride.
  • a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride.
  • the nicotine component or a portion thereof is a nicotine salt with one or more organic acids.
  • the nicotine can be in the form of a resin complex of nicotine, where nicotine is bound in an ion-exchange resin, such as nicotine polacrilex, which is nicotine bound to, for example, a polymethacrilic acid, such as Amberlite IRP64, Purolite Cl 15HMR, or Doshion P551.
  • an ion-exchange resin such as nicotine polacrilex
  • a polymethacrilic acid such as Amberlite IRP64, Purolite Cl 15HMR, or Doshion P551.
  • a nicotine-polyacrylic carbomer complex such as with Carbopol 974P.
  • nicotine may be present in the form of a nicotine polyacrylic complex.
  • the nicotine component when present, is in a concentration of at least about 0.001% by weight of the mixture, such as in a range from about 0.001% to about 10%.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the mixture.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the mixture.
  • concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the mixture.
  • the products or compositions of the disclosure can be characterized as free of any nicotine component (e.g., any embodiment as disclosed herein may be completely or substantially free of any nicotine component).
  • substantially free is meant that no nicotine has been intentionally added, beyond trace amounts that may be naturally present in e.g., a botanical material.
  • certain embodiments can be characterized as having less than 0.001% by weight of nicotine, or less than 0.0001%, or even 0% by weight of nicotine, calculated as the free base.
  • the active ingredient comprises a nicotine component (e.g., any product or composition of the disclosure, in addition to comprising any active ingredient or combination of active ingredients as disclosed herein, may further comprise a nicotine component).
  • the active ingredient comprises one or more cannabinoids.
  • cannabinoid refers to a class of diverse chemical compounds that acts on cannabinoid receptors, also known as the endocannabinoid system, in cells that alter neurotransmitter release in the brain. Ligands for these receptor proteins include the endocannabinoids produced naturally in the body by animals; phytocannabinoids, found in cannabis; and synthetic cannabinoids, manufactured artificially.
  • Cannabinoids found in cannabis include, without limitation: cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBDA), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinolic acid (THCA), and tetrahydrocannabivarinic acid (THCV A).
  • CBD cannabigerol
  • the cannabinoid is selected from tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and cannabidiol (CBD) another major constituent of the plant, but which is devoid of psychoactivity. All of the above compounds can be used in the form of an isolate from plant material or synthetically derived.
  • the active ingredient can be a cannabimimetic, which is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids.
  • cannabimimetic is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids. Examples include yangonin, alpha-amyrin or beta-amyrin (also classified as terpenes), cyanidin, curcumin (tumeric), catechin, quercetin, salvinorin A, N-acylethanolamines, and N-alkylamide lipids.
  • a cannabinoid e.g., CBD
  • cannabimimetic is typically in a concentration of at least about 0.1% by weight of the composition, such as in a range from about 0.1% to about 30%, such as, e.g., from about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 15%, about 20%, or about 30% by weight, based on the total weight of the composition.
  • CBD cannabinoid
  • cannabimimetic is typically in a concentration of at least about 0.1% by weight of the composition, such as in a range from about 0.1% to about 30%, such as, e.g., from about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.
  • terpenes Active ingredients suitable for use in the present disclosure can also be classified as terpenes, many of which are associated with biological effects, such as calming effects.
  • Terpenes are understood to have the general formula of (C5Hs) n and include monoterpenes, sesquiterpenes, and diterpenes.
  • Terpenes can be acyclic, monocyclic or bicyclic in structure. Some terpenes provide an entourage effect when used in combination with cannabinoids or cannabimimetics.
  • Examples include beta-caryophyllene, linalool, limonene, beta-citronellol, linalyl acetate, pinene (alpha or beta), geraniol, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, and germacrene, which may be used singly or in combination.
  • the active ingredient comprises an active pharmaceutical ingredient (API).
  • API can be any known agent adapted for therapeutic, prophylactic, or diagnostic use. These can include, for example, synthetic organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, phospholipids, inorganic compounds (e.g., magnesium, selenium, zinc, nitrate), neurotransmitters or precursors thereof (e.g., serotonin, 5-hydroxytryptophan, oxitriptan, acetylcholine, dopamine, melatonin), and nucleic acid sequences, having therapeutic, prophylactic, or diagnostic activity.
  • synthetic organic compounds proteins and peptides, polysaccharides and other sugars, lipids, phospholipids, inorganic compounds (e.g., magnesium, selenium, zinc, nitrate), neurotransmitters or precursors thereof (e.g., serotonin, 5-hydroxytryptophan, oxitriptan, acetylcho
  • Non-limiting examples of APIs include analgesics and antipyretics (e.g., acetylsalicylic acid, acetaminophen, 3-(4- isobutylphenyl)propanoic acid), phosphatidylserine, myoinositol, docosahexaenoic acid (DHA, Omega-3), arachidonic acid (AA, Omega-6), S-adenosylmethionine (SAM), beta-hydroxy -beta-methylbutyrate (HMB), citicoline (cytidine-5'-diphosphate-choline), and cotinine.
  • the active ingredient comprises citicoline.
  • the active ingredient is a combination of citicoline, caffeine, theanine, and ginseng. In some embodiments, the active ingredient comprises sunflower lecithin. In some embodiments, the active ingredient is a combination of sunflower lecithin, caffeine, theanine, and ginseng.
  • an API when present, is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1%, to about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, based on the total weight of the composition.
  • the composition is substantially free of any API.
  • substantially free of any API means that the composition does not contain, and specifically excludes, the presence of any API as defined herein, such as any Food and Drug Administration (FDA) approved therapeutic agent intended to treat any medical condition.
  • FDA Food and Drug Administration
  • the mixture may include a tobacco material.
  • the tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species.
  • Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N.
  • Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic -modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al.
  • the Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein. For example, plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom.
  • plants of the Nicotiana species e.g., Galpao commun tobacco
  • the plant of the Nicotiana species can be included within a mixture as disclosed herein.
  • virtually all of the plant e.g., the whole plant
  • various parts or pieces of the plant can be harvested or separated for further use after harvest.
  • the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment.
  • the tobacco material comprises tobacco leaf (lamina).
  • the mixture disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems.
  • the tobacco that is used for the mixture most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated).
  • Portions of the tobaccos within the mixture may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)).
  • processed tobacco stems e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems
  • volume expanded tobacco e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)
  • DIET dry ice expanded tobacco
  • the d mixture optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
  • the tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form).
  • the manner by which the tobacco material is provided in a finely divided or powder type of form may vary.
  • plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like.
  • the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent.
  • the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns.
  • the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required.
  • air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected.
  • differently sized pieces of granulated tobacco may be mixed together.
  • tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like.
  • the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent to less than about 5 weight percent.
  • the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk).
  • the harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders).
  • the plant, or parts thereof can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment).
  • the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof.
  • powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent.
  • tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
  • flue-cured or Virginia e.g., K326)
  • burley sun-cured
  • Indian Kumool and Oriental tobaccos including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos
  • Maryland dark, dark-fired, dark air cured (e.g., Madole, Passand
  • the tobacco material may also have a so-called "blended" form.
  • the tobacco material may include a mixture of parts or pieces of flue-cured, burley (e.g., Malawi burley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem).
  • a representative blend may incorporate about 30 to about 70 parts burley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis.
  • example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts burley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis.
  • Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
  • Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like.
  • the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment.
  • controlled heat treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference.
  • tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof.
  • an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di
  • the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached).
  • Tobacco pulp can be whitened in certain embodiments according to any means known in the art.
  • bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used.
  • Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof.
  • Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof.
  • the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%.
  • the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%.
  • ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
  • the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material.
  • White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram.
  • CIE's International Commission on Illumination's
  • the whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material.
  • the tobacco material can be treated to extract a soluble component of the tobacco material therefrom.
  • tobacco extract refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process.
  • Various extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference.
  • Other example techniques for extracting components of tobacco are described inUS Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr. et al.; 4,267,847 to Reid; 4,289,147 to Wildman et al.; 4,351,346 to Brummer et al.;
  • Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final mixture, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the mixture (e.g., about 0.1 to about 15% by weight).
  • the products of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient).
  • tobacco material other than purified nicotine as an active ingredient.
  • certain embodiments can be characterized as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight of tobacco material, or 0% by weight of tobacco material.
  • additives can be included in the disclosed mixture.
  • the mixture can be processed, blended, formulated, combined and/or mixed with other materials or ingredients.
  • the additives can be artificial, or can be obtained or derived from herbal or biological sources.
  • further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, oral care additives (e.g., thyme oil, eucalyptus oil, and zinc), preservatives (e.g., potassium sorbate and the like), zinc or magnesium salts selected to be relatively water soluble for compositions with greater water solubility (e.g., magnesium or zinc gluconate) or selected to be relatively water insoluble for compositions with reduced water solubility (e.g., magnesium or zinc oxide), disintegration aids, or combinations thereof.
  • thickening or gelling agents e.g., fish gelatin
  • emulsifiers e.g., thyme oil, eucalyptus oil,
  • the aforementioned additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final mixture). Furthermore, the aforementioned types of additives may be encapsulated as provided in the final product or mixture. Example encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein. In some embodiments, any one or more of a filler component, a tobacco material, and the overall oral product described herein can be described as a particulate material.
  • the term "particulate” refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1.
  • the particles of a particulate material can be described as substantially spherical or granular.
  • the particle size of a particulate material may be measured by sieve analysis.
  • sieve analysis is a method used to measure the particle size distribution of a particulate material.
  • sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above.
  • a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
  • the column of sieves may be placed on or in a mechanical agitator.
  • the agitator causes the vibration of each of the sieves in the column.
  • the mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve.
  • the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes.
  • the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed.
  • a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves.
  • a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves.
  • the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
  • any particulate material referenced herein can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
  • the various components of the mixture may vary. As such, the overall mixture of various components with e.g., powdered mixture components may be relatively uniform in nature.
  • the components noted above which may be in liquid or dry solid form, can be admixed in a pretreatment step prior to mixture with any remaining components of the mixture, or simply mixed together with all other liquid or dry ingredients.
  • the various components of the mixture may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • mixing equipment examples include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See also, for example, the types of methodologies set forth in US Pat. Nos. 4,148,325 to Solomon et al.; 6,510,855 to Korte et al; and 6,834,654 to Williams, each of which is incorporated herein by reference.
  • the components forming the mixture are prepared such that the mixture thereof may be used in a starch molding process for forming the mixture.
  • a pouched product comprising the needle-punched fleece materials described herein.
  • US Publication No. 2012/0055493 to Novak, III et al. previously incorporated by reference in its entirety, relates to an apparatus and process for providing pouch material formed into a tube for use in the manufacture of smokeless tobacco products.
  • Similar apparatuses that incorporate equipment for supplying a continuous supply of a pouch material e.g., a pouch processing unit adapted to supply a pouch material to a continuous tube forming unit for forming a continuous tubular member from the pouch material
  • the pouch material is a needle-punched fleece as provided herein.
  • the apparatus further includes equipment for supplying pouched material to the continuous tubular member such that, when the continuous tubular member is subdivided and sealed into discrete pouch portions, each pouch portion includes a charge of a composition adapted for oral use.
  • Representative equipment for supplying the filler material is disclosed, for example, in U.S. Patent Application Publication No. US 2010/0018539 to Brinkley, which is incorporated herein by reference in its entirety.
  • the apparatus may include a subdividing unit for subdividing the continuous tubular member into individual pouch portions and, once subdivided into the individual pouch portions, may also include a sealing unit for sealing at least one of the ends of each pouch portion.
  • the continuous tubular member may be sealed into individual pouch portions with a sealing unit and then, once the individual pouch portions are sealed, the continuous tubular member may be subdivided into discrete individual pouch portions by a subdividing unit subdividing the continuous tubular member between the sealed ends of serially -disposed pouch portions.
  • sealing (closing) of the individual pouch portions of the continuous tubular member may occur substantially concurrently with the subdivision thereof, using a closing and dividing unit.
  • an apparatus similar to that described in U.S. Publication No. 2012/0055493 can be configured to removably receive a first bobbin on an unwind spindle assembly, the first bobbin having a continuous length of a material, such as a needle-punched pouch material, wound thereon.
  • a material such as a needle-punched pouch material
  • the pouch material can be directed around an arrangement of roller members, otherwise referred to herein as a dancer assembly.
  • a forming unit can be configured to cooperate with the first bobbin and the dancer assembly to take up slack in the pouch material and to maintain a certain amount of longitudinal tension on the pouch material as the pouch material is unwound from the first bobbin and fed to the forming unit, for example, by a drive system.
  • the pouch material can be supported, routed, and/or guided by a suitably aligned series of any number of, for example, idler rollers, guideposts, air bars, turning bars, guides, tracks, tunnels, or the like, for directing the pouch material along the desired path.
  • Typical bobbins used by conventional automated pouch making apparatuses often contain a continuous strip of pouch material of which the length may vary.
  • the apparatus described herein can be configured so as to handle bobbins of that type and size.
  • the forming unit can include one or more roller members configured to direct the pouch material about a hollow shaft such that the continuous supply of the pouch material can be formed into a continuous tubular member.
  • the forming unit can include a sealing device configured to seal, fix, or otherwise engage lateral edges of the pouch material to form a longitudinally-extending seam, thereby forming a longitudinally -extending continuous tubular member.
  • an insertion unit can be configured to introduce charges of the composition adapted for oral use into the continuous tubular member through the hollow shaft. The insertion unit may be directly or indirectly engaged with the hollow shaft.
  • a leading edge or end (also referred to as a laterally -extending seam or an end seam) of the continuous tubular member can be closed/sealed such that a charge of composition adapted for oral use inserted by the insertion unit, is contained within the continuous tubular member proximate to the leading end.
  • the leading end can be closed/sealed via a closing and dividing unit configured to close/seal a first portion of the continuous tubular member to form the closed leading end of a pouch member portion.
  • the closing and dividing unit can also be configured to form a closed trailing edge or end of a previous pouch member portion.
  • the closing and dividing unit can also be configured to close a second portion of the continuous tubular member to form the closed trailing end of the pouch member portion.
  • the closing and dividing unit can close the ends, by heat-sealing, or other suitable sealing mechanism.
  • a binder material and/or heat sealable binder fibers can be applied to/incorporated into the nonwoven web of the pouch material and acts as a heat sealable binder to seal the pouch seams.
  • the seam strength of pouches formed from the needle-punched fleece materials described herein can vary.
  • the pouches can have an end seam strength along the laterally - extending pouch end of about 0.1 N/50mm or greater, and a longitudinal seam strength of about 0.1 N/50mm or greater.
  • the closing and dividing unit can be configured to divide the continuous tubular member, between the closed trailing end and the closed leading end of serially -disposed pouch member portions, along the longitudinal axis of the continuous tubular member, and into a plurality of discrete pouch member portions such that each discrete pouch member portion includes a portion of the oral composition from the insertion unit.
  • the closing and dividing unit can include a blade, heated wire, or other cutting arrangement for severing the continuous tubular member into discrete pouch member portions.
  • the closing and dividing unit can include first and second arm members configured to interact to close and divide the continuous tubular member.
  • a charge of the composition adapted for oral use i.e., an amount suitable for an individual pouch member portion
  • the discrete individual pouch member portion can be formed by closing the trailing end and severing the closed pouch member portion from the continuous tubular member such that an individual pouched product is formed.
  • each pouch may vary.
  • the weight of the mixture within each pouch is at least about 50 mg, for example, from about 50 mg to about 2 grams, from about 100 mg to about 1.5 grams, or from about 200 mg to about 700 mg.
  • the dry weight of the material within each pouch is at least about 50 mg to about 150 mg.
  • the dry weight of the material within each pouch preferably does not exceed about 300 mg to about 500 mg.
  • each pouch/container may have disposed therein a flavor agent member, as described in greater detail in US Pat. No. 7,861,728 to Holton, Jr. et al., which is incorporated herein by reference.
  • At least one flavored strip, piece or sheet of flavored water dispersible or water soluble material may be disposed within each pouch along with or without at least one capsule.
  • flavored water dispersible or water soluble material e.g., a breath-freshening edible film type of material
  • Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
  • the nonwoven web can be sufficiently tacky so as to create issues with high-speed pouching equipment. Therefore, in certain embodiments, a Teflon coating, or similar material, can be applied to one or more surfaces of the pouching equipment that touch the nonwoven web such as, for example, rollers, cutting instruments, and heat sealing devices in order to reduce and/or alleviate any problems associated with the pouch material sticking to the pouching equipment during processing.
  • a method of manufacturing a pouched product can comprise a number of general, non-limiting operations that can be performed in any desirable order.
  • a continuous supply of a pouch material in the form of a needle-punched fleece material can be provided.
  • the pouch material is formed into a continuous tubular member by sealing the lateral edges of the pouch material such that a longitudinally -extending seam is formed.
  • the seam can be formed by applying conventional heat sealing techniques to the pouch material, resulting in softening and/or melting of the heat sealable binder fiber in the nonwoven web to form a seal.
  • a charge of a composition adapted for oral use can be inserted into the continuous tubular member.
  • the continuous tubular member can be subdivided at predetermined intervals so as to form a plurality of pouch member portions, wherein each pouch member portion includes a charge of the composition.
  • each discrete pouch portion can be entirely sealed such that an outer water-permeable pouch is formed that encloses the composition.
  • This second sealing step can involve applying conventional heat sealing techniques to the pouch material, resulting in softening and/or melting of the heat sealable binder coating in the nonwoven web to form a seal. Accordingly, aspects of the present disclosure are particularly configured to provide discrete pouched products. The operations described and the order of the method steps illustrated herein are not construed as limiting thereof.
  • the pouched products can further include product identifying information printed or dyed on the outer water-permeable pouch or imprinted (e.g., embossed, debossed, or otherwise pressed) on the outer water-permeable pouch, such as described in U.S. Pat. Appl. Pub. No. 2014/0255452 to Reddick et al, filed March 11, 2013, which is incorporated by reference herein.
  • flavorants can also be incorporated into the nonwoven web if desired, such as by coating or printing an edible flavorant ink onto the nonwoven web. See, e.g., U.S. Pat. Appl. Pub. Nos. 2012/0085360 to Kawata et al. and 2012/0103353 to Sebastian et al., each of which is herein incorporated by reference.
  • a pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos.
  • Products of the present disclosure configured for oral use may be packaged and stored in any suitable packaging in much the same manner that conventional types of smokeless tobacco products are packaged and stored.
  • a plurality of packets or pouches may be contained in a cylindrical container.
  • the storage period of the product after preparation may vary.
  • “storage period” refers to the period of time after the preparation of the disclosed product.
  • one or more of the characteristics of the products disclosed herein e.g., retention of whiteness, lack of color change, retention of volatile flavor components
  • the storage period i.e., the time period after preparation
  • the storage period is from about about 1 day, about 2 days, or about 3 days, to about 1 week, or from about 1 week to about 2 weeks, from about 2 weeks to about 1 month, from about 1 month to about 2 months, from about 2 months to about 3 months, from about 3 months to about 4 months, or from about 4 months to about 5 months.
  • the storage period is any number of days between about 1 and about 150.
  • the storage period may be longer than 5 months, for example, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, or about 12 months.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Bag Frames (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

L'invention concerne un produit en sachet conçu pour libérer un composant soluble dans l'eau. Le produit en sachet peut comprendre une poche externe perméable à l'eau définissant une cavité contenant une composition qui comprend un composant soluble dans l'eau pouvant être libéré à travers la poche perméable à l'eau, et présente une surface, le matériau de poche perméable à l'eau externe étant formé par un procédé qui comprend le poinçonnage par aiguille.
PCT/IB2020/061661 2019-12-09 2020-12-08 Produits en sachet WO2021116920A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20898597.8A EP4072350A4 (fr) 2019-12-09 2020-12-08 Produits en sachet
JP2022534727A JP2023504919A (ja) 2019-12-09 2020-12-08 パウチ製品
MX2022006975A MX2022006975A (es) 2019-12-09 2020-12-08 Productos embolsados.
CA3159483A CA3159483A1 (fr) 2019-12-09 2020-12-08 Produits en sachet
US17/207,353 US20210204590A1 (en) 2019-12-09 2021-03-19 Pouched products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962945681P 2019-12-09 2019-12-09
US62/945,681 2019-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/207,353 Continuation US20210204590A1 (en) 2019-12-09 2021-03-19 Pouched products

Publications (1)

Publication Number Publication Date
WO2021116920A1 true WO2021116920A1 (fr) 2021-06-17

Family

ID=76329663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/061661 WO2021116920A1 (fr) 2019-12-09 2020-12-08 Produits en sachet

Country Status (6)

Country Link
US (1) US20210204590A1 (fr)
EP (1) EP4072350A4 (fr)
JP (1) JP2023504919A (fr)
CA (1) CA3159483A1 (fr)
MX (1) MX2022006975A (fr)
WO (1) WO2021116920A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112085A1 (fr) * 2020-11-27 2022-06-02 Nonwovenn Ltd Produit à mâcher pour l'administration orale d'une substance et procédé de fabrication de celui-ci

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183227A1 (fr) * 2022-03-22 2023-09-28 Poviva Corp. Compositions et méthodes d'administration sublinguale de nicotine
US11700875B1 (en) * 2022-03-22 2023-07-18 Poviva Corp. Compositions and methods for sublingual delivery of nicotine
WO2023194959A1 (fr) * 2022-04-06 2023-10-12 Nicoventures Trading Limited Produits en sachet avec liant thermoscellable
WO2024074988A1 (fr) 2022-10-04 2024-04-11 R. J. Reynolds Tobacco Company Agencement empilable de contenants de produit et procédé d'empilement associé
EP4410123A1 (fr) * 2023-02-03 2024-08-07 Contraf-Nicotex-Tobacco GmbH Produit oral pour l'administration d'un principe actif

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056219A1 (fr) * 2002-12-19 2004-07-08 Swedish Match North Europe Ab Composition a base de tabac a croquer
US20080202532A1 (en) * 2007-02-28 2008-08-28 Gary Wygal Method for portioning and depositing ground tobacco into containers
US20110303232A1 (en) * 2010-04-12 2011-12-15 Altria Client Services Inc. Pouch product with improved seal and method
US20120031416A1 (en) * 2010-08-05 2012-02-09 U.S. Smokeless Tobacco Company Llc Fabric Having Tobacco Entangled with Structural Fibers
US20140157728A1 (en) * 2010-03-26 2014-06-12 Philip Morris Usa Inc. Method and apparatus for pouching tobacco having a high moisture content

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019840B2 (en) * 2014-07-02 2021-06-01 R.J. Reynolds Tobacco Company Oral pouch products
US10959456B2 (en) * 2014-09-12 2021-03-30 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160157515A1 (en) * 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056219A1 (fr) * 2002-12-19 2004-07-08 Swedish Match North Europe Ab Composition a base de tabac a croquer
US20080202532A1 (en) * 2007-02-28 2008-08-28 Gary Wygal Method for portioning and depositing ground tobacco into containers
US20140157728A1 (en) * 2010-03-26 2014-06-12 Philip Morris Usa Inc. Method and apparatus for pouching tobacco having a high moisture content
US20110303232A1 (en) * 2010-04-12 2011-12-15 Altria Client Services Inc. Pouch product with improved seal and method
US20120031416A1 (en) * 2010-08-05 2012-02-09 U.S. Smokeless Tobacco Company Llc Fabric Having Tobacco Entangled with Structural Fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072350A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112085A1 (fr) * 2020-11-27 2022-06-02 Nonwovenn Ltd Produit à mâcher pour l'administration orale d'une substance et procédé de fabrication de celui-ci

Also Published As

Publication number Publication date
EP4072350A1 (fr) 2022-10-19
US20210204590A1 (en) 2021-07-08
CA3159483A1 (fr) 2021-06-17
EP4072350A4 (fr) 2024-03-06
JP2023504919A (ja) 2023-02-07
MX2022006975A (es) 2022-09-12

Similar Documents

Publication Publication Date Title
US20210206554A1 (en) Oral product with dissolvable component
US20210204590A1 (en) Pouched products
EP4073307B1 (fr) Produit en sachet
US20220225660A1 (en) Pouched products with heat sealable binder
US20210204585A1 (en) Pouched products with heat sealable binder
US20210169790A1 (en) Fleece for oral product with releasable component
US20210251276A1 (en) Layered fleece for pouched product
US20220232881A1 (en) Method for sealing pouches
EP4432862A1 (fr) Produits oraux contenant un complexe nicotine-polymère
US20210169791A1 (en) Fleece for pouched product with controlled basis weight
WO2021116881A1 (fr) Produit à usage oral en sachet poreux comprenant un matériau non-tissé
WO2021116919A1 (fr) Non-tissé pour produit oral avec composant libérable
US20230049343A1 (en) Shaped pouched products
WO2023194959A1 (fr) Produits en sachet avec liant thermoscellable
US20230148660A1 (en) Products with enhanced sensory characteristics
WO2024180481A1 (fr) Produit à prendre par voie orale contenant de la caféine
WO2024089588A1 (fr) Produits en forme de sachet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3159483

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022534727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022117280

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898597

Country of ref document: EP

Effective date: 20220711