WO2021116629A1 - Dispositif de refroidissement d'un pack-batteries - Google Patents

Dispositif de refroidissement d'un pack-batteries Download PDF

Info

Publication number
WO2021116629A1
WO2021116629A1 PCT/FR2020/052400 FR2020052400W WO2021116629A1 WO 2021116629 A1 WO2021116629 A1 WO 2021116629A1 FR 2020052400 W FR2020052400 W FR 2020052400W WO 2021116629 A1 WO2021116629 A1 WO 2021116629A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric fluid
cooling device
housing
cooling
vehicle
Prior art date
Application number
PCT/FR2020/052400
Other languages
English (en)
Inventor
Kamel Azzouz
Sébastien Garnier
Amrid MAMMERI
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to US17/784,821 priority Critical patent/US20230051254A1/en
Priority to CN202080093782.1A priority patent/CN115004448A/zh
Priority to EP20848991.4A priority patent/EP4073871A1/fr
Publication of WO2021116629A1 publication Critical patent/WO2021116629A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20345Sprayers; Atomizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of cooling devices for electronic elements, and it may in particular relate to devices for cooling battery packs of a hybrid or electric motor vehicle.
  • hybrid or electric motor vehicles are powered by rechargeable electric batteries which, in operation, can reach extreme temperatures, these temperatures being able to generate a risk of damage to the structures of the vehicle near the batteries, and / or a risk of see the batteries ignite or at the very least function less well.
  • the dielectric fluid can in particular be a two-phase fluid which, on contact with the batteries and by heat exchange, changes to the vapor state. It is therefore known practice to equip the battery pack with a condenser, in order to return the dielectric fluid to the liquid state. The dielectric fluid in the liquid state is then recovered, in particular at the bottom of the battery pack, and can for example be directed to a network of recirculation channels in order to be again inserted into the battery pack to be projected onto the batteries. batteries during subsequent use.
  • the present invention overcomes the problem of evaporation of dielectric fluid within a housing containing electric batteries, despite the fact that the vehicle is stationary.
  • the invention consists of a device for cooling a plurality of electronic elements capable of giving off heat during their operation for the power supply of an appliance or of a vehicle, said electronic elements being arranged in a housing, the device comprising at least one element for projecting a two-phase dielectric fluid onto the electronic elements, as well as a condenser provided with a cooling fluid circuit, the housing comprising a dielectric fluid recovery tank , the cooling device comprising a dielectric fluid circuit, provided with a circulation pump configured to suck the dielectric fluid from the recovery tank, and directly connected to the projection element, characterized in that the cooling device comprises a a system for regulating the internal pressure of the housing, the regulating system comprising a control module configured to generate an internal pressure regulation control instruction based on a condition of the cooling device and / or a condition of the device or vehicle.
  • the projection element is configured to spray the two-phase dielectric fluid, in the liquid state, onto the electronic elements.
  • An exchange of calories then takes place between the hot electronic elements and the dielectric fluid which vaporizes under the effect of the high temperature of the electronic elements.
  • These can for example be battery cells for hybrid or electric vehicles, or any other electronic element that can reach very high temperatures and need to be cooled accordingly.
  • the condenser may for example be in the form of a metal plate within which circulates a cooling fluid.
  • the condenser is arranged within the housing such that contact is created between the condenser and the dielectric fluid in vapor form. A new exchange of calories is operated between the dielectric fluid in vapor form and the condenser associated with the cooling fluid, thus allowing the dielectric fluid to give up the calories previously acquired and to return to the liquid state.
  • the housing is configured so that this two-phase electric fluid in the liquid state flows to the recovery tank.
  • the dielectric fluid circuit connects the recovery tank to the projection element so that the dielectric fluid can again be sprayed in liquid form on the electronic elements.
  • the circulation pump draws the dielectric fluid from the recovery tank and circulates it within the dielectric fluid circuit.
  • the dielectric fluid circuit can open directly onto the projection element, or for example pass through the condenser before opening onto the projection element, in order to lower the temperature of the dielectric fluid before it is projected onto electronic elements and thus can perform a more efficient cooling thereof.
  • the pressure regulating system of the cooling device is configured to avoid excess pressure in the housing that can generate stresses at the joints of this housing and leakage of dielectric fluid if necessary.
  • excess pressure is in particular due to the vaporization of the dielectric fluid present in the housing and in particular when the vehicle is stationary and the cooling device is not running, that is to say when the coolant does not circulate in the condenser. This vaporization can occur after stopping the vehicle if the temperature reached by the electronic elements located near the drip tray remains too high, or in general when the ambient temperature is high.
  • the control module present within the pressure regulation system makes it possible to detect a rise in the internal pressure of the housing, or another event which may cause an internal pressure rise in the housing.
  • the control module also makes it possible, following this detection, to generate a control instruction intended for other components of the pressure regulation system capable of reducing the internal pressure of the housing.
  • the control module comprises a pressure sensor, the control module being configured to generate a control instruction for regulating the internal pressure of the housing when a value measured by the sensor of pressure exceeds a pressure threshold value.
  • the pressure sensor is advantageously arranged in the housing in order to measure the pressure precisely.
  • the pressure sensor and the control module are configured to communicate with each other, if necessary by wired means.
  • the pressure threshold value with which the pressure values measured by the pressure sensor are compared, is 1.5 bar. It has been determined by the inventors that from this pressure value of 1.5 bar, the internal pressure risks deforming the housing and the dielectric fluid present in the housing risks consequently escaping out of the housing, this pressure corresponding to a temperature of about 48 ° C.
  • the control module retrieves in real time, or at regular intervals, the pressure values measured by the pressure sensor and initiates pressure regulation, i.e. generates appropriate control instructions, when one of the values pressure recovered is greater than or equal to 1.5 bar.
  • the control module initiates the regulation of the internal pressure by generating a control instruction intended for the cooling fluid circuit associated with the condenser.
  • the control module commands the start-up of the coolant circuit only when the pressure threshold value is reached.
  • the regulation of the internal pressure in the case which has just been presented, with a control of the internal pressure and a control instruction relating to this pressure control, is said to be active, that is to say that regulation is carried out in real time based on a pressure measurement that is too high.
  • the cooling device comprises a state detector of the device or of the vehicle capable of detecting and sending to the control module information relating to the stopping or operation of the device or vehicle.
  • device status detector or of the vehicle it should be understood that this is a sensor which detects whether the device or the vehicle, on which the cooling device is installed, is in operation or if it is stationary.
  • the state detector can for example be an accelerometer or a member directly linked to the vehicle starting device. The device's or vehicle's state detector can send a signal to the control module as soon as the change of state is confirmed, whether it is for example a stop of the vehicle's ignition, or a start of the latter .
  • the pressure regulation system comprises a storage tank isolated from the housing, as well as a regulating pump capable of sucking the dielectric fluid present in the recovery tank to the storage tank. storage, and / or in sucking the dielectric fluid present in the storage tank to the recovery tank, according to an indication given by the state detector of the device or of the vehicle.
  • the pressure regulation system can be configured to ensure the transfer of the dielectric fluid between the recovery tank and the storage tank, and this in both directions of circulation depending on the condition of the vehicle determined by the intermediary of the vehicle condition detector. More particularly, when the vehicle engine is not running, and the coolant is not circulating in the condenser, the risk of the dielectric fluid heating up is high and the control system is configured to remove the dielectric fluid from the housing of the condenser. cooling device.
  • the vehicle condition detector transmits the information to the control module, which initiates the operation of the control pump for transfer the dielectric fluid from the recovery tank to the storage tank.
  • the transfer of the dielectric fluid is carried out in the reverse direction, that is to say from the storage tank to the recovery tank, so that the dielectric fluid is again present in the case to play its role of cooling the batteries.
  • the regulation system can also include a temperature sensor measuring the ambient temperature of the external environment and / or the temperature within the housing, in order to determine whether it is necessary to pump the dielectric fluid out of the housing or not. , this temperature information being able in particular to be considered in addition to that of the stopping of the vehicle.
  • the regulation of the internal pressure in the case which has just been presented, with a withdrawal of the dielectric fluid from the housing to avoid overpressure in the event of the vehicle being stopped, is said to be passive, that is to say that the dielectric fluid is evacuated from the recovery tank as soon as the vehicle stops in order to prevent a potential increase in the internal pressure of the housing, without however being certain that the internal pressure of the housing increases too excessively.
  • the regulation system comprises an insulating structure covering the storage tank.
  • the insulating structure is independent of the housing, at a distance from the latter and covers the storage tank.
  • the dielectric fluid is exited from the housing of the cooling device to be away from electronic elements which may cause the evaporation of the dielectric fluid.
  • the insulating structure then acts as a thermal barrier so that the ambient temperature is also not able to cause the evaporation of the dielectric fluid. Under these conditions, the dielectric fluid is maintained in the liquid state in order to be operational during its transfer to the housing, and for example the recovery tank, when the vehicle is restarted.
  • the storage tank comprises a heat exchanger.
  • the dielectric fluid can thus be cooled when it is stored in the storage tank.
  • the latter can for example be traversed by a pass within which circulates a cooling fluid, in order to keep the dielectric fluid at low temperature.
  • the dielectric fluid is thus maintained in the liquid phase.
  • Such a characteristic can be a alternative, or on the contrary be implemented in a complementary manner, to the presence of an insulating structure such as previously mentioned.
  • the invention also covers a method of implementing a cooling device as described above, characterized in that it comprises:
  • the determination step can in particular comprise a measurement carried out by a pressure sensor or a temperature sensor, depending on the embodiments of the cooling device, and / or the detection of a state of the vehicle which detects the stopping or starting the vehicle.
  • the control module receives one or more signals and generates a control instruction accordingly, namely the activation of the coolant circuit while the vehicle is stationary and the internal pressure exceeds a threshold value in the case active regulation, or the suction of dielectric fluid from the recovery tank to the storage tank in the case of passive regulation.
  • the invention also covers a thermal management system comprising a housing intended to receive a plurality of electronic elements capable of giving off heat during their operation and a cooling device as described above.
  • the invention also covers a battery pack comprising a plurality of electronic elements capable of giving off heat during their operation, a housing receiving said electronic elements and a cooling device as described above.
  • a battery pack enables the supply for example of an electric or hybrid motor of a motor vehicle.
  • FIG. 1 is a diagram of a first embodiment of a device for cooling electronic elements according to the invention.
  • FIG. 1 is a diagram of a second embodiment of the device for cooling electronic elements according to the invention.
  • FIG. 3 is a representation of an example of the contents of a housing of the cooling device
  • FIG 4 is a representation of a battery pack provided with the cooling device according to the invention.
  • a cooling device 2 according to the invention is illustrated in Figure 1.
  • Such a device comprises in particular a housing 12 housing a plurality of electronic elements 11 and a cooling device 2 which comprises at least one dielectric fluid circuit 21 inside which circulates a dielectric fluid 3, here two-phase, and which is configured to allow cooling of the electronic elements.
  • the cooling device comprises a system for regulating the internal pressure of the housing.
  • the dielectric fluid circuit 21 is in the form of a circulation channel on which is disposed at least one projection element 22.
  • the projection element 22 may for example be a projection nozzle ensuring the spraying of the dielectric fluid 3 in the form of a spray.
  • the dielectric fluid circuit 21 comprises a plurality of projection elements 22, distributed so as to ensure the spraying of the dielectric fluid 3 on a plurality of electronic elements 11.
  • the electronic elements 11 can for example be battery cells allowing the supply of an electric or hybrid motor of a vehicle, or even computer servers that need to be cooled regularly. In each of these cases, the action of projection of the dielectric fluid 3 on the electronic elements 11 make it possible to lower the temperature of the latter.
  • FIG. 1 represents four electronic elements 11, onto which dielectric fluid 3 is projected by means of four series of two projection elements 22 arranged on the dielectric fluid circuit 21.
  • the dielectric fluid 3 two-phase is at least predominantly vaporized, vapor phase 31. It is however possible that a part of the dielectric fluid 3 is maintained in the liquid phase despite the heat exchange with the electronic elements 11.
  • the dielectric fluid 3 in the liquid phase then flows to a recovery tank 25 located below the electronic elements 11.
  • the drain tank recovery 25 may have the form of any container provided with an internal volume and being able to recover all of the dielectric fluid 3 in liquid form.
  • the cooling device 2 comprises a condenser 26 which consists of a plate within which extends a cooling fluid circuit 23.
  • the cooling fluid may for example be glycol water, or other liquids. refrigerants of the type R134a or 1234yf.
  • the condenser-forming plate 26 has a contact wall 27 turned towards the inside of the housing and therefore disposed between the cooling fluid circuit 23 and the projection element 22.
  • the two-phase dielectric fluid 3 once vaporized by the release of heat from the electronic elements 11, comes into contact with the condenser 26, more precisely with the contact wall 27, and liquefies in contact with this cooled wall under the effect of the cooling fluid circulating in the cooling fluid circuit 23.
  • the contact wall 27 is slightly inclined, thus allowing the dielectric fluid 3 ironed in liquid form 32 to migrate along the contact wall 27 to fall into the recovery tank 25, under the effect of gravity.
  • the recovery tank 25 therefore recovers the dielectric fluid 3 in liquid form, whether it is two-phase dielectric fluid not evaporated during the projection against the electronic elements 11, or else fluid vaporized and then liquefied by the condenser 26.
  • the dielectric fluid circuit 21 comprises an end, opposite the end comprising the projection element 22, which is immersed in the dielectric fluid 3 in liquid form 32 present in the recovery tank 25.
  • the fluid circuit dielectric 21 is able to suck the dielectric fluid 3 present in the recovery tank 25 by means of a circulation pump 24.
  • the dielectric fluid 3 recovered in the tank in liquid form can thus recirculate within the dielectric fluid circuit 21 and be projected again onto the electronic elements 11 through the projection element 22.
  • the dielectric fluid circuit 21 is isolated from the condenser 26, but it is possible to pass the dielectric fluid circuit 21 through the condenser 26 in order to lower the temperature of the dielectric fluid 3 and thus improve the cooling of the electronic elements 11.
  • a dielectric fluid circuit fully disposed in the housing 12 of the cooling device, but it should be understood that this circuit can extend at least partly outside the housing, a connection end allowing the fluid present in the recovery tank to exit into a duct external to the housing and another end allowing the return of the fluid to the condenser, for example.
  • the cooling device 2 in order to prevent an unwanted vaporization of the dielectric fluid 3 two-phase causes an increase in the internal pressure of the housing 12, the cooling device 2 is provided with a pressure regulation system 4 making it possible to prevent or attenuate the increase in internal pressure of the housing 12.
  • a pressure regulation system 4 making it possible to prevent or attenuate the increase in internal pressure of the housing 12.
  • the regulation system 4 comprises a pressure sensor 42 which measures the internal pressure of the housing 12 and a control module 41 which is configured to be able to modify the configuration of the circuit cooling and in particular the circulation of the cooling fluid.
  • the pressure sensor 42 is arranged in the housing, here in the vicinity of the contact face 27 of the condenser 26, to measure the internal pressure of the housing, and it is configured to communicate with the control module in order to transmit to it the measured pressure values.
  • the control module 41 is configured to compare the measured values with a pressure threshold value, which may in particular be equal to 1.5 bar. When the pressure threshold value is exceeded, the function of the control module 41 is to generate a control instruction intended for the cooling fluid circuit 23 to allow regulation of the internal pressure of the box 12.
  • control module 41 when the control module 41 has detected a case of overpressure, a control instruction is transmitted to the cooling fluid circuit 23 of the condenser 26 so that the cooling fluid circulates inside the circuit and can evacuate the calories captured from the dielectric fluid.
  • the control instruction aims to restart the circulation of the cooling fluid of the condenser 26, so that the dielectric fluid 3 in vapor form 31 can resume a liquid form and thus allow a reduction in the internal pressure of the housing. 12.
  • the communication between pressure sensor and control module, and the resulting control action, is implemented in particular in the case of a vehicle stopping, and stopping the flow of fluid from cooling which may result if the engine is switched off.
  • the values measured by the pressure sensor may be required continuously, or else cyclically, at regular intervals.
  • the regulating action which has just been described can be stopped by controlling the internal pressure of the housing 12 via the pressure sensor 42.
  • the control module 41 can generate an instruction to stop circulation of the cooling fluid, this circulation being able to be reset on by the control module 41 each time the pressure threshold value is exceeded within the box 12.
  • the first embodiment of the cooling device 2 therefore comprises a so-called active regulation system 4, that is to say here based on the measurement of the internal pressure of the housing 12 and causing the condensation of the dielectric fluid 3 when necessary.
  • FIG. 2 is a schematic representation of a second embodiment of the cooling device 2. This second embodiment differs from the first embodiment only at the level of the regulation system 4. The process for cooling the electronic elements 11 being strictly identical, reference will be made to the description of FIG. 1 with regard to this aspect of the cooling device 2.
  • the regulation system 4 does not include a pressure sensor so that it does not allow active regulation as described above, but on the contrary passive, preventive regulation.
  • the control system here comprises a state detector 43 of the device, or of the vehicle for example, comprising this cooling device.
  • the state detector 43 allows in particular, in the case of application of the cooling device to a motor vehicle, the detection of the stop of the vehicle, more precisely when the ignition of the latter is off.
  • the condition detector 43 is configured to also detect the starting of the vehicle. When stopping or starting the vehicle, the state detector 43 sends a signal to the control module 41 which, just as for the first embodiment, generates a control instruction for the regulation of the internal pressure in the box. 12.
  • the regulation system also comprises a storage tank 45 connected to the recovery tank 25 by any pipe.
  • the storage tank 45 is located outside the housing 12 and communicates with the latter only through said pipe.
  • the state detector 43 When the vehicle's ignition is off, the stop is detected by the state detector 43 which transmits a signal to the control module 41. The latter command then a regulating pump 44 which ensures the suction of the dielectric fluid 3 present in the recovery tank 25 to direct it to the storage tank 45. As long as the vehicle is stationary, the dielectric fluid 3 is kept in the storage tank 45. When the vehicle restarts, the state detector 43 again sends a signal to the control module 41 which again controls the regulating pump 44 this time in a reverse configuration to transfer the dielectric fluid 3 from the tank 45 to the drip tray 25.
  • the dielectric fluid 3 when the vehicle is stationary, the dielectric fluid 3 is isolated from the housing 12 and does not risk evaporating under the effect of a rise in temperature and causing an increase in pressure internal case.
  • the dielectric fluid 3 is transferred back to the recovery tank 25 in order to be able to cool the electronic elements 11 as described in FIG. 1.
  • the implementation of this pressure regulation involves the actuation of a pump and therefore has an energy cost, however minimal. Consequently, the regulation system can be configured so that the control module 41 retrieves information relating to the temperature, whether it is the temperature inside the housing 12 and / or the ambient temperature, in order not to activate this regulation. in the event of stopping the vehicle only under high temperature conditions which risk causing evaporation of the two-phase dielectric fluid.
  • the latter can be disposed within a structure insulating 46 which acts as a thermal barrier and thus prevents any phenomenon of evaporation within the storage tank 45.
  • the dielectric fluid 3 stored in the storage tank 45 can also be cooled by a heat exchanger 47 for on the one hand to be kept in the liquid state and to avoid an undesired overpressure and on the other hand to be at an optimum temperature to generate a more efficient cooling on the electronic elements 11 subsequently, when the dielectric fluid 3 is transferred into the recovery tank 25.
  • the insulating structure 46 and the cooler 47 are not inseparable. It is possible to use only one or the other without altering the efficiency of the regulation system 4 and / or as required.
  • the second embodiment of the cooling device 2 therefore comprises a so-called passive regulation system 4, that is to say allowing the removal of the dielectric fluid 3 from the housing 12 in a preventive manner to prevent its evaporation within this one, without necessarily being necessary.
  • the cooling device is associated with a battery pack provided with six electronic elements 11 divided into three stages of two electronic elements 11 each, each stage of electronic elements 11 being overlooked by a condenser 26.
  • Each condenser 26 comprises two side walls 262 interconnected by an upper wall 261.
  • the upper wall 261 extends mainly in a plane formed by a longitudinal axis L and a transverse axis T, while the side walls 262 s 'extend mainly along a plane formed by the longitudinal axis L and a vertical axis V, with reference to the trihedron L, V, T shown in Figure 3.
  • Each condenser 26 also comprises a central wall 263, extending from the wall upper 261 being parallel to the side walls and having dimensions identical or substantially identical to the dimensions of these side walls 262.
  • the condenser 26 in its entirety is therefore in the form of two U arranged side by side, each of the U partially framing an electronic element 11 of the stage overhung by the condenser 26.
  • the projection elements 22 are located on the side walls 262 and the central wall 263 of the condenser 26, more precisely on a face of each of said walls oriented towards the electronic element 11, so that the dielectric fluid can be projected against the electronic elements 11.
  • the dielectric fluid is supplied to the projection elements 22 by means of the dielectric fluid circuit 21 visible in relief on each of the side walls 262 and of the central walls 263.
  • the cooling fluid circuit 23 s' in turn extends in the thickness of the top wall 261, from a cooling fluid inlet 231 to a cooling fluid outlet 232, each located on the top wall 261.
  • the top wall 261 also includes a dielectric fluid inlet 211, the dielectric fluid outlet being provided by the projection elements 22.
  • the recovery tank 25 is located below all of the electronic elements 11 in order to recover all of the dielectric fluid, either directly from the spraying against the electronic elements 11, or from the liquefaction of the dielectric fluid by the condenser 26, as has been written previously.
  • Such a set of electronic elements and the associated cooling device can in particular be integrated into a battery pack 1 as illustrated in FIG. 4, which makes it possible, for example, to supply power to a hybrid vehicle. or electric.
  • the battery pack 1 intended to be placed under the passenger compartment of the vehicle, comprises two boxes 12, each box including within it an arrangement as shown in Figure 3 for example.
  • the dielectric fluid circuit 21 is here arranged outside the housing, with a connecting end emerging from each housing 12 at the level of the recovery tank arranged inside this latest.
  • the dielectric fluid circuit 21 is thus connected to the recovery tank in order to suck up the dielectric fluid in liquid form having deposited therein, in particular via a circulation pump 24.
  • the dielectric fluid circuit 21 is connected to a distributor plate 52 located between the two boxes 12 of the battery pack 1.
  • the distributor plate is configured to supply each of the stages of the electronic elements with dielectric fluid.
  • the battery pack 1 also comprises a connector 51 enabling the cooling fluid circuit of each condenser to be supplied with cooling fluid.
  • each of the boxes 12 comprises two connectors 51 corresponding to an inlet and an outlet for cooling fluid.
  • the cooling fluid circulates within the distributor plate 52 in order to supply all of the condensers with cooling fluid.
  • the connectors 51 allow the connection of each circuit of cooling fluid with a cooling module, not shown in FIG. 4, which makes it possible to cool the cooling fluid after the latter has effected the heat exchange with the dielectric fluid as it passes through each of the condensers.
  • Each cooling fluid circuit comprises means for activating the circulation of the cooling fluid within this circuit, for example a valve or a pump.
  • the cooling device according to the first embodiment described above can in particular be implemented in the battery pack illustrated in FIG. 4, by providing a pressure sensor disposed within each housing 12.
  • the control module can in particular be arranged within one of the boxes 12, or fixed to the battery pack 1, and this control module can be configured to give a control instruction to the activation means mentioned above.
  • the cooling device comprises a system for regulating the internal pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention concerne un dispositif de refroidissement (2) d'une pluralité d'éléments électroniques (11) susceptibles de dégager de la chaleur lors de leur fonctionnement pour l'alimentation électrique d'un appareil ou d'un véhicule, lesdits éléments électroniques étant disposés dans un boitier (12), le dispositif (2) comprenant au moins un élément de projection (22) d'un fluide diélectrique diphasique (3) sur les éléments électroniques (11), ainsi qu'un condenseur (26) pourvu d'un circuit de fluide de refroidissement (23), le boitier (12) comprenant un bac de récupération (25) du fluide diélectrique (3), le dispositif de refroidissement (2) comprenant un circuit de fluide diélectrique (21), pourvu d'une pompe de circulation (24) configurée pour aspirer le fluide diélectrique (3) du bac de récupération (25), et directement relié à l'élément de projection (22), caractérisé en ce que le dispositif de refroidissement (2) comprend un système de régulation (4) de la pression interne du boitier (12), le système de régulation (4) comprenant un module de contrôle (41) configuré pour générer une instruction de commande de régulation de la pression interne en fonction d'un état du dispositif de refroidissement et/ou un état de l'appareil ou du véhicule.

Description

Dispositif de refroidissement d’un pack-batteries
[0001] La présente invention se rapporte au domaine des dispositifs de refroidissement d’éléments électroniques, et elle peut notamment concerner des dispositifs de refroidissement des packs-batteries d’un véhicule automobile hybride ou électrique.
[0002] Le marché industriel impliquant l’utilisation d’éléments électroniques susceptibles de dégager de fortes chaleurs lors de leur fonctionnement, par exemple dans le domaine de l’industrie automobile hybride ou électrique, est de plus en plus important. Notamment, les véhicules automobiles hybrides ou électriques sont alimentés par des batteries électriques rechargeables qui, en fonctionnement, peuvent atteindre des températures extrêmes, ces températures pouvant générer un risque d’endommagement des structures du véhicule à proximité des batteries, et/ou un risque de voir les batteries s’enflammer ou bien à tout le moins de moins bien fonctionner.
[0003] Il est connu de regrouper des batteries d’un véhicule hybride ou électrique au sein d’un pack-batteries et d’utiliser un élément de projection d’un fluide sur celles-ci afin de procéder à leur refroidissement, le fluide étant diélectrique afin de ne pas provoquer de court-circuit des batteries. Ces dernières sont ainsi maintenues à une température suffisamment basse pour réduire les risques précédemment évoqués.
[0004] Le fluide diélectrique peut notamment être un fluide diphasique qui, au contact des batteries et par échange de calories, passe à l’état de vapeur. Il est dès lors connu d’équiper le pack-batteries d’un condenseur, afin de repasser le fluide diélectrique à l’état liquide. Le fluide diélectrique à l’état liquide est alors récupéré, notamment en fond du pack-batteries, et peut par exemple être dirigé vers un réseau de canaux de recirculation afin d’être à nouveau inséré dans le pack-batteries pour être projeté sur les batteries lors d’une utilisation ultérieure.
[0005] L’explication effectuée ci-dessus est valable lorsque le véhicule est en fonctionnement. Un problème similaire se pose lorsque le véhicule est en stationnement. En effet, sous l’effet des batteries encore chaudes, ou bien sous des conditions météorologiques estivales, le fluide diélectrique peut passer en état vapeur et faire augmenter la pression du boîtier contenant les batteries. Une pression interne du boîtier trop élevée entraîne une fuite du fluide diélectrique à l’état vapeur et donc une perte de celui-ci.
[0006] La présente invention permet de pallier le problème d’évaporation du fluide diélectrique au sein d’un boîtier contenant des batteries électriques, et ce malgré le fait que le véhicule soit à l’arrêt.
[0007] Ainsi l’invention consiste en un dispositif de refroidissement d’une pluralité d’éléments électroniques susceptibles de dégager de la chaleur lors de leur fonctionnement pour l’alimentation électrique d’un appareil ou d’un véhicule, lesdits éléments électroniques étant disposés dans un boîtier, le dispositif comprenant au moins un élément de projection d’un fluide diélectrique diphasique sur les éléments électroniques, ainsi qu’un condenseur pourvu d’un circuit de fluide de refroidissement, le boîtier comprenant un bac de récupération du fluide diélectrique, le dispositif de refroidissement comprenant un circuit de fluide diélectrique, pourvu d’une pompe de circulation configurée pour aspirer le fluide diélectrique du bac de récupération, et directement relié à l’élément de projection, caractérisé en ce que le dispositif de refroidissement comprend un système de régulation de la pression interne du boîtier, le système de régulation comprenant un module de contrôle configuré pour générer une instruction de commande de régulation de la pression interne en fonction d’un état du dispositif de refroidissement et/ou un état de l’appareil ou du véhicule.
[0008] L’élément de projection est configuré pour pulvériser le fluide diélectrique diphasique, à l’état liquide, sur les éléments électroniques. Un échange de calories s’opère alors entre les éléments électroniques chauds et le fluide diélectrique qui se vaporise sous l’effet de la haute température des éléments électroniques. Ces derniers peuvent par exemple être des cellules de batterie pour véhicule hybride ou électrique, ou tout autre élément électronique pouvant atteindre des très hautes températures et nécessitant d’être refroidi en conséquence.
[0009] Le condenseur peut par exemple se présenter sous la forme d’une plaque métallique au sein de laquelle circule un fluide de refroidissement. Le condenseur est disposé au sein du boîtier de telle manière qu’un contact soit créé entre le condenseur et le fluide diélectrique sous forme vapeur. Un nouvel échange de calories est opéré entre le fluide diélectrique sous forme vapeur et le condenseur associé au fluide de refroidissement, permettant ainsi au fluide diélectrique céder les calories précédemment acquises et de revenir à l’état liquide. Le boîtier est configuré pour que ce fluide électrique diphasique à l’état liquide coule jusqu’au bac de récupération.
[0010] Le circuit de fluide diélectrique relie le bac de récupération à l’élément de projection afin de pouvoir à nouveau pulvériser le fluide diélectrique sous forme liquide sur les éléments électroniques. La pompe de circulation permet d’aspirer le fluide diélectrique présent dans le bac de récupération et de le faire circuler au sein du circuit de fluide diélectrique. Le circuit de fluide diélectrique peut directement déboucher sur l’élément de projection, ou par exemple passer au sein du condenseur avant de déboucher sur l’élément de projection, afin d’abaisser la température du fluide diélectrique avant que celui-ci soit projeté sur les éléments électroniques et ainsi puisse effectuer un refroidissement plus efficace de ceux-ci.
[0011] Le système de régulation de pression du dispositif de refroidissement est configuré pour éviter un excès de pression dans le boîtier pouvant générer des contraintes au niveau des jointures de ce boîtier et des fuites de fluide diélectrique le cas échéant. Un tel excès de pression est notamment dû à la vaporisation du fluide diélectrique présent dans le boîtier et notamment lorsque le véhicule est à l’arrêt et que le dispositif de refroidissement n’est pas en marche, c’est-à-dire lorsque le fluide de refroidissement ne circule pas dans le condenseur. Cette vaporisation peut se produire après l’arrêt du véhicule si la température atteinte par les éléments électroniques situés à proximité du bac de récupération reste trop élevée, ou bien de manière générale lorsque la température ambiante est élevée.
[0012] Selon l’invention, le module de contrôle présent au sein du système de régulation de pression permet de détecter une montée de la pression interne du boîtier, ou un autre événement pouvant provoquer une montée de pression interne du boîtier. Le module de contrôle permet également, suite à cette détection, de générer une instruction de commande à destination d’autres composants du système de régulation de pression aptes à réaliser une diminution de la pression interne du boîtier. [0013] Selon une caractéristique de l’invention, le module de contrôle comprend un capteur de pression, le module de contrôle étant configuré pour générer une instruction de commande de régulation de la pression interne du boîtier lorsqu’une valeur mesurée par le capteur de pression dépasse une valeur seuil de pression. Le capteur de pression est avantageusement disposé dans le boîtier afin de mesurer la pression de manière précise. Le capteur de pression et le module de contrôle sont configurés pour communiquer entre eux, le cas échéant par des moyens filaires.
[0014] Selon une caractéristique de l’invention, la valeur seuil de pression, à laquelle sont comparées les valeurs de pression mesurées par le capteur de pression, est de 1 ,5 bar. Il a été déterminé par les inventeurs qu’à partir de cette valeur de pression de 1 ,5 bar, la pression interne risque de déformer le boîtier et le fluide diélectrique présent dans le boîtier risque par suite de s’échapper hors du boîtier, cette pression correspondant à une température d’environ 48°C. Le module de commande récupère en temps réel, ou à intervalles réguliers, les valeurs de pression mesurées par le capteur de pression et initie la régulation de pression, c’est-à-dire génère des instructions de commande appropriées, lorsqu’une des valeurs de pression récupérées est supérieure ou égale à 1 ,5 bar.
[0015] Selon une caractéristique de l’invention, le module de contrôle initie la régulation de la pression interne en générant une instruction de commande à destination du circuit de fluide de refroidissement associé au condenseur. En d’autres termes, le module de contrôle commande la mise en route du circuit de fluide de refroidissement uniquement lorsque la valeur seuil de pression est atteinte.
[0016] La régulation de la pression interne dans le cas qui vient d’être présenté, avec un contrôle de la pression interne et une instruction de commande relative à ce contrôle de pression, est dite active, c’est-à-dire que la régulation est effectuée en temps réel en fonction d’une mesure de pression trop élevée.
[0017] Selon une caractéristique de l’invention, le dispositif de refroidissement comporte un détecteur d’état de l’appareil ou du véhicule susceptible de détecter et envoyer au module de contrôle une information relative à l’arrêt ou au fonctionnement de l’appareil ou du véhicule. Par détecteur d’état de l’appareil ou du véhicule, il faut comprendre qu’il s’agit d’un capteur qui détecte si l’appareil ou le véhicule, sur lequel est installé le dispositif de refroidissement, est en fonctionnement ou s’il est à l’arrêt. A titre d’exemple, le détecteur d’état peut par exemple être un accéléromètre ou un organe directement lié au dispositif de démarrage du véhicule. Le détecteur d’état de l’appareil ou du véhicule peut envoyer un signal au module de contrôle dès que le changement d’état est avéré, que ce soit par exemple un arrêt du contact du véhicule, ou bien un démarrage de celui-ci.
[0018] Selon une caractéristique de l’invention, le système de régulation de pression comprend un réservoir de stockage isolé du boîtier, ainsi qu’une pompe de régulation apte à aspirer le fluide diélectrique présent dans le bac de récupération jusqu’au réservoir de stockage, et/ou à aspirer le fluide diélectrique présent dans le réservoir de stockage jusqu’au bac de récupération, en fonction d’une indication donnée par le détecteur d’état de l’appareil ou du véhicule. Autrement dit, le système de régulation de pression peut être configuré pour assurer le transfert du fluide diélectrique entre le bac de récupération et le réservoir de stockage, et ce dans les deux sens de circulation en fonction de l’état du véhicule déterminé par l’intermédiaire du détecteur d’état du véhicule. Plus particulièrement, lorsque le moteur du véhicule ne tourne pas, et que le fluide de refroidissement ne circule pas dans le condenseur, le risque de voir chauffer le fluide diélectrique est important et le système de régulation est configuré pour retirer le fluide diélectrique du boîtier du dispositif de refroidissement.
[0019] Ainsi, lorsqu’il est détecté que le véhicule est à l’arrêt, moteur coupé par exemple, le détecteur d’état du véhicule transmet l’information au module de contrôle, qui initie le fonctionnement de la pompe de régulation pour transférer le fluide diélectrique du bac de récupération jusqu’au réservoir de stockage. A l’inverse, lorsque le véhicule est mis en route, le transfert du fluide diélectrique est effectué dans le sens inverse, c’est-à-dire du réservoir de stockage vers le bac de récupération, afin que le fluide diélectrique soit de nouveau présent dans le boîtier pour jouer son rôle de refroidissement des batteries.
[0020] L’aspiration du fluide diélectrique hors du bac de récupération, et donc hors du boîtier, permet d’éviter l’évaporation du fluide diélectrique diphasique au sein du boîtier lorsque le véhicule est à l’arrêt, par exemple sous l’effet des éléments électroniques, par exemple des éléments de batterie, pouvant demeurer à une température élevée, ou bien sous l’effet de conditions météorologiques estivales. Ainsi, le système de régulation peut également comprendre un capteur de température mesurant la température ambiante de l’environnement extérieur et/ou la température au sein du boîtier, afin de déterminer s’il est nécessaire de pomper le fluide diélectrique hors du boîtier ou non, cette information de température pouvant notamment être considérée de manière additionnelle à celle de l’arrêt du véhicule.
[0021] La régulation de la pression interne dans le cas qui vient d’être présenté, avec un retrait du fluide diélectrique du boîtier pour éviter une surpression en cas d’arrêt du véhicule, est dite passive, c’est-à-dire que le fluide diélectrique est évacué du bac de récupération dès l’arrêt du véhicule afin de prévenir une potentielle hausse de la pression interne du boîtier, sans pour autant qu’il soit certain que la pression interne du boîtier augmente de manière trop excessive.
[0022] Selon une caractéristique de l’invention, le système de régulation comprend une structure isolante recouvrant le réservoir de stockage. La structure isolante est indépendante du boîtier, à distance de celui-ci et recouvre le réservoir de stockage. Conformément à ce qui précède dans le cas d’un réservoir de stockage, le fluide diélectrique est sorti du boîtier du dispositif de refroidissement pour être éloigné des éléments électroniques susceptibles de provoquer l’évaporation du fluide diélectrique. La structure isolante joue alors un rôle de barrière thermique afin que la température ambiante ne soit pas non plus en mesure de provoquer l’évaporation du fluide diélectrique. Dans ces conditions, le fluide diélectrique est maintenu à l’état liquide afin d’être opérationnel lors de son transfert vers le boîtier, et par exemple le bac de récupération, lorsque le véhicule redémarre.
[0023] Selon une caractéristique de l’invention, le réservoir de stockage comprend un échangeur thermique. Le fluide diélectrique peut ainsi être refroidi lorsqu’il est stocké au sein du réservoir de stockage. Ce dernier peut par exemple être parcouru par une passe au sein de laquelle circule un fluide de refroidissement, afin de conserver le fluide diélectrique à basse température. Le fluide diélectrique est ainsi maintenu en phase liquide. Une telle caractéristique peut être une alternative, ou au contraire être mise en oeuvre de manière complémentaire, à la présence d’un structure isolante telle que précédemment évoquée.
[0024] L’invention couvre également un procédé de mise en oeuvre d’un dispositif de refroidissement tel que décrit précédemment, caractérisé en ce qu’il comprend :
- une étape de détermination par l’intermédiaire du module de contrôle d’au moins une donnée liée à une augmentation potentielle ou effective de la pression interne du boîtier du dispositif de refroidissement,
- une étape de commande du système de régulation de pression pour diminuer la pression interne du boîtier, l’étape de commande étant déclenchée en fonction de ladite donnée.
[0025] L’étape de détermination peut notamment comporter une mesure effectuée par un capteur de pression ou un capteur de température, selon les modes de réalisation du dispositif de refroidissement, et/ou la détection d’un état du véhicule qui détecte l’arrêt ou le démarrage du véhicule. Le module de contrôle reçoit un ou plusieurs signaux et génère une instruction de commande en conséquence, à savoir l’activation du circuit de fluide de refroidissement alors que le véhicule est à l’arrêt et que la pression interne dépasse une valeur seuil dans le cas d’une régulation active, ou l’aspiration du fluide diélectrique du bac de récupération vers le réservoir de stockage dans le cas d’une régulation passive.
[0026] L’invention couvre également un système de gestion thermique comprenant un boîtier destiné à recevoir une pluralité d’éléments électroniques susceptibles de dégager une chaleur lors de leur fonctionnement et un dispositif de refroidissement tel que décrit précédemment.
[0027] L’invention couvre également un pack-batteries comprenant une pluralité d’éléments électroniques susceptibles de dégager une chaleur lors de leur fonctionnement, un boîtier recevant lesdits éléments électroniques et un dispositif de refroidissement tel que décrit précédemment. Un tel pack-batteries permet l’alimentation par exemple d’un moteur électrique ou hybride d’un véhicule automobile. [0028] D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description détaillée donnée ci-après, de manière indicative et non limitative en référence aux dessins schématiques annexés, sur lesquels :
[0029] [fig 1] est un schéma d’un premier mode de réalisation d’un dispositif de refroidissement d’éléments électroniques selon l’invention,
[0030] [fig 2] est un schéma d’un deuxième mode de réalisation du dispositif de refroidissement d’éléments électroniques selon l’invention,
[0031] [fig 3] est une représentation d’un exemple du contenu d’un boîtier du dispositif de refroidissement,
[0032] [fig 4] est une représentation d’un pack-batteries muni du dispositif de refroidissement selon l’invention.
[0033] Un dispositif de refroidissement 2 selon l’invention est illustré sur la figure 1. Un tel dispositif comporte notamment un boîtier 12 logeant une pluralité d’éléments électroniques 11 et un dispositif de refroidissement 2 qui comprend au moins un circuit de fluide diélectrique 21 à l’intérieur duquel circule un fluide diélectrique 3, ici diphasique, et qui est configuré pour permettre le refroidissement des éléments électroniques. Selon l’invention, et tel que cela sera décrit ci-après, le dispositif de refroidissement comporte un système de régulation de la pression interne du boîtier.
[0034] Le circuit de fluide diélectrique 21 se présente sous la forme d’un canal de circulation sur lequel est disposé au moins un élément de projection 22.
L’élément de projection 22 peut par exemple être une buse de projection assurant la pulvérisation du fluide diélectrique 3 sous forme de spray. De manière avantageuse, le circuit de fluide diélectrique 21 comporte une pluralité d’éléments de projection 22, répartis de manière à assurer la pulvérisation du fluide diélectrique 3 sur une pluralité d’éléments électroniques 11.
[0035] Les éléments électroniques 11 peuvent par exemple être des cellules de batterie permettant l’alimentation d’un moteur électrique ou hybride d’un véhicule, ou encore des serveurs informatiques nécessitant d’être régulièrement refroidis. Dans chacun de ces cas, l’action de projection du fluide diélectrique 3 sur les éléments électroniques 11 permet d’abaisser la température de ces derniers. La figure 1 représente quatre éléments électroniques 11 , sur lesquels est projeté du fluide diélectrique 3 par le biais de quatre séries de deux éléments de projection 22 disposés sur le circuit de fluide diélectrique 21.
[0036] Une fois projeté contre les éléments électroniques 11 , le fluide diélectrique 3 diphasique, sous l’effet de la température élevée des éléments électroniques 11 , est au moins en grande majorité vaporisé, phase vapeur 31. Il est toutefois possible qu’une partie du fluide diélectrique 3 soit maintenue en phase liquide malgré l’échange de chaleur avec les éléments électroniques 11. Le fluide diélectrique 3 en phase liquide coule alors jusqu’à un bac de récupération 25 situé en contrebas des éléments électroniques 11. Le bac de récupération 25 peut présenter la forme d’un quelconque récipient pourvu d’un volume interne et étant apte à récupérer la totalité du fluide diélectrique 3 sous forme liquide.
[0037] Le dispositif de refroidissement 2 comprend un condenseur 26 qui consiste en une plaque au sein duquel s’étend un circuit de fluide de refroidissement 23. Le fluide de refroidissement peut par exemple être de l’eau glycolée, ou d’autres liquides réfrigérants du type R134a ou 1234yf. La plaque formant condenseur 26 présente une paroi de contact 27 tournée vers l’intérieur du boîtier et donc disposée entre le circuit de fluide de refroidissement 23 et l’élément de projection 22. Le fluide diélectrique 3 diphasique, une fois vaporisé par le dégagement de chaleur des éléments électroniques 11 , entre en contact avec le condenseur 26, plus précisément avec la paroi de contact 27, et se liquéfie au contact de cette paroi refroidie sous l’effet du fluide de refroidissement circulant dans le circuit de fluide de refroidissement 23.
[0038] Dans l’exemple illustré, la paroi de contact 27 est légèrement inclinée, permettant ainsi de faire migrer le fluide diélectrique 3 repassé sous forme liquide 32 le long de la paroi de contact 27 pour tomber dans le bac de récupération 25, sous l’effet de la gravité. Le bac de récupération 25 récupère donc le fluide diélectrique 3 sous forme liquide, que ce soit du fluide diélectrique diphasique non évaporé lors de la projection contre les éléments électroniques 11 , ou bien du fluide vaporisé puis liquéfié par le condenseur 26. [0039] Le circuit de fluide diélectrique 21 comprend une extrémité, opposée à l’extrémité comprenant l’élément de projection 22, qui est immergée dans le fluide diélectrique 3 sous forme liquide 32 présent dans le bac de récupération 25. Le circuit de fluide diélectrique 21 est apte à aspirer le fluide diélectrique 3 présent dans le bac de récupération 25 par le biais d’une pompe de circulation 24. Le fluide diélectrique 3 récupéré dans le bac sous forme liquide peut ainsi recirculer au sein du circuit de fluide diélectrique 21 et être à nouveau projeté sur les éléments électroniques 11 par le biais de l’élément de projection 22.
[0040] Dans l’exemple illustré sur la figure 1 , le circuit de fluide diélectrique 21 est isolé du condenseur 26, mais il est possible de faire passer le circuit de fluide diélectrique 21 au travers du condenseur 26 afin d’abaisser la température du fluide diélectrique 3 et ainsi améliorer le refroidissement des éléments électroniques 11. Par ailleurs, il est ici illustré un circuit de fluide diélectrique intégralement disposé dans le boîtier 12 du dispositif de refroidissement, mais il doit être compris que ce circuit peut s’étendre au moins en partie en dehors du boîtier, un embout de raccordement permettant la sortie du fluide présent dans le bac de récupération dans un conduit externe au boîtier et un autre embout permettant le retour du fluide au niveau du condenseur par exemple.
[0041] Selon l’invention, afin d’éviter qu’une vaporisation non souhaitée du fluide diélectrique 3 diphasique entraîne une augmentation de la pression interne du boitier 12, le dispositif de refroidissement 2 est pourvu d’un système de régulation de pression 4 permettant de prévenir ou atténuer l’augmentation de pression interne du boitier 12. Une telle vaporisation non souhaitée peut notamment avoir lieu, à l’arrêt du véhicule et donc lorsque le fluide de refroidissement ne circule pas dans le condenseur, et lorsqu’une température excessive est constatée dans le boitier, notamment due à une température extérieure élevée.
[0042] Dans le premier mode de réalisation illustré sur la figure 1 , le système de régulation 4 comprend un capteur de pression 42 qui mesure la pression interne du boitier 12 et un module de commande 41 qui est configuré pour pouvoir modifier la configuration du circuit de refroidissement et notamment la circulation du fluide de refroidissement. [0043] Le capteur de pression 42 est disposé dans le boîtier, ici au voisinage de la face de contact 27 du condenseur 26, pour mesurer la pression interne du boîtier, et il est configuré pour communiquer avec le module de commande afin de lui transmettre les valeurs de pression mesurées.
[0044] Le module de contrôle 41 est configuré pour comparer les valeurs mesurées avec une valeur seuil de pression, qui peut notamment être égale à 1 ,5 bar. Lorsque la valeur seuil de pression est dépassée, le module de contrôle 41 a pour fonction de générer une instruction de commande à destination du circuit de fluide de refroidissement 23 pour permettre la régulation de la pression interne du boitier 12.
[0045] Plus particulièrement, lorsque le module de contrôle 41 a détecté un cas de surpression, une instruction commande est transmise au circuit de fluide de refroidissement 23 du condenseur 26 afin que le fluide de refroidissement circule à l’intérieur du circuit et puisse évacuer les calories captées du fluide diélectrique. En d’autres termes, l’instruction de commande vise à relancer la circulation du fluide de refroidissement du condenseur 26, afin que le fluide diélectrique 3 sous forme vapeur 31 puisse reprendre une forme liquide et ainsi permettre une diminution de la pression interne du boitier 12.
[0046] La communication entre capteur de pression et module de commande, et l’action de régulation qui en résulte, est notamment mise en oeuvre dans le cas d’un arrêt du véhicule, et d’un arrêt de la circulation du fluide de refroidissement qui peut en résulter si le moteur est coupé.
[0047] Lorsque le module de commande reçoit une information relative à une telle situation d’arrêt du véhicule, les valeurs mesurées par le capteur de pression peuvent être requises de façon continue, ou bien de façon cyclique, à intervalles réguliers.
[0048] L’action de régulation qui vient d’être décrite peut être stoppée par un contrôle de la pression interne du boitier 12 via le capteur de pression 42. Lorsque la pression interne diminue et repasse sous la valeur seuil de pression, ici de 1 ,5 bar, le module de contrôle 41 peut générer une instruction de commande d’arrêt de circulation du fluide de refroidissement, cette circulation pouvant être remise en marche par le module de contrôle 41 à chaque fois que la valeur seuil de pression est dépassée au sein du boitier 12.
[0049] Le premier mode de réalisation du dispositif de refroidissement 2 comprend donc un système de régulation 4 dit actif, c’est-à-dire ici basé sur la mesure de la pression interne du boitier 12 et entraînant la condensation du fluide diélectrique 3 lorsque cela s’avère nécessaire.
[0050] La figure 2 est une représentation schématique d’un deuxième mode de réalisation du dispositif de refroidissement 2. Ce deuxième mode de réalisation diffère du premier mode de réalisation uniquement au niveau du système de régulation 4. Le procédé de refroidissement des éléments électroniques 11 étant rigoureusement identique, on se référera à la description de la figure 1 en ce qui concerne cet aspect du dispositif de refroidissement 2.
[0051] Dans ce deuxième mode de réalisation, le système de régulation 4 n’inclut pas de capteur de pression de sorte qu’il ne permet pas une régulation active comme précédemment décrit, mais au contraire une régulation passive, préventive. Tel qu’il a pu être évoqué à titre optionnel dans le premier mode de réalisation, le système de régulation comprend ici un détecteur d’état 43 de l’appareil, ou du véhicule par exemple, comportant ce dispositif de refroidissement. Le détecteur d’état 43 permet notamment, dans le cas d’application du dispositif de refroidissement à un véhicule automobile, la détection de l’arrêt du véhicule, plus précisément lorsque le contact de celui-ci est coupé. Le détecteur d’état 43 est configuré pour détecter également le démarrage du véhicule. Lors de l’arrêt ou du démarrage du véhicule, le détecteur d’état 43 envoie un signal au module de contrôle 41 qui, tout comme pour le premier mode de réalisation, génère une instruction de commande pour la régulation de la pression interne au boitier 12.
[0052] Le système de régulation comprend également un réservoir de stockage 45 relié au bac de récupération 25 par une conduite quelconque. Le réservoir de stockage 45 est situé hors du boitier 12 et ne communique avec celui-ci que par ladite conduite.
[0053] Lorsque le contact du véhicule est coupé, l’arrêt est détecté par le détecteur d’état 43 qui transmet un signal au module de contrôle 41. Ce dernier commande alors une pompe de régulation 44 qui assure l’aspiration du fluide diélectrique 3 présent dans le bac de récupération 25 pour le diriger jusqu’au réservoir de stockage 45. Tant que le véhicule est à l’arrêt, le fluide diélectrique 3 est conservé dans le réservoir de stockage 45. Lorsque le véhicule redémarre, le détecteur d’état 43 envoie à nouveau un signal au module de contrôle 41 qui commande à nouveau la pompe de régulation 44 cette fois dans une configuration inverse pour transférer le fluide diélectrique 3 du réservoir de stockage 45 jusqu’au bac de récupération 25.
[0054] Ainsi, lorsque le véhicule est à l’arrêt, le fluide diélectrique 3 est isolé du boîtier 12 et ne risque pas de s’évaporer sous l’effet d’une élévation de température et d’entraîner une augmentation de la pression interne du boîtier. Lorsque le véhicule redémarre, le fluide diélectrique 3 est retransféré dans le bac de récupération 25 afin de pouvoir refroidir les éléments électroniques 11 tel que cela est décrit dans la figure 1.
[0055] Il convient de noter que la mise en oeuvre de cette régulation de pression implique l’actionnement d’une pompe et a donc un coût énergétique, même minime. Dès lors, le système de régulation peut être configuré de manière à ce que le module de commande 41 récupère une information relative à la température, que ce soit la température interne au boîtier 12 et/ou la température ambiante, pour n’activer cette régulation en cas d’arrêt du véhicule que dans des conditions de forte température risquant de provoquer l’évaporation du fluide diélectrique diphasique.
[0056] De manière optionnelle, et tel qu’ici représenté sur la figure 2, afin que le fluide diélectrique diphasique 3 soit maintenu à l’état liquide dans le réservoir de stockage 45, ce dernier peut être disposé au sein d’une structure isolante 46 qui fait office de barrière thermique et empêche ainsi tout phénomène d’évaporation au sein du réservoir de stockage 45. Le fluide diélectrique 3 stocké dans le réservoir de stockage 45 peut également être refroidi par un échangeur thermique 47 pour d’une part être conservé à l’état liquide et éviter une surpression non souhaitée et pour d’autre part être à une température optimale pour générer un refroidissement plus efficace sur les éléments électroniques 11 par la suite, lorsque le fluide diélectrique 3 est transféré dans le bac de récupération 25. La structure isolante 46 et le refroidisseur 47 ne sont pas indissociables. Il est possible de n’utiliser que l’un ou l’autre sans altérer l’efficacité du système de régulation 4 et/ou en fonction du besoin.
[0057] Le deuxième mode de réalisation du dispositif de refroidissement 2 comprend donc un système de régulation 4 dit passif, c’est-à-dire permettant le retrait du fluide diélectrique 3 du boîtier 12 de manière préventive pour empêcher son évaporation au sein de celui-ci, et ce sans que cela soit forcément nécessaire.
[0058] Tel que cela est illustré sur la figure 3, le dispositif de refroidissement est associé à un pack batteries muni de six éléments électroniques 11 divisés en trois étages de deux éléments électroniques 11 chacun, chaque étage d’éléments électroniques 11 étant surplombé par un condenseur 26.
[0059] Chaque condenseur 26 comprend deux parois latérales 262 reliées entre elles par une paroi supérieure 261. La paroi supérieure 261 s’étend principalement selon un plan formé par un axe longitudinal L et un axe transversal T, tandis que les parois latérales 262 s’étendent principalement selon un plan formé par l’axe longitudinal L et un axe vertical V, en référence au trièdre L, V, T représenté sur la figure 3. Chaque condenseur 26 comprend également une paroi centrale 263, s’étendant depuis la paroi supérieure 261 en étant parallèle aux parois latérales et en présentant des dimensions identiques ou sensiblement identiques aux dimensions de ces parois latérales 262. Le condenseur 26 dans son intégralité se présente donc sous la forme de deux U disposés côte à côte, chacun des U encadrant partiellement un élément électronique 11 de l’étage surplombé par le condenseur 26.
[0060] Les éléments de projection 22 sont situés sur les parois latérales 262 et la paroi centrale 263 du condenseur 26, plus précisément sur une face de chacune desdites parois orientée vers l’élément électronique 11 , afin que le fluide diélectrique puisse être projeté contre les éléments électroniques 11. Le fluide diélectrique est amené jusqu’aux éléments de projection 22 par le biais du circuit de fluide diélectrique 21 visible en relief sur chacune des parois latérales 262 et des parois centrales 263. Le circuit de fluide de refroidissement 23 s’étend quant à lui dans l’épaisseur de la paroi supérieure 261 , depuis une entrée de fluide de refroidissement 231 jusqu’à une sortie de fluide de refroidissement 232, chacune situé sur la paroi supérieure 261. La paroi supérieure 261 comprend également une entrée de fluide diélectrique 211 , la sortie de fluide diélectrique étant assurée par les éléments de projection 22.
[0061] Le bac de récupération 25 est situé en contrebas de l’ensemble des éléments électroniques 11 afin de récupérer l’intégralité du fluide diélectrique, provenant soit directement de la pulvérisation contre les éléments électroniques 11 , soit issu de la liquéfaction du fluide diélectrique par le condenseur 26, tel que cela a été écrit précédemment.
[0062] Un tel ensemble d’éléments électroniques et le dispositif de refroidissement associé peuvent notamment être intégrés à un pack-batteries 1 tel qu’illustré sur la figure 4, qui permet d’assurer par exemple l’alimentation d’un véhicule hybride ou électrique.
[0063] Dans l’exemple illustré, le pack-batteries 1 , destiné à être disposé sous l’habitacle du véhicule, comprend deux boîtiers 12, chaque boîtier incluant en son sein un aménagement tel que représenté sur la figure 3 par exemple.
[0064] Tel que cela a été évoqué précédemment, le circuit de fluide diélectrique 21 est ici agencé à l’extérieur du boîtier, avec un embout de raccordement émergeant de chaque boîtier 12 au niveau du bac de récupération agencé à l’intérieur de ce dernier. Le circuit de fluide diélectrique 21 est ainsi raccordé au bac de récupération afin d’aspirer le fluide diélectrique sous forme liquide s’y étant déposé, notamment via une pompe de circulation 24. A l’extrémité opposée, le circuit de fluide diélectrique 21 est raccordé à une plaque distributrice 52 située entre les deux boîtiers 12 du pack-batteries 1.
[0065] Dans l’exemple illustré, la plaque distributrice est configurée pour alimenter chacun des étages des éléments électroniques en fluide diélectrique.
[0066] Outre le circuit de fluide diélectrique 21 , le pack-batteries 1 comprend également une connectique 51 permettant l’alimentation du circuit de fluide de refroidissement de chaque condenseur en fluide de refroidissement. Ainsi, chacun des boîtiers 12 comprend deux connectiques 51 correspondant à une entrée et une sortie de fluide de refroidissement. Conformément à ce qui a été décrit pour le fluide diélectrique, le fluide de refroidissement circule au sein de la plaque distributrice 52 afin d’alimenter la totalité des condenseurs en fluide de refroidissement. Les connectiques 51 permettent la liaison de chaque circuit de fluide de refroidissement avec un module de refroidissement, non représenté sur la figure 4, qui permet de refroidir le fluide de refroidissement après que celui-ci a effectué l’échange thermique avec le fluide diélectrique lors de son passage au sein de chacun des condenseurs. Chaque circuit de fluide de refroidissement comporte des moyens d’activation de la circulation du fluide de refroidissement au sein de ce circuit, par exemple une vanne ou une pompe.
[0067] Le dispositif de refroidissement selon le premier mode de réalisation précédemment décrit peut notamment être mis en oeuvre dans le pack-batteries illustré sur la figure 4, en prévoyant un capteur de pression disposé au sein de chaque boîtier 12. Le module de contrôle peut notamment être disposé au sein de l’un des boîtiers 12, ou fixé au pack-batteries 1 , et ce module de contrôle peut être configuré pour donner une instruction de commande aux moyens d’activation précédemment évoqués.
[0068] Dans le cas du deuxième mode de réalisation, il est possible de relier un canal vers le réservoir de stockage à partir du bac de récupération de chacun des boîtiers 12, via des embouts de raccordement similaires à ceux utilisés pour le raccordement du circuit de fluide diélectrique 21 et visibles sur la figure 4.
[0069] Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention, dès lors que, conformément à l’invention, le dispositif de refroidissement comprend un système de régulation de la pression interne.!

Claims

Revendications
[Revendication 1] Dispositif de refroidissement (2) d’une pluralité d’éléments électroniques (11 ) susceptibles de dégager de la chaleur lors de leur fonctionnement pour l’alimentation électrique d’un appareil ou d’un véhicule, lesdits éléments électroniques étant disposés dans un boitier (12), le dispositif (2) comprenant au moins un élément de projection (22) d’un fluide diélectrique diphasique (3) sur les éléments électroniques (11), ainsi qu’un condenseur (26) pourvu d’un circuit de fluide de refroidissement (23), le boitier (12) comprenant un bac de récupération (25) du fluide diélectrique (3), le dispositif de refroidissement (2) comprenant un circuit de fluide diélectrique (21), pourvu d’une pompe de circulation (24) configurée pour aspirer le fluide diélectrique (3) du bac de récupération (25), et directement relié à l’élément de projection (22), caractérisé en ce que le dispositif de refroidissement (2) comprend un système de régulation (4) de la pression interne du boitier (12), le système de régulation (4) comprenant un module de contrôle (41) configuré pour générer une instruction de commande de régulation de la pression interne en fonction d’un état du dispositif de refroidissement et/ou un état de l’appareil ou du véhicule.
[Revendication 2] Dispositif de refroidissement (2) selon la revendication 1 , dans lequel le module de contrôle (41) comprend un capteur de pression (42), le module de contrôle (41) étant configuré pour générer une instruction de commande de régulation de la pression interne du boitier (12) lorsqu’une valeur mesurée par le capteur de pression dépasse une valeur seuil de pression.
[Revendication 3] Dispositif de refroidissement (2) selon la revendication 2, dans lequel la valeur seuil de pression à laquelle sont comparées les valeurs de pression mesurées par le capteur de pression (42) est de 1 ,5 bar.
[Revendication 4] Dispositif de refroidissement (2) selon la revendication 2 ou 3, dans lequel le module de contrôle (41) initie une régulation de la pression interne en générant une instruction de commande à destination du circuit de fluide de refroidissement associé au condenseur.
[Revendication 5] Dispositif de refroidissement (2) selon l’une des revendications précédentes, comportant un détecteur d’état (43) de l’appareil ou du véhicule susceptible de détecter et envoyer au module de contrôle (41) une information relative à l’arrêt ou au fonctionnement de l’appareil ou du véhicule.
[Revendication 6] Dispositif de refroidissement (2) selon la revendication 5, dans lequel le système de régulation de pression (4) comprend un réservoir de stockage (45) isolé du boîtier (12), ainsi qu’une pompe de régulation (44) apte à aspirer le fluide diélectrique (3) présent dans le bac de récupération (25) jusqu’au réservoir de stockage (45) et/ou à aspirer le fluide diélectrique présent dans le réservoir de stockage (45) jusqu’au bac de récupération (25), en fonction d’une indication donnée par le détecteur d’état (43) de l’appareil ou du véhicule.
[Revendication 7] Dispositif de refroidissement (2) selon la revendication 6, dans lequel le système de régulation (4) comprend une structure isolante (46) recouvrant le réservoir de stockage (45).
[Revendication 8] Dispositif de refroidissement (2) selon la revendication 6 ou 7, dans lequel le réservoir de stockage (45) comprend un refroidisseur (47).
[Revendication 9] Procédé de mise en oeuvre d’un dispositif de refroidissement (2) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend :
- une étape de détermination par l’intermédiaire du module de contrôle (41) d’au moins une donnée liée à une augmentation potentielle ou effective de la pression interne du boîtier (12) du dispositif de refroidissement (2),
- une étape de commande du système de régulation (4) de pression pour diminuer la pression interne du boîtier, l’étape de commande étant déclenchée en fonction de ladite donnée.
[Revendication 10] Pack-batteries (1 ) comprenant une pluralité d’éléments électroniques (11) susceptibles de dégager une chaleur lors de leur fonctionnement et un dispositif de refroidissement (2) selon l’une quelconque des revendications 1 à 8.
PCT/FR2020/052400 2019-12-12 2020-12-11 Dispositif de refroidissement d'un pack-batteries WO2021116629A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/784,821 US20230051254A1 (en) 2019-12-12 2020-12-11 Device for cooling a battery pack
CN202080093782.1A CN115004448A (zh) 2019-12-12 2020-12-11 用于冷却电池组的装置
EP20848991.4A EP4073871A1 (fr) 2019-12-12 2020-12-11 Dispositif de refroidissement d'un pack-batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1914325 2019-12-12
FR1914325A FR3104826B1 (fr) 2019-12-12 2019-12-12 Dispositif de refroidissement d’un pack-batteries

Publications (1)

Publication Number Publication Date
WO2021116629A1 true WO2021116629A1 (fr) 2021-06-17

Family

ID=74550690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052400 WO2021116629A1 (fr) 2019-12-12 2020-12-11 Dispositif de refroidissement d'un pack-batteries

Country Status (5)

Country Link
US (1) US20230051254A1 (fr)
EP (1) EP4073871A1 (fr)
CN (1) CN115004448A (fr)
FR (1) FR3104826B1 (fr)
WO (1) WO2021116629A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124319A1 (fr) * 2021-06-17 2022-12-23 Valeo Systemes Thermiques Dispositif de régulation thermique d’un composant électrique et/ou électronique
FR3129779A1 (fr) * 2021-11-29 2023-06-02 Valeo Systemes Thermiques Dispositif de regulation de la temperature d’un element electrique et/ou electronique
FR3131806A1 (fr) * 2022-01-11 2023-07-14 Valeo Systemes Thermiques Dispositif de régulation thermique pour un composant électrique ou électronique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100459A (ko) * 2021-01-08 2022-07-15 현대모비스 주식회사 배터리 모듈 냉각 구조체
US12048117B2 (en) * 2022-03-10 2024-07-23 Baidu Usa Llc IT cooling enclosures for energy storage backup systems
CN117096475B (zh) * 2023-10-20 2024-01-30 珠海中力新能源科技有限公司 一种电池组的管理方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203279429U (zh) * 2013-01-09 2013-11-06 中国科学院电工研究所 用于发热装置的喷淋式蒸发冷却循环系统
FR3037727A3 (fr) * 2015-06-17 2016-12-23 Renault Sa Pack de batterie refroidit par un materiau a changement de phase a pression constante
US20190043785A1 (en) * 2016-06-16 2019-02-07 Guangdong Hi-1 New Materials Technology Research Institute Co. Ltd Coolant contact type cooling system for high-power device and operation method thereof
WO2019150061A1 (fr) * 2018-02-05 2019-08-08 Valeo Systemes Thermiques Dispositif de regulation de temperature d'une batterie ou d'un dispositif electronique de puissance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203279429U (zh) * 2013-01-09 2013-11-06 中国科学院电工研究所 用于发热装置的喷淋式蒸发冷却循环系统
FR3037727A3 (fr) * 2015-06-17 2016-12-23 Renault Sa Pack de batterie refroidit par un materiau a changement de phase a pression constante
US20190043785A1 (en) * 2016-06-16 2019-02-07 Guangdong Hi-1 New Materials Technology Research Institute Co. Ltd Coolant contact type cooling system for high-power device and operation method thereof
WO2019150061A1 (fr) * 2018-02-05 2019-08-08 Valeo Systemes Thermiques Dispositif de regulation de temperature d'une batterie ou d'un dispositif electronique de puissance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124319A1 (fr) * 2021-06-17 2022-12-23 Valeo Systemes Thermiques Dispositif de régulation thermique d’un composant électrique et/ou électronique
FR3129779A1 (fr) * 2021-11-29 2023-06-02 Valeo Systemes Thermiques Dispositif de regulation de la temperature d’un element electrique et/ou electronique
FR3131806A1 (fr) * 2022-01-11 2023-07-14 Valeo Systemes Thermiques Dispositif de régulation thermique pour un composant électrique ou électronique

Also Published As

Publication number Publication date
FR3104826B1 (fr) 2024-05-10
CN115004448A (zh) 2022-09-02
US20230051254A1 (en) 2023-02-16
EP4073871A1 (fr) 2022-10-19
FR3104826A1 (fr) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021116629A1 (fr) Dispositif de refroidissement d'un pack-batteries
EP3017498B1 (fr) Dispositif de gestion thermique de la batterie d'un vehicule electrique
EP3727910B1 (fr) Procédé de fonctionnement d'un système de régulation thermique d'un véhicule automobile à propulsion électrique ou hybride
EP2488737A1 (fr) Dispositif de refroidissement pour vehicule hybride
EP2437955A1 (fr) Dispositif et procédé de gestion thermique multifonction d'un véhicule électrique
FR3105709A1 (fr) Dispositif de régulation thermique
EP3828018B1 (fr) Dispositif de gestion de l'énergie thermique dans un véhicule
WO2021156034A1 (fr) Dispositif de recuperation et de regulation d'energie thermique d'un vehicule electrique a generateur electrochimique avec un systeme hvac
EP2556229B1 (fr) Procédé d'estimation de la température initiale d'un organe mécanique d'un véhicule au démarrage du véhicule
WO2022003035A1 (fr) Dispositif de régulation thermique
FR3077235A1 (fr) Procede de traitement thermique d'un habitacle et d'un dispositif de stockage electrique d'un vehicule automobile
WO2021123558A1 (fr) Procédé d'obtention d'un dispositif de régulation thermique d'au moins un composant électrique ou électronique et dispositif de régulation thermique correspondant
FR3111691A1 (fr) Dispositif thermique à PRESSION controlee alimente en fluide fusible
FR3117436A1 (fr) Dispositif d’alimentation électrique pour véhicule
FR3105715A1 (fr) Dispositif de régulation thermique
WO2023203189A1 (fr) Système de régulation thermique d'une batterie
FR3014597A1 (fr) Dispositif et procede de refroidissement d'une batterie de vehicule electrique ou hybride
FR3124319A1 (fr) Dispositif de régulation thermique d’un composant électrique et/ou électronique
WO2023203188A1 (fr) Système de régulation thermique d'une batterie
EP3584517B1 (fr) Système comprenant une machine à absorption pour la production de froid à partir de la chaleur fatale de gaz d'échappement d'un véhicule comprenant un module de stockage de l'énergie thermique, un procédé d'utilisation du système et une utilisation du système
FR3073935A1 (fr) Circuit de fluide refrigerant pour vehicule
WO2021185990A1 (fr) Dispositif de régulation thermique
WO2023203184A1 (fr) Module de batterie pour véhicule automobile
WO2022214573A1 (fr) Composant electrique et/ou electronique pour un systeme electronique comprenant une pluralite de moyens de traitement thermique
EP4195335A1 (fr) Système de gestion thermique d'un système hybride pile à combustible batterie rechargeable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848991

Country of ref document: EP

Effective date: 20220712