WO2021116589A1 - Dispositif de detection de chocs, systeme de detection associe et aeronef equipe d'un tel systeme - Google Patents

Dispositif de detection de chocs, systeme de detection associe et aeronef equipe d'un tel systeme Download PDF

Info

Publication number
WO2021116589A1
WO2021116589A1 PCT/FR2020/052332 FR2020052332W WO2021116589A1 WO 2021116589 A1 WO2021116589 A1 WO 2021116589A1 FR 2020052332 W FR2020052332 W FR 2020052332W WO 2021116589 A1 WO2021116589 A1 WO 2021116589A1
Authority
WO
WIPO (PCT)
Prior art keywords
seebeck
module
detection
energy
shock
Prior art date
Application number
PCT/FR2020/052332
Other languages
English (en)
Inventor
Nicolas FANTON
Serge Thierry Roques
Emmanuel Couturier
Nicolas Paris
Original Assignee
Safran Electrical & Power
Safran Electronics & Defense
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electrical & Power, Safran Electronics & Defense filed Critical Safran Electrical & Power
Priority to CN202080086083.4A priority Critical patent/CN114787038A/zh
Priority to US17/783,509 priority patent/US20230348095A1/en
Publication of WO2021116589A1 publication Critical patent/WO2021116589A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • TITLE Shock detection device, associated detection system and aircraft equipped with such a system
  • the technical field of the invention is that of shock detection.
  • the present invention relates to a shock detection device and in particular to a shock detection device configured to operate autonomously through the use of a Seebeck module.
  • the invention also relates to a detection system comprising a plurality of detection devices according to the invention as well as to an aircraft equipped with such a system.
  • an aircraft may include a fuselage made of composite material or else a fuselage of metallic material. Both types of fuselages are susceptible to impact damage and it is important to be able to detect when such impacts occur. The risk of impact is particularly high when an aircraft is parked in an airport, the vehicles circulating in the airport (tractor, truck, etc.) being liable to come into contact with the aircraft and damage its fuselage.
  • the invention offers a solution to the problems mentioned above, by providing a shock detection device incorporating a Seebeck module.
  • a first aspect of the invention relates to an autonomous device for detecting shocks comprising: at least one shock detector; at least one wireless transmission means configured to transmit the information collected by the shock detector; at least one energy storage means configured to supply energy to the shock detector as well as the wireless transmission medium; at least one energy harvesting module (or Energy Harvesting in English) by Seebeck effect configured to supply energy to the storage means when a temperature gradient is applied to it.
  • the device according to a first aspect of the invention may have one or more additional characteristics among the following, considered individually or in any technically possible combination.
  • the wireless transmission means is also configured to receive energy by radio frequency in order to power the storage means.
  • the Seebeck module hereinafter the first Seebeck module, is arranged in a first configuration and the device comprises a second Seebeck module arranged in a second configuration so that when the device is subjected to a temperature gradient, the voltage generated by the first Seebeck module is of opposite sign to the voltage generated by the second Seebeck module.
  • the device comprises a supervisor configured to distribute energy to the various components of the device, preferably configurable so as to supply the various components of the device only when a sufficient quantity of energy is required to supply them.
  • the device comprises a memory configured to store the measurements carried out by the shock detector (s) and a calculation means coupled to the memory, the calculation means being configured to perform a preprocessing or a processing of the data acquired by the shock detector.
  • the device comprises a first assembly comprising the shock detector and a second assembly comprising the module (s)
  • a second aspect of the invention relates to a system for detecting impacts on a structure, the detection system comprising: a plurality of detection devices according to a first aspect of the invention positioned on a surface of the structure, each detection device being associated with an identifier relating to a predetermined zone of the structure; a plurality of communication devices near the structure and configured to communicate with the detection devices of the plurality of detection devices so as to collect the measurements made by said devices and associate them with the identifier of the corresponding device.
  • each communication device comprises an energy storage means and / or a memory.
  • a third aspect of the invention relates to an aircraft comprising a fuselage and a detection system according to a second aspect of the invention configured to detect impacts on the fuselage, the detection devices of the impact detection system being arranged on the internal surface of the fuselage and the plurality of communication devices of the impact detection system being disposed in the aircraft.
  • FIG. 1 shows a schematic representation of a first embodiment of a device according to a first aspect of the invention.
  • FIG. 2 shows a schematic representation of the structure of a Seebeck cell.
  • FIG. 3 shows a schematic representation of a first embodiment of a Seebeck module of a device according to a first aspect of the invention.
  • FIG. 4 shows a schematic representation of a first embodiment of a set of two Seebeck modules of a device according to a first aspect of the invention.
  • FIG. 5 shows a schematic representation of a second embodiment of a device according to a first aspect of the invention.
  • FIG. 6 shows a schematic representation of a third embodiment of a device according to a first aspect of the invention.
  • FIG. 7 shows a schematic representation of a fourth embodiment of a device according to a first aspect of the invention.
  • FIG. 8 shows a schematic representation of a fifth embodiment of a device according to a first aspect of the invention.
  • FIG. 9 shows a schematic representation of an aircraft equipped with a detection system according to a second aspect of the invention.
  • FIG. 10 shows a schematic representation of a communication device of a system according to a second aspect of the invention or of an aircraft according to a third aspect of the invention.
  • a first aspect of the invention illustrated in [Fig. 1] relates to an autonomous device 3 for detecting shocks.
  • the device 3 according to a first aspect of the invention comprises at least one DC shock detector.
  • the DC shock detector can for example be chosen from an accelerometer or even a piezoelectric sensor.
  • the device 3 comprises a plurality of DC shock detectors, the nature of the DC detectors of the plurality of DC detectors being able to be identical or different.
  • the device 3 also comprises at least one wireless transmission means MC provided with an AN antenna configured to transmit the information collected by the DC shock detector (s).
  • the wireless transmission means MC can for example be a means of communication of the RFID type, a means of 4G communication, a means of WiFi communication or even a means of WAIC communication (standing for Wireless Avionics Intra-Communications, in French Hertzian Communications between Avionics Equipment).
  • the wireless communication means MC makes it possible to transmit the data measured by the DC shock detector (s) in a rapid manner which presents a certain advantage when the data collection must be done regularly and / or on a large number of devices 3 according to a first aspect of the invention.
  • the device 3 according to a first aspect of the invention also comprises at least one energy storage means MS configured to supply energy to the DC shock detector and the wireless transmission means MC.
  • the storage means MS is chosen from a battery, a capacity or even a supercapacitor.
  • the device 3 according to a first aspect of the invention also comprises at least one Seebeck GE module.
  • a Seebeck GE module comprises one or more Seebeck CE cells as illustrated in FIG. 2 and comprising a first surface S1 intended to be exposed to a first temperature T 1 and a second surface S2 intended to be exposed to a second temperature T 2 .
  • the presence of this temperature gradient ⁇ T causes the appearance of a voltage V at the terminals of the Seebeck CE cell, the sign of this voltage y being a function of the sign of the ⁇ T gradient applied to the Seebeck cell and of the Seebeck coefficient of the materials used. .
  • a positive gradient ⁇ T> 0 will cause the appearance of a positive voltage V> 0 and a negative gradient ⁇ T ⁇ 0 will cause the appearance of a negative voltage V ⁇ 0.
  • FIG. 3 An exemplary embodiment of a Seebeck GE module according to the invention is illustrated in FIG. 3 in which the Seebeck GE module is fixed to the interior surface SI of a wall 10, for example the fuselage of a aircraft, so as to benefit from the temperature difference between an inside temperature T int and an outside temperature T ext .
  • the Seebeck GE module comprises a Seebeck CE cell comprising a first surface S1 and a second surface S2 as well as a radiator RA fixed on the second surface S2 of the Seebeck cell.
  • the RA radiator has fins allowing efficient thermalization of the second surface S2 of the Seebeck CE cell.
  • the first surface S1 of the Seebeck airframe is fixed at the level of the interior surface SI of a wall 10, for example the interior surface of the fuselage of an aircraft.
  • This fixing is preferably carried out using an adhesive AD which is a good conductor of heat so as to ensure good thermalization of the first surface S1 of the Seebeck cell in contact with the inner surface of the wall 10.
  • the temperature gradient ⁇ T applied to the Seebeck module is therefore equal to the difference between the temperature T 2 of the second face S2 of the Seebeck CE cell and the temperature T 1 of the first face S1 of the Seebeck CE cell.
  • the temperature T 1 of the first surface is generally between -20 ° C and -30 ° C, even in extreme cases - 50 ° C to -60 ° C, while the temperature T 2 of the second surface is generally equal to 0 ° C. due to the presence of the radiator.
  • the temperature gradient ⁇ applied to the Seebeck module is therefore generally between 20 ° C and 60 ° C. Taking into account these temperature ranges and a power requirement of the order of a few tens of mW, a Seebeck CE cell of a few tens of millimeters, for example 40x40mm, may be sufficient.
  • the table below illustrates the loading time of a storage medium MS (the left column representing the capacity of the storage medium in Farad noted C (F)) as a function of time and of the gradient temperature ⁇ T applied to a Seebeck module. [0035] [Table 1]
  • the device according to a first aspect of the invention comprises a second Seebeck GE2 module configured in an inverted manner with respect to the Seebeck module described above, hereinafter the first Seebeck GE1 module.
  • a Seebeck CE cell comprises a first surface S1 and a second surface S2
  • the Seebeck CE cell of the first Seebeck GE1 module is in operation. contact with this surface 10 via its first surface S1 while the Seebeck CE cell of the second Seebeck GE2 module is in contact with said surface 10 via its second surface S2.
  • the radiator RA is fixed on the first surface S1 of the Seebeck CE cell and the second surface S2 of the Seebeck CE cell is fixed at the level of the inner surface of the wall 10.
  • the device 3 according to a first aspect of the invention is therefore able to produce a positive (or negative) voltage whatever the sign of the temperature gradient ⁇ T between the internal temperature T int and the external temperature T ext .
  • the dashed arrow indicates, for each Seebeck CE cell, the direction of the temperature gradient necessary to obtain a positive voltage V at the terminals of the corresponding Seebeck module.
  • the device 1 according to a first aspect of the invention comprises an energy supervisor SE configured to distribute energy to the various components of the device 3 according to a first aspect of the invention.
  • the MC / RF wireless transmission means is also configured to receive radio frequency energy.
  • the Seebeck GE module has not allowed sufficient charging of the storage medium MS, the latter can be recharged remotely and / or the various components of the device 3 can be supplied with energy.
  • the MC / RF wireless transmission means represents a complementary energy supply means of the Seebeck GE module.
  • the MC / RF wireless transmission means can be used to substitute for Seebeck GE module. It will be noted that this is particularly advantageous in the case of an aircraft 1 since low gradients are generally observed when the aircraft 1 is on the ground. However, it is precisely when the aircraft 1 is parked on the ground that the security measures authorize the emission of radiofrequencies capable of supplying the energy necessary for the device 3.
  • the device 3 comprises a memory MM configured to store the measurements made by the DC shock detector (s).
  • the measurements performed by the device 3 are not necessarily transmitted immediately, but only at regular intervals.
  • the device 3 according to a first aspect of the invention also comprises a calculation means CP coupled to the memory MM, said calculation means CP being configured to perform a preprocessing or a processing of the data acquired by the or detectors DC shocks.
  • the preprocessing or the processing could comprise the selection of the acquired data which must be stored in the memory MM and / or transmitted by the wireless communication means MC.
  • the device 3 according to a first aspect of the invention comprises a first assembly 31, for example in the form of a first housing, comprising the DC shock detector (s) , and a second assembly 32, for example in the form of a second box, comprising the Seebeck GE module (s), the first assembly 31 and the second assembly 32 being connected so that the energy generated by the Seebeck GE module to the level of the second assembly 32 can be transmitted to the first assembly 31.
  • the Seebeck GE module it is possible to deport the Seebeck module (s) when the most suitable location for shock detection and the most suitable location for energy generation. by the Seebeck GE module are not identical.
  • a second aspect of the invention relates to a system for detecting impacts on a structure, the detection system comprising a plurality of autonomous detection devices 3 according to a first aspect of the invention positioned on a surface SI of the structure , each detection device 3 being associated with an identifier relating to a predetermined zone of the structure; and a plurality of communication devices near the structure and configured to communicate with the detection devices 3 of the plurality of detection devices 3 so as to collect the measurements made by said devices 3 and to associate them with the identifier of the corresponding device 3.
  • FIG. 9 a third aspect of the invention illustrated in FIG. 9 relates to an aircraft 1 comprising a fuselage 10 and a shock detection system according to a second aspect of the invention.
  • the detection system comprises a plurality of autonomous detection devices 3 according to a first aspect of the invention positioned on an interior surface SI of the fuselage 10 of the aircraft 1.
  • each autonomous detection device 3 is associated with an identifier relating to a predetermined zone of the fuselage 10, so that it is possible, knowing the identifier of the device 3 having detected a shock to know the zone in which the shock took place.
  • the detection devices 3 are attached to the interior surface SI of the fuselage 10 using an adhesive.
  • an adhesive allows easy positioning and repositioning of the detection devices 3.
  • such a fixing means reduces the risk of damage to the fuselage 10 during the fixing of said detection devices 3.
  • the aircraft 1 also comprises a plurality of communication devices 4 arranged in the aircraft 1 and configured to communicate with the detection devices 3 of the plurality of detection devices 3 so in collecting the measurements performed by said devices 3 and in associating them with the identifier of the corresponding device 3.
  • the plurality of communication devices 4 is positioned so as to be able to communicate with all of the detection devices 3 of the plurality of detection devices 3. It is important to note that a communication device 4 can communicate with one or more detection devices 3. It is also important to note that one or more detection devices 3 can be positioned so as not to be able to communicate with any of the communication devices 4. These latter can however be interrogated using of a portable communication device 4 ', for example during inspection or maintenance operations.
  • the communication devices 4 are powered by a power supply network 12 'connecting the various communication devices 4 to the power supply of the aircraft 1.
  • the energy thus received can then be be transmitted to each detection device 3 via the means for receiving the energy by RF radio frequency.
  • each communication device 4 comprises a wireless communication means MC '/ RF' configured to operate as a wireless communication means or as a means of sending energy by radiofrequency to the detection devices 3.
  • the Table 2 illustrates the power emitted (in dBm and in W) as well as the power received at a detection device 3 (in dBm and in mW) as a function of the distance separating the communication device 4 in question from the detection device 3 in question.
  • each communication device 4 comprises an energy storage means MS ', for example a battery, configured to power the communication device 4 when the power supply network electric 12 'no longer provides energy. This is particularly the case when the aircraft 1 is parked for a long time. Thus, even without an external power supply, the communication devices 4 of the aircraft 1 can continue to interrogate the detection devices 3, or even power the detection devices 3 by radio frequency if necessary.
  • the communication device 4 also includes an energy supervisor SE ’in charge of managing the energy of the communication device 4, and in particular the energy storage means MS’.
  • each communication device 4 comprises a memory MM '(e.g. a hard disk), the data collected from the detection devices 3 being stored on the memory MM' when the power supply network 12 ' does not provide more energy, then transmitted over the communication network when the power supply network 12 ′ provides energy again.
  • the communication device 4 comprises a calculation means CP ′ (for example a processor) making it possible to process the data stored in the memory MM ′.
  • the fuselage 10 is a composite fuselage. Indeed, composite fuselage damage is particularly difficult to detect by visual inspection and a detection system as described in the second aspect of the invention makes this detection much more reliable. However, it emerges from the foregoing that the invention can be implemented on any type of fuselage (in composite materials, in metallic materials, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Dispositif autonome de détection de chocs (3) comprenant au moins un détecteur de chocs (DC); au moins un moyen de transmission sans fil (MC) configuré pour transmettre les informations recueillies par le détecteur de chocs (DC); au moins un moyen de stockage de l'énergie (MS) configuré pour alimenter en énergie le détecteur de chocs (DC) ainsi que le moyen de transmission sans fil (MC); au moins un module Seebeck (GE1) configuré pour alimenter en énergie le moyen de stockage (MS) lorsqu'un gradient de température lui est appliqué; et en ce qu'il comprend un deuxième module Seebeck (GE2), de sorte que, lorsque le dispositif (3) est soumis à un gradient de température, la tension générée par le premier module Seebeck (GE1) est de signe opposée à la tension générée par le deuxième module Seebeck (GE2).

Description

DESCRIPTION
TITRE : Dispositif de détection de chocs, système de détection associé et aéronef équipé d’un tel système
DOMAINE TECHNIQUE DE L’INVENTION [0001] Le domaine technique de l’invention est celui de la détection des chocs.
[0002] La présente invention concerne un dispositif de détection des chocs et en particulier un dispositif de détection des chocs configuré pour opérer de manière autonome grâce à l’utilisation d’un module Seebeck. L’invention concerne également un système de détection comportant une pluralité de dispositifs de détection selon l’invention ainsi qu’un aéronef équipé d’un tel système.
ARRIERE-PLAN TECHNOLOGIQUE DE L’INVENTION
[0003] De manière connue, un aéronef peut comporter un fuselage en matériau composite ou bien un fuselage en matériau métallique. Ces deux types de fuselages sont susceptibles d’être endommagés lors de chocs et il importe de pouvoir détecter lorsque de tels chocs se produisent. Le risque de chocs est particulièrement important lorsqu'un aéronef est en stationnement dans un aéroport, les véhicules circulant dans l'aéroport (tracteur, camion etc.) étant susceptibles d'entrer en contact avec l'aéronef et d'endommager son fuselage.
[0004] En pratique, pour détecter un endommagement lié à un choc, la surface extérieure d'un aéronef est inspectée de manière visuelle par des opérateurs, ce qui est long et onéreux compte tenu du fait que l'aéronef doit être immobilisé. La détection visuelle d'un endommagement lié à un impact est difficile car l'endommagement du matériau composite est généralement interne et peu visible depuis l'extérieur. Afin d'éliminer cet inconvénient, il a été proposé par la demande de brevet FR 3073500 d'utiliser des organes de détections positionné sur la face intérieure du fuselage. Chaque organe de détection est pourvu d’un capteur de chocs, d’un moyen de communication sans-fil et d’un moyen de stockage de l’énergie. Le système décrit dans cette demande ne permet cependant pas une mise en œuvre autonome. Certes, il est suggéré de collecter l’énergie fournie par le capteur pour alimenter le moyen de stockage, mais une telle solution est en pratique difficile à mettre en œuvre, les vibrations devant être situées dans une gamme de fréquences adaptées au capteur pour pouvoir générer une puissance suffisante. [0005] Il existe donc un besoin d’un dispositif de détection de chocs susceptible d’opérer de manière autonome.
RESUME DE L’INVENTION
[0006] L’invention offre une solution aux problèmes évoqués précédemment, en proposant un dispositif de détection des chocs incorporant un module Seebeck.
[0007] Un premier aspect de l’invention concerne un dispositif autonome de détection de chocs comprenant : au moins un détecteur de chocs ; au moins un moyen de transmission sans fil configuré pour transmettre les informations recueillies par le détecteur de chocs ; au moins un moyen de stockage de l’énergie configuré pour alimenter en énergie le détecteur de chocs ainsi que le moyen de transmission sans fil ; au moins un module de récolte d’énergie (ou d'Energy Harvesting en anglais) par effet Seebeck configuré pour alimenter en énergie le moyen de stockage lorsqu’un gradient de température lui est appliqué.
[0008] Outre les caractéristiques qui viennent d’être évoquées dans le paragraphe précédent, le dispositif selon un premier aspect de l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles. [0009] Avantageusement, le moyen de transmission sans fil est également configuré pour recevoir de l’énergie par radiofréquence afin d’alimenter le moyen de stockage.
[0010] Avantageusement, le module Seebeck, ci-après premier module Seebeck, est disposé selon une première configuration et le dispositif comprend un deuxième module Seebeck disposé selon une deuxième configuration de sorte que lorsque le dispositif est soumis à un gradient de température, la tension générée par le premier module Seebeck est de signe opposée à la tension générée par le deuxième module Seebeck.
[0011] Avantageusement, le dispositif comprend un superviseur configuré pour distribuer l’énergie aux différents composants du dispositif, de préférence paramétrable pour n’alimenter les différents composant du dispositif uniquement quand une quantité d’énergie suffisante est nécessaire pour alimenter ces derniers. [0012] Avantageusement, le dispositif comprend une mémoire configurée pour stocker les mesures effectuées par le ou les détecteurs de chocs et un moyen de calcul couplé à la mémoire, le moyen de calcul étant configuré pour effectuer un prétraitement ou un traitement des données acquises par le détecteur de chocs. [0013] Avantageusement, le dispositif comporte un premier ensemble comprenant le détecteur de chocs et un deuxième ensemble comprenant le ou les modules
Seebeck, le premier ensemble et le deuxième ensemble étant reliés de sorte que l’énergie générée par le module Seebeck au niveau du deuxième ensemble puisse être transmise au premier ensemble. [0014] Un deuxième aspect de l’invention concerne un système de détection de chocs sur une structure, le système de détection comprenant : une pluralité de dispositifs de détection selon un premier aspect de l’invention positionnée sur une surface de la structure, chaque dispositif de détection étant associé à un identifiant relatif à une zone prédéterminée de la structure ; une pluralité de dispositifs de communication à proximité de la structure et configurés pour communiquer avec les dispositifs de détection de la pluralité de dispositifs de détection de sorte à collecter les mesures effectuées par lesdits dispositifs et à les associer avec l’identifiant du dispositif correspondant.
[0015] Avantageusement, chaque dispositif de communication comprend un moyen de stockage de l’énergie et/ou une mémoire.
[0016] Un troisième aspect de l’invention concerne un aéronef comportant un fuselage et un système de détection selon un deuxième aspect de l’invention configuré pour détecter les chocs sur le fuselage, les dispositifs de détection du système de détection des chocs étant disposés sur la surface interne du fuselage et la pluralité de dispositifs de communication du système de détection des chocs étant disposée dans l'aéronef.
[0017] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. BREVE DESCRIPTION DES FIGURES
[0018] La [Fig. 1] montre une représentation schématique d’un premier mode de réalisation d’un dispositif selon un premier aspect de l’invention.
[0019] La [Fig. 2] montre une représentation schématique de la structure d’une cellule Seebeck.
[0020] La [Fig. 3] montre une représentation schématique d’un premier exemple de réalisation d’un module Seebeck d’un dispositif selon un premier aspect de l’invention.
[0021] La [Fig. 4] montre une représentation schématique d’un premier exemple de réalisation d'un ensemble de deux modules Seebeck d’un dispositif selon un premier aspect de l’invention.
[0022] La [Fig. 5] montre une représentation schématique d’un deuxième mode de réalisation d’un dispositif selon un premier aspect de l’invention.
[0023] La [Fig. 6] montre une représentation schématique d’un troisième mode de réalisation d’un dispositif selon un premier aspect de l’invention.
[0024] La [Fig. 7] montre une représentation schématique d’un quatrième mode de réalisation d’un dispositif selon un premier aspect de l'invention.
[0025] La [Fig. 8] montre une représentation schématique d’un cinquième mode de réalisation d’un dispositif selon un premier aspect de l’invention. [0026] La [Fig. 9] montre une représentation schématique d’un aéronef équipé d’un système de détection selon un deuxième aspect de l’invention.
[0027] La [Fig. 10] montre une représentation schématique d’un dispositif de communication d’un système selon un deuxième aspect de l’invention ou d’un aéronef selon un troisième aspect de l’invention. DESCRIPTION DETAILLEE
[0028] Les figures sont présentées à titre indicatif et nullement limitatif de l’invention. Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique.
[0029] Un premier aspect de l’invention illustré à la [Fig. 1] concerne un dispositif autonome 3 de détection de chocs. [0030] Le dispositif 3 selon un premier aspect de l’invention comprend au moins un détecteur de chocs DC. Le détecteur de chocs DC peut par exemple être choisi parmi un accéléromètre ou bien encore un capteur piézoélectrique. Dans un mode de réalisation, le dispositif 3 comprend une pluralité de détecteurs de chocs DC, la nature des détecteurs DC de la pluralité de détecteurs DC pouvant être identique ou différente. Ainsi, il est possible de mettre en place un système de redondance des mesures afin de s’assurer de leur exactitude, en choisissant par exemple des détecteurs de même nature. Il est également possible de choisir des détecteurs de nature différente, chaque type de détecteur pouvant être sensible à des signaux différents.
[0031] Le dispositif 3 selon un premier aspect de l’invention comprend également au moins un moyen de transmission sans fil MC pourvu d’une antenne AN configuré pour transmettre les informations recueillies par le ou les détecteurs de chocs DC. Le moyen de transmission sans fil MC peut par exemple être un moyen de communication de type RFID, un moyen de communication 4G, un moyen de communication Wifi ou bien encore un moyen de communication WAIC (de l’anglais Wireless Avionics Intra- Communications, en français Communications Hertziennes entre Equipements d'Avionique). Le moyen de communication sans fil MC permet de transmettre les données mesurées par le ou les détecteurs de chocs DC de manière rapide ce qui présente un avantage certain lorsque la collecte des données doit être faite régulièrement et/ou sur un grand nombre de dispositifs 3 selon un premier aspect de l’invention. Cela garantit en outre une liberté d’implantation du dispositif 3 de détection selon l’invention puisque ce dernier ne nécessite aucune connexion physique pour transmettre les données mesurées. [0032] Le dispositif 3 selon un premier aspect de l’invention comprend également au moins un moyen de stockage de l’énergie MS configuré pour alimenter en énergie le détecteur de chocs DC et le moyen de transmission sans fil MC. Dans un mode de réalisation, le moyen de stockage MS est choisi parmi une batterie, une capacité ou bien encore une supercapacité. [0033] Le dispositif 3 selon un premier aspect de l’invention comprend également au moins un module Seebeck GE. De manière générale, un module Seebeck GE comprend une ou plusieurs cellules Seebeck CE telles qu’illustrées à la figure 2 et comportant une première surface S1 destinée à être exposée à une première température T1 et une deuxième surface S2 destinée à être exposée à une deuxième température T2. Le gradient de température ΔT appliqué au module Seebeck GE est égal à la différence entre la température T2 à laquelle est exposée la deuxième surface S2 de la cellule Seebeck CE et la température T1 à laquelle est exposée la première surface S 1 de la cellule Seebeck CE de sorte que ΔT = T2 - T1. La présence de ce gradient de température ΔT entraîne l’apparition d’une tension V aux bornes de la cellule Seebeck CE, le signe de cette tension y étant fonction du signe du gradient ΔT appliqué à la cellule Seebeck et du coefficient Seebeck des matériaux utilisés. Dans la suite, par convention, un gradient positif ΔT > 0 entraînera l’apparition d’une tension positive V > 0 et un gradient négatif ΔT < 0 entraînera l’apparition d’une tension négative V < 0.
[0034] Un exemple de réalisation d’un module Seebeck GE selon l’invention est illustré à la figure 3 dans lequel, le module Seebeck GE est fixé sur la surface intérieure SI d’une paroi 10, par exemple le fuselage d’un d’avion, de sorte à bénéficier de l’écart de température entre une température intérieure Tint et une température extérieure Text. Par exemple, dans le cas d’un aéronef, un écart de température substantiel existe lors des phases de vol ou bien encore lors des phases de stockage dans des conditions de températures extérieures élevées. Plus particulièrement, le module Seebeck GE comporte une cellule Seebeck CE comprenant une première surface S1 et une deuxième surface S2 ainsi qu’un radiateur RA fixé sur la deuxième surface S2 de la cellule Seebeck. De plus, le radiateur RA comporte des ailettes permettant une thermalisation efficace de la deuxième surface S2 de la cellule Seebeck CE. Dans cet exemple, la première surface S1 de la cellule Seebeck est fixée au niveau de la surface intérieure SI d’une paroi 10, par exemple la surface intérieure du fuselage d’un aéronef. Cette fixation est préférentiellement effectuée à l’aide d’un adhésif AD bon conducteur de la chaleur de sorte à assurer une bonne thermalisation de la première surface S1 de la cellule Seebeck en contact avec la surface intérieure de la paroi 10. Dans cette configuration, le gradient de température ΔT appliqué au module Seebeck est donc égal à la différence entre la température T2 de la deuxième face S2 de la cellule Seebeck CE et la température T1 de la première face S1 de la cellule Seebeck CE. Par exemple, si la paroi 10 est le fuselage d'un aéronef, lors de la phase de vol, la température T1 de la première surface est généralement comprise entre -20°C et -30°C, voire dans des cas extrêmes -50°C à -60°C, alors que la température T2 de la deuxième surface est en général égale à 0° C du fait de la présence du radiateur. Ainsi, lors de la phase de vol, le gradient de température ΔΤ appliqué au module Seebeck est donc généralement compris entre 20°C et 60°C. Compte tenu de ces gammes de températures et d’un besoin en puissance de l’ordre de quelques dizaines de mW, une cellule Seebeck CE de quelques dizaines de millimètres, par exemple 40x40mm peut être suffisante. A titre d’exemple, le tableau ci-dessous illustre le temps de chargement d’un moyen de stockage MS (la colonne de gauche représentant la capacité du moyen de stockage en Farad noté C(F)) en fonction du temps et du gradient de température ΔT appliqué à un module Seebeck. [0035] [Tableau 1]
Figure imgf000009_0001
[0036] Dans un mode de réalisation illustré à la figure 4, le dispositif selon un premier aspect de l’invention comprend un deuxième module Seebeck GE2 configuré de manière inversée par rapport au module Seebeck décrit précédemment, ci-après premier module Seebeck GE1. Autrement dit, sachant qu’une cellule Seebeck CE comporte une première surface S1 et une deuxième surface S2, lorsque le dispositif 3 selon un premier aspect de l’invention est fixé à une surface, la cellule Seebeck CE du premier module Seebeck GE1 est en contact avec cette surface 10 par l’intermédiaire de sa première surface S1 tandis que la cellule Seebeck CE du deuxième module Seebeck GE2 est en contact avec ladite surface 10 par l’intermédiaire de sa deuxième surface S2. Autrement dit, dans l'exemple illustré à la figure 4 et pour le deuxième module Seebeck GE2, le radiateur RA est fixé sur la première surface S1 de la cellule Seebeck CE et la deuxième surface S2 de la cellule Seebeck CE est fixée au niveau de la surface intérieure de la paroi 10. Dans ce mode de réalisation, le dispositif 3 selon un premier aspect de l’invention est donc en mesure de produire une tension positive (ou négative) quel que soit le signe du gradient de température ΔT entre la température intérieure Tint et la température extérieure Text. Sur la figure 4, la flèche en tirets indique, pour chaque cellule Seebeck CE, le sens du gradient de température nécessaire à l’obtention d’une tension V positive aux bornes du module Seebeck correspondant.
[003η Dans un mode de réalisation illustré à la figure 5, le dispositif 1 selon un premier aspect de l’invention comprend un superviseur d’énergie SE configuré pour distribuer l’énergie aux différents composants du dispositif 3 selon un premier aspect de l’invention.
[0038] Dans un mode de réalisation illustré à la figure 6, le moyen de transmission sans fil MC/RF est également configuré pour recevoir de l’énergie par radiofréquence. Ainsi, lorsque le module Seebeck GE n’a pas permis une charge suffisante du moyen de stockage MS, ce dernier peut être rechargé à distance et/ou les différents composants du dispositif 3 peuvent être alimentés en énergie. Ainsi, le moyen de transmission sans fil MC/RF représente un moyen d’alimentation en énergie complémentaire du module Seebeck GE. En effet, lorsque le gradient de température n’est pas suffisant et que le module Seebeck GE ne peut donc pas alimenter le dispositif 3 selon un premier aspect de l’invention, le moyen de transmission sans fil MC/RF peut être utilisé pour se substituer au module Seebeck GE. On notera que ceci est particulièrement avantageux dans le cas d’un aéronef 1 puisque de faibles gradients sont généralement observés lorsque l'aéronef 1 est au sol. Or, c’est précisément lorsque l’aéronef 1 est parqué au sol que les mesures de sécurité autorisent l’émission de radiofréquences susceptibles de fournir l’énergie nécessaire au dispositif 3.
[0039] Dans un mode de réalisation illustré à la figure 7, le dispositif 3 selon un premier aspect de l’invention comprend une mémoire MM configurée pour stocker les mesures effectuées par le ou les détecteurs de chocs DC. Ainsi, les mesures effectuées par le dispositif 3 ne sont pas obligatoirement transmises immédiatement, mais seulement à intervalles réguliers. Dans ce mode de réalisation, le dispositif 3 selon un premier aspect de l’invention comprend également un moyen de calcul CP couplé à la mémoire MM, ledit moyen de calcul CP étant configuré pour effectuer un prétraitement ou un traitement des données acquises par le ou les détecteurs de chocs DC. Par exemple, le prétraitement ou le traitement pourra comprendre la sélection des données acquises qui doivent être mémorisées dans la mémoire MM et/ou transmises par le moyen de communication sans fil MC.
[0040] Dans un mode de réalisation illustré à la figure 8, le dispositif 3 selon un premier aspect de l’invention comporte un premier ensemble 31 , par exemple sous la forme d’un premier boîtier, comprenant le ou les détecteurs de chocs DC, et un deuxième ensemble 32, par exemple sous la forme d’un deuxième boîtier, comprenant le ou les modules Seebeck GE, le premier ensemble 31 et le deuxième ensemble 32 étant relié de sorte que l’énergie générée par le module Seebeck GE au niveau du deuxième ensemble 32 puisse être transmise au premier ensemble 31. Ainsi, il est possible de déporter le ou les modules Seebeck lorsque l’emplacement le plus adapté pour la détection de chocs et l’emplacement le plus adapté pour la génération d’énergie par le module Seebeck GE ne sont pas identiques.
[0041] Un deuxième aspect de l’invention concerne un système de détection de chocs sur une structure, le système de détection comprenant une pluralité de dispositifs de détection autonome 3 selon un premier aspect de l’invention positionnés sur une surface SI de la structure, chaque dispositif de détection 3 étant associé à un identifiant relatif à une zone prédéterminée de la structure ; et une pluralité de dispositifs de communication à proximité de la structure et configurés pour communiquer avec les dispositifs de détection 3 de la pluralité de dispositifs de détection 3 de sorte à collecter les mesures effectuées par lesdits dispositifs 3 et à les associer avec l’identifiant du dispositif 3 correspondant.
[0042] Dans le reste de la description, le système selon un deuxième aspect de l'invention va être illustré au travers d’une application dans laquelle la structure à surveiller est le fuselage d’un aéronef. L’homme du métier comprendra qu’un tel système peut être utilisé dans d’autres situations. Aussi, un troisième aspect de l’invention illustré à la figure 9 concerne un aéronef 1 comportant un fuselage 10 et un système de détection de chocs selon un deuxième aspect de l’invention. Le système de détection comprend une pluralité de dispositifs de détection autonome 3 selon un premier aspect de l’invention positionnés sur une surface intérieure SI du fuselage 10 de l’aéronef 1. En outre, chaque dispositif de détection autonome 3 est associé à un identifiant relatif à une zone du fuselage 10 prédéterminée, de sorte qu’il est possible, connaissant l’identifiant du dispositif 3 ayant détecté un choc de connaître la zone dans laquelle le choc a eu lieu.
[0043] Dans un mode de réalisation, les dispositifs de détections 3 sont fixés sur la surface intérieure SI du fuselage 10 à l’aide d’un adhésif. L’utilisation d’un adhésif permet un positionnement et un repositionnement facile des dispositifs de détection 3. De plus, un tel moyen de fixation réduit les risques d’endommagement du fuselage 10 lors de la fixation desdits dispositifs de détection 3.
[0044] L'aéronef 1 selon un troisième aspect de l’invention comprend également une pluralité de dispositifs de communication 4 disposés dans l’aéronef 1 et configurés pour communiquer avec les dispositifs de détection 3 de la pluralité de dispositifs de détection 3 de sorte à collecter les mesures effectuées par lesdits dispositifs 3 et à les associer avec l’identifiant du dispositif 3 correspondant. De préférence, la pluralité de dispositifs de communication 4 est positionnée de sorte à pouvoir communiquer avec l'ensemble des dispositifs de détection 3 de la pluralité de dispositifs de détection 3. Il est important de noter qu’un dispositif de communication 4 pourra communiquer avec un ou plusieurs dispositifs de détection 3. Il est également important de noter qu’un ou plusieurs dispositifs de détection 3 peuvent être positionnés de sorte à ne pouvoir communiquer avec aucun des dispositifs de communication 4. Ces derniers pourront cependant être interrogés à l’aide d’un dispositif de communication portatif 4’, par exemple lors d’opérations de contrôle ou de maintenance.
[0045] Dans un mode de réalisation, les dispositifs de communication 4 sont alimentés par un réseau d’alimentation électrique 12’ reliant les différents dispositifs de communication 4 à l’alimentation électrique de l’aéronef 1. L’énergie ainsi reçue peut ensuite être transmise à chaque dispositif de détection 3 par l'intermédiaire du moyen de réception de l’énergie par radiofréquence RF. Pour cela, chaque dispositif de communication 4 comprend un moyen de communication sans fil MC’/RF’ configuré pour opérer comme moyen de communication sans fil ou comme moyen d’envoi d’énergie par radiofréquence à destination des dispositifs de détection 3. En supposant un dispositif de communication 4 ayant une antenne AN’ de gain égal à 3 dBi et une perte due au câble de 4,4 dB, et un dispositif de détection autonome 3 ayant une antenne AN ayant un gain égal à 4,5 dBi, le tableau 2 ci-dessous illustre, la puissance émise (en dBm et en W) ainsi que la puissance reçue au niveau d’un dispositif de détection 3 (en dBm et en mW) en fonction de la distance séparant le dispositif de communication 4 considéré du dispositif de détection 3 considéré.
[0046] [Tableau 2]
Figure imgf000013_0001
[0046] L’homme du métier veil era donc à prenc re en compte ces informations lors du positionnement des dispositifs de communication 4 et/ou du positionnement des dispositifs de détection 3, en adaptant bien entendu les hypothèses faites ci-dessus.
[0048] Dans un mode de réalisation illustré à la figure 10, chaque dispositif de communication 4 comprend un moyen de stockage de l’énergie MS’, par exemple une batterie, configuré pour alimenter le dispositif de communication 4 lorsque le réseau d’alimentation électrique 12’ ne fournit plus d'énergie. C’est notamment le cas lorsque l’aéronef 1 est stationné pour une longue durée. Ainsi, même sans alimentation électrique extérieure, les dispositifs de communication 4 de l’aéronef 1 peuvent continuer d’interroger les dispositifs de détection 3, voire d’alimenter les dispositifs de détection 3 par radiofréquence si nécessaire. Dans un mode de réalisation, le dispositif de communication 4 comprend également un superviseur d’énergie SE’ en charge de la gestion de l’énergie du dispositif de communication 4, et en particulier du moyen de stockage de l’énergie MS’.
[0049] De la même manière, les dispositifs de communication 4 sont connectés à un réseau de communication 12 et les données collectées auprès des dispositifs de détection 3 par les dispositifs de communication 4 peuvent être transmises sur le réseau de communication 12 pour ensuite être traitées, par exemple par un calculateur de bord 5 ou bien encore par un serveur de maintenance centralisé. Dans un mode de réalisation, chaque dispositif de communication 4 comprend une mémoire MM’ (par ex. un disque dur), les données collectées auprès des dispositifs de détection 3 étant stockées sur la mémoire MM’ lorsque le réseau d’alimentation électrique 12’ ne fournit plus d’énergie, puis transmise sur le réseau de communication lorsque le réseau d’alimentation électrique 12’ fournit à nouveau de l’énergie. Dans un mode de réalisation, le dispositif de communication 4 comprend un moyen de calcul CP’ (par exemple un processeur) permettant de traiter les données stockées dans la mémoire MM’.
[0050] Dans un mode de réalisation, le fuselage 10 est un fuselage composite. En effet l’endommagement de fuselage composite est particulièrement difficile à détecter par une inspection visuelle et un système de détection tel que décrit dans le deuxième aspect de l’invention rend cette détection beaucoup plus fiable. Il ressort cependant de ce qui précède que l’invention peut être mise en œuvre sur tout type de fuselage (en matériaux composites, en matériaux métallique, etc.).

Claims

REVENDICATIONS
[Revendication 1] Dispositif autonome de détection de chocs (3) comprenant :
- au moins un détecteur de chocs (DC) ;
- au moins un moyen de transmission sans fil (MC) configuré pour transmettre les informations recueillies par le détecteur de chocs (DC) ;
- au moins un moyen de stockage de l’énergie (MS) configuré pour alimenter en énergie le détecteur de chocs (DC) ainsi que le moyen de transmission sans fil (MC) ;
- un premier module Seebeck (GE) configuré pour alimenter en énergie le moyen de stockage (MS) lorsqu’un gradient de température lui est appliqué ; le dispositif étant caractérisé en ce qu’il comprend un deuxième module Seebeck (GE2) configuré pour alimenter en énergie le moyen de stockage (MS) lorsqu’un gradient de température lui est appliqué, en ce que le premier module (GE1) est disposé selon un première configuration et en ce que le deuxième module Seebeck (GE) est disposé selon une deuxième configuration de sorte que, lorsque le dispositif (3) est soumis à un gradient de température, la tension générée par le premier module Seebeck (GE1) est de signe opposée à la tension générée par le deuxième module Seebeck (GE2).
[Revendication 2] Dispositif (3) selon la revendication précédente caractérisé en ce que le moyen de transmission sans fil (MC/RF) est également configuré pour recevoir de l’énergie par radiofréquence afin d’alimenter le moyen de stockage (MS).
[Revendication 3] Dispositif (3) selon l’une des revendications précédentes comprenant un superviseur (SE) configurer pour distribuer l’énergie aux différents composants du dispositif (3).
[Revendication 4] Dispositif (3) selon l’une des revendications précédentes comprenant une mémoire (MM) configurée pour stocker les mesures effectuées par le ou les détecteurs de chocs (DC) et un moyen de calcul (CP) couplé à la mémoire (MM), le moyen de calcul (CP) étant configuré pour effectuer un prétraitement ou un traitement des données acquises par le détecteur de chocs (DC).
[Revendication 5] Dispositif (3) selon l’une des revendications précédentes comportant un premier ensemble (31) comprenant le détecteur de chocs (DC) et deuxième ensemble (32) comprenant le ou les modules Seebeck (GE), le premier ensemble (31) et le deuxième ensemble (32) étant reliés de sorte que l’énergie générée par le module Seebeck (GE) au niveau du deuxième ensemble (32) puisse être transmise au premier ensemble (31).
[Revendication 6] Système de détection de chocs sur une structure (10), le système de détection comprenant :
- une pluralité de dispositifs de détection (3) selon l'une des revendications précédentes positionnés sur une surface (SI) de la structure (10), chaque dispositif de détection (3) étant associé à un identifiant relatif à une zone prédéterminée de la structure (10) ;
- une pluralité de dispositifs de communication (4) à proximité de la structure (10) et configurés pour communiquer avec les dispositifs de détection (3) de la pluralité de dispositifs de détection (3) de sorte à collecter les mesures effectuées par lesdits dispositifs (3) et à les associer avec l’identifiant du dispositif (3) correspondant.
[Revendication 7] Système de détection de chocs selon la revendication précédente dans lequel chaque dispositif de communication (4) comprend un moyen de stockage de l’énergie et/ou une mémoire.
[Revendication 8] Aéronef (1) comportant un fuselage (10) et un système de détection l’un des deux revendications précédentes configuré pour détecter les chocs sur le fuselage (10), les dispositifs de détections (3) du système de détection des chocs étant disposés sur la surface interne (SI) du fuselage et la pluralité de dispositifs de communication (4) du système de détection des chocs étant disposés dans l’aéronef (1).
PCT/FR2020/052332 2019-12-11 2020-12-08 Dispositif de detection de chocs, systeme de detection associe et aeronef equipe d'un tel systeme WO2021116589A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086083.4A CN114787038A (zh) 2019-12-11 2020-12-08 用于检测撞击的设备、关联的检测系统和配备有这种系统的航空器
US17/783,509 US20230348095A1 (en) 2019-12-11 2020-12-08 Device for detecting impacts, associated detection system and aircraft equipped with such a system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1914168 2019-12-11
FR1914168A FR3104545B1 (fr) 2019-12-11 2019-12-11 Dispositif de détection de chocs, système de détection associé et aéronef équipé d’un tel système

Publications (1)

Publication Number Publication Date
WO2021116589A1 true WO2021116589A1 (fr) 2021-06-17

Family

ID=70295258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052332 WO2021116589A1 (fr) 2019-12-11 2020-12-08 Dispositif de detection de chocs, systeme de detection associe et aeronef equipe d'un tel systeme

Country Status (4)

Country Link
US (1) US20230348095A1 (fr)
CN (1) CN114787038A (fr)
FR (1) FR3104545B1 (fr)
WO (1) WO2021116589A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081156A2 (fr) * 2008-01-16 2009-07-22 The Boeing Company Système de détection de dommages
US20110162451A1 (en) * 2007-05-07 2011-07-07 Raytheon Sarcos, Llc Digital wound detection system
WO2011109533A2 (fr) * 2010-03-02 2011-09-09 Bio-Applications, L.L.C Systèmes d'indication et de détection de chocs intra-extra oraux et autres systèmes d'indication et de détection de chocs
WO2019090426A1 (fr) * 2017-11-10 2019-05-16 Shimco North America Inc. Système de détection
FR3073500A1 (fr) 2017-11-15 2019-05-17 Safran Electrical & Power Systeme et procede de detection d'impacts sur un fuselage d'un aeronef

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162451A1 (en) * 2007-05-07 2011-07-07 Raytheon Sarcos, Llc Digital wound detection system
EP2081156A2 (fr) * 2008-01-16 2009-07-22 The Boeing Company Système de détection de dommages
WO2011109533A2 (fr) * 2010-03-02 2011-09-09 Bio-Applications, L.L.C Systèmes d'indication et de détection de chocs intra-extra oraux et autres systèmes d'indication et de détection de chocs
WO2019090426A1 (fr) * 2017-11-10 2019-05-16 Shimco North America Inc. Système de détection
FR3073500A1 (fr) 2017-11-15 2019-05-17 Safran Electrical & Power Systeme et procede de detection d'impacts sur un fuselage d'un aeronef

Also Published As

Publication number Publication date
CN114787038A (zh) 2022-07-22
US20230348095A1 (en) 2023-11-02
FR3104545A1 (fr) 2021-06-18
FR3104545B1 (fr) 2022-01-07

Similar Documents

Publication Publication Date Title
CA2726290C (fr) Support de fixation pour installer un equipement sur un train d&#39;atterrissage d&#39;aeronef, utilisation d&#39;un tel support de fixation et ensemble comprenant un dispositif de surveillance et un tel support de fixation
EP2721428B1 (fr) Dispositif de surveillance d&#39;une batterie d&#39;accumulation electrique et procede associe
EP3772420B1 (fr) Procédé de gestion d&#39;énergie d&#39;un système de vérification de la pression de gonflage des pneumatiques d&#39;un aéronef
FR3068308B1 (fr) Systeme de stockage d’energie electrique d’un vehicule et vehicule adapte a le mettre en œuvre
FR2977667A1 (fr) Module de surveillance d&#39;au moins une grandeur physique caracteristique de l&#39;etat d&#39;un organe de guidage par contact
EP3469805A1 (fr) Système de surveillance d&#39;un équipement d&#39;aéronef
EP0042790A1 (fr) Dispositif pour mesurer la pression de pneumatiques notamment pour aéronefs
FR3073500A1 (fr) Systeme et procede de detection d&#39;impacts sur un fuselage d&#39;un aeronef
FR2635589A1 (fr) Systeme de surveillance automatique en milieu explosif d&#39;une source de courant continu a batteries d&#39;accumulateurs
WO2021116589A1 (fr) Dispositif de detection de chocs, systeme de detection associe et aeronef equipe d&#39;un tel systeme
WO2021116590A1 (fr) Dispositif de détection de chocs, système de détection associé et aéronef équipé d&#39;un tel système
EP2977286A1 (fr) Equipement de transport par câble
FR3071794A1 (fr) Balai d&#39;essuie-glace
FR3067453B1 (fr) Systeme nomade de mesure comportant un module d&#39;alimentation comportant un tore electrique
EP3690459B1 (fr) Dispositif autonome de suivi de temps d&#39;utilisation d&#39;un groupe électrogène, et groupe électrogène et procédé correspondants
FR2970820A1 (fr) Procede de gestion de la charge d&#39;une batterie rechargeable d&#39;un vehicule automobile
FR2997508A1 (fr) Harnais et cable comportant une pluralite de capteurs elementaires et procede de surveillance d&#39;un cable et d&#39;un harnais
EP2574908B1 (fr) Dispositif de mesure de permittivité électrique sans fil et procédés mettant en oeuvre un tel dispositif
FR2909450A1 (fr) Procede et dispositif de determination de l&#39;etat rotatif d&#39;une roue d&#39;un vehicule equipee d&#39;un capteur actif de mouvement adapte pour delivrer un signal de sortie oscillatoire lors d&#39;une rotation de la dite roue
FR2977646A1 (fr) Boite de palier instrumentee avec un capteur d&#39;emission acoustique
FR2878651A1 (fr) Detecteur de neutrons a semi-conducteur
FR3007530A1 (fr) Dispositif de diagnostic de la perte d&#39;une connexion entre un module de controle electronique et une masse
FR3106578A1 (fr) Dispositif de detection de chocs sans fil pour aeronef a autonomie amelioree
FR3126815A1 (fr) Dispositif de gestion de la mise en œuvre d’une limitation du courant destiné à alimenter un objet connecté
EP3847629B1 (fr) Dispositif de mesure connecté pour un aéronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20842004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20842004

Country of ref document: EP

Kind code of ref document: A1